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RESUMO 

SANTOS, F. Análise estatística de dados de curvas de resfriamento utilizando modelo de 

regressão linear múltipla.   2020.  76f. Monografia (Trabalho de Conclusão de Curso) – Escola 

de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020. 

 

Soluções iônicas de sais são muito utilizadas como meios de resfriamento durante o 

tratamento térmico de têmpera. Em geral, apresentam taxas máximas de resfriamento altas e 

uma maior extração de calor, resultado de uma menor estabilidade da camada de vapor que é 

formada durante o resfriamento, e um maior poder condutivo do líquido com o metal. Devido 

a esse rompimento mais rápido ou a ausência da camada de vapor, são muito utilizadas para 

diminuir distorções nas peças e também para aços com baixa temperabilidade, onde as taxas 

máximas de resfriamento precisam ser suficientemente altas para formação de estrutura 

martensítica ou bainítica. Experimentos de curvas de resfriamento são realizados com o 

objetivo de se caracterizar um meio de resfriamento com diferentes parâmetros, como a 

temperatura do banho, a agitação do meio, a substância utilizada como meio de resfriamento e, 

no caso de soluções, a concentração d soluto. O presente trabalho pretendeu realizar um estudo 

estatístico de regressão linear em um banco de dados de curvas de resfriamento, construindo 

modelos lineares que explicam a variabilidade dos dados e permite inferências para prever as 

taxas máximas de resfriamento médias em condições não utilizadas previamente no 

experimento, como diferentes porcentagens dos sais utilizados, oferecendo previsibilidade e 

explicando a relação entre as diferentes variáveis. O resultado com os modelos mais complexos 

foi satisfatório do ponto de vista estatístico, com uma grande explicação da variabilidade dos 

resultados experimentais fornecidos. Esses modelos foram compilados para a construção de um 

aplicativo que recebe parâmetros de entrada e fornece a taxa máxima de resfriamento esperada 

para a condição desejada, permitindo ao usuário planejar um experimento de têmpera com 

confiança no meio de resfriamento utilizado. 

 

Palavras-chave: regressão estatística, meios de resfriamento, soluções iônicas, têmpera. 

  



 

 

 

ABSTRACT 

SANTOS, F. Statistical analysis of cooling curve data using multiple linear regression 

model   2020.  76f. Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de 

São Carlos, Universidade de São Paulo, São Carlos, 2020. 

 

Ionic salt solutions are widely used as quenching mediums during quenching heat 

treatment. In general, they have higher maximum cooling rates and greater heat extraction, 

resulting from low stability of the vapor layer that is formed during cooling, and a greater 

conductive power of the liquid with the metal. Because of that, they are widely used to reduce 

distortions in components and for steels that have low hardenability, where the maximum 

cooling rates must be high enough to form a martensitic or bainitic structure. Cooling curve 

experiments are carried out in order to characterize a cooling medium with different parameters, 

such as the bath temperature, the agitation of the medium, the substance used as additives in a 

cooling medium and, in the case of solutions, the percentage of the solute. The present work 

intends to carry out a statistical study of linear regression in a database of cooling curves, 

building linear models that explain the variability of the data and allows inferences to predict 

average maximum cooling rates in conditions not previously used in the experiment, such as 

different percentages of the salts added, offering predictability and explanation of the 

relationship between the different variables. The results with the most complex models are 

satisfactory from a statistical point of view, with a great explanation of the variability of the 

experimental results provided. These models were compiled for the construction of an 

application that receives input parameters and provides the maximum expected cooling rate for 

the desired condition, allowing the user to plan a quenching experiment with confidence in the 

cooling medium used. 

 

Keywords: statistical regression, cooling mediums, ionic solutions, quenching. 
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1. INTRODUÇÃO 

Aços são ligas metálicas que possuem ferro e carbono em sua estrutura.  São materiais 

muito utilizados em vários segmentos da indústria como componentes de máquinas ou em 

construções mecânicas. Uma importante característica desses materiais é a possibilidade de 

combinar diferentes propriedades mecânicas em um só componente, feito que é atingido com 

a utilização de tratamentos térmicos (SILVA; MEI, 2006). 

A têmpera consiste em aquecer o aço até sua temperatura de austenitização, 

normalmente entre 845 e 870 °C para aços carbono comuns, e posteriormente submetê-lo a um 

rápido meio de resfriamento com o objetivo de se obter uma estrutura martensítica. Após esse 

tratamento, a peça é submetida ao revenido para alívio de tensões e aumento da tenacidade. A 

microestrutura final obtida é a martensita revenida, que combina as propriedades mecânicas de 

resistência e tenacidade (KRAUSS, 1980). 

O sucesso de um tratamento térmico de têmpera, ou seja, o resultado em termos de 

microestrutura e propriedade, depende também da composição do metal e do meio de 

resfriamento utilizado. Para a obtenção da martensita, é importante evitar as transformações 

difusionais do aço, que resultam nas estruturas ferríticas, perlíticas e bainíticas. Aços que 

possuem determinados elementos de liga em maiores quantidades possuem uma maior 

temperabilidade, ou seja, uma facilidade maior de formar martensita em relação a aços comuns, 

enquanto aços comuns precisam de meios com taxas de resfriamento mais altas para formarem 

martensita com sucesso (SILVA; MEI, 2006). 

Soluções salinas de têmpera são muito utilizadas como meios de resfriamento para se 

obter altas taxas de resfriamento, necessárias para aços que possuem uma baixa 

temperabilidade, e por contribuírem também no rompimento da camada de vapor ou evitarem 

completamente sua formação, o que resulta em uma peça com uma menor probabilidade de 

trincas e distorções (LOZANO, 2016). 

Em uma análise de dados, regressão pode ser definida como uma técnica que permite 

fazer inferências sobre a relação entre variáveis respostas e variáveis independentes. Existem 

métodos práticos para analisar regressões assumindo o mínimo possível de conhecimento em 

relação aos dados analisados. Nesse processo, é possível definir uma equação matemática que 

descreve a relação entre duas ou mais variáveis (FOX; WEISBERG, 2018). 

A quantidade de peças que são submetidas a tratamentos térmicos de têmpera para 

obtenção de propriedades desejadas é muito grande, e cada metal possui uma combinação de 

taxa de resfriamento, que pode ser estimada por meio de seu respectivo diagrama TTT ou CCT, 
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e fluido ideal para se chegar no resultado desejado. Neste contexto, o trabalho proposto é de 

analisar um banco de dados de curvas de resfriamento de soluções salinas a base de sódio, 

determinando as relações entre as variáveis do experimento, com a pretensão de contribuir 

fornecendo informações sobre a relação dessas variáveis e a melhor combinação entre elas, 

otimizando a escolha do meio de resfriamento ideal para o determinado tratamento térmico. 
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2. OBJETIVOS 

 

 O objetivo geral do trabalho é estudar e quantificar as relações entre as variáveis de 

entrada em um experimento de determinação de curvas de resfriamento e as variáveis de saída. 

Os objetivos específicos são: 

 Utilizar de ferramentas estatísticas para obter equações (regressão estatística) que 

descrevam os dados obtidos nos experimentos; 

 Comparar os diferentes modelos construídos e avaliar o que melhor representa o banco 

de dados, com base na literatura; 

 Construir um aplicativo de predição da taxa máxima de resfriamento com a equação de 

regressão do modelo que apresentar melhores resultados. 
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3. REVISÃO BIBLIOGRÁFICA 

 

Aços são ligas ferro-carbono que podem conter quantidades significativas de outros 

elementos de liga. As propriedades mecânicas de um aço, e consequentemente sua aplicação, 

dependem do teor de carbono, da presença de diferentes elementos de liga e dos tratamentos 

térmicos. Ainda que possam existir alternativas a esses materiais, os aços são amplamente 

utilizados na indústria devido a seu relativo baixo custo, a possibilidade de se alterar as 

propriedades mecânicas com simples tratamentos térmicos e o vasto conhecimento disponível 

na literatura sobre esses materiais (CALLISTER, 2014). 

Um diagrama de fases é uma ferramenta importante para estudar ligas metálicas, com 

representações de fases e as respectivas temperaturas e composições onde são estáveis 

(equilíbrio). Para resfriamentos fora do equilíbrio, o que normalmente acontece na maioria dos 

tratamentos térmicos, os diagramas CCT (Cooling Continuous Transformation) são mais 

utilizados, pois refletem as consequentes transformações que ocorrem com as mudanças de 

temperatura. 

Na maioria dos tratamentos térmicos o componente é aquecido até a fase austenítica e 

dependendo do resfriamento dá origem a outras fases comumente conhecidas, como ferrita, 

perlita fina, perlita grossa, bainita e martensita (BHADESHIA; HONEYCOMBE, 2009). 

 

3.1 Diagramas TTT (tempo-temperatura-transformação) 

 

O processo de formação de fases como a perlita e a ferrita ocorre por difusão, com 

nucleação de pequenos nódulos das respectivas fases e crescimento de grãos, até que a nova 

microestrutura seja formada. Essa transformação não é instantânea e são necessários tempo e 

energia para que ocorra a movimentação atômica, que origina os primeiros núcleos da fase a 

ser formada e o consequente rearranjo da microestrutura do aço. Os núcleos crescem até que 

se encontram fisicamente tornando o processo mais lento e prosseguem até a total estabilização 

da microestrutura. Quando um aço eutetóide, situado no campo austenítico – por exemplo a 

800°C, é resfriado até uma temperatura abaixo de 727°C, nucleiam-se pequenos nódulos de 

perlita, até a transformação completa da austenita (SILVA; MEI, 2006). 

Na transformação de fases, existem dois processos com efeitos antagônicos na cinética 

de transformação, a supersaturação e o processo difusional. Quanto mais baixa a temperatura 

abaixo de zona austenítica, maior será a força motriz de decomposição da austenita devido à 
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supersaturação, ou seja, uma quantidade de carbono muito acima do limite de solubilidade da 

nova fase, a ferrita. Por outro lado, como é necessária energia para essa movimentação atômica, 

quanto mais baixa a temperatura, menor é a difusão atômica e maior o tempo necessário para 

formação da nova microestrutura (SILVA; MEI, 2006). 

Pode-se subdividir as curvas TTT em dois tipos: curvas ITT (isothermal, time, 

transformation), quando são utilizados métodos isotérmicos, e curvas CCT (continuous cooling 

transformation), quando são analisadas por meio da constante queda da temperatura promovida 

por um meio de resfriamento contínuo.   

Um diagrama ITT (curva de transformação isotérmica) apresenta diferentes 

microconstituintes que não estão presentes no diagrama de fases Fe-Fe3C, como a bainita e a 

martensita. A Figura 1 mostra a curva ITT de um aço SAE 1080 e as diferentes microestruturas 

possíveis de serem formadas. Acima do “nariz” da curva, podemos dizer que o efeito dominante 

é o da supersaturação, e abaixo do “nariz” da curva que o efeito dominante é o da difusão 

(SILVA; MEI 2006). 

Figura 1: Curva ITT para o aço SAE 1080 

 

Fonte: Metals Handbook, 1990. 

A Figura 2 traz uma típica curva CCT de um aço ligado. É interessante notar que as 

temperaturas de início de transformação bainítica e martensítica independem da velocidade de 

resfriamento, evidenciado no gráfico pelas linhas mais escuras (ZHAO; NOTIS, 1995). 
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Figura 2: curva CCT de um aço hipoeutetóide 0,24C-1,67Mn-0,39Si-0,14Ni-0,17Cr-0,22Mo-0,11V 

apresentando para cada curva o valor da dureza Brinell obtido com essas microestruturas 

 

Fonte: Adaptado de Zhao; Notis (1995) 

 

3.2 Tratamento Térmico 

 

Podemos definir tratamentos térmicos como um conjunto de operações térmicas às 

quais um material é submetido com objetivo de se obter propriedades específicas. Nessa 

operação, os aços são submetidos a condições controladas de tempo, atmosfera, velocidades de 

aquecimento e resfriamento. As propriedades de um material dependem de sua microestrutura, 

e como os tratamentos térmicos são capazes de alterar essa microestrutura, em maior ou menor 

escala, geram um consequente efeito de alteração em suas propriedades. (CHIAVERINI, 

2008). 

Os tratamentos térmicos são vitais na produção dos aços, e estão presentes em várias 

etapas do processamento. Muitas vezes um mesmo material é submetido a diversos tratamentos 

térmicos e diferentes etapas de conformação até que a geometria e as propriedades almejadas 

sejam atingidas. É importante conhecer o material que se está tratando, pois cada peça e 

material possuem particularidades que influenciam no planejamento de tratamentos térmicos, 

afetando parâmetros como temperatura, tempo e velocidades de aquecimento e resfriamento. 
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Uma das combinações de propriedades mais desejadas nas aplicações dos aços é a de 

resistência e tenacidade, que é obtida através do tratamento térmico de têmpera, seguido pelo 

revenimento. A têmpera consiste em aquecer o material até a temperatura de austenitização e 

depois resfriá-lo rapidamente, mergulhando o material em um fluido de resfriamento. Esse 

resfriamento rápido origina nos componentes de aço uma microestrutura de elevada dureza e 

resistência mecânica conhecida como martensita. A transformação martensítica depende da 

velocidade de resfriamento do processo, de modo que essa taxa deve ser alta o suficiente para 

evitar a formação das microestruturas difusionais do aço durante o tratamento térmico, como a 

bainita e a perlita (SILVA; MEI, 2006). 

Ao se analisar as curvas TTT dos aços, é necessário atingir uma velocidade de 

resfriamento igual ou superior a TXCrítica para se obter uma estrutura martensítica. Podemos 

definir TXCrítica como o valor mínimo de taxa de resfriamento que deve ser obtido para evitar as 

transformações difusionais do aço. Para cada grupo de aço e cada condição de tratamento existe 

um meio de resfriamento mais adequado, que gerará a microestrutura desejada, uniformidade 

e uma incidência menor de trincas e distorções. Para aços de temperabilidade mais alta, como 

o SAE 4340, meios menos severos de têmpera como óleos são suficientes para formar uma 

estrutura martensítica. Aços com poucos elementos de liga e de temperabilidade mais baixa, 

como um aço SAE 1045, se submetidos a um tratamento térmico de têmpera em óleo podem 

não gerar uma estrutura totalmente martensítica, não atingindo as propriedades mecânicas 

desejadas. Nesses casos é necessário se utilizar de meios mais severos, como a água ou soluções 

salinas. 

 

3.3 Mecanismos de Resfriamento 

 

 Pode-se dividir os mecanismos de resfriamento que ocorrem durante a têmpera em um 

meio líquido volátil em três fases distintas, cada uma com características bem diferentes entre 

elas, como pode ser visto na Figura 3. A primeira fase é a da formação da camada de vapor, 

que ocorre logo no início do tratamento, imediatamente após o contato do metal quente com o 

fluido. Como a diferença de temperatura é muito alta, e acima da temperatura de Leidenfrost, 

é formada uma camada de vapor estável ao redor da peça. Os principais mecanismos de 

transferência de calor nessa etapa são a condução e a radiação do filme de vapor. Nessa etapa 

são encontradas as menores taxas de resfriamento da têmpera, principalmente para fluidos cuja 

camada de vapor é duradoura e mais estável. Na segunda etapa a camada de vapor colapsa e as 
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taxas de resfriamento são mais altas.  Isso se dá pela nucleação de bolhas na superfície do 

metal. A terceira fase, em temperaturas mais baixas, é associada com o fim da ebulição de 

bolhas na superfície do metal e o início de uma extração de calor que se dá por condução e 

convecção do aço e o meio de resfriamento líquido (TOTTEN; BATES; CLINTON, 1993). 

A agitação do meio de resfriamento costuma acelerar a extração de calor da peça 

fazendo com que a primeira etapa acabe mais cedo, rompendo a camada de vapor em uma 

temperatura mais alta e em um tempo mais curto. Assim, o resfriamento predomina-se na etapa 

dois onde as taxas são mais altas e na etapa 3 até o equilíbrio térmico. Outro fator que é 

estudado é a temperatura do fluido: normalmente, quanto maior a temperatura, menores são as 

taxas de resfriamento, dado que as outras variáveis se mantenham constantes. As taxas de 

resfriamento e as faixas de temperatura para cada etapa dependem da composição do fluido e 

de outros parâmetros, como agitação, temperatura do banho, massa e geometria. Do meio mais 

severo para o menos severo, tem-se as soluções salinas, água, soluções poliméricas em água, 

óleos, gases inertes e finalmente o ar (TOTTEN; BATES; CLINTON, 1993). 

 

Figura 3: representação de curvas de resfriamento e os três diferentes estágios da extração de calor. 

 

Fonte: Adaptado de Totten; Bates; Clinton, 1993. 

 

3.4 Sais como meios de têmpera 

 

 Uma outra maneira de se romper a camada de vapor é com o aumento na taxa de 

transferência de calor da condensação. Soluções salinas em água são muito utilizadas como 
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meios de têmpera por normalmente apresentarem altas taxas de resfriamento, e uma das 

explicações é o colapso dessa camada em temperaturas mais altas e em tempos mais curtos. 

Com esse tipo de fluido é possível alterar o modo de resfriamento da superfície da peça em 

refrigeração. 

 Estudos mostram que a concentração do sal na água é importante para aumentar a 

temperatura de transição de estágio 1 para o estágio 2, a qual pode ser definida como a 

temperatura na qual a camada de vapor se rompe promovendo um aumento na taxa de 

transferência de calor máxima. A Figura 4 mostra o efeito de diferentes concentrações de sal 

na taxa de resfriamento e na temperatura de rompimento da camada de vapor para uma solução 

salina de CaCl2 (ARAI; FURUYA, 2011). 

 

Figura 4: efeito da concentração de sal na taxa de resfriamento e na temperatura de têmpera 

 

Fonte: Adaptado de Arai; Furuya, 2011. 

 

3.5 Modelos Lineares 

 

 Um modelo estatístico pode ser definido como um conjunto de premissas que possuem 

estrutura suficiente para apoiar na estimativa de diferentes quantidades de fatores interessantes; 
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para utilizar informações passadas para predizer valores futuros; e para executar muitas outras 

tarefas. (FOX; WEISBERG, 2018). 

 Modelos lineares são essenciais para estatística aplicada. São frequentemente utilizados 

em pesquisa e promovem a base para várias outras classes de modelos estatísticos, como os 

modelos lineares generalizados, mais complexos. 

 Possui-se um conjunto de m preditores tal que u = (u1, u2, ..., um) ou variáveis 

explicativas, e uma variável resposta y para cada uma das diferentes situações e casos. Esses 

preditores podem ser variáveis numéricas qualitativas contínuas, como a nota de uma prova na 

faculdade, podem ser variáveis categóricas, como uma nacionalidade, gênero de uma pessoa 

ou um grupo de tratamento a qual ela faz parte, e também uma variável ordinal categórica, 

como uma nota de 1 a 5 em um teste de personalidade onde o número se refere a discordar ou 

concordar com as frases sugeridas (Escala Likert). Todos esses preditores são, então, 

transformados em variáveis de regressão, ou regressores, que são variáveis numéricas que 

aparecem diretamente no modelo. Finalmente, para poder construir um modelo linear, 

precisamos que algumas premissas básicas sejam cumpridas: (FOX; WEISBERG, 2018): 

 Resposta: a resposta em um modelo estatístico linear deve ser uma variável numérica 

que deve ser, pelo menos, nominalmente contínua; 

 Observações: as observações das variáveis para um caso devem ser independentes das 

observações para todos os outros casos. Se os casos são dependentes, então devem ser 

utilizados modelos lineares de efeitos mistos; 

 Linearidade: a dependência da variável resposta dos preditores se dá por meio do valor 

esperado condicional ou pela função média.  Podemos definir que a quantidade η(x) = 

β0 + β1.x1 + ... + βk.xk, onde o lado direito da equação é o preditor linear e x = (x1, x2, 

..., xk) o vetor de regressão. Se a função de regressão está incorreta, então qualquer 

parâmetro e quaisquer conclusões atingidas com a utilização do modelo em questão 

podem se tornar inválidas; 

 Variância Condicional Constante: A variância condicional da resposta, dados os 

regressores (ou, de forma equivalente, os preditores) deve ser constante. A falha em 

não manter essa suposição não necessariamente invalida as estimativas de mínimos 

quadrados dos βs, mas pode invalidar outros fatores do modelo, como os erros padrões 

dos coeficientes e suas consequentes derivadas, ou seja, testes e declarações de 

confiança. 
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 Normalidade: (ε|x) ∼N (0, σ2), produzindo um modelo linear normal (distribuição dos 

resíduos). Um modelo de distribuição normal provê muito mais estrutura do que o 

necessário para ajustar um modelo linear pelo método dos mínimos quadrados, embora 

forneça uma forte justificativa para isso.  

 

Duas variáveis explicativas de um modelo de regressão linear são ditas interativas 

quando o efeito parcial de uma delas depende do valor da outra, isto é, quando as regressões 

construídas em várias categorias de um fator não se dão de maneira paralela. Logo, pode-se 

afirmar que o fator interage com uma ou mais das variáveis explicativas quantitativas. O 

modelo de regressão pode então ser modificado e reformulado para refletir essas interações e 

possivelmente aumentar a aplicabilidade do modelo. As premissas para a construção de um 

modelo linear com interações são as mesmas que para os modelos sem interações (FOX, 2015). 

Para analisar os o resultado de uma regressão linear, são utilizados alguns conceitos 

estatísticos em relação aos coeficientes que são obtidos. Os coeficientes formam a equação de 

regressão e devem ser analisados de acordo com a significância estatística que possuem dentro 

do modelo. Alguns conceitos importantes são: 

 Distribuição de resíduos: os resíduos são a diferença entre os valores obtidos no 

banco de dados e os valores previstos pelo modelo. Um resíduo negativo é uma 

superestimativa e um resíduo positivo é uma subestimativa. Idealmente, deve-se 

chegar a uma distribuição como mediana próxima a zero. 

 Estimativa: são os valores estimados para os coeficientes. Cada coeficiente possui 

uma estimativa própria que não pode ser comparada a outros coeficientes, em 

especial quando são categorias distintas, porque a origem das informações pode ser 

tão distante quanto uma cor, uma porcentagem ou a nota em uma prova da 

faculdade. 

 Desvio padrão: o erro do coeficiente. São utilizados para construir as faixas de 

variabilidade dos coeficientes, normalmente sob a forma de Coeficiente ± Desvio 

Padrão, o que indica a faixa na qual o valor será dado se for utilizado um outro 

banco de dado com as mesmas variáveis. O desvio padrão também é utilizado para 

verificar se o parâmetro é significativamente diferente de 0. Quando isso ocorre, 

pode-se afirmar que o coeficiente tem impacto na variável resposta. 

 Valor “t”: o valor t é a razão entre o coeficiente de regressão β e seu erro padrão, 

(t = coeficiente ÷ desvio padrão). A estatística t testa a hipótese de que um 
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coeficiente de regressão populacional é 0. Se um coeficiente for diferente de zero, 

então ele tem um efeito genuíno na variável dependente. No entanto, um coeficiente 

pode ser diferente de zero, mas se a diferença for devido à variação aleatória, então 

ele não tem impacto na variável dependente. 

 Teste Pr(> |t|): o valor P indica se a variável independente possui capacidade 

preditiva. Essencialmente, esse valor mostra se o efeito da variável se deu por efeito 

aleatório ou se existe algum efeito na variável dependente. Quanto menor o valor 

de P, mais significativo é o impacto do coeficiente no modelo. 

 R2: o R quadrado é uma medida estatística que representa a proporção de variância 

para uma variável dependente que é explicada por uma ou mais variáveis 

independentes de um modelo de regressão estatística. É um número entre zero e um, 

e quanto mais próximo de zero, pior é o modelo. 

Outro ponto importante na avaliação de um modelo de regressão é o diagnóstico que 

deve ser feito. Os diagnósticos de regressão são métodos para determinar se um modelo de 

regressão ajustado representa adequadamente os dados. Eles abordam a adequação de um 

modelo estatístico depois que ele foi ajustado aos dados. Um trabalho preliminar cuidadoso, 

no entanto, não garante a adequação de um modelo de regressão, e a prática da modelagem 

estatística é, portanto, muitas vezes um refinamento iterativo. Modelos lineares fazem 

suposições fortes e às vezes irrealistas sobre a estrutura dos dados, pois não requerem, 

necessariamente, um conhecimento prévio do pesquisador acerca dos dados. Quando as 

suposições são violadas, as estimativas e previsões podem se comportar mal e podem até 

mesmo deturpar completamente os dados. Isso é verdadeiro para outros modelos de regressão 

paramétrica. Os diagnósticos de regressão podem revelar problemas e geralmente apontar o 

caminho para soluções (FOX; WEISBERG, 2018). 
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4. PROCEDIMENTO EXPERIMENTAL 

 

Por se tratar de uma análise estatística de um banco de dados para quantificar a relação 

entre variáveis de um experimento, o procedimento experimental foi dividido em etapas 

cronológicas, partindo da obtenção dos resultados experimentais utilizados na análise, 

passando pela etapa dos modelos descritivos dos dados até a obtenção das equações de 

regressão linear. 

 

4.1 Obtenção dos Dados 

 

Para a realização do trabalho, foram utilizadas informações de uma base de dados de 

curvas de resfriamento, cuja fonte são experimentos de meios de resfriamento utilizando 

soluções salinas baseados nas normas ASTM D6200 e ASTM D6482-06. Cada condição do 

experimento continha as seguintes informações para caracterização (ZORDÃO, 2019): 

 

Variáveis de entrada: 

 

 Sal 

 Concentração de soluto (será referido também, ao longo do trabalho, como 

porcentagem ou porcentagem do sal) 

 Agitação 

 Temperatura do banho 

 

Todas as curvas de resfriamento foram compiladas e transformadas em uma tabela 

resumo em formato Microsoft Excel. Cada condição experimental foi realizada no mínimo 

duas vezes, ou até se obter uma diferença de resultado experimental na taxa máxima de 

resfriamento e na temperatura em que elas ocorrem não superior a 10 °C, de forma que os dados 

utilizados são as médias calculadas dos diferentes experimentos com os mesmos parâmetros. 

Isso garante a sanidade de dados e uma menor variabilidade nos resultados. 

 

Variáveis de saída: 

 

 Taxa máxima de resfriamento 
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 Temperatura da taxa máxima 

 Taxa de resfriamento a 700°C 

 Taxa de resfriamento a 300°C 

 Taxa de resfriamento a 200°C 

 Tempo entre temperaturas de 850 e 700°C 

 Tempo entre temperaturas de 850 e 300°C 

 Tempo entre temperaturas de 850 a 200°C 

 

O objetivo do referido trabalho foi estudar o comportamento de diferentes soluções 

iônicas em relação a água pura, assim como avaliar a influência dos fatores externos (agitação 

e temperatura do banho). Foram extraídos valores das propriedades dos meios, como taxas de 

resfriamento a diferentes temperaturas para caracterizar e diferenciar esses meios. Foram 

utilizadas 5 substâncias diferentes para a obtenção dos dados, conforme Tabela 1. Todos os 

materiais são do fabricante Labsynth e as informações retiradas das respectivas FISPQ (Ficha 

de Informações de Segurança de Produtos Químicos (ZORDÃO, 2019). 

 

Tabela 1: Sais utilizados e respectivas solubilidades em água 

Descrição Fórmula Química Solubilidade em Água

SULFATO DE SÓDIO ANIDRO P.A. Na2SO4 200 g/L

NITRITO DE SÓDIO P.A. NaNO2 820 g/L

CLORETO DE SÓDIO P.A. NaCl 333 g/L

BICARBONATO DE SÓDIO P.A. NaHCO3 95,5 g/L

HIDRÓXIDO DE SÓDIO P.A. NaOH 1111 g/L  
 

Fonte: Adaptado de ZORDÃO, 2019. 

 

Apesar do composto NaOH não ser considerado um sal, essa nomenclatura foi utilizada 

ao longo dos trabalhos por sua aceitação no âmbito industrial. Para efeito de comparação e 

padronização, foi utilizada água destilada (ZORDÃO, 2019). 

Os sais utilizados foram solubilizados em meio aquoso, em quantidades calculadas de 

2, 7, 12 e 15%massa, exceto pelo NaHCO3, pois este possui uma solubilidade limitada em meio 

aquoso. Para esse sal, foram utilizadas as concentrações de 2, 5 e 7%massa. Essa informação 

foi levada em consideração na construção dos modelos propostos e do aplicativo, produto deste 

trabalho (ZORDÃO, 2019). 
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Foi utilizada uma sonda Inconel 600® aquecida em um forno elétrico a 850 ± 2°C. Após 

o atingimento da temperatura e estabilização, a sonda era mergulhada no fluido em estudo 

rapidamente. Cada experimento promovido gerava uma base de dados com um registro na 

queda de temperatura com frequência de 8 Hz (medição a cada 0,125 segundos), medida por 

um sistema de aquisição de dados do fabricante National Instruments (SCXI-1000DC e NI 

SCXI-1600), além do software Labjack (ZORDÃO, 2019). 

A agitação mecânica foi promovida por um agitador laboratorial e o aquecimento do 

meio de resfriamento foi promovido por uma chapa aquecedora. 

Foram utilizadas as temperaturas de banho de 25, 35 e 45°C, e as agitações de 0 (sem 

agitação), 500 e 800 rpm. A temperatura durante o experimento foi registrada por meio de um 

termopar do tipo K, localizado no centro geométrico da sonda. 

 

4.2 Construção dos Modelos Estatísticos 

 

A base de dados fornecida em Microsoft Excel foi carregada em um software em 

linguagem R para compilação dos dados. A construção do modelo se inicia na leitura e 

classificação dos dados como recebidos.  

Para facilitar, os dados foram nomeados da maneira abaixo, quando colocados no 

software: 

 Variáveis resposta (variáveis de interesse do experimento) 

o Txmax – taxa de resfriamento máxima 

o Temp_txmax – temperatura que se atinge a taxa máxima 

o Tx700 – taxa a 700°C 

o Tx300 – taxa a 300°C 

o Tx200 – taxa a 200°C 

 Variáveis preditoras (variáveis que afetam a resposta e são medidas pelo pesquisador) 

o Sal – meio de resfriamento utilizado 

o Porcentagem – concentração em massa de sal da solução 

o Graus_c – temperatura do banho 

o Rpm – rotação do banho, agitação 

o T850_700 – intervalo de tempo entre 850 a 700°C 

o T850_300 – intervalo de tempo entre 850 a 300°C 

o T850_200 – intervalo de tempo entre 850 a 200°C 
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A Figura 5 mostra a tela inicial do software R utilizado para as análises estatísticas, com 

a leitura da planilha em Excel. Algumas informações fornecidas, como o fluxo de calor, o 

coeficiente de transferência de calor e o índice de aceleração podem ser calculados com o 

restante das variáveis do experimento, e, portanto, não foram incluídos na análise. 

Figura 5: tela de leitura da planilha Excel no software R. 

 

Fonte: Elaborado pelo próprio autor 

Durante a construção do trabalho, foi necessário escolher uma variável resposta mais 

adequada para se analisar, e as respectivas variáveis preditoras. Pela influência que a taxa 

máxima de resfriamento possui no que diz respeito a severidade de têmpera, essa foi a variável 

escolhida para os modelos. Como variáveis preditoras, foram utilizadas o sal, a porcentagem, 

a temperatura do banho e a rotação. Os tempos foram entendidos como preditores das taxas de 

resfriamento (pois a taxa é calculada a partir da diferença de temperatura entre dois pontos, 

dado um intervalo de tempo), e, portanto, foram desconsiderados. 

Após atestada a sanidade dos dados, é feita uma análise estatística descritiva bivariada 

simples, onde os valores são lidos e tentam ser relacionados, procurando tendências visuais que 

possam ajudar a interpretar os dados fornecidos. Para essa etapa foram construídos gráficos 

lineares e boxplots (ou diagrama de caixa) que traduzem os dados de forma visual. 

Após as primeiras impressões em relação aos dados, foi feita uma regressão linear 

simples com as variáveis, primeiro dois a dois, construindo alguns modelos estatísticos. Cada 

modelo é avaliado quanto à significância das variáveis na equação de regressão e o quanto da 

variabilidade dos dados pode ser explicada pelo modelo (R2). Ao passo que os modelos são 

construídos, são adicionados outros coeficientes e analisa-se se a inclusão tornou o modelo 

mais ou menos explicativo que o anterior, fazendo um paralelo com a literatura para explicar 

os diferentes resultados obtidos. 

Para construção dos modelos de regressão foi considerada como base a água destilada,  

na temperatura de 25°C e sem agitação. 
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Assim como na análise descritiva bivariada, foram construídos gráficos para melhor 

visualização dos parâmetros e das tendências apresentadas pelos dados. Em seguida, foram 

construídas regressões lineares múltiplas com as variáveis de entrada, procurando construir um 

modelo que explicasse melhor a variabilidade. 

A última etapa na produção das regressões é considerar, além de mais variáveis, a 

interação entre elas. Dessa forma, avaliou-se como todas as variáveis se relacionavam entre si 

para construção de um modelo de regressão linear múltipla com interações. Para esse modelo, 

a base considerada foi o sal NaSO4, porque não existe sentido físico em usar a água como base 

para um modelo onde está sendo quantificada a relação entre um sal e sua porcentagem na 

solução. A escolha se deu de maneira aleatória, de acordo com a ordenação dos dados no 

software. 

A leitura da significância das variáveis nos modelos no aplicativo R pode ser 

interpretada da seguinte maneira: 

 ***: 0,1%; 

 **: 1% 

 *: 5% 

 .: 10% 

Quando a variável não é estatisticamente significativa dentro das faixas descritas, seu 

resultado, no código do programa, aparece em branco. O valor máximo de significância 

avaliado pelo software R foi de 10%. Algumas literaturas consideram a faixa de 15%, mas 

entende-se que, para o experimento em questão, seria considerar um erro muito significativo e 

as variáveis nessa categoria foram ditadas como não significativas. 

Os modelos foram comparados de forma resumida quanto às características que 

apresentam, mostrando a evolução da análise de acordo com a inclusão dos coeficientes. 

Também foi feito um diagnóstico de cada modelo quanto aos resíduos de Pearson, para 

verificar se o modelo representa de maneira adequada os dados utilizados para sua construção.  

Eles são obtidos pela diferença entre os dados calculados e os dados reais. 

Para o modelo que apresentou o maior R2, são apresentadas as relações entre as 

variáveis e alguns exemplos de gráficos onde o resultado obtido (modelado) é muito próximo 

do presente no banco de dados. 

Por fim, utilizando-se os modelos com maior poder explicativo da relação entre as 

variáveis, foi feito um aplicativo em linguagem R com a biblioteca Shiny que usa como base 

as equações de regressão linear múltipla obtidas. O aplicativo tem como objetivo auxiliar um 
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usuário na predição das taxas de resfriamento máxima quando são utilizados os sais contidos 

no banco de dados deste trabalho, mas também permite extrapolar o resultado para valores que 

não foram medidos experimentalmente, otimizando a utilização das condições para se obter 

um experimento de têmpera com maior confiabilidade. Alguns exemplos de resultados obtidos 

com o software são demonstrados na seção de resultados e discussões. 
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5. RESULTADOS E DISCUSSÕES 

 

A apresentação dos resultados e suas discussões será dividido em ordem cronológica, 

de acordo com a leitura e construção dos modelos estatísticos deste trabalho. De forma a não 

tornar repetitiva e exaustiva as referências teóricas da literatura quanto aos efeitos observados, 

esse ponto será deixado para o final, de forma consolidada, ou apresentado de forma pontual 

quando pertinente. O resumo de todos os modelos estatísticos construídos, os erros, valores de 

coeficientes e respectivos R2 estão presentes nos anexos deste trabalho. 

 

5.1 Estatística Descritiva (bivariada) 

 

Os primeiros resultados da análise são gráficos que plotam as variáveis do banco de 

dados conforme extraídas, sem nenhum tratamento estatístico. A Figura 6 mostra a distribuição 

da taxa máxima de resfriamento de acordo com o tipo de sal. Os pontos fora do diagrama são 

chamados de pontos discrepantes, ou outliers, e podem ser definidos como os pontos fora dos 

limites inferiores e superiores do diagrama, construído pela mediana e pelos primeiros e 

terceiros quartis de um grupo de dados (GONÇALVES, 2020). 

Figura 6: diagrama de caixa da taxa máxima de resfriamento e o tipo de sal 

 

Fonte: Elaborado pelo próprio autor 
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Com o diagrama, visualmente pode-se dizer que alguns sais, como o sulfato de sódio e 

o cloreto de sódio possuem uma variabilidade mais baixa na taxa máxima de resfriamento, 

enquanto o nitrito de sódio possui uma alta variabilidade. Também podemos afirmar que o 

bicarbonato de sódio possui as taxas mais baixas do banco de dados, estatisticamente inferiores 

à da base considerada, a água pura, e que o hidróxido de sódio possui altas taxas de 

resfriamento. 

A Figura 7 mostra a porcentagem do sal em relação a taxa máxima de resfriamento. 

Nesse diagrama existe uma tendência de crescimento na taxa máxima com o aumento da 

porcentagem do sal, exceto em 5%, onde o comportamento está fora do padrão. Além disso, 

em 7% vemos uma alta quantidade de outliers, pontos que não compõem um grupo 

estatisticamente grande dos dados. Analisando a forma com que o experimento foi conduzido, 

verifica-se que, devido à solubilidade limitada do NaHCO3, ele foi utilizado em 2, 5 e 

7%massa, enquanto os outros sais foram utilizados em 2, 7, 12 e 15%. Associando essa 

informação experimental com o diagrama anterior, pode-se afirmar que o comportamento fora 

do padrão a 5% se dá porque o único sal analisado com essa porcentagem é o NaHCO3, e que 

os pontos fora da caixa e do limite de variabilidade a 7% são os pontos referentes, também, ao 

NaHCO3, que ao contrário das outras soluções, apresenta taxas mais baixas que a base, e não 

mais altas (ZORDÃO, 2019). 

 

Figura 7: diagrama de caixa da taxa máxima de resfriamento e a porcentagem do sal 

 

 

Fonte: Elaborado pelo próprio autor 
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Para confirmar essas suposições, foram construídos gráficos da relação entre a 

porcentagem e a taxa máxima de resfriamento para cada sal, presentes na Figura 8. Pela figura, 

confirma-se que os únicos pontos a 5% são referentes ao bicarbonato de sódio, o que explica o 

comportamento fora do padrão. Além disso, é possível analisar um outro efeito em relação a 

esse sal: enquanto a tendência em relação a taxa máxima de resfriamento parece ser diretamente 

proporcional com a porcentagem do sal, para esse em específico a relação parece ser inversa, 

ou seja, quanto mais desse sal temos solubilizado, menor é a taxa máxima de resfriamento 

média obtida no experimento. 

Figura 8: diagrama de caixa da taxa máxima de resfriamento, o tipo de sal e a porcentagem 

 

Fonte: Elaborado pelo próprio autor 

Outra variável que deve ser analisada no modelo é a temperatura do banho. A Figura 9 

mostra o diagrama de caixa relacionando a taxa máxima de resfriamento e a temperatura do 

banho.  
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Figura 9: diagrama de caixa da taxa máxima de resfriamento e a temperatura do banho 

 

Fonte: Elaborado pelo próprio autor 

Apesar de alguns outliers, a variabilidade a 25 graus parece ser a menor, e parece existir 

uma tendência de diminuição da taxa máxima com o aumento da temperatura do banho. No 

entanto, como a variabilidade é muito alta, não se pode afirmar de forma definitiva que a 

temperatura diminui a taxa máxima de resfriamento, quando analisada sozinha. 

A Figura 10 traz o efeito da temperatura do banho para cada um dos sais. Com essa 

informação adicional, e com variabilidades menores, pode-se afirmar que existe uma tendência 

de diminuição na taxa máxima de resfriamento com o aumento da temperatura do banho, 

independente do sal. Aqui, por exemplo, o efeito não difere para o NaHCO3, como visto 

anteriormente em relação à porcentagem do sal. 
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Figura 10: diagrama de caixa da taxa máxima de resfriamento, o tipo de sal e a temperatura do banho 

 

Fonte: Elaborado pelo próprio autor 

Finalizando o segmento de estatística descritiva bivariada, a variável rotação (rpm) é 

analisada em relação à taxa máxima de resfriamento. A variabilidade de taxas para essa variável 

preditora é muito grande, então, foi apresentado somente o resultado com os diferentes tipos 

de sal, na Figura 11. Mesmo com essas duas variáveis, não é possível afirmar que existe uma 

influência, porque existem tanto tendências de aumento quanto de diminuições na taxa. 
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Figura 11: diagrama de caixa da taxa máxima de resfriamento, o tipo de sal e a rotação 

 

Fonte: Elaborado pelo próprio autor 

 Finalmente, foram plotados os gráficos levando em consideração 3 variáveis. Por 

apresentarem os efeitos mais significativos aparentes na taxa, foram mantidos o tipo de sal e a 

porcentagem do sal, alterando a terceira variável entre a rotação e a temperatura do banho. Esse 

resultado é apresentado nas Figuras 12 e 13, respectivamente. 

Estudar a influência de cada um desses efeitos na taxa máxima de resfriamento, somente 

com a leitura e visualização dos dados não é prático nem confiável, pois são muitos fatores a 

serem considerados, muitas inferências com a literatura e poucas ferramentas que permitem 

previsibilidade de resultados. Por isso, são construídos modelos lineares como a regressão 

linear para modelar o banco de dados e facilitar as análises. 
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Figura 12: linhas médias relacionando taxa máxima, tipo de sal, porcentagem e rotação 

 

Fonte: Elaborado pelo próprio autor 

Figura 13: linhas médias relacionando taxa máxima, tipo de sal, porcentagem e temperatura do banho 

 

Fonte: Elaborado pelo próprio autor 
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5.2 Regressão linear simples 

 

A força motriz da construção dos modelos é encontrar a resposta para simples perguntas 

que podem ser feitas quando se analisa o banco de dados. Os modelos de regressão linear 

simples consideram apenas um coeficiente na explicação da variável resposta, e nesse caso 

foram construídos 4 modelos para esse tipo de regressão.  

O modelo 1 procura responder se é possível estudar o efeito médio da concentração do 

sal na taxa de resfriamento máxima. A Figura 14 traz a relação entre a porcentagem e a taxa 

máxima de resfriamento.  

Figura 14: taxa máxima de resfriamento e porcentagem do sal (modelo 1) 

 

Fonte: Elaborado pelo próprio autor 

Nesse gráfico é apresentada a linha de regressão na forma de uma linha azul. A faixa 

em azul-claro é o intervalo de confiança do modelo, e as faixas no eixo x são as observações 

fornecidas pelo banco de dados.  

A leitura estatística do modelo é apresentada na Figura 15. 
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Figura 15: resultado do modelo 1 

 

Fonte: elaborado pelo próprio autor 

Para todos os casos, incluindo o modelo 1, podemos ler os valores que refletem se o 

modelo é estatisticamente significativo ou não. Esse conceito se repete ao longo da 

apresentação dos modelos e seu conceito foi apresentado na revisão bibliográfica, seção 3.6. 

Para esse modelo, apesar do intercepto e da porcentagem possuírem significância 

estatística, o R2 encontrado é de 37%, o que é considerado baixo para os padrões e insuficiente 

para explicar a taxa máxima de resfriamento. 

O modelo 2 utiliza como variável independente o tipo de sal. Importante notar que, 

diferente da porcentagem, o tipo de sal é uma variável categórica (e não contínua), mas que 

pode ser utilizada em uma regressão linear, de forma que cada categoria possui um coeficiente 

diferente na construção da equação de regressão. O mesmo vale para a rotação e a temperatura 

do banho, consideradas variáveis categóricas na construção dos modelos. 

A Figura 16 representa a relação entre a taxa máxima de resfriamento e o tipo de sal. 

Para esse modelo, o R2 é de 62% e todas as variáveis são estatisticamente significativas. Com 

esse resultado é possível inferir que, mesmo que o tipo de sal não explique toda a variabilidade 

do banco isoladamente, é definitivamente uma variável que, quando alterada, irá alterar os 

resultados da taxa máxima de resfriamento. 
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Figura 16: taxa máxima de resfriamento e tipo de sal (modelo 2) 

 

Fonte: elaborado pelo próprio autor 

 Nesse modelo, o coeficiente que apresenta a maior taxa máxima de resfriamento é o 

NaOH, e a menor, o NaHCO3, o que vai de encontro com a análise descritiva bivariada feita 

anteriormente. Apesar deste modelo ter um R2 maior que o anterior, o valor de desvio padrão 

para os coeficientes é alto (variando entre ± 10,37 e ± 11,97) e boa parte deles está no mesmo 

intervalo de taxa máxima. 

O modelo 3 apresenta um R2 de 5% e foi construído com a variável temperatura do 

banho, e o modelo 4 possui um R2 de 0,4% e foi construído com a variável rotação. Ambos 

modelos apresentam resultados ruins e possuem pouca ou nenhuma variável estatisticamente 

significativa. Isso significa que, isoladamente, essas variáveis não são suficientes para explicar 

a variabilidade do banco de dados, o que é de se esperar, pois os fatores que mais influenciam 

nas taxas máximas de resfriamento em meios de soluções iônicas são o tipo de sal e a respectiva 

porcentagem do mesmo. A temperatura do banho e a rotação podem, no entanto, influenciar 

em alguns fatores que não são objeto de estudo dessa análise estatística e trazerem benefícios 

ao tratamento térmico de têmpera, como já descrito por outros autores (TOTTEN; CANALE, 

2005). 

As Figuras 17 e 18 trazem os modelos 3 e 4 e os resultados obtidos de forma gráfica, 

respectivamente. 
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Figura 17: relação entre taxa máxima de resfriamento e temperatura do banho (modelo 3) 

 

Fonte: elaborado pelo próprio autor 

Figura 18: relação entre taxa máxima de resfriamento e a rotação do banho (modelo 4) 

 

Fonte: elaborado pelo próprio autor 

 

A regressão linear simples realizada mostra que, dentre as quatro variáveis utilizadas 

para construção dos modelos, somente a porcentagem e o tipo de sal tem uma forte influência 
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no modelo e explicam a variabilidade, fato verificado nos modelos 1 e 2. No entanto, quando 

os fatores são estudados em conjunto, a rotação e a temperatura do banho podem, também, 

serem estatisticamente significativos, e os próximos modelos apresentados mostram essas 

combinações e os respectivos resultados. 

 

5.3 Regressão linear múltipla – coeficientes parciais 

 

Em uma regressão linear múltipla, os coeficientes são considerados parciais, isto é, cada 

coeficiente representa o efeito na variável resposta mantendo constante o valor das outras 

variáveis explicativas. Diferente da regressão linear simples, onde o efeito de outras variáveis 

é ignorado, a regressão linear múltipla consegue construir modelos que explicam melhor a 

variabilidade de dados por considerar tanto o efeito das variáveis quanto a combinação entre 

elas. 

Seguindo as mesmas premissas para os modelos anteriores, foram construídos modelos 

múltiplos para explicar a variabilidade dos dados e a relação entre as variáveis. 

O modelo 5 apresenta um R2 de 75%, e mostra que o efeito parcial da concentração de 

sal na temperatura máxima de resfriamento é de 4 graus a cada 1%. A Figura 19 mostra o efeito 

preditor da porcentagem na taxa máxima e a Figura 20 mostra o preditor do sal na taxa máxima. 

Figura 19: efeito preditor da porcentagem na taxa máxima (modelo 5) 

 

Fonte: elaborado pelo próprio autor 

Podemos interpretar o coeficiente do tipo de sal de forma que, mantida a porcentagem 

do sal, a taxa máxima de resfriamento média para cada sal varia de acordo com o gráfico da 
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Figura 20. Da mesma maneira, a Figura 19 da porcentagem mostra, para um mesmo tipo de 

sal, a predição do efeito na taxa máxima de resfriamento média. 

Figura 20: gráfico da relação entre o tipo de sal e a taxa máxima de resfriamento (modelo 6) 

 

Fonte: Elaborado pelo próprio autor 

Esse resultado do efeito preditor da porcentagem do sal é esperado para uma solução 

iônica em geral, porque, quanto maior a concentração do soluto, mais fina será a camada de 

vapor e mais facilmente rompida, elevando as taxas de resfriamento. Consequentemente, 

podemos afirmar que o fluido pode ser recomendado em casos onde uma severidade de têmpera 

maior é necessária (ARAI; FURUYA, 2011). 

O modelo 6, em relação ao modelo 5, adiciona aos coeficientes a temperatura do banho, 

e tem um poder explicativo, R2 de aproximadamente 81%. O resultado dos efeitos preditores 

da porcentagem e do tipo de sal são muito similares graficamente ao modelo 5, apesar de 

existirem diferenças nos modelos. A Figura 21 mostra o efeito da temperatura do banho na taxa 

máxima de resfriamento média. Podemos inferir que os casos onde as temperaturas são 35 e 45 

possuem, em média, taxas de resfriamento mais baixas. Isso pode ser explicada por uma maior 

estabilidade da camada de vapor formada, o que vai de encontro com os resultados relatados 

por outros autores. 
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Figura 21: gráfico da relação entre a temperatura do banho e a taxa máxima de resfriamento (modelo 

6) 

 

Fonte: elaborado pelo próprio autor. 

O modelo 7 apresenta R2 de 75% e foi construído utilizando como coeficientes a 

porcentagem, o tipo de sal e a rotação (rpm). Quando comparado com o modelo 5, não existem 

vantagens em considerar a rotação, porque a variabilidade com esse coeficiente é muito alta, 

tornando a variável estatisticamente não significativas, e ele, sozinho, não consegue explicar 

satisfatoriamente a taxa máxima de resfriamento média. Essas classes, segundo o modelo, não 

são estatisticamente significativas e, portanto, não aumentam o poder explicativo do modelo. 

A Figura 22 traz de forma gráfica esses resultados obtidos com o modelo. 

Figura 22: gráfico da relação entre a rotação e a taxa máxima de resfriamento (modelo 7) 

 

Fonte: elaborado pelo próprio autor. 
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Esse resultado é esperado, pois o sal e sua concentração são muito mais importantes na 

determinação do meio de têmpera do que a rotação. Isto é, sozinha, a rotação não é capaz de 

predizer qual será o resultado das variáveis de saída do experimento (taxa máxima de 

resfriamento, severidade de têmpera), enquanto é possível fazer inferências utilizando meios 

com composições diferentes. 

O modelo 8 é o modelo mais completo de regressão linear múltipla sem interações em 

relação aos coeficientes, levando em consideração a concentração e o tipo de sal, a temperatura 

do banho e a rotação. Apresenta um R2 de 81%, similar ao modelo 6. Da mesma maneira que 

no modelo 7, o coeficiente da rotação não é estatisticamente significativo, pois não existe 

diferença média entre as rotações de 500 a 800 rpm em relação ao banho sem agitação. Para os 

resultados finais do modelo, a rotação foi mantida como um dos coeficientes para representar 

os resultados de maneira gráfica de maneira completa e também para construção do aplicativo, 

após a modelagem estatística. A Figura 23 traz a leitura estatística do modelo. 

Figura 23: resultado do modelo 8 

 

Fonte: elaborado pelo próprio autor. 

As variáveis com maior significância são a porcentagem, salNAHCO3 e graus_c45, 

com confiabilidade de até 0,1%. Pode-se afirmar que, em relação à base, que é a água, essas 

variáveis têm uma alta significância em alterar a taxa máxima de resfriamento. A variável 

salNaNO2 não possui significância no modelo 8, indicando que, em relação à base utilizada 

(H2O), não existe, isoladamente, uma diferença estatística. Isso se dá pelo alto desvio padrão 

dos resultados encontrados utilizando esse sal, o que também foi analisado na seção de 

estatística descritiva. 
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As Figuras 24, 25 e 26 mostram, respectivamente, os gráficos dos diferentes tipos de 

sal, da temperatura do banho e da rotação com o aumento da porcentagem do sal. 

 

Figura 24: tipos de sal e o efeito com o aumento da porcentagem 

 

Fonte: elaborado pelo próprio autor. 

Mesmo incluindo a rotação como variável, considerando, portanto, todas as variáveis 

preditoras descritas no procedimento experimental, o modelo 8 não apresenta vantagens em 

relação ao modelo 6. Segundo o modelo, não há diferença média na taxa máxima de 

resfriamento entre as rotações de 500 e 800 rpm com relação à 0 rpm. 

Além disso, como verificado na análise descritiva bivariada, o NaHCO3 como meio de 

têmpera possui um efeito inversamente proporcional na taxa máxima de resfriamento, o que 

não é refletido no gráfico. Apesar de considerar todas as variáveis descritas no procedimento 

experimental, o modelo não considera as interações entre elas. O reflexo disso é que o 

coeficiente angular das retas dos efeitos preditores é o mesmo, independente do sal, da rotação 

ou do banho, o que não reflete alguns comportamentos já verificados na análise descritiva 

bivariada. 
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Figura 25: temperatura do banho e o efeito com o aumento da porcentagem 

 

Fonte: elaborado pelo próprio autor. 

Figura 26: rotação e o efeito com o aumento da porcentagem 

 

Fonte: elaborado pelo próprio autor. 
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5.4 Regressão linear múltipla – com interações 

 

O modelo 9 foi construído utilizando como base o sal NaSO4 e considera as interações 

que se mostraram mais significativas durante a construção do modelo, que são as relações entre 

a porcentagem do sal e a temperatura do banho, e a porcentagem do sal com o tipo de sal. O 

resultado completo do modelo 9 é apresentado na Figura 27. 

Figura 27: resultado do modelo 9 

 

Fonte: elaborado pelo próprio autor. 

O modelo 9 apresenta o maior R2 de todos os modelos construídos, com um poder 

explicativo de 91%. Possui muitas variáveis que são estatisticamente significativas, como os 

sais e as interações entre eles, e uma significância nas interações das porcentagens com o banho 

a 45 graus. Foi o único modelo também que apresentou significância para agitação em 800 

rpm, resultado de uma análise mais profunda nas interações. 

A Figura 28 mostra o efeito da porcentagem no tipo de sal, para cada temperatura de 

banho considerada. 
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Figura 28: gráficos de efeitos preditores categorizados por tipo de sal e temperatura do banho. Eixo x 

com porcentagem do sal 

 

 

 

Fonte: elaborado pelo próprio autor. 

 Diferente dos modelos apresentados anteriormente, o modelo 9 apresenta uma 

variabilidade muito menor nos gráficos, exceto para o NaHCO3. Como o mesmo só foi 

utilizado em concentrações de até 7%, a extrapolação da variável resposta possui uma maior 

variabilidade para esse sal. 

Alguns coeficientes, como salNaOH, porcentagem:salNaOH e sal NaCl, que 

apresentaram significância estatística relevante nos modelos anteriores passaram a não mais 

serem estatisticamente significativos. Isso ocorre porque a base para a construção do modelo 9 
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é o sal NaSO4, e como esses sais apresentam um efeito muito similar em relação à taxa máxima 

de resfriamento, não há diferença estatística em utilizar um ou outro, segundo o modelo. 

A Figura 29 traz as curvas que mostram a interação do tipo de sal com a porcentagem 

do sal. Diferente do modelo 8, onde o coeficiente angular das retas era o mesmo, nesse gráfico 

cada sal possui uma predição diferente com o aumento da porcentagem. Como pode ser 

observado, o efeito inverso do aumento do NaHCO3 foi corretamente previsto pelo modelo, 

como observado no banco de dados. 

Figura 29: curvas de interação entre tipo de sal e porcentagem do sal e relação com taxa 

máxima de resfriamento. 

 

Fonte: elaborado pelo próprio autor. 

Outro achado interessante é em relação ao sal NaNO2. Esse sal, quando em pequenas 

porcentagens, apresenta taxas máximas de resfriamento inferiores aos outros (exceto pelo 

NaHCO3), mas em torno de 15% é o que apresenta, segundo o modelo, as maiores taxas de 

resfriamento. 

A Figura 30 mostra a interação entre a porcentagem do sal e a temperatura do banho. 
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Figura 30: curvas de interação entre temperatura do banho e porcentagem do sal e relação 

com taxa máxima de resfriamento. 

 

Fonte: elaborado pelo próprio autor. 

Como visto em outros modelos, a temperatura do banho parece influenciar de maneira 

inversa na taxa máxima de resfriamento. Esse fato pode ser explicado pela estabilidade da 

camada de vapor que é gerada em temperaturas mais altas do banho. Por outro lado, o gráfico 

das interações mostra que, no caso de a porcentagem do sal ser suficientemente grande, esse 

efeito da estabilidade da camada parece ser vencido pelos benefícios da utilização da solução 

aquosa como meio de resfriamento, como esperado. A observação é de que, embora exista uma 

diferença na taxa média entre as temperaturas de 25 e 45°C, ela é muito menor em 15% do que 

em 2%, e seguindo o coeficiente angular da reta graus_c 45, poderia existir a possibilidade de 

que o efeito se inverta em porcentagens maiores, como 20%, mas não se pode assumir uma 

completamente linearidade dos dados fora do limite do banco de dados. 

O único efeito que parece não ter relevância estatística como as outras variáveis é a 

rotação. A Figura 31 mostra as curvas de interação entre a rotação e a porcentagem do sal. 
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Figura 31: curvas de interação entre rotação e porcentagem do sal. 

 

Fonte: elaborado pelo próprio autor. 

Muitos estudos mostram que a agitação tem efeitos no perfil de dureza da peça obtida, 

na diminuição de distorções e trincas e em obtenção de maiores taxas máximas de resfriamento, 

aumentando a severidade de têmpera. Estudos conduzidos em óleos de têmpera e água dizem 

que a agitação é primordial no design de um experimento de têmpera, e recursos 

computacionais de simulação de extração de calor são comumente utilizados para mostrar os 

benefícios (TOTTEN; CANALE, 2005). O modelo 9 mostra que essa diferença observada no 

banco de dados não é significativa. Isso significa que seriam necessários mais pontos para cada 

caso para aumentar a relevância estatística desse parâmetro. Para entender melhor essa 

dissonância com alguns estudos da literatura, é primeiro necessário definir o que pode ser 

considerado uma agitação que tenha efeito no meio de têmpera, e se as rotações de 500 e 800 

rpm estão dentro dessa faixa. Como o modelo quantifica o efeito dos coeficientes em relação à 

taxa máxima de resfriamento, é possível que outros efeitos secundários na peça que não estejam 

diretamente ligados à taxa máxima de resfriamento sejam afetados pela rotação, produzindo 

bolhas menores e mais uniformes durante a fase de nucleação de bolhas, elevando taxas de 

resfriamento por toda a peça e evitando gradientes térmicos. Além disso, dependendo do 

volume do recipiente utilizado para a têmpera, a agitação promoverá uma circulação do fluido, 
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de forma que a peça estará em contato com um fluido em temperaturas mais baixas 

constantemente, o que também contribui para a dissipação de calor (HASAN, et al, 2018). 

 

5.5 Diagnóstico dos modelos 

 

Além dos efeitos visuais e da significância, o modelo precisa ser diagnosticado para 

poder ter alguma relevância na explicação dos dados. Por serem os modelos com maior poder 

explicativo e terem sido utilizados na construção do aplicativo, será apresentado somente o 

diagnóstico dos modelos 8 e 9. 

Os primeiros gráficos, apresentados nas Figuras 32 e 33, trazem os quantis (t) e os 

resíduos dos dois modelos. Essa análise tem como objetivo medir a normalidade, umas das 

premissas apresentadas para a construção de modelos lineares. Pela figura percebe-se que 

ambos os modelos possuem valores dentro da faixa, com o modelo 9 apresentando um resultado 

melhor, o que representa um bom diagnóstico. Em relação aos modelos mais simples, a omissão 

das variáveis faz com que o modelo fique sobrecarregado com erros e não seja capaz de explicar 

os dados, não cumprindo o teste da normalidade proposto 

 

Figura 32: diagnóstico do modelo 8 (normalidade, quantis t) 

 

Fonte: elaborado pelo próprio autor. 
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Figura 33: diagnóstico do modelo 9 (normalidade, quantis t) 

 

Fonte: elaborado pelo próprio autor. 

 

Um dos pontos mais importantes do diagnóstico é o gráfico dos resíduos e dos valores 

ajustados, também uma verificação inicial dos pressupostos apresentados anteriormente. Os 

resíduos devem estar dispostos de maneira aleatória ao redor do 0 do gráfico. As Figuras 34 e 

35 trazem os gráficos de resíduos para os modelos 8 e 9 

 

Figura 34: gráfico de dispersão dos resíduos (modelo 8). 

 

Fonte: elaborado pelo próprio autor. 
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Figura 35: gráfico de dispersão dos resíduos (modelo 8). 

 

 

Fonte: elaborado pelo próprio autor. 

Em ambos modelos existe um indício de não linearidade, evidenciado pela distância 

entre a faixa azul e a faixa pontilhada. Para o diagnóstico do modelo, no entanto, é uma não 

linearidade muito sutil e não invalida os resultados obtidos. 

Essa não linearidade pode ser verificada no gráfico de taxa máxima de resfriamento 

pela porcentagem, desconsiderando o efeito das outras variáveis (relação marginal). A Figura 

36 mostra o gráfico descrito para o modelo 9. 
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Figura 36: gráfico de relação marginal entre txmax e porcentagem 

 

Fonte: elaborado pelo próprio autor. 

 

Apesar de o banco de dados possuir uma não linearidade clara nas faixas de 5 a 10% de 

porcentagem, o modelo foi capaz de captar esse efeito, mesmo sendo linear. Isso é um outro 

indício de que a modelagem foi bem executada e de que o modelo explica a variabilidade dos 

dados de maneira satisfatória. As figuras 37 e 38 evidenciam essa afirmação, com os gráficos 

que comparam os modelos e os valores do banco de dados. 

O modelo 8 possui um bom ajuste, mas a falta de interações impede que o a linha 

vermelha, referente ao modelo, esteja sobreposta à linha azul, referente aos dados. Enquanto 

isso, o modelo 9 apresenta um ajuste quase que perfeito em relação aos dados, mesmo com os 

indícios de não linearidade já demonstrados. Quando a interação entre os dados é considerada, 

o ajuste do modelo é mais bem conduzido, porque isso reflete matematicamente um efeito que 

ocorre durante o experimento. Nesse caso, a interação entre o sal e a porcentagem do sal pode 

ser o que torna o ajuste do modelo 9 superior ao ajuste do modelo 8. 
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Figura 37: gráfico de valores ajustados por taxa máxima de resfriamento (modelo 8) 

 

Fonte: elaborado pelo próprio autor. 

Figura 38: gráfico de valores ajustados por taxa máxima de resfriamento (modelo 9) 

 

Fonte: elaborado pelo próprio autor. 

Outra forma de demonstrar a superioridade do modelo 9 é analisar as estimativas para 

os parâmetros em relação ao modelo 8. A Figura 39 traz o comparativo com essas informações. 
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Figura 39: comparativo entre modelo 8 e modelo 9 

 

Fonte: elaborado pelo próprio autor. 

Os intervalos de confiança do modelo 9 são mais estreitos que os do modelo 8, o que 

indica uma precisão maior no modelo. Esse resultado também é reflexo da interação entre as 

variáveis, o que mostra a importância de se fazer essa análise na construção de regressões 

lineares múltiplas. 

A Tabela 2 consolida todos os modelos, com os respectivos R2 e as variáveis utilizadas 

para construção deles. 

Tabela 2: consolidado dos modelos construídos 

 

Fonte: elaborado pelo próprio autor. 

 

Modelo R
2 Variáveis

1 37,5% Porcentagem do sal

2 61,8% Tipos de sais

3 5,5% Temperaturas do banho

4 0,4% Rotação

5 75,4% Porcentagem do sal e tipos de sais

6 80,9%
Porcentagem do sal, tipos de sais, temperatura do 

banho

7 75,8% porcentagem do sal, tipos de sais, rotação

8 81,3%
porcentagem do sal, tipos de sais, temperatura do 

banho, rotação

9 91,1%

porcentagem do sal, tipos de sais, temperatura do 

banho, rotação, interação entre porcentagem do 

sal e o tipo do sal, interação entre porcentagem do 

sal e temperatura do banho
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5.6 Discussão dos modelos e comparativo 

 

Alguns resultados não são reflexos da realidade e devem ser analisados com ressalvas. 

Quando analisamos os resultados para o NaHCO3, que possui uma solubilidade limitada em 

água, ele não pode ter o resultado extrapolado para porcentagens muito acima de 7%. Além 

disso, as taxas máximas de resfriamento média obtidas são inferiores à da água, efeito contrário 

à adição dos outros sais. Isso pode ser explicado pela decomposição do sal conforme equação 

química: 

2𝑁𝑎𝐻𝐶𝑂3  → 𝑁𝑎2𝐶𝑂3 + 𝐶𝑂2 (𝑔) + 𝐻2𝑂(𝑔) 

A geração de CO2 na forma de gás estabiliza a camada de vapor durante o resfriamento, 

diminuindo as taxas de resfriamento e consequentemente diminuindo a severidade do meio 

(ZORDÃO, 2019). 

Alguns estudos mostram que a porcentagem na qual a solução aquosa de NaNO2 é mais 

eficaz como meio de resfriamento é em torno de 4%, e que acima dessa porcentagem não existe 

diferença na extração de calor da peça, com testes até 9%. (LOZANO et al, 2012). Outros 

estudos mostram uma relação inversa, de que quanto maior a porcentagem do sal, melhor é a 

extração de calor e mais altas são as taxas de resfriamento máxima, como no banco de dados 

fornecido para construção da regressão deste trabalho, que utiliza concentrações de até 15% 

(ZORDÃO, 2019). Quantidades maiores de casos no experimento que gerou o banco de dados 

pode ser o motivo pelo qual esse efeito aparece em um trabalho e não em outro. Isso indica a 

possibilidade de se existir um efeito de não linearidade da porcentagem do sal. Esse fato foi 

apresentado no diagnóstico do modelo 9, que apesar de não sobrepor os dados reais, capta 

muito bem a não linearidade em uma faixa de 5 a 10% de concentração. 

De maneira geral, quanto maior a porcentagem do sal como meio de resfriamento, 

maiores serão as taxas máximas de resfriamento e maiores serão as extrações de calor da peça. 

Variáveis como agitação e temperatura do banho influenciam no resultado do meio e 

consequentemente influenciam nas propriedades mecânicas que a peça temperada terá, mas os 

efeitos são diminutos quanto comparados à composição do meio. Dito isso, é importante levar 

em consideração a solubilidade máxima dos sais em meio aquoso e outros efeitos adversos que 

podem ocorrer durante a têmpera, como é o caso do NaHCO3. Outro efeito adverso é na 

utilização do NaCl, que é corrosivo para vários metais. A obtenção das taxas altas é desejável 

em aços de baixa temperabilidade, e o rompimento mais rápido da camada de vapor é desejável 
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de maneira geral durante a têmpera, por diminuir as probabilidades de trincas e distorções nas 

peças (ARAI; FURUYA, 2011). 

Um fator importante ao se analisar os modelos criados e as inferências que podem ser 

obtidas, é que o banco de dados fornecido foi construído utilizando faixas de 2 a 15%massa 

para diferentes sais. A literatura mostra que, acima de um certo limite para alguns sais, como 

NaCl, ocorre um efeito inverso nas taxas máximas de resfriamento e no rompimento da camada 

de vapor. Isto é, cada sal possui um “ponto ótimo” de extração de calor. Além disso, a 

geometria da peça, o volume do banho e a própria metodologia para a obtenção dos dados de 

temperatura varia de autor para autor, e esses fatores também contribuem para as variáveis 

respostas do experimento. Dessa forma, o modelo é certamente mais preciso e reflete a 

realidade quando utilizado dentro da faixa do banco de dados e sob as mesmas condições de 

experimento, e quaisquer extrapolações devem ser acompanhadas de um conhecimento 

técnico-científico mais aprofundado e específico acerca do sal que estará sendo utilizado como 

meio de têmpera (ZORDÃO, 2019; LOZANO, 2016). 

 

5.7 Aplicativo Shiny para previsão da taxa máxima de resfriamento 

 

Com os modelos 8 e 9 foi feito um aplicativo em linguagem R utilizando a biblioteca 

Shiny para tornar a equação de regressão em um produto com aplicação prática. O aplicativo 

permite prever as taxas máximas de resfriamento para diferentes sais, porcentagens, rotações e 

temperaturas do banho. Assim como na construção dos modelos, a porcentagem foi definida 

como uma variável contínua, e as outras variáveis foram definidas como categóricas. O 

aplicativo também possui função mobile. A Figura 40 traz um exemplo de utilização do 

aplicativo. 
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Figura 40: entrada do aplicativo Shiny sendo utilizado para predição da taxa máxima de 

resfriamento. 

 

Fonte: elaborado pelo próprio autor. 

 

A interface foi construída de forma a ser amigável para o usuário que planeja utilizar o 

aplicativo. As Figuras 41 e 42 trazem exemplos de como ele pode ser utilizado para obtenção 

das taxas máximas de resfriamento e as faixas de variabilidade, de acordo com a predição que 

se deseja. No primeiro exemplo, trazido na Figura 41, foi utilizado o sal NaSO4 em uma 

temperatura de banho de 35°C, rotação de 800 rpm e porcentagem de 9,1%massa. Essa 

condição é calculada com o modelo 9 e não estava originalmente presente no banco de dados. 

A predição da taxa máxima de resfriamento, nesse caso, é possível com o modelo que foi 

construído e com as devidas considerações e diagnósticos que foram realizados e comentados 

na seção anterior. 
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Figura 41: exemplo de utilização do aplicativo em Shiny. Sal escolhido: NaSO4, temperatura 

do banho a 35°C, porcentagem em 9,1% e rotação de 800 rpm. Modelo 9. 

 

 

 

Fonte: elaborado pelo próprio autor. 

 

A Figura 42 traz um exemplo com a água pura em uma temperatura de 35°C e a rotação 

em 800 rpm. 

No caso da água, independente da porcentagem colocada, o resultado será o mesmo, 

porque não existe sentido físico em alterar a porcentagem de uma substância pura. Para esse 

caso é utilizado o modelo 8, pois como explicado anteriormente, o modelo 9, por considerar 

interações entre as variáveis preditoras, utilizou o NaSO4 como base, e não a água. 

 



67 

 

Figura 42: exemplo de utilização do aplicativo em Shiny. Meio escolhido: água pura, 

temperatura do banho a 35°C e rotação de 800 rpm. Modelo 8. 

 

 

 

Fonte: elaborado pelo próprio autor. 

 

Para avaliar os resultados obtidos com o aplicativo e comparar com aqueles do banco 

de dados, foram feitos alguns testes. Utilizando o sal NaCl a uma concentração de 12%, 

temperatura do banho a 25°C e sem agitação, tem-se, no banco de dados, o equivalente a uma 

taxa máxima de resfriamento de 276 °C. O aplicativo, com as mesmas condições, prevê um 

valor médio de 272,42 °C, com um limite inferior de 240,61 °C e um limite superior de 304,23 

°C. Esse resultado pode ser visto na Figura 43. 
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Figura 43: exemplo de utilização do aplicativo em Shiny. Meio escolhido: NaCl, concentração 

de 12%, temperatura do banho a 25°C s sem agitação. Modelo 9 

 

 

 

 

Fonte: elaborado pelo próprio autor. 

 

Um outro teste, utilizando NaNO2, uma porcentagem de 7%, temperatura do banho de 

35° C e rotação de 500 rpm foi realizado. O banco de dados possui um valor, para esse ponto, 

de 254 ° C. O aplicativo prevê um valor médio de 231,01 °C, um limite superior de 262,65 °C 

e um limite inferior de 199,37 °C. Esse resultado pode ser visto na Figura 44. 
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Figura 44: exemplo de utilização do aplicativo em Shiny. Meio escolhido: NaCl, concentração 

de 12%, temperatura do banho a 25°C s sem agitação. Modelo 9 

 

 
 

Fonte: elaborado pelo próprio autor. 

 

 Esses resultados mostram que o modelo está bem ajustado e pode ser utilizado para 

prever faixas de valores que serão obtidos em experimentos de meios de resfriamento, 

considerando as mesmas condições que geraram o banco de dados. 
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6. CONCLUSÃO 

 

Com uma análise descritiva bivariada, os dados fornecidos foram analisados e foram 

feitas algumas inferências quanto aos resultados. Considerando uma boa sanidade dos dados, 

existem tendências de relação entre os parâmetros com a taxa máxima de resfriamento, o que 

é de se esperar de acordo com a literatura. 

A construção dos modelos de regressão linear de maneira progressiva segue uma lógica 

de aumento da complexidade, até atingir um número considerável de variáveis significativas e 

um R2 suficientemente alto para explicar a variabilidade dos dados. O último modelo 

apresentado, o modelo 9, leva em consideração as interações entre as variáveis, apresenta um 

R2 de 91% e muitas variáveis significativas, o que garante uma confiabilidade no modelo. Por 

esses pontos, foi considerado o melhor modelo construído neste trabalho. 

Com esse resultado, a quantificação dos efeitos das variáveis preditoras na taxa máxima 

de resfriamento, proposta como objetivo do trabalho, é atingida, obtendo como produto uma 

equação de regressão linear múltipla cujos fatores foram estatisticamente verificados. Essa 

equação pode ser utilizada para predição de taxas máximas de resfriamento em experimentos 

que utilizam as mesmas condições daquelas inclusas no banco de dados. Além disso, é possível 

obter resultados interpolados da concentração do sal, porque a variável foi considerada 

contínua durante a construção dos modelos. 

O diagnóstico dos modelos mostra que a relação entre os coeficientes e a taxa máxima 

de resfriamento possui indícios de não linearidade em algumas faixas. Ainda que o modelo 

tenha sido ajustado e o resultado seja muito próximo do banco de dados, esses fatores podem 

ser estudados de maneira mais aprofundada para construção de um modelo ainda mais preciso. 

No entanto, modelos mais complexos, como os modelos não-lineares, são menos eficientes em 

oferecer resultados de simples interpretação, em contrapartida aos modelos lineares utilizados 

neste trabalho. 

A construção do aplicativo em linguagem R na biblioteca Shiny transforma o resultado 

do trabalho, os modelos 8 e 9, em um produto de simples aplicação, o que responde a uma 

necessidade dos pesquisadores de possuírem com facilidade o acesso à informação. O resultado 

foi apresentado com uma faixa de variabilidade com confiança de 95%, mas pelo modelo ter 

sido finamente ajustado, como demonstrado nas faixas de variabilidade dos modelos, existe 

razão para crer que a chance de um experimento resultar no valor previsto pela equação é alta, 

desde que as premissas do experimento sejam mantidas e sejam respeitadas as individualidades 



71 

 

de cada sal. Esse conhecimento deve ser previamente estudado pelo pesquisador antes da 

utilização do aplicativo em questão, como as faixas ótimas de utilização de cada sal, os efeitos 

adversos, possíveis transformações químicas, inversão de proporcionalidade, geometria das 

peças, volume do banho e metodologia de medição de taxas e temperaturas. 
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7. TRABALHOS FUTUROS 

 

Algumas sugestões para trabalhos futuros que surgiram durante a elaboração desse 

trabalho: 

1. Utilização de mesma lógica estatística para modelagem de outra variável de saída 

(temperatura a 700 graus, temperatura de taxa máxima de resfriamento); 

2. Utilização de modelos não-lineares mais complexos para melhor modelagem dos 

efeitos dos sais, permitindo captar os efeitos de não-linearidade e expandir a 

capacidade de inferência dos modelos; 

3. Aplicar regressão linear para outros bancos de dados (como óleos vegetais, óleos 

minerais, banhos de sais fundidos) para obter resultados similares em uma 

quantidade maior de fluidos de resfriamento, respeitadas as diferenças entre os tipos 

de fluidos e as premissas estatísticas apresentadas. 

4. Estudar a rotação em fluidos que não contribuem para o rompimento da camada de 

vapor ou que até mesmo promovam sua estabilização, de forma a dar uma nova 

visão quanto a essa variável. 

5. Analisar se a exclusão do NaHCO3 do banco de dados traria diferentes resultados 

em relações às variáveis e aos modelos construídos. 
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ANEXO A – Comparativo entre modelos estatísticos (modelos 1 a 5)

 

 

Variável/Modelo 1 2 3 4 5

5.956*** 4.057***

(0.577) (0.415) 

58.111*** 21.602**

(11.591) (10.047)

54.528*** 18.019*

(11.591) (10.047)

-51.111*** -70.042***

(11.971)  (9.826)

39.639***  3.130  

(11.591) (10.047)

62.833*** 26.324***

(11.591) (10.047)

-12.217

(8.861)

-28.317***

(8.861)

4.317

(9.097)

7.600

(9.097)

195.639*** 207.333*** 256.200*** 238.717*** 207.333***

(5.419) (10.367) (6.266) (6.432) (8.343)

Observações 180 180 180 180 180

R2 0.375 0.618 0.055 0.004 0.754

R2 Ajustado 0.371 0.607 0.044 -0.007 0.746

Erro residual 39.366 (df = 178) 31.102 (df = 178) 48.534 (df = 174) 49.825 (df = 177) 25.030 (df = 173)

F estatístico 106.661*** (df = 1; 178) 56.410*** (df = 5; 174) 5.138*** (df = 2; 177) 0.351 (df = 2; 177) 88.526*** (df = 6; 173)

Variável  Dependente: txmax

porcentagem:graus_c45

porcentagem:salNaCl

porcentagem:salNaHCO3

porcentagem:salNaNO2

porcentagem:salNaOH

Constante

salNaOH

graus_c35

graus_c45

rpm500

rpm800

porcentagem:graus_c35

porcentagem

salNaSO4

salNaCl

salNaHCO3

salNaNO2
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ANEXO B – Comparativo entre modelos estatísticos (modelos 5 a 9) 

 

 

Variável/Modelo 5 6 7 8 9

4.057*** 4.057*** 4.057*** 4.057*** 2.453***

(0.415) (0.368) (0.414) (0.366) (0.628)

21.602** 21.602** 21.602** 21.602**

(10.047) (8.906) (10.024) (8.865)

18.019* 18.019** 18.019* 18.019** 10.917

(10.047) (8.906) (10.024) (8.865) (7.621)

-70.042*** -70.042*** -70.042*** -70.042*** -60.203***

 (9.826) (8.710) (9.804) (8.671) (9.187)

 3.130  3.130 3.130 3.130 -69.482***

(10.047) (8.906) (10.024) (8.865) (7.621)

26.324*** 26.324*** 26.324*** 26.324*** 13.845*

(10.047) (8.906) (10.024) (8.865) (7.621)

-12.217*** -12.217*** -16.846***

(4.051) (4.032) (5.768)

 -28.317*** -28.317*** -48.498***

(4.051) (4.032) (5.768)

4.317 4.317 4.719  

(4.559) (4.032) (2.919)

7.600* 7.600* 7.035** 

(4.559) (4.032) (2.919)

0.625

(0.598)

2.653***

(0.598)

-1.611**

(0.742)

-7.212***

(1.551)

5.668***

(0.742)

-1.014 

(0.742)

207.333*** 220.844*** 203.361*** 216.872*** 251.400***

(8.343) (7.757) (8.730) (8.064) (6.555)

Observações 180 180 180 180 171

R2 0.754 0.809 0.758 0.813 0.911

R2 Ajustado 0.746 0.800 0.747 0.802 0.902

Erro residual 25.030 (df = 173) 22.187 (df = 171) 24.972 (df = 171) 22.085 (df = 169) 15.581 (df = 155)

F estatístico 88.526*** (df = 6; 173) 90.645*** (df = 8; 171) 67.049*** (df = 8; 171) 73.541*** (df = 10; 169) 105.481*** (df = 15; 155)

porcentagem:salNaCl

porcentagem:salNaHCO3

porcentagem:salNaNO2

porcentagem:salNaOH

Constante

Variável  Dependente: txmax

graus_c35

graus_c45

rpm500

rpm800

porcentagem:graus_c35

porcentagem:graus_c45

porcentagem

salNaSO4

salNaCl

salNaHCO3

salNaNO2

salNaOH


