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RESUMO 

 

 O controle de sistemas flexíveis de manufatura (FMSs) precisa ser validado e 

verificado antes de ser executado em chão de fábrica.  

 Considerando que o FMS envolve processos e estrutura que podem ser 

controlados por uma sistema de controle modular, o presente projeto visa a criação de 

uma biblioteca de modelos formais de componentes do FMS, além de uma proposta de 

construção do modelo de controle supervisório, que auxiliem num procedimento 

sistematizado de modelagem do sistema global do FMS, com o uso da ferramenta 

UPPAAL que tem como principal recurso o seu eficiente algoritmo de verificação. A 

linguagem utilizada pela ferramenta baseia-se em autômatos temporizados estendidos e 

sua lógica de verificação é uma versão simplificada da CTL (computational tree logic). 

 Visto que o universo dos componentes de um FMS é muito amplo, o presente 

trabalho limitou-se a considerar três classes fundamentais: dispositivos de transformação, 

manipulação e transporte. Com estas, é possível descrever o funcionamento de uma 

grande variedade de FMSs.  

 A modelagem proposta para o sistema de controle é constituída por dois módulos: 

o módulo de controle dos processos, onde cada autômato descreve a seqüência de 

atividades para a fabricação de um determinado produto, e o módulo de supervisão que 

controla o processo global. 

 O processo de verificação é realizado a partir da análise da interação entre estes 

módulos de controle e os modelos funcionais dos componentes presentes no FMS.  

  

Palavras-chave: FMS, verificação, UPPAAL, modelos formais, controle supervisório  
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ABSTRACT 

 

 The flexible manufacturing systems (FMSs) control needs to be validated and 

verified before its execution on shop floor. 

 Considering the fact that the FMS involves processes and structure that can be 

controlled by a modular control system, the present project aims at the creation of a library 

of formal models of components of the FMS, and a supervisory control model construction 

proposal, that assist a systemized modeling procedure of the global system of the FMS, 

with the use of UPPAAL that has, as main resource, its efficient algorithm of verification. 

The language used for the tool is based on extended timed automatons and its verification 

logic is a simplified version of the CTL (computational tree logic).  

Since the universe of the components of a FMS is very large, this project was 

limited to consider three fundamental classes: devices of transformation, manipulation and 

transport. With these, it is possible to describe the functioning of a great variety of FMSs. 

  The control system model proposed is build by two modules: the process control 

module, where each automaton describes the activity sequence for the manufacture of 

one specific product, and the supervisor module that controls the global process. 

The verification process is accomplished analyzing the interaction between these 

control modules and the functional models of components present in the FMS. 

 

Keywords: FMS, verification, UPPAAL, formal models, supervisory control 
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1 Introdução 

 

No atual momento de economia globalizada, os novos padrões e atributos de 

competitividade indicam de forma inequívoca que os sistemas de manufatura precisam 

ter condições de atender de modo eficaz às variações das exigências do cliente. 

Dentro desta realidade, sistemas flexíveis de manufatura (FMSs), que são sistemas 

capazes de processar uma variedade de peças diferentes (Groover, 2008), têm 

apresentado uma resposta adequada a estas necessidades. Entretanto, para a 

implementação  de um FMS é necessário desenvolver-se um estudo detalhado do 

comportamento dinâmico que se deseja para o sistema e assim é fundamental utilizar-

se técnicas efetivas de modelagem dos processos que se deseja executar no referido 

sistema.  

Considerando que o FMS envolve processos e dispositivos que podem ser 

estruturados de forma modular, é importante propor-se sistemáticas  de construção do 

modelo do comportamento do FMS, que respeite estas características e que permita 

que seja feita uma análise antes da real implementação do sistema na fábrica. A 

possibilidade de analisar um FMS através de simulação permite uma maior eficiência 

do sistema, diminuindo o tempo de ociosidade das máquinas nas etapas de 

reconfiguração. É importante que através da simulação seja possível validar o sistema, 

ou seja, garantir que ele realizará efetivamente a atividade que foi requerida, e, 

principalmente, verificar se determinados estados podem ser alcançados, evitando 

possíveis acidentes, desgaste de ferramentas, desperdício de matéria-prima, entre 

outros problemas. A capacidade de realizar este processo de forma rápida e confiável 

pode ser considerada um grande diferencial para uma empresa. 

Um ponto crucial é que o modelo a ser simulado deve ser formal, isto é, 

baseado em conceitos matemáticos e, dentro deste contexto, a ferramenta UPPAAL 

(BENGTSSON; LARSSON, 1996) mostra-se adequada, já que possibilita uma 

modelagem através de redes de autômatos temporizados que se comunicam entre si, 

além de possuir o algoritmo de verificação bastante eficaz. 

Até então, trabalhos envolvendo modelagem de FMS em eventos discretos 

utilizaram-se de linguagens como Redes de Petri, pois estas são mais apropriadas 

para representar o comportamento de sistemas como o referido. No entanto, estes 

tipos de linguagem não possibilitam a realização de verificação do modelo.  
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O objetivo do projeto é criar uma biblioteca de componentes para a 

modelagem de FMS. Estes componentes podem instanciar os modelos dos módulos 

que compõem o FMS de modo que para cada caso prático específico o projetista 

possa adicionar ou excluir objetos do modelo, possibilitando modificações de 

configuração, sem a necessidade de refazer todo o modelo. Em seguida, propõe-se 

um procedimento de modelagem do controle destes componentes de modo que seja 

possível executar-se uma série de processos produtivos. Espera-se, através do 

presente trabalho, obter um método para facilitar, tornar mais confiável e acelerar 

consideravelmente as atividades de reconfiguração e verificação em sistemas flexíveis 

de manufatura. 

 

1.1 Organização do texto 
 

No capítulo 1 foi feita uma introdução do trabalho, apresentando as 

motivações, as justificativas e o objetivo do trabalho. No capítulo 2 é feita a 

apresentação dos sistemas flexíveis de manufatura, objeto de aplicação do presente 

projeto. O capítulo 3 descreve os conceitos envolvidos nos autômatos temporizados 

com os quais a ferramenta UPPAAL trabalha, além de tratar, de maneira introdutória, a 

teoria de controle supervisório. O capítulo 4 aborda o assunto verificação de modelos, 

dando enfoque em como este método é aplicado em UPPAAL. No capítulo 5 é 

explicado detalhadamente o método proposto para realizar verificação de FMS e no 

capítulo 6 este método é aplicado a um caso real. As conclusões são feitas no capítulo 

7, seguidas das referências bibliográficas. 
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2 Sistema flexível de manufatura 

 

Este capítulo apresentará o sistema flexível de manufatura descrevendo o 

contexto histórico da sua criação e evolução. Em seguida, faz-se um estudo sobre o 

assunto de classificação destes sistemas. O capítulo também aborda os diversos 

componentes de FMSs para modelagem destes que ocorrerá nos capítulos 

posteriores.  

 

2.1 História 
 

Com a crescente demanda do Mercado, os produtores precisaram de um 

sistema produtivo capaz de fabricar produtos variados adaptados às preferências do 

cliente e que pudesse reagir rapidamente as mudanças do mercado por meio de 

reconfigurações breves do seu sistema (ZHOU; VENKATESH, 1999). O avanço 

tecnológico, que possibilitou aplicação de máquinas numericamente controladas na 

indústria, com os investimentos massivos das empresas nas últimas décadas resultou 

na evolução dos FMSs possibilitando a sua aplicação na indústria.  Segundo  Luggen 

(1991), o conceito e o nome de sistema flexível de manufatura foram criados pelo 

engenheiro de pesquisa e desenvolvimento, David Williams, em Londres nos anos 60. 

Assim, a combinação do conceito de ferramentas de máquina de controle 

computacional descentralizado com a idéia de usar as máquinas em turnos completos, 

foi o início dos FMSs. Desde então, devido a estudos constantes sobre o assunto, os 

FMSs vêm apresentando um desempenho cada vez melhor e, conseqüentemente, 

estão mais presentes nas fábricas.  

 

2.2 Definição 
 

As definições de FMS envolvem subjetividades, portanto, estas, dependendo 

do sistema, do usuário e seu objetivo, podem apresentar inúmeras interpretações. 

A) Definição 1 (KUSIAK, 1986) 

O sistema flexível de manufatura é um sistema produtivo, com controle 

computadorizado, capaz de processar uma variedade de tipos de partes. 

B) Definição 2  (ZHOU;VENKATESH, 1999 apud RANKY, 1983)  
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MS é um sistema que lida com alto nível de processamento de dados 

distribuídos e fluxo de material automatizado usando máquinas com 

controle computadorizado, conjunto de células, robôs industriais, máquinas 

de inspeção junto com sistemas de armazenamento e de transporte 

integrado com computadores. 

C) Definição 3   (GREENWOOD, 1988)  

O sistema flexível de manufatura, por meio de combinações cuidadosas de 

controle computacional, comunicações, processo de manufatura e 

equipamentos relacionados, possibilita a linha de produção de uma 

organização a responder, de uma maneira rápida, econômica e integrada, 

às mudanças significativas no seu ambiente operacional.  Os constituintes 

típicos de tal sistema são: equipamentos de processamento, equipamentos 

de transporte material, sistema de comunicação e sistema de controle 

computacional sofisticado.  

Além destas, existem outras definições mais atuais como, por exemplo:  

D) Definição 4  (GROOVER, 2008) 

Um FMS é formado por um conjunto de estações de trabalho agrupadas 

para processarem um grupo de peças similares, denominado família de 

peças baseado em Tecnologia de Grupo, altamente automatizado. Têm-se 

assim um conjunto de estações de trabalho interconectadas por um 

sistema de manipulação e armazenamento automático, e controlado por 

sistema de computadores distribuídos. Diz-se que tal sistema é flexível por 

sua capacidade de processar uma variedade de diferentes tipos de peças, 

simultaneamente, em diferentes estações de trabalho, sendo que o mix de 

produtos e quantidades produzidas podem ser alteradas.  

Observando as definições verifica-se que nenhum sistema de manufatura é 

totalmente flexível, pois um FMS consegue fabricar apenas um número limitado de 

famílias de peças.  

 

2.3 Classificação de FMS 
 

Segundo o Groover (2008), existem diversas maneiras de classificar os FMSs, 

pois podem ser dados diferentes enfoques na sua classificação. 
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2.3.1 Classificação por tipos de operação 
 

Esta consiste em duas categorias, a de operação de processamentos, e a de 

operação de montagem. Na maioria dos casos um FMS pertence a uma das 

categorias mas existem casos onde o sistema apresenta ambos os tipos de operação.  

 

2.3.2 Classificação por número de máquinas 
 

O critério de classificação baseia-se no número de máquinas presentes no 

sistema. A célula de máquina única consiste em um centro de manufatura CNC 

(controle numérico computadorizado) e seu sistema de armazenamento de onde, 

periodicamente, as peças feitas são descarregadas e as partes a serem trabalhadas 

são carregadas. 

Segundo o Bonetto (1987), que titula este tipo de sistema como célula flexível 

simples (figura 2.1), a palavra chave para célula flexível é a autonomia, ou seja, a 

separação entre operador e máquina por meio de equipamentos numericamente 

isolados. No entanto, a presença de operadores para tarefas como supervisão, 

carregamento e descarregamento de peças são essenciais mesmo que estes não 

representem um trabalho real. Portanto existe um custo direto de mão-de-obra, mas 

este pode ser diminuído tendo várias máquinas sob a supervisão de um mesmo 

homem. 

 

 
Figura 2. 1 - Célula de máquina única (GROOVER, 2008) 

 



 15 

A célula flexível de manufatura consiste em dois a três centros de 

processamentos e um sistema de manuseio de peças que liga as estações de trabalho 

com as estações de carga e descarga. Ele pode ser construído de máquinas idênticas 

(figura 2.2) ou diferentes (figura 2.3).  

 

 
Figura 2. 2 - Célula com máquinas idênticas (GROOVER, 2008) 

 

 
Figura 2. 3 - Célula com máquinas diferentes (BONETTO, 1987) 

 

 O sistema flexível de manufatura é constituído por mais de quatro estações 

de processamento conexas por um sistema de manuseio e controladas por um 

sistema de computadores distribuídos. O controle dos sistemas desta classe 

geralmente é mais sofisticada que outras. 

As classes deste tipo apresentam diferentes magnitudes em ritmo de 

produção, volume de produção e investimentos sendo que estes valores tendem a 

crescer com o aumento de número máquinas, como mostra a figura 2.4. 
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Figura 2. 4 - Características de três categorias (GROOVER, 2008) 

 

2.3.3 Classificação por flexibilidade 

 

Um sistema de manufatura, para adquirir flexibilidade, deve apresentar; 

habilidade de identificar e distinguir as diferentes peças ou estilo de produtos 

processados pelo sistema, alterações rápidas de instrução de operação e breve 

reconfiguração física. 

Existem diversos critérios para analisar a flexibilidade de um sistema. Para 

que um sistema de manufatura seja qualificado como flexível, é essencial que consiga 

satisfazer seguintes condições: processar diferentes tipos de peças e aceitar 

mudanças em ordens de produção. 

Pode ser categorizado por FMS dedicado aquele que serve para produção de 

uma variedade limitada de tipos de peças e todo o campo de peças a serem 

produzidas é pré-determinado. Por FMS de ordem randômico entende-se os sistemas 

que produzem uma grande família de peças, onde uma nova peça pode ser 

introduzida no sistema e, além disso, podem ocorrer modificações nas peças 

existentes e a ordem de solicitação de peças está sujeita a mudanças mais 

freqüentes. Este último é mais adequado na produção de grandes variedades de 

peças em menor quantia enquanto o outro é uma melhor solução para fabricar um mix 

de produtos de menor variedade em lotes maiores (GROOVER, 2008). A figura 2.5 

mostra um gráfico comparativo que caracteriza esta situação.  

 



 17 

 
Figura 2. 5 - Características das duas categorias (GROOVER, 2008) 

 

2.4 Componentes de um FMS 
 

Segundo Groover (2008) os FMSs são constituídos por quatro classes de 

componentes: 

a) Estação de trabalho 

b) Sistema de manuseio e de armazenamento de materiais 

c) Sistema de controle computacional 

d) Recursos humanos 

  A  estação de trabalho é a que está presente em maior número no grupo de 

componentes do sistema e existem diversos tipos de estações dependendo da sua 

funcionalidade. Em um sistema de usinagem (figura 2.6), as principais estações 

consistem em máquinas CNC que servem para processos como furação, fresamento, 

entre outros. Porém, existem outros tipos de estações que são aplicáveis nos FMSs, 

alguns exemplos destas são estação de carga e descarga, de montagem e de 

inspeções. 
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Figura 2. 6 - Máquina CNC de usinagem (S & S PRECISION, 2009) 

 

A segunda maior família de componentes é a do sistema de manuseio e 

armazenamento de materiais. O sistema de manuseio move as peças pelo FMS e 

pode ser subdividido em primário, que transporta peças entre as estações e consiste 

em equipamentos como veículos automaticamente guiados (AGV), mostrado na  figura 

2.7, veículos guiados por trilho (RGV) e esteiras transportadoras, e em secundários 

(figura 2.8) que transfere as partes do primário à estação de trabalho posicionando-as 

adequadamente.  

 

 
Figura 2. 7 - Exemplo de sistema de manuseio primário (PROMEC, 2009) 
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Figura 2. 8 - Exemplo de sistema de manuseio secundário (ROBOT MAGAZINE, 2009) 

 

O sistema de armazenamento, além de guardar as matérias-primas, peças 

semi-acabadas ou prontas, também serve para estocagem de ferramenta das 

máquinas.  

O sistema de controle computacional é usado para controlar as partes 

automatizadas do sistema por meio de sua interface com os hardwares de FMS como 

as máquinas CNC e os AGVs. Um sistema de controle típico de FMS é formado por 

um computador central que controla as atividades realizadas pelo sistema e 

microcomputadores que controlam os componentes individualmente. 

Apesar da grande parte das tarefas de processo de produção em um sistema 

flexível ocorrer por maquinários automatizados, a intervenção humana é indispensável 

para o funcionamento do FMS. Portanto, os recursos humanos também podem ser 

classificados como um dos componentes e são inseridos nas atividades como carga 

de peças no sistema, descarga de partes prontas, manutenção de equipamentos, 

entre outras. 
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3 Autômatos Temporizados 

 

Neste capítulo serão apresentados os fundamentos teóricos sobre autômatos 

temporizados (ATs) e a técnica de modelagem utilizada no presente trabalho no 

procedimento que será apresentado no capítulo 5. Os ATs são derivados dos 

autômatos finitos (AFs) e, portanto, o capítulo iniciará com uma introdução sobre AFs, 

passando em seguida para uma abordagem sobre ATs. Depois disso será dada uma 

explicação sobre a forma de comunicação entre os diversos autômatos. Por fim será 

abordado o assunto síntese de supervisório.    

 

3.1 Autômatos Finitos 
 

Um autômato finito ou máquina de estados, é um formalismo, que permite 

representar de forma clara, um qualquer processo composto por um conjunto de 

estados, e transições entre esses estados. A representação dos AFs é feita de 

maneira gráfica através de círculos, representando os estados, e arcos, representando 

as transições (ou eventos) entre os estados. Existe também um arco de entrada sem 

inscrição que indica o estado inicial. Estados representados através de dois círculos 

são chamados estados finais (BURCH, 2004). A figura 3.1 mostra um exemplo de AF. 

 

 
Figura 3. 1 - Exemplo de autômato finito 

 

Mais formalmente um autômato finito é representado por uma tupla A = (S, Σ, 

s0, F, δ), na qual: 

• S é um conjunto finito de estados não vazio; 

• Σ é o alfabeto de entrada, um conjunto finito de símbolos não vazio; 

• s0 é o estado inicial, um elemento de S; 

• F é conjunto de estados finais (ou marcados), F ⊂  S; 
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• δ é a função de transição, recebe como argumentos um estado e um símbolo 

de entrada e devolve um novo estado (eventualmente o mesmo): δ : S×Σ → S. 

(HOPCROFT; MOTWANI; ULLMAN, 2001)  

Ao processar o símbolo associado a uma determinada transição pertencente 

ao estado atual do autômato, a transição é disparada. Uma string sobre um alfabeto Σ 

é uma seqüência finita de símbolos de Σ, a string que não contem nenhum símbolo é 

representada por ε. O objetivo dos AFs é processar strings que podem ser aceitas ou 

rejeitadas. Se, ao término do processamento da string, o autômato encontra-se em um 

estado final, a string é aceita, caso contrário ela é rejeitada. No exemplo da figura 3.1, 

a string 101 é um exemplo de string que é aceita pelo autômato. Um conjunto de 

strings é chamado de linguagem. Um autômato està associado a duas linguagens: a 

linguagem gerada (normalmente representada por L) que representa todas as cadeias 

que podem ser seguidas no autômato, partindo do estado inicial; e a linguagem 

marcada (normalmente representada por Lm) que considera todas as cadeias as quais, 

partindo do estado inicial, atingem um estado final. (BURCH, 2004). 

Um autômato pode ser determinístico ou não determinístico. Autômato finito 

determinístico (AFD) é aquele em que todos os estados têm uma transição diferente 

para cada símbolo do alfabeto. Autômato finito não determinístico (AFN) é aquele em 

que os estados podem ou não ter uma transição diferente para cada símbolo do 

alfabeto, e ainda podem ter múltiplas transições para o mesmo símbolo partindo de um 

mesmo estado, portanto os AFDs são um tipo especifico de AFNs. Os AFNs mais 

poderosos uma vez que possuem a propriedade de representar uma gama maior de 

classes de processos dinâmicos (HOPCROFT; MOTWANI; ULLMAN, 2001). Um 

exemplo de AFN é mostrado na figura 3.2. 

 

 
Figura 3. 2 - Exemplo de AFN (HOPCROFT; MOTWANI; ULLMAN, 2001) 

 

A teoria de autômatos é aplicável em vários campos. Por exemplo na 

informática se pode fazer buscas em textos usando AFs. A maior limitação da 
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aplicação desta teoria está no fato de que em determinados casos o número de 

estados necessário para a modelagem do sistema sofre explosão combinatória.  

 

3.2 Autômatos temporizados 
 

Um dos principais modelos de autômato temporizado existentes na literatura é 

aquele proposto por Alur e Dill (1994), que diz que ATs são AFs comuns estendidos 

com variáveis relógio. As variáveis relógio são inicializadas com o valor zero quando o 

sistema começa e são incrementadas de maneira síncrona. Um autômato deste tipo 

pode ser considerado como um modelo abstrato de um sistema que envolve tempo. 

Nos ATs, cada transição é associada a condições de restrição (guards) que 

determinam quando a transição está ativada para disparar. Estas condições são da 

forma xi ~ c ou xi - xj ~ c onde xi e xj são variáveis relógio, c é um inteiro constante e ~ 

∈ { }==>=><=<  , , , , . As transições podem também ter comandos que zeram as variáveis 

relógio ou as atualizam para um outro valor inteiro positivo (Fredrik Larsson, 2000). A 

figura 3.3 mostra um exemplo em que x é uma variável relógio. 

 

 
Figura 3. 3 - Exemplo de autômato temporizado (ALUR;  DILL, 1994) 

 

3.2.1 Autômato Temporizado de Büchi 
 

A condição de restrição em um arco de um autômato é somente uma 

condição de ativação da transição representada pelo arco, ou seja, não pode forçar o 

disparo da transição. Por exemplo, o autômato da figura 3.3 poderia ficar para sempre 

no estado S1, e a partir de x >= 2, o sistema estaria em deadlock, ou seja, estados 

impossíveis de serem deixados devido à não presença de transições de saída ou à 

incapacidade de satisfazer às condições de restrição das transições de saída. No 

trabalho inicial de Alur e Dill (1990), esse problema é resolvido introduzindo condições 
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de aceitação para o autômato de Büchi; um subconjunto de estados é marcado como 

estado final, e somente as execuções que passam por esses estados de maneira 

freqüente e infinitas vezes são consideradas como comportamento válido para o 

autômato. No exemplo da figura 3.3, o problema de deadlock seria resolvido marcando 

o estado S0 como estado final, isso implicaria que o estado S0 deva ser visitado 

infinitas vezes, portanto uma vez que o sistema passasse para S1, obrigatoriamente 

voltaria para S0 antes de x = 2. 

 

3.2.2 Timed Safety Automata 

 

Uma versão simplificada de autômato temporizado chamada de Timed Safety 

Automata foi introduzida por Henzinger et al. (1992), para especificar propriedades de 

progresso usando condições locais invariantes. Devido sua simplicidade, Timed Safety 

Automata tem sido adotado em várias ferramentas de verificação para autômato 

temporizado, entre elas a ferramenta UPPAAL (apresentada no capítulo 4), utilizada 

para simulação e verificação no presente trabalho. 

Em vez de condições de aceitação, como nos autômatos de Büchi, nos Timed 

Safety Automatas, podem ser colocadas condições de restrição local de tempo,  

associadas aos estados, chamadas de invariantes de estado. Um autômato deve 

permanecer em um determinado estado somente enquanto os valores das variáveis 

relógio satisfizerem  a condição invariante daquele estado. Para evitar a possibilidade 

de que invariantes sejam falsos quando um estado é atingido, e se tornem verdadeiros 

depois de algum tempo, eles são restritos a fórmulas com os operadores < e ≤ , isto 

simplifica as operações computacionais e deixa o model-checking mais rápido. No 

exemplo da figura 3.4 os estados start (o círculo duplo representa o estado inicial em 

UPPAAL), loop e end possuem condições invariantes relacionadas à variável relógio y. 

Os estados start e end devem ser deixados quando y for no máximo igual a 20 e o 

estado loop deve ser deixado quando y for no máximo igual a 50. Dessa forma, 

garante-se o progresso do sistema e tem-se uma visão local do comportamento de 

cada estado do autômato em relação ao tempo.  
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Figura 3. 4 - Exemplo de timed safety automata (BENGTSSON; YI, 2004) 

 

Seja C um conjunto de variáveis relógio e B(C) a função que formula 

condições de restrição, pode-se representar um timed safety automata, de maneira 

formal, através de uma tupla A=(L, l0, E, g, r, I), onde: 

• L é um conjunto de estados; 

• l0 ∈ L é o estado inicial; 

• E ∈ L×L é o conjunto de transições; 

• g: E → B(C) são as condições de restrição nas transições; 

• r: E → 2C são as variáveis relógio a serem atualizadas nas transições; 

• I: L → B(C) são os invariantes de estado. (HENZINGER et al., 1992) 

 

3.2.3 Variáveis de Dados 
 

A linguagem de modelagem através de autômatos temporizados utilizada na 

ferramenta UPPAAL é ainda estendida com variáveis de dados. Estas variáveis são do 

tipo inteiro ou booleano e podem ser usadas em condições de restrição para ativação 

de transições, como também podem ser atualizadas a outros valores no disparo da 

transição. Portanto, para que uma transição seja ativada, ela deve satisfazer não 

somente às condições impostas pelas variáveis relógio mas também àquelas impostas 

pelas variáveis de dados. Estas variáveis podem ainda ser usadas na formulação de 

condições de restrição envolvendo variáveis relógio. Com o uso de variáveis deste tipo 

é possível especificar melhor a condição em que o sistema se encontra quando está 

em um determinado estado. A figura 3.5 mostra um exemplo de timed safety automata 

com variáveis de dados em que d é uma variável de dado e t é uma variável relógio. 



 25 

 

 
Figura 3. 5 - Exemplo de timed safety automata com variável de dado 

 

No restante deste trabalho timed safety automata com variáveis de dados será 

referido apenas como autômato temporizado.  

 

3.3 Comunicação entre Autômatos  
 

Uma das principais características da modelagem de autômatos temporizados 

em UPPAAL é a possibilidade da criação de uma rede de autômatos temporizados. 

Esta funciona como uma composição paralela (ou síncrona) A1 | ... | An de um conjunto 

de autômatos temporizados A1, ..., An , chamados de processos, combinados em um 

único sistema (BENGTSSON; YI, 2004). A comunicação entre estes processos pode 

ser feita, de maneira síncrona, por meio de canais de comunicação de sincronismo ou, 

de maneira assíncrona, através de variáveis de dados compartilhadas. 

Na maneira síncrona, o canais de comunicação são representados por 

símbolos ou palavras, acompanhados do sufixo ! e ? que indicam emissão e recepção, 

respectivamente. Um exemplo disto é visto na figura 3.6 onde o canal de comunicação 

representado pela evento press é emitido pelo autômato da direita e recebido pelo 

autômato da esquerda, sincronizando assim o disparo das transições de ambos. 
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Figura 3. 6 - Exemplo de autômato temporizado com canal de comunicação de sincronismo (BENGTSSON; 

YI, 2004) 
 

Caso não fosse possível implementar canais de comunicação seria 

necessário implementar-se autômatos com várias outras combinações de transições 

de estados provocando uma evolução considerável no número de elementos do 

autômato. Por exemplo, a figura 3.7 mostra o autômato que substitui o par de 

autômatos sincronizados da figura 3.6. 

 

 
Figura 3. 7 - Composição paralela entre os autômatos da figura 3.6 (BENGTSSON; YI, 2004) 

 

A maneira assíncrona é efetuada quando, dada uma variável de dados 

compartilhada por dois autômatos, uma atualização desta variável em um dos 

autômatos possibilita a satisfação de uma condição de restrição no outro autômato. 

Esta situação é ilustrada nos autômatos da figura 3.8 que compartilham a variável de 

dado x e a variável relógio t. 
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Figura 3. 8 - Exemplo de comunicação entre autômatos através de variáveis compartilhadas 

 

Pode-se observar no exemplo da figura 3.8 que o autômato do lado esquerdo 

só poderá atingir o estado l2 quando o autômato do lado direito atingir o estado m2. 

A ferramenta UPPAAL possui ainda dois outros recursos que são importantes 

nessa questão de rede de autômatos temporizados. Um deles é o chamado canal 

urgente, que é um canal de comunicação de sincronismo comum, mas com a 

característica adicional que impossibilita atrasos uma vez que a transição relacionada 

ao canal urgente é ativada (BENGTSSON; YI, 2004). No exemplo da figura 3.9, esse 

comportamento é mostrado mais claramente. Nota-se que ambos os processos podem 

passar de maneira independente do primeiro para o segundo estado. No segundo 

estado, o primeiro processo deve atrasar por pelo menos 10 unidades de tempo antes 

que seja permitida a sua sincronização no canal urgente. No segundo estado, o 

segundo processo deve atrasar por pelo menos 5 unidades de tempo antes que seja 

permitida a sua sincronização no canal urgente. Assim que os dois processos tiverem 

passado o mínimo de período de tempo requerido em seus segundos estados, eles 

devem se sincronizar e passar para os seus terceiros estados. 

 

 
Figura 3. 9 - Exemplo de sincronização com canais urgentes (BENGTSSON; YI, 2004) 
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O outro recurso é o chamado estado compromissado, que é uma espécie de 

estado virtual do sistema e que, uma vez atingido, deve ser deixado imediatamente 

sem atraso, com prioridade sobre qualquer outro estado, ou seja, a próxima transição 

a disparar deve ser obrigatoriamente aquela do estado compromissado. A utilização 

de estados compromissados permite um melhor desempenho computacional nas 

verificações, uma vez que eles não são armazenados na memória. Além disso é 

possível realizar sincronizações múltiplas através da interação entre estados 

compromissados e canais de comunicação de sincronismo. A figura 3.10 mostra um 

exemplo de um autômato com um estado compromissado. Neste exemplo, a variável x 

é atualizada no mesmo instante em que o canal de comunicação update_variable é 

sincronizado. A letra c indica o estado compromissado. 

  

 
Figura 3. 10 – Exemplo de autômato com estado compromissado 

 

3.4 Síntese do Supervisório 
 

A teoria de controle supervisório elaborada por Wonham e Ramadge (1989) 

define que a modelagem de sistemas a eventos discretos (SEDs) através de 

autômatos deve ser feita em duas partes. A primeira consiste na modelagem do 

sistema a ser controlado, chamado de planta do sistema, que corresponde, em geral, 

a um conjunto de subsistemas (equipamentos) não coordenados, arranjados segundo 

uma distribuição espacial dada. O controle da planta é realizado pela segunda parte 

por meio de um autômato denominado de supervisor, o qual restringe o 

comportamento do sistema físico (planta), satisfazendo a um conjunto de 

especificações, de forma que a função coordenada a ser executada pelo sistema 

global seja cumprida. Portanto, o supervisor interage com a planta, observando os 

eventos ocorridos e define, de acordo com o estado atual da planta, quais eventos 

fisicamente possíveis são habilitados. A figura 3.11 ilustra a estrutura de controle em 

malha fechada de uma planta G sob ação do supervisor S.  
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Figura 3. 11 - SED em malha fechada (CURY, 2001) 

 

A planta possui eventos controláveis, suscetíveis a intervenções externas de 

controle,  e eventos não controláveis, cuja ocorrência independe de ações de controle. 

Eventos controláveis são designados por arcos cortados por uma pequena linha 

transversal.  

Portanto, para resolver-se um problema de controle supervisório, segundo 

Wonham e Ramadge (1989), o seguinte procedimento deve ser executado: 

 1. Modelar o comportamento da planta sem coordenação (planta livre); 

 2. Modelar as especificações de controle; 

 3. Utilizando os modelos obtidos nos passos anteriores, sintetizar o supervisor. 

Na modelagem da planta, cada subsistema, de acordo com sua autonomia, 

deve ser modelado por um autômato, e o comportamento global (sem coordenação) é 

obtido pela composição síncrona dos modelos individuais. Da mesma forma, cada 

especificação de controle é modelada por um autômato de forma isolada, e a 

composição síncrona de todas as especificações resulta no autômato que modela a 

especificação global para o sistema. Por fim, faz-se a composição síncrona do 

autômato da planta com o autômato da especificação global gerando a modelagem 

que representa o sistema sob supervisão. 

Formalmente, pode-se definir um sistema controlado por um supervisor da 

seguinte maneira: 

• G = (Q, Σ, q0, δ, Qm) é a planta; 

• Σ= Σc ∪Σu são os eventos separados em controláveis e não controláveis; 

• { }u∑⊇∈=Γ
∑ γγ :2  é a estrutura de controle para G, onde Γ∈γ é uma opção de 

controle; 

• S é o supervisor sobre o mesmo alfabeto de G e suas mudanças de estado são 

ditadas por ocorrências de eventos na planta; 

• S/G=S||G é o sistema controlado, no qual S habilita e desabilita os eventos 

controláveis de G; 
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• L(S/G)=L(S||G) e Lm(S/G)=Lm(S||G) são as linguagens gerada e marcada, 

respectivamente, que definem o comportamento do sistema. 

A principal dificuldade na implementação da teoria de controle supervisório 

está no fato de que a síntese de controladores para SED é um procedimento 

computacional cuja complexidade cresce com o número de estados dos modelos da 

planta e das especificações. Com o aumento do número de componentes que 

integram o sistema, o número de estados do sistema modelado tende a explodir. Essa 

limitação tem sido intensamente tratada na literatura para viabilizar sua aplicação em 

problemas de grande porte. Uma outra limitação da teoria está relacionada à inclusão 

ou alteração de subsistemas no modelo, o que acarreta na reconstrução de todo o 

modelo. 
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4 Verificação de Modelos 

 

O capítulo será iniciado com uma breve introdução sobre verificação de 

modelos, passando em seguida para a apresentação da ferramenta UPPAAL. Depois 

disso será explicada a importância do uso dos templates - recurso da ferramenta 

utilizada no presente trabalho – no processo de modelagem. Por fim será apresentada 

a lógica de verificação utilizada pela ferramenta.  

 

4.1 Introdução à verificação de modelos 
 

A verificação de modelos é uma das principais atividades no projeto de um 

sistema de controle. Com este método pode-se assegurar que o sistema irá se 

comportar como o esperado sob quaisquer possíveis situações de operação (MIYAGI; 

VILLANI; VALETTE, 2006). Antigamente, esta tarefa era executada através de testes 

manuais de validação, no entanto, por maior que fosse o número de testes efetuado, 

não se podia ter certeza sobre o correto comportamento do sistema. Com o aumento 

do uso de sistemas em tempo real, tem se tornado cada vez mais importante o 

desenvolvimento de métodos de verificação, ainda mais que muitos destes sistemas 

são embarcados e atuam em cenários críticos e perigosos, de modo que uma falha de 

projeto do sistema poderia causar grandes danos. Um dos principais métodos de 

verificação é o model-checking. Uma ferramenta completamente automática, através 

de algoritmos, examina se os estados de um modelo (descrição comportamental de 

um sistema) satisfazem uma determinada propriedade (NIELSEN, 2000]. Essa 

checagem é feita pelo usuário por meio de proposições lógicas que retornam o valor 

verdadeiro ou falso.  

 

4.2 A ferramenta UPPAAL 
 

UPPAAL é uma ferramenta computacional, com acesso livre na internet, 

integrada com ambientes para modelagem, validação e verificação de sistemas em 

tempo real modelados como rede de autômatos temporizados estendidos com 

variáveis de dados. Ela foi desenvolvida em conjunto pela Universidade de Uppsala 

com a Universidade de Aalborg e tem sido aplicada com sucesso em vários casos 
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reais (DAVID; YI, 2000). A primeira versão de UPPAAL foi lançada em 1995 e, desde 

então, vem sendo alterada e desenvolvida, melhorando sua performance e 

proporcionando mais recursos aos usuários. A ferramenta é caracterizada por uma 

interface que usa Java e seu motor de verificação é escrito em C++. Além disso, ela é 

baseada em uma arquitetura client-server onde a interface gráfica atua como client. A 

interface gráfica proporciona um editor (figura 4.1), de uso fácil para desenhar 

autômatos temporizados, um simulador (figura 4.2) e uma interface para interagir com 

o model-checker (figura 4.3). Um dos aspectos fundamentais da ferramenta UPPAAL 

está no server que trata de particionar o modelo, interpretando-o, e proporcionando 

funcionalidades para o model-checker. Os algoritmos usados nesta parte são bastante 

complicados e foram otimizados para reduzir o tempo de processamento e o uso de 

memória da ferramenta (BEHRMANN, 2003). 

 

 
Figura 4. 1 - Ambiente de modelagem em UPPAAL 
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Figura 4. 2 - Ambiente de simulação em UPPAAL 

 

 
Figura 4. 3 - Ambiente de verificação em UPPAAL 
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4.3 Proposta de uso de templates da  ferramenta UPPAAL 
 

Considerando o fato de que FMSs possuem processos e dispositivos que 

podem ser estruturados de forma modular, um atributo da ferramenta UPPAAL de 

suma importância na realização do presente projeto é que ela possibilita a 

representação de modelos dos processos do sistema através  do uso de templates. 

Templates são autômatos definidos com um conjunto de parâmetros (declarados 

globalmente) os quais podem ser do tipo int, bool ou chan. Estes parâmetros são 

substituídos por argumentos  dados na declaração dos processos (BEHRMANN; 

DAVID; LARSEN , 2004). Os templates podem ainda ter declarações locais de 

variáveis. O uso desse recurso facilita bastante a construção de modelos com vários 

autômatos similares, que se distinguem apenas por diferentes parâmetros. Templates 

do mesmo tipo, mas parametrizados com diferentes parâmetros, são chamados 

através de diferentes canais de comunicação de sincronismo. Um exemplo disto pode 

ser visto na figura 4.4.  

 

 
Figura 4. 4 - Exemplo do uso de templates em UPPAAL 

 

Neste exemplo, o template DEFINE, que não possui parâmetros, chama dois 

templates X1 e X2. Estes são templates do tipo X, que foi modelado com dois 

parâmetros: chan x e bool OPERATION. Os parâmetros x1, x2, OPERATION1 e 

OPERATION2 são declarados globalmente e alocados aos seus respectivos templates 

na declaração destes. 

Outra contribuição importante do recurso do uso de templates no presente 

projeto é dada na parte de diminuição da complexidade do modelo global do sistema 

através da proposta de controle atômico e divisão hierárquica do modelo explicada 

anteriormente.  
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4.4 Lógica de verificação  
 

A ferramenta UPPAAL utiliza uma linguagem declarativa do tipo query que é 

uma versão simplificada da lógica CTL (computational tree logic). Essa versão 

simplificada usa proposições que representam perguntas do tipo “Partindo do estado 

inicial, pode algum estado ser alcançado?” ou “Partindo do estado inicial, pode-se ter 

certeza que algum estado não será alcançado?” (BENGTSSON; LARSSON, 2006). 

Desse modo é possível checar propriedades de alcançabilidade, em particular se 

certas combinações de estados e restrições nas variáveis relógio e de dados são 

alcançadas partindo do estado inicial.  

Como em CTL, a linguagem query usada em UPPAAL consiste de path formulae 

(fórmulas de caminho) e state formulae (fórmulas de estado).  

Uma fórmula de estado é uma expressão que pode ser avaliada para um 

estado sem olhar para o comportamento do modelo. A sintaxe desse tipo de fórmula é 

a mesma dos guards (mencionados no item 3.2), porém com a possibilidade do uso de 

operadores lógicos (or, and, imply, not) entre as fórmulas. Como exemplo tem-se a 

simples fórmula c == 10 que será verdadeira quando c for igual a 10. Utilizando 

expressões do tipo P.s, onde P é um processo e s é um estado, é possível também 

checar se um determinado processo está no estado s. A ferramenta UPPAAL ainda 

tem o recurso de expressar deadlocks usando um tipo especial de fórmula de estado, 

esta consiste simplesmente da palavra deadlock e é satisfeita para todos os estados 

em deadlock.   

Path formulae podem ser classificadas em alcançabilidade, segurança e 

liveness. Fórmulas de alcançabilidade exprimem se existe algum caminho, partindo do 

estado inicial que leve a um determinado estado, ou seja, checa se eventualmente 

aquele estado será atingido. Em UPPAAL essa expressão é da forma E<>s, onde s é 

uma state formulae. Fórmulas de segurança expressam situações como “algo ruim 

nunca acontecerá” ou “algo ruim possivelmente nunca acontecerá”. Em UPPAAL, 

dada uma fórmula de estado s,  esse tipo de propriedade é formulado positivamente 

com as expressões A[] s, que indica que s deve ser verdadeira em todos os estados 

alcançáveis, e E[] s indicando que existe um caminho em que s é sempre verdadeira. 

Fórmulas liveness indicam casos do tipo “algo eventualmente ocorrerá”. Em UPPAAL, 

dadas duas fórmulas de estado s e g, situações assim podem ser avaliadas com as 

fórmulas A<> s, que significa que s será eventualmente satisfeita, ou s --> g, que 

indica que quando s for satisfeita, g será eventualmente satisfeita (BEHRMANN; 
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DAVID; LARSEN , 2004). A figura 4.5, onde φ e ψ representam fórmulas de estado,   

ilustra as fórmulas de caminho aceitas em UPPAAL. 

 

 
Figura 4. 5 - Path formulae em UPPAAL (TUTORIAL UPPAAL, 2004) 
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5 Sistematização da verificação de FMS 

 

Este capítulo apresentará detalhadamente a proposta de modelagem sugerida 

pelo presente projeto. Inicialmente serão abordadas as considerações feitas no 

procedimento adotado na modelagem, seguidas pela apresentação do modelo 

estrutural proposto. Depois disso, serão apresentados os templates relacionados aos 

componentes de FMS  considerados e, por fim, serão explicados os passos para a 

modelagem dos templates da parte de controle sobre estes componentes.  

 

5.1 Considerações iniciais  
 

O procedimento proposto pelo presente projeto tem por objetivo desenvolver 

uma biblioteca de componentes de FMS parametrizáveis, com o intuito de auxiliar na 

construção de um modelo global de um FMS para, posteriormente, verificar e simular o 

mesmo. Para isso, foi proposto também uma metodologia sintética de construção do 

modelo de controle sobre os componentes. Os modelos propostos foram realizados 

em autômatos temporizados na ferramenta computacional UPPAAL, capaz de 

sintetizar redes de autômatos. Inicialmente foram criados os modelos dos 

componentes, com seus devidos parâmetros, representando a planta física do FMS. 

Posteriormente foi criado o modelo de controle, formado por duas partes distintas, uma 

que representa o seqüenciamento de atividades de um processo de fabricação de um 

determinado produto, e a outra que indica quando novos processos podem iniciar 

possibilitando a descrição de um sistema onde diversos produtos são trabalhados 

simultaneamente.  

É importante citar que, devido à modularidade dos modelos dos componentes, 

a proposta de modelagem apresentada permite que o modelo global sofra alterações 

sem a necessidade remodelá-lo do início. 

 

5.2 Modelo estrutural do sistema 
 

Para evidenciar as relações e interações que ocorrem dentro do sistema 

global, será apresentado o modelo estrutural do mesmo proposto pelo presente 

trabalho. Para construir o modelo, podemos dividir o sistema em duas grandes partes: 
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a parte operativa (controlada) e a parte de controle. O presente projeto definiu que a 

parte controlada fosse limitada a 3 classes de componentes: os componentes de 

transformação, de transporte e de manipulação. Esta escolha foi feita, primeiramente 

porque o universo de componentes de um FMS é muito amplo e a consideração de 

todos estes componentes existentes atualmente poderia inviabilizar projeto. Além 

disso, as três classes selecionadas são suficientes para abstrair vários tipos de 

processo de manufatura que envolvem flexibilidade. O componente transporte 

considerado consiste de um dispositivo que segue um trajeto pré-definido e tem a 

capacidade de transportar somente uma peça por vez. Como componente de 

manipulação, foi considerado um manipulador que consiga mover objetos (no caso, 

podem ser materiais para serem fabricados ou peças semi-acabadas ou peças 

prontas) e no sistema global tem a função de carregar e descarregar estações de 

trabalho e esteiras transportadoras posicionando as partes adequadamente. Por fim, 

como componente transformação, foi escolhida uma estação de trabalho flexível capaz 

de realizar diversos tipos de operações de manufatura. Cada um destes componentes 

se comunica com o controle por meio de variáveis compartilhadas e canais de 

comunicação de sincronismo. É importante enfatizar que as comunicações existentes 

nos componentes se resumem estritamente àquelas com o controle, ou seja, não 

ocorrem comunicações entre os componentes do objeto de controle (planta). 

A parte de controle é constituída por uma parte de processos, onde cada 

autômato descreve a seqüência de atividades na fabricação de um determinado 

produto, e outra parte de supervisão que determina o instante quando o processo de 

fabricação de um produto pode iniciar. Neste sistema de controle existe uma 

hierarquia, de forma que o os autômatos dos processos envolvidos são chamados 

pelo supervisor. Essa modelagem origina uma rede de autômatos integrados por 

elementos de comunicação que evitam a complexidade do modelo global. Existe ainda 

uma hierarquia entre a parte de controle e os componentes já que os mesmos são 

chamados pelos processos. Uma representação gráfica que exprime a relação 

hierárquica do modelo é mostrada na figura 5.1.  
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Figura 5. 1 - Relação hierárquica dos autômatos 

 

Outra parte bem definida pelo modelo estrutural proposto diz respeito à 

comunicação entre os diversos autômatos. A figura 5.2 representa entre quais tipos de 

autômatos essa comunicação ocorre.  

 

 
Figura 5. 2 - Comunicação entre os autômatos 
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Nota-se que existe uma troca de dados e sincronizações, em ambas as 

direções, entre o autômato de supervisor com aqueles de processo, isto também 

ocorre entre os autômatos de processo com os de componente. É importante ressaltar 

que não há comunicações entre os autômatos de componente, nem entre os 

autômatos de processo, como também não há entre os autômatos de componente 

com o supervisor. 

   

5.3 Desenvolvimento da biblioteca de componentes 
 

Como citado no item 5.2, o presente projeto considerou FMSs compostos por 

três tipos de componente: transporte, manipulação e transformação. Estes são de 

construção fixa, portanto, o usuário deverá definir apenas os parâmetros.  

 

5.3.1 Modelagem do componente transporte 
 

O modelo do componente transporte proposto apresenta um estado inicial 

indicando que o componente está desativado, seguido por um estado que representa 

que uma peça está sendo transportada, e depois um outro estado mostrando que a 

peça chegou ao fim do percurso. A partir deste último, o estado inicial pode voltar a ser 

ativado. A realização deste ciclo se completa em certo período de tempo pertencente a 

um intervalo definido por um tempo máximo de transporte e um tempo mínimo de 

transporte, estes são parâmetros que devem ser definidos pelo usuário (figura, 5.3a). 

O modelo proposto para o componente transporte é ilustrado na figura 5.3c. 

 

          
                    (a)                                                                                (b) 
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(c) 

 

Figura 5. 3 - Modelo do componente transporte e seus parâmetros  

 

O template em questão tem como parâmetros os canais de comunicação 

transport e end_of_course (figura, 5.3b), e as variáveis inteiras t_transport_max e 

t_transport_min, além disso, possui uma variável de relógio t_tp declarada localmente. 

A ativação do template se dá através do canal de comunicação transport que recebe 

um sinal do template procedure (tratado no item 5.4) indicando que o transporte deve 

começar, este canal é declarado como urgente para que não tenha atraso no início da 

atividade de transporte. Neste instante, a variável relógio local t_tp é zerada e o 

autômato passa para o estado transporting. Este será obrigatoriamente deixado, 

devido ao invariante de estado e à condição de restrição na transição, quando t_tp 

pertencer ao intervalo fechado definido pelos valores de t_transport_min e 

t_transport_max. Uma vez atingido, o estado finish deve ser deixado imediatamente 

enviando uma mensagem ao template procedure, através do canal de comunicação 

end_of_course, de modo que não haja atraso entre o fim da operação de transporte e 

o envio do sinal. Este último estado é compromissado pois não representa um estado 

real do componente, mas foi inserido no modelo devido à sua possível utilidade na 

etapa de verificação.  

 

5.3.2 Componente manipulação 
 

O modelo do componente manipulação é constituído por dois ciclos que 

compartilham o mesmo estado inicial o qual descreve manipulador como desativado. 

No ciclo que representa operação de carga, o estado inicial é seguido por um estado 

que indica o manipulador carregando uma peça e, quando a operação se completa, o 

autômato segue para outro estado, indicando o fim da operação de carga. No outro 

ciclo, que por sua vez representa a operação de descarga, o estado inicial é seguido 
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por um estado que indica o manipulador descarregando uma peça e, quando a 

operação se completa, o autômato segue para um outro estado, indicando o fim da 

operação de descarga. A partir destes últimos, o estado inicial pode voltar a ser 

ativado. Os ciclos se completam em um intervalo de tempo determinado por tempos 

mínimos e máximos de carga e descarga os quais são parâmetros definidos pelo 

usuário (figura 5.4a). O modelo proposto para o componente manipulação é ilustrado 

na figura 5. 4c. 

 

       

                 (a)                                                                             (b) 

 

 
(c) 

 
Figura 5. 4 - Modelo do componente manipulação e seus parâmetros  

 

O template em questão tem como parâmetros os canais de comunicação load, 

unload, machine_loaded e machine_unloaded (figura 5.4b), e as variáveis inteiras 
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t_load_max, t_load_min, t_unload_max e t_unload_min , além disso possui uma 

variável relógio t_m declarada localmente. Pode-se notar a presença de outro 

parâmetro, o machine_busy, variável do tipo booleana, que indica o estado da estação 

(ocupada ou desocupada) onde a peça é carregada ou descarregada. A ativação do 

template, no ciclo de carga, se dá através do canal de comunicação load, quando um 

sinal for recebido pelo template procedure e o parâmetro machine_busy for igual a 

zero, ou seja, a estação referente estiver livre. O canal de comunicação load é 

declarado como urgente para que não haja atraso no início da atividade de 

carregamento da peça. Neste instante, o ciclo é iniciado, a variável relógio local t_m é 

zerada e o autômato passa para o estado loading. Este será obrigatoriamente deixado, 

devido ao invariante de estado e à condição de restrição na transição, quando t_m 

pertencer ao intervalo fechado definido pelos valores de t_load_min e t_load_max. 

Uma vez atingido, o estado loaded deve ser deixado imediatamente enviando uma 

mensagem ao template procedure, através do canal de comunicação machine_loaded, 

de modo que não haja atraso entre o fim da operação do manipulador e o envio do 

sinal. Ao mesmo tempo, o parâmetro machine_busy é atualizado para o valor 1, 

indicando que a estação carregada está ocupada. Como no caso do componente 

transporte, este último estado é compromissado, pois não representa um estado real 

do componente, mas foi inserido no modelo devido à sua possível utilidade na etapa 

de verificação.  

O template também pode ser ativado pelo canal de comunicação unload, 

quando um sinal for recebido pelo template procedure e o valor da variável 

machine_busy for igual a 1, ou seja, se existir uma peça a ser descarregada na 

estação referente, assim sendo a transição ocorrerá e o ciclo de descarga se iniciará. 

O canal de comunicação unload também é declarado como urgente para que não 

tenha atraso no início da atividade de descarregamento da peça. Neste instante, a 

variável relógio local t_m é zerada e o autômato passa para o estado unloading. Este 

será obrigatoriamente deixado, pelo fato de existir um invariante no estado e uma 

condição de restrição na transição, quando t_m pertencer ao intervalo fechado definido 

pelos valores de t_unload_min e t_unload_max. Uma vez atingido, o estado 

compromissado unloaded deve ser deixado imediatamente enviando uma mensagem 

ao template procedure, através do canal de comunicação machine_unloaded, de modo 

que não haja atraso entre o fim da operação de descarga e o envio do sinal. Também 

neste caso, o parâmetro machine_busy é atualizado, mas agora com o valor zero para 
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indicar que a estação foi descarregada e está disponível para operações seguintes. 

Este último estado também é compromissado pela mesma razão do último estado do 

ciclo de carga.  

O parâmetro machine_busy foi introduzido neste autômato para evitar uma 

situação clássica de deadlock que ocorre no sistema em que existe um único 

manipulador para carregar e descarregar uma determinada máquina. O problema 

ocorre quando o manipulador pega uma peça para carregar a estação e a mesma se 

encontra ocupada. Esta é uma situação de travamento de sistema, pois a estação 

deve esperar o manipulador se disponibilizar enquanto o manipulador aguarda a 

disponibilidade da máquina. A implementação com este parâmetro impede que o 

manipulador pegue a peça quando a máquina está ocupada evitando o bloqueio do 

sistema. Além de evitar esse clássico deadlock, o parâmetro machine_busy evita 

também uma situação incoerente do sistema que seria o carregamento de duas peças 

em uma mesma máquina.   

  

5.3.3 Componente transformação   
 

A modelagem escolhida para representar o componente transformação é 

composta por um estado inicial, representando que o componente está desativado, 

seguido por um estado que representa que uma peça está sendo trabalhada, e depois 

um outro estado mostrando que a máquina terminou o seu serviço. A partir deste 

último, o estado inicial pode voltar a ser ativado. A realização deste ciclo se completa 

em um certo período de tempo pertencente a um intervalo definido por um tempo 

máximo de transformação e um tempo mínimo de transformação, parâmetros dados 

pelo usuário (figura 5.5a). O modelo proposto para o componente transformação é 

ilustrado na figura 5.5c. 

 

 



 45 

       
                      (a)                                                                              (b) 

 

 
(c) 

 

Figura 5. 5 - Modelo do componente transformação e seus parâmetros  
 

O template em questão tem como parâmetros os canais de comunicação 

station e work_done (figura 5.5b), e as variáveis inteiras t_transformation_max, 

t_transformation_min e operation, além disso possui uma variável relógio t_tf 

declarada localmente. A variável operation, de acordo com o seu valor, define para 

qual operação a máquina está designada a trabalhar, cabe ao usuário associar o valor 

da variável com um tipo específico de operação. Por exemplo, se operation = 3, o 

usuário pode decidir que o valor 3 equivale à operação de torneamento.  A ativação do 

template se dá através do canal de comunicação station que recebe um sinal do 

template procedure indicando que o processo de transformação deve começar. Este 

canal é declarado como urgente para que não haja atraso no início da atividade de 

transformação. Neste instante, a variável relógio local t_tf é zerada e o autômato 

passa para o estado work_in_progress. Este será obrigatoriamente deixado, devido à 

presença do invariante de estado, quando t_tf pertencer ao intervalo fechado definido 

pelos valores de t_transformation_min e t_transformation_max. O estado done, ao ser 

alcançado, deve ser deixado imediatamente enviando uma mensagem ao template 

procedure, através do canal de comunicação work_done, de modo que não haja 

atraso entre o fim da operação de transformação e o envio do sinal. Com nos casos 
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interiores, este último estado é compromissado pois não representa um estado real do 

componente, mas foi inserido no modelo devido à sua possível utilidade na etapa de 

verificação.  

 

5.4 Procedimento para a modelagem do sistema de controle 
 

Como mostrado no item 5.2, o sistema de controle proposto é composto por 

duas partes, uma referente ao processo, representada pelo template procedure, e a 

outra parte constituída pelo supervisor, representada pelo template de mesmo nome. 

Diferente dos componentes, a parte de controle deverá ser inteiramente construída 

pelo usuário.  

 

5.4.1 O template procedure 
 

O template procedure refere-se à parte de controle que dá o seqüenciamento 

de atividades de um processo de fabricação de um determinado produto, ou seja, 

representa o caminho percorrido pela peça no processo. Foi admitida a presença de 

buffers infinitos na entrada e saída de máquinas, o que permitiu oculta-los na 

modelagem. Este template se comunica tanto com o template supervisor quanto com 

os autômatos que representam os diversos componentes. A figura 5.6 ilustra a 

modelagem do template procedure proposta.  

 

 
Figura 5. 6 - Ilustração do template procedure 

 

O template procedure possui, como parâmetros, os canais de comunicação p 

e new_process_available e representa um processo que envolve M atividades 

executadas pelos diversos componentes. Além disso, o template possui uma variável 
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relógio t_process que pode ser usada na verificação. O estado inicial representa que o 

processo ainda não começou. O processo começa quando, através do canal de 

comunicação p, o template recebe um sinal do supervisor indicando que o processo de 

uma nova peça pode ser iniciado. Deste modo o canal é declarado como urgente e 

assim que a condição de início de processo for satisfeita, o processo começará sem 

atraso. Nessa mesma transição, a variável global pieces_ordered é incrementada, 

indicando o número de peças solicitadas. O estado seguinte é o process_start que 

representa o começo do processo. A partir dele, o procedure envia um sinal, por meio 

do canal urgente de comunicação activity, mudando de estado e informando um 

componente (este deve estar parametrizado com o mesmo canal) que ele deve 

começar sua atividade. O canal de comunicação activity equivale a um dos canais de 

comunicação station, load, unload ou transport, que são os canais pelos quais os 

componentes recebem sinais do procedure. Existem casos em que os parâmetros dos 

componentes devem ser mudados no meio do processo (por exemplo, quando uma 

mesma estação realiza duas operações diferentes no mesmo ciclo). Tal mudança é 

efetuada pelo template procedure na chamada do componente. O próximo estado 

representa que o componente ordenado a trabalhar pelo procedure ainda está em 

atividade, este será deixado quando o componente enviar um sinal pelo canal 

end_of_activity, o qual equivale a um dos canais de comunicação work_done, 

machine_loaded, machine_unloaded ou end_of_course, que são os canais pelos quais 

os componentes emitem sinais ao procedure. Em seguida, o procedure continua a 

ordenar novas atividades em seqüência (uma nova atividade só começa quando a 

anterior termina) até chegar na atividade K.  

Ao término desta atividade, em sincronia com o recebimento do sinal enviado 

através do canal end_of_activityK, o procedure envia um sinal para o supervisor, por 

meio do canal de comunicação new_process_available, informando que um novo 

processo pode iniciar. Geralmente a disponibilidade do primeiro recurso (componente 

do FMS) é suficiente para entrada da peça seguinte na linha de produção, mas 

existem casos onde isto não é verdade, por isso é necessário fazer uma análise do 

sistema para a determinação de tal condição.  

Depois disso, o processo continua executando novas atividades até atingir a 

atividade M, última do processo. Ao fim desta, junto com o recebimento do sinal 

enviado por end_of_activityM, a variável pieces_produced é incrementada, indicando 

que uma nova peça foi produzida. O estado a seguir é chamado de part_done que é 
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um estado compromissado, pois foi inserido no modelo apenas a fim de ser utilizado 

na verificação. Por fim, o template volta ao estado inicial, onde fica aguardando um 

comando do supervisor para dar início a um novo processo. 

  

5.4.2 O template supervisor 
 

O autômato de supervisor tem função de ordenar o inicio de um novo 

processo no momento em que a execução deste é possível. O supervisor envia um 

sinal para o template procedure começar e recebe um sinal deste último, quando a 

condição para o início de um novo processo for satisfeita.  

A figura 5.7 ilustra a modelagem de um supervisor, proposta pelo presente 

projeto, para a fabricação de peças do mesmo tipo. Portanto, os processos envolvem 

mesmos recursos e estes são utilizados na mesma ordem. 

 

 
Figura 5. 7 - Ilustração do template supervisor 

 

O supervisor ilustrado funciona em ciclos onde, em cada um deles, é 

ordenada a fabricação de um determinado número de peças, indicado por N. Este 

número representa a quantidade máxima de peças que podem estar sendo 

processadas simultaneamente. Para determinar um valor ótimo de N devem ser feitos 

estudos mais aprofundados sobre a dinâmica e a eficiência do sistema de produção o 

que envolve parâmetros, não considerado no presente trabalho, como capacidade de 

buffers dentre outros. O parâmetro C, estipulado pelo usuário, é o numero de ciclos 

que deverão ser executados e multiplicando este com N se dá o número total de peças 

que serão produzidas. Este último será usado para determinar quando os ciclos 

devem ser concluídos. A condição de fim de produção foi estabelecida no início do 
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ciclo apenas como exemplificação, para um sistema que produza um número de peças 

diferente de N*C, esta condição pode ser testada antes da chamada de um processo 

intermediário. 

O ciclo pode se iniciar enquanto a quantidade de peças solicitadas é menor 

que o número de partes que devem ser produzidas (pieces_ordered < N*C). Uma vez 

iniciado, o autômato emite um sinal para que o template procedure que representa o 

primeiro processo do ciclo seja ativado. Este sinal é enviado pelo canal de 

comunicação process1. Em seguida, o supervisor aguarda a recepção de um sinal, 

enviada pelo mesmo template procedure, no canal process2_available que confirma a 

disponibilidade do sistema para a entrada da peça seguinte. Desta mesma forma, o 

autômato segue ativando novos processos até que, depois da solicitação do processN, 

e quando o process1 estiver disponível, o supervisor retorna ao seu estado inicial, a 

partir do qual, o estado end_of_production poderá ser atingido, se o número de peças 

ordenados for igual ao número de peças que devem ser fabricadas (piece_ordered = = 

N*C), encerrando o pedido de fabricação. Caso a meta não tenha sido alcançada, 

deve ser continuada a execução de ciclos. O estado inicial é compromissado pois o 

teste referente ao número de peças ordenadas deve ser feito sem atraso, com 

prioridade sobre as outras transições do modelo. O autômato supervisor não possui 

parâmetros, no entanto o número total de peças fabricadas (N*C) deve ser colocado 

diretamente na modelagem. Ao término de todo este procedimento apresentado, é 

possível fazer a validação do modelo, para então realizar verificação do mesmo. 
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6 Estudo de caso 

 

Este capítulo mostra a aplicação da proposta do presente projeto em um caso 

real. O caso a ser estudado é simples mas serve como ilustração. Uma vez que o 

presente trabalho propõe um procedimento de modelagem de FMSs, é possível 

realizar tal procedimento envolvendo diferentes composições de FMS. 

 

6.1 Características do sistema 
 

O sistema em questão produzirá 20 peças no total, sendo que o número 

máximo de peças simultaneamente presentes no sistema será igual a 2 (2 templates 

procedure no modelo). A planta do sistema é composta por duas esteiras 

transportadoras, uma de saída e outra de entrada, um robô manipulador e uma 

máquina flexível de manufatura. A ilustração deste sistema real é mostrada na figura 

6.1. As características de funcionamento dos componentes são mostradas na 

definição de parâmetros na figura 6.2.  

 

 
Figura 6. 1 - Ilustração do sistema 

 

6.2 Modelo do sistema em UPPAAL 
 

O modelo do sistema é constituído por um template supervisor (supervisor), 

dois templates procedure (PA e PB), dois templates componente transporte (T1 e T2), 
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um template componente manipulação (M1) e um template componente transformação 

(TF1). 

Os parâmetros dos templates são declarados na tela de global declarations 

como expõe a figura 6.2, sendo que a parte delimitada pelo quadrado vermelho indica 

os valores que o usuário deve definir referentes às especificações dos componentes. 

 

 
Figura 6. 2 - Declaração dos parâmetros 

 

Nota-se nesta tela a presença de duas variáveis não mencionadas 

anteriormente. São elas a variável relógio t_global, que representa o tempo global do 

sistema, e a variável inteira pieces_produced, um contador para o número de peças 

produzidas. 

Em seguida, os parâmetros são alocados aos seus respectivos templates na 

tela de system declarations como mostra a figura 6.3. 
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Figura 6. 3 - Alocação dos parâmetros nos templates 

 

O template de componente transporte T1 representa a esteira transportadora 

na qual as peças entram no sistema. A figura 6.4 ilustra o seu modelo, já com os seus 

respectivos parâmetros. 

 

 
Figura 6. 4 - Template T1 

 

O template de componente manipulação M1 representa o braço de robô que 

carrega na máquina a peça que chega pela esteira transportadora de entrada e, 

depois que a máquina conclui a operação,  descarrega-a, deixando a peça à 

disposição da esteira transportadora de saída, portanto, M1 será chamado duas vezes 

em cada ciclo dos templates procedure.  A figura 6.5 ilustra o seu modelo, já com os 

seus respectivos parâmetros. É importante citar que o parâmetro machine_busy1 

refere-se à disponibilidade da máquina representada pelo template TF1. 
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Figura 6. 5 - Template M1 

 

O template de componente transformação TF1 representa o módulo flexível 

de manufatura configurado para realizar a operação correspondente ao valor 4 da 

variável operation1 (vide declaração da variável operation1 na figura 6.2 ). A figura 6.6 

ilustra o seu modelo, já com os seus respectivos parâmetros. 

 

 
Figura 6. 6 - Template TF1 

 

O template de componente transporte T2 representa a esteira transportadora 

na qual as peças saem do sistema. Este é análogo ao template T1, porém com seus 

próprios parâmetros. A figura 6.7 ilustra o seu modelo, já com os seus respectivos 

parâmetros. 
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Figura 6. 7 - Template T2 

 

Os templates PA e PB representam os processos executados pelo sistema. 

Nota-se que eles podem estar ativos simultaneamente. A figura 6.8 ilustra o momento 

em que existem duas peças em fase de processo, sendo que uma delas mostrada em 

PA, está na esteira transportadora de saída (estado s11 de PA), e a outra, exibida em 

PB, está sendo trabalhada pela máquina flexível de manufatura (estado s7 de PB). 

 

 
Figura 6. 8 -Templates PA e PB 

 

O template supervisor ativa os processos representados por PA e PB, quando 

possível, além de encerrar a produção quando o número total de peças ordenadas for 
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igual a 20. A figura 6.9 mostra o template esperando a disponibilidade de PB para 

poder ativá-lo quando este se encontrar em seu estado inicial.  

 

 
Figura 6. 9 - Template supervisor 

 

A troca de informação e a comunicação entre os diversos templates é 

esquematicamente mostrada na figura 6.10.  

 

 
Figura 6. 10 - Troca de informação entre autômatos 
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As setas pontilhadas representam o compartilhamento de variáveis globais 

enquanto as setas cheias representam o fluxo de informação pelos canais de 

comunicação. As comunicações entre PB e os componentes foram ocultadas no 

esquema por questão de melhor representação gráfica, porém são análogas àquelas 

entre PA e o objeto de controle. 

 

6.3 Verificação do modelo 
 

Depois de simular e certificar-se que o modelo está consistente, a atividade de 

verificação pode ser executada. A figura 6.11 mostra a tela de verificação da 

ferramenta UPPAAL em que a parte delimitada pelo quadrado vermelho mostra 

proposições lógicas que respondem qual será o tempo mínimo de produção das 20 

peças. Ao fazer a simulação do sistema, chegou-se a um valor de t_global igual a 867. 

Através da verificação, pode-se observar que existem valores de t_global, ao fim da 

produção, menores do que o encontrado na simulação. Por meio de iterações chega-

se ao valor mínimo. 
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Figura 6. 11 - Exemplo de verificação 

 

Analogamente, pode-se descobrir o makespan do processo, ou seja, o tempo 

mínimo que uma peça permanece no sistema. A figura 6.12 mostra como encontrar 

este valor. 
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Figura 6. 12 - Makespan do processo 

   

Além disso, propriedades de segurança do sistema podem ser checadas. Um 

exemplo disso é a verificação da situação de deadlock em que o manipulador segura 

uma peça para carregá-la em uma estação já ocupada, esta verificação é mostrada na 

figura 6.12 e certifica que o sistema está seguro quanto a este caso de travamento. 

Esta situação já era esperada devido à restrição imposta pela variável machine_busy.  
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Figura 6. 13 - Verificação de deadlock 

 
Vários outros testes podem ser feitos no modelo, dependendo da 

complexidade estrutural e funcional dos sistemas que estejam sendo modelados.  
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7 Conclusões  

 

O presente trabalho teve como objetivo propor um método para realizar 

verificações de modelos formais de sistemas flexíveis de manufatura, por meio de 

modelagem de componentes do sistema e seu sistema de controle com a ferramenta 

UPPAAL. 

Ao longo do desenvolvimento do projeto foram encontradas algumas 

dificuldades. Para a modelagem de componentes, a decisão das características 

relevantes ao projeto gerou debates. Na implementação dos autômatos de controle, a 

propriedade de autômatos temporizados que restringe em um, o número de estados 

que podem ser ocupados em cada autômato, dificultou a descrição de processos 

industriais onde mais de um produto estivesse sendo processado simultaneamente. 

O projeto, apesar de ter alcançado os objetivos previstos inteiramente, 

consegue modelar somente sistemas de menor complexidade funcional naquilo que se 

refere à questão de processos globais que não possuem seqüenciamento de 

atividades pré-definido e sistemas de transporte de elevada flexibilidade implicando na 

definição de rotas de transporte e designação de transportadores em tempo real.  

Outro aspecto importante trabalhado foi a questão de utilizar-se os recursos 

da ferramenta UPPAAL para simplificar a síntese de autômatos temporizados graças à 

possibilidade de se modelar funções de guarda e lógicas de comunicação entre 

diferentes autômatos. 
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