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RESUMO 

 

PERINI, Isabella Casemiro. Reconhecimento de imagens de microestruturas de 

aços com inteligência artificial Watson. 2019. 123 p. Monografia (Graduação em 

Engenharia de Materiais) – Departamento de Engenharia Metalúrgica e de Materiais 

(PMT), Escola Politécnica da Universidade de São Paulo, São Paulo, 2019. 

 

O presente estudo é uma investigação preliminar da utilização da inteligência 

artificial da IBM, Watson, no reconhecimento de imagens de microestruturas. Para 

isso, selecionou-se o caso de uso de microestruturas de aços, atacados com Nital, 

cuja aplicação é voltada para o âmbito acadêmico, como ferramenta de apoio a 

alunos universitários. O classificador foi desenvolvido através dos produtos 

Watson™ Visual Recognition, que contém os algoritmos de deep learning, e o 

Watson™ Studio, interface para auxílio na criação do modelo. As imagens foram 

obtidas de diversas fontes, como livros acadêmicos, bancos de dados e artigos 

disponíveis na internet, além de imagens analisadas em aula no laboratório de 

metalografia da Escola Politécnica da USP. A primeira versão do modelo foi treinada 

para 4 classes de microconstituintes: carbonetos, ferrita, ferrita e perlita, e martensita 

(placas). Foram utilizadas 501 imagens no total, sendo estipulado um valor mínimo 

de 80 imagens de treinamento por classe, seguindo a proporção de 80% das 

imagens para treinamento e 20% para testes. A primeira versão alcançou acurácia 

média de 91,9%. A primeira versão do modelo foi levada a um ambiente de 

produção, a partir do qual os usuários finais, ou seja, alunos e pesquisadores da 

Universidade de São Paulo, puderam interagir e fornecer feedbacks. Os feedbacks 

recolhidos desta etapa foram utilizados para refinar o modelo, acrescentando novas 

imagens às classes já montadas e uma nova classe, a martensita e austenita, além 

de complementar a classe já existente de martensita com imagens da mesma em 

morfologia de ripas. Esta segunda versão do modelo utilizou 725 imagens únicas no 

banco de treinamento e alcançou acurácia de 96,4%. O estudo atingiu seus 

objetivos e comprovou a adequação dos algoritmos do Watson™ Visual Recognition 

para classificar microestruturas de aços, mesmo com um banco de imagens muito 

amplas, obtidas de inúmeras fontes e com qualidade diversa. Os resultados levam a 

crer que estes produtos da IBM podem ser utilizados com sucesso em tarefas de 

classificação qualitativa de micrografias, e até mesmo em tarefas quantitativas, caso 

a padronização das imagens no banco de treinamento seja alta. 

 

Palavras-chave: Aços. Microestrutura. Reconhecimento de imagens. Inteligência 

artificial. 



  



 
ABSTRACT 

 

PERINI, Isabella Casemiro. Image recognition of steels microstructure using 

artificial intelligence Watson. 2019. 123 p. Undergraduate thesis (Materials 

Engineering Degree) – Departamento de Engenharia Metalúrgica e de Materiais 

(PMT), Escola Politécnica da Universidade de São Paulo, São Paulo, 2019. 

 

This study is a preliminary investigation regarding the use of IBM's artificial 

intelligence (AI), Watson, applied to the field of metallographic image recognition, 

most specifically, steels microstructure, Nital etched, as a use case for an academic 

support tool for university students. A classifier was developed with IBM cloud's 

products, such as Watson visual recognition (containing the AI deep learning 

algorithms) and Watson studio (classifier creation support interface). Image database 

was assembled based on many resources, like academic books, online image 

databases and scientific articles, besides images collected from laboratory classes in 

the Escola Politécnica (Universidade de São Paulo - USP) metallographic lab. The 

first version of the model was trained to recognize 4 microconstituents classes: 

carbides, ferrite, ferrite and pearlite, and martensite (plate morphology). There was a 

total of 501 images used for training and testing the model, with at least 80 training 

images for each class, following established proportions of 80% training - 20% 

testing. This first version of the model achieved 91,9% of average accuracy. It was 

deployed as a web page, from which final users (students and researchers from 

USP) could interact and provide feedback. The feedback collected were used to 

refine the model into a new version, adding new images to the previous classes and 

creating a new class, martensite and austenite, besides complementing the existing 

martensite class with images of its lath morphology. The second version of the model 

used 725 images for training and achieved an average accuracy of 96,4%. This study 

accomplished its goals and proved that Watson visual recognition can be used to 

classify steels microstructure, even when the image database was diverse, obtained 

from many resources with varying quality. The results suggest that the IBM's 

products used can be successfully applied to qualitative micrograph classification 

tasks and even to quantitative tasks, if there is high standardization of images in the 

database. 

 

Keywords: Steels. Microstructure. Image recognition. Artificial intelligence. 
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1 INTRODUÇÃO 

 

A metalografia é o estudo de materiais metálicos através da macro e 

microscopia, investigando componentes microestruturais e sua morfologia. Uma das 

principais funções da metalografia é a de identificar os microconstituintes presentes 

na microestrutura de determinados materiais metálicos. Entender as características 

microestruturais de um material é essencial para garantir sua qualidade, a partir da 

correlação entre processamento-estrutura-propriedade, o que possibilita o design e 

seleção corretos de materiais existentes, além do desenvolvimento de novos 

materiais (DUTTA et al., 2019). Diversos fatores de processamento influenciam a 

formação dos microconstituintes, como os tratamentos térmicos, tratamentos 

mecânicos, processos de fabricação, entre outros processos aos quais o material 

possa ter sido submetido. Por sua vez, a presença e morfologia dos 

microconstituintes podem afetar diversas propriedades do produto final, sendo 

extremamente importante conhecer a microestrutura de um material a fim de 

determinar ou certificar sua aplicação. A identificação e quantificação dos 

microconstituintes presentes em um material permite a previsão de importantes 

propriedades do mesmo, como dureza e resistência à fadiga. A identificação de 

microconstituintes consiste em uma análise qualitativa. Já a quantificação dos 

microconstituintes é uma análise quantitativa, que pode empregar diversas técnicas, 

como a análise linear, análise de área e estereologia. Estas análises podem ser 

efetuadas de maneira manual, completamente dependente da ação de humanos, ou 

de maneira digital, podendo ser semi ou totalmente automatizadas.    

A utilização de ferramentas digitais de análise de imagens metalográficas é 

relativamente atual, marcada pelo surgimento das primeiras máquinas comerciais na 

década de 70, como o Quantimet 720 ou Texture Analysis System (TAS). Na época, 

estas máquinas eram muito caras, com preço similar ao de um microscópio 

eletrônico de varredura (MEV). O progresso na tecnologia da computação, 

principalmente na década de 90, com a popularização do personnal computer (PC, 

computador pessoal), permitiu o desenvolvimento de softwares de análise de 

imagens mais acessíveis. Atualmente, a informática dos materiais, produto da união 

entre a tecnologia da informação e a ciência de dados, viabiliza a interpretação e 

análise de dados materialográficos em larga escala, potencializando e acelerando a 
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descoberta, design e processamento dos materiais. Mesmo que os avanços 

tecnológicos nos últimos anos sejam inegáveis, ainda é encontrada muita resistência 

quanto à utilização de ferramentas digitais/automáticas nos laboratórios 

metalográficos (WOJNAR; KURZYDłOWSKI; SZALA, 2004; CHOWDHURRY et al., 

2016).  

Apesar da resistência, a análise automática de imagens é quase que um pré-

requisito no controle de qualidade de materiais, pois reduzem a subjetividade das 

análises humanas/manuais, permitem reprodutibilidade dos métodos e experimentos 

empregados, aceleram os processos de análise (importante em processos 

industriais), possuem baixo custo relativo (considerando uso frequente) e facilitam a 

documentação dos resultados. Além disso, sabe-se que erros humanos na 

classificação de imagens em geral acontecem com certa frequência, dadas as 

condições de fadiga e cansaço ou descuido e desatenção, comuns em atividades 

repetitivas. Dessa forma, a automação de processos de avaliação de imagens 

microestruturais deve ser fortemente considerada se atende as seguintes condições: 

o laboratório consegue garantir amostras de boa qualidade; há um domínio de 

análises de rotina sob de investigação de casos atípicos; e se a alta 

reprodutibilidade e velocidade das análises são fatores importantes (WOJNAR; 

KURZYDłOWSKI; SZALA, 2004). As análises quantitativas são mais facilmente 

automatizadas que as qualitativas, o que pode ser explicado justamente por serem 

mais suscetíveis a erros quando executadas por humanos. Já as análises 

qualitativas automatizadas são menos difundidas na indústria, pela dificuldade em se 

obter imagens de qualidade adequada e de desenvolvimento de algoritmos eficazes, 

problemas inexistentes na classificação realizada por pessoas capacitadas, dada a 

natureza nativa do reconhecimento de padrões na mente humana.  

A partir do contexto atual de análise digital de imagens metalográficas, a 

proposta deste trabalho é de desenvolver uma aplicação acessível e que atinja bom 

discernimento das principais microestruturas encontradas em aços, através do uso 

da inteligência artificial da IBM (Watson™), provando a aplicabilidade de ferramentas 

de automação na classificação qualitativa de microestruturas. O caso de uso para a 

base deste trabalho é a criação de uma ferramenta de suporte acadêmico para 

alunos universitários, principalmente dos cursos de engenharia metalúrgica ou de 

materiais ou de ciência dos materiais. Será utilizado o serviço Watson™ Visual 
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Recognition, da IBM, que permite a criação de modelos de reconhecimento visual 

através de algoritmos robustos de deep learning.  

 

1.1 OBJETIVOS 

 

O objetivo deste trabalho é desenvolver uma aplicação capaz de reconhecer as 

principais microestruturas presentes em aços, analisando imagens enviadas pelos 

usuários da aplicação. Espera-se que seja possível obter uma alta precisão e 

confiabilidade nos resultados da aplicação.  

A aplicação será desenvolvida com tecnologias da IBM, com intuito de investigar 

sua usabilidade como ferramenta no campo de micrografias, desde a montagem do 

modelo de classificação até sua possibilidade de integração com outros sistemas, 

criando uma interface com os usuários finais. Dessa forma, será utilizada uma 

abordagem de ponta a ponta na elaboração da aplicação. Contudo, por se tratar de 

uma análise investigatória, foi selecionado um caso de uso de suporte acadêmico 

para alunos universitários, que possam se beneficiar da ferramenta em seus 

estudos. Deseja-se obter acurácia de classificação superior a aleatória. 
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2 REVISÃO BIBLIOGRÁFICA 

 

2.1 MATERIAIS DE INTERESSE 

 

Para o desenvolvimento deste trabalho, foi preciso limitar os tipos de materiais 

que serão estudados, para que sejam atingidos com a aplicação, índices de precisão 

e confiabilidade adequados. Dessa forma, foram considerados apenas as ligas de 

ferro, especialmente os aços.  

 

2.1.1 Ferro 

 

O ferro (Fe) é um elemento metálico, encontrado no estado sólido a 

temperatura ambiente. É um metal tenaz e maleável, despertando o interesse da 

indústria por sua dureza e baixo custo, apesar de oxidar facilmente (WINTER, 1993). 

É um dos cinco elementos mais abundantes da crosta terrestre, sendo superado 

apenas pelo oxigênio, silício e alumínio. A tabela abaixo retrata os dez elementos 

mais abundantes na crosta terrestre: 

 

Tabela 1 – Abundância dos Elementos na Crosta Terrestre 

 

Fonte: Adaptado da tabela “ABUNDANCE OF ELEMENTS IN THE EARTH’S CRUST AND IN THE 
SEA” (LIDE, 2005, p. 2373) 
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 Apesar de sua abundância, o ferro raramente é encontrado em sua forma 

metálica, sendo explorado através da extração de minérios e posterior conversão em 

ferro metálico, através de processos de redução. Os minérios de ferro podem ser 

classificados de acordo com a composição química do mineral fornecedor do 

elemento metálico, sendo os mais comuns: óxidos, carbonatos, sulfetos e silicatos. 

Contudo, apenas a exploração dos óxidos tem expressão econômica para a 

obtenção do ferro (DE CARVALHO et al., 2014). Os principais minerais de minério 

de ferro são: Magnetita (conteúdo teórico de 72,4% de ferro em sua composição), 

Hematita (69,9%) e Goethita (62,9%), todos óxidos. Quanto maior o teor de ferro no 

minério, mais adequado é seu uso para a aciaria. 

 Ainda de acordo com De Carvalho et al. (2014), a maior parte da demanda 

por minérios de ferro vem justamente da aciaria: a produção de aço representa mais 

de 90% da demanda. A abundância deste minério na crosta terrestre é um dos 

principais motivos que alavancou o aço como um dos materiais mais importantes 

nas últimas duas décadas. 

  

2.1.2 Aço 

 

Os aços compõem uma das principais famílias de ligas à base de ferro, sendo 

amplamente utilizadas. Um dos principais elementos de liga associado ao ferro é o 

carbono, cuja adição ao ferro já é suficiente para que se forme um aço, promovendo 

um aumento da resistência do ferro (HONEYCOMBE, 1981). Segundo Colpaert 

(2008), uma das características mais importantes que diferencia os aços dos ferros 

fundidos, outra importante família de ligas de ferro, é sua capacidade em serem 

deformados plasticamente. A maleabilidade dos aços também é tida como sua 

principal característica, de acordo com Scheer (1987, p. 1): “aços são ligas 

maleáveis de ferro”. 

Os aços ganharam importância dentre os materiais industriais por diversos 

fatores, além da abundância de ferro encontrado na terra. Seu custo de produção é 

relativamente baixo em usinas modernas, possuem combinações desejáveis de 

propriedades físicas e químicas e uma ampla gama de aplicações, desde na 

construção civil e no setor automobilístico até utensílios de cozinha. Ainda, 

destacam-se seus benefícios no quesito sustentabilidade. 
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Atualmente, os aços são especialmente valorizados, também pela 
facilidade de serem reciclados, pela vida relativamente curta quando 
descartados e pelo consumo específico de energia relativamente 
baixo em sua produção, fatores que levam a sua caracterização 
como material de elevada “sustentabilidade” (COLPAERT, 2008, p. 
3). 

  

 O processamento dos aços permite a manipulação das características dos 

mesmos, levando a diferentes combinações das propriedades físicas e químicas, 

sendo cada uma dessas favorável à determinada aplicação. Os procedimentos de 

fabricação do aço compreendem a redução do minério de ferro para obtenção de 

uma liga bastante impura, denominada ferro gusa, o refino do ferro para reduzir o 

teor de impurezas indesejadas e a adição de elementos de liga para melhoria de 

propriedades, operações estas feitas na aciaria. O processamento de minério de 

ferro em altos-fornos é o principal processo na metalurgia do ferro, promovendo a 

redução dos óxidos dos minérios de ferro através da utilização de materiais ricos em 

carbono, como o carvão. O carvão serve de combustível para que a temperatura 

ideal para redução seja atingida, e, ao mesmo tempo, fornece carbono formando 

uma  liga, chamada de ferro-gusa, posteriormente encaminhada para os processos 

de aciaria, ainda em estado líquido (CHIAVERINI, 1986). 

O principal componente dos aços é o ferro, mas outros elementos podem 

estar presentes para conferir ao material determinadas propriedades. É o caso de 

elementos como carbono, silício, manganês, cromo, níquel, etc. O carbono e o silício 

acompanham naturalmente o ferro devido a sua presença nos minérios, mas 

também podem ser adicionados ao ferro durante seu processamento, se necessário. 

Porém, tais elementos, quando presentes em altos teores, pioram a maleabilidade 

do material. Se o carbono for adicionado em teores maiores que 2% em peso, o 

material recebe o nome  de ferro fundido (SCHEER, 1987). 

Pode-se definir o aço como uma liga de ferro-carbono, onde o teor de 

carbono não ultrapassa 2% em massa. Este limite está associado com a solubilidade 

do carbono no ferro de estrutura cristalina CFC (cúbica de face centrada). Contudo, 

a adição de elementos de liga pode alterar este limite de solubilidade, sendo esta 

definição mais adequada aos aços carbono. O ferro fundido compreende as ligas de 

ferro com mais de 2% de carbono. Estas ligas apresentam ponto de fusão mais 

baixo e por isso são adequadas aos processos de fundição (COLPAERT, 2008).  
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As mudanças de propriedades dos aços têm extrema dependência da 

estrutura na qual o ferro se organiza no material, ou seja, sua fase. As fases 

encontradas no sistema binário Fe-C persistem em aços mais complexos, contudo, 

os demais elementos de liga influenciam na formação e propriedades dessas fases 

(HONEYCOMBE, 1981). 

 

2.2 PRINCIPAIS FASES DOS AÇOS 

 

A preparação de aços envolve a fusão do ferro e adição de elementos de liga e 

de fundentes que forneçam o carbono necessário para produzir um material com as 

propriedades adequadas. A quantidade dos elementos (composição química), em 

conjunto com a taxa e temperatura de resfriamento, produzem diversas 

combinações de fases, que compõem a microestrutura do material produzido. O 

arranjo das fases pode produzir materiais com diversas propriedades. Dessa forma, 

as características da microestrutura são capazes de influenciar nas propriedades do 

aço, tornando seu conhecimento muito importante.  

Segundo Colpaert (2008), as fases são porções homogêneas de um sistema, 

cujas características dependem do estado físico, da estrutura cristalina dos 

componentes e da composição química. A estrutura cristalina é determinada pelo 

arranjo e interação entre os átomos do material. Estes arranjos sofrem alterações 

conforme outros elementos são adicionados ao material, afetando a estabilidade dos 

arranjos. Assim, a adição de carbono ao ferro provoca alterações na estabilidade 

relativa entre as fases do metal. A estabilidade relativa das diferentes fases pode ser 

avaliada através de um diagrama de equilíbrio ou diagrama de fases, onde 

descreve-se qual delas é mais estável à determinada temperatura em função da 

variação da composição química da liga. O diagrama é dito binário quando são 

consideradas as interações entre somente dois elementos.  

As principais fases encontradas nas microestruturas de aços carbono (Fe-C) 

são descritas pelo diagrama de fases binário do ferro e carbono, principais 

constituintes dos aços. A Fig. 1 representa o diagrama de equilíbrio de fases Fe-C, 

onde na abcissa pode ser lido a porcentagem de carbono presente em massa, e na 

ordenada, a temperatura. O diagrama de fases é um mapa termodinâmico que 
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informa o domínio de estabilidade das diferentes fases para pares de valores 

composição – temperatura. 

 

 

Figura 1 – Diagrama de equilíbrio metaestável de fases binário Fe-C 

Fonte: (HANSEN, 1958, p. apud. HONEYCOMBE, 1981, p. 50)1. Extraído de Aços – Microestrutura e 
propriedades (HONEYCOMBE, 1981). 

 

                                            
1 Hansen, Constitution of Binary Alloys, 2a ed., Mcgraw Hill, 1958. 
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O ferro apresenta mais de uma forma alotrópica com estruturas cristalinas 

estáveis à pressão ambiente (1 atm), desde a temperatura ambiente até a 

temperatura de fusão. As estruturas cristalinas assumidas pelos átomos de ferro 

puro são a CCC (cúbica de corpo centrado) e CFC (cúbica de face centrada). Até 

910oC, o ferro assume estrutura CCC, que corresponde à fase ferrita (ferro-α). 

Acima desta temperatura até 1394oC, a estrutura mais estável é a CFC, 

correspondente à austenita (ferro-γ). A partir de 1394oC até a temperatura de fusão 

de 1535oC, o ferro volta a exibir uma estrutura CCC, chamada de ferrita (ferro-δ) 

(COLPAERT, 2008). 

Alguns pontos críticos deste diagrama (Fig. 1) devem ser destacados. O 

primeiro é o ponto eutetóide, que corresponde à temperatura de 723oC e teor de 

carbono de 0,8%, onde ocorre a reação eutetóide (S). A reta P-S corresponde à 

temperatura A1 de transição entre ferrita e austenita e a reta S-K de transição entre 

a cementita e a austenita. Em seguida, tem-se o ponto A2, também conhecido como 

ponto de Curie, cuja temperatura é de 769oC. Neste ponto, ocorre uma 

transformação que não reflete em uma mudança de estrutura cristalina, porém, 

causa alterações nas propriedades magnéticas: o ferro deixa de ser ferromagnético 

e torna-se paramagnético. Segundo Scheer (1987), antigamente, nomeavam-se o 

ferro ferromagnético como ferro-α e o paramagnético, encontrado entre as 

temperaturas A2 e A3, como ferro-β. O ponto A3 corresponde à mudança do ferro-α 

para o ferro-γ, que ocorre à 910oC. Quando se adiciona carbono, esta temperatura 

torna-se gradativamente menor. Por fim, o ponto A4 corresponde à mudança do 

ferro-γ para ferro-δ, que ocorre acima de 1390oC. A adição de carbono causa o 

aumento gradativo desta temperatura (HONEYCOMBE, 1981). 

Existem outras fases importantes que não são exibidas no diagrama (Fig. 1), 

por este se tratar de um diagrama em equilíbrio metaestável, e algumas das fases 

em questão serem encontradas apenas em equilíbrios estáveis. Ainda, o diagrama 

da Fig. 1 Está reduzido a até 5% de carbono em massa, sendo algumas fases 

encontradas apenas com teores maiores do elemento. A figura abaixo ressalta as 

diferenças entre os diagramas de fases em equilíbrio metaestável e estável. 

  



 10 

 

Figura 2 – Diagramas de fase Fe-C metaestável (a) e estável (b) 

Fonte: Extraído de Metalografia dos aços (TSCHIPTSCHIN, GOLDENSTEIN e SINATORA, 1988, p. 
51). 

 

O equilíbrio estável (Fig. 2b) dificilmente é estabelecido em aços, de forma 

que não se observa a formação da fase grafita. No equilíbrio metaestável, ao invés 

da grafita, forma-se a fase Fe3C (carboneto de ferro), chamada de cementita. 

Além das fases, devem-se considerar também os microconstituintes, ou seja, 

estruturas formadas por mais de uma fase, como é o caso da perlita. A tabela abaixo 

traz as principais fases e microconstituintes dos aços de maneira resumida. Estes 

componentes serão tratados com mais detalhes nas seções a seguir.  

 

Tabela 2: Principais fases e microconstituintes encontrados no equilíbrio Fe-C 

Fase / [ Microconstituinte ] Estrutura Cristalina 

Ferrita (ferro-α) CCC (cúbica de corpo centrado) 

Ferrita (ferro-δ)  CCC (cúbica de corpo centrado) 

Austenita (ferro-γ) CFC (cúbica de face centrada) 

Cementita (Fe3C) Ortorrômbica 

[ Perlita ] - 

Martensita TCC (tetragonal de corpo centrado) 

[ Bainita ] - 

Grafita Hexagonal 

Fonte: Adaptada da tabela “TABLE 1 IMPORTANT METALLURGICAL PHASES AND 
MICROCONSTITUENTS” (ERICSSON, 1995, p. 15). 
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2.2.1 Ferrita 

 

2.2.1.1 Ferro-α 

 

A ferrita é uma fase estável que pode ser encontrada no ferro puro ou em 

aços que contenham baixos teores de carbono, abaixo do limite de solubilidade da 

cementita na fase CCC. Nestes casos, o material é essencialmente monofásico, 

apresentando apenas a fase CCC, ou seja, a ferrita, na temperatura ambiente. A 

dureza destes materiais é baixa, favorecendo seu uso em aplicações como anéis de 

vedação metal-metal, onde é esperada uma deformação que permita o ajuste na 

conexão para que se obtenha a vedação (COLPAERT, 2008). 

Os contornos de grãos percebidos na ferrita são mais irregulares. Nas 

imagens metalográficas, não há distinção de coloração, devido às orientações 

diversas dos grãos (TSCHIPTSCHIN; GOLDENSTEIN; SINATORA, 1988). De 

acordo com Colpaert (2008), se o resfriamento do aço a partir do campo austenítico 

for relativamente lento, é possível obter grãos equiaxiais de ferrita. Contudo, o 

trabalho a frio pode promover a deformação do aço e a mudança da forma dos 

grãos. 

 

 

Figura 3 – Microestrutura da ferrita (α) 

Fonte: Extraída de ASM Metals Handbook v. 9 - Metallography and Microstructures (ASM 
INTERNATIONAL, 2004). 
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É importante destacar os elementos que favorecem a formação da ferrita, 

pois existem diversos elementos de liga que podem estar presentes nos aços. Os 

principais estabilizadores da ferrita são: silício (Si), cromo (Cr), fósforo (P), 

molibdênio (Mo), vanádio (V), titânio (Ti), nióbio (Nb) e, por fim, alumínio (Al). Todos 

estes elementos, com exceção do alumínio, possuem estrutura cristalina CCC 

quando puros (COLPAERT, 2008). 

 

2.2.1.2 Ferro-δ  

 

A ferrita (ferro-δ) possui um domínio bastante restrito na maioria dos aços, 

sendo encontrada apenas entre 1390 e 1534oC, com um teor máximo de carbono de 

0,5% (HONEYCOMBE, 1981). O ferro-α e ferro-δ representam a mesma estrutura 

(CCC), porém ocorrem em diferentes faixas de temperatura. No ferro-δ, a 

solubilidade máxima do carbono é maior, por conta da elevada temperatura em que 

esta fase ocorre, o que favorece a dissolução do carbono por conta da agitação 

térmica da matriz de ferro (ROLLO, 2015). 

 

2.2.2 Austenita  

 

A austenita é a fase estável com estrutura cristalina CFC. Nesta fase, a 

solubilidade do carbono no ferro é maior do que quando comparada à ferrita 

(SCHEER, 1987). 

Os elementos que favorecem a formação da austenita são aqueles que, em 

geral, possuem estrutura cristalina CFC em seu estado puro. Dessa forma, os 

principais estabilizadores da austenita são: níquel (Ni), manganês (Mn), carbono (C), 

cobalto (Co), cobre (Cu) e nitrogênio (N) (COLPAERT, 2008). 

 

2.2.3 Cementita  

 

A cementita é o nome dada à fase cerâmica que representa o carboneto de 

ferro (Fe3C), cuja estrutura cristalina é ortorrômbica, com célula unitária complexa, 

formada por 49 átomos por célula. É uma fase metaestável muito dura e relevante 
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para o comportamento da maioria dos aços. A presença de cementita nos aços 

promove aumento de dureza com prejuízo de sua tenacidade. Sua formação ocorre 

devido a grande diferença de solubilidade do carbono na fase ferrita alfa e austenita, 

o que provoca sua precipitação como carboneto de ferro quando os limites da fase 

gama são atingidos (HONEYCOMBE, 1981). Diversos elementos podem formar 

carbonetos estáveis nos aços, ou mesmo se dissolverem na cementita. É o caso de 

cromo (Cr), tungstênio (W), vanádio (V), titânio (Ti), nióbio (Nb) e molibdênio (Mo) 

(COLPAERT, 2008). A figura a seguir mostra a morfologia da cementita: 

 

 

Figura 4 – Filme de cementita nos contornos de grãos perlíticos em um aço 
hipereutetóide 

Fonte: Imagem obtida da biblioteca de imagens metalográficas Dissemination of IT for the Promotion 
of Materials Science (DoITPoMS) (UNIVERSITY OF CAMBRIDGE, 2018). 

 

2.2.4 Perlita  

 

O diagrama Fe-C apresenta uma reação eutetóide que ocorre a 723oC. As 

fases envolvidas nesta reação são a austenita, a cementita e a ferrita. A 

transformação da austenita para cementita e ferrita requer uma grande 

movimentação do carbono. Assim, ocorre um crescimento cooperativo entre a ferrita 
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e a cementita, em placas paralelas das duas fases, chamadas de lamelas, que 

seguem a mesma orientação. Esta fase de aspecto lamelar e de composição 

heterogênea é chamada de perlita. Pode-se dizer que a perlita é um compósito, com 

matriz dúctil (ferrita) e um reforço de alta dureza (cementita). Por isso, tem alta 

dureza e elevada resistência mecânica e ao desgaste, além de razoáveis resistência 

à fadiga e tenacidade à fratura (COLPAERT, 2008). Segundo Honeycombe (1981, p. 

53), “a perlite 2  [perlita] não é uma fase, mas sim uma mistura de duas fases 

[cementita e ferrita]”. 

A transformação da austenita para perlita tem início nos contornos de grãos 

austeníticos, onde formam-se núcleos de cristalização de cementita e ferrita. As 

placas crescem lado a lado para o interior do grão de austenita, sendo o transporte 

do carbono facilitado pela proximidade das lamelas. A perlita apresenta um brilho de 

madrepérola no estado polido ou atacado, sendo essa a origem do nome desse 

microconstituinte (sendo “mother of pearl” o termo em inglês, levando ao nome 

pearlite) (SCHEER, 1987). A Figura 5 mostra o microconstituinte perlita em um aço 

de composição eutetóide: 

 

 

Figura 5 – Perlita em aço eutetóide 

Fonte: Figura 13 (BHADESHIA, 2008).  
 

                                            
2 do inglês “mother of pearl” devido à coloração iridescente 
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2.2.5 Martensita e Bainita 

 

Tanto a martensita quanto a bainita são formadas a partir do rápido 

resfriamento da austenita. A bainita é um microconstituinte metaestável formado 

quando a austenita é rapidamente resfriada e mantida a temperaturas dentro da 

faixa de 200 a 400oC. Caracteriza-se por ser uma dispersão de carbonetos 

submicroscópicos em uma matriz acicular, mostrada na Figura 6. 

  

 

Figura 6 – Bainita 

Fonte: Figura 9a. (BHADESHIA, 2005). 

 

Já a martensita é formada com o resfriamento rápido da austenita a 

temperaturas menores que as de formação da bainita. É uma fase metaestável 

muito dura e frágil, onde o carbono encontra-se aprisionado em solução sólida 

supersaturada e seu excesso provoca a distorção da estrutura cristalina, tornando-a 

tetragonal de corpo centrado (TCC). As transformações da austenita são controladas 

pela velocidade de difusão dos componentes, bem como do tempo e temperatura de 

reação. Porém, a transformação em martensita é uma exceção: ocorre sem difusão 

e muito rapidamente (quase independente do tempo). Essa transformação ocorre 

por um mecanismo de cisalhamento (semelhante ao mecanismo de maclação 

mecânica). Quanto menores as temperaturas, maior a fração de austenita que se 

transforma em martensita (CETEC, 2007).  
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A martensita apresenta diferentes morfologias em aços de baixo e alto 

carbono. Nos aços baixo carbono, a martensita apresenta feixes de ripas agrupadas. 

As ripas de um mesmo feixe são paralelas e entre os feixes há uma angulação de 

60o, o que justifica os arranjos triangulares observados após o polimento, conforme 

mostrado na Figura 7. 

 

 

Figura 7 – Martensita em ripas em aço baixo carbono 

Fonte: Figura 5a  (KITAHARAA, UEJI, et al., 2006, p. 1284) 

 

Já para os aços de alto carbono, a martensita se apresenta em plaquetas com 

forma tridimensional de lentes. Esta morfologia é chamada de martensita acicular, 

pois as plaquetas assumem forma de agulhas no plano da superfície polida. O 

interior das plaquetas é marcado por maclas, que podem ser observadas no 

Microscópio Eletrônico de Transmissão (MET) (TSCHIPTSCHIN; GOLDENSTEIN; 

SINATORA, 1988). Esta morfologia também recebe o nome de martensita em 

placas. 
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Figura 8 – Martensita em placas em liga Fe-C com 1,86% em peso de C 

Fonte: Figura 2.1b (YEDDU, 2012, p. 3) 

 

2.2.6 Grafita 

 

A grafita é uma das formas alotrópicas do carbono, cuja estrutura cristalina é 

hexagonal. Para que houvesse formação da grafita em aços, a taxa de resfriamento 

deveria ser muito lenta, o que não ocorre na indústria, por isso a grafita não é 

encontrada nos aços. Em seu lugar, é formada a cementita, que é metaestável. 

Apesar disso, a cementita praticamente não se decompõe em grafita a temperatura 

ambiente, pois a taxa de difusão do carbono no ferro é muito baixa, podendo assim 

ser considerada estável nessas condições (ROLLO, 2015).  

 

2.3 COMPUTAÇÃO COGNITIVA 

 

A matemática acompanhou o desenvolvimento dos humanos desde as eras 

mais antigas até os dias de hoje, estando presente em muitos campos de interesse, 

dentre eles, a computação. Muitos instrumentos foram utilizados para facilitar os 

cálculos matemáticos, como os ábacos (datados de 2700 – 2300 a.C.), utilizados em 
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diversas partes do mundo, com variações em sua forma. Outros instrumentos foram 

criados com o passar dos anos, como os bastões de John Napier, no século XVI. No 

século seguinte, foram desenvolvidas máquinas mecânicas capazes de realizarem 

cálculos, sendo a mais conhecida destas a “Calculadora de Pascal” ou “Pascalina”, 

concebida pelo matemático Blaise Pascal. A ideia de que a inteligência humana 

poderia ser potencializada através de instrumentos e ferramentas motivava os 

avanços dos equipamentos de cálculos. Já no início do século XIX, em meio à 

Revolução Industrial, o mecânico francês, Joseph Marie Jacquard, inventou um tear 

mecânico controlado por cartões perfurados (colunas e linhas de orifício em padrões 

diversos), onde ganchos das engrenagens tocavam os cartões e produziam 

diferentes desenhos têxteis de acordo com o padrão de orifícios. Essa máquina não 

representa um instrumento puramente matemático, mas sua concepção permitiu 

uma produção mais acelerada e com menores erros, quando comparada à 

manufatura humana. Ainda no século XIX, Charles Babbage e Ada Lovelace 

trabalharam no “Calculador Analítico”, um projeto que se assemelhava muito às 

funções desempenhadas pelo computador nos dias de hoje. Contudo, o projeto não 

foi terminado por conta da tecnologia da época e esgotamento dos fundos. No final 

do século, Herman Hollerith desenvolveu uma tecnologia baseada na de Jacquard e 

de Babbage, porém contava com uma ferramenta que os antecessores não tiveram 

acesso: a eletricidade. O  projeto de Hollerith foi utilizado para tornar mais rápida a 

contagem da população para o censo demográfico dos EUA. Com a máquina de 

Hollerith, os funcionários realizavam a leitura dos dados do censo e perfuravam 

cartões nos lugares adequados para marcar características da pessoa cujos dados 

foram coletados. Estes cartões eram inseridos na máquina e pressionados por 

pinos. Os pinos atravessavam os orifícios presentes nos cartões e tocavam um 

metal no lado oposto, fechando um circuito elétrico e transmitindo um impulso aos 

contadores (MANEY; HAMM; O'BRIEN, 2011). 

Dessa forma, percebe-se que a computação, até a metade do século XX, tinha 

como principal função realizar cálculos rapidamente. Contudo, a função dos 

computadores passou a mudar, com o desenvolvimento da capacidade de escrever 

e executar programas, motivada pela Segunda Guerra Mundial e a necessidade de 

encriptar mensagens. É neste contexto que o matemático britânico Alan Turing 

ganha destaque, com o desenvolvimento da máquina “the Bombe”, para decodificar 

mensagens enviadas pelos alemães nazistas (FONTOURA, 2013). A partir desse 
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momento, os computadores programáticos entraram em foco, devido sua 

capacidade de adaptação a diversos cenários, como o processamento de dados de 

empresas ou a computação pessoal, permitindo também o desenvolvimento de uma 

rede global de informações (CAMPBELL-KELLY, 2009). Os sistemas programáticos 

ainda estão muito presentes nos dias de hoje, onde computadores tradicionais são 

programados para executar determinadas tarefas, como é o caso de aplicativos e de 

games (JIMENÉZ, 2015). 

Porém, temos presenciado na última década, uma geração de dados muito 

alta, devido à internet e à amplificação de seu uso. Os sistemas computacionais 

programáticos não estão preparados para lidar com esse volume extremo de dados, 

principalmente quanto à adaptação de suas respostas às tendências percebidas nas 

informações coletadas. Nas palavras de Jiménez (2015): “as duas primeiras fases 

da computação — a estática e a dinâmica — deram lugar a uma terceira: a 

autônoma”. É neste contexto que surgem os sistemas cognitivos. 

Os sistemas cognitivos representam uma mudança no paradigma de sistemas 

computacionais, pois é proposto que os usuários deixem de se preocupar com a 

maneira como o sistema opera e passem a fornecer dados e informações para que o 

sistema cognitivo possa interpretá-los e compreender os usuários, gerando 

respostas com o teor de insights. Os sistemas cognitivos são capazes de se 

aperfeiçoar a cada dia, tornando-se mais precisos com base nas informações as 

quais tem acesso. Isto é possível devido aos modelos matemáticos empregados na 

concepção destes sistemas, como algoritmos de Machine Learning e Deep Learning, 

que serão discutidos a seguir.  

 

2.3.1 Machine Learning  

 

Machine Learning (ou Aprendizado de Máquina) consiste, basicamente, em 

artifícios matemáticos que permitem a capacidade de compreender e reconhecer 

padrões. Os algoritmos de machine learning são base para o funcionamento da 

Inteligência Artificial e tornaram possível o desenvolvimento de aplicações 

denominadas "cognitivas", que imitam o comportamento e/ou a cognição da mente 

humana. Isto ocorre, pois, o aprendizado de máquina confere aos sistemas 
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capacidade de adaptação a novas circunstâncias e de detecção e extrapolação de 

padrões (RUSSELL; NORVIG, 1995). 

Os algoritmos de machine learning são capazes de aprender com os dados 

que lhes são submetidos e, através de treinamento, podem executar diferentes 

tarefas de maneira autônoma. Quando são expostos a um novo conjunto de dados, 

são capazes de se adaptar a partir dos cálculos anteriores e fornecem respostas 

cada vez mais confiáveis. Assim, a máquina passa a aprender as regras por conta 

própria, sem a necessidade de programá-las previamente. O fluxograma abaixo (Fig. 

9) exemplifica as etapas de desenvolvimento genérico de um modelo de machine 

learning: 

 

 

Figura 9 – Fluxograma de desenvolvimento de modelo de machine learning 

Fonte: Adaptado de “What is a machine learning model?” (VESTUR, 2017, p. 6). 

 

A primeira etapa é a preparação dos dados, onde deve-se buscar os dados a 

serem modelados, tomando-se o cuidado de remover dados incompletos ou 

tendenciosos. Em seguida, tem-se a etapa de feature engineering (engenharia de 

recursos), cujo objetivo é determinar propriedades isoladas que possam ser úteis ao 

modelo. A extração das características (feature extraction) ocorre nesta etapa. A 

próxima etapa é o modelamento dos dados, no qual deve ser escolhido o tipo de 

algoritmo a ser utilizado. O modelo fornecerá respostas (saídas), que serão 

avaliadas e utilizadas para refiná-lo. A quarta etapa é a de avaliação da performance 

do modelo, através de indicadores e métricas de qualidade bem conhecidos e do 

uso de dados de teste ainda não conhecidos pelo modelo, pois são separados da 

massa de treinamento. Por fim, tem-se a etapa de melhoria da performance, que 
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possui caráter iterativo e pode requerer alterações em qualquer uma das etapas do 

modelo (VESTUR, 2017).  

Existem diversos tipos de algoritmos utilizados nas aplicações cognitivas, cada 

qual sendo aplicado de acordo com o problema a ser solucionado. No contexto 

atual, também deve ser destacado o algoritmo de Deep Learning, um dos algoritmos 

mais complexos dentro do domínio de machine learning. 

 

2.3.1.1 Tipos de Algoritmos 

 

De maneira geral, os algoritmos de machine learning podem ser classificados 

em três categorias, de acordo com a forma como o aprendizado ocorre. São elas: 

algoritmos supervisionados, algoritmos não supervisionados e algoritmos de reforço. 

Estes tipos de algoritmos, em conjunto com os principais exemplos dos mesmos, 

serão descritos nas sessões a seguir. 

 

2.3.1.1.1 Algoritmos Supervisionados 

 

Os algoritmos podem ser ditos como supervisionados se o conjunto de dados 

de treinamento da aplicação compreendem exemplos dos dados (vetores) de 

entrada, juntamente com os vetores alvo correspondentes, que são os dados 

esperados (e desejados) de saída para cada entrada (BISHOP, 2006). O modelo é 

preparado através de treinamento, onde realiza previsões e é corrigido pelo usuário 

caso esteja errado. O treinamento prossegue até que se atinja um resultado 

desejado de acurácia. Neste grupo de algoritmos estão os mais conhecidos, como 

regressão linear e classificação, além de regressão logística, árvore de decisões, 

Random Forest (Floresta Aleatória), entre outros (BROWNLEE, 2013). 

 

2.3.1.1.2  Algoritmos Não Supervisionados 

 

Os algoritmos são classificados como não supervisionados quando o conjunto 

de dados de treinamento contém apenas vetores de entrada, sem nenhum valor 

correspondente para os vetores alvo de saída. Estes algoritmos podem ser úteis 

quando se tem como objetivo identificar semelhanças entre os dados de entrada, 
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classificando-os em grupos – técnica chamada de clustering (agrupamento ou 

clusterização, em inglês). Também podem ser utilizados para identificar a 

distribuição dos dados no determinado espaço de entrada – técnica de density 

estimation, ou estimativa de densidade – além de outras técnicas (BISHOP, 2006). 

 

2.3.1.1.3 Algoritmos de Reforço   

 

Os algoritmos de reforço (cujo termo utilizado em inglês é reinforcement) têm 

como foco encontrar as ações adequadas a serem tomadas em determinada 

situação, para que se atinja o melhor resultado possível. Este tipo de algoritmo, 

diferentemente dos supervisionados, não recebe exemplos de saídas desejadas, 

mas sim, busca encontrá-las através de um processo de tentativa e erro (BISHOP, 

2006).  

 

2.3.1.2 Deep Learning 

 

Deep Learning é um campo dentro de machine learning, onde são utilizados 

algoritmos mais robustos e mais rápidos. Os algoritmos de alto nível utilizam o 

princípio de redes neurais artificiais, que imita a rede neural do cérebro humano. 

Para isso, os dados passam por diversas camadas de processamento não lineares, 

simulando a forma humana de pensar, a partir dos neurônios. O deep learning 

tornou-se popular devido a sua alta capacidade de processamento, por isso, 

frequentemente está associado a Big Data – termo que representa o grande volume 

de dados envolvidos em processos complexos. Considerando o contexto atual de 

enorme capacidade de geração e coleta de dados, o deep learning é um dos 

algoritmos mais importantes nos dias de hoje. Uma de suas maiores aplicações diz 

respeito a tarefas de classificação, como os problemas de reconhecimento de 

imagens (SALESFORCE BRASIL, 2018). 
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2.3.2 Inteligência Artificial 

 

A Inteligência Artificial (IA) é um conceito que vem ganhando extrema 

importância nas últimas décadas, ao se tratar de automação de tarefas repetitivas e 

de agilizar processos de decisão. Contudo, este conceito, um ramo da ciência da 

computação, permeia este campo desde seus primórdios. Apesar disto, o termo 

“Inteligência Artificial” só foi cunhado em 1956, na Conferência de Dartmouth, que 

pretendia estudar modos de trazer inteligência a computadores. 

Uma das primeiras menções acadêmicas ao conceito de IA ocorreu em 1950, 

por Alan Turing, em seu artigo “Can machines think?” (“Máquinas podem pensar?”, 

tradução nossa). Neste artigo, Turing propõe um teste chamado de “jogo da 

imitação”, onde uma pessoa deveria interagir em forma de texto com duas entidades 

desconhecidas, sendo uma delas um computador. O objetivo é descobrir qual das 

duas entidades era representada pela máquina. Caso o computador pudesse imitar 

o comportamento humano tão bem que enganasse o participante, poder-se-ia dizer 

que o mesmo passou no “teste de Turing”. Apesar da grande contribuição ao campo 

da ciência da computação deixada por Turing, seu teste não foi tratado como um 

norte para o desenvolvimento de sistemas inteligentes. O “teste de Turing” seria 

adequado quando os sistemas devem interagir com pessoas, simulando um diálogo 

ou explicando ao usuário como obteve determinada resposta, pois, neste contexto, 

devem seguir regras e convenções normais da interação humana para se fazer 

entender. Porém, a representação e o raciocínio de certo sistema pode não ser 

baseado em modelos humanos, sendo o teste inadequado (RUSSELL; NORVIG, 

1995). 

Existem diversas definições que se aplicam à Inteligência Artificial. Em seu 

livro, Russel e Norvig (1995, p. 5) organizam as definições em quatro principais 

categorias: sistemas que pensam como humanos, sistemas que agem como 

humanos, sistemas que pensam racionalmente e sistemas que agem racionalmente. 

A Fig 10. ilustra as categorias descritas bem como as interligações entre os 

domínios que as compõem: 

 



 24 

 

Figura 10 – Categorias de definições de Inteligência Artificial 

Fonte: Autoria própria. Adaptado da figura “FIGURE 1.1 – SOME DEFINITIONS OF AI” (RUSSELL e 

NORVIG, 1995, p. 5) 

 

A definição do termo Inteligência Artificial é motivo de grande discordância na 

comunidade científica. Isso ocorre pela definição difusa do conceito de inteligência.  

Coincidentemente, a categorização acima ignora o conceito de inteligência e utiliza 

aproximações com humanos e com a racionalidade para tipificar as diversas 

definições. De todo modo, existe um consenso entre os estudiosos do tema: 

humanos são diferentes de animais e máquinas essencialmente por sua habilidade 

mental (que pode ser chamada de inteligência), sendo a IA uma tentativa de 

reproduzir esta habilidade em sistemas computacionais (WANG, 2008). 

Wang (2008) tipificou a IA em cinco definições de trabalho, para orientar 

estudos e pesquisas futuros. A primeira diz respeito à estrutura do cérebro humano, 

de onde supõe-se que a inteligência é originada. Nesta definição, IA pode ser 

alcançada pelo desenvolvimento de uma estrutura similar ao (ou pelo menos 

inspirada pelo) cérebro. A segunda é comportamental, semelhante à definição de 

Turing, onde a Inteligência Artificial é medida pela capacidade do sistema de se 
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comportar como uma pessoa. A terceira consiste na capacidade, principalmente de 

resolução de problemas complicados. Em seguida, tem-se o conceito de função, no 

qual a Inteligência Artificial é representada por um conjunto de algoritmos que imitam 

a cognição humana nas etapas de processamento de um problema. Por fim, o 

conceito de princípio define que sistemas de IA devem seguir princípios normativos 

semelhantes aos da mente humana.  

De acordo com Russell e Norvig (1995), a Inteligência Artificial é um campo 

que tenta entender entidades inteligentes. Não só, a IA luta para criar entidades 

inteligentes, além de compreendê-las. Além disso, definem a Inteligência Artificial 

como um campo de estudo abrangente, que herdou ideias e técnicas de diversas 

outras disciplinas, como a filosofia, matemática, psicologia e linguística. Enquanto 

isso, a ciência da computação é tratada como a ferramenta capaz de tornar a IA 

uma realidade. 

A Inteligência Artificial atualmente engloba uma enorme variedade de 
subáreas, desde domínios mais gerais, como a percepção e o 
raciocínio lógico, até tarefas mais específicas como jogar xadrez, 
provar teoremas matemáticos, escrever poesia e diagnosticar 
doenças (RUSSELL; NORVIG, 1995, p. 4). 

 

Já para a IBM, o termo Artificial Intelligence (Inteligência Artificial, em inglês) é 

muitas vezes substituído por Augmented Intelligence, isto é, Inteligência Aumentada, 

pois a IA é vista como uma ferramenta que potencializa a inteligência humana, 

através do suporte, e não substituição nas tarefas e decisões realizadas por 

humanos. O objetivo é tornar as pessoas mais inteligentes, e não superar a 

inteligência humana. De todo modo, a visão de Inteligência Artificial da IBM para o 

IBM Watson®, que será discutido nas próximas seções, combina duas das 

categorias definidas por Russel e Norvig (1995), pois pretende que o sistema pense 

de maneira racional e aja de maneira semelhante à humana, interagindo com os 

usuários – pessoas – em seus termos. O sistema não é um modelo do cérebro 

humano, por isso, não pensa como um. A classificação nas categorias citadas acima 

é apoiada pelas palavras de David Ferrucci, pesquisador da IBM: “O objetivo é 

construir um computador que seja eficaz em compreender e interagir em linguagem 

natural, mas não necessariamente do modo que um ser humano faz” (MANEY; 

HAMM; O'BRIEN, 2011, p. 84).  
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O desenvolvimento da Inteligência Artificial está relacionado ao ambiente de 

informação na qual a mesma está inserida e ao qual deve se adequar. Atualmente, o 

contexto é de um ambiente totalmente dinâmico e continuamente em expansão, 

motivado pela popularização da Internet, pela permeação de redes de sensores, 

pelo surgimento de Big Data e pela associação e fusão de dados e informações 

simultaneamente através da sociedade humana, do espaço físico e do espaço virtual 

(PAN, 2016). Uma das maneiras de classificar diferentes tipos de dados diz respeito 

à sua forma: dados podem ser estruturados, semiestruturados ou não estruturados. 

Dados estruturados são predefinidos e podem ser facilmente encontrados em 

bancos de dados tradicionais. Os dados semiestruturados dificilmente apresentam 

conformidade com as especificações de bancos de dados, mas podem possuir 

estrutura adequada para atender determinadas aplicações. Já os dados não 

estruturados carecem da padronização necessária que permita seu gerenciamento e 

processamento eficientes através da computação tradicional. É o caso de dados de 

textos, fotos, áudios, vídeos e fluxos de cliques, gerados em um volume massivo por 

e-commerces, mídias e redes sociais e sensores (LEE, 2017). Um dos maiores 

desafios para a IA atualmente é a compreensão dos dados definidos como não 

estruturados, que representam a maior parcela dos dados gerados nesta última 

década.  

Estimamos que 90% dos dados disponíveis no mundo hoje foram 
criados apenas nos últimos dois anos e que 80% deles são 
desestruturados, ou seja, são formatados como os humanos 
processam informação: blogs, tweets, artigos, papers, anotações 
médicas, etc. (RODRIGUES, 2014) 

 

Ainda que a Inteligência Artificial seja um campo com definições controversas, 

seu potencial para apoiar novas tecnologias e ferramentas automatizadas é 

irrefutável. Nesse sentido, uma das premissas fundamentais é que a IA permite o 

desenvolvimento de tecnologias que se adaptam, configurando máquinas 

inteligentes – “[...] isto é, máquinas capazes de entender seu ambiente e modificar 

seu comportamento de acordo com o mesmo (adaptar), de forma a alcançar 

determinado objetivo” (CARAYANNIS, 1993, p. 1, tradução nossa). Existem diversas 

aplicações para a IA com alto potencial, dado o contexto atual de geração e 

digitalização de dados, de novos e poderosos algoritmos e de crescente potência 

computacional (duplicada a cada 18 meses). Exemplos de alto nível seriam a análise 
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de dados e a computação em nuvem (JIMENÉZ, 2015). Detalhando mais as 

aplicações, a IA pode ser útil na área da saúde, auxiliando médicos em seus 

diagnósticos ou na interpretação de exames; na área comercial, como na automação 

do atendimento ao cliente através de chatbots ou como assistente que indica os 

melhores produtos de acordo com o perfil do cliente; na área jurídica, buscando 

informações em longos documentos e tornando os advogados analistas mais 

eficientes e até mesmo na agricultura, com análises preditivas do clima em 

determinada região ou identificação automática de plantas em mau estado através 

de imagens coletadas por um drone. Muitas destes exemplos já podem ser 

realizados pelo Watson™, IA da IBM, que será detalhado abaixo. 

 

2.3.2.1 IBM Watson® 

 

A Inteligência Artificial da IBM é denominada de Watson™, nome que 

homenageia o primeiro CEO da empresa americana, Thomas J. Watson. Foi 

introduzida ao mercado em Fevereiro de 2010, após três anos de desenvolvimento 

onde se visava a criação de um sistema capaz de compreender a linguagem natural 

humana. Em Fevereiro de 2011, foram exibidos na rede americana de televisão por 

três dias, episódios especiais do programa Jeopardy! – uma competição de 

perguntas e respostas – onde antigos ganhadores do programa competiram com o 

Watson™, que vinha sendo desenvolvido e treinado desde meados de 2007. 

Watson™ acabou vencendo os outros dois competidores e o dinheiro arrecadado foi 

doado para instituições de caridade (MANEY; HAMM; O'BRIEN, 2011).  
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Figura 11 – Disputa de Jeopardy! entre Watson™ (no meio) e os campeões Ken 
Jennings (à esquerda) e Brad Rutter (à direita) 

Fonte: Extraído de Tornando o Mundo Melhor: Ideias que moldaram um século e uma empresa 
(MANEY; HAMM; O'BRIEN, 2011, p. 83) 

 

O Watson™ pode ser definido como um sistema de computador que pode ser 

aplicado em diversas situações, indo além de perguntas e respostas, englobando os 

sentidos humanos como visão, audição, fala, permitindo a leitura e interpretação de 

dados estruturados ou não.   

Atualmente, o Watson™ é comercializado com foco em empresas, como um 

pacote de serviços, aplicativos e ferramentas de Inteligência Artificial prontos para 

uso3 . Uma das principais vantagens listadas é a capacidade de aprender mais 

utilizando menos dados, o que será essencial para o desenvolvimento deste 

trabalho, pois a quantidade de dados com qualidade adequada é limitada. 

Existem alguns casos de uso de sucesso utilizando o Watson™ que podem 

ser citados para exemplificar a relevância do mesmo para este trabalho.  

 

 

                                            
3 Adaptado de IBM Watson: About, IBM. Disponível em: 

<https://www.ibm.com/watson/about/index.html>. Acesso em 7 jan. 2019. 
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2.3.2.1.1 Medicina: IBM® Watson Health™ 

 

A aplicação da Inteligência Artificial na medicina potencializa a capacidade 

diagnóstica e prognóstica dos médicos. Através de consultas a bancos de dados 

robustos, computadores são capazes de fornecer sugestões de diagnósticos, as 

quais podem confirmar hipóteses médicas, agilizando sua análise.  

Existem também os dispositivos vestíveis/corporais (wearable devices), no 

qual a aplicação da Inteligência Artificial pode permitir a tomada de decisões 

automáticas, optando, por exemplo, por aumentar ou diminuir momentaneamente a 

dose de medicamentos. 

Um famoso caso de sucesso do uso do Watson™ está em linha com o auxílio 

ao diagnóstico do profissional de medicina. Trata-se do Watson Health™, que 

processa diversas informações disponíveis na “nuvem” (cloud), sejam sobre a base 

de conhecimento médico ou sobre o histórico de pacientes, incluindo os sintomas, 

tratamentos e resultados. 

Registrando um grande número de casos com seu esquema de 
diagnóstico, tratamentos prescritos e resultados obtidos, esses 
sistemas [Watson Health™, da IBM, e o Deep Mind, da Inglaterra] 
permitem uma expansão do conhecimento médico e a sugestão de 
condutas a serem seguidas, nesse caso com embasamento 
probabilístico (LOBO, 2017, p. 5). 

 

Dentre as soluções do Watson Health™, encontra-se o Watson for Oncology, 

uma solução focada em câncer (atualmente, treinada em 13 tipos de câncer4), capaz 

de identificar, avaliar e comparar tratamentos disponíveis e mais adequados a cada 

paciente. Esta solução já é utilizada em mais de 270 hospitais e organizações de 

saúde, apresentando resultados expressivos, como o estudo divulgado na Annals of 

Oncology sobre o Hospital Manipal, onde os tratamentos sugeridos pelo Watson™ 

contra o câncer de mama apresentaram 93% de concordância com os escolhidos 

pela equipe médica especialista em tumores5. 

 

                                            
4  De acordo com a página oficial da IBM: Watson Health: Get the Facts – Watson Health 

Perspectives, IBM. Disponível em <https://www.ibm.com/blogs/watson-health/watson-health-get-
facts/>. Acesso em 7, jan., 2019. 
5 Mais informações disponíveis em (SOMASHEKHAR et al., 2018) 
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2.3.2.1.2 Otimização do processo de pré-vendas: Gerdau6  

 

Este caso de uso é extremamente relevante, pois evidencia a modernização 

dos processos de pré-venda de aços, e a busca por novas tecnologias na área 

metalúrgica e de materiais.  

O caso da Gerdau consiste no desenvolvimento de um chatbot cognitivo, ou 

seja, um robô capaz de interpretar as perguntas recebidas de uma forma 

semelhante a interpretação humana, fornecendo respostas mais precisas e um 

diálogo mais fluído. Este chatbot se tornou responsável pelo processo de pré-vendas 

de aços da Gerdau.  

Antes de comprarem um aço, os clientes da Gerdau precisam realizar uma 

“consulta de fabricação”, onde é analisado se a Gerdau é capaz de atender às 

especificações técnicas do aço requerido. Os clientes precisavam preencher 

diversas informações sobre o tipo de aço desejado, através de um formulário 

extenso.  

Hoje, utilizando diversos serviços da plataforma Watson™ da IBM, este 

processo foi otimizado. A IBM implantou um novo processo de consulta de materiais, 

leitura das características técnicas e varredura de dados na base da Gerdau, 

permitindo a recomendação do produto ideal que atenda as especificações do 

cliente, com um menor tempo de resposta quando comparado ao processo anterior. 

Através das melhorias alcançadas com a implantação do Watson™ no 

processo de pré-vendas, foi possível otimizar o tempo total de atendimento de vinte 

para três dias, além de melhorar a experiência do cliente através da interação com o 

chatbot. 

 

2.3.2.1.3 Reconhecimento de Imagens: IBM Watson® Visual Recognition e 

Volkswagen Virtus 

 

O Virtus, carro modelo sedã da Volkswagen, é o primeiro carro a oferecer o 

chamado “manual cognitivo” aos motoristas. Com o uso de diversos serviços do 

Watson™, o manual é capaz de responder perguntas sobre o carro, interpretando a 

                                            
6 As informações referentes a esta seção foram baseadas em 

<https://www.youtube.com/watch?v=NWu0jHP3nqo&feature=youtu.be> (IBM BRASIL, 2018). 
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linguagem natural através da função de comando de voz. Já o Watson™ Visual 

Recognition, solução da IBM de IA que realiza o reconhecimento de imagens, é 

utilizado para identificar sinais do painel de controle. Por exemplo, se o motorista 

percebe uma luz amarela em seu painel, pode questionar ao manual cognitivo do 

Virtus o que o sinal significa e enviar uma foto através do próprio celular para que 

seja identificado o problema. O manual cognitivo retorna uma resposta em voz 

explicando a situação. Se o sistema não encontra informações para responder a 

questão, a Central de Relacionamento com o Cliente (CRC) da Volkswagen do 

Brasil é acionada e estabelece o contato com o cliente (ASSESSORIA DE 

IMPRENSA IBM BRASIL, 2017).  

O domínio de reconhecimento de imagens e o Watson™ Visual Recognition 

serão tratados com mais detalhes nos próximos tópicos. 

 

2.4 RECONHECIMENTO DE IMAGENS 

 

O reconhecimento de imagens ocorre através de um domínio definido como 

reconhecimento de padrões: uma maneira complexa que o cérebro humano 

encontrou para classificar os mais diversos objetos e situações que encontra em seu 

cotidiano. Como afirmado por Richard, Hart e Stork (2012, p. 1, tradução nossa), “a 

capacidade de reconhecimento de padrões – o ato de coletar dados brutos e agir 

com base na categoria do padrão percebido – tem sido crucial para a sobrevivência 

humana”. Por isso, é natural que haja um interesse em construir máquinas capazes 

de reconhecer padrões com alta precisão, automatizando tarefas como o 

reconhecimento de digitais e sequenciamento de DNA. Contudo, a resolução de 

algumas dessas tarefas precisam considerar as maneiras como um ser humano 

lidaria com o problema abordado. De fato, percebe-se a importante associação entre 

o reconhecimento de padrões e as máquinas, mais especificamente, o aprendizado 

das mesmas, conforme explicitado por Bishop: 

O reconhecimento de padrões tem suas origens na engenharia, 
enquanto o aprendizado de máquina cresceu a partir da ciência da 
computação. No entanto, essas atividades podem ser vistas como 
duas facetas do mesmo campo e, juntas, passaram por um 
desenvolvimento substancial nos últimos dez anos (BISHOP, 2006, 
p. vii, tradução nossa). 
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No âmbito computacional, o reconhecimento de padrões é um procedimento no 

qual se buscam determinadas estruturas nos dados de entrada, com base em 

estruturas já conhecidas. Em seguida, ocorre a classificação em categorias onde 

haja maior grau de associação entre as estruturas de entrada e as já conhecidas. A 

categorização é realizada por um classificador, que analisa as informações 

relevantes dos dados de entrada para prosseguir com a classificação. As 

propriedades que possibilitam o agrupamento de objetos semelhantes dentro de 

uma determinada classe ou categoria são chamados de padrões. As características 

são extraídas dos dados de entrada, a partir da qual os objetos são classificados. Já 

o termo classe pode ser definido como um conjunto de atributos comuns aos objetos 

de estudo (DE CASTRO; DO PRADO, 1999 - 2002). 

 Como nos modelos de Machine Learning, o reconhecimento de imagens 

também requer uma etapa de extração de características (feature extraction). Um 

exemplo de característica que poderia ser extraída para permitir o reconhecimento é 

a intensidade de luz, seus picos e vales. Porém, na extração de características, 

devem-se selecionar informações úteis a serem mantidas, já que partes das 

informações de entrada são descartadas (RICHARD; HART; STORK, 2012).  

Existem fatores que dificultam o reconhecimento de imagens nas diversas 

etapas do processo de classificação, como a qualidade das imagens, que podem 

apresentar baixa resolução ou distorções. Outro grande empecilho é a etapa de 

segmentação, cuja função é identificar qual parte da imagem é realmente útil para a 

classificação, separando-a do plano de fundo ou isolando-a dos outros componentes 

da imagem (RICHARD; HART; STORK, 2012).    

 

2.4.1 Aplicação no campo de Engenharia de Materiais e Metalúrgica 

 

A aplicação de conceitos de reconhecimento de padrões no campo da 

Engenharia de Materiais e Metalúrgica vem sendo objeto de grande estudo na última 

década. Tradicionalmente, a avaliação de imagens de microestruturas é feita por 

pessoas especialistas, tanto na interpretação da micrografia quanto na conexão da 

mesma com condições de processamento e com as propriedades do produto final 

(DECOST; FRANCIS; HOLM, 2017). Atualmente, na área de engenharia 

metalúrgica, existe uma grande demanda de automatização do processamento de 
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imagens em larga escala, o que será útil para células de controle de qualidade de 

materiais, para estabelecer relações entre microestruturas e propriedades 

mecânicas e para projetar materiais com certas características desejadas 

(BULGAREVICH et al., 2018). A fim de automatizar etapas dependentes de 

humanos, acelerando o processo de descoberta, design e desenvolvimento de 

materiais, muitos esforços vem sendo aplicados no campo de informática dos 

materiais, que une tecnologia e ciência de dados para analisar informações sobre 

determinados materiais (CHOWDHURRY et al., 2016). A automação da identificação 

de diferentes morfologias de microestruturas a partir de métodos padronizados, 

transparentes e simples será capaz de apoiar o metalurgista em seu trabalho, 

eliminando a influência da percepção individual nos resultados da classificação 

(DUTTA et al., 2019).  

Em seu trabalho, Dutta et al. (2019) realizaram uma investigação primordial 

com objetivo de desenvolver um esquema simples de classificação de três tipos de 

morfologias microestruturais em um aço bifásico (dual-phase), cuja microestrutura 

era composta por ferrita e martensita. As três morfologias distintas foram obtidas 

através da aplicação de três tratamentos térmicos: recozimento intercrítico, têmpera 

intermediária e têmpera interrompida. Cada classe, representativa das três 

morfologias/tratamentos térmicos distintos, foi construída com 25 imagens para 

treinamento e 10 para testes. Quanto à metodologia de classificação, primeiramente 

foi realizada a binarização das imagens em uma escala de cinza através do 

algoritmo de Otsu, que garante diferenciação ótima entre os componentes 

presentes. Em seguida, a partir das imagens binarizadas, realizaram-se a etapa de 

extração de características (feature extraction) e, em seguida, a análise estatística 

das características extraídas. Foi empregado um algoritmo de extração que computa 

todos os comprimentos em pixels das classes brancas/pretas e o comprimento 

médio das mesmas. A classificação entre os três tipos de tratamentos térmicos 

estudados (as três classes consideradas) foi realizada através da determinação de 

uma faixa de comprimentos para cada classe, nas quais as imagens de testes serão 

tipificadas. Todas as imagens de testes analisadas foram corretamente 

classificadas, provando boa acurácia deste modelo.  

A pesquisa de Bulgarevich et al. (2018) teve foco no desenvolvimento de um 

algoritmo do tipo Random Forest para segmentação das fases/microconstituintes e 

sua posterior comparação com a análise linear (feita manualmente). A segmentação 
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consiste em identificar os microconstituintes presentes em uma dada imagem, 

colorindo-os com cores diferentes. Foram obtidos bons resultados, próximos da 

classificação via análise linear. São apresentados como limitantes do algoritmo 

classificador o contraste, a escala da imagem e as fases/microconstituintes 

presentes. De acordo com os autores, apesar do atual foco na colaboração entre as 

áreas de informática e de materiais, ainda  existem poucos estudos que abordam a 

utilização de processos de segmentação de imagens de microestruturas complexas 

com técnicas acuradas e automáticas, de modo que os resultados obtidos no 

trabalho são significativos. Apesar do potencial de automação, ainda é necessária a 

atuação de um especialista em microestruturas na demarcação das áreas 

representativas de cada microconstituinte (porções de pixels), que é um processo 

vagaroso e que requer atenção e conhecimento. Além disso, a segmentação só 

poderá ocorrer entre micrografias que contenham exatamente o mesmo grupo de 

componentes apresentados na imagem de treinamento. Não foi tratada a criação de 

um aplicativo para viabilizar a utilização do algoritmo, mas foi sugerida a formação 

de bibliotecas de protocolos e bancos de dados para os padrões microestruturais 

típicos. 

Outra referência interessante é o trabalho de Komenda (2001), que utilizou um 

software chamado Image Classifier para realizar o reconhecimento de 

microestruturas complexas em uma superliga de níquel e em um aço sinterizado 

FeCrMo. De acordo com o estudo, o Image Classifier foi aplicado na análise de 

imagens de satélites, identificando áreas de florestas, lagos e rochas 

automaticamente. Contudo, esta aplicação requereu o uso de diferentes tipos de 

luzes na coleta de imagens, como ultra e infravermelha, o que não seria possível em 

imagens metalográficas. Uma das limitações do programa Image Classifier é que as 

imagens de treinamento devem conter todas as classes que podem estar presentes 

na estrutura do objeto estudado, bem como serem produzidas nas mesmas 

condições que serão utilizadas nos processamentos futuros. Para que o Image 

Classifier possa identificar (e destacar) as fases presentes em uma imagem, além de 

calcular sua fração mássica, o usuário deve marcar na imagem de treinamento 

porções de pixels que representem determinadas fases com cores diferentes. Outro 

fator limitante é que o usuário deve ser capaz de identificar as fases com precisão e 

com o cuidado de selecionar todas as fases e microconstituintes presentes. A partir 

da imagem de treinamento, imagens denominadas “imagens características” (feature 
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images) são produzidas, isolando determinada característica da imagem original, 

como a saturação ou intensidade. Estas imagens características auxiliam a 

classificação feita pelo software, que retorna a imagem de treinamento 

completamente colorida, destacando as fases presentes de acordo com a tipificação 

obtida automaticamente. 

Já DeCost, Francis e Holm (2017) prepararam um banco de dados de 

microestruturas com foco em estruturas complexas e hierárquicas, a partir de um 

aço de alto teor de carbono (UHCS) sob diversas condições de tratamentos 

térmicos. Foi discutido como algoritmos supervisionados ou não de machine learning 

podem contribuir para encontrar tendências nas microestruturas e relacioná-las com 

as condições de processamento. O estudo comparou a representação das 

microestruturas através dos métodos de convolution neural networks (CNN – redes 

neurais convolucionais) baseada em texturas e do método de bag of visual words 

(BoW). Para ambos, foram testados algoritmos supervisionados e não 

supervisionados. O banco de dados utilizados englobou 961 imagens de 

micrografias obtidas com SEM. Diversas microestruturas poderiam ser encontradas 

no banco, porém decidiram por, inicialmente, utilizar apenas três classes, com um 

total de 600 imagens originais (200 por classe), expandidas para 2400 imagens a 

partir de cortes nas originais, com dimensões de 224 x 224 pixels. Além da 

classificação das microestruturas complexas, também foi realizada uma 

classificação quanto a sequência de recozimento (13 possíveis sequências), 

baseando-se nas imagens com morfologia esferoidal (195 originais, 780 cortadas).  

Os resultados foram organizados em um mapa t-SNE (técnica não supervisionada) 

permitindo uma análise exploratória. A melhor combinação de algoritmos ocorreu 

com a CNN, alcançando acurácia superior a 95%. Ainda, os autores fizeram 

considerações para estudos futuros sobre a ciência de dados em microestruturas. O 

aspecto mais relevante é o de viés do banco de dados, que pode restringir a 

generalização do modelo para outros bancos e aplicações semelhantes. Este viés 

pode surgir na etapa de aquisição das imagens, devido a preparação das amostras 

e do processamento digital das imagens; na etapa de seleção das imagens, onde os 

especialistas tendem a focar em aspectos relevantes ou raros da microestrutura, por 

vezes ignorando visões representativas da amostra; e na etapa de anotação dos 

dados, que restringe principalmente os algoritmos supervisionados (que são 

limitados pela rotulagem humana). 
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No estudo de Chowdhurry et al. (2016), foram utilizados diversos métodos de 

visão computacional e machine learning para classificar micrografias que continham 

dendritas. O classificador foi capaz de diferenciar morfologias dendríticas das não-

dendríticas (tarefa 1), além de identificar a sessão de corte (longitudinal ou 

transversal – tarefa 2). As imagens coletadas variavam em escala, composição dos 

materiais e orientações microestruturais. Antes da aplicação dos algoritmos de 

machine learning na classificação das imagens, foi necessário extrair e selecionar 

características (feature extraction e feature selection). Para a etapa de feature 

extraction, foram utilizados diversos métodos, incluindo CNN pré-treinada, além 

outros algoritmos e modelos estatísticos. A utilização de uma rede neural pré-

treinada permite que o banco de imagens seja bem menor do que os 

tradicionalmente utilizados em modelos de deep learning. Já a classificação utilizou 

outros algoritmos, como vizinhos próximos e random forest. Foram utilizadas 528 

imagens para a tarefa 1 e 188 para a tarefa 2, com dimensões de 227 x 227 pixels. 

Os resultados indicam que a utilização de redes neurais pré-treinadas na etapa de 

feature extraction alavancam uma boa representação de imagens de microestruturas 

para a maioria das combinações com outros algoritmos nas etapas de seleção de 

características e classificação, atingindo acurácia máxima superior a 91 e 97% para 

as duas tarefas testadas. 

Existem muitas variantes atuando sobre o campo das micrografias, como os 

processos de fabricação, a seção de corte do material (longitudinal ou transversal), 

as diversas técnicas de tratamento imagem (como contraste, luminosidade e níveis 

de RGB), as diferentes escalas, diferentes equipamentos e métodos de análise 

(TEM, SEM, microscopia óptica). Todas essas variáveis dificultam as tarefas de 

classificação, principalmente se o banco de imagens disponíveis é pequeno. Isto 

também reforça o quão desafiadora pode ser a etapa de organização do banco de 

imagens (CHOWDHURRY et al., 2016). Além disso, imagens obtidas através de 

microscopia óptica podem apresentar ruídos que comprometem o processamento 

digital das mesmas (DUTTA et al., 2019).  

As pesquisas estudadas revelaram métodos que prometem reduzir ou remover a 

necessidade de análises de especialistas em microestruturas, previamente a outras 

etapas de análise (digital ou automatizada), o que diminui o viés na interpretação de 

imagens. No caso de análises quantitativas, como as estereológicas, esta 

consequência se destaca, pois ainda existe certa dependência de um especialista, 
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que deve primeiramente reconhecer características chaves na microestrutura (ex. 

inclusões, grãos ou fases), confiando em sua formação e experiência, o que pode 

gerar um viés. Contudo, nenhum dos estudos menciona a criação de um aplicativo 

ou software para estabelecer uma interface com o usuário final, dedicando maior 

foco nas técnicas de machine learning para elaborar modelos matemáticos de 

classificação que mais se adequem ao caso de uso (referente a microestruturas) 

estudado. 

A partir das pesquisas estudadas, um conjunto de boas práticas foi explicitado, 

contudo, como não foram encontrados textos acadêmicos relacionando o uso do 

Watson em micrografias, outras referências foram procuradas para se determinar 

uma metodologia adequada para o desenvolvimento do software proposto neste 

trabalho. 
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3 METODOLOGIA E PLANO DE TRABALHO  

 

3.1 METODOLOGIA SUGERIDA PARA PROJETOS DE INTELIGÊNCIA 

ARTIFICIAL 

 

Projetos de diversas áreas envolvendo Inteligência Artificial estão cada vez 

mais comuns. Já é possível encontrar no mercado diversas empresas e start-ups 

que se dedicam a este tema.  

As metodologias utilizadas na concepção de um sistema cognitivo são 

convergentes, com um fluxo de trabalho que permite o desenvolvimento dos 

sistemas simples até os mais complexos. Dessa forma, as pequenas variações 

apresentadas entre as metodologias apresentam-se mais no âmbito de exclusão de 

um dos passos – caso o mesmo não se aplique ao sistema proposto – do que na 

mudança de abordagem.  

No geral, para desenvolver um sistema cognitivo, o ponto de partida consiste 

em identificar um problema que se deseja resolver. A solução para este problema é 

construída a partir de insights (percepções), os quais não são obtidos somente com 

os dados estruturados ou não disponíveis, mas sim com a aplicação de 

conhecimento aos dados, para extrair respostas que apresentem valor. Para isso, 

existe um componente chamado de módulo matemático, que regula as entradas e 

saídas do sistema, configurando a inteligência por trás da qual serão geradas as 

respostas. Este módulo conta com modelos matemáticos, compostos por algoritmos 

específicos, treinados de acordo com as características dos dados e do problema a 

ser solucionado. Posteriormente, o módulo é implementado em um software, a partir 

do qual é possível interagir com o sistema. A interação com os usuários do sistema 

é geralmente promovida por robôs chamados "bots" ou “chatbots”, que se 

comportam de maneira aproximada à humana, criando um diálogo que integra as 

intenções do usuário com a resposta fornecida pelo sistema cognitivo. 

De maneira mais detalhada, Alexandre Dietrich, executivo da IBM de 

Watson™ (AI & Data), elucidou a metodologia típica para abordar projetos de IA em 

uma Web série disponível no Youtube desde 2018, denominada “O Ciclo de AI”. 

Segundo Dietrich (2018), existe uma sequência de etapas a serem seguidas na 

elaboração deste tipo de projetos, o que facilita sua concepção.  
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3.1.1 Fase 1 do Ciclo de AI: Design e Planejamento 

 

Esta etapa tem início com a identificação do problema ou oportunidade de 

negócio na qual o sistema com inteligência artificial será aplicado. Em seguida, 

deve-se pensar em quem será atingido com este sistema, ou seja, a persona7. 

Também é recomendado que sejam considerados indicadores de performance para 

medir o sucesso do negócio, utilizando inteligência artificial. 

Continuando, deve-se questionar quais dados serão necessários e qual o 

formato dos dados disponíveis, ou seja, se são digitalizados ou analógicos, 

estruturados ou não, qual a privacidade dos dados, entre outras informações. 

Após a identificação dos dados a serem utilizados, é possível criar um caso 

de uso de IA, onde seja viável colocar a inteligência artificial em prática. O caso é 

baseado tanto na oportunidade quanto nos dados disponíveis, permitindo a geração 

e mensuração de valor. 

 

3.1.2 Fase 2 do Ciclo de AI: Dados 

 

A partir dos dados identificados como necessários na Fase 1, dá-se início à 

coleta dos mesmos na Fase 2. Os dados podem estar armazenados em bases de 

dados, ou estarem disponíveis em bases públicas. Às vezes, se faz necessária a 

geração de dados, caso ainda não existam. Neste modelo, a geração é chamada de 

aquisição. Com os dados em mãos, deve-se prepará-los para a fase seguinte. 

Paralelamente ao preparo, existe a etapa de anotação dos dados, ou seja, a 

intervenção humana para rotular os dados disponíveis, o que será muito útil no 

posterior treinamento do algoritmo. 

 

 

 

                                            
7 Persona é um termo utilizado no marketing que consiste em uma representação fictícia do cliente 

ideal de um negócio. A descrição de uma persona contempla suas principais características, hábitos 
e interesses, incluindo gênero e faixa de renda, estipulados por informações de clientes atuais e 
potenciais. 
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3.1.3 Fase 3 do Ciclo de AI: Treinamento 

 

Com os dados preparados, deve-se avaliar quais deles realmente serão 

utilizados, separá-los em dados para teste e dados para treinamento e definir o 

algoritmo mais adequado a ser aplicado. Isto constitui a etapa de análise dos dados. 

Após estas definições, realiza-se a construção e treinamento do modelo 

selecionado, seja de Machine Learning, Deep Learning ou outro algoritmo. Em 

seguida, deve-se verificar o comportamento do modelo, se está de acordo com o 

que se esperava. Para isso, algumas métricas podem ser analisadas, como a 

precisão e acurácia das respostas fornecidas pelo modelo. No início, o modelo 

costuma apresentar uma acurácia mais baixa, o que impulsiona sua reavaliação, 

para refiná-lo ou buscar mais dados. A fase de treinamento consiste em um 

processo iterativo, até que se alcance a acurácia desejada para o caso de uso 

selecionado, em geral, determinada por uma porcentagem de acertos nas respostas 

fornecidas. Mesmo que o valor ainda não seja tão elevado quanto se gostaria, seguir 

para a próxima fase (de produção) pode ser uma boa opção, pois permite a coleta 

de novos dados e informações, que poderão servir para refinar o treinamento do 

modelo. 

 

3.1.4 Fase 4 do Ciclo de AI: Inferência 

 

A primeira etapa desta fase é a implantação do modelo, ou seja, levar o 

modelo construído e treinado na Fase 3 para um ambiente de produção, como 

inseri-lo em um aplicativo já existente, ou disponibilizá-lo como uma API (application 

programming interface, em português: interface de programação de aplicativos) ou 

um micro serviço que possa ser acessado sempre que necessário. Quando o 

modelo é levado para um ambiente de produção, ele passa a receber os dados de 

entrada, aqueles inseridos por usuários. Os usuários costumam ser representados 

pela persona definida na Fase 1. Com estes dados, o modelo passa a ser utilizado 

de fato, gerando resultados. Os resultados podem ser fornecidos diretamente para 

os usuários ou podem estar inseridos em uma sequência de ações para uma 

aplicação mais ampla. A interação dos humanos com os resultados finais que 

recebem configura um feedback, muitas vezes coletados por um clique em um sinal 
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de positivo ou negativo. Este feedback possui alto valor e deve ser armazenado, 

assim como os resultados fornecidos, pois evidenciam a evolução do modelo. A fase 

de inferência também possui um aspecto iterativo, interligando-se com a Fase 3, de 

treinamento, pois os feedbacks retroalimentam o modelo, permitindo uma nova 

análise dos dados e treinamento, o que pode resultar em um aumento na acurácia e 

precisão. 

 

3.1.5 Fase 5 do Ciclo de AI: Evolução 

 

A quinta fase, mais que um passo a passo, serve como uma liga para todo o 

modelo. Engloba todas as fases, envolvendo-as em um ciclo contínuo, até que se 

alcancem os resultados desejados para a aplicação. Assim, o feedback coletado na 

Fase 4 é utilizado como massa de dados para a retroalimentação do modelo, sendo 

enviada novamente para a análise de dados, etapa da Fase 3. A precisão desejada 

do modelo deve estar de acordo com o caso de uso e as métricas de performance 

selecionados na Fase 1. Pode-se chegar à conclusão que novos dados são 

necessários para que se melhore a performance para aquele caso de uso, onde a 

Fase 2 é revisitada. Portanto, a Fase 5, de evolução, percorre todas as fases já 

descritas, pois permite a atualização do modelo de acordo com elementos presentes 

nas demais fases. 

Dessa forma, as cinco fases compõem um modelo cíclico, chamado de Ciclo 

de AI. O esquema abaixo retrata todas as fases e suas respectivas etapas. 
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Figura 12 – Esquema representativo do Ciclo de AI 

Fonte: Adaptado do esquema apresentado na Websérie “O Ciclo de AI” (DIETRICH, 2018). 

 

3.2 IBM WATSON® VISUAL RECOGNITION E IBM WATSON® STUDIO 

 

Os serviços de Watson™ Visual Recognition empregam algoritmos de deep 

learning para analisar imagens de cenas, objetos, rostos e outros conteúdos. Já 

existem alguns modelos pré-construídos que podem ser utilizados. Nestes casos, 

não há necessidade de treinamento por parte do usuário da aplicação. Exemplos de 

modelos já construídos são o modelo geral (default), que contém uma grande 

diversidade de imagens, o modelo de reconhecimento facial, que sugere faixa de 

idade e gênero baseado em um rosto e até mesmo um modelo especializado em 

comidas, dentre outros modelos. As respostas fornecidas por estes classificadores 

incluem palavras-chave, exibidas em lista, que oferecem informações sobre o 

conteúdo da imagem. A lista contém todos os objetos identificados na imagem, bem 

como a confiabilidade calculada para cada objeto. O serviço de Visual Recognition 
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está dentro da IBM Cloud™, (ou Bluemix®), onde os outros serviços de Watson™ 

também estão hospedados, facilitando sua futura integração.  

O Watson™ Studio, outro componente da plataforma de serviços de IA da 

IBM, permite que sejam treinados modelos customizados, onde novas classes 

podem ser criadas a partir de conjuntos de imagens. O único requisito é que sejam 

inseridos pelo menos dois sets de imagens (referentes a duas classes), com o 

máximo de dados/imagens possíveis. Estes sets podem incluir duas classes 

“positivas” ou uma classe positiva e outra “negativa”. A fim de exemplificar, tomemos 

um modelo que diferencia duas raças de cães, como Border Collie e Golden 

Retriever. Uma classe positiva seria um grupo de imagens de cães apenas de 

determinada raça (ou seja, um set para os Border Collies e outro para os Golden 

Retrievers). Já a classe negativa seriam imagens de gatos, coelhos, outros animais 

e até mesmo outras raças, como Dálmatas. A classe negativa contém exemplos que 

não devem ser detectados pelo modelo. As imagens relativas às classes devem ser 

zipadas em pastas diferentes e depois submetidas no Watson™ Studio, onde é feita 

a gestão das imagens e onde o treinamento irá ocorrer. Dessa forma, o Watson™ 

Studio engloba o kit de ferramentas para realizar o treinamento do modelo 

customizado a ser desenvolvido, sendo os artifícios de treinamento armazenados na 

Cloud. O fluxograma abaixo explicita a integração entre os serviços Visual 

Recognition, Watson™ Studio e o armazenamento na IBM Cloud™. 

 

 

Figura 13 – Arquitetura de integração entre os serviços IBM e os usuários 

Fonte: Adaptado de modelo apresentado em treinamento8 sobre Watson™ Visual  Recognition, IBM 

                                            
8 Treinamento disponível em <https://www.onlinedigitallearning.com/course/view.php?id=4308> 
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Para o trabalho em questão, os dois serviços serão utilizados, pois pretende-

se criar um novo modelo para reconhecimento de microconstituintes de aços em 

imagens metalográficas. Assim, foi criada, primeiramente, uma instância específica 

do Visual Recognition, onde o modelo customizado será desenvolvido. Para isso, 

deve-se acessar a Cloud da IBM (encontrada em: <https://console.bluemix.net/>) e 

clicar na aba Catalog (catálogo). Nesta aba, todos os serviços oferecidos na Cloud 

pela IBM são exibidos. Deve-se procurar o serviço Visual Recognition e selecioná-lo.  

Uma tela será exibida, onde é possível definir o nome da instância, bem como 

o plano de cobrança desejado, que varia de acordo com as funcionalidades 

desejadas (quantidade de chamadas de API, quantidade de modelos disponíveis).  A 

versão grátis já garante todas as funcionalidades desejadas até o presente 

momento, permitindo 1000 chamadas de API por mês e 2 modelos customizados 

disponíveis. Além disso, exibe-se a região onde a aplicação será hospedada. Deve-

se clicar em "Create", para criar o modelo. A instância foi nomeada como "Visual 

Recognition-fases de aços". A seguir, a tela abaixo será exibida, mostrando 

parâmetros de API (para realizar integrações com outros aplicativos) e outras 

informações sobre a instância.  

 

 

Figura 14 – Tela com parâmetros de API e informações gerais da instância de 
Watson™ Visual Recognition criada 

Fonte: Elaboração própria, 2019. 
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O mesmo passo a passo foi seguido para criar uma instância de Watson™ 

Studio. A instância foi nomeada como "Watson Studio-fases de aços". A região de 

hospedagem e o grupo devem ser os mesmos que os selecionados para a instância 

do Visual Recognition. 

 

 

Figura 15 – Região e grupo de hospedagem das instâncias 

Fonte: Elaboração própria, 2019. 

 

Será exibida uma tela sobre a instância recém criada, semelhante a Fig. 12. 

Deve-se clicar em “Get Started”, que irá direcionar para a ferramenta do Watson™ 

Studio. Na ferramenta, deve-se clicar em “New Project” e selecionar o tipo de 

projeto, que será "Visual Recognition". Em seguida, são definidos o nome do projeto 

e sua descrição. Novamente, o botão “Create” é clicado. Por fim, chega-se na tela 

abaixo, com as instruções e ferramentas para criar o modelo, que foi nomeado, 

inicialmente, como "Reconhecimento de fases". Posteriormente, o modelo foi 

renomeado para “Reconhecimento de microconstituintes de aço 2”.  

 

 

Figura 16 – Tela de edição do modelo no Watson™ Studio 

Fonte: Elaboração própria, 2019. 
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3.3 MÉTODO ADOTADO / PLANO DE TRABALHO 

 

Conforme o método sugerido para projetos de Inteligência Artificial, na Web 

série “O Ciclo de AI” (DIETRICH, 2018), descrita na seção 3.1 deste estudo, foi 

elaborado um plano de trabalho para atacar a questão do reconhecimento das 

microestruturas presentes em aços. As etapas do plano de trabalho serão descritas 

com maiores detalhes nas próximas seções e estão baseadas na metodologia do 

“Ciclo de AI”, com algumas adaptações. 

 

3.3.1 Design e Planejamento 

 

Conforme descrito na introdução deste trabalho, a Engenharia Metalúrgica e de 

Materiais tem muito a se beneficiar da utilização de ferramentas de automação. Isto 

inclui aplicações com Inteligência Artificial, que permitam maior velocidade nas 

análises industriais, realizadas por especialistas. Dessa forma, pode-se afirmar que 

existe uma oportunidade de negócios a ser explorada neste campo. Contudo, é 

preciso afunilar o problema e selecionar um tipo de análise a ser automatizada 

através do uso de IA. Então, selecionou-se a análise microestrutural de aços como 

oportunidade de negócios a ser trabalhada. A aplicação a ser desenvolvida realizará 

o reconhecimento de imagens de microestruturas obtidas com microscópios ópticos. 

Em seguida, determinaram-se os dados necessários para construir a aplicação. 

Como a aplicação trabalhará com imagens de microestruturas, é necessário montar 

um banco de dados que permita que a diferenciação das diversas fases e 

microconstituintes possíveis em aços.  

Com a oportunidade identificada e os dados determinados, pode-se estruturar 

o caso de uso para aplicação do modelo pretendido. Neste trabalho, por não se 

saber ao certo qual precisão será alcançada, optou-se por desenvolver um caso de 

uso com estudantes universitários, principalmente dos cursos de Engenharia 

Metalúrgica e de Materiais ou de Ciência dos Materiais, para auxiliar os mesmos em 

matérias do curso. Os estudantes também podem fornecer uma massa de dados a 

ser utilizada para refinamento do modelo. Assim, a persona deste caso de uso pode 

ser definida como um estudante universitário, na faixa dos 20 anos de idade, 

preocupado com seu desempenho na faculdade, porém um entusiasta tecnológico. 
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Já quanto as métricas de sucesso deste caso de uso, pode-se assumir, inicialmente, 

que 60% de precisão seria adequado aos alunos, pois os mesmos podem buscar 

orientação em casos de dúvida. Além disso, 60% é superior ao maior valor possível 

de aleatoriedade, pois, supondo apenas duas classes, este valor seria de 50%. O 

aumento do número de classes diminui a chance randômica de acerto. 

 

3.3.2 Dados 

 

Os dados necessários foram descritos na sessão acima e precisam ser 

coletados. Existem muitas imagens disponíveis em sites de busca, como o Google, 

mas também existem livros com uma rica biblioteca de imagens, como é o caso do 

livro de Colpaert (2008), uma das referências mais importantes para este trabalho. 

Existem também atlas metalográficos e uma vasta diversidade de artigos sobre 

microestruturas disponíveis em sites acadêmicos. Ainda, encontram-se fotos no 

acervo pessoal de Professores e pesquisadores que trabalham na área. Também 

foram utilizadas micrografias encontradas no laboratório de metalografia do 

Departamento de Engenharia Metalúrgica e de Materiais da USP (PMT-USP) e 

observadas em aula. Outras referências para esta etapa foram: livros como Steels: 

Processing, structure and performance (KRAUSS, 2015), ASM Metals Handbook v. 9 

- Metallography and Microstructures (ASM INTERNATIONAL, 2004) e Aços e ligas 

especiais (SILVA; MEI, 2006); bibliotecas de imagens virtuais como Dissemination of 

IT for the Promotion of Materials Science (DoITPoMS) (UNIVERSITY OF 

CAMBRIDGE, 2018), Materiales y Ensaios: Microconstituyentes de los Aceros 

(RODRÍGUEZ, 2011), Metallography General (VANDER VOORT, 1967-2009), 

Proyecto de Innovación Atlas Metalográfico (DURÁN, 2016) e Microstructure and 

corrosion of steels database (DEGRIGNY, 2016); artigos disponíveis na internet, 

como Li (2017), Coelho (2008), Vander Voort (2015) e outros artigos contidos no site 

da companhia VAC AERO International Inc. (VAC AERO INTERNATIONAL INC., 

2016). 

Com as imagens em mão, as mesmas devem ser anotadas, ou seja, 

separadas em suas devidas classes, de acordo com as fases e/ou microconstituintes 

presentes. Esta classificação ocorre manualmente, portanto, é importante que as 

imagens destinadas ao treinamento confiram o maior grau de confiabilidade possível 
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para a aplicação. Isto é, não devem ser incluídas no treinamento imagens cuja 

classificação manual seja difícil ou incerta – por isso, inicialmente, casos como 

bainita e ferrita W não serão considerados escopo deste modelo, pois possuem 

características mais complexas. Devem ser buscadas figuras representativas, com 

boa resolução e distinção clara dos componentes presentes, pois a qualidade das 

imagens utilizadas no treinamento definem como será a performance do 

classificador (DECOST; FRANCIS; HOLM, 2017).  

Em um primeiro momento, pensava-se que seria melhor inserir no modelo 

micrografias com figuras das fases e/ou microconstituintes “puros”, ou seja, isolados. 

Contudo, as micrografias com uma fase apenas não seriam representativas para o 

reconhecimento das fases em micrografias mais complexas. Por exemplo, a ferrita 

pura/isolada não apresenta semelhança visual suficiente com a ferrita presente em 

uma microestrutura composta por ferrita e perlita (com maior teor de perlita), 

conforme imagem abaixo: 

 

 

Figura 17 – Comparação entre a morfologia da ferrita: (a) pura (b) em uma 
microestrutura com presença majoritária de perlita (componente escuro). 

Fonte: (a) Extraída de ASM Metals Handbook v. 9 - Metallography and Microstructures (ASM 

INTERNATIONAL, 2004); (b) Adaptada de imagem obtida de Dissemination of IT for the Promotion of 

Materials Science (DoITPoMS) (UNIVERSITY OF CAMBRIDGE, 2018) 
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Dessa forma, optou-se por separar as classes de acordo com os conjuntos de 

microestrutura mais comuns, como ferrita e perlita, austenita e martensita, etc., além 

de fases puras, como a ferrita. 

A classificação ocorreu paralelamente a coleta das imagens, pela organização 

das mesmas em pastas de arquivo no computador, de acordo com a microestrutura 

exibida em cada foto. Esta etapa foi bastante complexa, pois são as pastas que 

definem as classes que serão adicionadas ao modelo. Ainda, foram analisadas as 

quantidades de imagens em cada pasta, para definir as classes que seriam inseridas 

primeiro, ou seja, as que dispunham de um maior número de fotos de boa qualidade. 

Além disso, foi possível determinar qual microestrutura precisava de mais fotos, 

realizando pesquisas direcionadas para encontrar mais imagens que poderiam ser 

úteis. 

Uma maneira de aumentar a quantidade de imagens em um banco de dados 

é a manipulação das imagens, aplicando rotação, mudando a escala ou cortando 

partes das imagens (IBM CLOUD, 2019). Isto foi utilizado neste trabalho, 

principalmente o corte das imagens, pois muitas continham barra de escala 

sobrepostas à microestrutura, sendo esta barra removida manualmente com o corte 

das imagens. A presença da barra de escala interfere na etapa de extração de 

características (feature extraction) dos algoritmos de machine/deep learning, o que 

reforça que as mesmas devem ser retiradas das figuras do banco de treinamento do 

modelo, através de cortes nas imagens originais. Isto também ajuda na obtenção de 

mais imagens para o banco, além da possibilidade de adequar as dimensões para 

uma proporção padrão (CHOWDHURRY et al., 2016; DECOST; FRANCIS; HOLM, 

2017). A figura abaixo ilustra esta operação: 
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Figura 18 – Simulação de cortes realizados em uma imagem do banco de dados para 
remoção da grade de escala 

Fonte: Elaboração própria, 2019. Imagem original obtida de Microstructure and corrosion of steels 
database (DEGRIGNY, 2016). 

 

Existem algumas variáveis importantes quando se aborda o aspecto de 

microscopias, como a escala (ou aumento microscópico utilizado), quantidade de luz 

(que define a profundidade dos detalhes revelados), resolução (associado com o 

foco das imagens) e cor (em decorrência do ataque químico utilizado). Todos estes 

fatores corroboram para tornar a microscopia um campo muito amplo. Para este 

trabalho, dado o teor amplo do mesmo (função acadêmica), foi necessário limitar as 

variáveis de imagem para realizar a construção do modelo. Para a escala, por 

exemplo, definiu-se que deveria ser, pelo menos, equivalente a um aumento de 200x 

no microscópio óptico, caso contrário, a classificação microestrutural pode ser 

prejudicada, mesmo para um profissional altamente capacitado, pois poucos 

materiais possuem microconstituintes que apresentem boa resolução em aumentos 

tão pequenos. A definição da resolução ótima para as imagens de treinamento 

depende do caso de uso, pois não adianta treinar um modelo com imagens de 

altíssima qualidade, se os usuários da aplicação irão enviar imagens de menor 

qualidade, obtidas em aula e não em um microscópio robusto. Deve-se sempre 



 51 

lembrar desta boa prática, de manter as imagens de treinamento o mais semelhante 

possível com as que os usuários irão enviar. Portanto, uma imagem levemente 

trêmula é tolerável. 

O ataque químico das amostras pode conferir resultados visualmente muito 

diferentes, sendo recomendável selecionar um tipo de ataque para padronizar a 

classificação. Caso contrário, pode ser necessário criar classificadores separados 

para os diferentes ataques em questão. Assim, foram priorizadas as imagens onde 

as amostras foram atacadas com Nital (algumas imagens de carbonetos possuíam 

ataque de picral; outras, não informaram o ataque, apesar da semelhança com as 

imagens produzidas com Nital). O Nital é o reagente para ataque mais utilizado 

atualmente na análise de microestruturas de aços, revelando os contornos de grãos 

ferríticos e a morfologia da martensita (VANDER VOORT; MANILOVA, 2005; 

VANDER VOORT, 2011). 

Com a maioria das imagens em mão, foi possível prosseguir para a etapa de 

treinamento, onde as primeiras classes serão adicionadas ao modelo. 

 

3.3.3 Treinamento 

 

Com os dados reunidos (imagens agrupadas em pastas de acordo com a 

fase/microconstituinte presente), deve-se realizar uma separação das imagens 

destinadas para treinamento do modelo e das imagens de teste, ou seja, as que 

servirão para analisar a performance do modelo antes da fase de inferência. Os 

dados de teste devem ser inéditos ao modelo, pois não foram utilizados na etapa de 

desenvolvimento com os algoritmos. As imagens de teste e treinamento devem ser 

separadas aleatoriamente, dentro de cada classe, para formar uma massa 

adequada, sem viés. 

A quantidade de imagens do banco destinadas ao treinamento e ao teste 

varia, porém, tipicamente, assume-se a proporção 80-20 (80% das imagens para o 

treinamento do modelo e 20% para os testes). Essa será a proporção adotada nos 

testes a serem realizados, exceto hajam evidências de que uma nova proporção 

possa trazer melhores resultados para o caso estudado. As imagens do grupo 

treinamento e do grupo testes devem ser parecidas entre si (e com as imagens que 

se espera receber dos usuários finais), pois a presença de características visuais 
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muito distintas poderá resultar em resultados de baixa performance. Boas práticas 

sugerem que sejam utilizadas no mínimo 50 imagens para treinar uma classe, sendo 

o número ideal entre 150 e 200. A partir de 5000 imagens, não há registro claro de 

melhoria na classificação. Para este estudo, foi definida uma massa crítica de  

aproximadamente 100 imagens por classe, sendo aproximadamente 80 para 

treinamento do modelo e 20 para testes. As imagens separadas para testes serão 

utilizadas sempre que uma nova classe for inserida, pois servem para validar não só 

a classe que representam, mas também as demais.  

Imagina-se que esta etapa, em conjunto com a de coleta dos dados, serão as 

mais longas do processo. Quando a acurácia desejada for atingida, o modelo poderá 

ser levado para um ambiente de produção e exposto às personas definidas na seção 

3.3.1.  

 

3.3.3.1 Metodologia para sorteio das imagens 

 

Conforme explicado na seção anterior, a seleção entre imagens de 

treinamento e de teste do modelo deve ser aleatória. Dessa forma, foi elaborada 

uma metodologia simples de sorteio, utilizando o programa Excel.  

Para cada classe, os nomes das imagens foram inseridos em uma planilha do 

Excel, todas em uma mesma coluna, de acordo com a ordem em que estavam 

dispostas na pasta do computador (alfabética). Em seguida, os números relativos a 

ordem inicial foram adicionados na coluna à direita. Por fim, na terceira coluna da 

tabela, foi utilizado o operador =RAND() do Excel. Este operador determina um 

número aleatório (entre 0 e 1) para cada célula em que a fórmula for inserida. Com o 

preenchimento da coluna, é necessário copiar os valores sorteados e colar 

novamente no Excel, porém selecionando a opção de “colar especial” e escolhendo 

“valores”. Isto é necessário pois cada nova interação com a planilha resulta em um 

novo sorteio da função RAND. Com os valores sorteados, é possível ordenar a 

tabela, exibindo os valores aleatórios em ordem crescente. Os primeiros 80% das 

imagens serão destinados ao treinamento e os últimos 20% aos testes. 
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3.3.3.2 Prova de compatibilidade e utilização do Watson™ Visual Recognition 

 

Antes de iniciar o desenvolvimento do modelo final, é necessário testar se os 

algoritmos do Watson™ Visual Recognition são adequados ao caso de uso 

selecionado, ou seja, o reconhecimento de componentes microestruturais de aços. 

Um primeiro teste foi conduzido com um conjunto de imagens referente a uma 

microestrutura composta por ferrita e perlita. Foram coletadas inicialmente 74 

imagens nas fontes descritas na seção 3.3.2, buscando aumentos, quando possível, 

de pelo menos 100x. A escala, em um primeiro momento, não será considerada 

como limitante, sendo inseridas imagens com aumentos variados, porém resultados 

mais precisos podem ser obtidos com uma padronização do aumento e, 

consequentemente, das imagens.  

O sorteio das imagens foi realizada conforme descrito em 3.3.3.1 , sendo 59 

imagens para treinamento (80% do total) e 15 (20%) para testes. Como as imagens 

não são completamente homogêneas, devido a fatores como o aumento empregado, 

a quantidade de perlita e ferrita, entre outros fatores de qualidade de imagens, deve-

se analisar, após o sorteio, se não foram formados agrupamentos de fotos muito 

parecidas, de forma a isolá-las em um dos grupos (treinamento/teste). 

Após a seleção das imagens para treinamento, é recomendado salvá-las em 

uma pasta compactada (ex. .zip) para facilitar a inserção e manuseio no 

classificador. As pastas compactadas podem ser adicionadas no canto superior 

direito da tela, no item 1., conforme exibido na Figura 15. Para criar uma classe, 

basta clicar no sinal de “+”, também exibido na Fig. 15. A tela abaixo retrata o 

aspecto do modelo após criação de uma classe, neste caso, Ferrita&Perlita. Deve-se 

atentar às restrições de caracteres dos nomes das classes, sendo “espaço” um dos 

caracteres não aceitos. 
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Figura 19 – Classes criadas para a prova de fogo. Apenas imagens de treinamento 
deverão ser adicionadas às classes. 

Fonte: Elaboração própria, 2019. 

 

Para que o modelo possa ser criado e testado, são necessárias ao menos 

duas classes, podendo ser uma delas a classe negativa. Como a única classe de 

microestrutura utilizada na prova de compatibilidade foi a Ferrita&Perlita, foi 

necessário adicionar outras fotos de microestruturas que não continham ferrita ou 

perlita na classe negativa. Foram selecionadas algumas imagens (mistas ou não) de 

martensitas, bainitas, carbonetos e cementita, entre outras. No total, 35 imagens 

foram utilizadas, sendo 28 para treinamentos e 7 para testes, sorteadas de acordo 

com a metodologia de sorteio no Excel.  

Após a adição das pastas compactadas as suas respectivas classes, é 

possível iniciar o treinamento do modelo, clicando no botão azul “Train Model”, 

conforme exibido na figura abaixo. O treinamento levou cerca de 30 minutos para 

ser concluído. 
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Figura 20 – Tela do Watson™  Visual Recognition mostrando que o modelo está 
pronto para ser treinado 

Fonte: Elaboração própria, 2019. 

 

3.3.3.3 Teste e avaliação dos resultados do modelo 

 

Os testes do modelo serão realizados na própria interface disponibilizada no 

Watson™ Visual Recognition, onde é possível observar o índice de confiabilidade 

calculado para cada imagem inserida. Os resultados desta prova de compatibilidade 

estão detalhados no capítulo Resultados, e foram satisfatórios para que se desse 

continuidade na construção do modelo, cujos resultados também serão 

apresentados posteriormente. 

A avaliação dos resultados terá como base dois parâmetros: acurácia e índice 

de confiabilidade (IC). A acurácia baseia-se na quantidade de acertos do modelo, ou 

seja, sua assertividade em classificar a imagem na classe correta ou predominante. 

A acurácia será medida através da divisão do número de imagens classificadas 

corretamente pelo número total de imagens testadas. Dessa forma, quanto mais 

próximo de 1 for este valor, maior acurácia o modelo possui. O IC é um parâmetro 

nativo do Watson™ Visual Recognition, baseado na classificação estatística 

realizada pelo modelo. É um valor comparável, que pode variar entre 0 e 1, mas não 

deve ser lido como uma porcentagem. Quanto maior a pontuação para uma classe, 

maior é a certeza do modelo de que a mesma encontra-se presente na imagem 
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analisada. O valor do IC pode ser utilizado para estimular alguma ação de um 

aplicativo sendo desenvolvido, sendo este valor chamado de “limite de decisão” 

(threshold). Este valor não é calculado pelo serviço, mas o threshold padrão 

sugerido é de 0,5. 

Os resultados foram compilados em tabelas no Excel, registrando a acurácia 

e IC para as classes avaliadas. 

 

3.3.3.4 Construção da primeira versão do modelo de classificação de 

microestruturas de aços  

 

Após a Prova de compatibilidade, um segundo modelo foi criado, pois mais 

fotos de ferrita e perlita foram obtidas, com qualidade superior às que haviam sido 

utilizadas no primeiro teste. Além disso, algumas imagens continham 

microconstituintes como bainita e tiveram de ser excluídas da classe, para não gerar 

resultados errôneos. Ainda, algumas delas apresentavam resolução muito baixa ou 

escala inadequada (pouco aumento), o que dificulta a classificação de qualquer 

microestrutura. Infelizmente, para remover imagens ou classes de um modelo já 

treinado no Watson™ Visual Recognition, é necessário que seja criado um novo 

modelo. A conta gratuita garante o acesso a dois modelos de classificadores, sendo 

possível treinar um novo modelo sem perder o anterior definitivamente. Assim, das 

59 imagens de treinamento da Prova de compatibilidade, 48 foram selecionadas 

para criar o novo modelo. Dessa forma, o primeiro set de treinamento foi mantido, 

com as 48 imagens “repetidas”, assim como o set de teste, que se manteve idêntico 

ao primeiro, com 15 imagens. Nesta situação, têm-se  a proporção treinamento-teste 

de 76 - 24%. Para a segunda etapa, foram coletadas novas 123 imagens de ferrita e 

perlita, resultando em 186 imagens no total. Para manter a proporção ideal de 80-

20%, a classe precisará de um total de 149 imagens de treinamento, portanto, deve-

se selecionar 101 imagens dentre as novas. Utilizou-se o mesmo método de sorteio 

via Excel já descrito anteriormente.  

O modelo requer duas classes para que possa ser utilizado, mas não é 

obrigatório que se utilize a classe negativa. Portanto, pode-se selecionar outra fase 

ou microconstituinte para ser inserido em uma nova classe.  
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A próxima microestrutura estudada para ser inserida no modelo foi a 

martensita. Como a martensita pode se manifestar em diversas formas, como 

martensita em ripas (de baixo carbono) e em placas (de alto carbono), pode ser 

necessário criar mais de uma classe para conseguir um classificador eficaz. 

Contudo, o treinamento do modelo ocorre através de submodelos separados para 

cada classe, utilizando todas as outras como exemplos negativos da classe sendo 

treinada. Logo, deve-se tomar o cuidado de não criar classes que possuam 

intersecções, garantindo que todas os exemplos positivos de uma classe estejam 

presentes na mesma, para que não sejam utilizados como exemplos negativos no 

treinamento dos submodelos, pois isto pode prejudicar o treinamento e os resultados 

gerais do classificador.  

As imagens de martensita então foram separadas em dois grupos: 1- 

martensita e austenita retida (morfologia predominantemente de martensita em 

placas); 2- martensita em ripas, mista e revenida. Neste momento, optou-se por 

inserir o primeiro grupo no modelo, em uma classe chamada de Martensita. O grupo 

1- foi selecionado pois continha imagens com menor margem de dúvida quanto os 

constituintes presentes, predominando a martensita (em placas) e austenita retida, 

microestrutura que possui características mais marcantes. Além disso, o grupo 1- 

compreendia um número de imagens maior e as mesmas eram mais 

representativas. Num segundo momento, as demais imagens de martensita (grupo 

2-) poderão ser inseridas no modelo, seja em uma nova classe ou na de Martensita 

já existente.  

Isto posto, a classe Martensita foi configurada a partir de 91 imagens, 

inicialmente. O sorteio treinamento 80 - teste 20 foi realizado novamente no Excel, 

totalizando 73 imagens para treinamento e 18 para teste. Posteriormente aos testes, 

mais 4 imagens de martensitas foram adicionadas à classe Martensita. 
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Figura 21 – Tela do Watson™  Visual Recognition mostrando as novas classes criadas 

Fonte: Elaboração própria, 2019. 

 

O modelo se auto treinou por cerca de 30 minutos com as duas novas classes 

inseridas. Após o treinamento completo do modelo, foi possível realizar testes para 

verificar a acurácia e confiabilidade (IC) do modelo até o momento, apresentadas na 

seção 4.2.1. 

A próxima classe criada foi a de Carbonetos. Nesta classe, representada 

principalmente por fotos de aços ferramenta, foi necessário um cuidado extra: a 

distinção da matriz (ferrítica, martensítica, entre outras) pode prejudicar a 

performance do classificador. Como as classes do modelo são utilizadas como 

exemplos negativos para o treinamento das demais classes, uma imagem de 

carbonetos que apresente distinção clara da morfologia da matriz poderá ser 

utilizada como exemplo negativo para a classe representante da matriz, como a 

classe Martensita.  

No momento de criação da classe Carbonetos, 120 imagens haviam sido 

selecionadas. Seguindo a proporção de 80-20 (treinamento-teste), foram sorteadas 

pelo Excel 96 imagens para treinamento e 24 para testes. O treinamento durou 

aproximadamente 1h e os resultados obtidos podem ser verificados na seção 4.2.1. 

Em seguida, a classe ferrita foi inserida no modelo. Foram utilizadas 100 

imagens no total, 80 para treinamento e 20 para testes, sendo o sorteio realizado da 

mesma forma que nas demais classes. 
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Como a classe Martensita foi a única que não atingiu a massa crítica de 100 

imagens por classe, foram buscadas novas imagens para inserção no modelo. 

Foram obtidas novas 21 imagens de martensita em placas, sendo 17 destinadas ao 

treinamento e 4 aos testes. A classe Martensita agora possui 94 imagens de 

treinamento e 22 de teste. Esta versão do modelo contou com 402 imagens de 

treinamento e 99 de testes, no geral.   

Com uma prévia do modelo final preparado, deve-se avaliar os resultados dos 

testes e determinar se o classificador pode ser levado para um ambiente de 

implementação, seguindo para a fase 4 do Ciclo de AI (inferência). Após a conclusão 

da fase 4, é possível retornar para esta fase (3 – treinamento), pois classes poderão 

ser criadas ou refinadas. 

 

3.3.4 Inferência 

 

Esta etapa visou o desenvolvimento de uma interface amigável para o 

usuário, cuja interação com o modelo será feita a partir de uma página na web com 

instruções de uso. Esta interface será realizada também com produtos da IBM 

Cloud™. Como os resultados do modelo foram superiores a acurácia desejada 

inicialmente, o modelo foi levado para o ambiente de produção. 

Para implementar o modelo em uma aplicação, é necessário que se tenha 

algum conhecimento básico na área de programação, apesar de a infinidade de 

material autodidata disponível na internet. A fim de lançar uma primeira versão da 

aplicação, foi utilizado um código pré-programado para uma demonstração 9 

realizada por desenvolvedores da IBM, disponível na plataforma GitHub10, de acesso 

aberto. Esta página web permite que seja selecionado qual modelo será utilizado 

para classificar a imagem, dentre os disponíveis na conta IBM associada. No código 

inicial, a imagem deveria ser inserida como uma URL. Como isso pode dificultar a 

interação dos usuários, caso desejem testar imagens que estão salvas em seu 

computador, o código foi modificado para exibir um link para uma API do Imgur, 

                                            
9 Demonstração em passo a passo no Youtube, disponível em: 

<https://www.youtube.com/watch?v=0GpF39U9iaQ>. (MAZON, 2018) 
10 Repositório com código para implantação do modelo no GitHub, disponível em: 

<https://github.com/smazon/visual-recognition>. (MAZON, 2018) 



 60 

desenvolvida com base em outro repositório do GitHub11,12. O Imgur é um site que 

gera uma URL temporária para a imagem enviada. Então, a página foi editada com 

instruções para auxiliar na utilização da mesma, além de uma reestruturação do 

layout, onde foram alterados textos e imagens da página, para torná-la característica 

ao caso de uso de metalografia. 

A integração do modelo criado com a página web seguiu o passo a passo 

disponibilizado na demonstração do Watson™ Visual  Recognition no Github. Foi 

utilizado um outro serviço da IBM, chamado Node-RED, uma ferramenta de 

programação em blocos que facilita a utilização da linguagem JavaScript. É possível 

criar uma instância do Node-RED na conta gratuita da IBM Cloud™, concentrando 

todos os serviços utilizados neste trabalho em uma mesma conta. O fluxo dos blocos 

utilizados para realizar a integração e a interface do Node-RED estão retratados na 

figura abaixo: 

 

 

Figura 22  – Fluxo dos blocos de programação utilizados na interface do Node-RED 

Fonte: Elaboração própria, 2019. 

 

Seguindo o caso de uso definido na fase de Design e Planejamento (fase 1 

do ciclo de AI), a aplicação foi levada aos alunos da disciplina de metalografia 

(PMT3402: Metalografia e Tratamentos Térmicos dos Metais – 2019; Escola 

                                            
11 Repositório com código no GitHub, disponível em: <https://github.com/carry0987/Imgur-Upload> 

(YUN, 2017). 
12Vídeo com passo a passo no Youtube, disponível em: 

<https://www.youtube.com/watch?v=qmNbZmBOaGM> (CODE TUBE, 2017). 
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Politécnica da USP, Departamento de Engenharia Metalúrgica e de Materiais), para 

que forneçam uma boa massa de dados e para que a página lhes seja útil como 

ferramenta de estudo no decorrer do semestre. A aplicação pode ser acessada pelo 

seguinte link: <https://isaperini-poli.mybluemix.net/qual_a_micro>. Conforme já 

descrito, a página web foi desenvolvida a partir do código base fornecido no 

repositório do Github da demonstração do Watson™ Visual  Recognition.  

Além disso, de forma a coletar os feedbacks dos usuários de maneira 

gratuita, foi utilizado um formulário no Google Forms, onde o usuário pode dar o 

feedback sobre a aplicação, além de inserir a imagem no formulário, o que permite 

que a mesma seja aproveitada para retreinar o modelo. O link para o formulário foi 

incluído na página de resposta da aplicação. O formulário pode ser acessado pelo 

seguinte endereço: <https://forms.gle/wHifBT11GiTtKjKu7>. Foi perguntado sobre as 

condições da imagem, como aumento, ataque, microestrutura e material da amostra, 

além de incluir uma pergunta sobre autorização do uso da imagem enviada para 

retreinar o modelo. Os dados de resposta serão analisados posteriormente para 

verificar o desempenho do modelo e refiná-lo, de forma iterativa, conforme sugerido 

pela metodologia do Ciclo de AI. 

As figuras a seguir ilustram o resultado final da página:  
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Figura 23 – Página inicial da aplicação. Em rosa, está o link que direciona o usuário 
para a página de geração de URL via Imgur. 

Fonte: Elaboração própria, 2019. 
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Figura 24 – Página de resultados da aplicação. O formulário do Google Forms pode 
ser acessado clicando em “este formulário”, em rosa. 

Fonte: Elaboração própria, 2019. 

 

3.3.5 Evolução 

 

O modelo passou por avaliações de maneira iterativa, percorrendo todas as 

fases até que a precisão e acurácia desejadas fossem atingidas, contando também 

com a adição de novas classes ao modelo. Isto deu início ao denominado neste 

trabalho como “segundo ciclo de inteligência artificial”. Assim, com os resultados da 

fase 4 (inferência) em mãos, foi possível avaliar o próximo passo de refino do 

modelo, iniciando um novo ciclo de AI.  
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Após a inserção da Ferrita e refino da classe Martensita, prévias ao 

lançamento do modelo em ambiente de produção, foram testadas algumas imagens 

ainda não utilizadas do banco. O modelo foi capaz de reconhecer corretamente 

algumas microestruturas de martensita em ripas (a qual ainda não havia sido 

treinada) como Martensita, apenas com a base existente de martensita em placas. 

Adicionalmente, já no ambiente de produção, algumas das imagens enviadas pelos 

usuários exibiram martensita em ripas, e foram classificadas também como a classe 

Martensita. Dessa forma, a maior mudança decidida para refinar o classificador foi a 

de inserir novas imagens de martensita em ripas (baixo carbono) no modelo, de 

modo a permitir a distinção da martensita em placas, que costuma apresentar 

austenita retida. 

 Analisando os erros cometidos na classificação das imagens inseridas pelos 

usuários, optou-se por incluir algumas novas imagens também nas classes pré-

existentes. O classificador foi desenvolvido em um novo modelo, para não prejudicar 

o que já estava em produção, evitando erros na página web. Para tanto, é possível 

utilizar as mesmas imagens previamente inseridas, que ficam armazenadas na conta 

da IBM Cloud™ e portanto possuem fácil acesso. Contudo, como parte das imagens 

utilizadas na primeira versão do modelo continha proporções inadequadas (muito 

diferentes de 1:1), algumas foram manipuladas, antes de serem inseridas no novo 

modelo, tanto imagens de treinamento quanto de testes. Os exemplos previamente 

sorteados foram mantidos em seus sets (treinamento ou teste), mesmo sendo 

cortados para adequação da dimensão, o que gera novas imagens. Após o corte das 

imagens, o banco de treinamento passou a ter 462 e o de teste 115 imagens. Um 

total de 259 figuras ainda não haviam sido utilizadas ou foram obtidas com o teste 

com usuários. Destas, 208 foram destinadas para o banco de treinamento e 51 para 

o de teste. A tabela abaixo sintetiza a adição das novas figuras, incluindo as 

destinadas para representar a martensita em ripas: 
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Tabela 3 – Resumo da quantidade de novas imagens adicionadas na segunda versão 
do modelo 

Classe 
Total de 
novas 

imagens 

Novas 
imagens 

treinamento 

Novas 
imagens 

testes 

Total de 
imagens 

treinamento 

Total de 
imagens 

testes 

Ferrita e Perlita 57 43 14 162+43= 260 37+14 = 51 

Martensita (placas) 31 27 4 115+27= 142  31+4 = 35 

Carbonetos 14 11 3 99+11= 110 24+3 = 27 

Ferrita 10 9 1 86+9 = 95 23+1 = 24 

Martensita (ripas) 147 118 29 118 29 

Total: 259 208 51 725 166 

Fonte: Elaboração própria, 2019. 

 

Muitas imagens de martensita foram obtidas, porém boa parte não era bem 

definida, com resolução baixa, além de algumas retratarem também outros 

microconstituintes. Pela dificuldade em diferenciar os casos onde a martensita 

encontra-se completamente na morfologia de ripas dos casos onde a morfologia é 

mista, optou-se por completar a classe martensita com as imagens disponíveis, já 

que todas as morfologias se encaixam na classe geral de Martensita. Dessa forma, 

foram selecionadas 147 novas imagens de martensita (118 para treinamento e 29 

para testes), predominantemente em ripas, mas algumas mistas, para montar a nova 

classe Martensita (M). As demais 142 imagens de treinamento de martensita em 

placas também serão adicionadas à nova classe. 

Como a morfologia em placas é mais facilmente reconhecida, além de conter 

a presença de austenita retida, uma nova classe será criada apenas para esta 

morfologia, denominada Martensita&Austenita (MA). Esta classe funciona como uma 

espécie de subclasse da classe geral Martensita. Porém, as imagens de martensita 

em placas estarão duplicadas em ambas as classes, para que não sejam utilizadas 

imagens representativas de martensita como exemplos negativos em nenhum dos 

casos de treinamento, ou seja, as imagens de martensita em placas da classe 

Martensita&Austenita não serão utilizadas como exemplos negativos no treinamento 

da classe Martensita, mesmo sendo classes diferentes. O caso oposto também é 

válido, porém, as imagens de martensita em ripas serão contraexemplos para a 

classe de Martensita&Austenita, que contém morfologia de placas. Vale ressaltar 
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que as imagens duplicatas devem ser exatamente as mesmas imagens, com mesmo 

nome, tamanho e extensão. Desse modo, o classificador reconhece que não deve 

usar estas imagens como exemplos negativos, mesmo que estejam em classes 

diferentes.  

Quanto aos testes, são 29 imagens para martensita em ripas (ou mista) e 35 

para martensita em placas, com austenita retida. É esperado que o modelo não 

aponte a classe MA para as 29 imagens de martensita em ripas, mas pode apontar a 

classe M para qualquer uma delas. Isto ocorre, pois, as imagens de martensita em 

placas estão presentes nas duas classes, desta forma, a classe 

Martensita&Austenita funciona como uma espécie de subclasse da classe 

Martensita. 

 O novo modelo foi nomeado como “Qual a micro”, para combinar com o nome 

da página web. As classes foram criadas de acordo com a tabela 3, sendo o sorteio 

das imagens realizados no Excel, conforme descrito na seção 3.3.3.1. O modelo 

apresenta agora 5 classes e 867 imagens (725 únicas mais 142 duplicadas de 

martensita em placas). Nota-se que as imagens em miniatura mostradas na figura 

abaixo são as mesmas para as classes Martensita e Martensita&Austenita, pois as 

imagens estão duplicadas nestas classes, conforme já explicado. 

 

 

Figura 25 – Novo modelo desenvolvido com mais imagens e mais classes 

Fonte: Elaboração própria, 2019. 
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O treinamento do modelo levou aproximadamente 50 minutos, e todas as 

classes foram adicionadas de uma vez, totalizando 214MB de armazenamento para 

as 867 imagens inseridas. Os resultados dos testes serão apresentados no capítulo 

de resultados. 
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4 RESULTADOS E DISCUSSÕES 

 

4.1 PROVA DE COMPATIBILIDADE  

 

Para as imagens que estavam na classe teste de ferrita e perlita (classe 

Ferrita&Perlita – FP), o modelo pode identificar com precisão o pertencimento das 

imagens à classe FP, sendo o menor índice de confiança 0,89, obtido apenas em 

uma imagem. O IC foi de 0,92 para todas as demais, valor bastante alto, 

considerando a escala de 0 a 1. Já a classe negativa apresentou resultados menos 

precisos, o que pode ser explicado pela baixa representatividade de imagens para 

as diferentes microestruturas que foram inseridas na classe negativa do modelo. 

Além disso, houve uma alta variabilidade entre as poucas micrografias inseridas no 

treinamento, que apresentavam pouca semelhança entre si, provavelmente 

dificultando a etapa de feature engineering do algoritmo. Este problema é 

semelhante ao ocorrido no trabalho de Chowdhurry et al. (2016) na avaliação da 

tarefa de seleção das características (feature selection), onde não foi possível 

determinar ou distinguir o melhor método de machine learning para realização desta 

etapa, dada a alta variabilidade da classe negativa.  

Abaixo, uma figura que ilustra a interface de testes bem como alguns dos 

resultados desta etapa. 
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Figura 26 – Resultado de algumas das imagens de teste desta etapa. As duas imagens 
superiores possuem microestrutura de ferrita e perlita, enquanto as duas inferiores 
são representativas de martensitas 

Fonte: Elaboração própria, 2019. 

 

Apenas uma classe é exibida, pois a classe negativa não é entendida como 

uma classe propriamente dita, serve apenas de auxílio nas demais classificações. 

Na figura, apenas a imagem “martensita e austenita retida 2.png” não foi classificada 

corretamente, apresentando um índice de confiabilidade alto para a classe 

Ferrita&Perlita, a qual não está presente na imagem.  

Dados os resultados positivos, obtidos com uma baixa massa de dados, 

conclui-se que os algoritmos do Watson™ Visual Recognition são capazes de 

reconhecer imagens de microestrutura, determinando a continuidade deste projeto. 

Espera-se que a adição de novas classes promovam melhoria expressiva nos 

resultados. 
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4.2 PRIMEIRO CICLO DE INTELIGÊNCIA ARTIFICIAL 

 

4.2.1 Treinamentos da primeira versão do modelo 

 

Foram avaliados a acurácia e o índice de confiabilidade. Os valores 

fornecidas pelo IC são comparáveis, ou seja, é possível comparar as pontuações de 

classes customizadas, seja na mesma imagem ou em imagens diferentes. A classe 

com maior IC teve probabilidade calculada de aparecer na imagem maior do que as 

demais. No entanto, mais de uma classe pode estar presente na imagem inserida, o 

que resulta em um abaixamento do IC. A acurácia total do modelo foi calculada 

através do valor total de acertos dividido pela quantidade de imagens de teste. O IC 

médio de cada classe foi calculado através da média do IC referente a classe 

analisada nas imagens representativas desta classe, incluindo nas quais a 

classificação foi errada.  

Como as classes foram adicionadas uma a uma, foi possível avaliar os 

parâmetros do modelo a cada etapa. A primeira rodada de testes foi entre as classes 

Ferrita&Perlita (FP) e Martensita (M). Os resultados gerais estão exibidos na tabela 

abaixo: 

 

Tabela 4 – Resultados da rodada de teste entre Ferrita&Perlita e Martensita (rodada 1) 

Classes 

Total de 
Imagens de 

Treinamento 

Total de 
Imagens 
de Teste 

Total de 
Acertos 

Acurácia 
Índice de 

Confiabilidade 
Médio 

Ferrita&Perlita 149 37 37 1,000 0,920 

Martensita 73 18 16 0,889 0,854 

TOTAL 222 55 53 0,964 - 

Fonte: Elaboração própria, 2019. 

 

Os resultados referentes a classe Martensita foram menos satisfatórios que 

os da classe Ferrita&Perlita. Isso pode ter ocorrido devido a quantidade menor de 

imagens utilizadas no treinamento da classe Martensita. 



 71 

Contudo, é possível avaliar o índice de confiabilidade de maneira isolada. O 

programa calcula os índices de um modo que o valor 0,5 seja um bom limite de 

decisão (threshold), quando necessário. Assim, pode-se avaliar a quantidade de 

imagens onde a classificação da classe errada foi acima de 0,5. Dessa forma, tem-

se três imagens classificadas manualmente como Martensita que apresentaram 

inconsistências, sendo que duas foram percebidas de maneira equivocada pelo 

programa, conforme tabela abaixo: 

 

Tabela 5 – Resultados das imagens com pior classificação na rodada de teste 1 

   Modelo 

# Nome Classe Classe 1 Classe 2 IC Classe 1 IC Classe 2 

1 A01_200x 1 Martensita FP M 0,87 0,26 

2 A03_200x 1 1 Martensita M FP 0,68 0,65 

3 
martensita e austenita 
aula4 4.jpeg 

Martensita FP M 0,69 0,63 

4 ferrita e perlita 23.png Ferrita&Perlita FP M 0,92 0,13 

Fonte: Elaboração própria, 2019. 

 

Percebe-se que o pior resultado foi o da imagem 1, representativa de 

martensita, onde o índice de confiabilidade para a classe Martensita foi 0,26 (menor 

do que 0,5) e para a classe Ferrita&Perlita foi de 0,87, confiabilidade bastante 

elevada. Caso o limite de decisão (também chamado de threshold) fosse 

configurado para 0,5, a imagem 1 seria erroneamente classificada como 

Ferrita&Perlita. Já a imagem 2 apresentou classificação correta como Martensita, 

contudo o índice de confiabilidade da classe Ferrita&Perlita apresentou-se elevada, 

acima de 0,5. A imagem 3 apresentou índices de confiabilidade semelhantes ao da 

imagem 2, porém foi classificada erroneamente como Ferrita&Perlita. A imagem 4 foi 

a imagem do conjunto de teste da classe Ferrita&Perlita que apresentou maior IC 

para a classe Martensita, ainda assim, muito baixo. 

Para entender a lógica utilizada pelo modelo nesta classificação, as três 

primeiras imagens foram avaliadas, sendo produzidas novas imagens a partir delas. 

Para a figura 1 e 2, o modelo se confundiu, possivelmente por uma questão de 

escala/resolução das imagens. Foram produzidas novas imagens de teste cortando 
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partes das imagens originais. O resultado foi bastante satisfatório, conforme imagem 

abaixo: 

 

 

Figura 27 – Resultados dos testes com manipulação das imagens 1 e 2 

Fonte: Elaboração própria, 2019. 

 

Portanto, é provável que a qualidade das imagens originais 1 e 2 não 

estivesse adequada para identificação, ou mesmo a escala utilizada não permitiu 

diferenciação adequada. Ainda, a dimensão das imagens (retangular) pode estar 

sendo utilizada como fator de classificação ou prejudicando o reconhecimento, pois 

o Visual Recognition redimensiona as imagens para o formato quadrado (está 

otimizado para imagens de resolução 224 x 224 pixels). Dadas estas hipóteses, uma 

possível ação seria adicionar imagens com características semelhantes no 

treinamento do modelo. Já para a imagem 3, não foi possível identificar o fator que 

causou a má classificação, indicando que o modelo ainda pode ser aperfeiçoado.   

Para melhorar o modelo, a imagem 3 e imagens modificadas da imagem 1 e 2 

foram incluídas no modelo. A classe martensita passou a ter neste momento 77 

imagens (4 novas adicionadas). Em seguida, as imagens 1 - 4 foram novamente 

inseridas na interface de testes para verificar se houve diferença na classificação do 
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modelo. Deve-se notar que a imagem 3 foi inserida no treinamento, portanto o teste 

com a mesma imagem não é recomendado.  

 

Tabela 6 – Resultados dos testes com as imagens de pior classificação após adição 
de novas 4 imagens a classe Martensita 

   Modelo 

# Nome Classe Classe 1 Classe 2 IC Classe 1 IC Classe 2 

1 A01_200x 1 Martensita FP M 0,88 0,23 

2 A03_200x 1 1 Martensita M FP 0,81 0,43 

3 
martensita e austenita 
aula4 4.jpeg 

Martensita M FP 0,91 0,05 

4 ferrita e perlita 23.png Ferrita&Perlita FP M 0,91 0,08 

Fonte: Elaboração própria, 2019. 

 

Conforme esperado, a imagem 3 apresentou melhoria significativa em seu 

resultado, pois se trata de uma imagem “conhecida”, já que foi adicionada ao banco 

de treinamento. Já a imagem 1 não apresentou melhoria, indicando que a escala e 

dimensão ainda são fatores de atenção. A imagem 2 possui escala e dimensões 

semelhantes a da imagem 1, porém o resultado apresentou melhorias, diminuindo o 

IC da classe Ferrita&Perlita para 0,43, valor abaixo de 0,5, além de aumentar o IC 

da classe Martensita para 0,81. A imagem 4 também teve resultados positivos, com 

uma redução no IC para Martensita. Estes resultados indicam que o modelo pode 

apresentar mudanças significativas na classificação mesmo com a adição de uma 

baixa quantidade de imagens, no caso, apenas 4. 

 A próxima classe adicionada e testada foi a classe Carbonetos (C). Após o 

treinamento do modelo, foram realizados testes com todas as imagens das classes 

já inseridas destinadas para este fim, totalizando 79 imagens de teste (24  da classe 

Carbonetos, 18 da classe Martensita e 37 da classe Ferrita&Perlita). Os resultados 

desta rodada de teste estão compilados na tabela abaixo: 
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Tabela 7 – Resultados da rodada de teste entre Ferrita&Perlita, Martensita e 
Carbonetos (rodada 2) 

Classes 
Total de 

Imagens de 
Treinamento 

Total de 
imagens 
de Teste 

Total de 
Acertos 

Acurácia 
Índice de 

Confiabilidade 
Médio 

Ferrita&Perlita 149 37 32 0,865 0,796 
Martensita 77 18 17 0,944 0,843 
Carbonetos 96 24 24 1,000 0,910 

TOTAL 322 79 73 0,924 - 

Fonte: Elaboração própria, 2019. 

 

Para a classe Carbonetos, o modelo identificou corretamente todas as 

imagens inseridas, com IC de 0,91 em todas as imagens. Apenas uma imagem 

apresentou IC de 0,01 para a presença de martensita, o que pode ser 

desconsiderado pelo índice ser muito baixo. Para a classe Martensita, o modelo 

classificou errado apenas uma imagem, além de outras duas que apresentaram ICs 

maiores que 0,2 para classes que não estavam presentes na imagem. Já para as 

imagens de ferrita e perlita, o modelo classificou 5 imagens erradas, além de 

apresentar ICs maiores que 0,4 para classes que não estavam presentes nas 

imagens. Algumas das imagens que apresentaram erros na classificação foram as 

mesmas problemáticas no teste anterior, com as classes Ferrita&Perlita e 

Martensita. A tabela abaixo retrata os casos em que o resultado não foi satisfatório, 

conforme descrito neste parágrafo.  
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Tabela 8– Resultados dos testes com as imagens de pior classificação na rodada de 
teste 2 

   Modelo 
   Classe IC 

# Nome Classe 1 2 3 Classe 1 Classe 2 Classe 3 

1 A01_200x 1 Martensita C FP M 0,89 0,05 0,05 

2 A03_200x 1 1 Martensita M C FP 0,62 0,47 0,27 

3 
martensita e austenita 
aula4 4 teste 4.jpeg 

Martensita M C - 0,86 0,23  

4 ferrita e perlita 3.53 3 Ferrita&Perlita C FP - 0,89 0,11  

5 ferrita e perlita 4.png Ferrita&Perlita C FP M 0,88 0,15 0,01 

6 ferrita e perlita 19.png Ferrita&Perlita C FP - 0,87 0,18  

7 ferrita e perlita 23.png Ferrita&Perlita C FP M 0,90 0,02 0,01 

8 
ferrita e perlita 24 2 
ousado 

Ferrita&Perlita FP C - 0,68 0,60  

9 m3 1000x.jpg Ferrita&Perlita FP C - 0,79 0,41  

10 
ferrita e perlita grossa 
mhb 75 

Ferrita&Perlita FP C M 0,75 0,44 0,08 

11 
ferrita e perlita nat 8 
zoom2 

Ferrita&Perlita C FP - 0,72 0,55  

Fonte: Elaboração própria, 2019. 

 

Em seguida, a figura 28 demonstra as imagens utilizadas nesta etapa. 
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Figura 28 – Resultados obtidos na classificação das imagens da rodada de teste 2. 
Relacionando com a tabela, da esquerda para a direita, as imagens são: (1) 10, 11, 4, 
6; (2) 8, 9, 5, 7; (3) 1, 2, 3. 

Fonte: Elaboração própria, 2019. 

 

A imagem 1 já havia apresentado problemas na classificação no teste 

anterior, dada a dimensão e o baixo aumento da imagem. Utilizando uma imagem 

manipulada a partir desta, onde foi recortada a imagem para aumentar o zoom e 

equilibrar as proporções da imagem (a original era retangular, o recorte aproximou 

de um quadrado), a classificação pelo modelo foi muito precisa, indicando IC de 0,91 

para a classe Martensita e de apenas 0,02 para a classe Carbonetos, conforme 

figura abaixo: 
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Figura 29 – Resultados obtidos com a imagem 1 cortada 

Fonte: Elaboração própria, 2019. 

 

A imagem 2, também de baixa escala e de proporção retangular, foi tratada 

da mesma forma, ainda que os resultados do IC para as classes que não a correta 

tenham sido menores que 0,5. O recorte inserido apresentou os mesmos resultados 

que o recorte da imagem 1. Isto indica que a escala das imagens de teste, bem 

como a proporção são importantes e devem ser, preferencialmente, superior a um 

aumento de 200x e mais próxima de um quadrado (1:1). A imagem 6 também possui 

proporção retangular. Ao realizar o mesmo teste que nas imagens 1 e 2, o modelo 

classificou corretamente, indicando um IC de 0,90 para a classe Ferrita&Perlita e 

apenas 0,05 para a classe Carbonetos, reforçando a hipótese de que a proporção 

das imagens deve ser mais próxima de um quadrado (esta é uma das boas práticas 

indicadas na documentação do Watson™ Visual  Recognition). A imagem 8, apesar 

de ter classificado corretamente como Ferrita&Perlita, o IC para a classe Carbonetos 

foi elevado, maior que 0,5. Esta imagem também apresentou o problema de 

proporção retangular e resolução ligeiramente baixa. Ao inserir um recorte da 

imagem quadrado, o reconhecimento foi melhor, com IC de 0,90 para a classe 

Ferrita&Perlita e 0,06 para Carbonetos. O resultado das imagens 4, 5 e 7 foram 

menos esperados, pois as imagens não possuem problemas de escala ou proporção 

tão claros. Contudo, a imagem 4 possui resolução baixa, além do teor de perlita na 
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imagem ser alto, formando colônias que poderiam ser confundidas com carbonetos 

pelo modelo, ainda mais com a escala não tão alta. A imagem 5 também possui 

problemas de resolução, sendo a imagem levemente desfocada. Foi criada uma 

cópia da imagem 5, alterando-se a propriedade “sharpness”, para melhorar a 

resolução da mesma. Isto melhorou o IC do modelo para a classe Ferrita&Perlita de 

0,15 para 0,54, mas o da classe Carbonetos continuou superior, com valor de 0,72. 

Um novo recorte na imagem tratada funcionou como um zoom e alcançou 

classificação correta para a imagem, o que reforça que o modelo avalia a imagem 

inserida como um todo, de modo que a baixa resolução combinada com uma escala 

inadequada podem causar resultados errados. A figura abaixo retrata os testes 

realizados na imagem 5: 

 

 

Figura 30 – Testes realizados com a imagem 5 manipulada: (a) ajuste de sharpness e 
(b) recorte da imagem em (a). 

Fonte: Elaboração própria, 2019. 

 

Para a imagem 7, não foi possível identificar o motivo da classificação errada. 

A imagem 11 apresentou os mesmos problemas de resolução que a imagem 5, pois 

estava desfocada. Ajustando o “sharpness”, foi possível obter classificação correta, 

com IC de 0,87 para FP e 0,17 para C. As imagens 3, 9 e 10 não possuem nenhum 

dos problemas citados no parágrafo e foram classificadas corretamente, sendo o 

resultado dos ICs obtidos, provavelmente, devido a morfologia da microestrutura 
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registrada. Contudo, o valor de IC para as demais classes é inferior a 0,5, valor 

considerado como limite de classificação.  

Como não se sabe precisamente qual será a qualidade das imagens inseridas 

pelos usuários do modelo, ainda não faz sentido incluir mais imagens de acordo com 

os problemas de qualidade descritos no parágrafo anterior. Caso sejam enviadas 

pelos usuários muitas imagens com baixo foco, talvez seja interessante treinar o 

modelo nestas situações, ou orientar os usuários a inserir fotos de maior qualidade. 

A próxima classe inserida no modelo foi a Ferrita (F), com 80 imagens para 

treinamento e 20 para testes, sorteadas no Excel. Após o treinamento, uma nova 

rodada de testes foi realizada com todas as 99 imagens de teste (20 da classe 

Ferrita, 24  da classe Carbonetos, 18 da classe Martensita e 37 da classe 

Ferrita&Perlita). Os resultados desta rodada de teste estão exibidos na tabela 

abaixo: 

 

Tabela 9 – Resultados da rodada de teste entre Ferrita&Perlita, Martensita, Carbonetos 
e Ferrita (rodada 3) 

Classes 
Total de 

Imagens de 
Treinamento 

Total de 
imagens 
de Teste 

Total de 
Acertos 

Acurácia 
Índice de 

Confiabilidade 
Médio 

Ferrita&Perlita 149 37 31 0,838 0,791 
Martensita 77 18 17 0,944 0,864 
Carbonetos 96 24 24 1,000 0,906 

Ferrita 80 20 19 0,950 0,866 

TOTAL 402 99 91 0,919 - 

Fonte: Elaboração própria, 2019. 

 

Nota-se que, conforme mais classes foram adicionadas ao modelo, menor foi 

a acurácia, com um decréscimo de 0,964 inicialmente para 0,919 ao final dos testes 

da classe ferrita. Isso ocorre pois pode haver semelhança entre as classes criadas, o 

que torna a predição do modelo mais complexa. Contudo, o decréscimo da acurácia 

não impede que o modelo seja levado para a fase de inferência, já que o valor 

desejado como objetivo foi alcançado (60% de acurácia). Ainda, vale ressaltar que o 

maior decréscimo da acurácia ocorreu na adição da classe Carbonetos, terceira 

classe inserida, conforme exibido na tabela abaixo: 
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Tabela 10 – Comparação da acurácia geral com cada classe adicionada 

Quantidade 
de classes 

Acurácia 
geral 

Decréscimo 
da acurácia 

2 0,964  
3 0,924 0,04 
4 0,919 0,005 

Total  0,045 

Fonte: Elaboração própria, 2019. 

 

Possivelmente, esta queda na acurácia ocorreu pois a classe Carbonetos foi 

montada com muitas imagens obtidas em aula, para completar o número necessário 

de imagens para treinamento e teste. Ainda, as imagens de aula foram cortadas 

mais vezes que as demais utilizadas, o que pode artificialmente aumentar a escala 

na interpretação do modelo, já que todas as figuras são redimensionadas para 224 x 

224 pixels na avaliação. Além disso, foi necessário encontrar imagens onde a matriz 

não estivesse resolvida, já que isto poderia prejudicar o treinamento das demais 

classes, principalmente se a matriz for representativa de uma delas, uma vez que o 

treinamento ocorre de forma binária, “todos contra um”, empregando todas as 

classes como negativa da que está sendo treinada (IBM CLOUD, 2019).  

Outro fato interessante foi a pequena redução do IC máximo obtido, que 

inicialmente era de 0,92 e passou a ser 0,91, o que também é compatível com a 

explicação do decréscimo da acurácia, pois uma maior quantidade de classes com 

alguma semelhança entre si pode levar a tais resultados por tornarem a 

classificação mais complexa. A redução do IC máximo também ocorreu após a 

adição da classe Carbonetos, e manteve-se o mesmo com a posterior adição da 

Ferrita, o que sugere que a classe Carbonetos possui fotos que podem apresentar 

semelhanças com as fotos presentes nas demais classes do modelo.  

A tabela a seguir mostra os resultados obtidos após a inserção e treinamento 

da classe Ferrita, destacando as imagens que apresentaram problemas na 

classificação. 
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Tabela 11 – Resultados dos testes com as imagens de pior classificação na rodada de 
teste 3 

   Modelo 

   Classes Índice de Confiabilidade (IC) 

# Nome Classe 1 2 3 4 
Classe 

1 
Classe 

2 
Classe 

3 
Classe 

4 

1 A01_200x 1 Martensita C M FP F 0,85 0,18 0,04 0,01 

2 
ferrita e perlita 
3.53 3 

Ferrita&Perlita C FP - - 0,90 0,05   

3 
ferrita e perlita 
4.png 

Ferrita&Perlita C FP - - 0,76 0,46   

4 
ferrita e perlita 
19.png 

Ferrita&Perlita C FP - - 0,75 0,49   

5 
ferrita e perlita 
23.png 

Ferrita&Perlita C FP - - 0,90 0,01   

6 
ferrita e perlita 24 
2 ousado 

Ferrita&Perlita C FP - - 0,81 0,37   

7 200x v2.jpg Ferrita&Perlita FP C - - 0,87 0,17   

8 
aço - 1000x - nital 
2% - A3.jpg 

Ferrita&Perlita FP F C - 0,81 0,31 0,05  

9 
aço - 1000x - nital 
2% - A5.jpg 

Ferrita&Perlita FP F C - 0,85 0,21 0,02  

10 
ferrita e perlita 
grossa mhb 75 

Ferrita&Perlita FP C M  0,57 0,53 0,25  

11 
ferrita e perlita nat 
8 zoom2 

Ferrita&Perlita C FP - - 0,81 0,35   

12 
ferrita doit 224 e 
carbonetos 3 

Ferrita F C FP - 0,82 0,25 0,08  

13 
ferrita e cementita 
4 2 

Ferrita F C M FP 0,86 0,18 0,01 0,01 

14 
ferrita e cementita 
4 3 

Ferrita C F - - 0,86 0,50   

15 
recristalizacao 
ferrita 17.26 4 cut2 

Ferrita F C M - 0,67 0,58 0,02  

Fonte: Elaboração própria, 2019. 

 

No total, 8 imagens foram classificadas com equívoco (imagens 1 a 6, 11 e 

14). As imagens 7 a 9, 12 e 13 foram classificadas corretamente, porém 

apresentaram IC maiores que 0,15, mas bem menores que 0,5, o que não prejudica 

a classificação geral do modelo, apenas serve de ponto de atenção para as 

próximas alterações. As imagens 10 e 15 apresentaram ICs elevados (entre 0,5 e 

0,6) para uma segunda classe, diferente da correta. A imagem 14 de fato contém 

ambas as classes ferrita e carbonetos, conforme figura abaixo, o que justifica a 

classificação do modelo, apesar da classe predominante aparentemente ser a ferrita: 
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Figura 31 – Presença relevante de cementita (preta) em uma matriz de ferrita (branca) 

Fonte: Adaptada de Metalografia dos produtos siderúrgicos comuns (COLPAERT, 2008). 

 

A maioria das imagens problemáticas já foram analisadas previamente, com 

indicações da má classificação. Sumariamente, os principais problemas são: 

proporção (imagens 1, 4, 5, 6), escala (imagem 11) e resolução (imagens 2, 3, 5, 6). 

A figura abaixo mostra o resultado de novos testes com as principais imagens 

alteradas:  

 

 

Figura 32 – Resultados obtidos na classificação de imagens alteradas da rodada de 
teste 3. Relacionando com a tabela, da esquerda para a direita, as imagens são 
alteradas a partir de: (1) 3, 4, 6, 11; (2) 3, 5.  

Fonte: Elaboração própria, 2019. 
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Com as imagens alteradas corrigindo os principais problemas citados, apenas 

a foto 5 continuou com classificação errada, com classe indicada de Carbonetos, 

quando se trata de uma imagem de Ferrita&Perlita. As demais imagens foram 

classificadas corretamente a partir dos ajustes de proporção e escala. 

Como a classe Martensita era a única que não tinha alcançado o valor 

estipulado de 80 fotos para treinamento e 20 para testes, foram buscadas novas 

imagens para superar o total de 100 fotos por classe. Após a inserção das novas 17 

imagens na classe Martensita, não houve melhoria significativa nos índices de 

confiabilidade, porém a acurácia aumentou de 0,944 para 0,955, pois a única 

imagem classificada errada foi a mesma dos demais testes, e as novas 4 imagens 

de testes foram classificadas corretamente. Neste ponto, convém mudar a imagem 

de teste que apresenta má classificação em todos os testes, pois a mesma tem 

dimensões inadequadas de acordo com as boas práticas sugeridas (1164 × 1928, 

muito próxima de 1:2). A imagem substituta será um recorte da mesma imagem, 

com dimensões próximas de 1:1. Convém também orientar os usuários a utilizarem 

fotos cuja proporção esteja mais próxima de 1:1.  

Optou-se por implementar a primeira versão do modelo, pois o mesmo já 

apresenta bons resultados na classificação, superiores aos esperados no início do 

projeto. As interações com os usuários finais podem gerar insights para entender 

como melhorar os resultados do modelo em um segundo ciclo de inteligência 

artificial. Por exemplo, caso os usuários insiram fotos com grade de escala, será 

interessante adicionar este elemento na classe negativa do modelo, pois o mesmo 

não deve ser utilizado como fator classificador. Contudo, deve-se esperar pelos 

resultados das interações, que irão elucidar o tipo de imagem inserida pelos 

usuários para que ações assertivas sejam tomadas na melhoria do modelo. 

 

4.3 SEGUNDO CICLO DE INTELIGÊNCIA ARTIFICIAL 

 

4.3.1 Resultados obtidos da implementação da primeira versão do modelo 

 

Com o classificador levado para a fase de inferência, foi possível receber 

informações de como os usuários finais interagem com o mesmo, o que é importante 

para que seja criado um modelo que atenda a suas necessidades. O contato com os 
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usuários finais também permite que o modelo seja retreinado a partir de suas 

interações, coletando fotos inseridas e iniciando um novo ciclo de AI.  

Foram obtidas 33 respostas ao formulário Google Forms. Analisando o 

resultado, percebe-se que a maior parte dos usuários obteve um retorno positivo em 

sua classificação (63,6%), conforme gráfico abaixo: 

 

 

Figura 33 – Resultados da interação dos usuários finais com o modelo 

Fonte: Elaboração própria, 2019. 

 

As respostas negativas foram investigadas para entender os possíveis motivos 

para o erro do modelo. Foram analisadas 8 imagens. Dentre elas, apenas 2 

continham martensita em placas, microconstituinte para o qual o modelo havia sido 

treinado, sendo as duas falhas nesta classe, Martensita. As demais imagens 

continham microestruturas complexas ou microconstituintes ainda não incorporados 

no modelo, como perlita e martensita em ripas.  

A interação com os usuários e colegas permitiu a coleta de novas imagens após 

o lançamento da página web da aplicação, a maior parte delas através do formulário 

Google Forms disponível na página de resultados e as demais via e-mail ou contato 

pessoal com colegas. Apenas duas das imagens inseridas no formulário 

apresentavam barra de escala, portanto, não há necessidade de incluir exemplos de 

barras de escala na classe negativa do modelo neste momento. As novas imagens 

foram inseridas nas pastas de arquivo de suas respectivas classes, para serem 
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utilizadas no momento oportuno de refino do modelo. Foram obtidas imagens para 

as classes Ferrita&Perlita, Martensita e Carbonetos, além de outras imagens 

representativas de perlita pura, de martensita em morfologia de ripas ou mista e  

imagens de uma microestrutura complexa de bainita, martensita, perlita e austenita.  

 

4.3.2 Treinamentos da segunda versão do modelo 

 

Da mesma forma como foram realizados os demais testes, foram anotadas as 

classes sugeridas para cada imagem, bem como o IC correspondente a cada uma 

delas. Os resultados gerais do modelo foram muito promissores, conforme tabela 

abaixo: 

 

Tabela 12 – Resultados da rodada de teste entre Ferrita&Perlita, Martensita, 
Carbonetos, Ferrita e Martensita&Austenita 

Classes 
Total de 

Imagens de 
Treinamento 

Total de 
imagens 
de Teste 

Total de 
Acertos 

Acurácia 
Índice de 

Confiabilidade 
Médio 

Ferrita&Perlita 260 51 46 0,902 0,847 
Martensita 260 64 64 1,000 0,766 

Carbonetos 110 27 27 1,000 0,905 
Ferrita 95 24 23 0,958 0,869 

TOTAL 725 166 160 0,964 - 

Fonte: Elaboração própria, 2019. 

 

Esta tabela foi realizada considerando a classificação de Martensita como 

correta, mesmo se a imagem fosse representativa da classe Martensita&Austenita. 

Contudo, se alguma das imagens representativas da Martensita fosse considerada 

como Martensita&Austenita, isto seria considerado um erro de classificação, porém 

este caso não ocorreu. De modo a comparar as duas versões do classificador, a 

tabela abaixo foi criada para mostrar os resultados: 
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Tabela 13 – Comparação dos resultados da primeira e segunda versão do modelo 

Classes 
Acurácia da 1a 

versão 
Acurácia da 2a 

versão 
IC Médio da 1a 

versão  
IC Médio da 2a 

versão  

Ferrita&Perlita 0,838 0,902 0,791 0,847 
Martensita 0,944 1,000 0,864 0,766 
Carbonetos 1,000 1,000 0,906 0,905 

Ferrita 0,950 0,958 0,866 0,869 

TOTAL 0,919 0,964 - - 

Fonte: Elaboração própria, 2019. 

 

Não houve decréscimo no IC máximo obtido (0,91). Além disso, as classes 

Ferrita&Perlita e Ferrita apresentaram melhoria no IC médio e na acurácia. A classe 

Carbonetos praticamente não sofreu alterações. Possivelmente, os resultados 

positivos provêm da adição de um número maior de imagens, em conjunto com o 

refino das mesmas. Já a classe Martensita teve redução mais expressiva no IC. Isto 

é esperado pois a adição de novas classes pode introduzir elementos de 

similaridade entre as mesmas, o que dificulta a classificação, reduzindo a 

confiabilidade do modelo ao sugerir uma classe. Justamente, há uma semelhança 

perceptível entre as classes Martensita e Martensita&Austenita. 

Conforme proposto para esta etapa de refino, deve-se avaliar a qualidade do 

modelo em classificar corretamente as imagens representativas de martensita e 

austenita retida como a classe Martensita&Austenita (MA), além da classe 

Martensita (M). A tabela a seguir sintetiza os resultados: 

 

Tabela 14 – Resultados comparativos entre Martensita e Martensita&Austenita 

Classes 
Total de 

Imagens de 
Treinamento 

Total de 
imagens 
de Teste 

Total de 
Acertos 

Acurácia 
Índice de 

Confiabilidade 
Médio 

Martensita 260 64 64 1,000 0,766 

Martensita (ripas)13 118 29 29 1,000 0,892 
Martensita&Austenita 142 35 13 0,371 0,572 

Fonte: Elaboração própria, 2019. 

 

                                            
13 Não é uma classe, apenas para referência das imagens utilizadas para compor a classe 

Martensita, além de informar as imagens de treinamento com morfologia de ripas. 
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Os resultados mostram que a classificação foi dual para praticamente todas 

as imagens de Martensita&Austenita, porém, apenas 13 das 35 imagens de testes 

tiveram IC maior para a classe MA, o que resulta em uma acurácia baixa de 0,371. 

Contudo, dentre as 22 outras imagens classificadas como M, 12 tiveram IC para a 

classe MA superior a 0,5, indicando uma confiança relativamente alta para a 

presença dessa classe. As demais 10 imagens receberam ICs variando entre 0,25 e 

0,49, valor mais baixo. Ainda, para as 13 imagens cuja classificação foi correta, o IC 

para a classe M foi inferior a 0,5, mas não ficou abaixo de 0,45, valor este que 

poderia ser definido como novo threshold de classificação, já que de fato há 

presença da classe Martensita mesmo nas imagens de teste de 

Martensita&Austenita. Os ICs médios obtidos foram 0,572 para MA e 0,766 para M, 

com máximos e mínimos em 0,76 e 0,25 para MA e 0,85 e 0,45 para M. Os 

resultados foram menos satisfatórios para esta classe e subclasse possivelmente 

pela presença de imagens de martensita com morfologia mista no set de 

treinamento da classe Martensita, dada a dificuldade de selecionar fotos onde 

houvesse apenas martensita em ripas. 

Para as imagens de testes de martensita em ripas, a acurácia do modelo foi 

muito alta, com 100% de acerto para a classe Martensita, além de um IC médio de 

0,892, com máximo de 0,91 e mínimo de 0,80. Nenhum resultado foi dual, ou seja, 

com ICs superiores a 0,5 para mais de uma classe, porém em 4 das 29 imagens de 

teste, foi sugerida a presença da classe Martensita&Austenita. Contudo, o IC foi 

baixo, variando entre 0,20 a 0,38, inferior ao threshold de 0,5 e também do possível 

novo valor de threshold de 0,45. A tabela abaixo retrata os problemas descritos: 
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Tabela 15 – Piores resultados obtidos nos testes da classe Martensita&Austenita 

  Modelo 

  Classes Índice de Confiabilidade (IC) 

Nome Classe 1 2 3 4 5 1 2 3 4 5 

A01_200x 1 a 
Martensita
&Austenita 

M MA C - - 0,74 0,50 0,01   

A01_200x 1 b 
Martensita
&Austenita 

M MA C F - 0,81 0,32 0,04 0,01  

A01_500x_2 2 a 
Martensita
&Austenita 

M MA - - - 0,67 0,61    

A01_500x_2 2 b 
Martensita
&Austenita 

M MA C - - 0,66 0,61 0,01   

A01_500x_2 2 c 
Martensita
&Austenita 

M MA - - - 0,70 0,57    

A01_500x_3 1.jpg 
Martensita
&Austenita 

M MA - - - 0,75 0,49    

A01_1000x 2 b 
Martensita
&Austenita 

M MA - - - 0,64 0,63    

A02_1000x_2 1 b 
Martensita
&Austenita 

M MA FP C F 0,61 0,60 0,06 0,03 0,01 

A02_1000x_2 1 c 
Martensita
&Austenita 

MA M FP - - 0,76 0,47 0,01   

A03_200x 1 1 a 
Martensita
&Austenita 

M MA - - - 0,77 0,46    

A03_200x 1 1 b 
Martensita
&Austenita 

M MA - - - 0,70 0,57    

A03_500x 3 
Martensita
&Austenita 

M MA - - - 0,84 0,29    

borda 500x Sub 1 a 
Martensita
&Austenita 

MA M C F - 0,75 0,46 0,04 0,01  

martensita doit 
332 2 

Martensita
&Austenita 

M MA - - - 0,67 0,60    

martensita e 
austenita mhb 17 c 

Martensita
&Austenita 

M MA - - - 0,66 0,61    

marten e austenita 
retida 5.19 1 

Martensita
&Austenita 

M MA - - - 0,84 0,27    

martensita mhb 39 
a 

Martensita
&Austenita 

M MA - - - 0,85 0,25    

martensita mhb 39 
b 

Martensita
&Austenita 

M MA - - - 0,80 0,39    

11-Figure2.5-1 
martenplacas 1 

Martensita
&Austenita 

M MA - - - 0,67 0,60    

MA 500x1 1.1 
Martensita
&Austenita 

M MA - - - 0,76 0,47    

martensita placa 
hiveminer.jpg 

Martensita
&Austenita 

M MA C - - 0,72 0,52 0,01   

5 500x - Bruno 
Marino q2 

Martensita
&Austenita 

M MA - - - 0,77 0,46    

MA 500x1.jpg 
Martensita
&Austenita 

MA M C - - 0,75 0,45 0,06   

martensita placas 2 
GVV a1 

Martensita
&Austenita 

M MA - - - 0,79 0,40    

im5 - 1000x - Bruno 
Marino q4 

Martensita
&Austenita 

M MA - - - 0,69 0,58    

Fonte: Elaboração própria, 2019. 
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A tabela a seguir sintetiza os piores resultados obtidos nesta etapa para 

análise, excluindo as imagens da classe Martensita&Austenita, que já foram 

discutidas acima:   

 

Tabela 16 – Piores resultados dos testes da segunda versão do modelo, excluindo a 
classe Martensita&Austenita 

   Modelo 

   Classes Índice de Confiabilidade (IC) 

# Nome Classe 1 2 3 4 5 
Classe 

1 
Classe 

2 
Classe 

3 
Classe 

4 
Classe 

5 

1 
ferrita e perlita 
3.53 3 

Ferrita& 
Perlita 

C FP M - - 0,86 0,22 0,01   

2 
ferrita e perlita 
19.png 

Ferrita& 
Perlita 

C FP M - - 0,87 0,19 0,01   

3 
ferrita e perlita 
23.png 

Ferrita& 
Perlita 

C FP - - - 0,90 0,02    

4 
ferrita e perlita 24 
2 ousado 

Ferrita& 
Perlita 

C FP - - - 0,73 0,52    

5 
ferrita e perlita 
grossa mhb 75 

Ferrita& 
Perlita 

M FP C - - 0,60 0,50 0,27   

6 
ferrita e perlita nat 
8 zoom2 

Ferrita& 
Perlita 

FP C - - - 0,85 0,25    

7 
ferrita doit e 
carbonetos 223 2 

Ferrita F FP C - - 0,66 0,61 0,01   

8 
ferrita e cementita 
4 3 

Ferrita C F FP - - 0,72 0,53 0,01   

9 
recristalizacao 
ferrita 17.26 4 cut2 

Ferrita F C MA M - 0,68 0,55 0,04 0,03  

10 carboneto D2 2 1 Carbonetos C F FP M MA 0,83 0,19 0,08 0,04 0,02 

11 martensita 8 Martensita M MA - - - 0,80 0,38    

12 martensita 9 Martensita M MA - - - 0,86 0,20    

13 martensita GVV b2 Martensita M C MA - - 0,86 0,22 0,01   

14 
martensita ripas 2 
GVV b1 

Martensita M MA FP - - 0,86 0,20 0,02   

15 
martensita ripas e 
placas 2.ripas 2 a b 

Martensita M MA - - - 0,85 0,24    

Fonte: Elaboração própria, 2019. 
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Figura 34 – Compilado das imagens que apresentaram pior classificação nesta etapa 
de testes 

Fonte: Elaboração própria, 2019. 

 

As imagens 1 a 3 apresentaram a pior classificação, pois consideraram que a 

imagem retratava a classe Carbonetos, quando são representativas da classe 

Ferrita&Perlita. Ainda, os ICs foram bastante altos para a classe Carbonetos, todos 

superiores a 0,86 e bastante baixos para a classe Ferrita&Perlita, inferiores a 0,22. 

Já para a imagem 4, a classificação também foi errada, como nas imagens 1 a 3, 

porém os ICs foram mais positivos, sendo o da classe FP superior a 0,5.  

A imagem 5 foi classificada como Martensita, o que pode ser explicado pela 

morfologia da perlita retratada, que poderia ser confundida com ripas de martensita. 

Contudo, o IC para esta classe não foi extremamente alto, apenas de 0,60, e o IC 

para FP também foi de 0,5. 

A imagem 6, 10 e 13 foram corretamente classificadas, porém apresentaram 

IC baixo para outras classes que não estavam presentes, o que pode ser 

desconsiderado por não serem superiores a 0,25. 

A imagem 7 foi classificada corretamente, com um IC de 0,66 para a classe 

correta, mas apresentou IC para a classe FP de 0,61, relativamente alto, mesmo não 

havendo presença de perlita na imagem, apenas alguns carbonetos. Caso 

semelhante ocorreu na imagem 9, com um IC de 0,68 para a classe correta e de 



 91 

0,55 para Carbonetos. Nesta imagem, notam-se pontos pretos decorrentes da 

recristalização da ferrita, o que pode justificar a classificação do modelo. 

A imagem 8 foi classificada erroneamente, conforme já havia acontecido na 

versão prévia do modelo. Porém, o IC da classe correta não foi baixo, sendo 0,53 

para Ferrita. 

Por fim, as imagens 11, 12, 14 e 15 apresentam o mesmo problema, onde a 

classe Martensita&Austenita foi identificada com IC baixo, porém não irrelevante, 

variando entre 0,20 a 0,38. Isto pode ter ocorrido pois as imagens não mostram 

martensita de morfologia completamente em ripas, induzindo a sugestão de 

presença de martensita em placas pelo modelo.  

 

4.4 DISCUSSÕES 

 

O Watson™ Visual  Recognition apresenta limitações no âmbito do 

reconhecimento de imagens. Por ser de natureza classificadora, ele interpreta a 

imagem inserida como um todo, assumindo-a como representativa de uma das 

classes para as quais foi treinado. Não há detecção de pequenas particularidades 

presentes na imagem, destacando-as como determinada classe. Este é outro campo 

de visão computacional: detecção de objetos. Dessa forma, apesar dos bons 

resultados obtidos, esta abordagem pode não ser a mais adequada para tratar de 

microestruturas mais complexas, com uma presença maior de microconstituintes e 

em morfologias mais diversas. Assim, deve-se avaliar se a imagem do caso de uso 

deve ou não ser avaliada como um todo. Se os microconstituintes apresentarem 

particularidades bem definidas, diversas classes podem ser criadas com 

combinações dessas particularidades. Mas, caso a combinação entre elas seja 

aleatória, esta não é uma boa opção.  De fato, será difícil para o modelo identificar 

completamente todas as microestruturas presentes em uma imagem, considerando 

que uma fase pode aparecer como um pequeno detalhe no quadro geral, como é o 

caso da microestrutura abaixo: 
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Figura 35 – Microestrutura composta por martensita (clara), perlita (escura e 
arredondada) e bainita (escura e acicular). Além disso, há presença de ferrita (também 
clara), conforme indicada na imagem. 

Fonte: Elaboração própria, aula de metalografia, 2019. 

 

Ainda, há certa limitação na definição das classes para microconstituintes, 

pois alguns possuem morfologias díspares, como é o caso da martensita (em ripas e 

em placas, além das estruturas mistas). Isso é reversível ao se criar classes para as 

diferentes morfologias. Contudo, é sabido que o modelo do Watson™ Visual  

Recognition, em seu treinamento, utiliza todas as classes como exemplos negativos 

para a classe que está sendo treinada. Deste modo, os resultados podem ser 

prejudicados caso sejam criadas muitas classes para as diversas morfologias de um 

microconstituintes, pois as mesmas podem apresentar semelhanças entre si (maior 

do que com as demais classes ou microconstituintes), o que diminui o índice de 

confiabilidade do modelo e também sua acurácia, conforme observado na segunda 

versão do modelo.  

Vale ressaltar que a microscopia óptica não deve ser a única etapa na 

caracterização de um material, dado que materiais com composição distintas podem 

apresentar padrões microestruturais semelhantes. Mesmo quando realizada por 

humanos, a análise microestrutural não é definitiva e deve ser acompanhada de 

outros ensaios, como o de dureza, para caracterizar adequadamente um material.  

Dessa forma, este trabalho prevê que o usuário já possui conhecimento sobre a 

composição do material sendo estudado, que deve ser um aço. Caso contrário, o 
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resultado fornecido pelo modelo não será confiável, pois o mesmo foi treinado 

apenas com imagens de aço, sendo aplicável somente pare este material. 

Ainda que apresente certas limitações, devem-se destacar os pontos 

positivos, principalmente a facilidade de criar o modelo em relação aos outros 

classificadores desenvolvidos para o âmbito microestrutural. As vantagens mais 

notáveis são: a possibilidade de desenvolver o modelo mesmo com poucas 

imagens, quantidade comparável aos trabalhos estudados na seção 2.4; a 

versatilidade e flexibilidade para escolha do caso de uso a ser modelado, já que os 

algoritmos utilizados pelo Visual Recognition não são fixados, podendo sofrer 

adaptações para se adequar ao caso; a falta de necessidade de se aprofundar 

matematicamente nos algoritmos de machine learning, apesar de que o 

conhecimento prévio do funcionamento do modelo do Watson é desejado, para 

avaliar se o caso de uso pode ser atendido pelo mesmo; também, não há 

necessidade de conhecimentos vastos de programação, pois não é preciso criar 

uma interface de visualização ou de desenvolvimento do modelo, que costuma ser 

realizada através de bibliotecas do Python, entre outras formas, já que o próprio 

Watson™ Studio já configura uma interface amigável para treinamentos e testes; por 

fim, a possibilidade de aplicar uma abordagem holística na solução do caso de uso 

estudado, desde a criação do modelo até sua implantação em uma interface com os 

usuários finais.  

Mesmo com as poucas imagens, os resultados alcançados foram positivos, 

com acurácia superior a 90%. É difícil comparar este valor com os estudos da área, 

pois não foi informado como o cálculo de acurácia foi realizado. Entretanto, a 

quantidade de imagens utilizadas está em linha com os trabalhos estudados 

(CHOWDHURRY et al., 2016; DECOST; FRANCIS; HOLM, 2017), nos casos em 

que foi realizada a classificação de maneira semelhante à aqui descrita. Outro 

resultado positivo é a velocidade de resposta na classificação de uma imagem 

enviada, praticamente imperceptível. Ainda, não houve necessidade de larga 

preparação de amostras em laboratório para criar o banco de imagens, pois a 

internet forneceu uma quantidade aceitável e de baixo viés. Foram utilizadas 

imagens obtidas em aula para complementar o banco. Porém, poderiam ter sido 

preparadas amostras de aços cuja microestrutura fosse de interesse para o trabalho, 

pois aumentaria a quantidade de imagens no banco de maneira mais direcionada, 

ou seja, complementando determinada classe desejada. Contudo, a preparação de 
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amostras para montagem de banco de dados pode carregar um viés de aquisição de 

imagens, vinculado às condições do laboratório (equipamentos, luminosidade) e das 

amostras (origem, preparação) (DECOST; FRANCIS; HOLM, 2017).  

Apesar da aplicação desenvolvida ser direcionada para microestrutura de 

aços, é possível utilizar outras micrografias, seguindo a mesma abordagem. Isto é, o 

Watson™ Visual Recognition pode ser customizado para o caso de uso de 

interesse. Vale ressaltar a importância de selecionar um caso de uso cujas imagens 

envolvidas apresentem certa padronização, pois sabe-se que existe uma gama de 

fatores que alteram a imagem obtida por um microscópio óptico, como a resolução, 

escala, luminosidade, ataque químico utilizado na amostra, entre outros já 

comentados neste trabalho. Consequentemente, o ato de padronizar facilita todas as 

etapas, desde a aquisição e seleção das imagens até a separação das mesmas nas 

classes, além de possivelmente melhorar os resultados, ainda mais se as imagens 

inseridas na aplicação seguirem os mesmos padrões das empregadas nos 

treinamentos e testes. A aplicação desenvolvida neste trabalho poderia apresentar 

melhores resultados para um caso de uso com imagens delimitadas, sendo utilizada, 

por exemplo, para encontrar imagens fora de um padrão. Porém, em um caso de 

uso com imagens amplas, obtidas de diversas fontes, como é o caso deste estudo, a 

padronização de imagens é mais restrita, portanto, os resultados podem ser mais 

variáveis. Por isso, uma das etapas mais longas do processo foi a coleta de imagens 

para montar o banco de dados/imagens. Em casos onde já exista um banco de 

imagens estruturado, o modelo poderá ser criado e testado com muita rapidez. Se 

os dados estiverem catalogados, a separação em classes também será facilitada, 

diminuindo ainda mais o tempo desta etapa. Na hipótese de que haja disponibilidade 

de imagens padronizadas, a aplicação do modelo em análises quantitativas torna-se 

mais viável, possibilitando treinar a aplicação para identificar parâmetros como o 

tamanho de grãos ou quantificar determinados microconstituintes, através de 

classes que representem uma faixa de composição.  

A única etapa do ciclo de AI aplicado ao caso de uso estudado neste trabalho 

que requer a presença de um especialista seria na anotação dos dados, na fase 2 

(Dados) do Ciclo de AI, onde é importante possuir conhecimento na área de 

micrografias para agrupar corretamente as imagens em classes. Quanto às demais 

fases do ciclo, a interface amigável do Watson™ Studio é capaz de dispensar a 

necessidade de matemáticos ou especialistas em computação, pois os algoritmos 
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estão embutidos no sistema e não são customizáveis. Apesar de a falta de 

customização dos algoritmos poder ser um ponto negativo ao se abordar a 

independência do tratamento dos dados, o próprio Watson foi treinado com diversos 

tipos de algoritmos de deep learning, e realiza internamente testes de adesão para 

determinar o melhor modelamento para o conjunto de imagens inserida, eliminando 

uma etapa longa do processo de desenvolvimento de algoritmos de machine 

learning por conta própria. Deve-se destacar que o processo de desenvolvimento de 

um classificador via métodos de machine learning requer o modelamento de 

algoritmos em três etapas (feature extraction, feature selection e classificação), 

tornando este estudo matemático ainda mais complexo. O Watson™ Visual  

Recognition não requer o modelamento destas etapas por parte da pessoa que está 

desenvolvendo o classificador, pois já realiza as etapas de feature engineering 

internamente, através de testes de combinações entre vários algoritmos nas 

diversas etapas desse processo, baseados no banco de imagens fornecido (IBM 

CLOUD, 2019). Porém, as combinações de táticas utilizadas nos trabalhos 

estudados na seção 2.4 sugerem hipóteses a serem testadas. Por exemplo, 

Chowdhurry et al. (2016) e Dutta et al. (2019) utilizaram o algoritmo de Otsu para 

facilitar a etapa de extração de características (feature extraction). Este algoritmo 

determina o threshold (limiar) ótimo na escala de cinza para binarizar uma imagem. 

Neste trabalho, este algoritmo poderia ser aplicado às imagens para treinar o 

modelo, porém, as imagens inseridas pelos usuários também deveriam seguir este 

padrão. Portanto, a interface com o usuário deveria conter esta etapa de 

transformação antes de enviar a imagem para a análise do classificador. Como não 

são divulgados quais algoritmos o Watson™ Visual  Recognition utiliza, nem em 

quais etapas, é possível que o algoritmo de Otsu ou outro similar seja aplicado 

internamente. Outra tática interessante é a abordagem de tarefas de classificação. A 

separação em tarefas de classificação parece ser um método mais adequado ao 

algoritmo Watson™ Visual  Recognition, pois utiliza uma lógica binária, que combina 

com o método de classificação empregado por esta ferramenta da IBM (IBM 

CLOUD, 2019). No trabalho de Chowdhurry et al. (2016), houve a separação de 

tarefas binárias (se a morfologia é ou não dendrítica, se o corte é ou não de uma 

seção transversal), o que pareceu refinar os resultados nas classificações. Um 

exemplo de tarefa binária seria o reconhecimento de uma fase/microconstituinte ou 

inclusão em determinada imagem, sendo uma tarefa binária subsequente a 
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determinação de algum parâmetro relativo ao componente reconhecido, como 

determinar a morfologia de um microconstituinte ou o tipo de inclusão. Ainda, uma 

possibilidade para melhorar os resultados de modelos de machine learning, 

especialmente os que utilizam redes neurais (algoritmo de deep learning), seria pré-

treinar a rede com imagens de bancos de texturas, que podem ser encontradas em 

sites como o ImageNet, destinado a este fim. Os resultados dos estudos de 

Chowdhurry et al. (2016) e DeCost, Francis e Holm (2017) indicam que a utilização 

de algoritmos de redes neurais pré-treinadas representam bem imagens de 

microestruturas, conferindo boa acurácia, boa generalização para outros casos com 

novos bancos, além de permitirem uma menor utilização de imagens no banco de 

treinamento. No caso do Watson™ Visual  Recognition, da maneira como foi 

apresentado neste trabalho, não foi possível pré-treinar o classificador com imagens 

de bancos como o ImageNet, pois a interface de montagem do modelo é bem básica 

e focada nas classes a serem criadas a partir das imagens inseridas. Todo o 

modelamento matemático e algoritmos utilizados não são acessíveis, sendo o pré-

treinamento uma tarefa mais complexa do que a proposta neste estudo, 

possivelmente envolvendo outros produtos da IBM, nos quais seria possível acessar 

o código e algoritmos utilizados.  

Uma vantagem deste estudo em relação aos demais foi o desenvolvimento de 

uma interface com o usuário final. Ainda que a aplicação desenvolvida esteja em um 

estágio de piloto, é válido notar a facilidade de integração que a IBM proporciona em 

seus serviços. Neste trabalho, não foi necessária a atuação de especialistas em 

computação, pois a aplicação desenvolvida é bem simples e baseada em instruções 

disponíveis na internet, o que permite que seja implementada de maneira autônoma. 

Contudo, em casos de integrações com sistemas mais complexos, será necessária a 

participação de um desenvolvedor, com conhecimentos em integrações 

(API/SDKs14), back-end 15e possivelmente, front-end16. Vale ressaltar a possibilidade 

de integrar o Watson com sistemas de IoT, uma tendência forte na indústria, 

atualmente (IBM WATSON IOT, 2018). Outro ponto positivo é a acessibilidade desta 

                                            
14 Software Development Kit (SDK) é um kit que contém todas as instruções necessárias que 

permitem a criação de sistemas e desenvolvimento de aplicações (MUNDO API, 2016). 
15 É o desenvolvedor responsável por criar as funcionalidades que um sistema apresenta, pelo 

desenvolvimento do software que contém as regras de negócio, pela interação com bases de dados e 
pela criação de APIs e outros recursos (CARDOZO, 2017). 
16 É o desenvolvedor responsável pela interface entre o sistema e o usuário, preocupando-se com a 

experiência do mesmo (CARDOZO, 2017). 
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solução, uma vez que todos os serviços foram utilizados na versão Lite (gratuita), 

cujas limitações de uso são largas, proporcionando 1000 chamadas de API por mês 

para o uso do Watson™ Visual Recognition (ou seja, um total de 1000 imagens 

treinadas/testadas), além de todos os serviços utilizados poderem ser comportados 

em uma única conta. Um ponto de atenção é a natureza na nuvem (Cloud) dos 

serviços, o que pode causar instabilidade em momentos de atualização ou em redes 

de menor banda.  
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5 CONCLUSÃO 

 

O presente estudo foi uma investigação introdutória e teve como objetivo 

testar a possibilidade de desenvolver um modelo de reconhecimento visual a partir 

da inteligência artificial da IBM, o Watson™, que seja capaz de classificar 

microestruturas qualitativamente, além de desenvolver uma aplicação simples e 

acessível para promover a interação com os usuários finais. Para tanto, foi 

selecionado o caso de uso de ferramenta de suporte acadêmico para estudantes 

universitários, focado em microestruturas de aço, um metal muito estudado em 

cursos como engenharia metalúrgica e de materiais. As imagens para criação do 

modelo foram obtidas de diversas fontes, principalmente da internet e de livros 

digitalizados. O modelo foi criado com dois serviços da IBM, o Watson™ Visual 

Recognition (que possui os algoritmos e a inteligência artificial) e o Watson™ Studio 

(interface para desenvolver o modelo). O classificador foi integrado com uma página 

na internet, pela qual alunos e pesquisadores da Escola Politécnica da USP 

puderam interagir. Os resultados desta interação foram utilizados para refino do 

modelo. 

Dada a alta demanda por automação de processos, principalmente naqueles 

que possuem etapas manuais, o presente estudo revela-se promissor para 

desenvolvimento de softwares integrados a bancos de dados, possibilitando uma 

análise qualitativa de imagens microestruturais. A adaptabilidade dos algoritmos a 

diversos tipos de imagens permite que muitos casos de uso industriais sejam 

atendidos, principalmente se tratando de classificações binárias, como seria o caso 

de presença de inclusões.  

Quanto ao desenvolvimento de um classificador customizado utilizando o 

Visual Recognition, destaca-se a importância de padronizar as imagens a serem 

utilizadas, estruturando mais facilmente o banco de dados e promovendo melhores 

resultados para o caso delimitado. A dificuldade de definir parâmetros para delimitar 

o caso de uso estudado neste trabalho (aços) delongou a concepção do modelo. 

Apesar disso, o classificador desenvolvido apresentou bons resultados de acurácia e 

confiabilidade média das classes, com 91,9% e 0,791 (limite inferior – classe 

Ferrita&Perlita) / 0,906 (limite superior – classe Carbonetos), respectivamente, na 

primeira versão do modelo, além da classificação ocorrer em um intervalo de tempo 
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muito baixo, praticamente imperceptível para humanos. Após a interação com os 

usuários finais, foram acrescentadas novas imagens de martensita em morfologia de 

ripas a classe Martensita do modelo, além de criar uma nova classe apenas para a 

martensita em morfologia de placas, que possui austenita retida 

(Martensita&Austenita). Com os ajustes, o modelo geral passou a ter acurácia de 

96,4% e confiabilidade média das classes de 0,766 (limite inferior – classe 

Martensita) / 0,905 (limite superior – classe Carbonetos). Mesmo com os bons 

resultados, deve-se notar que a classificação promovida trata a imagem como um 

todo, sem detectar pequenos detalhes da mesma, o que limita sua aplicabilidade em 

microestruturas mais complexas. Nestes casos, as condições de análise devem ser 

bem definidas, além de entender se as imagens do caso de uso podem ser 

avaliadas como um todo. Caso existam particularidades bem definidas, diversas 

classes podem ser criadas com combinações dessas particularidades. Mas, caso a 

combinação entre elas seja aleatória, esta pode não ser a melhor opção. Contudo, 

para tarefas binárias ou microestruturas mais simples ou bem definidas, o modelo 

oferece uma solução oportuna.  

Apesar das limitações, a acurácia obtida foi maior do que a esperada nos 

objetivos (60%), além de ser bastante superior a classificação aleatória. Ainda, a 

integração com a página web demonstra a facilidade de criar uma aplicação 

completa, mesmo sem a participação de desenvolvedores especialistas, como foi o 

caso deste trabalho. Dessa forma, a tese inicial foi comprovada. 

Por fim, vale ressaltar que os serviços aqui estudados demonstram potencial 

para aplicações mais ambiciosas, com possibilidade de serem empregados em 

diversas áreas da Engenharia Metalúrgica e de Materiais, nos variados assuntos 

relacionados a imagens, conforme a seção de trabalhos futuros a seguir irá 

esclarecer.  
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6 SUGESTÕES PARA TRABALHOS FUTUROS 

 

O modelo desenvolvido foi um passo inicial que provou que a utilização dos 

algoritmos de deep learning do serviço Watson™ Visual  Recognition da IBM são 

capazes de interpretar imagens de microestruturas. Dada a importância de se 

conhecer o aspecto microestrutural de um material, a comprovação da tese sugere 

diversos novos caminhos a serem explorados. Como o serviço pode ser montado 

por pessoas sem conhecimento técnico na área de programação, pode ser uma 

solução para a questão do conhecimento matemático e de ciência de dados 

requerido para desenvolver algoritmos, caso as condições e materiais de análise 

sejam bem padronizados. Além disso, o retorno da classificação ocorre em um 

intervalo de tempo muito baixo, praticamente imperceptível a humanos. Esta 

vantagem torna o serviço aplicável a outras análises, principalmente as que constam 

com atividades manuais, como a quantificação de fases e/ou microconstituintes 

através de estereologia, que pode prescindir de uma análise humana quanto aos 

níveis de contraste aplicados e diversos cálculos de média para chegar a uma 

composição esperada. Assim, a velocidade de resposta, aliada aos bons resultados 

e à facilidade de integração com outros sistemas viabiliza a aplicação no ramo 

industrial, potencializando a automação de processos.  

Uma hipótese é a de que o Watson Visual Recognition pode ser utilizado tanto 

em aplicações qualitativas, como a descrita neste trabalho, quanto em aplicações 

quantitativas.  

Uma importante aplicação quantitativa é a determinação de tamanho de grão. 

Também, um modelo empregando o Watson™ Visual Recognition poderia ser 

treinado para quantificar determinados microconstituintes, através de classes 

representantes de uma faixa de composição, incluindo a conversão para o valor 

correspondente à quantidade de carbono no aço a partir de um aplicativo de 

inteligência artificial. Um exemplo onde isto seria possível são aços hipoeutetóides 

ou eutetóides, cuja microestrutura é majoritariamente de ferrita e perlita, onde a 

fração volumétrica de perlita permite calcular o teor de carbono do aço. Outro ramo 

onde este produto da IBM pode ser aplicado é na análise e controle de qualidade, já 

que as amostras examinadas costumam ter sua preparação padronizada e seguir 

um conjunto de análises também bem definidas. Neste caso, poderiam ser 
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desenvolvidos modelos capazes de identificar  inconformidades ou inclusões, ou 

outras condições que não atendam aos padrões de qualidade. Além disso, os 

modelos não se restringem a materiais metálicos e a aplicação se estende para toda 

a área de materialografia. 

Uma forma de complementar este trabalho seria o desenvolvimento de um 

chatbot simples, que auxiliaria o usuário na utilização do modelo. As respostas do 

chatbot poderiam ser condicionadas de acordo com a classificação realizada pelo 

modelo, sugerindo novas análises a serem realizadas pelo usuário, como ensaios de 

dureza, ou correlacionando a microestrutura predominante com possíveis 

propriedades do material. Outra opção para a aplicação desenvolvida é torná-la mais 

interativa através de um pequeno pré-questionário sobre a imagem a ser inserida no 

modelo, onde seriam informadas a escala e ataque utilizados. Assim, a aplicação 

poderia avaliar apenas as classes referentes aos padrões informados. Para isso, 

mais imagens devem ser coletadas e novas classes precisarão ser criadas.  
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