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RESUMO

SANTOS, F. Analise estatistica de dados de curvas de resfriamento utilizando modelo de
regressao linear multipla. 2020. 76f. Monografia (Trabalho de Conclusédo de Curso) — Escola
de Engenharia de S&o Carlos, Universidade de S&o Paulo, Séo Carlos, 2020.

Solucdes idnicas de sais sdo muito utilizadas como meios de resfriamento durante o
tratamento térmico de témpera. Em geral, apresentam taxas maximas de resfriamento altas e
uma maior extracao de calor, resultado de uma menor estabilidade da camada de vapor que é
formada durante o resfriamento, e um maior poder condutivo do liquido com o metal. Devido
a esse rompimento mais rapido ou a auséncia da camada de vapor, sdo muito utilizadas para
diminuir distorcdes nas pecas e também para acos com baixa temperabilidade, onde as taxas
maximas de resfriamento precisam ser suficientemente altas para formacdo de estrutura
martensitica ou bainitica. Experimentos de curvas de resfriamento sdo realizados com o
objetivo de se caracterizar um meio de resfriamento com diferentes parametros, como a
temperatura do banho, a agitacdo do meio, a substancia utilizada como meio de resfriamento e,
no caso de solugdes, a concentracdo d soluto. O presente trabalho pretendeu realizar um estudo
estatistico de regressdo linear em um banco de dados de curvas de resfriamento, construindo
modelos lineares que explicam a variabilidade dos dados e permite inferéncias para prever as
taxas maximas de resfriamento médias em condi¢cBes ndo utilizadas previamente no
experimento, como diferentes porcentagens dos sais utilizados, oferecendo previsibilidade e
explicando a relacéo entre as diferentes variaveis. O resultado com os modelos mais complexos
foi satisfatério do ponto de vista estatistico, com uma grande explicacdo da variabilidade dos
resultados experimentais fornecidos. Esses modelos foram compilados para a construcao de um
aplicativo que recebe parametros de entrada e fornece a taxa maxima de resfriamento esperada
para a condicdo desejada, permitindo ao usuario planejar um experimento de témpera com

confianca no meio de resfriamento utilizado.

Palavras-chave: regressdo estatistica, meios de resfriamento, solugdes i6nicas, témpera.



ABSTRACT

SANTOS, F. Statistical analysis of cooling curve data using multiple linear regression
model 2020. 76f. Monografia (Trabalho de Concluséo de Curso) — Escola de Engenharia de
Séo Carlos, Universidade de S&o Paulo, Sdo Carlos, 2020.

lonic salt solutions are widely used as quenching mediums during quenching heat
treatment. In general, they have higher maximum cooling rates and greater heat extraction,
resulting from low stability of the vapor layer that is formed during cooling, and a greater
conductive power of the liquid with the metal. Because of that, they are widely used to reduce
distortions in components and for steels that have low hardenability, where the maximum
cooling rates must be high enough to form a martensitic or bainitic structure. Cooling curve
experiments are carried out in order to characterize a cooling medium with different parameters,
such as the bath temperature, the agitation of the medium, the substance used as additives in a
cooling medium and, in the case of solutions, the percentage of the solute. The present work
intends to carry out a statistical study of linear regression in a database of cooling curves,
building linear models that explain the variability of the data and allows inferences to predict
average maximum cooling rates in conditions not previously used in the experiment, such as
different percentages of the salts added, offering predictability and explanation of the
relationship between the different variables. The results with the most complex models are
satisfactory from a statistical point of view, with a great explanation of the variability of the
experimental results provided. These models were compiled for the construction of an
application that receives input parameters and provides the maximum expected cooling rate for
the desired condition, allowing the user to plan a quenching experiment with confidence in the

cooling medium used.

Keywords: statistical regression, cooling mediums, ionic solutions, quenching.
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1.  INTRODUCAO

Acos sdo ligas metalicas que possuem ferro e carbono em sua estrutura. S&o materiais
muito utilizados em varios segmentos da inddstria como componentes de maquinas ou em
construcdes mecanicas. Uma importante caracteristica desses materiais € a possibilidade de
combinar diferentes propriedades mecéanicas em um s6 componente, feito que € atingido com
a utilizacdo de tratamentos térmicos (SILVA; MEI, 2006).

A témpera consiste em aquecer 0 ago até sua temperatura de austenitizacéo,
normalmente entre 845 e 870 °C para acos carbono comuns, e posteriormente submeté-lo a um
rapido meio de resfriamento com o objetivo de se obter uma estrutura martensitica. Apds esse
tratamento, a peca é submetida ao revenido para alivio de tensdes e aumento da tenacidade. A
microestrutura final obtida é a martensita revenida, que combina as propriedades mecanicas de
resisténcia e tenacidade (KRAUSS, 1980).

O sucesso de um tratamento térmico de témpera, ou seja, o resultado em termos de
microestrutura e propriedade, depende também da composicdo do metal e do meio de
resfriamento utilizado. Para a obtencdo da martensita, € importante evitar as transformacoes
difusionais do aco, que resultam nas estruturas ferriticas, perliticas e bainiticas. A¢os que
possuem determinados elementos de liga em maiores quantidades possuem uma maior
temperabilidade, ou seja, uma facilidade maior de formar martensita em relagao a agos comuns,
enguanto agos comuns precisam de meios com taxas de resfriamento mais altas para formarem
martensita com sucesso (SILVA; MEI, 2006).

Solucdes salinas de témpera sdo muito utilizadas como meios de resfriamento para se
obter altas taxas de resfriamento, necessarias para agos que possuem uma baixa
temperabilidade, e por contribuirem também no rompimento da camada de vapor ou evitarem
completamente sua formagéo, o que resulta em uma peca com uma menor probabilidade de
trincas e distor¢gdes (LOZANO, 2016).

Em uma andlise de dados, regressdo pode ser definida como uma técnica que permite
fazer inferéncias sobre a relacdo entre variaveis respostas e variaveis independentes. Existem
métodos praticos para analisar regressdes assumindo 0 minimo possivel de conhecimento em
relacdo aos dados analisados. Nesse processo, € possivel definir uma equacdo matemaética que
descreve a relagéo entre duas ou mais variaveis (FOX; WEISBERG, 2018).

A quantidade de pecas que sdo submetidas a tratamentos termicos de témpera para
obtencéo de propriedades desejadas € muito grande, e cada metal possui uma combinagéo de
taxa de resfriamento, que pode ser estimada por meio de seu respectivo diagrama TTT ou CCT,
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e fluido ideal para se chegar no resultado desejado. Neste contexto, o trabalho proposto € de
analisar um banco de dados de curvas de resfriamento de solucdes salinas a base de sodio,
determinando as rela¢fes entre as variaveis do experimento, com a pretensdo de contribuir
fornecendo informagGes sobre a relacdo dessas varidveis e a melhor combinacao entre elas,

otimizando a escolha do meio de resfriamento ideal para o determinado tratamento térmico.
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2. OBJETIVOS

O objetivo geral do trabalho é estudar e quantificar as relacdes entre as varidveis de
entrada em um experimento de determinacédo de curvas de resfriamento e as varidveis de saida.
Os objetivos especificos séo:

e Utilizar de ferramentas estatisticas para obter equacGes (regressdo estatistica) que
descrevam os dados obtidos nos experimentos;

e Comparar os diferentes modelos construidos e avaliar o que melhor representa o banco
de dados, com base na literatura;

e Construir um aplicativo de predicdo da taxa maxima de resfriamento com a equacdo de

regressdao do modelo que apresentar melhores resultados.
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3. REVISAO BIBLIOGRAFICA

Acos sdo ligas ferro-carbono que podem conter quantidades significativas de outros
elementos de liga. As propriedades mecénicas de um ago, e consequentemente sua aplicacao,
dependem do teor de carbono, da presenca de diferentes elementos de liga e dos tratamentos
térmicos. Ainda que possam existir alternativas a esses materiais, 0s acos sao amplamente
utilizados na indudstria devido a seu relativo baixo custo, a possibilidade de se alterar as
propriedades mecénicas com simples tratamentos térmicos e 0 vasto conhecimento disponivel
na literatura sobre esses materiais (CALLISTER, 2014).

Um diagrama de fases é uma ferramenta importante para estudar ligas metalicas, com
representacfes de fases e as respectivas temperaturas e composi¢fes onde sdo estaveis
(equilibrio). Para resfriamentos fora do equilibrio, 0 que normalmente acontece na maioria dos
tratamentos térmicos, os diagramas CCT (Cooling Continuous Transformation) sdo mais
utilizados, pois refletem as consequentes transformacdes que ocorrem com as mudancas de
temperatura.

Na maioria dos tratamentos térmicos o componente é aquecido até a fase austenitica e
dependendo do resfriamento da origem a outras fases comumente conhecidas, como ferrita,
perlita fina, perlita grossa, bainita e martensita (BHADESHIA; HONEYCOMBE, 2009).

3.1 Diagramas TTT (tempo-temperatura-transformacao)

O processo de formacdo de fases como a perlita e a ferrita ocorre por difusédo, com
nucleacdo de pequenos nodulos das respectivas fases e crescimento de graos, até que a nova
microestrutura seja formada. Essa transformacg&o ndo é instantanea e sdo necessarios tempo e
energia para que ocorra a movimentagdo atdbmica, que origina os primeiros nlcleos da fase a
ser formada e 0 consequente rearranjo da microestrutura do a¢o. Os ndcleos crescem até que
se encontram fisicamente tornando o processo mais lento e prosseguem até a total estabilizacéo
da microestrutura. Quando um acgo eutetoide, situado no campo austenitico — por exemplo a
800°C, é resfriado até uma temperatura abaixo de 727°C, nucleiam-se pequenos nodulos de
perlita, até a transformacgé@o completa da austenita (SILVA; MEI, 2006).

Na transformacao de fases, existem dois processos com efeitos antagénicos na cinética
de transformacéo, a supersaturacao e o processo difusional. Quanto mais baixa a temperatura

abaixo de zona austenitica, maior sera a forca motriz de decomposicéo da austenita devido a
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supersaturacao, ou seja, uma quantidade de carbono muito acima do limite de solubilidade da
nova fase, a ferrita. Por outro lado, como € necessaria energia para essa movimentagdo atbmica,
quanto mais baixa a temperatura, menor é a difusdo atbmica e maior o tempo necessario para
formacéo da nova microestrutura (SILVA; MEI, 2006).

Pode-se subdividir as curvas TTT em dois tipos: curvas ITT (isothermal, time,
transformation), quando sdo utilizados métodos isotérmicos, e curvas CCT (continuous cooling
transformation), quando séo analisadas por meio da constante queda da temperatura promovida
por um meio de resfriamento continuo.

Um diagrama ITT (curva de transformacdo isotérmica) apresenta diferentes
microconstituintes que nao estdo presentes no diagrama de fases Fe-Fe3zC, como a bainita e a
martensita. A Figura 1 mostra a curva ITT de um ago SAE 1080 e as diferentes microestruturas
possiveis de serem formadas. Acima do “nariz” da curva, podemos dizer que o efeito dominante
¢ o da supersaturacdo, ¢ abaixo do “nariz” da curva que o efeito dominante ¢ o da difusao
(SILVA; MEI 2006).

Figura 1: Curva ITT para 0 ago SAE 1080
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Fonte: Metals Handbook, 1990.

A Figura 2 traz uma tipica curva CCT de um aco ligado. E interessante notar que as
temperaturas de inicio de transformacéo bainitica e martensitica independem da velocidade de

resfriamento, evidenciado no grafico pelas linhas mais escuras (ZHAO; NOTIS, 1995).
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Figura 2: curva CCT de um aco hipoeutetoide 0,24C-1,67Mn-0,39Si-0,14Ni-0,17Cr-0,22Mo0-0,11V
apresentando para cada curva o valor da dureza Brinell obtido com essas microestruturas
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Fonte: Adaptado de Zhao; Notis (1995)

3.2 Tratamento Térmico

Podemos definir tratamentos térmicos como um conjunto de operacbes térmicas as
quais um material é submetido com objetivo de se obter propriedades especificas. Nessa
operacdo, 0s a¢os sdo submetidos a condi¢bes controladas de tempo, atmosfera, velocidades de
aquecimento e resfriamento. As propriedades de um material dependem de sua microestrutura,
e como 0s tratamentos termicos séo capazes de alterar essa microestrutura, em maior ou menor
escala, geram um consequente efeito de alteracdo em suas propriedades. (CHIAVERINI,
2008).

Os tratamentos térmicos sdo vitais na producdo dos agos, e estdo presentes em varias
etapas do processamento. Muitas vezes um mesmo material é submetido a diversos tratamentos
térmicos e diferentes etapas de conformacédo até que a geometria e as propriedades almejadas
sejam atingidas. E importante conhecer o material que se esta tratando, pois cada peca e
material possuem particularidades que influenciam no planejamento de tratamentos téermicos,

afetando parametros como temperatura, tempo e velocidades de aguecimento e resfriamento.
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Uma das combinacgdes de propriedades mais desejadas nas aplicacfes dos acos é a de
resisténcia e tenacidade, que é obtida através do tratamento térmico de témpera, seguido pelo
revenimento. A témpera consiste em aquecer o material até a temperatura de austenitizacao e
depois resfrid-lo rapidamente, mergulhando o material em um fluido de resfriamento. Esse
resfriamento rapido origina nos componentes de aco uma microestrutura de elevada dureza e
resisténcia mecanica conhecida como martensita. A transformacdo martensitica depende da
velocidade de resfriamento do processo, de modo que essa taxa deve ser alta o suficiente para
evitar a formag&o das microestruturas difusionais do ago durante o tratamento térmico, como a
bainita e a perlita (SILVA; MEI, 2006).

Ao se analisar as curvas TTT dos acos, € necessario atingir uma velocidade de
resfriamento igual ou superior a Txcritica para se obter uma estrutura martensitica. Podemos
definir Txcriticacomo 0 valor minimo de taxa de resfriamento que deve ser obtido para evitar as
transformacdes difusionais do aco. Para cada grupo de aco e cada condi¢édo de tratamento existe
um meio de resfriamento mais adequado, que gerara a microestrutura desejada, uniformidade
e uma incidéncia menor de trincas e distor¢des. Para agcos de temperabilidade mais alta, como
0 SAE 4340, meios menos severos de témpera como 6leos sdo suficientes para formar uma
estrutura martensitica. Acos com poucos elementos de liga e de temperabilidade mais baixa,
como um ago SAE 1045, se submetidos a um tratamento térmico de témpera em 6leo podem
ndo gerar uma estrutura totalmente martensitica, ndo atingindo as propriedades mecanicas
desejadas. Nesses casos € necessario se utilizar de meios mais severos, como a dgua ou solucées

salinas.

3.3 Mecanismos de Resfriamento

Pode-se dividir os mecanismos de resfriamento que ocorrem durante a témpera em um
meio liquido volatil em trés fases distintas, cada uma com caracteristicas bem diferentes entre
elas, como pode ser visto na Figura 3. A primeira fase é a da formacéo da camada de vapor,
que ocorre logo no inicio do tratamento, imediatamente ap6s o contato do metal quente com o
fluido. Como a diferenca de temperatura € muito alta, e acima da temperatura de Leidenfrost,
é formada uma camada de vapor estavel ao redor da peca. Os principais mecanismos de
transferéncia de calor nessa etapa sdo a conducéo e a radiacao do filme de vapor. Nessa etapa
sdo encontradas as menores taxas de resfriamento da témpera, principalmente para fluidos cuja

camada de vapor é duradoura e mais estavel. Na segunda etapa a camada de vapor colapsa e as
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taxas de resfriamento sdo mais altas. Isso se da pela nucleacdo de bolhas na superficie do
metal. A terceira fase, em temperaturas mais baixas, € associada com o fim da ebulicdo de
bolhas na superficie do metal e o inicio de uma extracdo de calor que se d& por conducéo e
conveccdo do aco e o meio de resfriamento liquido (TOTTEN; BATES; CLINTON, 1993).

A agitacdo do meio de resfriamento costuma acelerar a extracdo de calor da peca
fazendo com que a primeira etapa acabe mais cedo, rompendo a camada de vapor em uma
temperatura mais alta e em um tempo mais curto. Assim, o resfriamento predomina-se na etapa
dois onde as taxas sdo mais altas e na etapa 3 até o equilibrio térmico. Outro fator que é
estudado é a temperatura do fluido: normalmente, quanto maior a temperatura, menores sdo as
taxas de resfriamento, dado que as outras variaveis se mantenham constantes. As taxas de
resfriamento e as faixas de temperatura para cada etapa dependem da composic¢ao do fluido e
de outros parametros, como agitacao, temperatura do banho, massa e geometria. Do meio mais
severo para 0 menos severo, tem-se as solucdes salinas, agua, solucdes poliméricas em agua,
6leos, gases inertes e finalmente o ar (TOTTEN; BATES; CLINTON, 1993).

Figura 3: representacéo de curvas de resfriamento e os trés diferentes estagios da extragdo de calor.
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Fonte: Adaptado de Totten; Bates; Clinton, 1993.

3.4  Sais como meios de témpera

Uma outra maneira de se romper a camada de vapor € com 0 aumento na taxa de

transferéncia de calor da condensacdo. Solugfes salinas em agua sdo muito utilizadas como
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meios de témpera por normalmente apresentarem altas taxas de resfriamento, e uma das
explicacOes é o colapso dessa camada em temperaturas mais altas e em tempos mais curtos.
Com esse tipo de fluido é possivel alterar o modo de resfriamento da superficie da peca em
refrigeragéo.

Estudos mostram que a concentracdo do sal na dgua é importante para aumentar a
temperatura de transicdo de estagio 1 para o estagio 2, a qual pode ser definida como a
temperatura na qual a camada de vapor se rompe promovendo um aumento na taxa de
transferéncia de calor maxima. A Figura 4 mostra o efeito de diferentes concentra¢Ges de sal
na taxa de resfriamento e na temperatura de rompimento da camada de vapor para uma solucao
salina de CaCl, (ARAI; FURUYA, 2011).

Figura 4: efeito da concentragdo de sal na taxa de resfriamento e na temperatura de témpera
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Fonte: Adaptado de Arai; Furuya, 2011.

35 Modelos Lineares

Um modelo estatistico pode ser definido como um conjunto de premissas que possuem

estrutura suficiente para apoiar na estimativa de diferentes quantidades de fatores interessantes;
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para utilizar informacdes passadas para predizer valores futuros; e para executar muitas outras
tarefas. (FOX; WEISBERG, 2018).

Modelos lineares sdo essenciais para estatistica aplicada. Sao frequentemente utilizados
em pesquisa e promovem a base para varias outras classes de modelos estatisticos, como 0s
modelos lineares generalizados, mais complexos.

Possui-se um conjunto de m preditores tal que u = (ui, Uz, ..., Um) OU variaveis
explicativas, e uma varidvel resposta y para cada uma das diferentes situacfes e casos. Esses
preditores podem ser variaveis numéricas qualitativas continuas, como a nota de uma prova na
faculdade, podem ser variaveis categdricas, como uma nacionalidade, género de uma pessoa
ou um grupo de tratamento a qual ela faz parte, e também uma varidvel ordinal categorica,
como uma nota de 1 a 5 em um teste de personalidade onde o nimero se refere a discordar ou
concordar com as frases sugeridas (Escala Likert). Todos esses preditores sdo, entéo,
transformados em variaveis de regressao, ou regressores, que sdo variaveis numéricas que
aparecem diretamente no modelo. Finalmente, para poder construir um modelo linear,
precisamos que algumas premissas basicas sejam cumpridas: (FOX; WEISBERG, 2018):

e Resposta: a resposta em um modelo estatistico linear deve ser uma variavel numérica
que deve ser, pelo menos, nominalmente continua;

e Observacdes: as observacdes das variaveis para um caso devem ser independentes das
observagOes para todos 0s outros casos. Se 0s casos sdo dependentes, entdo devem ser
utilizados modelos lineares de efeitos mistos;

e Linearidade: a dependéncia da variavel resposta dos preditores se da por meio do valor
esperado condicional ou pela fungdo média. Podemos definir que a quantidade n(x) =
Bo + B1.X1 + ... + Pk-Xk, Onde o lado direito da equagdo é o preditor linear e X = (X1, X2,
..., Xk) 0 vetor de regressdo. Se a funcdo de regressao esta incorreta, entdo qualquer
parametro e quaisquer conclusdes atingidas com a utilizagdo do modelo em questao
podem se tornar invalidas;

e Variancia Condicional Constante: A variancia condicional da resposta, dados os
regressores (ou, de forma equivalente, os preditores) deve ser constante. A falha em
ndo manter essa suposicdo ndo necessariamente invalida as estimativas de minimos
quadrados dos s, mas pode invalidar outros fatores do modelo, como os erros padrdes
dos coeficientes e suas consequentes derivadas, ou seja, testes e declaragcdes de

confianca.
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e Normalidade: (g[x) ~N (0, 62), produzindo um modelo linear normal (distribui¢do dos

residuos). Um modelo de distribuicdo normal prové muito mais estrutura do que o

necessario para ajustar um modelo linear pelo método dos minimos quadrados, embora

forneca uma forte justificativa para isso.

Duas variaveis explicativas de um modelo de regressdo linear sdo ditas interativas

quando o efeito parcial de uma delas depende do valor da outra, isto €, quando as regressoes

construidas em varias categorias de um fator ndo se ddo de maneira paralela. Logo, pode-se

afirmar que o fator interage com uma ou mais das varidveis explicativas quantitativas. O

modelo de regressao pode entdo ser modificado e reformulado para refletir essas interacdes e

possivelmente aumentar a aplicabilidade do modelo. As premissas para a construcdo de um

modelo linear com interacGes sdo as mesmas que para os modelos sem interacdes (FOX, 2015).

Para analisar os o resultado de uma regresséo linear, sdo utilizados alguns conceitos

estatisticos em relacdo aos coeficientes que séo obtidos. Os coeficientes formam a equacéo de

regressao e devem ser analisados de acordo com a significancia estatistica que possuem dentro

do modelo. Alguns conceitos importantes séo:

Distribuicdo de residuos: os residuos sdo a diferenca entre os valores obtidos no
banco de dados e os valores previstos pelo modelo. Um residuo negativo é uma
superestimativa e um residuo positivo € uma subestimativa. Idealmente, deve-se
chegar a uma distribuicdo como mediana préxima a zero.

Estimativa: séo os valores estimados para os coeficientes. Cada coeficiente possui
uma estimativa prépria que ndo pode ser comparada a outros coeficientes, em
especial quando sdo categorias distintas, porque a origem das informacdes pode ser
tdo distante quanto uma cor, uma porcentagem ou a nota em uma prova da
faculdade.

Desvio padrao: o erro do coeficiente. Sdo utilizados para construir as faixas de
variabilidade dos coeficientes, normalmente sob a forma de Coeficiente + Desvio
Padrdo, o que indica a faixa na qual o valor sera dado se for utilizado um outro
banco de dado com as mesmas variaveis. O desvio padrdo também é utilizado para
verificar se o parametro é significativamente diferente de 0. Quando isso ocorre,
pode-se afirmar que o coeficiente tem impacto na variavel resposta.

Valor “t”: 0 valor t é a razdo entre o coeficiente de regressao p e seu erro padrao,

(t = coeficiente + desvio padrdo). A estatistica t testa a hipdtese de que um
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coeficiente de regressdo populacional é 0. Se um coeficiente for diferente de zero,
entdo ele tem um efeito genuino na variavel dependente. No entanto, um coeficiente
pode ser diferente de zero, mas se a diferenca for devido a variacdo aleatéria, entdo
ele ndo tem impacto na variavel dependente.

e Teste Pr(>|t): o valor P indica se a varidvel independente possui capacidade
preditiva. Essencialmente, esse valor mostra se o efeito da variavel se deu por efeito
aleatdrio ou se existe algum efeito na variavel dependente. Quanto menor o valor
de P, mais significativo é o impacto do coeficiente no modelo.

e R? 0 R quadrado é uma medida estatistica que representa a proporcdo de variancia
para uma varidvel dependente que é explicada por uma ou mais variaveis
independentes de um modelo de regressio estatistica. E um ndmero entre zero e um,
e quanto mais proximo de zero, pior é o modelo.

Outro ponto importante na avaliacdo de um modelo de regresséo é o diagndstico que
deve ser feito. Os diagnosticos de regressdo sao métodos para determinar se um modelo de
regressdo ajustado representa adequadamente os dados. Eles abordam a adequacdo de um
modelo estatistico depois que ele foi ajustado aos dados. Um trabalho preliminar cuidadoso,
no entanto, ndo garante a adequacao de um modelo de regressdo, e a pratica da modelagem
estatistica é, portanto, muitas vezes um refinamento iterativo. Modelos lineares fazem
suposicOes fortes e as vezes irrealistas sobre a estrutura dos dados, pois ndo requerem,
necessariamente, um conhecimento prévio do pesquisador acerca dos dados. Quando as
suposicdes sdo violadas, as estimativas e previsdes podem se comportar mal e podem até
mesmo deturpar completamente os dados. Isso é verdadeiro para outros modelos de regressao
paramétrica. Os diagndésticos de regressdo podem revelar problemas e geralmente apontar o
caminho para solucdes (FOX; WEISBERG, 2018).
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4, PROCEDIMENTO EXPERIMENTAL

Por se tratar de uma analise estatistica de um banco de dados para quantificar a relagcdo
entre varidveis de um experimento, o procedimento experimental foi dividido em etapas
cronoldgicas, partindo da obtencdo dos resultados experimentais utilizados na analise,
passando pela etapa dos modelos descritivos dos dados até a obtencdo das equacdes de

regresséo linear.

4.1  Obtencéo dos Dados

Para a realizag&o do trabalho, foram utilizadas informagGes de uma base de dados de
curvas de resfriamento, cuja fonte sdo experimentos de meios de resfriamento utilizando
solucgdes salinas baseados nas normas ASTM D6200 e ASTM D6482-06. Cada condicao do

experimento continha as seguintes informacdes para caracterizacdo (ZORDAO, 2019):

Variaveis de entrada;

o Sal

e Concentracdo de soluto (sera referido também, ao longo do trabalho, como
porcentagem ou porcentagem do sal)

e Agitacdo

e Temperatura do banho

Todas as curvas de resfriamento foram compiladas e transformadas em uma tabela
resumo em formato Microsoft Excel. Cada condigdo experimental foi realizada no minimo
duas vezes, ou até se obter uma diferenca de resultado experimental na taxa maxima de
resfriamento e na temperatura em que elas ocorrem néo superior a 10 °C, de forma que os dados
utilizados sdo as médias calculadas dos diferentes experimentos com 0S mesmos parametros.

Isso garante a sanidade de dados e uma menor variabilidade nos resultados.

Variaveis de saida:

e Taxa maxima de resfriamento
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e Temperatura da taxa maxima
e Taxa de resfriamento a 700°C
e Taxa de resfriamento a 300°C
e Taxa de resfriamento a 200°C
e Tempo entre temperaturas de 850 e 700°C
e Tempo entre temperaturas de 850 e 300°C

e Tempo entre temperaturas de 850 a 200°C

O objetivo do referido trabalho foi estudar o comportamento de diferentes solucbes
ibnicas em relacdo a agua pura, assim como avaliar a influéncia dos fatores externos (agitacéo
e temperatura do banho). Foram extraidos valores das propriedades dos meios, como taxas de
resfriamento a diferentes temperaturas para caracterizar e diferenciar esses meios. Foram
utilizadas 5 substancias diferentes para a obtencdo dos dados, conforme Tabela 1. Todos 0s
materiais sdo do fabricante Labsynth e as informacdes retiradas das respectivas FISPQ (Ficha
de Informagdes de Seguranca de Produtos Quimicos (ZORDAO, 2019).

Tabela 1: Sais utilizados e respectivas solubilidades em agua

Descricéo Férmula Quimica Solubilidade em Agua
SULFATO DE SODIO ANIDRO P.A. Na,SO, 200 g/L
NITRITO DE SODIO P.A. NaNO, 820 g/L
CLORETO DE SODIO P.A. NacCl 333 g/L
BICARBONATO DE SODIO P.A. NaHCO; 95,5 g/L
HIDROXIDO DE SODIO P.A. NaOH 1111 g/L

Fonte: Adaptado de ZORDAO, 2019.

Apesar do composto NaOH néo ser considerado um sal, essa nomenclatura foi utilizada
ao longo dos trabalhos por sua aceitacdo no ambito industrial. Para efeito de comparacgéo e
padronizacdo, foi utilizada agua destilada (ZORDAO, 2019).

Os sais utilizados foram solubilizados em meio aquoso, em quantidades calculadas de
2, 7,12 e 15%massa, exceto pelo NaHCOg3, pois este possui uma solubilidade limitada em meio
aquoso. Para esse sal, foram utilizadas as concentracdes de 2, 5 e 7%massa. Essa informacao
foi levada em consideragdo na construcdo dos modelos propostos e do aplicativo, produto deste
trabalho (ZORDAO, 2019).
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Foi utilizada uma sonda Inconel 600® aquecida em um forno elétrico a 850 + 2°C. Apos
0 atingimento da temperatura e estabilizacdo, a sonda era mergulhada no fluido em estudo
rapidamente. Cada experimento promovido gerava uma base de dados com um registro na
queda de temperatura com frequéncia de 8 Hz (medicédo a cada 0,125 segundos), medida por
um sistema de aquisi¢do de dados do fabricante National Instruments (SCXI-1000DC e NI
SCXI1-1600), além do software Labjack (ZORDAO, 2019).

A agitacdo mecénica foi promovida por um agitador laboratorial e 0 aquecimento do
meio de resfriamento foi promovido por uma chapa aquecedora.

Foram utilizadas as temperaturas de banho de 25, 35 e 45°C, e as agitacGes de 0 (sem
agitacdo), 500 e 800 rpm. A temperatura durante o experimento foi registrada por meio de um

termopar do tipo K, localizado no centro geométrico da sonda.

4.2  Construcdo dos Modelos Estatisticos

A base de dados fornecida em Microsoft Excel foi carregada em um software em
linguagem R para compilacdo dos dados. A construcdo do modelo se inicia na leitura e
classificacdo dos dados como recebidos.

Para facilitar, os dados foram nomeados da maneira abaixo, quando colocados no
software:

e Variaveis resposta (variaveis de interesse do experimento)
o Txmax — taxa de resfriamento maxima

o Temp_txmax — temperatura que se atinge a taxa maxima
o Tx700 —taxaa 700°C
o Tx300 —taxa a 300°C
o Tx200 —taxa a 200°C
e Variaveis preditoras (variaveis que afetam a resposta e sdo medidas pelo pesquisador)
o Sal —meio de resfriamento utilizado
o Porcentagem — concentragdo em massa de sal da solucao
o Graus_c —temperatura do banho
o Rpm - rotacdo do banho, agitacéo
o T850_700 — intervalo de tempo entre 850 a 700°C
o T850 300 — intervalo de tempo entre 850 a 300°C
o T850 200 — intervalo de tempo entre 850 a 200°C
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A Figura 5 mostra a tela inicial do software R utilizado para as analises estatisticas, com
a leitura da planilha em Excel. Algumas informacdes fornecidas, como o fluxo de calor, o
coeficiente de transferéncia de calor e o indice de aceleracdo podem ser calculados com o
restante das varidveis do experimento, e, portanto, ndo foram incluidos na analise.

Figura 5: tela de leitura da planilha Excel no software R.

## # A tibble: 6 x 17
## sal graus_c porcentagem rpm txmax temp_ftxmax tx700 t=300 tx200 t850_700

##  <fct> <fet> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 H20 25 e a 232 656 221 86 36 4.9
## 2 H20 25 © 500 234 641 153 85 42 5.3
## 3 H20 25 © 808 243 658 232 87 48 2.3
## 4 H20 35 e a 2e4 586 171 84 35 4.6
## 5 H20 35 @ 588 196 581 111 56 41 3.8
## 6 H20 35 e &eo 240 646 231 85 46 2.6
## # ... with 7 more variables: t850_300 <dbl>, t856_200 <dbl>, 1d85@_30@ <dbl>,

## #  gmax <dbl>, hmaxguilherme <dbl>, hmaxbudapest <dbl>, hgrossmann <dbl>

Fonte: Elaborado pelo proprio autor

Durante a construcdo do trabalho, foi necessario escolher uma variavel resposta mais
adequada para se analisar, e as respectivas variaveis preditoras. Pela influéncia que a taxa
méaxima de resfriamento possui no que diz respeito a severidade de témpera, essa foi a variavel
escolhida para os modelos. Como varidveis preditoras, foram utilizadas o sal, a porcentagem,
a temperatura do banho e a rotacdo. Os tempos foram entendidos como preditores das taxas de
resfriamento (pois a taxa é calculada a partir da diferenca de temperatura entre dois pontos,
dado um intervalo de tempo), e, portanto, foram desconsiderados.

Ap0s atestada a sanidade dos dados, é feita uma analise estatistica descritiva bivariada
simples, onde os valores sdo lidos e tentam ser relacionados, procurando tendéncias visuais que
possam ajudar a interpretar os dados fornecidos. Para essa etapa foram construidos graficos
lineares e boxplots (ou diagrama de caixa) que traduzem os dados de forma visual.

Apobs as primeiras impressdes em relacdo aos dados, foi feita uma regressao linear
simples com as variaveis, primeiro dois a dois, construindo alguns modelos estatisticos. Cada
modelo é avaliado quanto a significancia das variaveis na equacdo de regressao e o quanto da
variabilidade dos dados pode ser explicada pelo modelo (R?). Ao passo que os modelos sido
construidos, sdo adicionados outros coeficientes e analisa-se se a inclusdo tornou o modelo
mais ou menos explicativo que o anterior, fazendo um paralelo com a literatura para explicar
os diferentes resultados obtidos.

Para construcdo dos modelos de regresséo foi considerada como base a 4gua destilada,

na temperatura de 25°C e sem agitacao.
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Assim como na analise descritiva bivariada, foram construidos graficos para melhor
visualizacdo dos parametros e das tendéncias apresentadas pelos dados. Em seguida, foram
construidas regressdes lineares maltiplas com as variaveis de entrada, procurando construir um
modelo que explicasse melhor a variabilidade.

A Ultima etapa na producdo das regressdes é considerar, além de mais variaveis, a
interacdo entre elas. Dessa forma, avaliou-se como todas as variaveis se relacionavam entre si
para construgdo de um modelo de regressdo linear multipla com interagGes. Para esse modelo,
a base considerada foi 0 sal NaSOs4, porque ndo existe sentido fisico em usar a &gua como base
para um modelo onde esta sendo quantificada a relacdo entre um sal e sua porcentagem na
solucdo. A escolha se deu de maneira aleatoria, de acordo com a ordenacdo dos dados no
software.

A leitura da significancia das varidaveis nos modelos no aplicativo R pode ser
interpretada da seguinte maneira:

o ***:(,1%;
o **: 1%

o *:5%

o ..10%

Quando a variavel ndo é estatisticamente significativa dentro das faixas descritas, seu
resultado, no cédigo do programa, aparece em branco. O valor maximo de significancia
avaliado pelo software R foi de 10%. Algumas literaturas consideram a faixa de 15%, mas
entende-se que, para 0 experimento em questdo, seria considerar um erro muito significativo e
as variaveis nessa categoria foram ditadas como n&o significativas.

Os modelos foram comparados de forma resumida quanto as caracteristicas que
apresentam, mostrando a evolucdo da analise de acordo com a inclusdo dos coeficientes.
Também foi feito um diagnostico de cada modelo quanto aos residuos de Pearson, para
verificar se 0 modelo representa de maneira adequada os dados utilizados para sua construcéo.
Eles séo obtidos pela diferenca entre os dados calculados e os dados reais.

Para 0 modelo que apresentou 0 maior R?, sdo apresentadas as relagbes entre as
variaveis e alguns exemplos de graficos onde o resultado obtido (modelado) é muito proximo
do presente no banco de dados.

Por fim, utilizando-se os modelos com maior poder explicativo da relagcdo entre as
variaveis, foi feito um aplicativo em linguagem R com a biblioteca Shiny que usa como base

as equacdes de regressdo linear multipla obtidas. O aplicativo tem como objetivo auxiliar um
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usuario na predicdo das taxas de resfriamento maxima quando sao utilizados os sais contidos
no banco de dados deste trabalho, mas também permite extrapolar o resultado para valores que
ndo foram medidos experimentalmente, otimizando a utilizacdo das condic¢des para se obter
um experimento de témpera com maior confiabilidade. Alguns exemplos de resultados obtidos

com o software sdo demonstrados na secéo de resultados e discussoes.
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5.  RESULTADOS E DISCUSSOES

A apresentacdo dos resultados e suas discussdes sera dividido em ordem cronoldgica,
de acordo com a leitura e construgdo dos modelos estatisticos deste trabalho. De forma a ndo
tornar repetitiva e exaustiva as referéncias tedricas da literatura quanto aos efeitos observados,
esse ponto sera deixado para o final, de forma consolidada, ou apresentado de forma pontual
quando pertinente. O resumo de todos os modelos estatisticos construidos, os erros, valores de

coeficientes e respectivos R? estdo presentes nos anexos deste trabalho.

5.1  Estatistica Descritiva (bivariada)

Os primeiros resultados da analise sdo graficos que plotam as varidveis do banco de
dados conforme extraidas, sem nenhum tratamento estatistico. A Figura 6 mostra a distribuicéo
da taxa maxima de resfriamento de acordo com o tipo de sal. Os pontos fora do diagrama sao
chamados de pontos discrepantes, ou outliers, e podem ser definidos como os pontos fora dos
limites inferiores e superiores do diagrama, construido pela mediana e pelos primeiros e
terceiros quartis de um grupo de dados (GONCALVES, 2020).

Figura 6: diagrama de caixa da taxa méxima de resfriamento e o tipo de sal

txmanx

H2C Na2s04 NaCl NaHCO3 NaNO2 NaOH
sal

Fonte: Elaborado pelo proprio autor
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Com o diagrama, visualmente pode-se dizer que alguns sais, como o sulfato de sodio e
o0 cloreto de sddio possuem uma variabilidade mais baixa na taxa maxima de resfriamento,
enquanto o nitrito de sodio possui uma alta variabilidade. Também podemos afirmar que o
bicarbonato de sodio possui as taxas mais baixas do banco de dados, estatisticamente inferiores
a da base considerada, a agua pura, e que o hidroxido de sédio possui altas taxas de
resfriamento.

A Figura 7 mostra a porcentagem do sal em relacdo a taxa méxima de resfriamento.
Nesse diagrama existe uma tendéncia de crescimento na taxa maxima com o aumento da
porcentagem do sal, exceto em 5%, onde o comportamento estd fora do padrdo. Além disso,
em 7% vemos uma alta quantidade de outliers, pontos que ndo compBem um grupo
estatisticamente grande dos dados. Analisando a forma com que o experimento foi conduzido,
verifica-se que, devido a solubilidade limitada do NaHCOs, ele foi utilizado em 2, 5 e
7%massa, enquanto os outros sais foram utilizados em 2, 7, 12 e 15%. Associando essa
informacao experimental com o diagrama anterior, pode-se afirmar que o comportamento fora
do padréo a 5% se da porque o Unico sal analisado com essa porcentagem é o NaHCOs3, e que
o0s pontos fora da caixa e do limite de variabilidade a 7% s&o os pontos referentes, também, ao
NaHCOs, que ao contrario das outras solugdes, apresenta taxas mais baixas que a base, e ndo
mais altas (ZORDAO, 2019).

Figura 7: diagrama de caixa da taxa méaxima de resfriamento e a porcentagem do sal

|

txmax

T

porcentagem

Fonte: Elaborado pelo proprio autor
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Para confirmar essas suposi¢cdes, foram construidos graficos da relacdo entre a

porcentagem e a taxa maxima de resfriamento para cada sal, presentes na Figura 8. Pela figura,

confirma-se que 0s Unicos pontos a 5% sao referentes ao bicarbonato de sédio, o que explica o

comportamento fora do padrdo. Além disso, € possivel analisar um outro efeito em relagéo a

esse sal: enquanto a tendéncia em relacdo a taxa maxima de resfriamento parece ser diretamente

proporcional com a porcentagem do sal, para esse em especifico a relagdo parece ser inversa,

ou seja, quanto mais desse sal temos solubilizado, menor é a taxa maxima de resfriamento

média obtida no experimento.

Figura 8: diagrama de caixa da taxa maxima de resfriamento, o tipo de sal e a porcentagem

txrmax

Fonte: Elaborado pelo préprio autor
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Outra variavel que deve ser analisada no modelo é a temperatura do banho. A Figura 9

mostra o diagrama de caixa relacionando a taxa maxima de resfriamento e a temperatura do

banho.
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Figura 9: diagrama de caixa da taxa maxima de resfriamento e a temperatura do banho
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Fonte: Elaborado pelo préprio autor

Apesar de alguns outliers, a variabilidade a 25 graus parece ser a menor, e parece existir
uma tendéncia de diminuicdo da taxa maxima com o aumento da temperatura do banho. No
entanto, como a variabilidade € muito alta, ndo se pode afirmar de forma definitiva que a
temperatura diminui a taxa maxima de resfriamento, quando analisada sozinha.

A Figura 10 traz o efeito da temperatura do banho para cada um dos sais. Com essa
informacdo adicional, e com variabilidades menores, pode-se afirmar que existe uma tendéncia
de diminuicdo na taxa maxima de resfriamento com o aumento da temperatura do banho,
independente do sal. Aqui, por exemplo, o efeito ndo difere para o NaHCOs3, como visto

anteriormente em relacéo a porcentagem do sal.
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Figura 10: diagrama de caixa da taxa maxima de resfriamento, o tipo de sal e a temperatura do banho
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Fonte: Elaborado pelo préprio autor

Finalizando o segmento de estatistica descritiva bivariada, a varidvel rotacdao (rpm) é
analisada em relag&o a taxa maxima de resfriamento. A variabilidade de taxas para essa variavel
preditora é muito grande, entdo, foi apresentado somente o resultado com os diferentes tipos
de sal, na Figura 11. Mesmo com essas duas variaveis, ndo € possivel afirmar que existe uma

influéncia, porque existem tanto tendéncias de aumento quanto de diminuigdes na taxa.
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Figura 11: diagrama de caixa da taxa maxima de resfriamento, o tipo de sal e a rotacéo
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Fonte: Elaborado pelo préprio autor

Finalmente, foram plotados os gréficos levando em consideracdo 3 variaveis. Por
apresentarem os efeitos mais significativos aparentes na taxa, foram mantidos o tipo de sal e a
porcentagem do sal, alterando a terceira variavel entre a rotacdo e a temperatura do banho. Esse
resultado é apresentado nas Figuras 12 e 13, respectivamente.

Estudar a influéncia de cada um desses efeitos na taxa maxima de resfriamento, somente
com a leitura e visualizacdo dos dados ndo é pratico nem confiavel, pois sdo muitos fatores a
serem considerados, muitas inferéncias com a literatura e poucas ferramentas que permitem
previsibilidade de resultados. Por isso, sdo construidos modelos lineares como a regressao

linear para modelar o banco de dados e facilitar as analises.



Figura 12: linhas médias relacionando taxa maxima, tipo de sal, porcentagem e rotagédo
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Figura 13: linhas médias relacionando taxa maxima, tipo de sal, porcentagem e temperatura do banho
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Fonte: Elaborado pelo proprio autor

45

CONEN EODHEN 10BN YOSZEN 0ZH

HOEN



42

5.2  Regressao linear simples

A forca motriz da construcdo dos modelos é encontrar a resposta para simples perguntas
que podem ser feitas quando se analisa 0 banco de dados. Os modelos de regressdo linear
simples consideram apenas um coeficiente na explicacdo da varidvel resposta, e nesse caso
foram construidos 4 modelos para esse tipo de regressao.

O modelo 1 procura responder se € possivel estudar o efeito médio da concentracao do
sal na taxa de resfriamento maxima. A Figura 14 traz a relacdo entre a porcentagem e a taxa
méaxima de resfriamento.

Figura 14: taxa maxima de resfriamento e porcentagem do sal (modelo 1)
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Fonte: Elaborado pelo préprio autor

Nesse grafico é apresentada a linha de regressdo na forma de uma linha azul. A faixa
em azul-claro é o intervalo de confianca do modelo, e as faixas no eixo x s@o as observacoes
fornecidas pelo banco de dados.

A leitura estatistica do modelo é apresentada na Figura 15.
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Figura 15: resultado do modelo 1

## Call: Im(formula = txmax ~ porcentagem, data = db)
#i
## Coefficients:

## Estimate std. Error t value pPr(>|t])

#t (Intercept) 195.6395 5.4188 36.18@ <2e-16 ***

## porcentagem 5.9556 @.5767 10.33 <2e-16 ***

#H - -

## Signif. codes: @ "***' @g,@01 '**' @.01 '*' @.05 '.' €.1 " ' 1

##

## Residual standard deviation: 39.37 on 178 degrees of freedom
## Multiple R-squared: ©.3747

## F-statistic: 106.7 on 1 and 178 DF, p-value: < 2.2e-16

#i AIC BIC

## 1837.06 1846.63

Fonte: elaborado pelo préprio autor

Para todos os casos, incluindo o modelo 1, podemos ler os valores que refletem se o
modelo é estatisticamente significativo ou ndo. Esse conceito se repete ao longo da
apresentacdo dos modelos e seu conceito foi apresentado na revisao bibliografica, secdo 3.6.

Para esse modelo, apesar do intercepto e da porcentagem possuirem significancia
estatistica, 0 R encontrado é de 37%, o que é considerado baixo para os padrdes e insuficiente
para explicar a taxa maxima de resfriamento.

O modelo 2 utiliza como variavel independente o tipo de sal. Importante notar que,
diferente da porcentagem, o tipo de sal é uma variavel categorica (e ndo continua), mas que
pode ser utilizada em uma regresséo linear, de forma que cada categoria possui um coeficiente
diferente na construcdo da equacdo de regressdao. O mesmo vale para a rotacdo e a temperatura
do banho, consideradas variaveis categéricas na constru¢do dos modelos.

A Figura 16 representa a relacdo entre a taxa maxima de resfriamento e o tipo de sal.
Para esse modelo, 0 R? é de 62% e todas as variaveis sdo estatisticamente significativas. Com
esse resultado é possivel inferir que, mesmo que o tipo de sal ndo explique toda a variabilidade
do banco isoladamente, é definitivamente uma variavel que, quando alterada, ira alterar os

resultados da taxa maxima de resfriamento.
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Figura 16: taxa maxima de resfriamento e tipo de sal (modelo 2)
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Fonte: elaborado pelo préprio autor

Nesse modelo, o coeficiente que apresenta a maior taxa maxima de resfriamento é o
NaOH, e a menor, o0 NaHCO3, 0 que vai de encontro com a analise descritiva bivariada feita
anteriormente. Apesar deste modelo ter um R? maior que o anterior, o valor de desvio padréo
para os coeficientes € alto (variando entre £ 10,37 e £ 11,97) e boa parte deles estd no mesmo
intervalo de taxa maxima.

O modelo 3 apresenta um R? de 5% e foi construido com a variavel temperatura do
banho, e 0 modelo 4 possui um R? de 0,4% e foi construido com a variavel rotagdo. Ambos
modelos apresentam resultados ruins e possuem pouca ou nenhuma variavel estatisticamente
significativa. Isso significa que, isoladamente, essas variaveis ndo sdo suficientes para explicar
a variabilidade do banco de dados, o que € de se esperar, pois os fatores que mais influenciam
nas taxas maximas de resfriamento em meios de solucdes i6nicas sdo o tipo de sal e a respectiva
porcentagem do mesmo. A temperatura do banho e a rotagdo podem, no entanto, influenciar
em alguns fatores que ndo sdo objeto de estudo dessa analise estatistica e trazerem beneficios
ao tratamento térmico de témpera, como ja descrito por outros autores (TOTTEN; CANALE,
2005).

As Figuras 17 e 18 trazem os modelos 3 e 4 e os resultados obtidos de forma grafica,

respectivamente.
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Figura 17: relagdo entre taxa maxima de resfriamento e temperatura do banho (modelo 3)
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Fonte: elaborado pelo préprio autor

Figura 18: relacdo entre taxa méaxima de resfriamento e a rotacdo do banho (modelo 4)
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Fonte: elaborado pelo préprio autor

A regressdo linear simples realizada mostra que, dentre as quatro variaveis utilizadas

para construcdo dos modelos, somente a porcentagem e o tipo de sal tem uma forte influéncia
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no modelo e explicam a variabilidade, fato verificado nos modelos 1 e 2. No entanto, quando
os fatores sdo estudados em conjunto, a rotacdo e a temperatura do banho podem, também,
serem estatisticamente significativos, e os proximos modelos apresentados mostram essas

combinagdes e o0s respectivos resultados.

5.3  Regressao linear multipla — coeficientes parciais

Em uma regressao linear multipla, os coeficientes sdo considerados parciais, isto , cada
coeficiente representa o efeito na varidvel resposta mantendo constante o valor das outras
variaveis explicativas. Diferente da regressdo linear simples, onde o efeito de outras variaveis
é ignorado, a regressdo linear maltipla consegue construir modelos que explicam melhor a
variabilidade de dados por considerar tanto o efeito das variaveis gquanto a combinacdo entre
elas.

Seguindo as mesmas premissas para os modelos anteriores, foram construidos modelos
multiplos para explicar a variabilidade dos dados e a relacdo entre as variaveis.

O modelo 5 apresenta um R? de 75%, e mostra que o efeito parcial da concentracdo de
sal na temperatura méaxima de resfriamento € de 4 graus a cada 1%. A Figura 19 mostra o efeito
preditor da porcentagem na taxa maxima e a Figura 20 mostra o preditor do sal na taxa maxima.

Figura 19: efeito preditor da porcentagem na taxa maxima (modelo 5)
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Fonte: elaborado pelo préprio autor

Podemos interpretar o coeficiente do tipo de sal de forma que, mantida a porcentagem

do sal, a taxa maxima de resfriamento media para cada sal varia de acordo com o grafico da
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Figura 20. Da mesma maneira, a Figura 19 da porcentagem mostra, para um mesmo tipo de
sal, a predicdo do efeito na taxa maxima de resfriamento média.

Figura 20: grafico da relacéo entre o tipo de sal e a taxa maxima de resfriamento (modelo 6)
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Fonte: Elaborado pelo préprio autor

Esse resultado do efeito preditor da porcentagem do sal é esperado para uma solucgdo
ibnica em geral, porque, quanto maior a concentra¢do do soluto, mais fina serd a camada de
vapor e mais facilmente rompida, elevando as taxas de resfriamento. Consequentemente,
podemos afirmar que o fluido pode ser recomendado em casos onde uma severidade de témpera
maior é necessaria (ARAI; FURUYA, 2011).

O modelo 6, em relacdo ao modelo 5, adiciona aos coeficientes a temperatura do banho,
e tem um poder explicativo, R? de aproximadamente 81%. O resultado dos efeitos preditores
da porcentagem e do tipo de sal sdo muito similares graficamente ao modelo 5, apesar de
existirem diferencas nos modelos. A Figura 21 mostra o efeito da temperatura do banho na taxa
méaxima de resfriamento média. Podemos inferir que os casos onde as temperaturas sao 35 e 45
possuem, em média, taxas de resfriamento mais baixas. 1sso pode ser explicada por uma maior
estabilidade da camada de vapor formada, o que vai de encontro com os resultados relatados

por outros autores.
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Figura 21: gréafico da relacdo entre a temperatura do banho e a taxa méaxima de resfriamento (modelo
6)
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Fonte: elaborado pelo préprio autor.

O modelo 7 apresenta R? de 75% e foi construido utilizando como coeficientes a
porcentagem, o tipo de sal e a rotacdo (rpm). Quando comparado com o modelo 5, ndo existem
vantagens em considerar a rotacdo, porque a variabilidade com esse coeficiente € muito alta,
tornando a varidvel estatisticamente ndo significativas, e ele, sozinho, ndo consegue explicar
satisfatoriamente a taxa méxima de resfriamento média. Essas classes, segundo o modelo, ndo
sdo estatisticamente significativas e, portanto, ndo aumentam o poder explicativo do modelo.
A Figura 22 traz de forma grafica esses resultados obtidos com o modelo.

Figura 22: gréafico da relacdo entre a rotacdo e a taxa maxima de resfriamento (modelo 7)
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Fonte: elaborado pelo proprio autor.
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Esse resultado é esperado, pois o sal e sua concentracdo sdo muito mais importantes na
determinacdo do meio de témpera do que a rotacdo. Isto €, sozinha, a rotacdo nédo é capaz de
predizer qual sera o resultado das varidveis de saida do experimento (taxa maxima de
resfriamento, severidade de témpera), enquanto é possivel fazer inferéncias utilizando meios
com composicdes diferentes.

O modelo 8 é o modelo mais completo de regresséo linear multipla sem interagdes em
relacdo aos coeficientes, levando em consideragao a concentragao e o tipo de sal, a temperatura
do banho e a rotagdo. Apresenta um R? de 81%, similar ao modelo 6. Da mesma maneira que
no modelo 7, o coeficiente da rotacdo ndo é estatisticamente significativo, pois ndo existe
diferenca média entre as rotacdes de 500 a 800 rpm em relacdo ao banho sem agitacéo. Para 0s
resultados finais do modelo, a rotagdo foi mantida como um dos coeficientes para representar
os resultados de maneira gréafica de maneira completa e também para construcdo do aplicativo,
apos a modelagem estatistica. A Figura 23 traz a leitura estatistica do modelo.

Figura 23: resultado do modelo 8

## Call: 1m(formula = txmax ~ porcentagem + sal + graus_c + rpm, data = db)
HH
## Coefficients:

## Estimate Std. Error t value Pr(:|t]|)

## (Intercept) 216.872 8.865 26.892 < 2e-1lg ***
## porcentagem 4,857 8.366 11.985 <« 2e-lg ***
## salNa2504 21.682 8.865 2.437 8.81586 *
## salNaCl 18.819 8.865 2.832 8.e4367 *
## salNaHCO3 -78.842 8.671 -8.978 1.19e-13 ===
## salNahNO2 3.1z8 8.865 @.353 8.72450

## salNaOH 26.324 8.865 2.969 ©.80342 ==
## graus_c35 -12.217 4.832 -3.930 ©.00283 **
## graus_cd5 -28.317 4.832 -7.923 5.08e-11 **=
## rpm5e@ 4,317 4.832 1.971 @.28598

## rpmBee 7.688 4.832 1.885 @.86117 .
#HHo---

## Signif. codes: @ "®**' @g.@@1 '**' @.81 "=" 8.5 '." .1 ' "1

HH

## Residual standard deviation: 22.09 on 169 degrees of freedom
## Multiple R-sguared: @.8131

## F-statistic: 73.54 on 1@ and 16% DF, p-wvalue: < 2.2e-16

## AIC BIC

## 1637.64 1675.95

Fonte: elaborado pelo proprio autor.

As variaveis com maior significancia sdo a porcentagem, saINAHCO3 e graus_c45,
com confiabilidade de até 0,1%. Pode-se afirmar que, em relacdo a base, que € a 4gua, essas
variaveis tém uma alta significancia em alterar a taxa méaxima de resfriamento. A variavel
salNaNO2 ndo possui significancia no modelo 8, indicando que, em relacdo a base utilizada
(H20), ndo existe, isoladamente, uma diferenca estatistica. Isso se da pelo alto desvio padréo
dos resultados encontrados utilizando esse sal, 0 que também foi analisado na secdo de

estatistica descritiva.



50

As Figuras 24, 25 e 26 mostram, respectivamente, os graficos dos diferentes tipos de

sal, da temperatura do banho e da rotacdo com o aumento da porcentagem do sal.

Figura 24: tipos de sal e o efeito com o0 aumento da porcentagem
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Fonte: elaborado pelo préprio autor.

Mesmo incluindo a rotagdo como variavel, considerando, portanto, todas as variaveis
preditoras descritas no procedimento experimental, 0 modelo 8 ndo apresenta vantagens em
relacdo ao modelo 6. Segundo o modelo, ndo ha diferenca média na taxa maxima de
resfriamento entre as rotacbes de 500 e 800 rpm com relacéo & 0 rpm.

Além disso, como verificado na andlise descritiva bivariada, 0 NaHCO3z como meio de
témpera possui um efeito inversamente proporcional na taxa maxima de resfriamento, o que
ndo é refletido no grafico. Apesar de considerar todas as varidveis descritas no procedimento
experimental, 0 modelo ndo considera as interagdes entre elas. O reflexo disso é que o
coeficiente angular das retas dos efeitos preditores € 0 mesmo, independente do sal, da rotagédo
ou do banho, o que nédo reflete alguns comportamentos ja verificados na analise descritiva

bivariada.



Figura 25: temperatura do banho e o efeito com 0 aumento da porcentagem
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Fonte: elaborado pelo préprio autor.

Figura 26: rotacdo e o efeito com o aumento da porcentagem
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Fonte: elaborado pelo préprio autor.
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54  Regressdo linear multipla — com interacdes

O modelo 9 foi construido utilizando como base o sal NaSO4 e considera as interacdes
gue se mostraram mais significativas durante a construcao do modelo, que sdo as relacGes entre
a porcentagem do sal e a temperatura do banho, e a porcentagem do sal com o tipo de sal. O
resultado completo do modelo 9 é apresentado na Figura 27.

Figura 27: resultado do modelo 9

## Call: lm(formula = txmax ~ porcentagem + sal + graus_c + rpm + porcentagem *
H#HH graus_c + sal * porcentagem, data = db_9)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 251.3996 6.5552 38.351 < 2e-16 *¥*
## porcentagem 2.4528 0.6282 3.905 0.00014 =xx
## sallaCl 1@.9167 7.6289  1.432 ©.15403

## salNaHCO3 -60.2029 $.1874 -6.553 7.91e-18 =**
## salNaNO2 -69.4824 7.6289 -9.117 3.78e-16 ***
## sallNaOH 13.8447 7.620%9 1.817 e©.e7120 .
## graus_c35 -16.8464 5.7684 -2.920 0.00402 **
## graus_c4d5 -48.4979 5.7684 -8.408 2.55e-14 #¥=
## rpm500 4.7193 2.9186 1.617 ©@.1@792

## rpm80Q 7.8351 2.9186 2.419 ©.01711 *
## porcentagem:graus_c35 2.6250 @.5983 1.845 8.29785

## porcentagem:graus_cd5  2.6527 8.5983  4.434 1.75e-05 =%%
## porcentagem:saliaCl -1.6111 0.7420 -2.171 ©0.@3142 *
## porcentagem:salNaHC03 -7.2120 1.5508 -4.651 7.04e-06 =%%
## porcentagem:salNalNO2 5.6678 @.7420 7.639 2.12e-12 =**
## porcentagem:salNaOH -1.08136 9.74286 -1.366 ©.17388

H## o---

## Signif. codes: @ '"***' §.@o1 "**' @.81 '*' #.065 '.' @.1 " "1
##

## Residual standard deviation: 15.58 on 155 degrees of freedom
## Multiple R-squared: ©.9188

## F-statistic: 185.5 on 15 and 155 DF, p-value: < 2.2e-16

## AIC BIC

## 1441.63 1495.84

Fonte: elaborado pelo préprio autor.

O modelo 9 apresenta o maior R? de todos os modelos construidos, com um poder
explicativo de 91%. Possui muitas variaveis que sao estatisticamente significativas, como 0s
sais e as interacOes entre eles, e uma significancia nas interagdes das porcentagens com o banho
a 45 graus. Foi o Unico modelo também que apresentou significancia para agitacdo em 800
rpm, resultado de uma anéalise mais profunda nas interagdes.

A Figura 28 mostra o efeito da porcentagem no tipo de sal, para cada temperatura de

banho considerada.
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Figura 28: gréaficos de efeitos preditores categorizados por tipo de sal e temperatura do banho. Eixo x
com porcentagem do sal
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Fonte: elaborado pelo proprio autor.

Diferente dos modelos apresentados anteriormente, 0 modelo 9 apresenta uma
variabilidade muito menor nos graficos, exceto para 0 NaHCO3. Como 0 mesmo sO foi
utilizado em concentracdes de até 7%, a extrapolacdo da variavel resposta possui uma maior
variabilidade para esse sal.

Alguns coeficientes, como salNaOH, porcentagem:salNaOH e sal NaCl, que
apresentaram significancia estatistica relevante nos modelos anteriores passaram a ndo mais

serem estatisticamente significativos. Isso ocorre porque a base para a constru¢do do modelo 9
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€ 0 sal NaSOa, e como esses sais apresentam um efeito muito similar em relacdo a taxa maxima
de resfriamento, ndo ha diferenca estatistica em utilizar um ou outro, segundo o0 modelo.

A Figura 29 traz as curvas que mostram a interacdo do tipo de sal com a porcentagem
do sal. Diferente do modelo 8, onde o coeficiente angular das retas era 0 mesmo, nesse gréfico
cada sal possui uma predicdo diferente com o aumento da porcentagem. Como pode ser
observado, o efeito inverso do aumento do NaHCO3 foi corretamente previsto pelo modelo,
como observado no banco de dados.

Figura 29: curvas de interagdo entre tipo de sal e porcentagem do sal e relacdo com taxa

maxima de resfriamento.
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Fonte: elaborado pelo préprio autor.

Outro achado interessante é em relacdo ao sal NaNOa. Esse sal, quando em pequenas
porcentagens, apresenta taxas maximas de resfriamento inferiores aos outros (exceto pelo
NaHCO3), mas em torno de 15% € o que apresenta, segundo 0 modelo, as maiores taxas de
resfriamento.

A Figura 30 mostra a interagdo entre a porcentagem do sal e a temperatura do banho.
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Figura 30: curvas de interagdo entre temperatura do banho e porcentagem do sal e relacéo

com taxa maxima de resfriamento.
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Fonte: elaborado pelo préprio autor.

Como visto em outros modelos, a temperatura do banho parece influenciar de maneira
inversa na taxa maxima de resfriamento. Esse fato pode ser explicado pela estabilidade da
camada de vapor que é gerada em temperaturas mais altas do banho. Por outro lado, o gréfico
das interacGes mostra que, no caso de a porcentagem do sal ser suficientemente grande, esse
efeito da estabilidade da camada parece ser vencido pelos beneficios da utilizacdo da solucéo
aquosa como meio de resfriamento, como esperado. A observacdo € de que, embora exista uma
diferenca na taxa média entre as temperaturas de 25 e 45°C, ela € muito menor em 15% do que
em 2%, e seguindo o coeficiente angular da reta graus_c 45, poderia existir a possibilidade de
que o efeito se inverta em porcentagens maiores, como 20%, mas nao se pode assumir uma
completamente linearidade dos dados fora do limite do banco de dados.

O unico efeito que parece ndo ter relevancia estatistica como as outras variaveis é a

rotacdo. A Figura 31 mostra as curvas de interagdo entre a rotacéo e a porcentagem do sal.
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Figura 31: curvas de interagdo entre rotacao e porcentagem do sal.

280 rpm

txmax
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Fonte: elaborado pelo préprio autor.

Muitos estudos mostram que a agitacao tem efeitos no perfil de dureza da peca obtida,
na diminuicdo de distorcGes e trincas e em obtengdo de maiores taxas maximas de resfriamento,
aumentando a severidade de témpera. Estudos conduzidos em éleos de témpera e agua dizem
que a agitacdo € primordial no design de um experimento de témpera, e recursos
computacionais de simulagdo de extracdo de calor sdo comumente utilizados para mostrar 0s
beneficios (TOTTEN; CANALE, 2005). O modelo 9 mostra que essa diferenca observada no
banco de dados ndo € significativa. Isso significa que seriam necessarios mais pontos para cada
caso para aumentar a relevancia estatistica desse parametro. Para entender melhor essa
dissonancia com alguns estudos da literatura, € primeiro necessario definir o que pode ser
considerado uma agitacdo que tenha efeito no meio de témpera, e se as rotagdes de 500 e 800
rpm estdo dentro dessa faixa. Como o modelo quantifica o efeito dos coeficientes em relagéo a
taxa méaxima de resfriamento, € possivel que outros efeitos secundarios na peca que ndo estejam
diretamente ligados a taxa maxima de resfriamento sejam afetados pela rotagéo, produzindo
bolhas menores e mais uniformes durante a fase de nucleacdo de bolhas, elevando taxas de
resfriamento por toda a peca e evitando gradientes térmicos. Além disso, dependendo do

volume do recipiente utilizado para a témpera, a agitagdo promoverd uma circulacédo do fluido,
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de forma que a peca estara em contato com um fluido em temperaturas mais baixas

constantemente, o que também contribui para a dissipacdo de calor (HASAN, et al, 2018).

55  Diagnostico dos modelos

Além dos efeitos visuais e da significancia, 0 modelo precisa ser diagnosticado para
poder ter alguma relevancia na explicacdo dos dados. Por serem os modelos com maior poder
explicativo e terem sido utilizados na construcdo do aplicativo, sera apresentado somente o
diagnostico dos modelos 8 e 9.

Os primeiros graficos, apresentados nas Figuras 32 e 33, trazem os quantis (t) e os
residuos dos dois modelos. Essa analise tem como objetivo medir a normalidade, umas das
premissas apresentadas para a construcdo de modelos lineares. Pela figura percebe-se que
ambos os modelos possuem valores dentro da faixa, com o modelo 9 apresentando um resultado
melhor, o que representa um bom diagnostico. Em relagdo aos modelos mais simples, a omissao
das variaveis faz com que o modelo fique sobrecarregado com erros e ndo seja capaz de explicar

os dados, ndo cumprindo o teste da normalidade proposto

Figura 32: diagnostico do modelo 8 (normalidade, quantis t)
Modelo 8

Residuos

Quantis t

Fonte: elaborado pelo proprio autor.
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Figura 33: diagndstico do modelo 9 (normalidade, quantis t)
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Fonte: elaborado pelo préprio autor.

Um dos pontos mais importantes do diagndstico € o grafico dos residuos e dos valores
ajustados, também uma verificacao inicial dos pressupostos apresentados anteriormente. Os
residuos devem estar dispostos de maneira aleatdria ao redor do 0 do grafico. As Figuras 34 e

35 trazem os gréaficos de residuos para os modelos 8 e 9

Figura 34: gréafico de dispersao dos residuos (modelo 8).
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Fonte: elaborado pelo proprio autor.
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Figura 35: grafico de dispersao dos residuos (modelo 8).
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Fonte: elaborado pelo proprio autor.

Em ambos modelos existe um indicio de ndo linearidade, evidenciado pela distancia
entre a faixa azul e a faixa pontilhada. Para o diagnostico do modelo, no entanto, é uma néo
linearidade muito sutil e ndo invalida os resultados obtidos.

Essa ndo linearidade pode ser verificada no gréfico de taxa méxima de resfriamento
pela porcentagem, desconsiderando o efeito das outras variaveis (relagdo marginal). A Figura

36 mostra o gréafico descrito para o modelo 9.
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Figura 36: gréafico de relagdo marginal entre txmax e porcentagem
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Fonte: elaborado pelo préprio autor.

Apesar de o0 banco de dados possuir uma n&o linearidade clara nas faixas de 5 a 10% de
porcentagem, o modelo foi capaz de captar esse efeito, mesmo sendo linear. 1sso é um outro
indicio de que a modelagem foi bem executada e de que o modelo explica a variabilidade dos
dados de maneira satisfatoria. As figuras 37 e 38 evidenciam essa afirmacdo, com os graficos
que comparam os modelos e os valores do banco de dados.

O modelo 8 possui um bom ajuste, mas a falta de interacbes impede que o a linha
vermelha, referente ao modelo, esteja sobreposta a linha azul, referente aos dados. Enquanto
isso, 0 modelo 9 apresenta um ajuste quase que perfeito em relagdo aos dados, mesmo com 0s
indicios de néo linearidade ja demonstrados. Quando a interacdo entre os dados € considerada,
0 ajuste do modelo é mais bem conduzido, porque isso reflete matematicamente um efeito que
ocorre durante o experimento. Nesse caso, a interacdo entre o sal e a porcentagem do sal pode

ser 0 que torna o ajuste do modelo 9 superior ao ajuste do modelo 8.



61

Figura 37: gréafico de valores ajustados por taxa maxima de resfriamento (modelo 8)
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Fonte: elaborado pelo préprio autor.

Figura 38: grafico de valores ajustados por taxa maxima de resfriamento (modelo 9)
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Fonte: elaborado pelo préprio autor.

Outra forma de demonstrar a superioridade do modelo 9 é analisar as estimativas para
os parametros em relacdo ao modelo 8. A Figura 39 traz o comparativo com essas informagdes.
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Figura 39: comparativo entre modelo 8 e modelo 9
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Fonte: elaborado pelo préprio autor.
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Os intervalos de confianca do modelo 9 sdo mais estreitos que os do modelo 8, o que

indica uma precisdo maior no modelo. Esse resultado também é reflexo da interacdo entre as

varidveis, 0 que mostra a importancia de se fazer essa analise na construcdo de regressdes

lineares multiplas.

A Tabela 2 consolida todos os modelos, com os respectivos R? e as variaveis utilizadas

para construcdo deles.

Tabela 2: consolidado dos modelos construidos

Modelo
1

o Ok~ N

Fonte: elaborado pelo proprio autor.

R2
37,5%
61,8%
5,5%
0,4%
75,4%

80,9%
75,8%

81,3%

91,1%

Variaveis
Porcentagem do sal
Tipos de sais
Temperaturas do banho
Rotacdo
Porcentagem do sal e tipos de sais
Porcentagem do sal, tipos de sais, temperatura do
banho

porcentagem do sal, tipos de sais, rotacéo

porcentagem do sal, tipos de sais, temperatura do
banho, rotacéo

porcentagem do sal, tipos de sais, temperatura do
banho, rotacéo, interacdo entre porcentagem do
sal e o tipo do sal, interagdo entre porcentagem do
sal e temperatura do banho
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5.6  Discussdo dos modelos e comparativo

Alguns resultados néo sdo reflexos da realidade e devem ser analisados com ressalvas.
Quando analisamos os resultados para 0 NaHCO3, que possui uma solubilidade limitada em
agua, ele ndo pode ter o resultado extrapolado para porcentagens muito acima de 7%. Além
disso, as taxas maximas de resfriamento média obtidas séo inferiores a da &gua, efeito contrério
a adicao dos outros sais. Isso pode ser explicado pela decomposicao do sal conforme equagéo
quimica:

2NaHCO3; — Na,CO3 + CO5 gy + H,0(y)

A geracdo de CO- na forma de gas estabiliza a camada de vapor durante o resfriamento,
diminuindo as taxas de resfriamento e consequentemente diminuindo a severidade do meio
(ZORDAO, 2019).

Alguns estudos mostram que a porcentagem na qual a solucdo aquosa de NaNO> € mais
eficaz como meio de resfriamento é em torno de 4%, e que acima dessa porcentagem ndo existe
diferenca na extracdo de calor da peca, com testes até 9%. (LOZANO et al, 2012). Outros
estudos mostram uma relacdo inversa, de que quanto maior a porcentagem do sal, melhor é a
extracdo de calor e mais altas sdo as taxas de resfriamento maxima, como no banco de dados
fornecido para construcdo da regressdo deste trabalho, que utiliza concentracdes de até 15%
(ZORDAO, 2019). Quantidades maiores de casos no experimento que gerou o banco de dados
pode ser 0 motivo pelo qual esse efeito aparece em um trabalho e ndo em outro. Isso indica a
possibilidade de se existir um efeito de ndo linearidade da porcentagem do sal. Esse fato foi
apresentado no diagnostico do modelo 9, que apesar de ndo sobrepor os dados reais, capta
muito bem a néo linearidade em uma faixa de 5 a 10% de concentracéo.

De maneira geral, quanto maior a porcentagem do sal como meio de resfriamento,
maiores serdo as taxas maximas de resfriamento e maiores serdo as extracoes de calor da pega.
Varidveis como agitacdo e temperatura do banho influenciam no resultado do meio e
consequentemente influenciam nas propriedades mecéanicas que a peca temperada terd, mas 0s
efeitos sdo diminutos quanto comparados a composic¢ao do meio. Dito isso, é importante levar
em consideragdo a solubilidade maxima dos sais em meio aquoso e outros efeitos adversos que
podem ocorrer durante a témpera, como € o caso do NaHCOs. Outro efeito adverso é na
utilizacdo do NaCl, que é corrosivo para varios metais. A obtencdo das taxas altas é desejavel

em acos de baixa temperabilidade, e o rompimento mais rapido da camada de vapor ¢ desejavel
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de maneira geral durante a témpera, por diminuir as probabilidades de trincas e distor¢fes nas
pecas (ARAI; FURUYA, 2011).

Um fator importante ao se analisar os modelos criados e as inferéncias que podem ser
obtidas, é que o banco de dados fornecido foi construido utilizando faixas de 2 a 15%massa
para diferentes sais. A literatura mostra que, acima de um certo limite para alguns sais, como
NaCl, ocorre um efeito inverso nas taxas maximas de resfriamento e no rompimento da camada
de vapor. Isto ¢, cada sal possui um “ponto 6timo” de extracdo de calor. Além disso, a
geometria da peca, o volume do banho e a prépria metodologia para a obtencdo dos dados de
temperatura varia de autor para autor, e esses fatores também contribuem para as variaveis
respostas do experimento. Dessa forma, o modelo é certamente mais preciso e reflete a
realidade quando utilizado dentro da faixa do banco de dados e sob as mesmas condicdes de
experimento, e quaisquer extrapolagdes devem ser acompanhadas de um conhecimento
técnico-cientifico mais aprofundado e especifico acerca do sal que estara sendo utilizado como
meio de témpera (ZORDAO, 2019; LOZANO, 2016).

5.7  Aplicativo Shiny para previsdo da taxa maxima de resfriamento

Com os modelos 8 e 9 foi feito um aplicativo em linguagem R utilizando a biblioteca
Shiny para tornar a equacao de regressdo em um produto com aplicacdo pratica. O aplicativo
permite prever as taxas maximas de resfriamento para diferentes sais, porcentagens, rotacdes e
temperaturas do banho. Assim como na constru¢do dos modelos, a porcentagem foi definida
como uma variavel continua, e as outras variaveis foram definidas como categéricas. O
aplicativo também possui funcdo mobile. A Figura 40 traz um exemplo de utilizacdo do

aplicativo.



65

Figura 40: entrada do aplicativo Shiny sendo utilizado para predicao da taxa maxima de
resfriamento.
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Fonte: elaborado pelo préprio autor.

A interface foi construida de forma a ser amigavel para o usuéario que planeja utilizar o
aplicativo. As Figuras 41 e 42 trazem exemplos de como ele pode ser utilizado para obtencéo
das taxas maximas de resfriamento e as faixas de variabilidade, de acordo com a predicdo que
se deseja. No primeiro exemplo, trazido na Figura 41, foi utilizado o sal NaSOs em uma
temperatura de banho de 35°C, rotacdo de 800 rpm e porcentagem de 9,1%massa. Essa
condicdo é calculada com o modelo 9 e ndo estava originalmente presente no banco de dados.
A predigdo da taxa méaxima de resfriamento, nesse caso, é possivel com o modelo que foi
construido e com as devidas consideracdes e diagndsticos que foram realizados e comentados

na secao anterior.
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Figura 41: exemplo de utilizacdo do aplicativo em Shiny. Sal escolhido: NaSO4, temperatura
do banho a 35°C, porcentagem em 9,1% e rotacdo de 800 rpm. Modelo 9.

Taxa de resfriamento maxima

Porcentagem:

0.1 m 20

Tipo de sal
Na2S04 v

Temperatura do banho

35 -
Agitador
800 v
Calcular
Porcentagem Sal Temperatura Rotagao
9.1 Na2S04 35 800
Est _inferior Est_pontual Est_superior Modelo
238.03 269.60 301.16 modelo_9

Fonte: elaborado pelo préprio autor.

A Figura 42 traz um exemplo com a 4gua pura em uma temperatura de 35°C e a rotacdo
em 800 rpm.

No caso da &gua, independente da porcentagem colocada, o resultado sera 0 mesmo,
porque nao existe sentido fisico em alterar a porcentagem de uma substancia pura. Para esse
caso € utilizado o modelo 8, pois como explicado anteriormente, 0 modelo 9, por considerar

interacGes entre as variaveis preditoras, utilizou 0 NaSO4 como base, e ndo a agua.
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Figura 42: exemplo de utilizacdo do aplicativo em Shiny. Meio escolhido: dgua pura,
temperatura do banho a 35°C e rotacéo de 800 rpm. Modelo 8.
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Porcentagem:

@

Tipo de sal
H20 -

Temperatura do banho

35 -
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800 v
Calcular
Porcentagem Sal Temperatura Rotacéo
01 H20 35 800
Est inferior Est pontual Est superior Modelo
165.84 212.26 258 67 modelo 3

Fonte: elaborado pelo proprio autor.

Para avaliar os resultados obtidos com o aplicativo e comparar com aqueles do banco
de dados, foram feitos alguns testes. Utilizando o sal NaCl a uma concentracdo de 12%,
temperatura do banho a 25°C e sem agitacéo, tem-se, no banco de dados, o equivalente a uma
taxa maxima de resfriamento de 276 °C. O aplicativo, com as mesmas condicdes, prevé um
valor médio de 272,42 °C, com um limite inferior de 240,61 °C e um limite superior de 304,23

°C. Esse resultado pode ser visto na Figura 43.
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Figura 43: exemplo de utilizacdo do aplicativo em Shiny. Meio escolhido: NaCl, concentragdo
de 12%, temperatura do banho a 25°C s sem agita¢cdo. Modelo 9
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Fonte: elaborado pelo préprio autor.
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Um outro teste, utilizando NaNO2, uma porcentagem de 7%, temperatura do banho de

35° C e rotacdo de 500 rpm foi realizado. O banco de dados possui um valor, para esse ponto,

de 254 ° C. O aplicativo prevé um valor médio de 231,01 °C, um limite superior de 262,65 °C

e um limite inferior de 199,37 °C. Esse resultado pode ser visto na Figura 44.
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Figura 44: exemplo de utilizacdo do aplicativo em Shiny. Meio escolhido: NaCl, concentragdo
de 12%, temperatura do banho a 25°C s sem agita¢cdo. Modelo 9
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Temperatura do banho
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Est_inferior Est_pontual Est_superior Modelo
242,93 27474 306.55 modelo_9

Fonte: elaborado pelo préprio autor.

Esses resultados mostram que o modelo estd bem ajustado e pode ser utilizado para
prever faixas de valores que serdo obtidos em experimentos de meios de resfriamento,

considerando as mesmas condicGes que geraram o banco de dados.
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6. CONCLUSAO

Com uma andlise descritiva bivariada, os dados fornecidos foram analisados e foram
feitas algumas inferéncias quanto aos resultados. Considerando uma boa sanidade dos dados,
existem tendéncias de relacdo entre os parametros com a taxa maxima de resfriamento, o que
é de se esperar de acordo com a literatura.

A construcdo dos modelos de regressao linear de maneira progressiva segue uma légica
de aumento da complexidade, até atingir um nimero consideravel de variaveis significativas e
um R? suficientemente alto para explicar a variabilidade dos dados. O Gltimo modelo
apresentado, o0 modelo 9, leva em consideracdo as interacfes entre as variaveis, apresenta um
R? de 91% e muitas variaveis significativas, o que garante uma confiabilidade no modelo. Por
esses pontos, foi considerado o melhor modelo construido neste trabalho.

Com esse resultado, a quantificacdo dos efeitos das variaveis preditoras na taxa maxima
de resfriamento, proposta como objetivo do trabalho, é atingida, obtendo como produto uma
equacdo de regressdo linear multipla cujos fatores foram estatisticamente verificados. Essa
equacao pode ser utilizada para predicdo de taxas méximas de resfriamento em experimentos
que utilizam as mesmas condicGes daquelas inclusas no banco de dados. Além disso, € possivel
obter resultados interpolados da concentracdo do sal, porque a variavel foi considerada
continua durante a construcdo dos modelos.

O diagnostico dos modelos mostra que a relacéo entre 0s coeficientes e a taxa maxima
de resfriamento possui indicios de ndo linearidade em algumas faixas. Ainda que o modelo
tenha sido ajustado e o resultado seja muito proximo do banco de dados, esses fatores podem
ser estudados de maneira mais aprofundada para construcdo de um modelo ainda mais preciso.
No entanto, modelos mais complexos, como os modelos ndo-lineares, sdo menos eficientes em
oferecer resultados de simples interpretacdo, em contrapartida aos modelos lineares utilizados
neste trabalho.

A construcdo do aplicativo em linguagem R na biblioteca Shiny transforma o resultado
do trabalho, os modelos 8 e 9, em um produto de simples aplicacdo, o que responde a uma
necessidade dos pesquisadores de possuirem com facilidade o acesso a informacdo. O resultado
foi apresentado com uma faixa de variabilidade com confianga de 95%, mas pelo modelo ter
sido finamente ajustado, como demonstrado nas faixas de variabilidade dos modelos, existe
razdo para crer que a chance de um experimento resultar no valor previsto pela equacéo é alta,

desde que as premissas do experimento sejam mantidas e sejam respeitadas as individualidades
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de cada sal. Esse conhecimento deve ser previamente estudado pelo pesquisador antes da
utilizacdo do aplicativo em questdo, como as faixas 6timas de utilizacdo de cada sal, os efeitos
adversos, possiveis transformag6es quimicas, inversdo de proporcionalidade, geometria das

pecas, volume do banho e metodologia de medigdo de taxas e temperaturas.
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7. TRABALHOS FUTUROS

Algumas sugestdes para trabalhos futuros que surgiram durante a elaboragdo desse

trabalho:

1.

Utilizacdo de mesma ldgica estatistica para modelagem de outra variavel de saida
(temperatura a 700 graus, temperatura de taxa maxima de resfriamento);

Utilizacdo de modelos ndo-lineares mais complexos para melhor modelagem dos
efeitos dos sais, permitindo captar os efeitos de nédo-linearidade e expandir a
capacidade de inferéncia dos modelos;

Aplicar regressdo linear para outros bancos de dados (como 06leos vegetais, 6leos
minerais, banhos de sais fundidos) para obter resultados similares em uma
quantidade maior de fluidos de resfriamento, respeitadas as diferencgas entre 0s tipos
de fluidos e as premissas estatisticas apresentadas.

Estudar a rotacdo em fluidos que néo contribuem para o rompimento da camada de
vapor ou que até mesmo promovam sua estabilizacdo, de forma a dar uma nova
visdo quanto a essa variavel.

Analisar se a exclusédo do NaHCOs do banco de dados traria diferentes resultados

em relacdes as variaveis e aos modelos construidos.
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ANEXO A - Comparativo entre modelos estatisticos (modelos 1 a 5)

Variavel Dependente: txmax

Variavel/Modelo 1 2
5.956%**
porcentagem
(0.577)
* %k
salNaSO4 - 58.111
(11.591)
* K K
salNaCl - >4.528
(11.591)
_ * %k
salNaHCO3 - 51111
(11.971)
* k¥
salNaNO2 - 39.639
(11.591)
* %k
salNaOH . 62.833
(11.591)
graus_c35
graus_c45
rpm500
rpm800

porcentagem:graus_c35

porcentagem:graus_c45

porcentagem:salNaCl

porcentagem:salNaHCO3

porcentagem:salNaNO2

porcentagem:salNaOH

195.639*** 207.333***
Constante v y
(5.419) (10.367)
Observagdes f 180 f 180
R2 0.375 0.618
R2 Ajustado 0.371 0.607

Erro residual
F estatistico

39.366 (df = 178)

31.102 (df = 178)
106.661*** (df = 1; 178)  56.410%** (df = 5; 174)

3

-12.217
(8.861)
-28.317%**
(8.861)

Al

-y

256.200%**
(6.266)

180
0.055
0.044

48.534 (df = 174)
5.138*** (df = 2; 177)

4317
(9.097)
7.600
(9.097)

238.717%**
(6.432)

180
0.004
-0.007
49.825 (df = 177)
0.351 (df = 2; 177)

5
4.057%**
(0.415)
21.602%*
(10.047)
18.019*
(10.047)
-70.042%**
(9.826)
3.130
(10.047)
26.324%**
(10.047)

Al

207.333%**
(8.343)

180
0.754
0.746
25.030 (df = 173)
88.526%** (df = 6; 173)
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ANEXO B — Comparativo entre modelos estatisticos (modelos 5 a 9)

Variavel Dependente: txmax

Variavel/Modelo 5 6 7 8 9
4.057%%* 4.057%%* 4.057%%* 4.057%%* 2.453%**
porcentagem
(0.415) (0.368) (0.414) (0.366) (0.628)
saINaSO4 21.602** 21.602*%* 21.602** 21.602**
r (10.047) r (8.906) f (10.024) r (8.865) I
18.019* 18.019** 18.019* 18.019** 10.917
salNaCl y v r r 4
(10.047) (8.906) (10.024) (8.865) (7.621)
salNaHCO3 -70.042%** -70.042%** -70.042%** -70.042%** -60.203%**
f (9.826) r (8.710) f (9.804) r (8.671) r (9.187)
saINaNO2 f 3.130 f 3.130 f 3.130 " 3.130 -69.482%**
f (10.047) f (8.906) f (10.024) f (8.865) r (7.621)
26.324%** 26.324%** 26.324%** 26.324%%* 13.845*
salNaOH y y r 4 4
(10.047) (8.906) (10.024) (8.865) (7.621)
graus. 35 -12.217%%* -12.217%%* -16.846%**
- f (4.051) f (4.032) r (5.768)
graus. 45 -28.317*** -28.317%** -48.498%**
- f (4.051) f (4.032) r (5.768)
f 4.317 r 4317 r 4.719
rpm500 4 4 4
(4.559) (4.032) (2.919)
o800 7.600* 7.600* 7.035%*
f (4.559) f (4.032) r (2.919)
0.625
orcentagem:graus_c35
p gem:graus_| (0.598)
2.653%**
porcentagem:graus_c45
(0.598)
_ *%
porcentagem:salNaCl 1.611
(0.742)
_ *k ok
porcentagem:salNaHCO3 v 7.212
(1.551)
% %k %k
porcentagem:salNaNO2 5668
(0.742)
| 4
porcentagem:salNaOH ;;313)
207.333%** 220.844%%* 203.361%** 216.872%%* 251.400%**
Constante 4 4 4 4 4
(8.343) (7.757) (8.730) (8.064) (6.555)
Observacdes r 180 r 180 d 180 f 180 r 171
R2 0.754 0.809 0.758 0.813 0.911
R2 Ajustado 0.746 0.800 0.747 0.802 0.902
Erro residual 25.030 (df = 173) 22.187 (df = 171) 24.972 (df = 171) 22.085 (df = 169) 15.581 (df = 155)

F estatistico 88.526%** (df =6; 173)  90.645*** (df =8; 171) = 67.049*** (df = 8; 171)  73.541*** (df = 10; 169) = 105.481*** (df = 15; 155)



