FELIPE ALMEIDA GONCALVES
SU YUN CHI

Sistematizacao do Processo de Verificacao de FMS a partir de Modelos
Formais em UPPAAL

Sao Paulo
2009

FELIPE ALMEIDA GONCALVES
SU YUN CHI

Sistematizacao do Processo de Verificacao de FMS a partir de Modelos
Formais em UPPAAL

Monografia apresentada a Escola Politécnica da
Universidade de Sao Paulo referente a disciplina
PMR2550 - Projeto de Conclusao do Curso Il
Curso de Graduacao : Engenharia Mecatronica

Orientador: Prof. Dr. Diolino José dos Santos Filho

Sao Paulo
2009

AGRADECIMENTOS

Agradecemos a Deus e aos nossos familiares, por providenciarem nosso sustento,
nos apoiarem de maneira incondicional e possibilitarem nossa formacédo académica e
pessoal.

Somos extremamente gratos ao professor Diolino José dos Santos Filho que, junto
com sua equipe, nos aconselhou e nos direcionou de modo que seguissemos o caminho
certo e fizéssemos as escolhas mais adequadas no desenvolver do nosso trabalho.

Por fim, agradecemos ao professor Matteo Giovanni Rossi que, apesar da
distancia, nunca deixou de nos orientar, ao Cleber Alves Sarmento que compartilhou seus
conhecimentos conosco e ao Professor Paulo Eigi Miyagi que nos orientou na parte inicial

do projeto.

RESUMO

O controle de sistemas flexiveis de manufatura (FMSs) precisa ser validado e
verificado antes de ser executado em chao de fabrica.

Considerando que o FMS envolve processos e estrutura que podem ser
controlados por uma sistema de controle modular, o presente projeto visa a criagdo de
uma biblioteca de modelos formais de componentes do FMS, além de uma proposta de
construcdo do modelo de controle supervisério, que auxiliem num procedimento
sistematizado de modelagem do sistema global do FMS, com o uso da ferramenta
UPPAAL que tem como principal recurso o seu eficiente algoritmo de verificagdo. A
linguagem utilizada pela ferramenta baseia-se em autdmatos temporizados estendidos e
sua logica de verificagdo € uma versao simplificada da CTL (computational tree logic).

Visto que o universo dos componentes de um FMS é muito amplo, o presente
trabalho limitou-se a considerar trés classes fundamentais: dispositivos de transformacao,
manipulagcdo e transporte. Com estas, € possivel descrever o funcionamento de uma
grande variedade de FMSs.

A modelagem proposta para o sistema de controle é constituida por dois moédulos:
o moédulo de controle dos processos, onde cada autdmato descreve a sequéncia de
atividades para a fabricacdo de um determinado produto, e o0 médulo de supervisdo que
controla o processo global.

O processo de verificacao € realizado a partir da analise da interacao entre estes

médulos de controle e 0s modelos funcionais dos componentes presentes no FMS.

Palavras-chave: FMS, verificagdo, UPPAAL, modelos formais, controle supervisério

ABSTRACT

The flexible manufacturing systems (FMSs) control needs to be validated and
verified before its execution on shop floor.

Considering the fact that the FMS involves processes and structure that can be
controlled by a modular control system, the present project aims at the creation of a library
of formal models of components of the FMS, and a supervisory control model construction
proposal, that assist a systemized modeling procedure of the global system of the FMS,
with the use of UPPAAL that has, as main resource, its efficient algorithm of verification.
The language used for the tool is based on extended timed automatons and its verification
logic is a simplified version of the CTL (computational tree logic).

Since the universe of the components of a FMS is very large, this project was
limited to consider three fundamental classes: devices of transformation, manipulation and
transport. With these, it is possible to describe the functioning of a great variety of FMSs.

The control system model proposed is build by two modules: the process control
module, where each automaton describes the activity sequence for the manufacture of
one specific product, and the supervisor module that controls the global process.

The verification process is accomplished analyzing the interaction between these
control modules and the functional models of components present in the FMS.

Keywords: FMS, verification, UPPAAL, formal models, supervisory control

LISTA DE ILUSTRAGOES

Figura 2. 1 - Célula de maquina unica (GROOVER, 2008)ccccccevveuieeiieieeieeceie e, 14
Figura 2. 2 - Célula com méaquinas idénticas (GROOVER, 2008)cccccoereereriencnienns 15
Figura 2. 3 - Célula com méaquinas diferentes (BONETTO, 1987)......ccccooiiinieninieniniens 15
Figura 2. 4 - Caracteristicas de trés categorias (GROOVER, 2008)ccceeevveevreerreennnnne. 16
Figura 2. 5 - Caracteristicas das duas categorias (GROOVER, 2008)cccceevveerveennene. 17
Figura 2. 6 - Maquina CNC de usinagem (S & PRECISION, 2009)..........cccceeevevirienieiennnns 18
Figura 2. 7 - Exemplo de sistema de manuseio primario (PROMEC, 2009)..........cc.cccceeuc. 18

Figura 2. 8 - Exemplo de sistema de manuseio secundario (ROBOT MAGAZINE, 2009). 19

Figura 3. 1 - Exemplo de autdmato finitoccooeeiiiiiii e 20
Figura 3. 2 - Exemplo de AFN (HOPCROFT; MOTWANI; ULLMAN, 2001) ...cocovevveieeenene. 21
Figura 3. 3 - Exemplo de autémato temporizado (ALUR; DILL, 1994)cccoiiiiininienns 22
Figura 3. 4 - Exemplo de timed safety automata (BENGTSSON; YI, 2004)c.ccuveu...... 24
Figura 3. 5 - Exemplo de timed safety automata com variavel de dado.............c.cccoceeenene 25

Figura 3. 6 - Exemplo de autémato temporizado com canal de comunicagao de

sincronismo (BENGTSSON; Y1, 2004)......ccooiiiiiiieieie ettt 26
Figura 3. 7 - Composicao paralela entre os autbmatos da figura 3.6 (BENGTSSON; YI,
2004) .. ettt ettt ettt ettt ta e st ettt st e st st e st ese st e neeseest e st eneesseneeneesseneeneeneas 26

Figura 3. 8 - Exemplo de comunicagéo entre autébmatos através de variaveis
COMPAITHNATAS ...ttt ettt et et 27
Figura 3. 9 - Exemplo de sincronizagdo com canais urgentes (BENGTSSON; Y1, 2004)..27

Figura 3. 10 — Exemplo de autbmato com estado compromissado...........ccceeceevueruienieneennens 28
Figura 3. 11 - SED em malha fechada (CURY, 20071)......cccccieiiiiieiiirieie e 29
Figura 4. 1 - Ambiente de modelagem em UPPAAL ... 32
Figura 4. 2 - Ambiente de simulag@o em UPPAAL..........cco oo 33
Figura 4. 3 - Ambiente de verificagdo em UPPAAL..........cooiiiiiieee e 33
Figura 4. 4 - Exemplo do uso de templates em UPPAALcccoooiiiiiiiieieeeeee 34
Figura 4. 5 - Path formulae em UPPAAL (TUTORIAL UPPAAL, 2004)ccccevenienenianens 36
Figura 5. 1 - Relagao hierarquica dos autdmatoscccoeieiiiieiiiiieie e 39
Figura 5. 2 - Comunicagao entre 0S autdmatoscoeeiiiiiiiiiieiecee e 39
Figura 5. 3 - Modelo do componente transporte e seus parametros..........cccccceveveevenienens 41

Figura 5.
Figura 5.
Figura 5.
Figura 5.

Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.
Figura 6.

4 - Modelo do componente manipulagao e seus parametros..........ccccccceeeereennene 42
5 - Modelo do componente transformacao e seus pardmetros............cccccveeveeeee. 45
6 - llustrag@o do template procequreccccoueevieieiiiiiieiieeeee e 46
7 - llustrag@o do template SUPEIVISONcoeiieriiiieiiiieeee e 48
1 - lUSEraga0o dO SISTEMAc.iiiiie e e 50
2 - Declaragcio doSs Pardmetroscoeoveiieneiieneeieeee s 51
3 - Alocagao dos parametros NOS temMPIates............ccoccveeeeeceeeceeneeeieee e 52
4 - TOMPIATE TT ..ottt 52
5-TeMPIALE MT ...ttt eanaas 53
B - TEOMPIALE TH T ...ttt ave e e be e enaaeeateeeaaeas 53
T = TEMPIALE T2ttt 54
8 -TEMPIALES PA € PBh........oooeeeeeeeeeeeeeee ettt st e 54
O - TeMPIAtE SUPEIVISOIeecuieeeiiieeieeeieeeeiee et etee st e e stte e s tbe e e taeesebeaessaaessseeennneas 55
10 - Troca de informag&o entre autdOMatoscccooveviiierieiiiiceeeee e 55
11 - Exemplo de VErifiCaGA0........ccuiiiieiieiie e 57
12 - MaKeSPan dO PrOCESSO........cocuuieiieiieeiieeieeeiie ettt ettt s et esaeeenne e 58
13 - Verificaglo de deadlOoCK..............coceiiiiiiiiiiiiiiiieeeeee e 59

LISTA DE ABREVIATURAS E SIGLAS

AF - autémato finito

AFD - autdmato finito deterministico
AFN — autdbmato finito ndo deterministico
AGV — veiculo automaticamente guiado
AT — autébmato temporizado

CNC — controle numérico computadorizado
CTL — computational tree logic

FMS - sistema flexivel de manufatura
GT — group technology

RGV - veiculo guiado por trilho

SED - sistema a eventos discretos

UPPAAL — derivado de Universidade de Uppsala e Universidade de Aalborg

SUMARIO

L {1 £ oo 11T o . 10
1.1 Organizacao dO tEXLOeeeureeriiiiiieeeieee ettt ee ettt et e sttt e e e st saae e e 11

2 Sistema flexivel de manufaturaccccevmmiiiminnisene e 12
2.1 HISEOTIA. ..ttt ettt et e e bttt eae e e 12
2.2 DEIINIGAO . eiiiiiiiiie ittt et et 12
2.3 Classificac@o de FIMISoooiiiiiiieee et 13
2.3.1 Classificaco por tipos d€ OPETaACAD.......cccuvterireerieeriieenieeeiee ettt ee s eneeeas 14
232 Classificacdo por nUmero de MAQUINAS.cccueeerveirriiernieerieeeniee e eeee e 14
233 Classificacdo por flexibilidadecccccoviieriiiiniiiniiiiecee e 16

24 Componentes de um FIMS.........oooiiiiiiiie ettt e 17

3 Automatos Temporizados........cccuuiniirssnmmmmmrrrirnnssssssssssns s ssssnns 20
3.1 AUOMALOS FINILOSeeiiiiiiiiiiiiiie ettt et e 20
T AN D 170) 0 Y (0T 155 101 0102 8 2216 (o PP 22
3.2.1 Autdmato Temporizado de BuiChi.........occueeiiiiiiiiiiiiiiiiiiiecieceec e 22
3.2.2 Timed SAfety AULOMUALAuuneunennnenneetieneataeetaearessressreesressrreererererseeeseeeeeeeeees 23
323 Varidveis de Dadoscooviiiiiiiiiiiiiiice e 24

3.3 Comunicagio entre AULOMALOSocuveeieeiiieeeieiiiieeeieieeee et ee e ettt e e s eeaeeeeeaneaeeeeanneeeeeaneeeens 25
3.4 SINteSe dO SUPETVISOTIO ...ueieeiuiiiieeeiiiieeeiiee ettt ee e ettt e et ee e etee e e e et eeeeneeeeeeanseeeaenneeeens 28

4 Verificacao de Modelos........ccccmmmmriiiiiniinissssemnnrn s 31
4.1 Introdugdo a verificago de MOdeloS.........eeeiiiiiiiiiiiiiieeie e 31
4.2 Aferramenta UPPAAL......cccoooiiiiii et e 31
4.3 Proposta de uso de uso de templates da ferramenta UPPAALcccoccoiiiiiiiininineen. 34
4.4 L0Ogica de VETIfICACHO. ... e cueeeeeiitieee ettt ettt e et e et e ettt e et ee e e eas 35

5 Sistematizacao da verificacao de FMSccoocvvimmmnninnnnnisinnnnes 37
5.1 COoNSIAETaCOES INMICIALS ...uvveeeeiuiiieeeiiiiieeeitiee ettt e ettt e e ettt ee e et ee e e sttt ee s st e essbbaeeeenbaeeas 37
5.2 Modelo estrutural dO SISEIMAcevurieririeeiieiiiieniee ettt st eanee e 37
5.3 Desenvolvimento da biblioteca de COMPONENLESccovuvieirriiiiiinniiiieeriieeenieee e 40
5.3.1 Modelagem do cOMPONENLE trANSPOTLEeeeeeuurrreeeieieeeaiireeaaeieeeeeneeeeeanareeeeeaneeeens 40
5.3.2 Componente ManiPUIACAOueeiieiiiie ettt ee e e e eeeeeeeens 41
533 Componente tranSformMAGAO.ccveueireeiieiieeeeiiee et eeeeiee e et eeeeeeeeeesaeeeeeeeneeeens 44

5.4 Procedimento para a modelagem do sistema de controle............ccoeeueeeeeiiiiiienniiereeneeen. 46
5.4.1 O 16MPLALE PFOCEAUTE.eeovveeeeiiiiiieee ettt e e et ae e e e s s eeae s 46

54.2 O 1eMPLATE SUPETVISOTeeeeeiiiiiee et ettt et ee e et e e et e e e ettt eeeaaeeeesennteeeeanneeeaeens 48

6 Estudo de Caso..........cccvimmmmmmiiiiiinss s 50
6.1 CaracteriSticas dO SISTEIMAccuueeruiierieiiiiieiteee ettt ettt sate et eereeeneeeas 50
6.2 Modelo do sistema em UPPAALcccooiiiiiiiiiiiieteeeeee e 50
6.3 Verificagfo do MOAEI0......cccoiuiiiiiiiiie et 56

A &7 o T T (1 L= = 60

Referéncias bibliograficasccccucvivrrmmmmmrniniinsnss e 61

1

Introducao

No atual momento de economia globalizada, os novos padrdes e atributos de
competitividade indicam de forma inequivoca que os sistemas de manufatura precisam
ter condicoes de atender de modo eficaz as variacbes das exigéncias do cliente.
Dentro desta realidade, sistemas flexiveis de manufatura (FMSs), que sdo sistemas
capazes de processar uma variedade de pecas diferentes (Groover, 2008), tém
apresentado uma resposta adequada a estas necessidades. Entretanto, para a
implementacdo de um FMS € necessario desenvolver-se um estudo detalhado do
comportamento dindmico que se deseja para o sistema e assim € fundamental utilizar-
se técnicas efetivas de modelagem dos processos que se deseja executar no referido
sistema.

Considerando que o FMS envolve processos e dispositivos que podem ser
estruturados de forma modular, é importante propor-se sistematicas de construcao do
modelo do comportamento do FMS, que respeite estas caracteristicas e que permita
que seja feita uma andlise antes da real implementacdo do sistema na fabrica. A
possibilidade de analisar um FMS através de simulagédo permite uma maior eficiéncia
do sistema, diminuindo o tempo de ociosidade das maquinas nas etapas de
reconfiguragdo. E importante que através da simulagdo seja possivel validar o sistema,
ou seja, garantir que ele realizara efetivamente a atividade que foi requerida, e,
principalmente, verificar se determinados estados podem ser alcangados, evitando
possiveis acidentes, desgaste de ferramentas, desperdicio de matéria-prima, entre
outros problemas. A capacidade de realizar este processo de forma rapida e confiavel
pode ser considerada um grande diferencial para uma empresa.

Um ponto crucial € que o modelo a ser simulado deve ser formal, isto é,
baseado em conceitos matematicos e, dentro deste contexto, a ferramenta UPPAAL
(BENGTSSON; LARSSON, 1996) mostra-se adequada, ja que possibilita uma
modelagem através de redes de autdmatos temporizados que se comunicam entre si,
além de possuir o algoritmo de verificacdo bastante eficaz.

Até entdo, trabalhos envolvendo modelagem de FMS em eventos discretos
utilizaram-se de linguagens como Redes de Petri, pois estas sdo mais apropriadas
para representar o comportamento de sistemas como o referido. No entanto, estes

tipos de linguagem nao possibilitam a realizacdo de verificacdo do modelo.

10

O objetivo do projeto € criar uma biblioteca de componentes para a
modelagem de FMS. Estes componentes podem instanciar os modelos dos mddulos
que compdem o FMS de modo que para cada caso pratico especifico o projetista
possa adicionar ou excluir objetos do modelo, possibilitando modificagdes de
configuracdo, sem a necessidade de refazer todo o modelo. Em seguida, propde-se
um procedimento de modelagem do controle destes componentes de modo que seja
possivel executar-se uma série de processos produtivos. Espera-se, através do
presente trabalho, obter um método para facilitar, tornar mais confiavel e acelerar
consideravelmente as atividades de reconfiguragao e verificacdo em sistemas flexiveis

de manufatura.

1.1 Organizagao do texto

No capitulo 1 foi feita uma introdugdo do trabalho, apresentando as
motivagdes, as justificativas e o objetivo do trabalho. No capitulo 2 é feita a
apresentacdo dos sistemas flexiveis de manufatura, objeto de aplicacao do presente
projeto. O capitulo 3 descreve os conceitos envolvidos nos autématos temporizados
com os quais a ferramenta UPPAAL trabalha, além de tratar, de maneira introdutéria, a
teoria de controle supervisério. O capitulo 4 aborda o assunto verificagdo de modelos,
dando enfoque em como este método € aplicado em UPPAAL. No capitulo 5 é
explicado detalhadamente o método proposto para realizar verificacdo de FMS e no
capitulo 6 este método € aplicado a um caso real. As conclusdes sao feitas no capitulo
7, seguidas das referéncias bibliograficas.

11

2 Sistema flexivel de manufatura

Este capitulo apresentara o sistema flexivel de manufatura descrevendo o
contexto histérico da sua criacao e evolugao. Em seguida, faz-se um estudo sobre o
assunto de classificagdo destes sistemas. O capitulo também aborda os diversos
componentes de FMSs para modelagem destes que ocorrerd nos capitulos

posteriores.

2.1 Historia

Com a crescente demanda do Mercado, os produtores precisaram de um
sistema produtivo capaz de fabricar produtos variados adaptados as preferéncias do
cliente e que pudesse reagir rapidamente as mudancas do mercado por meio de
reconfiguracées breves do seu sistema (ZHOU; VENKATESH, 1999). O avanco
tecnoldgico, que possibilitou aplicagcdo de maquinas numericamente controladas na
industria, com os investimentos massivos das empresas nas ultimas décadas resultou
na evolugdo dos FMSs possibilitando a sua aplicagéo na industria. Segundo Luggen
(1991), o conceito e 0 nome de sistema flexivel de manufatura foram criados pelo
engenheiro de pesquisa e desenvolvimento, David Williams, em Londres nos anos 60.
Assim, a combinacdo do conceito de ferramentas de maquina de controle
computacional descentralizado com a idéia de usar as maquinas em turnos completos,
foi o inicio dos FMSs. Desde entdo, devido a estudos constantes sobre o assunto, os
FMSs vém apresentando um desempenho cada vez melhor e, consequiientemente,

estdo mais presentes nas fabricas.

2.2 Definicdo

As definicbes de FMS envolvem subjetividades, portanto, estas, dependendo
do sistema, do usuario e seu objetivo, podem apresentar inUmeras interpretacoes.
A) Definicao 1 (KUSIAK, 1986)
O sistema flexivel de manufatura é um sistema produtivo, com controle
computadorizado, capaz de processar uma variedade de tipos de partes.
B) Definicao 2 (ZHOU;VENKATESH, 1999 apud RANKY, 1983)

12

MS é um sistema que lida com alto nivel de processamento de dados
distribuidos e fluxo de material automatizado usando maquinas com
controle computadorizado, conjunto de células, robds industriais, maquinas
de inspec¢do junto com sistemas de armazenamento e de transporte
integrado com computadores.

C) Definicao 3 (GREENWOOD, 1988)
O sistema flexivel de manufatura, por meio de combinagdes cuidadosas de
controle computacional, comunicagdes, processo de manufatura e
equipamentos relacionados, possibilita a linha de produgdo de uma
organizacao a responder, de uma maneira rapida, econémica e integrada,
as mudancas significativas no seu ambiente operacional. Os constituintes
tipicos de tal sistema sdo: equipamentos de processamento, equipamentos
de transporte material, sistema de comunicacdo e sistema de controle
computacional sofisticado.

Além destas, existem outras definigbes mais atuais como, por exemplo:

D) Definicao 4 (GROOVER, 2008)
Um FMS é formado por um conjunto de estacbdes de trabalho agrupadas
para processarem um grupo de pecas similares, denominado familia de
pecas baseado em Tecnologia de Grupo, altamente automatizado. Tém-se
assim um conjunto de estagcdes de trabalho interconectadas por um
sistema de manipulacdo e armazenamento automatico, e controlado por
sistema de computadores distribuidos. Diz-se que tal sistema é flexivel por
sua capacidade de processar uma variedade de diferentes tipos de pecas,
simultaneamente, em diferentes estacdes de trabalho, sendo que o mix de
produtos e quantidades produzidas podem ser alteradas.

Observando as definicées verifica-se que nenhum sistema de manufatura é

totalmente flexivel, pois um FMS consegue fabricar apenas um numero limitado de

familias de pecas.

2.3 Classificacao de FMS

Segundo o Groover (2008), existem diversas maneiras de classificar os FMSs,

pois podem ser dados diferentes enfoques na sua classificagao.

13

2.3.1 Classificacao por tipos de operacao

Esta consiste em duas categorias, a de operacao de processamentos, e a de
operacdo de montagem. Na maioria dos casos um FMS pertence a uma das

categorias mas existem casos onde o sistema apresenta ambos os tipos de operagéo.

2.3.2 Classificacao por nimero de maquinas

O critério de classificacdo baseia-se no nimero de maquinas presentes no
sistema. A célula de maquina unica consiste em um centro de manufatura CNC
(controle numérico computadorizado) e seu sistema de armazenamento de onde,
periodicamente, as pecas feitas sdo descarregadas e as partes a serem trabalhadas
sao carregadas.

Segundo o Bonetto (1987), que titula este tipo de sistema como célula flexivel
simples (figura 2.1), a palavra chave para célula flexivel € a autonomia, ou seja, a
separacao entre operador e maquina por meio de equipamentos numericamente
isolados. No entanto, a presengca de operadores para tarefas como supervisao,
carregamento e descarregamento de pecas sao essenciais mesmo que estes nao
representem um trabalho real. Portanto existe um custo direto de mao-de-obra, mas

este pode ser diminuido tendo véarias maquinas sob a supervisdo de um mesmo

CNC machining
center
O 3
9

Q
00

homem.

Tool
storage

Shuttle cart
(with pallet and part)

Shuttle cart
(empty)

Shuttle track

Pallet
(with part)

Pallet holder
(empty)

Figura 2. 1 - Célula de maquina unica (GROOVER, 2008)

14

A célula flexivel de manufatura consiste em dois a trés centros de
processamentos e um sistema de manuseio de pegas que liga as estagdes de trabalho
com as estacdes de carga e descarga. Ele pode ser construido de maquinas idénticas

(figura 2.2) ou diferentes (figura 2.3).

Workstations
(CNC machines)

Load/unload
station

Work transport system
(shuttle track)

Figura 2. 2 - Célula com maquinas idénticas (GROOVER, 2008)

Figura 2. 3 - Célula com maquinas diferentes (BONETTO, 1987)

O sistema flexivel de manufatura é constituido por mais de quatro estacées
de processamento conexas por um sistema de manuseio e controladas por um
sistema de computadores distribuidos. O controle dos sistemas desta classe
geralmente € mais sofisticada que outras.

As classes deste tipo apresentam diferentes magnitudes em ritmo de
producao, volume de producdo e investimentos sendo que estes valores tendem a

crescer com o aumento de numero maquinas, como mostra a figura 2.4.

15

e

Flexible
manufacturing
system

Flexible
manufacturing
cell

Single
machine
cell

Investment, Production rate,
Annual volume

——
i 2or3 4 or more Number of

machines

Figura 2. 4 - Caracteristicas de trés categorias (GROOVER, 2008)

2.3.3 Classificacao por flexibilidade

Um sistema de manufatura, para adquirir flexibilidade, deve apresentar;
habilidade de identificar e distinguir as diferentes pecas ou estilo de produtos
processados pelo sistema, alteracdes rapidas de instrucdo de operacdo e breve
reconfiguracao fisica.

Existem diversos critérios para analisar a flexibilidade de um sistema. Para
que um sistema de manufatura seja qualificado como flexivel, &€ essencial que consiga
satisfazer seguintes condicbes: processar diferentes tipos de pecas e aceitar
mudangas em ordens de produgao.

Pode ser categorizado por FMS dedicado aquele que serve para producao de
uma variedade limitada de tipos de pegas e todo o campo de pecas a serem
produzidas € pré-determinado. Por FMS de ordem randdmico entende-se os sistemas
que produzem uma grande familia de pecas, onde uma nova peca pode ser
introduzida no sistema e, além disso, podem ocorrer modificagdes nas pecas
existentes e a ordem de solicitacdo de pecas estd sujeita a mudancas mais
freqlientes. Este ultimo é mais adequado na producdo de grandes variedades de
pecas em menor quantia enquanto o outro € uma melhor solugéo para fabricar um mix
de produtos de menor variedade em lotes maiores (GROOVER, 2008). A figura 2.5

mostra um grafico comparativo que caracteriza esta situacao.

16

'_i:s
@ Random-
S | order FMS
&
B ! Dedicated
%
2 i
=

|

|

Production rate Q

annual volume

Figura 2. 5 - Caracteristicas das duas categorias (GROOVER, 2008)

2.4 Componentes de um FMS

Segundo Groover (2008) os FMSs sado constituidos por quatro classes de
componentes:

a) Estacao de trabalho

b) Sistema de manuseio e de armazenamento de materiais

c) Sistema de controle computacional

d) Recursos humanos

A estacao de trabalho é a que esta presente em maior nimero no grupo de

componentes do sistema e existem diversos tipos de esta¢cées dependendo da sua
funcionalidade. Em um sistema de usinagem (figura 2.6), as principais estagdes
consistem em maquinas CNC que servem para processos como furacao, fresamento,
entre outros. Porém, existem outros tipos de estacdes que sdo aplicaveis nos FMSs,
alguns exemplos destas sdo estagcdo de carga e descarga, de montagem e de

inspecoes.

17

Figura 2. 6 - M&quina CNC de usinagem (S & S PRECISION, 2009)

A segunda maior familia de componentes é a do sistema de manuseio e
armazenamento de materiais. O sistema de manuseio move as pecgas pelo FMS e
pode ser subdividido em primario, que transporta pegas entre as estagdes e consiste
em equipamentos como veiculos automaticamente guiados (AGV), mostrado na figura
2.7, veiculos guiados por trilho (RGV) e esteiras transportadoras, e em secundarios
(figura 2.8) que transfere as partes do primario a estagcéo de trabalho posicionando-as

adequadamente.

Figura 2. 7 - Exemplo de sistema de manuseio primario (PROMEC, 2009)

18

B i

Figura 2. 8 - Exemplo de sistema de manuseio secundario (ROBOT MAGAZINE, 2009)

O sistema de armazenamento, além de guardar as matérias-primas, pecas
semi-acabadas ou prontas, também serve para estocagem de ferramenta das
maquinas.

O sistema de controle computacional € usado para controlar as partes
automatizadas do sistema por meio de sua interface com os hardwares de FMS como
as maquinas CNC e os AGVs. Um sistema de controle tipico de FMS é formado por
um computador central que controla as atividades realizadas pelo sistema e
microcomputadores que controlam os componentes individualmente.

Apesar da grande parte das tarefas de processo de produgdo em um sistema
flexivel ocorrer por maquinérios automatizados, a interven¢gdo humana é indispensavel
para o funcionamento do FMS. Portanto, os recursos humanos também podem ser
classificados como um dos componentes e sao inseridos nas atividades como carga
de pecas no sistema, descarga de partes prontas, manutencdo de equipamentos,

entre outras.

19

3 Automatos Temporizados

Neste capitulo serdo apresentados os fundamentos teoricos sobre autdmatos
temporizados (ATs) e a técnica de modelagem utilizada no presente trabalho no
procedimento que sera apresentado no capitulo 5. Os ATs sdo derivados dos
autématos finitos (AFs) e, portanto, o capitulo iniciard com uma introdugcao sobre AFs,
passando em seguida para uma abordagem sobre ATs. Depois disso sera dada uma
explicacao sobre a forma de comunicagédo entre os diversos autématos. Por fim serd

abordado o assunto sintese de supervisorio.

3.1 Automatos Finitos

Um autébmato finito ou maquina de estados, é um formalismo, que permite
representar de forma clara, um qualquer processo composto por um conjunto de
estados, e transicbes entre esses estados. A representacdo dos AFs € feita de
maneira grafica através de circulos, representando os estados, e arcos, representando
as transicoes (ou eventos) entre os estados. Existe também um arco de entrada sem
inscricdo que indica o estado inicial. Estados representados através de dois circulos

sao chamados estados finais (BURCH, 2004). A figura 3.1 mostra um exemplo de AF.

78 R d
: aq, /) [q,) ‘|
N NP
\\7_777/,4' T ‘,_77//
N,

Figura 3. 1 - Exemplo de autémato finito

Mais formalmente um autémato finito é representado por uma tupla A = (S, 2,
Sp, F, 6), na qual:
e S é um conjunto finito de estados nao vazio;
e 3 é 0 alfabeto de entrada, um conjunto finito de simbolos nao vazio;
® Spé o estado inicial, um elemento de S;

e F é conjunto de estados finais (ou marcados), Fc S;

20

e 0 é a funcdo de transicao, recebe como argumentos um estado e um simbolo
de entrada e devolve um novo estado (eventualmente o mesmo): & : Sx¥ — S.
(HOPCROFT; MOTWANI; ULLMAN, 2001)

Ao processar o simbolo associado a uma determinada transicao pertencente
ao estado atual do autdmato, a transicéo é disparada. Uma string sobre um alfabeto %
€ uma seqléncia finita de simbolos de Z, a string que ndao contem nenhum simbolo é
representada por €. O objetivo dos AFs é processar strings que podem ser aceitas ou
rejeitadas. Se, ao término do processamento da string, 0 autbmato encontra-se em um
estado final, a string é aceita, caso contrario ela é rejeitada. No exemplo da figura 3.1,
a string 101 é um exemplo de string que € aceita pelo autébmato. Um conjunto de
strings é chamado de linguagem. Um autémato esta associado a duas linguagens: a
linguagem gerada (normalmente representada por L) que representa todas as cadeias
que podem ser seguidas no autbmato, partindo do estado inicial; e a linguagem
marcada (normalmente representada por L) que considera todas as cadeias as quais,
partindo do estado inicial, atingem um estado final. (BURCH, 2004).

Um autbmato pode ser deterministico ou nao deterministico. Autdmato finito
deterministico (AFD) é aquele em que todos os estados tém uma transicao diferente
para cada simbolo do alfabeto. Autbmato finito ndo deterministico (AFN) é aquele em
que os estados podem ou ndo ter uma transicdo diferente para cada simbolo do
alfabeto, e ainda podem ter multiplas transi¢ées para 0 mesmo simbolo partindo de um
mesmo estado, portanto os AFDs sdo um tipo especifico de AFNs. Os AFNs mais
poderosos uma vez que possuem a propriedade de representar uma gama maior de
classes de processos dindmicos (HOPCROFT; MOTWANI; ULLMAN, 2001). Um
exemplo de AFN é mostrado na figura 3.2.

WA

e
b
Figura 3. 2 - Exemplo de AFN (HOPCROFT; MOTWANI; ULLMAN, 2001)

a

(H\
S
)
©

A teoria de autdbmatos € aplicavel em varios campos. Por exemplo na

informética se pode fazer buscas em textos usando AFs. A maior limitagdo da

21

aplicacao desta teoria estd no fato de que em determinados casos 0 numero de

estados necessario para a modelagem do sistema sofre explosdo combinatéria.

3.2 Automatos temporizados

Um dos principais modelos de autémato temporizado existentes na literatura é
aquele proposto por Alur e Dill (1994), que diz que ATs sdo AFs comuns estendidos
com variaveis relégio. As variaveis relégio sao inicializadas com o valor zero quando o
sistema comeca e sdo incrementadas de maneira sincrona. Um autdmato deste tipo
pode ser considerado como um modelo abstrato de um sistema que envolve tempo.
Nos ATs, cada transicdo € associada a condicbes de restricdo (guards) que
determinam quando a transigdo esta ativada para disparar. Estas condi¢ées séo da
forma x; ~ cou x; - x; ~ c onde Xx; e x; sdo variaveis relogio, ¢ € um inteiro constante e ~

e {<,<=,>,>= ==}. As transi¢cbes podem também ter comandos que zeram as variaveis

relogio ou as atualizam para um outro valor inteiro positivo (Fredrik Larsson, 2000). A
figura 3.3 mostra um exemplo em que x é uma variavel relégio.

a, =0

b, (x<2)?

Figura 3. 3 - Exemplo de autémato temporizado (ALUR; DILL, 1994)

3.2.1 Automato Temporizado de Blichi

A condicdo de restricdo em um arco de um autdbmato € somente uma
condicao de ativacao da transicao representada pelo arco, ou seja, ndo pode forgar o
disparo da transi¢do. Por exemplo, o autémato da figura 3.3 poderia ficar para sempre
no estado S7, e a partir de x >= 2, 0 sistema estaria em deadlock, ou seja, estados
impossiveis de serem deixados devido a ndo presencga de transigcdes de saida ou a
incapacidade de satisfazer as condicbes de restricdo das transicbes de saida. No
trabalho inicial de Alur e Dill (1990), esse problema é resolvido introduzindo condigdes

22

de aceitacao para o autdmato de Blichi; um subconjunto de estados € marcado como
estado final, e somente as execugdes que passam por esses estados de maneira
freqliente e infinitas vezes sdo consideradas como comportamento valido para o
autdmato. No exemplo da figura 3.3, o problema de deadlock seria resolvido marcando
o estado SO como estado final, isso implicaria que o estado SO deva ser visitado
infinitas vezes, portanto uma vez que o sistema passasse para S1, obrigatoriamente
voltaria para S0 antes de x = 2.

3.2.2 Timed Safety Automata

Uma versao simplificada de autémato temporizado chamada de Timed Safety
Automata foi introduzida por Henzinger et al. (1992), para especificar propriedades de
progresso usando condi¢des locais invariantes. Devido sua simplicidade, Timed Safety
Automata tem sido adotado em varias ferramentas de verificagdo para autdémato
temporizado, entre elas a ferramenta UPPAAL (apresentada no capitulo 4), utilizada
para simulacao e verificacdo no presente trabalho.

Em vez de condicbes de aceitacdo, como nos autbmatos de Blichi, nos Timed
Safety Automatas, podem ser colocadas condicées de restricdo local de tempo,
associadas aos estados, chamadas de invariantes de estado. Um autbmato deve
permanecer em um determinado estado somente enquanto os valores das variaveis
relogio satisfizerem a condig¢é@o invariante daquele estado. Para evitar a possibilidade
de que invariantes sejam falsos quando um estado € atingido, e se tornem verdadeiros
depois de algum tempo, eles sdo restritos a férmulas com os operadores < e <, isto
simplifica as operacdes computacionais e deixa o model-checking mais rapido. No
exemplo da figura 3.4 os estados start (o circulo duplo representa o estado inicial em
UPPAAL), loop e end possuem condi¢des invariantes relacionadas a variavel relégio y.
Os estados start e end devem ser deixados quando y for no maximo igual a 20 e o
estado /oop deve ser deixado quando y for no maximo igual a 50. Dessa forma,
garante-se o0 progresso do sistema e tem-se uma visao local do comportamento de

cada estado do autémato em relagdo ao tempo.

23

10<=y
enter
x:=0, y:=0 ‘

40<=y

Figura 3. 4 - Exemplo de timed safety automata (BENGTSSON; Y1, 2004)

Seja C um conjunto de variaveis relégio e B(C) a fungdo que formula
condicbes de restricdo, pode-se representar um timed safety automata, de maneira
formal, através de uma tupla A=(L, Iy, E, g, r, 1), onde:

e [é um conjunto de estados;
e Jpe L é o estado inicial;

e [E e LxL é o conjunto de transigdes;

g: E — B(C) séo as condi¢des de restricdo nas transigoes;

r: E — 2° sdo as variaveis reldgio a serem atualizadas nas transicdes;
I: L — B(C) séao os invariantes de estado. (HENZINGER et al., 1992)

3.2.3 Variaveis de Dados

A linguagem de modelagem através de autdbmatos temporizados utilizada na
ferramenta UPPAAL ¢é ainda estendida com variaveis de dados. Estas variaveis sao do
tipo inteiro ou booleano e podem ser usadas em condi¢des de restricao para ativagao
de transi¢cdes, como também podem ser atualizadas a outros valores no disparo da
transicdo. Portanto, para que uma transicdo seja ativada, ela deve satisfazer nao
somente as condi¢cdes impostas pelas variaveis relégio mas também aquelas impostas
pelas variaveis de dados. Estas variaveis podem ainda ser usadas na formulacao de
condicdes de restricdo envolvendo variaveis reldgio. Com o uso de variaveis deste tipo
€ possivel especificar melhor a condicdo em que o sistema se encontra quando esta
em um determinado estado. A figura 3.5 mostra um exemplo de timed safety automata

com variaveis de dados em que d € uma variavel de dado e t & uma variavel relégio.

24

t=0 d=d+1

i®

t<=15
%0))

Figura 3. 5 - Exemplo de timed safety automata com variavel de dado

No restante deste trabalho timed safety automata com variaveis de dados sera
referido apenas como autdmato temporizado.

3.3 Comunicacao entre Automatos

Uma das principais caracteristicas da modelagem de autdmatos temporizados
em UPPAAL é a possibilidade da criacao de uma rede de autébmatos temporizados.
Esta funciona como uma composicao paralela (ou sincrona) A; | ... | A,de um conjunto
de autdmatos temporizados A, ..., A, , chamados de processos, combinados em um
unico sistema (BENGTSSON; YI, 2004). A comunicagao entre estes processos pode
ser feita, de maneira sincrona, por meio de canais de comunicacao de sincronismo ou,
de maneira assincrona, através de variaveis de dados compartilhadas.

Na maneira sincrona, o canais de comunicacdo sao representados por
simbolos ou palavras, acompanhados do sufixo /e ? que indicam emissao e recepc¢ao,
respectivamente. Um exemplo disto € visto na figura 3.6 onde o canal de comunicagao
representado pela evento press é emitido pelo autdmato da direita e recebido pelo

autdmato da esquerda, sincronizando assim o disparo das transi¢des de ambos.

25

t 1 study
press! v
off O - y<3 = —)
’ -~/
10
x;“ﬂ ‘ press? press! \‘-. /| press!
press? o v\
d><> press? @ldle
x<=10 r ,"(\
press? f]:; : L y>10

\ | press!
A\ /
bright C”/ b relax

Figura 3. 6 - Exemplo de autémato temporizado com canal de comunicagéo de sincronismo (BENGTSSON;
Yl, 2004)

Caso ndo fosse possivel implementar canais de comunicagdo seria
necessario implementar-se autébmatos com varias outras combinagdes de transi¢coes
de estados provocando uma evolugdo consideravel no nimero de elementos do
autdmato. Por exemplo, a figura 3.7 mostra o autbmato que substitui o par de
autématos sincronizados da figura 3.6.

bright, study . i 2
o off,idle xi=0, yi=0 dim,relax

- a<=T0ysto_

- ™

— ‘
\ ,‘
bright,relax lim,study ‘

dim,t e

V<5 x:=0, y:=0

y off,study

— ~

x<10

—_x<=10 ‘
y:=0 ‘ —
bilght’t o hdimiidle offit |, bright, idle
o5 sl y=0 N y:=0
o v<3
x>10 (“ y=10 P
J x=0

yi=0 _
\doff,relax o ,_,,,.7——-*""'”'/7{}

yi=0

Figura 3. 7 - Composigao paralela entre os autdbmatos da figura 3.6 (BENGTSSON; Yl, 2004)

A maneira assincrona é efetuada quando, dada uma variavel de dados
compartilhada por dois autdbmatos, uma atualizacdo desta variavel em um dos
autdmatos possibilita a satisfacdo de uma condi¢cdo de restricdo no outro autdmato.

Esta situacao é ilustrada nos autdmatos da figura 3.8 que compartilham a variavel de
dado x e a variavel relogio t.

26

VR VR
I | mg|)
N 4
0 =0
¥ ¥
SN N
{ 1 I: | mﬂ: :l
NP2
== v x:{ v
N N
’2 { ,l na |. ;:l
N NS

Figura 3. 8 - Exemplo de comunicagao entre autdmatos através de variaveis compartilhadas

Pode-se observar no exemplo da figura 3.8 que o autdmato do lado esquerdo
s6 podera atingir o estado /> quando o autémato do lado direito atingir o estado mo.

A ferramenta UPPAAL possui ainda dois outros recursos que sao importantes
nessa questao de rede de autdmatos temporizados. Um deles é o chamado canal
urgente, que € um canal de comunicacdo de sincronismo comum, mas com a
caracteristica adicional que impossibilita atrasos uma vez que a transicao relacionada
ao canal urgente é ativada (BENGTSSON; YI, 2004). No exemplo da figura 3.9, esse
comportamento € mostrado mais claramente. Nota-se que ambos 0s processos podem
passar de maneira independente do primeiro para o segundo estado. No segundo
estado, o primeiro processo deve atrasar por pelo menos 10 unidades de tempo antes
que seja permitida a sua sincronizagdo no canal urgente. No segundo estado, o
segundo processo deve atrasar por pelo menos 5 unidades de tempo antes que seja
permitida a sua sincronizagao no canal urgente. Assim que os dois processos tiverem
passado o minimo de periodo de tempo requerido em seus segundos estados, eles

devem se sincronizar e passar para os seus terceiros estados.

S0 — 51 . 52
x:=l x>=10

= T e

\Q’ - u ’\)

T o Ti . T2

@ v=_0 M V=35 =

W =S BRSO

Figura 3. 9 - Exemplo de sincronizagao com canais urgentes (BENGTSSON; Y1, 2004)

27

O outro recurso é o chamado estado compromissado, que € uma espécie de
estado virtual do sistema e que, uma vez atingido, deve ser deixado imediatamente
sem atraso, com prioridade sobre qualquer outro estado, ou seja, a préxima transicao
a disparar deve ser obrigatoriamente aquela do estado compromissado. A utilizagao
de estados compromissados permite um melhor desempenho computacional nas
verificagbes, uma vez que eles ndo sdo armazenados na memoria. Além disso €
possivel realizar sincronizagbes multiplas através da interagcdo entre estados
compromissados e canais de comunicacao de sincronismo. A figura 3.10 mostra um
exemplo de um autdmato com um estado compromissado. Neste exemplo, a variavel x
€ atualizada no mesmo instante em que o canal de comunicacao update variable é

sincronizado. A letra c indica o estado compromissado.

O update_wvariable? (& ¥=10 }O

Figura 3. 10 — Exemplo de autémato com estado compromissado

3.4 Sintese do Supervisorio

A teoria de controle supervisério elaborada por Wonham e Ramadge (1989)
define que a modelagem de sistemas a eventos discretos (SEDs) através de
autdmatos deve ser feita em duas partes. A primeira consiste na modelagem do
sistema a ser controlado, chamado de planta do sistema, que corresponde, em geral,
a um conjunto de subsistemas (equipamentos) ndo coordenados, arranjados segundo
uma distribuicdo espacial dada. O controle da planta é realizado pela segunda parte
por meio de um autbmato denominado de supervisor, o qual restringe o
comportamento do sistema fisico (planta), satisfazendo a um conjunto de
especificagdes, de forma que a fungdo coordenada a ser executada pelo sistema
global seja cumprida. Portanto, o supervisor interage com a planta, observando os
eventos ocorridos e define, de acordo com o estado atual da planta, quais eventos
fisicamente possiveis sdo habilitados. A figura 3.11 ilustra a estrutura de controle em
malha fechada de uma planta G sob acao do supervisor S.

28

Eventos
4" Planta G —’l Supervisor S

Habilitacoes

Figura 3. 11 - SED em malha fechada (CURY, 2001)

A planta possui eventos controlaveis, suscetiveis a intervengbes externas de
controle, e eventos ndo controlaveis, cuja ocorréncia independe de acdes de controle.
Eventos controldveis s&o designados por arcos cortados por uma pequena linha
transversal.

Portanto, para resolver-se um problema de controle supervisério, segundo
Wonham e Ramadge (1989), o seguinte procedimento deve ser executado:

1. Modelar o comportamento da planta sem coordenacao (planta livre);
2. Modelar as especificagées de controle;
3. Utilizando os modelos obtidos nos passos anteriores, sintetizar o supervisor.

Na modelagem da planta, cada subsistema, de acordo com sua autonomia,
deve ser modelado por um autémato, e o comportamento global (sem coordenacgao) é
obtido pela composicdo sincrona dos modelos individuais. Da mesma forma, cada
especificagdo de controle € modelada por um autdmato de forma isolada, e a
composicao sincrona de todas as especificacées resulta no autbmato que modela a
especificagcdo global para o sistema. Por fim, faz-se a composicao sincrona do
autdmato da planta com o autdmato da especificacdo global gerando a modelagem
que representa o sistema sob supervisao.

Formalmente, pode-se definir um sistema controlado por um supervisor da
seguinte maneira:

e G=(Q % q0,9, Qn) é aplanta;
e J3=J5,U2,sa0 0s eventos separados em controlaveis e ndo controlaveis;

e I'= {ye 2*:y2 Zu} é a estrutura de controle para G, onde ye I'é uma opgéo de

controle;
e S é o supervisor sobre 0 mesmo alfabeto de G e suas mudancgas de estado séao
ditadas por ocorréncias de eventos na planta;
e S/G=S|/G é o sistema controlado, no qual S habilita e desabilita os eventos
controlaveis de G;
29

o [(S/G)=L(S||G) e Ln(S/G)=Ln(S||G) sdo as linguagens gerada e marcada,
respectivamente, que definem o comportamento do sistema.

A principal dificuldade na implementagdo da teoria de controle supervisério
esta no fato de que a sintese de controladores para SED é um procedimento
computacional cuja complexidade cresce com o numero de estados dos modelos da
planta e das especificacbes. Com o aumento do numero de componentes que
integram o sistema, o numero de estados do sistema modelado tende a explodir. Essa
limitacdo tem sido intensamente tratada na literatura para viabilizar sua aplicacdo em
problemas de grande porte. Uma outra limitagdo da teoria esta relacionada a inclusao
ou alteracdo de subsistemas no modelo, 0 que acarreta na reconstrucao de todo o
modelo.

30

4 Verificacao de Modelos

O capitulo sera iniciado com uma breve introdugdo sobre verificagdo de
modelos, passando em seguida para a apresentacao da ferramenta UPPAAL. Depois
disso sera explicada a importancia do uso dos templates - recurso da ferramenta
utilizada no presente trabalho — no processo de modelagem. Por fim serd apresentada
a logica de verificagao utilizada pela ferramenta.

4.1 Introducéao a verificagao de modelos

A verificagdo de modelos € uma das principais atividades no projeto de um
sistema de controle. Com este método pode-se assegurar que o sistema ira se
comportar como o esperado sob quaisquer possiveis situacoes de operacédo (MIYAGI;
VILLANI; VALETTE, 2006). Antigamente, esta tarefa era executada através de testes
manuais de validagdo, no entanto, por maior que fosse o niumero de testes efetuado,
nao se podia ter certeza sobre o correto comportamento do sistema. Com o aumento
do uso de sistemas em tempo real, tem se tornado cada vez mais importante o
desenvolvimento de métodos de verificacdo, ainda mais que muitos destes sistemas
sao embarcados e atuam em cenarios criticos e perigosos, de modo que uma falha de
projeto do sistema poderia causar grandes danos. Um dos principais métodos de
verificagdo é o model-checking. Uma ferramenta completamente automatica, através
de algoritmos, examina se os estados de um modelo (descricdo comportamental de
um sistema) satisfazem uma determinada propriedade (NIELSEN, 2000]. Essa
checagem é feita pelo usuario por meio de proposicoes légicas que retornam o valor

verdadeiro ou falso.

4.2 A ferramenta UPPAAL

UPPAAL é uma ferramenta computacional, com acesso livre na internet,
integrada com ambientes para modelagem, validagdo e verificacdo de sistemas em
tempo real modelados como rede de autdbmatos temporizados estendidos com
variaveis de dados. Ela foi desenvolvida em conjunto pela Universidade de Uppsala
com a Universidade de Aalborg e tem sido aplicada com sucesso em varios casos

31

reais (DAVID; YI, 2000). A primeira versao de UPPAAL foi langada em 1995 e, desde
entdo, vem sendo alterada e desenvolvida, melhorando sua performance e
proporcionando mais recursos aos usudrios. A ferramenta € caracterizada por uma
interface que usa Java e seu motor de verificagdo é escrito em C++. Além disso, ela é
baseada em uma arquitetura client-server onde a interface grafica atua como client. A
interface gréfica proporciona um editor (figura 4.1), de uso facil para desenhar
autébmatos temporizados, um simulador (figura 4.2) e uma interface para interagir com
o model-checker (figura 4.3). Um dos aspectos fundamentais da ferramenta UPPAAL
esta no server que trata de particionar o modelo, interpretando-o, e proporcionando
funcionalidades para o model-checker. Os algoritmos usados nesta parte sao bastante
complicados e foram otimizados para reduzir o tempo de processamento e 0 uso de
memoria da ferramenta (BEHRMANN, 2003).

0 C:/Programmifuppaal-4.0.8/programs/lampuser.xml - UPPAAL
File Edit Wew Tools Options Help

imulator | Verifier

[Drrag ouk]: Mame: Iamp | Parameters: [
|3 Project - R
: Declarations

press?

press?

Figura 4. 1 - Ambiente de modelagem em UPPAAL

32

:fProgrammifuppaal-4.0.8/programs/lampuser.xml - UPPAAL

File Edit WYew Tools Options Help

[Drag ouk]: Drag ouk
v in [0,5)

lamp

Enabled Transitions
press?

|3

user - lamp
np

Simulation Trace

(off, idle)
press: user - lamp
(lov, idle)
press: user - lamp
(off, idle)

press: user - lamp

press?

user

pressl

Trace File: | |
[Prev] Mext [Replay]
[Open][Save][At] p—
- o |
O A
Slow Fast —
v

Figura 4. 2 - Ambiente de simulagdo em UPPAAL

C:/Programmifuppaal-4.0.8/programsflampuser.xml - UPPAAL

File Edit Wiew Tools Options Help

D&iﬁl\@\ |§|®w‘@

| Editor | Simulat0r| Werifier |

Cverview

anp.bright and y==4

E[] lamp.bright . H

Remaove
Comments

CQuery
E==lamp.bright and y==4

Comment

Skatus

[ESEabnshed direct conneckion to [ocal server,

(Academic) UPPAAL version 4.0.8 {rev. 4276), March 2009 -- server,
Disconnecked.

Established direct connection ko local server,

(Academic) UPPAAL version 4.0.8 {rev. 4276), March 2009 -- server,
E[] lamp.bright

Property is not satisfied,

E < =lamp.bright and y==4

Froperty is satisfied,

B3

A

Figura 4. 3 - Ambiente de verificagdo em UPPAAL

33

4.3 Proposta de uso de templates da ferramenta UPPAAL

Considerando o fato de que FMSs possuem processos e dispositivos que
podem ser estruturados de forma modular, um atributo da ferramenta UPPAAL de
suma importancia na realizacdo do presente projeto é que ela possibilita a
representagcdo de modelos dos processos do sistema através do uso de templates.
Templates sao autdmatos definidos com um conjunto de parametros (declarados
globalmente) os quais podem ser do tipo int, bool ou chan. Estes parametros sao
substituidos por argumentos dados na declaragdo dos processos (BEHRMANN;
DAVID; LARSEN , 2004). Os templates podem ainda ter declaragbes locais de
variaveis. O uso desse recurso facilita bastante a construgdo de modelos com varios
autdmatos similares, que se distinguem apenas por diferentes parametros. Templates
do mesmo tipo, mas parametrizados com diferentes parametros, sdo chamados
através de diferentes canais de comunicagao de sincronismo. Um exemplo disto pode

ser visto na figura 4.4.

X1 X2

DEFINE

=l

CPERATICH1=1 OPERATICNZ=1

Figura 4. 4 - Exemplo do uso de templates em UPPAAL

Neste exemplo, o template DEFINE, que nao possui parametros, chama dois
templates X1 e X2. Estes sao templates do tipo X, que foi modelado com dois
parametros: chan x e bool OPERATION. Os parametros x1, x2, OPERATION1 e
OPERATIONZ sao declarados globalmente e alocados aos seus respectivos templates
na declaragao destes.

Outra contribuicdo importante do recurso do uso de templates no presente
projeto € dada na parte de diminuicdo da complexidade do modelo global do sistema
através da proposta de controle atdmico e divisdo hierarquica do modelo explicada

anteriormente.

34

4.4 Ldogica de verificagao

A ferramenta UPPAAL utiliza uma linguagem declarativa do tipo query que é
uma versao simplificada da légica CTL (computational tree logic). Essa versao
simplificada usa proposi¢cdes que representam perguntas do tipo “Partindo do estado
inicial, pode algum estado ser alcangado?” ou “Partindo do estado inicial, pode-se ter
certeza que algum estado ndo sera alcangcado?” (BENGTSSON; LARSSON, 2006).
Desse modo é possivel checar propriedades de alcangabilidade, em particular se
certas combinagdes de estados e restricbes nas variaveis reldgio e de dados sao
alcangadas partindo do estado inicial.

Como em CTL, a linguagem query usada em UPPAAL consiste de path formulae
(formulas de caminho) e state formulae (férmulas de estado).

Uma férmula de estado € uma expressdo que pode ser avaliada para um
estado sem olhar para o comportamento do modelo. A sintaxe desse tipo de formula é
a mesma dos guards (mencionados no item 3.2), porém com a possibilidade do uso de
operadores logicos (or, and, imply, not) entre as férmulas. Como exemplo tem-se a
simples formula ¢ == 10 que sera verdadeira quando c for igual a 10. Utilizando
expressodes do tipo P.s, onde P é um processo e s € um estado, é possivel também
checar se um determinado processo esta no estado s. A ferramenta UPPAAL ainda
tem o recurso de expressar deadlocks usando um tipo especial de férmula de estado,
esta consiste simplesmente da palavra deadlock e é satisfeita para todos os estados
em deadlock.

Path formulae podem ser classificadas em alcangabilidade, seguranca e
liveness. Férmulas de alcangabilidade exprimem se existe algum caminho, partindo do
estado inicial que leve a um determinado estado, ou seja, checa se eventualmente
aquele estado sera atingido. Em UPPAAL essa expresséo é da forma E<>s, onde s é
uma state formulae. Formulas de segurangca expressam situacdées como “algo ruim
nunca acontecera” ou “algo ruim possivelmente nunca acontecera”. Em UPPAAL,
dada uma férmula de estado s, esse tipo de propriedade é formulado positivamente
com as expressoes A[] s, que indica que s deve ser verdadeira em todos os estados
alcancaveis, e E[] s indicando que existe um caminho em que s € sempre verdadeira.
Formulas liveness indicam casos do tipo “algo eventualmente ocorrerd”. Em UPPAAL,
dadas duas férmulas de estado s e g, situagcdes assim podem ser avaliadas com as
férmulas A<> s, que significa que s sera eventualmente satisfeita, ou s --> g, que
indica que quando s for satisfeita, g sera eventualmente satisfeita (BEHRMANN;

35

DAVID; LARSEN , 2004). A figura 4.5, onde ¢ e y representam férmulas de estado,
ilustra as formulas de caminho aceitas em UPPAAL.

Al o %O

@, —(
XQ T

O

O
O
O-—@®

Figura 4. 5 - Path formulae em UPPAAL (TUTORIAL UPPAAL, 2004)

36

5 Sistematizacao da verificacao de FMS

Este capitulo apresentara detalhadamente a proposta de modelagem sugerida
pelo presente projeto. Inicialmente serdo abordadas as consideracbes feitas no
procedimento adotado na modelagem, seguidas pela apresentagdo do modelo
estrutural proposto. Depois disso, serdo apresentados os templates relacionados aos
componentes de FMS considerados e, por fim, serdo explicados os passos para a
modelagem dos templates da parte de controle sobre estes componentes.

5.1 Consideracoes iniciais

O procedimento proposto pelo presente projeto tem por objetivo desenvolver
uma biblioteca de componentes de FMS parametrizaveis, com o intuito de auxiliar na
construcao de um modelo global de um FMS para, posteriormente, verificar e simular o
mesmo. Para isso, foi proposto também uma metodologia sintética de construgdo do
modelo de controle sobre os componentes. Os modelos propostos foram realizados
em autdbmatos temporizados na ferramenta computacional UPPAAL, capaz de
sintetizar redes de autdbmatos. Inicialmente foram criados os modelos dos
componentes, com seus devidos parametros, representando a planta fisica do FMS.
Posteriormente foi criado o modelo de controle, formado por duas partes distintas, uma
que representa o seqlenciamento de atividades de um processo de fabricacao de um
determinado produto, e a outra que indica quando novos processos podem iniciar
possibilitando a descricdo de um sistema onde diversos produtos s&o trabalhados
simultaneamente.

E importante citar que, devido & modularidade dos modelos dos componentes,
a proposta de modelagem apresentada permite que o modelo global sofra alteracées

sem a necessidade remodela-lo do inicio.

5.2 Modelo estrutural do sistema

Para evidenciar as relagbes e interagcdes que ocorrem dentro do sistema
global, serd apresentado o modelo estrutural do mesmo proposto pelo presente
trabalho. Para construir o modelo, podemos dividir o sistema em duas grandes partes:

37

a parte operativa (controlada) e a parte de controle. O presente projeto definiu que a
parte controlada fosse limitada a 3 classes de componentes: os componentes de
transformacéao, de transporte e de manipulacdo. Esta escolha foi feita, primeiramente
porque o universo de componentes de um FMS € muito amplo e a consideracao de
todos estes componentes existentes atualmente poderia inviabilizar projeto. Além
disso, as trés classes selecionadas sdo suficientes para abstrair varios tipos de
processo de manufatura que envolvem flexibilidade. O componente transporte
considerado consiste de um dispositivo que segue um trajeto pré-definido e tem a
capacidade de transportar somente uma peca por vez. Como componente de
manipulacao, foi considerado um manipulador que consiga mover objetos (no caso,
podem ser materiais para serem fabricados ou pecas semi-acabadas ou pecas
prontas) e no sistema global tem a funcdo de carregar e descarregar estacdes de
trabalho e esteiras transportadoras posicionando as partes adequadamente. Por fim,
como componente transformacao, foi escolhida uma estagao de trabalho flexivel capaz
de realizar diversos tipos de operacdes de manufatura. Cada um destes componentes
se comunica com o0 controle por meio de variaveis compartilhadas e canais de
comunicacdo de sincronismo. E importante enfatizar que as comunicagdes existentes
nos componentes se resumem estritamente aquelas com o controle, ou seja, ndo
ocorrem comunicag¢des entre os componentes do objeto de controle (planta).

A parte de controle € constituida por uma parte de processos, onde cada
autdmato descreve a sequéncia de atividades na fabricagcdo de um determinado
produto, e outra parte de supervisdo que determina o instante quando o processo de
fabricagdo de um produto pode iniciar. Neste sistema de controle existe uma
hierarquia, de forma que o os autdmatos dos processos envolvidos sdo chamados
pelo supervisor. Essa modelagem origina uma rede de autématos integrados por
elementos de comunicacdo que evitam a complexidade do modelo global. Existe ainda
uma hierarquia entre a parte de controle e os componentes ja& que 0s mesmos sao
chamados pelos processos. Uma representacdo grafica que exprime a relagao
hierarquica do modelo é mostrada na figura 5.1.

38

Supervisor

!

Processes

!

Components

Figura 5. 1 - Relagao hierarquica dos autdmatos

Outra parte bem definida pelo modelo estrutural proposto diz respeito a
comunicacgao entre os diversos autdmatos. A figura 5.2 representa entre quais tipos de

autdbmatos essa comunicagao ocorre.

Control
Process. 1 Process. n
\l, 7 1 1 A \\/
v /= ~N 74 Y v
Transformation Manipulation Transport

Control object

Figura 5. 2 - Comunicagéo entre os autdmatos

39

Nota-se que existe uma troca de dados e sincronizacées, em ambas as
direcbes, entre o autbmato de supervisor com aqueles de processo, isto também
ocorre entre os autématos de processo com os de componente. E importante ressaltar
que ndo ha comunicagbes entre os autdbmatos de componente, nem entre 0s
autdmatos de processo, como também ndo ha entre os autébmatos de componente
COM 0 supervisor.

5.3 Desenvolvimento da biblioteca de componentes

Como citado no item 5.2, o presente projeto considerou FMSs compostos por
trés tipos de componente: transporte, manipulacdo e transformacdo. Estes sédo de
construcgéao fixa, portanto, o usuéario devera definir apenas os parametros.

5.3.1 Modelagem do componente transporte

O modelo do componente transporte proposto apresenta um estado inicial
indicando que o componente esta desativado, seguido por um estado que representa
que uma peca esta sendo transportada, e depois um outro estado mostrando que a
peca chegou ao fim do percurso. A partir deste ultimo, o estado inicial pode voltar a ser
ativado. A realizacao deste ciclo se completa em certo periodo de tempo pertencente a
um intervalo definido por um tempo maximo de transporte e um tempo minimo de
transporte, estes sdo parametros que devem ser definidos pelo usuario (figura, 5.3a).
O modelo proposto para o componente transporte € ilustrado na figura 5.3c.

minimum transport time/
maximum transport time
h 4 b 4

Transport transport T end_of course
ﬁ port ﬁ

40

end_of_course!

t_tp<=t_transpart_max b e :

— — - t_tp==t_transport_min

o —e= = .

O transpart? o/ C)rinish
t tp=0 transporting

()

Figura 5. 3 - Modelo do componente transporte e seus parametros

O template em questdo tem como parédmetros 0s canais de comunicagao
transport e end_of course (figura, 5.3b), e as variaveis inteiras t transport_max e
t transport_min, além disso, possui uma variavel de reldgio t _tp declarada localmente.
A ativagdo do template se da através do canal de comunicagao transport que recebe
um sinal do template procedure (tratado no item 5.4) indicando que o transporte deve
comecgar, este canal € declarado como urgente para que ndo tenha atraso no inicio da
atividade de transporte. Neste instante, a variavel relégio local t to é zerada e o
autdmato passa para o estado transporting. Este serd obrigatoriamente deixado,
devido ao invariante de estado e a condicdo de restricdo na transicdo, quando t tp
pertencer ao intervalo fechado definido pelos valores de t transport min e
t transport_max. Uma vez atingido, o estado finish deve ser deixado imediatamente
enviando uma mensagem ao template procedure, através do canal de comunicagao
end_of _course, de modo que nao haja atraso entre o fim da operacéo de transporte e
o envio do sinal. Este ultimo estado é compromissado pois nao representa um estado
real do componente, mas foi inserido no modelo devido a sua possivel utilidade na

etapa de verificagao.

5.3.2 Componente manipulacao

O modelo do componente manipulacdo é constituido por dois ciclos que
compartilham o mesmo estado inicial o qual descreve manipulador como desativado.
No ciclo que representa operagao de carga, o estado inicial &€ seguido por um estado
que indica o manipulador carregando uma pec¢a e, quando a operag¢ao se completa, o
autdmato segue para outro estado, indicando o fim da operacdo de carga. No outro
ciclo, que por sua vez representa a operacao de descarga, o estado inicial é seguido

41

por um estado que indica o manipulador descarregando uma peca e, quando a
operagdo se completa, o autbmato segue para um outro estado, indicando o fim da
operacao de descarga. A partir destes ultimos, o estado inicial pode voltar a ser
ativado. Os ciclos se completam em um intervalo de tempo determinado por tempos
minimos e maximos de carga e descarga os quais sdo parametros definidos pelo
usuario (figura 5.4a). O modelo proposto para o componente manipulagéo € ilustrado
na figura 5. 4c.

minimum loading time/
maximum loading time/
minimum unloading time/
maximum unloadi&time

h 4

load/ machine_loaded/

Manipulator m Manipulator machlne_unloaded'

machine_loaded!
machine_busy=1

machine_busy==0
load?
t_m=0 loading ST
O t_ms>=t_load_min
t_m<=t_load_max Inaded
unloading
O = _
machine busy== g t_m==t_unload_min tnioad=d
unloads — t_me=t_unload_max
t_m=|:|

machine_unloaded!
machine_busy=0

(©)

Figura 5. 4 - Modelo do componente manipulagao e seus parametros

O template em questao tem como parametros os canais de comunicagao /oad,
unload, machine_loaded e machine_unloaded (figura 5.4b), e as variaveis inteiras

42

t load _max, t load_min, t unload max e t unload _min , além disso possui uma
variavel relégio t m declarada localmente. Pode-se notar a presenca de outro
parametro, 0 machine_busy, variavel do tipo booleana, que indica o estado da estacao
(ocupada ou desocupada) onde a pega é carregada ou descarregada. A ativagdo do
template, no ciclo de carga, se da através do canal de comunicagao /oad, quando um
sinal for recebido pelo template procedure e o parametro machine_busy for igual a
zero, ou seja, a estacao referente estiver livre. O canal de comunicacédo load é
declarado como urgente para que nao haja atraso no inicio da atividade de
carregamento da peca. Neste instante, o ciclo é iniciado, a variavel relégio local t m é
zerada e 0 autbmato passa para o estado loading. Este sera obrigatoriamente deixado,
devido ao invariante de estado e a condicdo de restricdo na transicdo, quando t m
pertencer ao intervalo fechado definido pelos valores de t load_min e t load max.
Uma vez atingido, o estado /oaded deve ser deixado imediatamente enviando uma
mensagem ao template procedure, através do canal de comunicacao machine loaded,
de modo que nao haja atraso entre o fim da operacdao do manipulador e o envio do
sinal. Ao mesmo tempo, o parametro machine_busy € atualizado para o valor 7,
indicando que a estagdo carregada estd ocupada. Como no caso do componente
transporte, este ultimo estado é compromissado, pois ndo representa um estado real
do componente, mas foi inserido no modelo devido a sua possivel utilidade na etapa
de verificacéo.

O template também pode ser ativado pelo canal de comunicacdo unload,
quando um sinal for recebido pelo template procedure e o valor da variavel
machine_busy for igual a 1, ou seja, se existir uma peca a ser descarregada na
estacao referente, assim sendo a transi¢cdo ocorrera e o ciclo de descarga se iniciara.
O canal de comunicacao unload também é declarado como urgente para que nao
tenha atraso no inicio da atividade de descarregamento da peca. Neste instante, a
variavel relégio local t_ m é zerada e o autbmato passa para o estado unloading. Este
sera obrigatoriamente deixado, pelo fato de existir um invariante no estado e uma
condicao de restricao na transicdo, quando t_m pertencer ao intervalo fechado definido
pelos valores de t unload min e t unload max. Uma vez atingido, o estado
compromissado unloaded deve ser deixado imediatamente enviando uma mensagem
ao template procedure, através do canal de comunicacao machine_unloaded, de modo
que nao haja atraso entre o fim da operagao de descarga e o envio do sinal. Também

neste caso, o parametro machine_busy é atualizado, mas agora com o valor zero para

43

indicar que a estacao foi descarregada e esta disponivel para operagdes seguintes.
Este ultimo estado também é compromissado pela mesma razao do ultimo estado do
ciclo de carga.

O parametro machine_busy foi introduzido neste autébmato para evitar uma
situagdo classica de deadlock que ocorre no sistema em que existe um unico
manipulador para carregar e descarregar uma determinada maquina. O problema
ocorre quando o manipulador pega uma pecga para carregar a estacdo e a mesma se
encontra ocupada. Esta é uma situacdo de travamento de sistema, pois a estacao
deve esperar o manipulador se disponibilizar enquanto o manipulador aguarda a
disponibilidade da maquina. A implementacdo com este parametro impede que o
manipulador pegue a peca quando a maquina esta ocupada evitando o bloqueio do
sistema. Além de evitar esse classico deadlock, o parametro machine _busy evita
também uma situagéo incoerente do sistema que seria o carregamento de duas pecas

em uma mesma maquina.

5.3.3 Componente transformacao

A modelagem escolhida para representar o componente transformagcao é
composta por um estado inicial, representando que o componente esta desativado,
seguido por um estado que representa que uma peca esta sendo trabalhada, e depois
um outro estado mostrando que a maquina terminou o seu servigo. A partir deste
ultimo, o estado inicial pode voltar a ser ativado. A realizagdo deste ciclo se completa
em um certo periodo de tempo pertencente a um intervalo definido por um tempo
maximo de transformagdo e um tempo minimo de transformacgao, parametros dados
pelo usuario (figura 5.5a). O modelo proposto para o componente transformacao é
ilustrado na figura 5.5c.

44

minimum transformation time/
maximum transformation time

: station - work_done
Transformation e Transformation ——)

wark_in_progress done

@)

station? -/ t_tf>=t_transformation_min
t =0 t_tfe=t_transformation_max

woark_dane!

(©)

Figura 5. 5 - Modelo do componente transformagao e seus parametros

O template em questdo tem como parédmetros 0s canais de comunicagao
station e work_done (figura 5.5b), e as variaveis inteiras t transformation _max,
t transformation_min e operation, além disso possui uma variavel relégio t tf
declarada localmente. A variavel operation, de acordo com o seu valor, define para
qual operagdo a maquina esta designada a trabalhar, cabe ao usuario associar o valor
da variavel com um tipo especifico de operagédo. Por exemplo, se operation = 3, 0
usuario pode decidir que o valor 3 equivale a operacao de torneamento. A ativagdo do
template se da através do canal de comunicagdo station que recebe um sinal do
template procedure indicando que o processo de transformacao deve comecgar. Este
canal é declarado como urgente para que ndo haja atraso no inicio da atividade de
transformacgédo. Neste instante, a varidvel relégio local t tf € zerada e o autbmato
passa para o estado work_in_progress. Este sera obrigatoriamente deixado, devido a
presenca do invariante de estado, quando t_tf pertencer ao intervalo fechado definido
pelos valores de t_transformation_min e t_transformation_max. O estado done, ao ser
alcancado, deve ser deixado imediatamente enviando uma mensagem ao template
procedure, através do canal de comunicacdo work done, de modo que nao haja

atraso entre o fim da operacdo de transformacdo e o envio do sinal. Com nos casos

45

interiores, este ultimo estado é compromissado pois ndo representa um estado real do
componente, mas foi inserido no modelo devido a sua possivel utilidade na etapa de

verificagao.

5.4 Procedimento para a modelagem do sistema de controle

Como mostrado no item 5.2, o sistema de controle proposto € composto por
duas partes, uma referente ao processo, representada pelo template procedure, e a
outra parte constituida pelo supervisor, representada pelo template de mesmo nome.
Diferente dos componentes, a parte de controle devera ser inteiramente construida

pelo usuario.

5.4.1 O template procedure

O template procedure refere-se a parte de controle que da o sequienciamento
de atividades de um processo de fabricacdo de um determinado produto, ou seja,
representa o caminho percorrido pela pe¢a no processo. Foi admitida a presenca de
buffers infinitos na entrada e saida de maquinas, 0 que permitiu oculta-los na
modelagem. Este template se comunica tanto com o template supervisor quanto com
os autébmatos que representam os diversos componentes. A figura 5.6 ilustra a

modelagem do template procedure proposta.

process_start

p? - Activity 11 - Activity k!
pieces_ardered++ py Ry ot)

end_of_activitylK?

part_done

©

new_process_available!
end_of_activityM?
pieces_produced++

activity!

IR s
end_of_activitykK+17 = Activityl<+11 \)
Figura 5. 6 - llustragao do template procedure
O template procedure possui, como parametros, os canais de comunicacao p

e new_process_available e representa um processo que envolve M atividades
executadas pelos diversos componentes. Além disso, o template possui uma variavel

46

relégio t_process que pode ser usada na verificacdo. O estado inicial representa que o
processo ainda ndo comegou. O processo comega quando, através do canal de
comunicacgao p, o template recebe um sinal do supervisor indicando que o processo de
uma nova pecga pode ser iniciado. Deste modo o canal é declarado como urgente e
assim que a condigao de inicio de processo for satisfeita, 0 processo comecarda sem
atraso. Nessa mesma transi¢do, a variavel global pieces ordered é incrementada,
indicando 0 numero de pecgas solicitadas. O estado seguinte é o process_start que
representa o comego do processo. A partir dele, o procedure envia um sinal, por meio
do canal urgente de comunicacao activity, mudando de estado e informando um
componente (este deve estar parametrizado com o mesmo canal) que ele deve
comecar sua atividade. O canal de comunicagao activity equivale a um dos canais de
comunicagao station, load, unload ou transport, que sdo 0s canais pelos quais 0s
componentes recebem sinais do procedure. Existem casos em que os parametros dos
componentes devem ser mudados no meio do processo (por exemplo, quando uma
mesma estacao realiza duas operagdes diferentes no mesmo ciclo). Tal mudancga é
efetuada pelo template procedure na chamada do componente. O préximo estado
representa que o componente ordenado a trabalhar pelo procedure ainda esta em
atividade, este sera deixado quando o componente enviar um sinal pelo canal
end_of activity, o qual equivale a um dos canais de comunicagdo work_done,
machine_loaded, machine_unloaded ou end_of course, que sdo 0s canais pelos quais
0s componentes emitem sinais ao procedure. Em seguida, o procedure continua a
ordenar novas atividades em seqiiéncia (uma nova atividade s6 comeca quando a
anterior termina) até chegar na atividade K.

Ao término desta atividade, em sincronia com o recebimento do sinal enviado
através do canal end_of_activityK, o procedure envia um sinal para o supervisor, por
meio do canal de comunicacdo new_process_available, informando que um novo
processo pode iniciar. Geralmente a disponibilidade do primeiro recurso (componente
do FMS) é suficiente para entrada da pecga seguinte na linha de produgcdo, mas
existem casos onde isto ndo é verdade, por isso é necessario fazer uma analise do
sistema para a determinacgao de tal condicao.

Depois disso, 0 processo continua executando novas atividades até atingir a
atividade M, ultima do processo. Ao fim desta, junto com o recebimento do sinal
enviado por end_of_activityM, a variavel pieces_produced é incrementada, indicando
gue uma nova pecga foi produzida. O estado a seguir € chamado de part_done que é

47

um estado compromissado, pois foi inserido no modelo apenas a fim de ser utilizado
na verificagdo. Por fim, o template volta ao estado inicial, onde fica aguardando um

comando do supervisor para dar inicio a um novo processo.

5.4.2 O template supervisor

O autdbmato de supervisor tem fungdo de ordenar o inicio de um novo
processo no momento em que a execugao deste € possivel. O supervisor envia um
sinal para o template procedure comecgar e recebe um sinal deste ultimo, quando a
condi¢do para o inicio de um novo processo for satisfeita.

A figura 5.7 ilustra a modelagem de um supervisor, proposta pelo presente
projeto, para a fabricagdo de pecas do mesmo tipo. Portanto, os processos envolvem

mesmos recursos e estes sao utilizados na mesma ordem.

end_of production

Figura 5. 7 - llustragao do template supervisor

O supervisor ilustrado funciona em ciclos onde, em cada um deles, é
ordenada a fabricacdo de um determinado numero de pegas, indicado por N. Este
nimero representa a quantidade maxima de peg¢as que podem estar sendo
processadas simultaneamente. Para determinar um valor 6timo de N devem ser feitos
estudos mais aprofundados sobre a dinamica e a eficiéncia do sistema de producéo o
qgue envolve parametros, ndo considerado no presente trabalho, como capacidade de
buffers dentre outros. O parametro C, estipulado pelo usuério, € o numero de ciclos
que deverao ser executados e multiplicando este com N se da o numero total de pecas
que serdao produzidas. Este ultimo serd usado para determinar quando os ciclos

devem ser concluidos. A condicdo de fim de producédo foi estabelecida no inicio do

48

ciclo apenas como exemplificagao, para um sistema que produza um numero de pecas
diferente de N*C, esta condicdo pode ser testada antes da chamada de um processo
intermediario.

O ciclo pode se iniciar enquanto a quantidade de pecas solicitadas é menor
gue o0 numero de partes que devem ser produzidas (pieces_ordered < N*C). Uma vez
iniciado, o autbmato emite um sinal para que o template procedure que representa o
primeiro processo do ciclo seja ativado. Este sinal € enviado pelo canal de
comunicagao processi. Em seguida, o supervisor aguarda a recepcdo de um sinal,
enviada pelo mesmo template procedure, no canal process2_available que confirma a
disponibilidade do sistema para a entrada da peca seguinte. Desta mesma forma, o
autdmato segue ativando novos processos até que, depois da solicitacao do processN,
e quando o process1 estiver disponivel, o supervisor retorna ao seu estado inicial, a
partir do qual, o estado end_of production podera ser atingido, se 0 niUmero de pecas
ordenados for igual ao numero de pecas que devem ser fabricadas (piece_ordered = =
N*C), encerrando o pedido de fabricacdo. Caso a meta ndo tenha sido alcangada,
deve ser continuada a execugao de ciclos. O estado inicial € compromissado pois 0
teste referente ao nimero de pecas ordenadas deve ser feito sem atraso, com
prioridade sobre as outras transicdes do modelo. O autdmato supervisor ndo possui
parametros, no entanto o numero total de pegas fabricadas (N*C) deve ser colocado
diretamente na modelagem. Ao término de todo este procedimento apresentado, é

possivel fazer a validagdo do modelo, para entdo realizar verificagdo do mesmo.

49

6 Estudo de caso

Este capitulo mostra a aplicagdo da proposta do presente projeto em um caso
real. O caso a ser estudado é simples mas serve como ilustracdo. Uma vez que o
presente trabalho propde um procedimento de modelagem de FMSs, € possivel
realizar tal procedimento envolvendo diferentes composi¢coes de FMS.

6.1 Caracteristicas do sistema

O sistema em questdo produzira 20 pegas no total, sendo que o numero
maximo de pegas simultaneamente presentes no sistema serd igual a 2 (2 templates
procedure no modelo). A planta do sistema é composta por duas esteiras
transportadoras, uma de saida e outra de entrada, um robé manipulador e uma
maquina flexivel de manufatura. A ilustracdo deste sistema real é mostrada na figura
6.1. As caracteristicas de funcionamento dos componentes sdo mostradas na

definicdo de parametros na figura 6.2.

~ Manipulator

Transport in ~— Transformation

L 3 y

[

e —— ~—
L J

Transport out

Figura 6. 1 - llustragao do sistema

6.2 Modelo do sistema em UPPAAL

O modelo do sistema é constituido por um template supervisor (supervisor),

dois templates procedure (PA e PB), dois templates componente transporte (77 e T2),

50

um template componente manipulagao (M7) e um template componente transformacao
(TF1).

Os parametros dos templates sao declarados na tela de global declarations
como expde a figura 6.2, sendo que a parte delimitada pelo quadrado vermelho indica
os valores que o usuario deve definir referentes as especificagdes dos componentes.

) C:\Programmiup paal-4.0.B\programsiteste 6-18.xml - UPPAAL

Fle Edt Yiew Tnols Options Help
BaE aae K@-o
Edlkor Simulator | verifier

¥/ GLOBAL DECLARATIONS
) Project

B Y o= clorations
-8} transformation
- # Dedarations
-5}, transport_system urgent chan p_A, p_B;

" & Dedarations chen PA availshle, PE availsble;
-8} manipulator

" @ Dedarations

-5 procedure
‘. @ Declarations ¢/ Componsnts paramsters

¥/ Procedurss paramstsrs

£ supervisor urgent chen stationl, loadl, unloadl, transportl, transporti;
= o i P
- @ Dedarations

H ohan work donel, mwachine loadedl, machine unloadedl,
@ System declarations = =]

end of coursel, end of courseZ;

int operationl = 4, t transformation winl = 30, t_transformation maxl = 35, t_transport_minl = 10, t_transport maxl = 12,

t_transport_min? = 15, t_transport_mex2 = 17, t_load minl = &, t_load maxl = 10, t_unload minl = 4, t_unload_mexl = 6;

o0l machine husyl;

“/variables
clock t_global;

int pieces ordered, pieces produced;

Figura 6. 2 - Declaragao dos parametros

Nota-se nesta tela a presengca de duas varidveis ndao mencionadas
anteriormente. Sao elas a variavel relégio t global, que representa o tempo global do
sistema, e a variavel inteira pieces_produced, um contador para o nimero de pecas
produzidas.

Em seguida, os parametros sdo alocados aos seus respectivos templates na
tela de system declarations como mostra a figura 6.3.

51

ul C:\Programmiluppaal-4.0.B8\programsiteste6-18.xml - UPPAAL

Elle Edit Wiew Tools Options Help

DalE eee K@ e

Eoter [inlistenfiortiet

[Drag out] S/ Templatse instantiations
(3 Project
i @ Declarations
2% transfFormation
L. @ Decarations
branspart_system 1 = wanipulator {t_load winl, t_load maxl, t unload minl, t_unload maxl, loadl, unloadl,
Declarations wachine loadedl, machine unloadedl, machine busyl);
54 manipulakor
Declarations
E procedure
L. @ Declarations
a supervisor TZ = transport_system(t_transport_mini, t_transport maxZ, transporti, end of coursel);
: lat ations

Tl = transport_system(t_transport_minl, t_transport maxl, transportl, end of coursel);

TF1 = transformation(t_ transformation minl, t_transformation maxl, stationl, work donel, operationl);

Pa = procedure(p A, PE_availshle);

PE = procedure(p_B, PA availsble);

/¢ Processes to bs composed into the system

system supervisor, PA, PE, T1, T2, M1, TF1;

Figura 6. 3 - Alocagao dos parametros nos templates

O template de componente transporte T7 representa a esteira transportadora
na qual as pegas entram no sistema. A figura 6.4 ilustra o seu modelo, ja com os seus

respectivos parametros.

T1

enc_of_course1!

; t_fp==t_transport_mir -)
transport1 7 Ly) finish
t fp=0 transporting

t_tp==t_transport_max1
Fat

Figura 6. 4 - Template T1

O template de componente manipulagdo M1 representa o brago de robd que
carrega na maquina a peg¢a que chega pela esteira transportadora de entrada e,
depois que a maquina conclui a operagdo, descarrega-a, deixando a pega a
disposicdo da esteira transportadora de saida, portanto, M1 ser4 chamado duas vezes
em cada ciclo dos templates procedure. A figura 6.5 ilustra o seu modelo, ja com os
seus respectivos parametros. E importante citar que o parametro machine_busy1

refere-se a disponibilidade da maquina representada pelo template TF1.

52

M1

machine_|oaded1!
maching_busyl=1

."l maching_busyl==0
{ loadt?
t_m=0 loading
M

t_m==t_load_min1

[Ly
-"l t_m==t_load_maxl Iodcled

urloacing
=) = L) urloadled

. by n== oad mi
machine_husyl== R t_m==t_unload_min1
urload!? —
t_m=0

maching_unloadedi!
machine_busyl=0

Figura 6. 5 - Template M1

O template de componente transformagcdao TF1 representa o modulo flexivel
de manufatura configurado para realizar a operagao correspondente ao valor 4 da
variavel operationi (vide declaragédo da variavel operation1 na figura 6.2). A figura 6.6

ilustra o seu modelo, ja com os seus respectivos parametros.

TF1
work_in_progress daone
gation? ? ey t_tf==t_trarsformation_min1 =
t_t=0 t_tf==t_trarsformation_maxi
work_cdone!

Figura 6. 6 - Template TF1

O template de componente transporte T2 representa a esteira transportadora
na qual as pecas saem do sistema. Este € andlogo ao template T1, porém com seus
proprios parametros. A figura 6.7 ilustra o seu modelo, ja com os seus respectivos

parametros.

53

T2

end_of_course2!

t—u:"::=t—flﬂ:g|:':ﬂ—'mx" t_ﬂ:-=-=t_t|':.’|I'E;|Z-Z-|‘t_I'|'IiI%)
transport2? Ly finish

t_tp=0 transporting

Figura 6. 7 - Template T2

Os templates PA e PB representam 0s processos executados pelo sistema.
Nota-se que eles podem estar ativos simultaneamente. A figura 6.8 ilustra 0 momento
em que existem duas pegas em fase de processo, sendo que uma delas mostrada em
PA, esta na esteira transportadora de saida (estado s77 de PA), e a outra, exibida em

PB, esta sendo trabalhada pela maquina flexivel de manufatura (estado s7 de PB).

PA
p_AT p:\:-?e;s:_‘stan transport 1! } }2\ end_of_course 1 E': fs.sa PE_awailablz! } _;’i\ load1! } %
pieces_ordered+ Wt b 4 = ey
rachine_loaded1?
-____"--—______ part_done C 56
station 1!
end_of_course2?
. C 7
pieces_producsd++
work_done1?
sl transport2! o rachine_unloaded17 W% unloadi! \Jss
PB
p_B? p:noess_start transport 1! } ;"2\ end_of_course 1 E': ;38 P& _awailablz! } ;i'\ load1! } ;:':-)
peces_ordered+ L J = L
rrachine_loaded 17
____"'—-______ part_done (<6
station 1!
end_of_course2?
pieces_produced+ .i"
work_done1?
sl transport2! ey rachine_unloaded 17~ W% unload!! _)53

Figura 6. 8 - Templates PA e PB

O template supervisor ativa os processos representados por PA e PB, quando

possivel, além de encerrar a produgdo quando o numero total de pegas ordenadas for

54

igual a 20. A figura 6.9 mostra o template esperando a disponibilidade de PB para

poder ativa-lo quando este se encontrar em seu estado inicial.

SUpEnASor

end_of production

pieces_ordered==20

pieczs_ordersd <20 PEB_anailabk? p_B!

p_al
@ ©

-
_—

O

@]

P& awailable?

Figura 6. 9 - Template supervisor

A troca de informagdo e a comunicagdo entre os diversos templates é
esquematicamente mostrada na figura 6.10.

pieces_ordered
P 4 ¥...

PA RE

T1 T2 M1 TF1

Figura 6. 10 - Troca de informagéao entre autdmatos

55

As setas pontilhadas representam o compartiihamento de variaveis globais
enquanto as setas cheias representam o fluxo de informacdo pelos canais de
comunicagao. As comunicagdes entre PB e os componentes foram ocultadas no
esquema por questao de melhor representacao gréafica, porém sdo analogas aquelas
entre PA e o objeto de controle.

6.3 Verificacao do modelo

Depois de simular e certificar-se que o modelo esta consistente, a atividade de
verificagdo pode ser executada. A figura 6.11 mostra a tela de verificagdo da
ferramenta UPPAAL em que a parte delimitada pelo quadrado vermelho mostra
proposicoes logicas que respondem qual serd o tempo minimo de produgédo das 20
pecas. Ao fazer a simulacédo do sistema, chegou-se a um valor de t_global igual a 867.
Através da verificagdo, pode-se observar que existem valores de t global, ao fim da
producao, menores do que o encontrado na simulacdo. Por meio de iteracdes chega-

se ao valor minimo.

56

i3 C:/Programmifuppaal-4.0. B/programsfteste6-18.xml - UPPAAL
File Edit YWew Tools Options Help

LDaE Qe [{a>e

Crvervis

E<rpieces_produced==20 and t_global<865

E<>pieces_produced==20 and t_global<S66 Check

Insert

E<rpieces_produced==20 and t_global<Sa7

Remave

Comments

Cuery

Camment

-

Status

\=Edmaieln g e TR

(Academic) UPPAAL version 4.0.8 {rev, 42763, March 2009 -- server,
E < =pieces_produced==20 and t_global <867
Property is satisfied,

E < =pieces_produced==20 and t_global <866
Froperty is satisfied.

E < =pieces_produced==20 and t_global <865
Property is nok satisfied,

|>

<

Figura 6. 11 - Exemplo de verificagao

Analogamente, pode-se descobrir 0 makespan do processo, ou seja, 0 tempo
minimo que uma peca permanece no sistema. A figura 6.12 mostra como encontrar

este valor.

57

U] C:/Programmifuppaal-4.0.Bfprograms/teste6-18.xml - UPPAAL
File Edit Wiew Tools Options Help

D&e@ E}@s@. |§|@w‘@

| Editor | simulator | Verifier |

Orveryigm

E<>PE.part_done and PE.t_proc

E<»PA.part done and PA.t process<e? . 5 i
E<»Ph.part_done and PA.t_process==67 .

Remove

Cormrments

Qery
E==FB.par_dane and PE1_process=67

Cormrment

Status
(CAcademic) UPPAAL version 4.0.5 (rev. 4276), March 2009 -- server, ~
E<=Pa.part_done and PA.t_process==67
Property is satisfied.

E<=PA.part_done and PA.t_process <67
Property is not satisfied,

E < =PB.part_done and PE.k_process <67
Property is not satisfisd,

<

Figura 6. 12 - Makespan do processo

Além disso, propriedades de seguranca do sistema podem ser checadas. Um
exemplo disso é a verificacao da situacao de deadlock em que o manipulador segura
uma peca para carrega-la em uma estacao ja ocupada, esta verificacdo € mostrada na
figura 6.12 e certifica que o sistema esta seguro quanto a este caso de travamento.
Esta situacao ja era esperada devido a restricao imposta pela variavel machine_busy.

58

U] C:/Programmifuppaal-4.0.8/programs/fteste6-18.xml - UPPAAL
File Edit View Tools Options Help

RaBDaae K@

| Editor | simulator | Yerifier |

Crvervien

E<» (PA.s5 and PE.s7) or (PA4.s7 and PB.s5)

Remove
Camments

Query

E== (PA. 55 and PB.s7) or (PA ST and PB.s5)

Comment

-

Skatus

|*

L]]) B YT N FLEO), TArCrT L0003 == SETVET
E<«> (PA.s5 and PE.s7) or (PA.s7 and PB.55)
Property is nok satisfied.

Figura 6. 13 - Verificagao de deadlock

Varios outros testes podem ser feitos no modelo, dependendo da

complexidade estrutural e funcional dos sistemas que estejam sendo modelados.

59

7 Conclusoes

O presente trabalho teve como objetivo propor um método para realizar
verificagdbes de modelos formais de sistemas flexiveis de manufatura, por meio de
modelagem de componentes do sistema e seu sistema de controle com a ferramenta
UPPAAL.

Ao longo do desenvolvimento do projeto foram encontradas algumas
dificuldades. Para a modelagem de componentes, a decisdo das caracteristicas
relevantes ao projeto gerou debates. Na implementacao dos autbmatos de controle, a
propriedade de autdmatos temporizados que restringe em um, o numero de estados
que podem ser ocupados em cada autbmato, dificultou a descricdo de processos
industriais onde mais de um produto estivesse sendo processado simultaneamente.

O projeto, apesar de ter alcangado os objetivos previstos inteiramente,
consegue modelar somente sistemas de menor complexidade funcional naquilo que se
refere a questdo de processos globais que ndo possuem sequienciamento de
atividades pré-definido e sistemas de transporte de elevada flexibilidade implicando na
definicdo de rotas de transporte e designacao de transportadores em tempo real.

Outro aspecto importante trabalhado foi a questao de utilizar-se os recursos
da ferramenta UPPAAL para simplificar a sintese de autématos temporizados gracas a
possibilidade de se modelar fungdes de guarda e logicas de comunicagdo entre
diferentes autématos.

60

Referéncias bibliograficas

ALUR, R.; DILL, D. L. Automata for Modeling Real-Time Systems. Proceedings of the 17th
International Collogquium on Automata, Languages and Programming, Lecture Notes in
Computer Science 443, Springer-Verlag 1990.

ALUR, R.; DILL,D. L., A theory of timed automata. Theoretical Computer Science.vol. 126,
no. 2, pp.183-235, 1994.

BEHRMANN, G.; BENGTSSON, J.; DAVID, A.; LARSEN, K. G. ; PETTERSSON, P. ; YI,
W. UPPAAL Implementation Secrets. In FTRTFT '02: Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems. 2002, pp. 3-
22.

BEHRMANN, G. Data Structures and Algorithms for the Analysis of Real Time Systems.
PhD Dissertation, Department of Computer Science, Aalborg University. November 28th,
2003.

BEHRMANN, G.; DAVID, A.; LARSEN, K. G. A Tutorial on Uppaal. Department of
Computer Science, Aalborg University, Denmark, 2004.

BENGTSSON, J.; LARSSON, F. UPPAAL A tool for automatic verification of real-time
systems. Master of Science thesis. 1996.

BENGTSSON, J.; YI, W. Timed Automata: Semantics, Algorithms and Tools, In Notas de
aula sobre Concurrency and Petri Nets. W. Reisig and G. Rozenberg (eds.), LNCS 3098,

Springer-Verlag, 2004.

BONETTO, R. Flexible manufacturing systems in practice. London : North Oxford
Academic, 1987.

BURCH, C. The science of computing: first edition. Science of computing suite. 2004.

61

CASSANDRAS, C. G.; LAFORTUNE, S. Introduction to Discrete Event Systems, 2nd Ed.,
Massachusetts: Kluwer Academic Publishers, 1999.

CLARKE, E.M.; EMERSON, E.A.; SISLA, A.P. Automatic verification of finite state
concurrent systems using temporal logic. Programming Languages and Systems 8(2), pp.
244--263, 1986.

CURY, J. E. R. Teoria de Controle Supervisério de Sistemas a Eventos Discretos. Notas
de Aula, 2001.

DAVID, A; YI, W. Modelling and Analysis of a Commercial Field Bus Protocol. IEEE
Computer Society Press, 2000.

GREENWOOD, N. R. Implementing flexible manufacturing systems. New York : Wiley,
1988.

GROOVER, M. P. Automation, production systems, and computer-integrated
manufacturing. 3rd Ed. Upper Saddle River, N.J.: Prentice Hall, 2008.

HEINZINGER.; NICOLLIN, X.; SIFAKIS, J.; YOVINE. S. Symbolic Model Checking for
Real-Time Systems. A preliminary version appeared in the Proceedings of the Seventh
Annual Symposium on Logic in Computer Science (LICS), IEEE Computer Society Press,
1992.

HOPCROFT, J. E.; MOTWANI, R.; ULLMAN J. D. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley; Segunda edicao, 2000.

LARSSON, F. Efficient Implementation of Model-Checkers for Networks of Timed
Automata. Licentiate Thesis 2000-003, Department of Information Technology, Uppsala

University, 2000

LUGGEN, W. W. Flexible manufacturing cells and systems. Englewood Cliffs, N.J.:
Prentice Hall, 1991.

62

MIYAGI, P. E.; VILLANI, E.; VALETTE, R. Landing System Verification Based on Petri
Nets and a Hybrid Approach. 2006. 17pag. IEEE University of Sao Paulo/ Instituto
Tecnologico de Aeronautica/CNRS, 2006,

NIELSEN, B. Specification and Test of Real-Time Systems. 212 p. PhD Thesis , Aalborg
University. April, 2000.

PROMEC. Disponivel em < http://www.promec.pt/images/rocla/Rocla_AGV_1.jpg>.
Acesso em junho de 2009.

RAMADGE, P. J.; WONHAM, W. M. The Control of Discrete Event Systems, Proceedings.
IEEE, Vol. 77, n. 1, pp. 81-98, 1989.

RANKY, P. G. The design and operation of FMS : flexible manufacturing systems. Bedford
: IFS (Publications) Ltd, and U.K. and North Holland Publishing Company, 1983.

ROBOT MAGAZINE. Issue 2. Disponivel em
<http://www.botmag.com/issue2/images/bottom2.jpg>. Acesso em junho de 2009.

S & S PRECISION. Disponivel em
<http://www.sandsprecisionnj.com/image/32216881.JPG>. Acesso em junho de 2009.

SARMENTO, C. A.Modelagem de Programas e sua Verificagao para Controladores
Programaveis. Tese de mestrado, Escola Politécnica da Universidade de Sao Paulo,

2008.

ZHOU, M.; VENKATESH, K. Modelling, simulation and control of flexible manufacturing
systems: A petri net approach. Singapore: World Scientific, 1999.

63

