
FABRiCIO RIBEIRO TOLOCZKO
THIAGO HENRIQUE MILAN LUQUETA

Desenvolvimento de uma GPU aberta

Trabalho de Conclusao de Curso apresentado d
Escola Polit6cnica da Universidade de sao
Paulo para obtengao do titulo de Bacharel emI
Engenharia

sao Paulo

2016

FABRiCIO RIBEIRO TOLOCZKO
THIAGO HENRIQUE MILAN LUQUETA

Desenvolvimento de uma GPU aberta

Trabalho de Conclusao de Curso
apresentado a Escola Polit6cnica da
Universidade de sao Paulo para obtenQao
do tftulo de Bacharel em Engenharia

Orientador: Prof. Dr. Marcelo Kn6rich Zuffo

sao Paulo

2016

Uma irnagem vale mais que mil palavras

ou algumas chamadas em OpenGL

RESUMO

Desenvolvirnento de um processador grafico (GPU) sintetizavel em FPGA, sendo

inteiramente de c6digo aberto. O projeto busca elaborar uma arquitetura escalavel, capaz

de implementar o pipeline grafico do OpenGL. Devera ser urna base de desenvolvimento

s61ida para implementaQao de outros sistemas computacionais ou especificag6es de

processamento de dados no futuro.

Palavras-Chave: ComputaQao grafica. Sistemas embutidos. Arquitetura e organiza9ao

de Computadores.

ABSTRACT

Development of a graphics processor synthesizable on FPGA, being entlreIY open source-

The project seeks to develop a scalable architecture, capable of implementing the OpenGL

graphics pipeline. It must be a solid development base for the implementation of other

computer systems or data processing specifications in future.

Keywords: computer graphics. embedded systems. organization and architecture of

computers.

LISTA DE ABREVIATURA E SIGLAS

Application Programming Interface

Application Specific Integrated Circuits

Computer Aided Design

Central Processing Unit

Field Programmable Gate Array

GNU is Not Unix

API

ASIC

CAD

CPU

FPGA

GNU

GPU

HDL

ISA

OpenGL

PHP

Graphics Processing Unit

Hardware Description Language

Instruction Set Architecture

Open Graphics Library

PHP: Hypertext Preprocessor

Single Board Computer

System on Chip

Universal Serial Bus

SBC

SoC

USB

Apache 2.0

BSD-2

GPL 3.0

MIT

MPL 2.0

CDDL 1.0

EPL 1.0

PD

Apache License version 2.0

The BSD 2-Clause License

GNU General Public License, version 3

The MIT License

Mozilla Public License, version 2.0

Common Development and Distribution License

Eclipse Public License 1.0

Public Domain

SUMARIO

1.DEFINI(,,Ao DO PROBLEMA... 9

2.EspECIFICA(,,Ao DA NECESSIDADE... 11

3.REVISAO DA LITERATURA...,. 13

4.TECNOLOGIAS RELEVANTES..,... 15

4.1.TECNOLOGIAS DE PROCESSAMENTO GRAFIco... 15

4.2.IMPLEMENTAQAO PURAMENTE EM SOFTWARE... 15

4.3.IMPLEMENTAQAO EM HARDWARE DEDICADO: ASIC..15

4.4.IMPLEMENTAQAO EM HARDWARE DEDICADO: FPGA......,.. 15

4.5.ESPECIFICAQ6ES DE GRAFICOS: OPENGL.. 16

4.6.IMPLEMENTAQAO ABERTA DA OPENGL: MESA3D E GALLIUM.. 17

4.7.ARQUITETURAS DE GPU COMERCIAIS E ACADEMICAS... 17

5.ARvoRE DE OBJETIVOS DO DISPOSITIVO..21

6.ESPECIFICA(,,Ao DE REQUISITos................,.......,...23

6.1,RE(]UISITOS PARA 0 SISTEMA.,,..,...,,,,..,..,,,....,.,,......,,..,.,,,.,..,..,.,,...........,.,..23

6.2,RESTRIG6ES...............,............,,.,................................,..................,,.,..,........,.. 24

6.2.1.Restrig6es t6cnicas..24

6.2.2. Restri(,6es econ6micas...25

6.2.3.Restrig6es de manufaturabilidade...25
7.PROJETO..,..........................,..,...,.............................. 27

7.1.TABELA DE CONCEITOS..28

7.2.NrVEL o...,.,.............,..,.......................... ,...........29

7,3.NfVEL I...............

7.4.NfVEL 2..31

7.5.NfVEL 3.. 34

7.6.ANALISE DE ACOPLAMENTO E COESAO..36

7.7.SELEqAO DOS DISPOSITIVOS...36

7.8.EAP...,......,.,...............,...............,... 38

7.9.CRONOGRAMA (CARTA DE GANn)..45

7.10.ATIVIDADES CRiTICAS E ANALISE DE RISCO...47

8.PROVA DE CONCEITO...,.....„.........49

8.1.PROVA DE CONCEITO: SOFrWARE.. 50

8.2.PROVA DE CONCEITO: HARDWARE...................................,.......,...53

9.DECISAO DE ARQUITETURA E ABORDAGEM DE IMPLEMENTA(,,Ao...55

9.1.JUSTIFICATIVAS PARA MUDANQA DE ABORDAGEM..55

IO.PRIMEIRA FASE DE IMPLEMENTA(,,Ao...59

lo.I.RELAT6RIO DE RECONHECIMENTO E TESTES NO SOFTPIPE..59

lo.2.IMPLEMENTAGAO DO RASTERIZADOR VIRTUAL..63

IO.3.FUNCIONAMENTO DO RASTERIZADOR...65

10.4.FUNe6ESIMPLEMENTADAS.. 65

ll.SEGUNDA FASE DE IMPLEMENTA(,'Ao..67

ll.I.CRONOGRAN4A..,...,.. 67

11.2.PREPARANDO A DEI-SoC.. 67

11.3.RASTERIZADOR VIRTUAL...,...........,............,....,....................,.. 68

11.4.RASTERIZADOR NO FPGA.. 69

12.LICEN(,,AS ABERTAS DE USO..73

12.1.LICENQAS DE SOFTWARE DE TERCEIROS UTILIZADOS NO PROJETO..74

13.DISCUSSAO E CONCLUS6ES.......,..75

REFERENCIAS.....,....,.........,,,,...,,,,.,,......,,.,..,... 77

APENDICE A.........,.....................................,.. 78

APENDICE B.....................,,,.,..,..,..,.........,..................................... 80

APENDICE c..................................,... 98

APENDICE D.. 118

APENDICE E..,... 121

9

1. DEFINI(,,AO DO PROBLEMA

As Unidades de Processamento Grafico (em ing16s GPU Graphics Processing Unit)

sao processadores de prop6sito especifico desenvolvidos para operaQ6es de

processamento grafico, caracterizado pelo tratamento de um grande volume de

dados, que precisam ser exibidos na tela do computador em taxas interativas. Esta

necessidade de processamento grafico 6 essencial para utilizaQao em jogos,

prograrnas de desenvolvirnento e edigao de imagens e videos, exames m6dicos

computadorizados, ferramentas CAD (Computer Aided Design) , entre outros. As

GPUs sao amplarnente utilizadas em computadores pessoais e portateis, tais como

smartphones e tablets. Pelo fato de tratarem de algoritmos paralelizaveis muito

melhor que CPUs (Central Processing Unit) . as GPUs tdm sido utilizadas para outras

finalidades no campo da ci6ncia: supercomputadores, processamento de sinais,

estudos estatisticos, entre outras simulaQ6es cientificas.

Os GPUs sao uma etapa fundamental no hardware moderno: o processamento

grafico esti presente em quase todos os segmentos que utilizam computaQao. Tais

processadores sao, por6m, produzidos por algumas poucas empresas, que

dorninam praticamente toda tecnologia e todo mercado de GPUs, tanto corn

desktops quanto embarcados(iPR, 2016). Com isso, a maior parte da tecnologia

envolvida – desde o hardware ao software das bibliotecas de interface – nao esta

acessivel ao dorninio pOblico, fazendo com que a utilizagao e desenvolvirnento das

GPUs fiquem restritos aos produtos vendidos pelos fabricantes e suas ptataformas

especfficas.

10

11

2. ESPECIFICA(,'AO DA NECESSIDADE

E fundamental para o mercado que haja opQ6es de desenvolvimento com c6digo

aberto. Um c6digo aberto significa que todo o projeto, desde sua concepQao at6 o

produto final, esta acessfvel a qualquer terceiro que deseja utiliza-to. lsso exige que

certos conceitos legais sejam atrelados ao projeto, conforme os padr6es existentes.

A Open Source /n/f/aIIve(OSI,2016) 6 a fundac,ao que administra as licenQas dos
softwares abertos.

O conhecimento disponibilizado em c6digo aberto ja demonstrou seu potencial de

crescirnento tecno16gico. Expoentes dessa mentalidade no passado, como o API

(Application ProgrammIng Interface) OpenGL, GNU\Linux ou o projeto software livre,

sao hoje base de mercados extremamente lucrativos e promissores – Facebook,

Twitter, Whatsapp, Android. A escassez de hardware aberto como CPUs, rnern6rias,

buses, pipelines e, principalmente, GPUs 6 mais uma barreira ao desenvolvimento

da humanidade hoje. Nesse sentido, a realidade apontada pelo professor Karu

Sankaralingam – principal autor do projeto MIAOW, da University of Wisconsin-

Madison – revela o sentido da proposta de urn GPU

aberto(SANKARALINGAM,2015): “(...)RTL-level implementations and low-level

detailed microarchitecture specification is lacking”, em traduQao livre:

'implementaQ6es em nivel RTL e especificaQao de microarquitetura detalhada em
baixo nivel sao escassas”.

lsso gera a necessidade de criaQao de novas arquiteturas capazes de concorrer no

mercado com maior flexibilidade, a partir de uma tecnologia acessfvel e aberta. Por

essa perspectiva, 6 preciso que se tenha uma tecnologia escalavel, capaz de

fornecer resultados confiaveis e com uma estrutura de desenvolvimento simples e

robusta – a partir da qual podera surgir, no futuro, uma GPU cornparavel em

qualidade e tarnanho com as ja presentes no mercado.

Com isso, foi motivada a realizaQao deste projeto: uma arquitetura GPU aberta, corn

as caracteristicas citadas acima. O diferencial deste projeto 6 que ele pretende ser

funcional desde o inicio, trabalhando gradativamente para se aperfeigoar e

12

implementar mais funQ6es conforme avanga. Essa implementaQao gradativa

permitiria que, mesmo com a quantidade limitada de mao-de-obra e tempo

disponivel, tenha-se uma arquitetura que ja possui algumas funcionalidades e com

um caminho claro e simples para continuar se desenvolvendo.

13

3. REVISAO DA LITERATURA

Existem projetos de hardware aberto ou ferramentas abertas corn enfoque em

GPUs, muitos inclusive ainda em desenvolvimento. Alguns deles: MIAOW, Nyuzi,

Theia GPU, GPL-GPU. Todos esses projetos implementam parcialmente o que 6

uma GPU comercial hoje, faltando m6dulos para graficos ou funQ6es especfficas, o

que os torna invidveis a serem produzidos efetivamente em silicio. Embora essa

circunstancia, cada um definiu bases importantes para que urn novo projeto os

agrupe e desenvolva integralmente um processador de graficos, capaz de competir
no cenario industrial do futuro.

O custo de desenvolvimento 6 grande, exigindo dedicaQao e tempo – a fim de

ilustrar, o projeto MIAOW necessitou de 12 meses com 7 pessoas trabalhando para

conclusao do design inicial. Foi expandido posteriormente por outras 4 pessoas, das

quais 3 eram de graduaQao, resultando em um total de 36 meses para alcangar o

estagio atual.

As informaQ6es sobre arquiteturas de GPU disponiveis demonstram que a

complexidade de um projeto deste porte 6 grande. A16m disso, como a maior parte

das tecnologias mais modernas estao sob segredo industrial, a pesquisa se torna

relativamente limitada. A maior parte dos estudos fica confinada ao funcionarnento

te6rico ou aos demais projetos, como MIAOW e Nyuzi, que estao em urn ambito

mais experimental.

14

15

4. TECNOLOGI AS RELEVANTES

4.1. TECNOLOGIAS DE PROCESSAMENTO GRAFICO

Ha algumas forrnas de viabilizar o processamento grafico em sistemas

computacionais que basicamente estao em duas concepQ6es: software e hardware.

Cornurnente, ha urna rnescla de ambos dependendo da aplicaQao.

4.2. IMPLEMENTA(,'Ao PURAMENTE EM SOFTWARE

A primeira e mais simples 6 realizar a computaQao integralrnente no CPU via

software – modo bastante comum de atuar nos prim6rdios da computaQao,

sobretudo quando a demanda por esse tipo de tarefa era reduzida em comparaQao

ao cenario contemporaneo de aplicaQ6es. Hoje, essa abordagem ainda 6 (Itil em

sisternas ernbarcados de pouca exig6ncia visual ou que tenham recursos

computacionais disponiveis para esse fim sem prejuizo dos demais11. EIa 6, no

entando, extremamente onerosa ao CPU, dado que ele costuma ser de uso geral

pouca ou nenhuma otimizagao para processamento tipo SIMD, single instruction

multiple data, caracteristico de operaQ6es em graficos –, a16m de ser bastante

requisitado para outras funQ6es.

4.3. IMPLEMENTA(,'Ao EM HARDWARE DEDICADO: ASIC

O rnodo tradicional de se implementar hardware especifico atualmente 6
desenvolver o sistema em ASIC (Application Specific Integrated Circuits , ou Circuito

Integrado de AplicaQao Especifica), popularmente conhecido como chip. Nessa

concepgao, o projeto 6 desenvolvido com intuito de fabricar um dispositivo ou

fornecer as informaQ6es necessarias para que seja integrado a um outro sistema

maior, tamb6m implementado em ASIC. Essa 6 a forma comercial disponivel

atualmente ao se comprar uma placa de video ou um celular, neste o GPU esta

embutido num chip com outros processadores e perif6ricos, naquele, o GPU 6 o

circuito integrado propriamente dito.

4.4. IMPLEMENTA(,'Ao EM HARDWARE DEDICADO: FPGA

16

O aumento da capacidade computacional dos FPGAs e da redugao do seu custo

tem viabilizado a implementaQao de GPUs(FYKSE, 2013), a16m de inOmeros outros

sisternas, puramente ou parcialmente nessa tecnologia(WALLS, 2012). Estudos ja

mostraram que FPGAs sao escolhas razoaveis na implementaQao de arquiteturas

tipo GPU(KINGYENS, 2011).

As vantagens dessa tecnologia sao o custo de desenvolvimento bastante reduzido e

o tempo de verificaQao de resultados quase imediato – aurnentando a agilidade do

projeto. Sua versatilidade tamb6m 6 notavel devtdo a maior margem de erro

disponivel se comparada ao ASIC. Por outro lado, tempos de atraso maiores,

velocidade maxima de trabalho menor e limite de area disponivel para computaQao

sao desvantagens em relagao aos ASICs.

4.5. ESPECIFICA(,,6ES DE GRAFICOS: OPENGL

OpenGL 6 urna API (Application ProgrammIng Interface , do ing16s, Interface de

Programat,ao de Aplicagao). Dentro das especifica(,6es para graficos existentes, o

OpenGL 6 uma das mais importantes e cumpre papel fundamental na indOstria

desde sua primeira versao, langada em 1992. E definido via software, embora esteja

profundarnente ligado ao hardware.

Sob perspectiva de implementa9ao de hardware , a OpenGL 6 um conjunto de

operag6es sobre GPU e CPU (parcialmente ou integralmente). E uma especificaQao

que orienta a implementaQao em hardware , mas nao a define rigidamente – cada

urn de seus blocos podem ser desenvolvidos no software de maneira totalmente

diferente entre diversos fabricantes. Uma abordagem comum 6 entender OpenGL

como um pipeline de alguns estagios programaveis e outros de funQ6es fixas

controladas por estados.

Um GPU cornercial implernenta todas as funQ6es do pipeline grafico ou parte delas

– a depender da implementaQao em hardware .

17

E importante considerar uma especificaQao de graficos como o OpenGL ao se

desenvolver um GPU – dado que eIa acaba definindo objetivos e facilitando o

projeto, a16m de garantir que, se corretamente implementada, o GPU podera ser

integrado a diversos sistemas de so aware ja existentes.

4.6. IMPLEMENTA(,,Ao ABERTA DA OPENGL: MESA3D E GALLIUM

Mesa3D16, comumente referido somente como Mesa, 6 um projeto de

implementagao de adaptadores graficos abertos. Ele funciona como framework de

adaptadores, enquadrando uma base abstrata comum entre diversos GPUs. Entre

outras especificag6es, ha drivers, ou adaptadores, disponiveis para implementar o

pipeline grafico atrav6s de OpenGL, Direct3D ou equivalente. Cada driver pode

comunicar-se com hardware especifico: GPUs de fabricantes como NVIDIA, AMD ou

Intel. Ha adaptadores capazes de implernentar o pipeline grafico inteiramente ou

parcialmente em software, isso 6, rodando apenas no CPU.

O Gallium 6 tamb6m um framework, sendo parte do projeto Mesa. Sua proposta 6

abstrair ainda mais as funQ6es graficas, tornando o desenvolvirnento de drivers para

conectar a aplicaQao grafica ao hardware uma tarefa mais simples e rnenos

propensa a bugs. Nouveau(NOUVEAU, 2016) 6 um exemplo de driver grafico

desenvolvido sobre o Gallium que implementa grande parte do processarnento

grafico necessario para GPUs da NVIDIA, usando de seu hardware da mesma forma

que fazem os drivers proprietarios desse fabricante. Atualmente, plataformas Linux

utilizam quase exclusivamente o projeto Mesa e os seus drivers para garantir

compatibilidade com hardware grafico disponfvel comercialrnente.

4.7. ARQUITETURAS DE GPU COMERCIAIS E ACADEMICAS

Hd projetos relevantes no meio acad6mico atualmente. O Nyuzi(BUSH, 2015)

apresenta urna microarquitetura baseada em varios pequenos nOcleos de

processamento, similar ao que se perseguido por fabricantes de modelos

comerciais. A figura a seguir ilustra essa abordagem de hardware.

18

Figura I - Arquitetura geral de uma GPU

core core care

L11$ Lld$ Lli$ Lld§ LliLld L 11$ Lld$

L2 Cache

I
System Memory

Bus

Fonte: NYUZI

Figura 2 - Esquematico da arquitetura do Nyuzi

Instruction Fetch

lns.t1 tIF O

gg
1115l1 FIFO

Ills.tI tIF O

1.111> :-1, 1 : iII(,)

Thread
Select

Fonte: NYUZI

Similar a um processador convencional (CPU) de poucos ou apenas um nClcleo, o

GPU segue uma perspectiva de varios nClcleos de menor area e maior foco em

processamento de grandes quantidades de dados. Na figura do pipeline de
execuQao do Nyuzi, observamos da esquerda para a direita urna estrutura de busca

de instruQ6es, decodificagao, selegao do contexto de processamento, acesso a

registradores e execugao da instrugao.

19

Figura 3 - Esquematico da arquitetura do MIAOW

L=0
C/)
C/)
a)
O0
LMa
+
C/)0
=

Ultra-threaded
Dispatcher

'Ra
CD

a
C/)
a)N0
E
a)
E

Fetch Decode Schedule

CU

CU

CU

CU

CU

CU
LSU

Vector ALU

Integer+FP

Scalar
ALU

nc 11 m
L2 Cache Veatm© Ml

Purpose
Registers (VGPF3)

Scalar
GPR

Memory Controller.

(a) GPU Architecture
Fonte: MIAOW(2016)

[] Memory [] Logic InIP
(b) Compute Unit

Na figura, observa-se a arquitetura do projeto MIAOW. A esquerda, o sistema global,

contendo o gerente de tarefas no topo, as unidades de computagao (CU) no centro e

o cache associado ao controle de mem6ria abaixo. A direita, observa-se o conteOdo

de uma unidade de computagao, em que ha uma sequ6ncia de fung6es similar

aquela citada para o Nyuzi.
Figura 4 - Arquitetura de uma GPU NVIDIA

G80N
IT.lII

Stmmania
maHaVtx

Fonte: BOLOTOFF(2010)

20

A imagem traz a arquitetura de urn GPU NVIDIA. O Input Assembler decodifica a

instruQao do processador (Host) transfere para o Vertex Thread Issue . que gerencia

tarefas relacionadas a processamento de v6rtices. Os threads sao executados nos

nOcleos, armazenando dados temporariamente e criando novas tarefas com auxilio

do Thread Processor que realoca novos threads nos nClcleos atrav6s dos blocos

Geometry Thread Issue, Setup, Raster, e Pixel Thread Issue. Atrav6s da

coordenagao adequada, os pixels sao gerados e armazenados no framebuffer (FB).

prontos para serem exibidos na tela num sisterna convencional.

Por ser uma arquitetura comercial e voltada para o processamento grafico,

observamos que o GPU da NVIDIA cont6m uma estrutura diferenciada, a16m do

hardware extra em relaQao aos outros dois projetos de dimensao acad6rnica. A

caracterfstica basica, no entanto, nao se altera, que 6 a presenQa de varios nOcleos

coordenados executando tarefas diferentes atrav6s de concentraQ6es e de niveis

diferentes de mem6rias (caches) .

21

5. ARVORE DE OBJETIVOS DO DISPOSITIVO

Figura 5 - Arvore de objetivos

GPU

Funcional) IIBrael Expansiv81
0.1

Stntetlzdvel I J Acessivel

Comunicagio
com hardware
exlstente (0.41)

Proc8ssam8nto
gr6nco baslco

F PGA
(0.75)

ASIC
(0.25)

PtatafmIii
desonvolvim8nto

relatlvarnente

comum (0.67)
MIZJMim

video
(0.26]

Campatfvel
com

8sp8clflca Qao
C)pan(il (0.33)

Llcenga
8berla
(0.33)

Fonte: autoral

O objetivo desse projeto 6 o desenvolvimento e teste de uma arquitetura de GPU

totalrnente aberta (open source hardware) . Essa nova arquitetura sera compativel

com padr6es programagao de interface hardware grafico, como o OpenGL. Ha a

necessidade tamb6m da apresentagao de uma arquitetura s61ida e eficiente capaz

de ser expandida no futuro – caracteristica importante de um projeto aberto.

22

23

6. ESPECIFICA(,,AO DE REQUISITos

Especificamente pela caracteristica deste projeto existe uma primeira escolha, que 6

a da plataforrna tecno16gica de desenvolvimento da GPU Aberta. Com isso em

mente, os prirneiros requisitos de engenharia contemplam analisar se tais

plataforrnas sao capazes suprir os requisitos de marketing.

Ap6s definidos todos os requisitos das plataformas de desenvolvimento, os

subsequentes passos do projeto consistiam primariamente na familiarizaQao com as

ferramentas e na prograrnaQao efetiva de toda estrutura da GPU, de maneira

progressiva. Com isso, tem-se que os requisitos passam a contemplar o born

andamento desse processo.

Os requisitos para esse projeto, a partir deste passo, sao dinamicos e dependem da

maturidade do projeto e das necessidades de desenvolvimento para cada
determinado momento.

6.1. REQUISITos PARAOSISTEN4A

Requisitos de marketing levantados:

1. E funcional e executa tarefas basicas de processamento grafico;
2. Facil integragao com sistemas existentes;
3. Permite pelo menos uma saida de video totalmente funcional;
4. Suporta funQ6es basicas da interface de programa9ao OpenGL;
5. E desenvolvido de forma estruturada para que possa ser

aprirnorado em vers6es futuras;
6. Possibilidade de sfntese em ASIC;
7. Uso de plataforrnas de desenvolvimento acessiveis;
8. Distribuido sob licenga aberta;

atualizado e

Requisitos
marketing

Requisito de engenharia Justificativa

Possuir blocos estruturais
funcionais que executam as
funQ6es de processamento

A divisao em blocos estruturais
perrnlte que a arqultetura possua

uma boa escalabilidade funcional e
que seja mats simples de

desenvolver e depurar

1, 4, 5, 6

24

Para que a GPU seja cornpativel
com as tecnologias atuais, 6

necessaria a escolha de uma boa

interface de cornunicaQao
(barramento)

Comunica-se com CPU e
mem6ria atrav6s de interface

apropriada
1, 2, 3, 5

Arquitetura otimizada para
operar em SIMD (Single
Instruction Multiple Data)

O funcionamento basico de uma
GPU assirn o exige. Corn isso, a

estrutura precisa ser otimizada para
trabalhar com um fluxo grande de

dados sofrendo a mesma operagao

1

A saida do sistema deve
permitir a conexao com urn

sistema de video (VGA, DVI,
HDMI, etc.)

Para que o funcionamento do
sistema seja confirrnado e para

atender ao requisito de marketing (3)
6 necessario que o projeto tenha

conexao de video

2, 3

O procedimento de conforrnidade
com os padr6es de software aberto

perrnite que o projeto seIa
enquadrado legalmente como taI.
lsso garante que tercelros possarn

utiliza-lo sem problernas e com
poucas restriQ6es

Conformidade corn os padr6es
de software aberto (Open

Source)
5, 8

A fim de executar um software
inteiramente utilizando o GPU e obter

uma safda de vfdeo, 6 importante
que todas as etapas do pipeline
grafico estejam desenvolvidas e

implementadas seguindo as
especificaQ6es OpenGL.

1,4
Implementar pipeline das
especificaQ6es OpenGL

As ferramentas de
desenvolvimento utilizadas
preclsarn garantlr que os
c6digos gerados sejarn

acessiveis

Os c6digos gerados nao podem ficar
restritos a plataformas especFficas ou

em forrnatos pouco usuais. lsso
ajuda na garantia de sua flexibilidade

e acessibilidade, bern como evita
problemas de licenQa aberta.

5, 7, 8

Tabela 1 - Tabela de mapeamento de requisitos de engenharia

6.2. RESTRI(,'6ES

6.2.1. Restrig6est6cnicas

A adequaQao a especificag6es como OpenGL determinam caracteristicas de

interface que restringem o funcionamento do sistema.

25

A16m disso, a adequaQao com as licenQas de software aberto precisa ser observada.

lsso 6 considerado urna restriQao – ainda que tenha como objetivo elirninar

empecilhos legais que poderiam dificultar terceiros de se beneficiarem dos

resultados do projeto.

6.2.2. Restrig6es econ6micas

Existem limitaQ6es quanto a capacidade computacional disponivel e o custo nas

FPGAs atuais. Nesse sentido, a necessidacie de utilizaQao de placas de

desenvolvimento muito caras, devido a grande capacidade de area e processarnento

exigida nesse trabalho, pode se tornar uma grande restriQao ao projeto.

Deve-se levar em consideraQao tamb6m o custo dos softwares de

desenvolvimento. Utilizar os softwares para os quais a universidade ja possui licenga

de uso 6 uma solugao para esse problema, bem como utilizar ferramentas gratuitas.

6.2.3. Restrig6es de manufaturabilidade

O escopo do projeto nao 6 desenvolver um circuito integrado fisico. Ainda assirn

a necessidade de ser sintetizavel em ASIC precisa ser levada em conta. A

arquitetura nao pode fazer com que a produQao de um circuito integrado de

aplicagao especifica seja inviavel.

26

27

7. PROJETO

O primeiro passo do projeto foi definir a estrat6gia para resolvermos o problerna bem

como a plataforma que vamos utilizar.

Entre as possibilidades de projetar um ASIC ou uma FPGA, pretendernos utilizar a

segunda abordagem. EIa 6 mais adequada para atendimento do requisito de c6digo

aberto e do requisito de escalabilidade funcional, ou seja, gradativarnente

pretendemos incorporar novas funQ6es a esta GPU – importante notar a diferenga

entre escalabilidade funcional, relativo ao desenvolvimento do projeto, e

escalabilidade de desempenho, relativo a performance do sistema final.

Em se tratando do desenvolvimento em FPGA, poderiamos ter escolhido trabalhar

em cima de arquiteturas abertas ja prontas (como o MIAOW), tornando-as

graficarnente funcionais, ou tamb6m construir os blocos funcionais de hardware a

partir de uma implementaQao em software, ou ainda come(,ar todo o
desenvolvimento desde o infcio.

Partimos para a segunda opQao, visto que permite que a arquitetura apresente urna

saida de video funcional jd no inicio, 6 necessariamente realizado em adequagao

com as funQ6es do OpenGL, possui uma sequ6ncia de desenvolvirnento mais cIara e

aparenta ser mais simples.

Optou-se pela Mesa3D como implementaQao OpenGL pelos seguintes motivos:

• Projeto rnaduro, largamente testado;
• Extensa documentaQao e bom suporte da comunidade de usuarios;
• C6digo aberto, inclusive dos seus drivers . Excelente refer6ncia para

implementagao de hardware;
• Pode usar parcialmente o CPU e parcialmente o GPU, dependendo do driver

apenas. lsso cria escalabilidade funcional no desenvolvimento do projeto.

Optou-se por implementar a parte equivalente ao rasterizador na softpipe na

primeira fase do projeto, que contemplara todo o curso da disciplina de Projeto de

Forrnatura (PS12594).

28

7.1. TABELADECONCEITOS

Conceltos:

A) Implementar diretamente numa placa de desenvolvimento corn FPGA;

B) Utilizar uma placa de desenvolvimento FPGA com um processador integrado

no qual rodara uma versao da Mesa3D atrav6s de um driver desenvolvido

especificamente para o projeto;

C) Utilizar uma placa de desenvolvimento com um processador e um GPU
comercial. O Mesa3D rodara nesse sistema atrav6s de um driver

desenvolvido especificamente para o projeto. A essa placa, estara conectada

uma FPGA, atrav6s de USB 3.0 ou outro sistema de comunicaQao, contendo

o GPU projetado;

Tabela I - Tabela de conceitos

ForQas Fraquezas

• Aus6ncia do
Mesa3D

• Alto custo

A • Perrnlte malor

complexidade
• Mem6ria grafica 6

acessivel

+

++

B • Balxo custo
• Mesa3D garante

escalabilidade
funcional

e Mem6riagrafica 6
acessivel

+++
+++

++

• Limita a

complexidade

C • Baixo custo

• Mesa3D garante
escalabilidade
funcional

+++
+++

• Limita a
complexidade

• Possibilidade de
acesso restrito a
mem6ria grafica

Fonte: autoral

Com essa tabela, fica claro que o conceito B 6 a melhor escolha. O conceito C 6

uma escolha tamb6m muito razoavel, perdendo para a segunda opQao apenas por

apresentar o risco de que o acesso a mem6ria grafica seja mais dificil (ou at6

29

mesmo impossivel), o que pode ocasionar menor performance e maior dificuldade
ern fazer o sistema funcionar.

7.2. NrVELO

Figura 6 - Nivel 0

Aplica9&o
{ISA}

GPU at)efta Video

Fonte: autoral

Tabela 2 - Tabela do nFvel 0

GPU aberta

Entradas

Safdas

Funcionalidades

AplicaQao (ISA)

Video

Realiza as funQ6es de processamento
grafico

Fon£e: autoral

7.3. NrVEL I
Figura 7 - Nivel 1

h4emt:xia
C+aflrn

Ppltcagio
(>parK,;I..

McBD ’-
culfRc;nor ! b’aeo

tie video

Fonte: autoral

Tabela 3 - Tabela do m6dulo Mesa do nivel 1

Mesa

Entr adas

Safdas

Aplicagao OpenGL, Realimentagao do Mesa

InstruQ6esCPU

30

Funcionalidade
S

Interpreta comandos advindos da aplicaQao e os converte para
fung6es a serem executadas no CPU. Essas funQ6es podem ou
nao passar instruQ6es e dados para o GPU(implementado em
FPGA)

Fonte: autoral

Tabela 4 - Tabela do m6dulo CPU do nivel 1

Entradas

Saidas

Barramento de rnem6ria grafica, Instrug6esCPU

Barramento de mem6ria grafica, Instrug6esGPU

Funcionalidade
S

Comanda todo o sistema atrav6s de programas, de suas e
entradas e de suas saidas. De maneira direta, o CPU arrnazena
ou 16 informaQ6es na mem6ria gr6fica e instrui GPU
implementado no FPGA. Mesa e aplicaQao em OpenGL sao
prograrnas que rodarn neste CPU

Fonte: autoral

Tabela 5 - Tabela do m6dulo Mem6ria grafica do nivel I

Mem6ria
grafica

Entradas Barramento de mem6ria

Saidas Barramento de mem6ria

Funcionalidades I Armazena dados relativos a execuQao do pipeline grafico, seja
via software , seja via hardware

Fonte: autoral

Tabela 6 - Tabela do m6dulo FPGA do nivel I

FPGA(GPU)

Entradas Barrarnento de rnem6ria, InstruQ6esGPU

Saidas Barramento de mem6ria, Entrada do codificador de video e
Realimentagao do Mesa

Funcionalidade
S

Implementa GPU desenvolvido neste projeto, seja parcial ou
totalmente. A RealimentaQao do Mesa s6 6 utilizada quando o
pipeline grafico estiver parcialmente implementado em
hardware

Fonte: autoral

Tabela 7 - Tabela do m6dulo Codificador de Video do nivel 1

Codificador de

31

video

Entradas Saida de video nao codificada do GPU

Safdas Video codificado

Funcionalidades Recebe regiao de mem6ria grat-\ca(framebuffer) a ser exibida
em video e a codifica no padrao 16gico e eletr6nico
adequado(e.g. VGA,HDMI)

Fonte: autoral

7.4. NrVEL2

Figura 8 - M6dulo mesa no Nivel 2

ht6dulo Mesa

Aplicagao
OpenGL

Instrug des
CPUhtesa

frarrrework
Gallium
framework

Linux
kernel

Realkmentagao!
do Mesa Aci8ptador

Fonte: autoral

Tabela 8 - Tabela do m6dulo Mesa Framework do nfvel 2 do bloco Mesa

Mesa
framework

Entradas Aplicagao OpenGL

Safdas AbstraQ6es Gallium

Funcionalidades Interpreta comandos advindos da aplica9ao e os converte
para funQ6es de abstraQao do Gallium

Fonte: autoral

Tabela 9 - Tabela do m6dulo Gallium Framework do nFvel 2 do bloco Mesa

Gallium

32

framework

Entradas

Saidas

Abstrag6es Gallium, Saida do Adaptador

ou outro slsternaComunicaQao com kernel do Linux
operacional capaz de executar o Mesa e seus subsistemas

Funcionalidades Converte abstraQ6es tipicas do Gallium e convene em
instruQ6es e dados para o kernel do sistema operacional. O
adaptador fornece instruQ6es adequadas para a execuQao
correta dessas fung6es de abstragao

Fonte: autoral

Tabela 10 - Tabela do m6dulo Adaptador do nivel 2 do bloco Mesa

Adaptador

Entradas Saida de controle do Gallium, RealimentaQao do Mesa

Saidas

Funcionalidades

Saida do adaptador

A partir das abstraQ6es do Gallium. implementa controle e
execugao do pipeline grafico via software ou via hardware
Esta 6 a parte efetivamente modificavel do software neste
projeto

Tabela ll - Tabela do m6dulo Linux Kernel do nfvel 2 do bloco Mesa

Linux kernel

Entradas ou de sistemaComunicagao corn kernel do Linux
operacional capaz de executar o Mesa e seus subsistemas

Safdas

Funcionalidades

InstruQ6esCPU

Executa controle do hardware relacionado a grdficos e do
pr6prio CPU, a16m de diversas fun96es relativas ao sisterna
total

33

Figura 9 - M6dulo FPGA no Nivel 2

Mddulo FPGA(GPU)

In§tru${>es
GPU

Barramento
de rnem6ria

Real imenta
gao do
Mesa

uArclh

Saida de
video nao
codificada

Barramento
de mem6r13 Controlador

de video

Fonte: autoral

Tabela 12 - Tabela do m6dulo uArch do nivel 2 do bloco FPGA

u Arch

Entradas

Saidas

Instru(,6esGPU, Barrarnento de mern6ria

Barramento de mem6ria, RealimentaQao do Mesa, Controlador
de Video

Funcionalidades Implementa efetivamente a microarquitetura do GPU desse
projeto. Recebe instruQ6es vindas do CPU, 16 ou escreve em
buffers na mem6ria grafica, controla sistema de video e
realimenta o Mesa quando necessario

Fonte: autoral

Tabela 13 – Tabela do m6dulo Controlador de vfdeo do nivel 2 do bloco FPGA

deControlador
video

Controlador de video, Barramento de mem6riaEntradas

Saidas Saida de video nao codificada

Funcionalidades L6 framebuffer presente na mem6ria grafica, recebe

instrug6es da microarquitetura e prepara dados em sinais para
serem codificados posteriorrnente

Fonte: autoral

34

Os m6dulos CPU, Mem6ria Grafica e Codificador de Video nao foram detalhados

neste nivel ja que um nivel de rnaior de abstragao destes nao 6 relevante ao projeto.

O CPU executa programas definidos em outros m6dulos; a mern6ria grafica

armazena dados de maneira organizada e acessivel via barramento de rnern6ria; e o

Codificador de video 6 hardware presente nas placas de desenvolvirnento

escolhidas, recebendo apenas os sinais adequados do controlador de video,

implementados dentro do FPG A em sua malha 16gica configuravel.

7.5. NrVEL3

O m6dulo uArch 6 o Onico que necessita de um terceiro nivel de detalhamento no

projeto. Ele sera constantemente revisado conforme o desenvolvimento do projeto e

as necessidades encontradas. Abaixo, ha um modelo inicial, baseado em

arquiteturas de outros sistemas de GPU, sejam comerciais ou acad6micos2'6'20

Figura 10 - M6dulo uArch da FPGA no Nivel 3

Barrarnento
cie rrlernC5ria

(;ontrolaclor cIe mern6na
Barrarnenlo
de rnernc}ria

InstruQ£ns
GPU Matriz d8

nOc:leo s

Re8limentag§o
a Mesa

Fun@$ fix,r$

Controlador
de video

Fonte: autoral

Tabela 14 - Tabela do m6dulo Dispatcher do na/el 3 do bioco uArch da FPGA

Dispatcher

Entradas Instrug6esG PU

35

Safdas Barramento da rnatriz de nOcleos, Barramento das funQ6es fixas

Funcionalidade
S

Recebe instruQ6es do CPU e distribui tarefas para nacleos na
Matriz de NOcleos, Interpreta a necessidade de utilizar o bloco
FunQ6es Fixas

Fonte: autoral

Tabela 15 - Tabela do m6dulo Controlador de Mem6ria do nFvet 3 do bloco uArch da FPGA

Controlador de
mem6ria

Entradas Barramento de mem6ria, Barramento de Saida da Matriz de
NOcleos, Barramento de Saida de Fung6es Fixas

Barramento de mem6ria, Barramento da Matriz de NOcleos
Barramento de FunQ6es Fixas

Funcionalidades Media as requisiQ6es de leitura e escrita dos buffers na
mem6ria grafica, assim como implementa buffers tempor6rios
de alta velocidade – conhecidos como caches

Fonte: autoral

Tabela 16 - Tabela do m6dulo Matriz de nOcleos do nfvel 3 do bloco uArch da FPGA

Matriz de
N6cleos

Entradas Barramento de saida do Dispatcher, Barramento de saida do
Controlador de Mem6ria

Saidas Barramento do Dispatcher , Barrarnento do Controlador de
Mem6ria

Funcionalidades Cont6m nacleos que executarao os processos definidos pelo
Dispatcher

Fonte: autoral

Tabela 17 - Tabela do rn6dulo FunQ6es Fixas do nivel 3 do bloco uArch da FPG A

Fung6es fixas

Entradas Barramento de safda do Dispatcher

Saidas Barrarnento do Controlador de Mem6ria, Realimentagao do Mesa
Controlador de Video

Funcionalidade
S

Interioriza fung6es de processarnento fixo

36

7.6. ANALISE DE ACOPLAMENTO E COESAO

Ha um alto grau de acoplarnento no nivel 1, visto que a mem6ria esti ligada nos

dois sentidos tanto a FPGA e a CPU, como tamb6m ha uma realimentaQao da saida

da FPGA ao m6dulo Mesa. lsso implica que falhas no acesso a mem6ria ou

problemas na arquitetura do bloco FPGA podem causar contratempos ao projeto

dada a natureza mais dificil de depuraQao nesse tipo de sistema. A coesao no

primeiro nivel 6 relativamente elevada, o que implica maior facilidade no

desenvolvimento e na respectiva procura de falhas.

Detalhando ainda mais o sistema, no nivel 2 do m6dulo mesa, percebe-se

novamente o impacto da realimentaQao, visto que o correto funcionamento do

adaptador (ou driver) 6 essencial para que o Gallium framework funcione

corretamente, a16m de todo o hardware associado. Devido a natureza do software ,

por6m, isso nao deve atrapalhar na detecQao do erro, pois pode-se verificar quais

chamadas de funQ6es especificas falharam e facilmente delimitar o problema.

No nivel 3 do m6dulo uArch da FPGA temos um sistema muito mais complexo e

altamente maleavel que 6 a “alma” do projeto. Existe forte acoplamento entre os

m6dulos, a16rn de possibilidade de realimentaQao em varios caminhos. O

desenvolvimento baseado em metas, comparativos, divisao de tarefas, testbenches,

benchmarks e revis6es da arquitetura devem minimizar chances de falhas

catastr6ficas tanto no sistema quanto no avanQO do projeto. Embora esse cuidado, 6

importante reconhecer que, a partir deste nivel de projeto, habitarao os maiores

riscos de atrasos ou mesmo de nao cumprimento de objetivos.

7.7. SELE(,'Ao DOS DISPOSITIVOS

Em uma etapa anterior, fizemos um levantamento de placas de desenvolvimento

FPGA SoC (System on a Chip) com CPUs integrados e que perrnitem a instalaQao

de urn sisterna operacional (necessario para rodar o Mesa3D). Os dispositivos
selecionados eram:

• Mpression Helio SoC Evaluation Kit da Macnica21
• DE-1 SoC Board daTerasic22

37

•

•

8

DE2i-150 FPGA Development Kit da Terasic23
Zynq-7000 All Programmable SoC ZC702 Evaluation Kit da Xilinx24
Z-turn Board da Xilinx25

Tabela 18 - Tabela de valores de placas com FPG A SoC

Modelo

Z-turn Board

1C P U dE TB :fs
VGA(V)
HDMI(H)

H

Observagao
Relagao
$/LUT

2.23ARM A9 F 53.2

Mpression Helio View Kit ARM A9 t 110 H LCD incluso 5.68

$249 preQO
cornurrl

DEI-SoC Board ARM A9 1 85 V
$175 pre90
academico

2.05

$700 preQO
cornurn

DE2i-150 FPGA Development Kit
Intel

Atom
150 H\V

$614 prego
acad6rnico

4.09

Zynq-7000 All Programmable SoC
ZC702 Evaluation Kit

ARM A9 53.2 H 16.82

Fonte: autoral

Dentre essas opQ6es, foi adquirida a placa DEI-SoC da Terasic. Suas

especificag6es t6cnicas, relevantes ao projeto, sao:
e

•

•

•

Cyclone V com ARM Cortex-A9 integrado
85000 PLEs
1GB de mem6ria RAM DDR3 + 64MB de mem6ria SDRAM na FPGA
Saida VGA

38

7.8. EAP

Etapas do projeto:

1 - Preparar ambiente de desenvolvimento

Preparar ambiente de desenvolvimento em software e testar funcionamento basico

do hardware;

2 - Compilar Mesa3D

Compilar Mesa3D para rodar na placa de desenvolvimento escolhida. Essa

compilagao exige o uso de um cross compiler que executa a compilaQao cruzada

entre o sisterna atual, que pode conter qualquer CPU, e o sistema de destino, que

contera um CPU especifico – ARM, Intel ou equivalente, a depender da placa de

desenvolvimento escolhida;

3 - Rodar Mesa3D

Preparar placa de desenvolvimento para rodar implementaQao Mesa3D totalmente

via software no CPU e exibir imagem na saida de vfdeo;

4 - Pesquisa e escolha de arquitetura

A pesquisa nesta etapa deve seguir crit6rios definidos durante o desenvolvirnento do

projeto. lsso porque a arquitetura pode variar de acordo corn as restriQ6es t6cnicas

que surjam durante a implementaQao do pipeline grafico em hardware tipico2 de uma
GPU

Esta etapa pode ser revisitada caso as etapas seguintes nao tenham os seus

objetivos atingidos adequadamente. De maneira geral, subprojetos analogos a este

serao elaborados nesta fase e nas seguintes com objetivo de atender aos requisitos

da etapa em questao e aos requisitos de engenharia e de marketing previstos no

projeto principal.

39

4 - 1) Pesquisa de arquiteturas possiveis

Os requisitos iniciais serao basicamente atender a ideia de processamento paralelo,

repetindo o que se observa em arquiteturas comerciaisl’ 2 ou acad6micas6’ 8' 9. Essa

condi9ao inicial torna o processo de escolha abrangente e, portanto, sujeito a

dificuldades na previsao da performance do sistema final. lsso deve ser rninirnizado

conforme iteraQao devido ao benchmarking de m6dulos e de sisterna. Outros

requisitos possiveis na primeira iteragao devem ser ponderados segundo

observaQao das arquiteturas pesquisadas.

O 6nico requisito fixo 6 a escalabilidade da arquitetura. lsso se deve ao requisito de

marketing 5, em que o sistema “6 desenvolvido de forma estruturada para que possa

ser atualizado e aprimorado em vers6es futuras". Essa escalabilidade podera estar

ligada a throughput do sistema ou de blocos especificos do pipeline grafico.

4 - 2) Escolher arquitetura

A arquitetura deve respettar os crit6rios definidos anteriorrnente. Essa etapa exige a

ponderaQao da equipe de desenvolvimento, tendo como resultado matrizes de

decisao analogas as construfdas neste documento.

5 - Benchmarking de arquitetura

5 - 1) Elaborar benchmark de arquitetura

O benchmark de arquitetura deve verificar a capacidade da arquitetura em produzir

determinadas respostas. Aqui, deve-se produzir indicadores de performance tais

como throughput (do ing16s, significando vazao de dados) e uso de area ou de

recursos. O objetivo 6 verificar as limitaQ6es da arquitetura escolhida ap6s sua

implementa(,ao e orientar, portanto, modificaQ6es futuras.

5 - 2) Implementar arquitetura escolhida

As etapas internas desta fase sao diferentes das demais. Elas definirao um loop de

desenvolvimento at6 que se construa toda arquitetura no adaptador, ainda que

parcialmente em software. lsso se explica pela natureza complexa do pipeline

40

grafico e a constante necessidade de modificar o m6dulo em desenvolvimento e seu

driver a fim de que se conforme ao testbench .

A arquitetura atual deve ser implementada em HDL, isso 6, linguagem descritora de

hardware. lsso inclui a respectiva fase de testes e confirmaQao da funcionalidade da

arquitetura. E importante notar que, a fim de seguir os requisitos de marketIng e os

de engenharia, funcionalidades previstas no pipeline grafico podem ser parciais ou

efetivamente nao implernentadas em hardware – mas sempre estarao presentes

seja hardware, seja software , assim como garante a estrutura fornecida pelo Mesa e

pelo Gallium.

5 – 2.1) Implementar m6dulo do pipeline grafico

Faz-se necessario o desenvolvimento de um driver capaz de coordenar o hardware

via software . Esse driver deve ser desenvolvido simultaneamente ao hardware em

questao.

Implementar m6dulo do pipeline grafico.

O pipeline grafico 6 construido por diversos blocos associados18. Na versao 4.4 do

OpenGL, sao ao todo 9 blocos principais – cada um, composto por partes menores,

arranjadas em pipelines elementares, representando funQ6es dinamicas ou fixas.

Estes m6dulos a serem desenvolvidos poderao ou nao ser os blocos 16gicos do

pipeline grafico. Ha arquiteturas conhecidas2’6 que implementam setores desse

pipeline em m6dulos Onicos ou dentro das unidades de processamento. lsso poderd

servir de base para 'concatenar’ o hardware a fim de que sejam aproveitadas

repetiQ6es de processamento ou de 16gica em partes diferentes do pipeline .

As funQ6es do pipeline grafico deverao ser implementadas via software atrav6s do

adaptador quando o hardware for incapaz de executar tais tarefas, seja por ainda

nao terem sido implementadas, seja por nao serem objetivo de implementagao –

excesso de complexidade em relaQao ao tempo disponivel para desenvolvimento,

por exemplo.

41

5 - 2.2) Implementar adaptador

O adaptador de hardware implementa as funQ6es de controle do hardware ,

decidindo o fluxo de dados, bem como os estados da maquina comandada. O

pipeline grafico estara contido inteiramente nesse driver , segundo especificaQao

OpenGL ou equivalente, e tera suas fung6es executadas via software ou via

hardware. As funQ6es implementadas no adaptador devem concordar com o m6dulo

em desenvolvimento, dai a necessidade de desenvolvimento simultaneo.

5 – 2.3) Desenvolver testbench para m6dulo e seu adaptador

Testbench nessa etapa deve garantir o funcionamento do m6dulo de acordo com

dados de entrada e safda, a16m de estados de maquina definidos. Para refer6ncia, o

driver softpipe, presente no Gallium do projeto Mesa, fornecera essas informa96es.

Caso necessario, outros adaptadores poderao ser modificados a fim de garantir o
funcionamento dos m6dulos desenvolvidos

5 – 2.4) Testar m6dulo desenvolvido com testbench

Testbench devera aumentar a confiabilidade no desenvolvimento do m6dulo atual a

fim de que nao haja erros que compromentam o sistema.

5 – 3) Aplicar benchmark a outras arquiteturas

InformaQ6es e dados sobre outras arquiteturas deverao estar disponiveis nesta

etapa. Em caso negativo, o benchmark observara apenas as possibilidades de

performance da arquitetura corrente, tais como capacidade de expansao, throughput

ou outros que se mostrem relevantes para este comparativo. Softwares para

implementaQao do pipeline grafico estao disponfveis para uso, por exemplo o

llvmpipe19 do Gallium – o qual pode tamb6m servir de comparativo quanto a

performance da arquitetura escolhida.

5 – 4) Comparar arquitetura usando benchmark de arquitetura

Terrninada a fase de desenvolvimento da arquitetura corrente, eIa deverd ser

comparada a arquiteturas de GPUs comerciais ou acad6micos e de softwares para

implementagao do pipeline grafico .

42

6 - Testbench do Sistema

Esta etapa deve garantir o funcionamento do sistema completo de acordo com

entradas e saidas relevantes – entra a aplicagao grafica por um lado, sai o vFdeo

exibido por outro.

Dada a limitaQao de recursos disponiveis no FPGA, 6 esperado que o sistema nao

possa ser implementado na sua totalidade em qualquer configura9ao de arquitetura.

Por isso, deve ser escolhida uma versao da arquitetura que permita a avaliagao da

performance de um sistema completo. Caso isso nao seja possivel em nenhuma

configuragao, o sistema devera conter o maximo de m6dulos de hardware mais

relevantes quanto ao aumento de velocidade de processamento, deixando em
software os demais.

6 – 1) Elaborar testbench de Sistema

Testbench de sistema deve garantir o funcionamento total de acordo com entradas e

safdas esperadas. Esses dados podem vir de outros sistemas de refer6ncia.

6 – 2) Testar sistema com testbench

Esta etapa efetivamente fornece um sistema funcional, capaz de atender os

requisitos de engenharia previamente afixados.

7 - Benchmarking de Sistema

O benchmarking de sistema justificara ou nao as decis6es tomadas durante a

escolha de arquitetura. lsso podera levar d revisao e reinicializagao do processo de

desenvolvimento da arquitetura e do sistema. lsso porque nesta fase, sistemas

equivalentes servirao de refer6ncia a fim de cumprir os requisitos de engenharia

por sua vez, satisfazendo automaticamente aos requisitos de marketing .

7 – 1) Elaborar benchmark para sistema

O benchmark de sistema deve garantir os objetivos iniciais do projeto. A qualidade

da analise devera indicar tamb6m os caminhos a serem percorridos a fim de

43

melhorias na arquitetura e na escolha de sua configuraQao. Benchmarks comerciais

ou academicos poderao servir de base para este benchmark .

7 – 2) Aplicar benchmark a outros sistemas

O benchmark de sisterna produzira dados sobre sistemas equivalentes ao de

desenvolvirnento corrente. Essa equiva16ncia podera ser dependente da

disponibilidade de tais sistemas de referancia ou do acesso aos dados de cada fase

do pipeline grafico. Caso nao haja sistemas abertos ou acessfveis, os sistemas

fechados serao utilizados para esse prop6sito considerando apenas suas entradas e

saidas ou ainda considerando a aplicaQao de benchmarks externos ao projeto –

comerciais ou acad6micos, a depender da necessidade.

7 – 3) Comparar sistema usando benchmark desenvolvido

A comparaQao entre o sistema atual deve produzir dados sobre a sua performance

em relaQao aos sistemas de refer6ncia.

Tabela 19 - EAP do projeto

Etapa I Atividade

1 1 Preparar
ambiente de
desenvolvirnento

Deriverables/Checkpoints

Manual da placa de
desenvolvimento e executar
pequenos exemplos da
documentagao

Saida do cross-compiler

Duragao* I Pessoas

% 1 Thiago
sernarla

Recursos

PC, placa de
desenvolvimento e
monitor de video

2 1 Compilar Mesa3D U 1 Fabricio
sernana

PC

3 Rodar Mesa3D Verificar aplica96es 1 1/2
OpenGL sendo exibidas na 1 semana
saida de video

Fabricio I pc. software de
e Thiago I desenvolvimento,

placa de
desenvolvimento e
monitor de vfdeo

4

4.1

4.2

5

Pesquisa e
escolha de
arqultetura

Pesquisa de
arqulteturas
possfveIS

Escolher
arqultetura

Benchmarking de
arqultetura

Arquitetura intermediaria PC

Lista de arquiteturas que
atendam aos requisitos
correntes

1

sernana
e 1/2

Fabricio I PC
e Thiago

Arquitetura intermediaria 1/2
sernana

Fabricio I PC
e Thiago

Resultado do benchmark
de arquitetura

44

5.1 Elaborar
benchmark de

arqultetura

Benchmark de arquitetura 1

serrlana
Fabricio I PC
e Thiago

5.2 Implementar
arqultetura
escolhida

M6dulos em HDL e
adaptador correspondente

9 1 Fabricio I PC e ambiente de
semanas I eThiago I desenvolvimento

5.2.1 Implementar
m6dulo do

pipeline grafico

M6dulo em HDL Fabricio I PC
e Thiago

5.2.2

5.2.3

Implementar
adaptador

Complemento do adaptador
(driver) relativo ao m6dulo

Fabrfcio I PC
e Thiago

Desenvolver
testbench para
m6dulo e seu

ad aptador

Testbench do m6dulo e do
complemento do adaptador

Fabricio I PC
e Thiago

5.2.4 Testar m6dulo
desenvolvido com
testbench

M6dulo funcional Fabricio I PC
e Thiago

5.3 Aplicar
benchmark a
outras
arqultetu ras

Listagern da performance
das arquiteturas de
refer6ncia

% 1 Thiago
serriana

PC

5.4 Comparar
arqultetu ra
usando
benchmark de
arqultetura

Performance do sistema 1 1/4
desenvolvido em relaQao I semana
aos sistemas de refer6ncia

Thiago PC

6

6.1

Testbench do
slsterna

Sistema em HDL e

adaptador
PC e ambiente de
desenvolvimento

Elaborar
testbench do
slsterna

Testbench do sistema e do
adaptador

1

sernana
Fabrfcio I PC

6.2 Testar sistema
com testbench

Sistema funcional 1
sernana

Fabrfcio I PC e ambiente de
desenvolvimento

7 BenchmarkIng do I Comparagao da
sistema I performance do sistema

com sistemas de refer6ncia

PC

7.1 Elaborar
benchmark para
slstema

Benchmark de sistema 1/6

serrlana
Thiago PC e ambiente de

d esenvolvimento

7.2 Aplicar
benchmark a
outros sisternas

Listagem da performance
dos sisternas de referencia

1/b

sernana
Thiago PC e ambiente de

desenvolvimento

7.3 Comparar sistema I ComparaQao da 1 %
usando I performance do sistema I semana
benchmark I com sistemas de referdncla

Thiago PC e ambiente de
desenvolvimento

45

Fonte: autoral

*DuraQao baseada na carga horaria relativa a cr6ditos-trabalho da disciplina Projeto de Formatura ll.
Sendo 4 cr6ditos-trabalho, semanalmente, sao exigidos aproximadamente 7 horas/semana de aluno
em dedicaQao ao projeto fora da sala de aula

7.9. CRONOGRAMA (CARTA DE GANTT)

46

Figura ll - Cronograma de Gantt
1=

W

drj

;3

;

g

fa
!

b
bb• hO •••n• bR La =f q++• he

tI ! ! ;F : FEll: [8IS le

! g pI HeItftP : B B F =E gX LB W e IBSJ! :Hi U:I B:> aS nb

g

Fonte: autoral

47

A observaQao do cronograma de Gantt leva-nos a noQao de reduQao no tempo total

esperado. Se as etapas fossem executadas de forma dependente corn relaQao a

anterior, o projeto ocuparia cerca de 4 meses, que 6 o maximo disponfvel para

disciplina Projeto de Formatura ll. Por outro lado, ao lembrar que algumas etapas

podem ser realizadas simultaneamente pelos membros da equipe de

desenvolvimento, o tempo total de projeto passa a ser de cerca de 3 meses. lsso 6

ben6fico, pois aumenta o tempo disponivel para etapas fundamentais como a de

desenvolvirnento dos m6dulos e adaptador ou de pesquisa e decisao por arquitetura.

7.10. ATIVIDADES CRiTICAS E ANALISE DE RISCO

Uma das atividades criticas 6 a etapa 5.2, de implementagao dos blocos da GPU e

dos adaptadores (ou drivers) especfficos. lsso porque, a partir dessa etapa, o

trabalho d maior e todo funcionamento depende do bom projeto de cada bloco.

Como os passos a partir do 5c) serao realizados mais de uma vez - um para cada

bloco do pipeline a ser implementado - esse processo torna-se, de certo modo,

iterativo e demanda maior cuidado para evitar problemas desnecessarios com a

uniao das partes a medida que o projeto cresce. A vantagem que temos 6 que o

processo todo ja 6 definido nas especificaQ6es do OpenGL, o que da urna boa base

para definirmos as entradas, safdas e o funcionamento de cada bloco, evitando

problemas de compatibilidade.

Outro ponto crftico 6 a definiQao da arquitetura. Dado que nao se pode implementar

o pipeline em hardware exatamente como ele 6 logicamente, faz-se necessario a

escolha de uma arquitetura capaz de processar os dados de maneira equivalente ao

pipeline grafico e, ao mesmo tempo, ocupar pouca area efetiva ou poucos recursos.

A escolha dessa estrutura altera completamente o desenvolvimento seguinte,

implicando em alto risco de falha de projeto, dependendo das decis6es tomadas.

48

49

8. PROVA DE CONCEITO

Antes de entrarmos na etapa de implementagao, foi realizada uma prova de conceito

para demonstrar a validade do trabalho feito durante a etapa de projeto. Para taI,

decidiu-se demonstrar que 6 possivel modificar um adaptador do Mesa extraindo

dados do pipeline grafico para processa-los no FPGA e exibi-los em video.

Figura 12 - Diagrama da prova de conceito

Saida de
videoAplicagao OpenGL

Mesa

Gallium Malha 16gica

M6dulo
controlador de

video
softpipe

modificado

Arquivo
BMP

Mem6ria
RAM

USB

Fonte: autoral

Especificamente, o driver softpipe do Gallium 6 alterado atrav6s de sua fungao de

flush do framebuffer, equivalente d (llama etapa do processo de geragao de video.

Ao inv6s de ser enviada para a mem6ria de video, a safda do software 6 transferida

para um arquivo bitmap e transmitida via USB para uma FPGA com saida de video,

mostrando um frame no monitor a cada envio. Ainda que essa abordagem seja

inadequada para aplicag6es de video em tempo real, visto que a velocidade de

transfer6ncia do USB 6 muito baixa, o experimento serve para provar a viabilidade

50

do conceito na construQao do projeto; bastando apenas a aquisigao de plataformas

de desenvolvimento mais adequadas – em termos de largura de banda do
barramento – para se obter o resultado desejado.

Podemos ver no diagrama a seguir, o caminho percorrido pela prova de conceito

apresentada. Em verde, estao destacados os m6dulos modificados da rnaneira

prevista neste projeto. Em amarelo, os m6dulos que foram modificados no sentido

de atender os objetivos do projeto. lsso porque o FPG A e a Mem6ria Grafica nao

implementam, na prova de conceito, os nfveis mais detalhados do projeto.

Figura 13 - M6dulos da prova de conceito

Mem6ria
G rafica

Aplicagao
OpenGL

FPGA
-> (GPU)

Em verde: Blocos irnplementados na prova de conceito conforme proposta inicial de projeto. Em amarelo: BIocos

que na prova de conceito sofrerao alteraQ6es especificas e que nao fazem parte da proposta inicial do projeto.
Fonte: autoral.

8.1. PROVADE CONCEITO: SOFTWARE

A modific,aQao do driver softpipe permitiu que fossem obtidas imagens dos frames da

aplicagao OpenGL ao fim do pipeline. Na figura, observamos o frame de nClrnero I e
n(lmero 5

51

Figura 14 - Frames da aplicaQao OpenGL glxgears

: 1iiE

'q
q-Ht

!-

L

Fonte: autoral

O programa de teste utilizado foi o glxgears , tradicional como benchmark simples de

sistemas graficos. A plataforma de desenvolvirnento e testes nessa etapa foi o

sistema operacional Linux. A distribuiQao utilizada foi o Debian 8, assim como a
versao Mesa 10.3.2 estavel.

A mudanga importante no c6digo do softpipe foi a ativagao de dois sinais de

depuragao (debug) . A partir deles, 6 possivel armazenar todos os frames produzidos

pela aplicagao. O c6digo modificado esta no anexo.

O projeto Mesa 6 bastante sofisticado e permite algumas configurag6es importantes.

Ap6s compilar o c6digo fonte do Mesa ja com a modificagao do softpipe, um script

simples foi desenvolvido a fim de simplificar a declaragao das variaveis de ambiente

necessarias. Deve-se executd-lo com auxilio do emulador de terminal, conforme

instrug6es a seguir.

! /bin/bash

export LIBGL_DRIVERS_PATH=$PWD/Iib : $PWD/lib/gallium
export LD_LIBRARY_PATH=$PWD/Iib:${LD_LIBRARY_PATH} $@

export LIBGL_DEBUG=verbose

export LIBGL_ALWAYS_SOFTWARE=1

export GALLIUM_DRIVER=swr

52

O comando source, e o script acima como argumento, permite que se utilize as

variaveis de ambiente sejam declaradas no contexto utilizado. Esse script deve ser

executado dentro da pasta raiz do c6digo fonte do Mesa. 'LIBGL DRIVER PATH’ e

'LD_LIBRARY_PATH’ definem a localizagao das bibliotecas compiladas, enquanto

'LIBGL_DEBUG=verbose’ garante que mensagens de depuragao e analise da

execugao sejam colocados na saida de texto do terminal.

'LIBGL_ALWAYS_SOFTWARE’ indica que o Mesa sempre utilizar6 o driver

exclusivamente software. 'GALLIUM_DRIVER=swr’ decide que sera utilizado o

software rasterizer , que nada mais 6 que o pipeline grafico executado via software.

No caso, o sistema escolhe o Gallium Softpipe como driver adequado, taI como

rnostra a lrnagern a seguir.

Figura 15 - Terminal linux com comandos adequados para escolha do driver gallium adequado

®r@BlfbaH

Elle Edlt ytew jerminal Tabs Help
fab rlclo©FADB : -/@sktoaicnjp gtxihla I Mb reI[MM

GLX_MESA_multithread makecurrent , GLX MESA query renderer
GLX MESA muttithread makecurrent GLX_MESA_query rendere r

OpenGL renderer string : Mesa DRI Intel(R) Sandybridge Desktop
fabricio@FADB:-/Desktop/OpenGPU/mesa$ source mesa_test script
fabricio@FADB:-/Desktop/C)penGPU/mesa$ gtxinfo I grep renderer
libGL: OpenDriver t rying /home/fabricio/Desktop/OpenGPU/mesa/lib/tls/swrast_d ri

SO

trying /home/fabricio/Desktop/OpenGPU/mesa/tib/swrast dri . solibGL : OpenDriver
libGL: dlopen /home/fabricio/Desktop/OpenGPU/mesa/lib/swrast dri. so failed (/hom
e/fabricio/Desktop/OpenGPU/mesa/lib/swrast drl . so cannot open shared object fit
e: No such file or directory)
libGL: OpenDriver trying /home/fabricio/Desktop/OpenGPU/mesa/lib/gallium/tts/swl
rast dri. so

trying /hoRe/fabricia/Desktop/OpenGPU/mesa/lib/gallium/swrastlibGL: OpenDriver
dri . so

No such file or direlibGL: Can't open configuration file /home/fabricio/.drirc
cto ry
libGL: Can't open configuration file /home/fabricio/.drirc: No such file or dire
ct cry

GLX_MESA_muttithread_makecurrent , GLX MESA query renderer
GLX_MESA_muttithread_makecurrent , GLX MESA query renderer

IC)penGL renderer string Gallium 0.4 on softpipe
fabricio@FADB :-/Desktop/OpenGPU/mesa$ 1 la

Fonte: autoral

E notavel a maior quantidade de informag6es exibidas, a16m da mudanQa do

'renderizador’. Prirneiro, o driver utilizado pelo GPU integrado ao CPU do sistema,

Mesa DRI Intel Sandybridge Desktop. Ele faz parte do pacote i965 no c6digo fonte

53

Mesa. Na sequ6ncia, ap6s configurar as variaveis de ambiente, o sistema passa a

utilizar apenas o Gallium sobre o driver softpipe, na biblioteca swrast_dri.so.

Um comparativo simples foi feito corn tr6s sistemas rodando a aplicaQao de testes

graficos glmark2, a fim de evidenciar a diferenQa entre GPU (Intel Sandybridge),

CPU com so aware otimizado (llvmpipe) e CPU com software de referencia (softpipe).

• softpipe: 13 imagens porsegundo
• llvmpipe: 369 irnagens por segundo
• Mesa DRI Intel Sandy Bridge (GPU, pipeline via hardwarey. 980 irnagens por

segundo

Essa 6 apenas urna ilustraQao da diferenga entre a perforrnance de cada sisterna.

Uma avaliaQao mais precisa exigiria diversos outros testes, inclusive com aplicaQ6es

graficas distintas.

A partir dos arquivos BMP, pode-se prosseguir com a prova de conceito, que 6 a

parte aqui chamada de hardware.

8.2. PROVADE CONCEITO: HARDWARE

O sistema FPGA exige uma percepQao diferenciada em relaQao ao software. Entre

outras diferen9as, uma das mais importantes 6 a noQao de simultaneidade.

Linguagens descritoras de hardware como VHDL ou Verilog conduzern a eventos

ocorrendo de maneira sincronizada ou assincrona, concorrente ou sequencial –

exatamente como se comporta o hardware desenvolvido em ASIC ou em circuitos

discretos. Por isso, seu desenvolvimento exige habilidades diferentes daquelas

vistas em prograrnagao de software .

A prova de conceito em questao aproveitou da disponibilidade da placa DE2 aos

autores. Esta e uma placa de performance razoavel, que tem saida VGA, mem6ria

RAM e urna quantidade mais que suficiente de c61ulas logicas (LE, logic elements ou

LUT, lookup table) . O sistema se baseou no seguinte diagrama para ser
implementado:

54

Figura 16 - Diagrama de hardware da prova de conceito

Reset
(chave)

VGA
Controller

]33MH
Z

framebuffer

MUm
clock(PC-133)

Linha
coluna

naentc

Pixel Clock (25Mhz para resolugao 640x480)

Fonte: autoral

Os blocos em verde indicam m6dulos implementados em VHDL, totalmente

funcionais (testados). O m6dulo em amarelo, sdram_simple , apresentou problemas

quanto a conexao com a SDRAM. Ao fim da prova de conceito, este foi o trecho em

que nao se obteve sucesso. O video pode ser exibido e manipulado na saida VGA,

sob resolugao configurada. O framebuffer , que era responsavel por abstrair a

SDRAM e torn&la uma mem6ria plana, tarnb6m foi construido adequadamente. Seu

enderegamento se prop6e a seguir o modelo linha e coluna, como numa matriz de

pixels. lsso facilita a concepgao do controlador VGA.

O intuito inicial era transmitir uma imagem gerada na etapa anterior, software,

armazena-la na RAM do FPG A e exibi-la no video por VGA. Nao foi possfvel atingir

esse objetivo devido ao controlador da SDRAM, embora a rnaior parte do sistema

tenha sido implementado – caracterizando a possibilidade de se desenvolver urna

GPU. Os c6digos relativos ao desenvolvimento do hardware estao no ap6ndice
desse documento

55

9. DECISAO DE ARQUITETURA E ABORDAGEM DE IMPLEMENTA(,'AO

A arquitetura foi discutida ap6s a definiQao inicial do projeto. lsso porque havia a

necessidade de maior compreensao do problema e das suas possfveis soluQ6es. O

conceito inicial seguiu a ideia proposta anteriorrnente de implementaQao de uma

rnatriz de nOcleos de processamento comandadas por uma unidade de controle –

enquanto os dados trafegariam pelo sistema de mem6ria e seria alimentado no
controlador de video.

Essa perspectiva conduziu a escolha de n6cleos de processamento capazes de lidar

com os tipos de operaQ6es caracterfsticas do pipeline grafico. Uma matriz de
possibilidades e funQ6es foi preparada para esta tarefa – inclusa na seQao de

ap6ndice deste volume.

9.1. JUSTIFICATIVAS PARA MUDAN(,'A DE ABORDAGEM

A escolha do nOcleo foi fundamental para a conclusao que viria na sequ6ncia:

implementar e associar processadores em hardware , ainda que estivessem prontos,

caracterizar-se-ia em uma tarefa inviavel no tempo e no esforgo humano disponiveis

para o presente trabalho. Para entender melhor esta circunstancia, 6 preciso

observar a cadeia de desenvolvimento caracteristica de processadores.

56

Figura 17 - Diagrama de funcionamento da primeira abordagem de arquitetura do projeto

Compilador
OU

Process

interpretador
Sistern
a de

mem6ri
a

Controlador
e interface

de

comunicaQao

Processador

Adaptador
grafico

0
a
0

Processador

Fluxo de instrug6es

Fonte: autoral

Acirna se verifica a necessidade de um compilador ou interpretador compativel com

o processador escolhido para compor o hardware. O adaptador grafico precisaria

traduzir de uma linguagem de maquina – TGSI, que 6 a representagao usada pelo

Gallium – em outra, que seria a linguagem de instruQ6es do nClcleo escolhido. lsso

aumenta consideravelmente o projeto quanto ao nClmero de m6dulos a serem

desenvolvidos. O sisterna de compilagao ja demanda bastante pesquisa e trabalho a

fim de organizar um produto final funcional e de qualidade minima. As etapas de

testes sao bastante extensas num primeiro instante, dado nao haver ainda uma

implementagao do GPU. Associar estes m6dulos convergiria para novas decis6es e

novos projetos rnenores.

Apesar desse conceito ter sido debatido e considerado como primeira opgao,

abandon&lo foi uma decisao importante para os resultados obtidos posteriormente.

Embora isso nao descarte que no futuro esta abordagem inicial possa ser revisitada

57

e implementada – ja que 6 promissora quanto suas caracteristicas t6cnicas, a16m

de estar presente na totalidade dos processadores graficos comerciais aos quais se

teve acesso durante a fase de pesquisa deste trabalho.

9.2. NOVAABORDAGEM

Foi idealizada uma nova abordagem – mais simples, por6m de limites mais claros e

modestos quanto ao tempo de implementagao e a dedicagao disponivel. Ao inv6s de

implementar a regiao programavel do pipeline grafico, optou-se por desenvolver

algum trecho 'fixo’ ou de baixa configurabilidade. Entao, apresentou-se a ideia de

desenvolver o rasterizador , um m6dulo responsavel por decidir onde devem ser

preenchidos pixels na tela a partir de triangulos. De maneira geral, esta funQao 6

importante quanto ao tempo de processamento – embora nao seja a de maior

consumo de tempo dos processadores, figura entre as principais tarefas dos

sistemas de processamento grafico atuais, ja que otimizaQ6es nessa seQao podem

ter impacto notavel na performance do sistema total.

A implementagao do rasterizador tornou-se, portanto, o objetivo e, de certa forma, o

m6dulo central do GPU desenvolvido em hardware neste trabalho. As demais

fung6es graficas e de processamento geral ficaram em software. Apesar disso,

espera-se que o arnbiente de desenvolvimento forneQa o suporte necessario para

continuaQao da implernentaQao de outras funcionalidades esperadas em uma GPU

dos padr6es contemporaneos a este trabalho. E importante frisar que a arquitetura e

abordagern de implementaQao escolhidas atingiram todos os requisitos de

engenharia e marketing propostos anteriormente, como sera verificado a seguir.

58

59

10. PRIMEIRA FASE DE IMPLEMENTA(,'AO

10.1. RELAT6RIO DE RECONHECIMENTO E TESTES NO SOFTPIPE

O softpipe foi investigado ao longo de duas semanas. Usou-se o c6digo fonte, a

docurnentaQao do gallium, um debugger e um profiler . Abaixo, ha callgraphs de uma

aplicaQao grafica rodando sobre o driver gallium, editado e compilado. A geraQao

destes graficos foi feita usando o programa kcachegrind , uma ferrarnenta que la

arquivos gerados por um software de profiling – conhecido como callgrind. parte do

sistema de analise valgrind.

O callgrind analisou a execuQao do programa glxgears rodando com o driver gallium

softpipe modificado. O softpipe rasteriza e renderiza um triangulo por vez – dentro

da fungao sp_vbuf_draw_arrays ha loops que percorrem um buffer de v6rtices,

dependendo da primitiva (pontos, linhas, triangulos fan, quads, etc). Para cada

triangulo, o pipeline calcula informag6es de projeQao e corte de perspectiva atrav6s

das funQ6es em roxo nos diagramas abaixo. A fungao subtriangle executa

renderizaQao e cortes adequados no triangulo em questao. Esses dados sao

passados a fungao flush spans.

Esta, por sua vez, gera os fragment quads (blocos de exatamente 2x2 pixels). Os

quads sao repassados a funQ6es de teste de profundidade e stencil. Blocos de

fragment quads sao gerados, num total de no maximo 16 por itera(,ao – nOmero

relacionado aos testes de bits dentro das funQ6es (16 quads = 32x32 bits ou pixels).

Os blocos de fragment quads sao direcionados para a funQao shade quads que

executa o shader definido pela aplicaQao – estagio do fragment shader . Ao fim do

loop de geragao de blocos e o respectivo shadIng e escrita dos color buffers, a

execugao retorna para o loop de triangulos – ap6s o qual havera a finalizaQao do

frame, a uniao dos color buffers e o respectivo flush da cena para o framebuffer.

A modificaQao necessaria para demonstrar a usabilidade do softpipe no OpenGPU

foi alterar o c6digo de modo que nao mais o shading fosse executado a cada bloco

de quads produzido. Ao inv6s disso, a funQao shade quads foi executada somente

ao final de todas as iteraQ6es de produQao de fragment quads para um determinado

60

triangulo. Tendo, portanto, um buffer de v6rtices e uma funQao que da continuidade

ao pipeline grafico, podemos construir o processo de rasterizaQao e renderizagao,

obtendo urn buffer de fragmentos – prontos para entrar no estagio de fragment

shading.

A rnaior dificuldade nesta tarefa foi alocar o buffer corretamente – os quads gerados

nao podiam ser alirnentados de uma vez na fungao – precisaram ser alimentados

por um loop que repetia o nOmero de quads gerados a cada iteraQao interna. lsso

demandou um buffer mais sofisticado que guardava nao apenas os fragment quads

de uma iteragao, mas tamb6m o n6mero gerado naquele instante – isso foi repetido

posteriormente nas chamadas da fungao shade quads. Embora nao verificado, isso

ocorreu possivelmente pela shade_quads supor blocos relativos apenas a uma linha

– se passarrnos quads relativos a linhas diferentes, mesmo que em ordem de 'Z’,

horizontalrnente do fim do triangulo para o come90, ele executa o shading com
falhas visuais. Esta pode ser uma caracterfstica a ser investigada futuramente a fim

de minirnizar a carga de informaQ6es transportadas.

A versao do Mesa escolhida para modificagao foi a 8.0.2, visto que a distribuiQao

UBUNTU disponibilizada pela Terasic para rodar na DEI cont6m exatamente essa

versao de drivers de video. Para haver compatibilidade de ambiente, 6 importante

que as vers6es sejam pr6xirnas ou mesmo iguais. Nao deve, no entanto, atrapalhar

em futuras atualizag6es do driver Open(3PU, principalmente, porque o Gallium 6

bastante estavel e nao sofre modificag6es fundamentais desde 2010 – enquanto a

versao 8.0.2 do Mesa 6 de 2012

Com essa situagao, espera-se poder construir o rasterizador em software – de

modo que seja urn espelho para o desenvolvimento em hardware. A seguir, a relaQao

das estruturas e de uso de dados no trecho escolhido para ser implementado:

61

Figura 18 - Diagrama do softpipe modiftcado e suas funQ6es

ogpu vbuf draw arrays ogpu raster send
MEMORY
(input buffer)

MEMORY
(input buffer)

virtual rasterizer MEMORY
(output buffer)

shade quads

Fonte: autoral

Esta concepgao surgiu a partir dos graficos de chamadas (call graphs) produzidos

pela execugao do softpipe e pela sua respectiva analise com o software callgrind.

Figura lg - Fluxo de tnformaQ6es no softpipe parte 1

ED:115 891 x

E=108 989 x

depth test quads faHback

liM 21.55 Eb

calls 891 x

E3144 x
calls 891 x

E3115 891 x
S

m3.15 %E344 060 x

II1]109 489 x
n X

E38 259 x

E3144 x

Fonte: autoral

62

Figura 20- Fluxo de informa(,6es no softpipe parte 2 e 3

Bling 396 x

C34 698 x

cal

E310 560 x ==
sp setup_tr1SP HlIHIO 560 x C310 560 x

Egmin [=99.96 %
C34 698 x

=0.19 qb

rE34 698 x

mc'.33

Hll• laa,oo %

HlIE133 741 xRIng 312 x
aaRnllgo.81 % .spansI[3954 x E34 698 x

El•11100.00 %
taIDO.oo %

Fonte: autoral

63

Figura 21 - Fluxo de informaQ6es no softpipe parte 4

E143 916 x

- L flush_spans
--> =100.00 %

E3144 x

E=144 x
IIZ]44 060 x

E=44 060 x

I1[]109 489 x
=EI X

=1144 x

Fonte: autoral

Nas figuras acima se verifica o fluxo de informaQ6es na implementagao do softpipe.

A partir desses graficos de chamadas foi possivel estabelecer o trecho de insergao

das modificaQ6es. Elas sao necessarias para conduzir o fluxo de dados para o
rasterizador, bem como receb6-1o de volta do mesmo m6dulo, dando continuidade

ao processamento grafico.

10.2. IMPLEMENTA(,,Ao DO RASTERIZADOR VIRTUAL

Abaixo, as imagens do hardware desenvolvido e o algoritmo do m6dulo de controle.

Ambos foram testados e executados com sucesso. Apesar de realizar o teste de

profundidade (depth testing), os dados produzidos nao foram repassados ao softpipe

– isso porque ha necessidade de modificar algumas funQ6es de chamada como a

shade_quads que executa o shading dos quads produzidos pelo rasterizador.

64

Figura 22 - Diagrama do funcionamento do rasterizador, evidenciando o trecho de dados e o trecho de controle

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

£QNIBQl_ n _
I

q
I
I
I
I
I
I
I

F= = n

an
I
I
If,

I

I
I
I
I

I
I
I
I
I

I
I

I
I
I
I

I
I
I
I
I
I
I

n = aB IBB••• = I
I
IBn aBU IBn in

I

Fonte: autoral

Figura 23 _ Maquina de estados da unidade de controle do rasterizador

IDLE
Done<nD
Busy <nO

start raster< Ma
next-quad< wO
edg e_test< =0

depth:test < = 0
store quad<nD,

:ommandnraster
SETUP

Busy <BI
Done<=0

start raster<= 1

setup_done QUAD GEN
next quad<=1
store–quad<=0
edge_test< = 0
depth test<nO

LCommanduprepare
Fu, d _ready

DONE
Done<=1
Busy< nO

start raster< =0
next quad<=0
edge_test < =0
depth test<=0.
store_quad < = 0.

end tile
!quad_reach quad:stored

_tend tHe

iscard_quad
lend tIle

end tile STORE QUAD
store_quad< = 1 raw_quad

depth ready

QUAD TEST
next quad<wO
ed ge_test< = 1
depth test<=1

end tile

Fonte: autoral

65

Imagens do diagrama do hardware e do algoritrno de controle do rasterizador estao
presentes no ap6ndice em maior qualidade.

10.3. FUNCIONAMENTO DO RASTERIZADOR

A implementaQao atual recebe v6rtices de um triangulo e informaQ6es sobre o tile

atual, quer dizer, a regiao da tela que em que se deseja processar o triangulo

escolhido. O rasterizador realiza a preparaQao dos dados, calcula em quais pixels do

tile dentro da tela o triangulo sera preenchido. Esses pixels sao associados em

blocos de 2x2, chamados de quad fragments – fragmento 6 o nome dado a cada

pixel. Para cada tile sao produzidos fragmentos pertinentes quando houver

necessidade de rasterizaQao, carregando informag6es de mascara (pixels a serem

preenchidos) e de profundidade, ou depth testing . Para cada tile , 6 executada urna

opera9ao de rasterizagao em cada triangulo – ou, a cada triangulo, sao executados

diversas operag6es de rasterizaQao, divididas em tiles.

O uso da concepQao de tilling da tela permite que varios rasterizadores sejam
alirnentados paralelarnente, produzindo informa('aes de diversos tiles diferentes.

Outra vantagem 6 a possibilidade de nao restringir o tamanho maximo de tela

(embora a implementaQao atual esteja limitada a 65536 pixels de largura ou altura,

devido a escolha da representaQao num6rica de 16 bits) .

10.4. FUN(,,6ES IMPLEMENTADAS

O rasterizador virtual foi inteiramente integrado ao softpipe. Na maneira como esta, o

sistema 6 capaz de executar qualquer aplicaQao OpenGL (pelo menos at6 a

especificagao 3.0, na versao 8.0.2 do Mesa3D de 2012). E possivel que execute

aplicag6es DirectX em Windows, embora nao tenham sido testadas – todos os

testes foram realizados somente em plataforma Linux.

66

67

11. SEGUNDA FASE DE IMPLEMENTA(,,Ao

A segunda parte da implementagao 6 caracterizada por adaptar a primeira fase para

o hardware, transformando o rasterizador evidenciado na figura 24 em c6digo. No

caso, a linguagem escolhida foi o VHDL (Very High Speed Integrated Circuit

Hardware Description Language) .

11.1. CRONOGRAMA

O correr da implementaQao e da verificaQao nao seguiu o cronograma conforme as

expectativas. lsso porque a preparaQao da DEl-SoC demandou um tempo maior,

enquanto o projeto do rasterizador veio tardiamente. Ainda assim, houve uma

sequencia bem estabelecida e previsivel, garantindo que, como veremos, o projeto

estaria finalizado at6 sua apresentagao.

O mas de agosto serviu como extensao da fase de projeto, ainda nao finalizada

naquele momento. As duas primeiras semanas de setembro serviram para

configuragao do Mesa3D e respectiva compilaQao. Um estudo sobre t6cnicas de

rasterizaQao e sobre o funcionamento do Mesa3D e do Gallium tomaram as duas

Oltimas semanas. Nas duas primeiras semanas de outubro, foi implementada a

versao virtual do rasterizador, ja acoplado ao driver softpipe do Gallium – na pratica,

o softpipe foi modificado para que transmitisse e recebesse dados pela interface com

o rasterizador OpenGPU. Como sera lembrado na segao de conclusao e futuro do

projeto, o softpipe modificado devera dar lugar a urn novo driver Gallium. At6 esse

rnomento, o sisterna ja exibia qualquer aplicaQao OpenGL compativel com a versao

8.0.2 do Mesa3D, utilizando o softpipe modificado para o Open(3PU.

Fim de outubro e inicio de novembro marcaram a implementaQao do hardware .

Enquanto as verifica96es dos m6dulos foram feitas, a DEI SoC foi utilizada em

pequenos exemplos a fim de verificar o seu uso no teste do hardware. Infelizmente,

a maior parte do tempo foi consurnido na implementaQao das interfaces de

comunicaQao do FPGA, fazendo com que alguns problemas na implementaQao do

hardware nao fossem vistas a tempo. Embora isso, o sistema funcionou no infcio de

dezembro, atingindo todos os requisitos de marketing e de engenharia.

11.2. PREPARANDO A DEI-SoC

68

Inicialmente, foi necessario preparar a placa de desenvolvimento para que pudesse

rodar os softwares necessarios. Para isso, um sistema operacional precisaria ser

instalado na placa de desenvolvimento. A fabricante da placa, Terasic,

disponibilizava duas opQ6es: o Ubuntu Lite e a LXDE (Lightweight Xll Desktop

Environment) . A vantagem da primeira 6 a maior facilidade para instalar os pacotes e

bibliotecas necessarios e a desvantagem 6 que, por ser mais pesado, a velocidade 6

um pouco reduzida. A segunda 6 bem mats leve, por6m houve problemas corn

instalaQao de pacotes. Uma terceira opQao seria criar um sistema operacional

custom izado.

Como o sistema operacional nao faz parte do escopo do projeto e nao afeta o seu

funcionamento, escolheu-se a primeira opQao. O segundo passo foi a instalaQao das

bibliotecas necessarias para o funcionamento do mesa:3D. Vale a pena ressaltar que

a arquitetura de um processador ARM, que compunha o nOcleo da placa, 6 diferente

da arquitetura dos processadores em um desktop comum (x86 64 bits) . Portanto,

programas compilados (ou seja, “montados") para computadores pessoais comuns

nao funcionam na placa. E necessario um compilador especifico e bibliotecas

especificas.

Ap6s a instalagao de todos os componentes necessarios, a biblioteca mesa3D e o

driver Gallium modificados foram compilados na placa sem problemas: a preparaQao

estava completa.

11.3. RASTERIZADOR VIRTUAL

A implementagao de um rasterizador software diferente daquele presente no
softpipe, do Gallium, foi fundamental para verificar a completude do algoritmo de
rasterizaQao. Embora seja considerado simples, ha diversos pontos propensos a
falhas provaveis – como o sistema de tiling e a geraQao de fragmentos.

Outro ponto interessante, foi a implementaQao parcial de algumas caracteristicas
de hardware. como clock e sincronismo dos dados – embora rodando em um
CPU. lsso permitiu corrigir alguns erros de 16gica no algoritmo do rasterizador,
que, fundamentalrnente, deveria considerar a implementaQao em hardware.

A implementagao virtual foi bem sucedida, nao diferindo daquela ja existente no
softpipe. Toda a sequ6ncia do desenvolvimento se deu em cima do algoritmo
produzido e testado nesta etapa.

69

11.4. RASTERIZADOR NO FPGA

A implementaQao em hardware foi bem sucedida de maneira geral. O rasterizador

virtual foi replicado em VHDL, passando por testes funcionais em cada m6dulo –

listados nas figuras anteriores. O software ModelSIM, associado ao Altera Quartus

foi utilizado nessa etapa.

A maior dificuldade surgiu na integraQao entre o sistema e o FPGA, que tem

sistemas de transmissao de dados ja definidos. Embora estejam prontos, alguns nao

tinham configuraQao tao sirnples ou – no caso de um modulo especffico – nao houve

meios de funcionar de acordo corn a especifica€,ao. Cerca de duas semanas de

trabalho quase continuo forarn necessarias para garantir que instrug6es e dados

fossem trocados entre o softpipe modificado, dentro do CPU ARM, e o rasterizador

OpenGPU, no FPGA.

O sistema dentro do FPGA foi construido com base num exemplo fornecido pela

Terasic. Nele, uma implementa(,ao em linguagem de hardware Verilog(apesar de

instanciar m6dulos em arquivos VHDL) faz a interface entre os m6dulos gerados

pela ferramenta Qsys, da fabricante Altera, e o processador ARM com sua estrutura

de hardware caracteristica – sistema chamado de HPS pela Altera. Ha m6dulos e

configurac,aes para debug, JTAG, e exibigao VGA com acesso ao framebuffer do

sisterna via bus F2H. O sistema operacional Linux, na versao Ubuntu disponibilizada

pela Terasic, foi mantido e modificado conforme as necessidades a fim de executar

os testes e as aplicaQ6es para o Open(3PU.

O sistema de interface foi definido com base em registradores de entrada e safda

atrav6s do Qsys. De maneira geral, a implementaQao em software troca dados com

o FPGA utilizando o bus H2F – comunicaQao em que HPS comanda e rn6dulos no

FPGA. Outra opQao seria usar o F2H, criando m6dulos no FPGA para escrever ou
ler diretamente na mem6ria DDR3 do sistema.

As variaveis de comando, dados dos v6rtices, tile, cliprect. reset , endereQO de buffer

e coeficientes para depth test , foram definidos em registradores alocados em

70

endereQos gerados no Qsys. Esses registradores funcionam como entrada e

saida(m6dulos PIO no Qsys) e t6m endereQos acessiveis pelo bus Avalon, da Altera.

A safda do sistema deveria ser um buffer de RAM no pr6prio FPG A ou na rnem6ria

DDR3 do sistema. Nenhum dos dois meios foi viavel dentro do tempo disponivel

para execuQao do projeto – sobretudo se considerados os atrasos na configuraQao

da DEI SoC. O rn6dulo de interface gen6rica, External Interface to Avalon , fornecido

pela Altera nao funcionou conforme documentaQao disponfvel – obrigando o uso de

um sistema pouco indicado para esse tipo de aplicaQao, dada a necessidade de

grande largura de banda na transrnissao de dados.

A cada quad fragment produzido, um sinaI de requisigao 6 gerado pelo m6dulo de

armazenamento(quad store) . O rasterizador aguarda at6 que um outro sinaI, de

acknowledge retorne do adaptador OpenGPU no CPU. lsso 6, o rasterizador deve

esperar a leitura de cada pacote de dados produzido. Cada pacote foi construido

para ter 64 bits, representando as informaQ6es de cada quad fragment – isso

significa transmiss6es volumosas de dados e atrasos consideraveis, ja que o acesso

do HPS ao sistema do FPGA 6 bastante tumultuado por trafego de outros perif6ricos.

Em um tile , poclem ser produzidos at6 1024 quad fragments, o que significa urna

carga de at6 8KB em cada operaQao de rasterizaQao. Supondo uma tela de
1024x768 pixels, ou 16x12 tiles, serao 1.5MB a cada frame apenas para um

triangulo. £ sabido que uma cena conta com centenas, milhares ou at6 milh6es de

triangulos em certas aplicaQ6es atuais. Por isso, 6 fundamental uma comunicaQao de

alta capacidade de transmissao, suportada por buffers.

Apesar dessa situaQao nao prevista, o sistema pode funcionar corn um pouco rnenos

de performance no caso de uma aplicaQao OpenGL simples e consideravel lentidao

em aplicaQ6es mais sofisticadas. O objetivo de otimizaQao nao estava no escopo do

projeto, entao esse nao 6 um problema para a implementaQao atual.

Houve alguns problemas nao vertficados durante a fase de testes funcionais dos

m6dulos. Assim, o rasterizador nao gerou todos os quad fragments esperados. Por

isso, os triangulos ficaram com aspecto pontilhado na implementaQao hardware.

Apesar disso, o sistema 6 estavel e nao houve outras falhas durante o periodo de

testes realizado(cerca de urna hora continua com diferentes aplicaQ6es OpenGL).

71

As t,haves DIP da DEI SoC foram usadas para trocar entre as implementaQ6es:

original do softpipe, virtual do OpenGPU e hardware do OpenGPU.

72

Figura 24 - OpenGPU rodando a aplicaQao glxheads sobre a DEI SoC com urna versao Ubuntu Linux, conectado
via VGA a urn monitor de uso geral.

’a

n\

H•

Fonte: autoral

73

12. LICEN(,'AS ABERTAS DE USO

Com o objetivo de se adequar com o requisito de licenga aberta, varias licenQas de

uso de software forarn analisadas. Com isso, uma tabela comparativa foi gerada

para facilitar a escolha que melhor se enquadra nos objetivos do projeto, corn os

seguintes crit6rios e seus respectivos pesos (em par6nteses):

RestriQ6es (3): Diz respesto ao quao restritivo 6 aos usuarios que
eventualmente utilizarao o projeto. Maior nota 6 menos restritivo.
Clareza (1): Diz respeito ao quao claro 6 sua documentaQao. Maior nota 6
mais docurnentado
Abrang6ncia (2): Diz respeito a quantidade de t6picos legais que a licenga
abrange. Maior nota 6 mais abrangente.
Uso (3): Diz respeito a popularidade, ou seja, ao quao bem aceito 6 pela
cornunidade OpenSource. Maior nota 6 mais comumente usado.
Compatibilidade (2): Diz respetto a compatibilidade da licenQa com outras
licengas OpenSouce, importante para evitar problemas no uso do projeto por
terceiros. Maior nota 6 mais compativel.

Tabela 20 - Cornparativo entre licenQas

Licenga Restrig6es Clareza

•

•

•

•

•

Abran96ncia Uso Compatibilidade TOTAL

(m6dia)

7,54

6,64

6,36

7,45

6,18

5,18

6,18

6,81

Apache 2.O

BSD-2

GPL 3.0

MIT

MPL 2.0

CDDL 1.0

EPL 1.0

PD

Fonte: autoral

7

9

4

8

6

5

7

10

8

5

10

5

8

6

5

4

7

2

9

3

6

7

6

3

10

7

8

9

6

4

6

5

5

8

3

10

6

5

6

10

Todas essas licenQas sao aceitas pela Open Source Initiative, que 6 a entidade

responsavel por endossar os softwares abertos e suas licengas. Os sitios contendo

cada uma dessas licenQas se encontra na bibliografia.

A tabela nos indica que a melhor opgao para uso de licenga 6 a Apache 2.0. Essa 6

uma licenga usada com muita frequ6ncia pelos desenvolvedores de software aberto

e que possui urn alto grau de liberdade. Suas principais caracteristicas diferenciadas

sao as restrig6es quanto ao uso de marca registrada e sua exig6ncia de que os

direitos autorais sejam reconhecidos. lsso 6 interessante pois certifica que a

OpenGPU se enquadra nos padr6es de Open Source enquanto mant6rn o

reconhecimento da autoria por parte dos alunos que participaram no projeto.

74

12.1. LICEN(3,AS DE SOFTWARE DE TERCEIROS UTILIZADOS NO PROJETO

o projeto utilizou uma versao modificada do Mesa3D e do Gallium. Com isso, e

necessaria atenQao as exig6ncias das licenQas desses softwares. No caso, ambos

se utilizam da licen9a MIT, que tem como caracteristica principal ser muito

permissiva e simplificada. Dessa forma, nao ha problemas restritivos ao projeto no

tocante a licenQas de terceiros e eventuais problemas legais.

75

13. DISCUSS AO E CONCLUSOES

O projeto possui grande capacidade de crescimento e melhoria. A abordagem

adotada pode abrtr espago para o desenvolvimento de novas tecnologias, talvez

competitivas com sistemas comerciais futuros. A escolha da arquitetura permitiu

alcanQar os objetivos propostos inicialmente, sob o aspecto de marketing e tamb6m

de engenharia. A abordagem garantiu que os requisitos basicos para que o GPU

seja funcional, integravel e expansivel fossem alcan9ados. A presenQa da licenga

traz integragao ao estado da arte no ambito de softwares e hardwares abertos.

A prova de conceito demonstrou o funcionamento da plataforma de desenvolvimento

e a aplicabilidade da ideia proposta. O estagio de desenvolvimento do rasterizador

virtual, denominado primeira fase, garantiu a objetividade necessaria para a
implementaQao inicial do projeto. A segunda fase, pela qual o projeto passou, pode

ser considerada o embriao de uma implementagao em hardware; o passo

necessario para que o projeto seja integrado a comunidade.

Os custos envolvidos nesta elaboragao ficam restritos ao estabelecimento do
ambiente de desenvolvirnento e na manutenQao da dedicaQao humana envolvida.

lsso torna a empreitada, da forma como foi conduzida, de baixo custo. As
dificuldades do projeto sao decorrentes da escassa mao-de-obra e tempo

disponiveis. Como o time responsavel pelo trabalho 6 reduzido e a dedicaQao nao

era exclusiva ao projeto, os cronogramas propostos nao puderarn ser seguidos. A
resposta da equipe foi focar em um trecho especifico do funcionarnento de urna
GPU, o rasterizador, para simplificar o trabalho. lsso, por6m, nao descaracteriza o

escopo inicial e nao foge das intenQ6es originais da equipe. Pode-se dizer que o
grande sucesso obtido foi o a definiQao de uma boa estrat6gia de ataque ao

problema, que permite, com o tempo, que um produto final completo, totalrnente

implementado em hardware, seja desenvolvido.

A expectativa futura 6 aperfeigoar a t6cnica de rasteriza(,ao, produzir urn sistema de

bufferizaQao adequado – contando com t6cnicas de compressao ou sirnilares –,

implementar depth testIng pelo lado do so aware, aprofundar o gerenciamento de
rnem6ria e o seu acesso de modo a compartilhar dados de maneira eficiente. lsso

abrira caminhos para que processadores de uso geral possarn ser implementados

dentro do Open(;PU – levando-o ao patamar de GPU de uso geral, conhecida como

76

GPGPU. A abertura a comunidade 6 o objetivo maior, abrindo oportunidade para que

um GPU aberto seja desenvolvido em FPGAs e, no futuro, em ASICs.

Este projeto 6 importante na area de sistemas eletr6nicos, ja que o GPU 6 hardware

fundamental na elabora9ao de sisternas mais complexos nas mais variadas

aplicaQ6es de engenharia. O curso Sistemas Eletr6nicos da Escola Polit6cnica

forneceu conhecimentos diversos para a realizaQao desse projeto, como t6cnicas de

projeto de circuitos digitais, organizaQao e arquitetura de computadores, modelagem

em processamento de sinais, projeto de circuitos integrados dedicados, semi-

dedicados e de sistemas integrados, m6todos de concepQao de projeto de
engenharia e, principalmente, postura e atitude esperadas de profissionais

engenheiros. Espera-se com este trabalho de formatura unificar esses e muitos

outros conhecimentos adquiridos durante o curso, aplicando-os de maneira
integrada e final, a fim de servir como ensaio para o futuro profissional de cada

membro da equipe.

77

REFERENCIAS

BUSH, J. Nyami(Nyuzi):Asynthesizable GPU architectural model for general-
purpose and graphics-specific workloads. Binghamton: Universidade de Binghamton,
2015. Disponivel em: <http://www.cs.binghamton.edu/–millerti/nyami-
ispass2015.pdf>. Acesso em: 29 maio 2016.

FYKSE, E. Performance comparison GPU, DSP and FPGA implementations of
image processing and computer vision algorithms in embedded systems.
Noruega: NTNU, 2013.

JPR. Nvidia increased everything in Q3 2016. Total GPU shipments up a whopping
20.4%, from last quarter. California: Jon Peddie Research, 2016. Disponfvel em:
<http://jonpeddie.com/publications/market watch>. Acesso em: 31 de maio de 2016

JPR. Qualcomm single largest proprietary GPU supplier. Imagination
technologies the leader in GPU IP, ARM and Vivante growing rapidly, according to
latest report from Jon Peddie Research. California: Jon Peddie Research, 2016.
Disponfvel em: <http://jonpeddie.com/press-l-eleases/details/quatcomm-single-
largest-proprietary-gpu-supplier-imagination-technologies-t/>. Acesso em: 31 de rnaio
de 2016

KINGYENS, J., STEFFAN, J. G. The Potential for a GPU-Like Overlay
Architecture for FPG As. International Journal of Reconfigurable Computing, 2011.
Article ID 514581

NOUVEAU. Noveau: Accelerated open source driver for nVidia cards. Disponivel
em
<https://nouveau.freedesktop.org/>. Acesso em: 5 de julho de 2016

NYUZI. Nyuzi. Binghamton: Universidade de Binghamton, 2015. Disponivel em:
<http://nyuzi.ord>. Acesso em: 29 de maio de 2016.

OSI. Open source initiative. 2016. Disponfvel em: <http://https://opensource.org/>.
Acesso em: 29 de maio de 2016.

SANKARALINGAM, K. MIAOW: An opensource GPGPU. Madison: Universidade de
Wisconsin. Disponivel em:
<http://www.hotch ips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-
Epub/HC27.25.50-GPU-Epub/HC27.25.512-MIAOW-Balasubramaniam-UWisc-
vl.2.pdf>. Acesso em: 29 de maio de 2016

WALLS, C. Embedded Software: the torks. Oxford: Elsevier. 2012

78

APENDICE A

Crit6rios nas tabelas a seguir:
•

•

Este crit6rio (linha) 6 tantas vezes mais importante que aquele (coluna)
Pesos calculados por m6dia geom6trica da linha seguida de normalizagao

Tabela do primeiro nivel na hierarquia de necessidades

Tabela do segundo nfvel do item 'lntegravel’ na hterarquia de necessidades

Comunica I Safda
VideoQaa

OpenGL M6dia Peso
geom6tric
a

1.26 0.41

0.79 0.26

Tabela do segundo nivel do item 'sintetizavel’ na hierarquia de necessidades

Tabela do segundo nivel do item 'Acessfvel’ na hierarquia de necessidades

79

„„ '“'

80

APENDICE B

Arquivos relativos ao projeto de hardware da prova de conceito. Arquivos de autoria
externa ao projeto estao com suas respectivas licengas de uso. Todos eles
receberam alguma modificaQao dos autores do presente projeto e por isso
encontram-se nesta seQao.

framebuffer.vhd
library ieee;
use ieee . std_logic_1164 . all;
use ieee . numeric_std . all ;

entity framebuffer is
generic(w positive : =640;

h : positive :=480) ;
clock : in std_logic ;

reset : in std_logic := ' 0 ' ;
enable : in std_logic := ’ 0 ' ;
row : in integer range 0 to h-1 :=0;
col : in integer range 0 to w-1 :=0;
r, g, b : out std_logic_vector (7 downto Q) : = (others => ' 0 ') ;

port (

sdram cke
sdram_cs
sdram_ras
sdram_cas
sdram_we
sdram_ba
sdram addr
sdram_data
sdram_d qmu
sdram_d qml

: out std_logic; - - Clock-enable to SDRAM

: out std_logic; - - Chip-select to SDRAM

: out std_logic; - - SDRAM row address strobe
: out std_logic; - - SDRAM column address strobe

out std_logic; - - SDRAM write enable
out std_logic_vector(1 downto Q) ; - - SDRAM bank address
out std_logic_vector(11 downto Q) ; - - SDRAM row/column address
inout std_logic_vector (15 downto Q) ; - - Data to/from SDRAM
out std_logic; - - Enable upper-byte of SDRAM databus if true
out std_logic) ; - - Enable lower-byte of SDRAM databus if

true) ;) ;
end ;

architecture framebuffer_rtl of framebuffer is

component sdram_simple port (
- - Host side
c 1 k_i

reset_1
refresh_i

in std_logic; - - Master clock
in std_logic := ' o ' ; - - Reset, active high
in std_logic := ' O ' ; - - Initiate a refresh cycle, active

high

active high
rw_1 : in std_logic := ' O ' ; - - Initiate a read or write operation,

we_1
addr_i

in std_logic := ' O ' ; - - Write enable, active low
in std_logic_vector (21 downto Q) ; ; (others => ' O ') ;

Address from host to SDRAM

from host to SDRAM

data_i in std_logic_vector (15 downto 0) : = (others => ' 0 ') ; - - Data

ub_i
lb_i
ready_o
done_o

in std_logic; - - Data upper byte enable, active low
in std_logic; - - Data lower byte enable, active low
out_ std_logic : = ' o ' ; - - Set to ' 1 ' when the memory is ready
out std_logic : = ' o ' ; - - Read, write, or refresh, operation

is done
data_o out std_logic_vector(15 downto Q) ; - - Data from SDRAM to host

- - SDRAM side
sdC ke_o
sdCe bo
sdRasbo
sdC:asbo
sdWe_bo
sdBs_o
s dAd dr_o

out std_logic; - - Clock-enable to SDRAM

out std_logic; - - Chip-select to SDRAM

out std_logic; - - SDRAM row address strobe
out std_logic; - - SDRAM column address strobe
out std_logic; - - SDRAM write enable
out std_logic_vector (1 downto Q) ; - - SDRAM bank address
out std_logic_vector (11 downto D) ; - - SDRAM row/column

address
sdData to
sdDqmh_o

inout std_logic_vector (15 downto 0) ; - - Data to/from SDRAM
out std_logic; - - Enable upper-byte of SDRAM databus

if true

81

if true
end component ;

sdDqml_o : out std_logic) ; - - Enable lower-byte of SDRAM databus

signal S_ADDRESS : std_logic_vector(21 downto D) :=(others => ' 0 ') ;
signal S_DATA_0UTPUT : std_logic_vector (15 downto D) : =(others => ' 0 ') ;
signal S_MEMORY_READY : std_logic : = ' 1 ' ;
signal S_DONE : std_logic := ' 0 ' ;
signal access_next_pixel : std_logic : = ' o ' ; - - flag para acessar proximo pixel com row e col
signal next_pixel_address : std_logic_vector (21 downto Q) : =(others => ' 0 ') ;
signal S_READ_NOW : std_logic := ' 0 ' ;
signal S_REFRESH : std_logic := ' o ' ;

begin
MEMORY sdram_simple port map(

- - Host side
clk_i =>clock,
reset_i =>reset ,
rw_i =>S_READ_NOW,
refresh_i=>S_REFRESH ,
we_i => ' 1 ' ,
addr_i =>S_ADDRESS,
ub_i => ' 1 ' ,
lb_i => ' O ' ,
doneo =>SDONE,
ready_o =>S_MEMORY_READY,
data_o =>S_DATA_OUTPUT,

sdC;ke_o=>sdram_c ke ,
sdC:e_bo=>sdram_cs .
sdF?as_bo=> sdram_ras ,
sdC:as_bo=>sdram_cas ,
sdWe_bo=> sdram_we ,
sdBs_o=>sdram_ba ,
sdAd dr_o=>sdram_addr ,
sdDat a_io=>sdram_data,
sdDqmh_o=>sdram_dqmu ,
sdDqml_o=>sdram_d gml) ;

process (row, col, S_MEMORY_READY)
begin

if S MEMORY READY = ' O ' then

access_next_pixel<= ' 0 ' ;
S_READ_NOW <= '0 ' ;

end if ;
access_next_pixel<= ' 1 ' ;
next_pixel_address<=std_logic_vector (to_unsigned(row*w+col, next_pIxel_address ' length)) ;
S_READ NOW <= 11 ' ;

- -next_pixel_address (21 downto 20)<="00" ;
- -next_pixel_address(19 downto 8)<=std_logic_vector (to_unsigned (row, 12)) ;
- -next_pixel_address(7 downto Q)<=std_logic_vector (to_unsigned(col, 8)) ;

end process;

process (S_DONE, enable)
begin
if enable = ' 1 ' then

if S_DONE ' event and S_DONE= ' 1 ' then
r (7 downto 3)<=S_DATA_0UTPUT(4 downto 0) ;
r (2 downto Q)<=(others=>S_DATA_0UTPUT(4)) ;
g(7 downto 2)<=S_DATA_0UTPUT(10 downto 5) ;
g (1 downto 0)<=(others=>S_DATA_0UTPUT(10)) ;
b(7 downto 3)<=S_DATA_0UTPUT(15 downto ll) ;
b (2 downto Q)<=(others=>S_DATA_0UTPUT(15)) ;

else
end if ;

r (7 downto 0)<=(others=> ' 0 ') ;
g(7 downto Q)<=(others=> ' a ') ;
b(7 downto 0)<=(others=> ' B') ;

end if ;
end process;

end framebuffer_rtl;
Fim do arquivo framebuffer.vhd

82

83

gpu . vhd
library IEEE;
use IEEE . STD_LOGIC_1164 . all ;

entIty gpu IS
port (reset : in STD_LOGIC;

main_clock : in STD_LOGIC;

sdram_c ke
sdram_c s
sdram_ras
sdram_cas
sdram_we
sdram ba
sdram_addr
sdram data
sdram_d qmu
sdram_d qml

: out std_logic ; - - Clock-enable to SDRAM

: out std_logic; - - Chip-select to SDRAM

: out std_logic; - - SDRAM row address strobe
: out std_logic.; - - SDRAM column address strobe
: out std_logic; - - SDRAM write enable

Out std_logic_vector (1 downto D) ; - - SDRAM bank address
: out std_logic_vector (11 downto D) ; - - SDRAM row/column address
: inout std_logic_vector (15 downto Q) ; - - Data to/from SDRAM

: out std_logic; - - Enable upper-byte of SDRAM databus if true
: out std_logic ; - - Enable lower-byte of SDRAM databus if true) ;

vga_clk : out std_logic;
vga_sync : out std_logic ;
vga_blank : out std_logic;
vga_hs : out std_logic;
vga_vs : out std_logic;

end ;
rIg lb : out std_logic_vector(9 downto Q) = (others=> ' 0 ')) ;

architecture gpu_structure of gpu is

- -component framebuff er_sdram_controller
generic(w : posItIve : =640 ;

h : posItive : =480) ;
port (clock : in std_logic ;

reset : in std_logic ;
enable : in std_logic ;
row : in integer range 0 to w-1;
col : in integer range 0 to h-1;
r, g, b : out std_logic_vector (7 downto Q) ;

sdram_ncs
sdram_nr as
sdram_ncas
sd ram_nwe
sdram_dqm
sdramaddr
sdrambank
sdram_clk
sdram cke
sdram_dq
);

out std_logic ;
out std_logic ;
out std_logic ;

out std_logic ;
out std_logic_vector (1 downto Q) ;
out std_logic_vector(11 downto 0) ;
out std_logic_vector(1 downto Q) ;

out std_logic ;
out std_logic ;

std_logic_vector (15 downto 0): in

- -end component ;
component framebuffer

generic (w positive :=640;
h : positive : =480) ;

in std_logic ;
in std_logic

in std_logic := ' O ' ;
in integer range o to h-1
in integer range 0 to w-1 :=0;

out std_logic_vector(7 downto Q)

port (clock
reset
enable
row
col
rIg rb

=> 111) ;

(others

SDRAM

sdram_c k e : out std_logic; - - Clock-enable to

SDRAM

sdram_cs

sdram_ras

out std_logic; - - Chip-select to

strobe
out std_logic; - - SDRAM row address

address strobe
sdram_cas out std_logic; - - SDRAM column

84

sdram_we
sdram_ba

out std_logic; - - SDRAM write enable
out std_logic_vector (1 downto Q) ;

SDRAM bank address

row/column address
sdram_addr out std_logic_vector (11 downto D) ; -- SDRAM

to/from SDRAM

sdram_data inout std_logic_vector (15 downta 0) ; - - Data

of SDRAM databus if true
sdram_d qmu out std_logic; - - Enable upper-byte

of SDRAM databus if true
end component ;

sdram_dqml : out std_logic) ; - - Enable lower-byte

component hw_image_generator
GENERIC(

pixels_y
pixels_x

PORT (
disp_ena
row :
column
red
green
blue

end component ;

INTEGER := 300;
INTEGER := 600) ;

- -row that first color will persist until
- -column that first color will persist until

IN STD_L06iC; - -display enable (' I ' = dIsplay time, '0 ' = blanking time)
IN INTEGER; - -row pixel coordinate
IN INTEGER; - -column pixel coordinate

OUT STD_LOGIC_VECTOR(7 DOWNTO O) := (OTHERS => la') ; --red magnitude outPut to DAC

OUT STD_LOGIC_VECTOR(7 DOWNTO O) ;= (OTHERS => 'O’); --green magnitude outPut to DAC
OUT STD_LOGIC_VECTOR(7 DOWNTO O) := (OTHERS => F01)) ; --blue magnitude outPut to DAC

component vga_controller
GENERIC(

h_pulse : INTEGER := 96; --horiztonal sync pulse width in pixels
h_bp : INTEGER := 48; --horiztonal back porch width in pixels
h_pixels : INTEGER := 640; --horiztonal display width in pixels
h_fp : INTEGER := 16; --horiztonal front porch width in pixels
h_pol : STD_LOGIC := ' O ' ; - -horizontal sync pulse polarity (1 = positive, O = negative)
v_pulse : INTEGER := 2; - -vertical sync pulse width in rows
v_bp : INTEGER := 33; - -vertical back porch width in rows
v_pixels : INTEGER : = 480; - -vertical display width in rows
v_fp : INTEGER := 10; - -vertical front porch width in rows
v_pol : STD_LOGIC : = ' O ') ; - -vertical sync pulse polarity (1 = positive, O = negative)

pixel_clk : IN STD_LOGIC; - -pixel clock at frequency of VGA mode being used
reset n : IN STD_LOGIC; - -active low asycnchronous reset
h_sync : OUT STD_LOGIC; --horiztonal sync pulse
v_sync : OUT STD_LOGIC; - -vertical sync pulse
disp_ena : ouT STD_LOGiC; --display enable (' I ' = display time, ' O ' = blanking time)
column : ouT INTEGER range 0 to h_pixels-1 :=0; - -horizontal pixel coordinate
row : OUT INTEGER range 0 to v_pixels-1 :=0; - -vertical pixel coordinate
n blank : ouT STD_LOGIC; - -direct blacking output to DAC

n_sync : auT STD_LOGIC) ; - -sync-on-green output to DAC

end component ;

PORT (

component pixelclock
PORT

(
inclkO
cQ

cl

: IN STD_LOGIC
: OUT STD_LOGIC ;
: OUT STD_LOGIC

);
end component ;

signal S_DISP_EN : STD_LOGIC : = ' 1 ' ;
signal S_COL : INTEGER range 0 to 639 : =0;
signal S_ROW: INTEGER range 0 to 479 : =0;
signal S_PIXEL_CLOCK: STD_LOGIC;
signal S_MEMORY_CLOCK: STD_LOGIC;

begin
MEMORY: hw_image_generator port map(

di sp_en a=>S_DISP_EN ,
row=>S_ROW ,
column=>S_CO L ,
red=>r(9 downto 2) ,
green=>g(9 downto 2) ,

85

blue=>b(9 downto 2)
)

MEMORY: framebuffer port map(
clock =>S_PIXEL_CLOCK,
reset =>reset,
enable =>S_DISP_EN,
row =>S_ROW,

col =>S_COL,

sdram_ct<e=>sdram_c ke,
sdram_cs=>sdram_cs ,
sdramras=>sdram ras ,
sdramcas=>sdramcas ,
sdramwe=> sdramwe .
sdram_ba=>sdram_ba ,
sdramaddr=>sdram_addr .
sdram_data=>sdram_data ,
sdram_dqmu=>sdram_dqmu ,
sdram_d qml=> sd ram_d qml ,

r=>r (9 downto 2) ,
g=>g (9 dobInto 2) ,
b;>b(9 downto 2)
)

VIDEO_CONTROLLER vga_controller port map (
di sp_en a=>S_DI SP_EN ,
column=>S COL,

row=>S_ROW ,
pixel_clk=>S_PIXEL_CLOCK,
reset_n=>''NOT" (reset) ,
h_sync=>vga_hs ,
v_sync=>vga_vs I
n_blank=>vga_blank ,
n_sync=>vga_sync) ;

PL L_PIXEL_CLOCK pixelclock port map(inclk0=>main_clock,c0=>S_PIXEL_CLOCK, cl;>S_MEMORY_CLOCK) ;

vga_clk<=S_PIXEL_CLOCK ;

end gpu_structure;
Fim do gpu .vhd

86

hw_image_generator . vhd

FileName : hw_image_generator . vhd
Dependencies : none
Design Software: Quartus I1 64-bit Version 12.1 Build 177 SJ Full Version

HDL CODE IS PROVIDED 'IAS IS." DIGI-KEY EXPRESSLY DISCLAIMS ANY
WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL DIGI-KEY
BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL

DAMAGES, LOST PROFITS OR LOST DATA, HARM TO YOUR EQUIPMENT, COST OF
PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS
BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF),
ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS

Version History
Version 1.0 05/10/2013 Scott Larson

Initial Public Release

LIBRARY ieee;
USE ieee . std_logic_1164 . all;

ENTITY hw_image_generator IS
GENERIC(

pixels_y : INTEGER : = 300;
pixels_x : INTEGER : = 600) ;

- - row that first color will persist until
- -column that first color will persist until

disp_ena ; IN STD_LOGIC; - -display enable (' 1 ' = display time, ' 0 ' = blanking time)
row : IN INTEGER; - - row pixel coordinate
column : IN INTEGER; - -column pixel coordinate
red : OUT STD_LOGIC_VECTOR(7 DOWNTO O) : = (OTHERS => ' a ') ; - - red magnitude output to DAC
green : 0UT STD_LOGIC_VECTOR(7 DOWNT0 Q) : = (0THERS => ' O ’) ; - -green magnItude outPut to DAC
blue : OUT STD_L061C_VECTOR(7 DOWNTO a) := (0THERS => ' a')) ; - -blue magnitude output to DAC

END hw_image_generator ;

PORT (

ARCHITECTURE behavior OF hw_image_generator IS
BEGIN

PROCESS(disp_ena, row, column)
BEGIN

IF(disp_ena = ' 1 ') THEN
IF(row < pixels_y AND column
red <= (OTHERS => '0 ') ;
green <= (0THERS => ' 0 ') ;
blue <= (0THERS => ' 1') ;
ELSE

red <= (0THERS => ' 1 ') ;
green <= (OTHERS => ' 1 ') ;
blue <= (OTHERS => ' 0 ') ;
END IF;
ELSE

red <= (OTHERS => ' a ') ;
green <= (0THERS => ' 0 ') ;
blue <= (0THERS => ' a ') ;
END IF;

- -display time
< pixels_x) THEN

--blanking time

END PROCESS ;
END behavior;

Fim do hw_image_generator

87

pixelclock . vhd
megafunction wizard : %ALTPLL%
GENERATION: STANDARD

VERSION : WMI . 0

MODULE: altpll

File Name: pixelclock.vhd
Megafunction Name(s) :

altpll

Simulation Library Files (s)
alter a_mf

THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition
+ + + + + + + t + t + + + + + + + + + + + + +

- -Copyright (C) 1991-2013 Altera Corporation
- -Your use of Altera Corporation's design tools, logic functions
- -and other software and tools, and its AMPP partner logic
- -functions, and any output files from any of the foregoing
• - (including device programming or simulation files) , and any
- -associated documentation or information are expressly subject
- -to the terms and conditions of the Altera Program License
- -Subscription Agreement, Altera MegaCore Function License
- - Agreement, or other applicable license agreement, including,
- -without limitation, that your use is for the sole purpose of
- -programming logic devices manufactured by Altera and sold by
--Altera or its authorized distributors . Please refer to the
- -applicable agreement for further details .

LIBRARY ieee;
USE ieee . std_logic_1164 . all ;

LIBRARY altera_mf ;
USE altera_mf . all ;

ENTITY pixelclock IS
PORT

(
inclkO
ca
cl

: IN STD LOGIC
OUT STD_LOGIC ;
OUT STD_LOGIC

);
END pixelclock;

ARCHITECTURE SYN OF pixelclock IS

SIGNAL sub_wireo
SIGNAL sub_wirel
SIGNAL sub_wire2
SIGNAL sub_wire3
SIGNAL sub_wire4
SIGNAL sub_wire5_bv
SIGNAL sub_wire5

STD_LOGIC_VECTOR (5 DOWNTa Q) ;
STD_LOGIC ;
STD_LOGIC ;
STD LOGIC ;

STD_LOGIC_VECTOR (1 DOWNTO O) ;

: BIT_VECTOR (0 DOWNTO O)
STD_LOGIC_VECTOR (0 DOWNTO

88

COMPONENT altpll
GENERIC (

c 1 kO_divide_by
clk O_duty_cycle
clk Q_multiply_by
cI1< 0_phase_shift
c 1 k 1_divide_by
cl kl_duty_cycle
cl kl_multiply_by
clkl_phase_shift
compensate_clock
inclkO_input_frequency
intended_device_family
Ipm_hint : STRING;
Ipm_type : STRING;
operation_mode : STRING;
port_activeclock : STRING;
port_areset : STRING;
port_clkbad0 : STRING;
port_clkbadl : STRING;
port_clkloss : STRING;
port_clkswitch : STRING;
port_configupdate : STRING;
port_f bin : STRING;
port_inclk0 : STRING;
port_inclkl : STRING;
port_locked : STRING;
port_pfdena : STRING;
port_phasecount er select
port_phasedone : STRING;
port_phasestep : STRING;
port_phaseupdown : STRING;
port_pllena : STRING;
port_scanaclr : STRING;
port_scanclk : STRING;
port_scanclkena : STRING;
port_scandata : STRING;
port_scandataout : STRING;
port_scandone
port_scanr ead
port_scanwrit e
port_clkO
port_cI kl
port_clk2
port_clk3
port_clk4
port_c 1 kS
port_clkena0
port_clkenal
port_clkena2
port_clkena3
port_clkena4
port_clkena5
port_extclkO
port_extclkl
port_extclk2
port_extclk3

NATURAL ;
NATURAL ;
NATURAL ;
STRING ;
NATURAL ;
NATURAL ;
NATURAL ;
STRING ;
STRING ;

NATURAL ;
STRING ;

: STRING;

: STRING;
: STRING;

: STRING;
: STRING;
: STRING;
: STRING;
: STRING;
: STRING;

STRING ;
: STRING;
: STRING;
: STRING;
: STRING;

: STRING;
: STRING;

STRING ;
STRING ;
STRING ;

: STRING

);
PORT (

clk
inclk

OUT STD_LOGIC_VECTOR (5 DOWNTO O);
: IN STD_LOGIC_VECTOR (1 DOWNTO O)

);
END COMPONENT;

BEGIN

sub_wire5_bv(0 DOWNT0 0) <= ’'0" ;
sub_wire5 <= To_stdlogicvector (sub_wire5_bv) ;
sub_wire2 <= sub_wireD(1) ;
sub_wire1 <= sub_wireD(0) ;
cQ <= sub_wirel;
cl <= sub_wire2;

89

sub_wire:3 <= inclkO;
sub wire4 <= sub_wire5(0 DOWNT0 D) & sub_wire3;

altpll_component : altpll
GENERIC MAP (

cI1<0_divide_by => 2,
cIF<0_duty_cycle => 50,
clkO_multiply_by => 1,
clkO_phase_shift => "O",
clkl_divide_by => 50000000,
clkl_duty_cycle => 50,
clkl_multiply_by => 133333333,
clkl_phase_shift => "0",
compensate_clock => "CLKO"
inclkO_input_frequency => 20000,
intended_device_family => "Cyclone II",
lpm_hint => "CBX_MODULE_PREFIX=pixelclock" ,
lpm_type => "altpll",
operation_mode => "NORMAL",
port_activeclock => "PORT_UNUSED",
port_areset => 'lPORT_UNUSED'1,
port_clkbad0 => "PORT_UNUSED",
port_clkbadl => "PORT_UNUSED",
port_clkloss => "PORT_UNUSED",

port_clkswitch => "PORT_UNUSED",
port_configupdate => "PORT_UNUSED",
port_f bin => "PORT_UNUSED",
port_inclkO => '’PORT_USED",
port_inclkl => "PORT_UNUSED",
port_locked => "PORT_UNUSED",

port_pfdena => "PORT_UNUSED",
port_phasecounterselect => "PORT_UNUSED",
port_phasedone => "PORT_UNUSED",
port_phasestep => "PORT_UNUSED",
port_phaseupdown => "PORT_UNUSED",
port_pllena => "PORT_UNUSED",
port_scanaclr => "PORT_UNUSED",
port_scanclk => "PORT_UNUSED",
port_scanclkena => "PORT_UNUSED",
port_scandata => "PORT_UNUSED",
port_scandataout => ''PORT_UNUSED",
port_scandone => "PORT_UNUSED",
port_scanread ;> "PORT_UNUSED",
port_scanwrite => "PORT_UNUSED",
port_clkO => "PORT_USED",
port_clkl => "PORT_USED",
port_clk2 => "PORT_UNUSED"
port_clk3 => "PORT_UNUSED",
port_clk4 => "PORT_UNUSED"
port_clk5 => "PORT_UNUSED11,

port_clkenaO => "PORT_UNUSED",
port_clkenal => "PORT_UNUSED",
port_clkena2 => "PORT_UNUSED",
port_clkena3 => "PORT_UNUSED",

port_clkena4 => 11PORT_UNUSEDI',

port_clkena5 => "PORT_UNUSED",
port_extclk0 => "PORT_UNUSED",
port_extclkl => 11PORT_UNUSED'1,

port_extclk2 => "PORT_UNUSED",
port_extclk3 => "PORT_UNUSED"

)

PORT MAP (
inclk => sub_wire4,
clk => sub_wireD

END SYN;
Final omitido para simplificaQao . Arquivo pixelclock.vhd

90

sdram_simple . vhd
- - The MIT License (MIT)

- - Copyright (c) 2014 Matthew Hagerty

- - Permission is hereby granted, free of charge, to any person obtaining a copy
- - of this software and associated documentation files (the "Software") , to deal
- - in the Software without restriction, including without limitation the rights
- - to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- - copies of the Software, and to permit persons to whom the Software is
- - furnished to do so, subject to the following conditions :

- - The above copyright notice and this permission notice shall be included in all
- - copies or substantial portions of the Software .

-- THE SOFTWARE IS PROVIDED 11 AS ISI', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED. INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- - SOFTWARE .

- - Simple SDRAM Controller for Winbond W9812G6 JH-75

- - Matthew Hagerty, copyright 2014

- - Create Date: 18 : 22 : oo March 18, 2014
- - Module Name: sdram_simple - RTL

- - Change Log :

- - Jan 28, 2016
Changed to use positive clock edge .
Buffered output (read) data, sampled during RAS2 .
Removed unused signals for features that were not implemented .
Changed tabs to space.

- - March 19, 2014
Initial implementation .

library IEEE;
use IEEE . std_logic_1164 . all ;
use IEEE . std_logic_unsigned . all;
use IEEE . numeric_std . all ;
use IEEE . math_real . all;

entity sdram_simple is
port (

- - Host side
c 1 k_i
reset i
refresh_i
rw_1
we_1
addr_i

: in std_logic; - - Master clock
: in std_logic : ; ' O ' ; - - Reset, active high
: in std_logic : = ' 0 ' ; - - Initiate a refresh cycle, active high
: in std_logic : = ' O ' ; - - Initiate a read or write operation, active high
: in std_logic : = ' o ' ; - - Write enable, active low

in std_logic_vector (21 downto Q) : = (others => ' 0 ') ; - - Address from host to
SDRAM

SDRAM
data_i in std_logic_vector (15 downto Q) : = (others => ' 0 ') ; - - Data from host to

ub_i
lb_i
ready_o
done_o
data_o

: in std_logic; - - Data upper byte enable, active low
: in std_logic; - - Data lower byte enable, active low
: out std_logic := ' o ' ; - - Set to 'l' when the memory is ready
: out std_logic : = ' O ' ; - - Read, write, or refresh, operation is done
; out std_logic_vector (15 downto Q) ; - - Data from SDRAM to host

- - SDRAM side

91

sdC:k e_o
sdC:e_bo
sdRas_bo
sdC:as_bo
sdwe_bo
s dBs_o
sdAdd r_o
sdDat a_lo
sdDqmh_o
sdDqml_o

: out std_logic; - - Clock-enable to SDRAM

out std_logic; - - Chip-select to SDRAM

out std_logic; - - SDRAM row address strobe
out std_logic; - - SDRAM column address strobe
out std_logic; - - SDRAM write enable
out std_logic_vector (1 downto Q) ; - - SDRAM bank address

: out std_logic_vector (11 downto Q) ; - - SDRAM row/column address
: inout std_logic_vector (15 downto O) ; - - Data to/from SDRAM

: out std_logic; - - Enable upper-byte of SDRAM databus if true
: out std_logic - - Enable lower-byte of SDRAM databus if true

);
end entity;

architecture rtl of sdram_simple is

-- SDRAM controller states
type f sm_state_type is (
ST_INIT_WAIT, ST_INIT_PRECHARGE, ST_INIT_REFRESHI, ST_INIT_MODE, ST_INIT_REFRESH2/
ST IDLE , ST REFRESH , ST_ACTIVATE 1 ST_RCD / ST_RWr ST_RASI r ST_RAS2 r ST_PRECHARGE) ;
signal state_r, state_x : f sm_state_type : = ST_INIT_WAIT;

- - SDRAM mode register data sent on the address bus

-- 1 All- Ala tAg I A8 A7 1 A6 A5 A4 1 A3 1 A2 Al AD I
- - 1 reserved 1 wr burst 1 reserved I CAS Ltncy I addr model burst len I
-- O O O O O O O 1 O O O O O
constant MODE_REG : std_logic_vector (11 downto O) : = ''OO" & "O" & "OO" & "OID" & "O" & "OOO'' ;

- - SDRAM commands combine SDRAM inputs : cs, ras, cas, we .
subtype cmd_type is unsigned (3 downto 0) ;
constant CMD_ACTIVATE : cmd_type : = "0011" ;
constant CMD_PRECHARGE : cmd_type : = "0010" ;
constant CMD_WRITE : cmd_type := "0100";
constant CMD_READ : cmd_type : = "0101" ;
constant CMD_MODE : cmd_type := "OOOO" ;

constant CMD_NOP : cmd_type := "Olll" ;
constant CMD_REFRESH : cmd_type := "OOOI" ;

signal cmd_r
signal cmd_x

cmd_type ;
cmd_type ;

signal bank_s
signal row_s
signal col_s
signal addr_r
signal addr_x
signal sd_dout_r
signal sd_dout_x
signal sd_busdir_r
signal sd_busdir_x

; std_logic_vector (1 downto Q) ;
: std_logIc_vector (11 downto 0) ;
; std_logIc_vector (7 downto Q) ;
: std_logic_vector (11 downto 0) ;
: std_logic_vector (11 downto 0) ;
; std_logic_vector(15 downto Q) ;
: std_logic_vector (15 downto 0) ;
: std_logic;
: std_logic;

- - SDRAM row/column address

signal timer_r, timer_x
signal refcnt_r, ref cnt_x

: natural range 0 to 20000 : = 0;
: natural range 0 to 8 : = 0;

signal bank_r, bank_x
signal cke_r, cke_x
signal sd_dqmu_r, sd_dqmu_x
signal sd_dqml_r, sd_dqml_x
signal ready_r, ready_x

: std_logic_vector (1 downto 0) ;
: std_logic ;
std_logic ;

: std_logic ;
: std_logic;

- - Data buffer for SDRAM to Host .

signal buf_dout_r, buf_dout_x : std_logic_vector (15 downto 0) ;

92

begin

-- All signals to SDRAM buffered .

(sdc,e_bop sdRas_bop sdc.as_bor sdwe_bo) <= cmd_r ; - - SDRAM operation control bits
sd(.-,ke o <= cke r; - - SDRAM clock enable
sdBs o <= bank_r; - - SDRAM bank address
sdAddr o <= addr_r; - - SDRAM address
sdData io <= sd_dout_r when sd_busdir_r = 'r' else (others => 'Z ') ; - - SDRAM data bus .
sdDqmh_o <= sd_dqmu_r; - - SDRAM high data byte enable, active low
sdDqml_o <= sd_dqml_r; - - SDRAM low date byte enable, active low

- - signals back to host .
ready_o <= ready_r ;
data o <= buf_dout_r;

- - 21 20 1 19 18 17 16 15 14 13 12 11 lo 09 a8 1 97 06 05 04 03 02 or oo I
_ _ BSD BSI I ROW (All-AO) 4096 rows E COL (A7-Aa) 256 cols I
bank_s <= addr_i(21 downto 2D) ;
row_s <= addr_i (19 downto 8) ;
col s <= addr_i(7 downto Q) ;

process (
state_r, timer_r, ref cnt_r, cke_r, addr_r, sd_clout_r, sd_busdir_r, sd_dqmu–rr sd–dqml–r/ readY–r/
bank_s, row_s, col_s,
rw_i, refresh_i, addr_i, data_i, we_i, ub_i, lb_i,
buf_dout_r, sdData_io)
begin

state_x <= state_r;
timer_x <= timer_r;
refcnt x <= refcnt_r ;
cke_x <= cke_r ;
cmd_x <= CMD_NOP;

bank x <= bank_r ;
addr_x <= addr_r ;
sd_clout_x <= sd_dout_r ;
sd busdir_x <= sd_busdir_r ;
sd_dqmu_x <= sd_dqmu_r ;
sd_dqml_x <= sd_dqml_r ;
buf clout_x <= buf_dout_r;

Stay in the same state unless changed .
Hold the cycle timer by default .
Hold the refresh timer by default .
stay in the same clock mode unless changed .
Default to NOP unless changed
Register the SDRAM bank .
Register the SDRAM address .

- - Register the SDRAM write data .
- - Register the SDRAM bus tristate control.

- - SDRAM to host data buffer .

ready_x <= ready_r ;
done_o <= ' O ' ;

Always ready unless performing initialization
Done tick, single cycle.

if timer_r /= 0 then
timer_x <= timer_r - 1;
else

cke_x <= ' 1 ' ;
bank_x <= bank_s ;
addr x <= "0000" & col_s;
sd_dqmu_x <= ' O ' ;
sd_dqml_x <= ' O ' ;

- - AID low for rd/wr commands to suppress auto-precharge.

case state_r IS

when ST_INIT_WAIT =>

- - 1. wait 200us with DQM signals hIgh, cmd Nap.

93

2 . Precharge all banks .
3 . Eight refresh cycles
4 . Set mode register .
5 . Eight refresh cycles .

state_x <= ST_INIT_PRECHARGE;
tImer_x <= 20000; - - Wait 200us (20, 000 cycles) .
- -timer_x <= 2; - - for simulation
sd_dqmu_x <= ' 1 ' ;
sd_dqml_x <= ' 1 ' ;

when ST_INIT PRECHARGE =>

state_x <= ST_INIT_REFRESHI;
refcnt_x <= 8; - - Do 8 refresh cycles in the next state.
--refcnt_x <= 2; - - for simulation
cmd_x <= CMD_PRECHARGE;

timer_x <= 2;
bank_x <= "OO" ;
addr_x (10) <= ' 1 ' ;

Wait 2 cycles plus state overhead for 20ns Trp .

Precharge all banks .

when ST_INIT_REFRESHI

if refcnt_r = o then
state_x <= ST_INIT_MODE;

else
ref cnt_x <= ref cnt_r - 1;
cmd_x <= CMD_REFRESH;

timer_x <= 7;
end if ;

Wait 7 cycles plus state overhead for 70ns refresh .

when ST_INIT_MODE =>

state_x <= ST_INIT_REFRESH2;
refcnt_x <= 8; - - Do 8 refresh cycles in the next state.
--refcnt_x <= 2; - - for simulation
bank_x <= "OO" ;
addr_x <= MODE_REG;

cmd_x <= CMD_MODE;
timer_x <= 2; Trsc == 2 cycles after issuing MODE command

when ST_INIT_REFRESH2 =>

if refcnt_r = o then
state_x <= ST_IDLE;
ready_x <= ' 1 ' ;

else
ref cnt_x <= refcnt_r
cmd_x <= CMD_REFRESH;
timer_x <= 7;

end if ;
Wait 7 cycles plus state overhead for 70ns refresh .

Normal Operation

Tr c
Tr cd
Tr as

Tr p
TCas

70ns
20ns
50ns
20ns
2clk

Attive to active command .
Active to read/write command .
Active to precharge command .
Precharge to active command .
Read/write to data out .

I <- - - - - - - - - - - Trc - - - - - - - - . - - -> I
I <- - - - - - - - - - - Tras - - - - - - - - - -> I
I <- Trcd -> 1<- Teas ->1 1 <- Trp

94

T5TO T3 T4 T7 T8 T9 TIDT6Tl T2

1111 11 111111I 1111
IDLE ACTVT NOP RD/WR NOP NOP PRECG IDLE ACTVT

- -<Row> - - - - - - -<Col>- - - - - - - - - - - -<Bank> - - - - - - -<Row>- -
---------------<AID>-------------<Ala>-------------------

- - - - - - - - - -- - - - - - - -<DIn>- - - - - -- - -- - -<t)out>- - -- - - - -

- - - - - - - - - - - - - - -<DQM>- - - - - - - - - - - - - - -
- -<Ref sh> - - - - - - - - - - - - -

- - AID during rd/wr : o = disable auto-precharge, 1 = enable auto-precharge .
- - AID during precharge : 0 = single bank, 1 = all banks .

-- TO_ Tl_ T2_ T3_ T4_ T5_ T6_ T7_ T8_
-- _1 1_1 1_! 1_1 1_1 l_l l_l l–l l–
-- IDLE ACTVT NOP RD/WR NOP NOP PRECG IDLE ACTVT

-- TO Tl T2_ T3_ T4_ T5_ T6_ T7_ T8_ Tg_ TID_
-- –l l–l l–l l–1 1–l l–l l–1 l–1 l–l l–l l–E f–

IDLE ACTVT NOP RD/WR NOP NOP PRECG IDLE ACTVT

when ST IDLE =>
- - 60ns since activate when coming from PRECHARGE state .

lans since PRECHARGE . Trp == 20ns min .
if rw_i = ' 1 ' then

state_x <= ST_ACTIVATE;
cmd_x <= CMD_ACTIVATE;
addr_x <= row_s ;

elsif refresh_i = ' 1 ' then
state_x <= ST_REFRESH;
cmd_x <= CMD_REFRESH;

timer_x <= 7 ;

- - Set bank select and row on activate command .

end if ;
- - Wait 7 cycles plus state overhead for 70ns refresh .

when ST REFRESH =>

state_x <= ST_IDLE;
done o <= ' 1 ' ;

when STACTIVATE =>
- - Trc (Active to Active Command Period) is 65ns min .
- - 70ns since activate when coming from PRECHARGE -> IDLE states .
- - 20ns since PRECHARGE .

- - ACTIVATE command is presented to the SDRAM . The command out of this
- - state will be NOP for one cycle .
state x <= ST RCD;

sd_clout_x <= data_i; - - Register any write data, even if not used .

when ST RCD =>
- - 10ns since activate .

- - Trcd == 20ns min . The clock is IC)ns, so the requirement is satisfied by this state .
- - READ or WRITE command will be active in the next cycle .
state_x <= ST_RW;

if we i = ' O ' then
cmd x <= CMD WRITE;
sd busdir x <= ' 1 ' ;
sd_dqmu_x <= ub_i;
sd_dqml_x <= lb_i;

- - The SDRAM latches the input data with the command .

else

end if
cmd_x <= CMD_READ;

when ST RW =>
- - 2G)ns since activate .

- - READ or WRITE command presented to SDRAM .
state_x <= ST_RASI;
sd_busdir_x <= ' O ' ;

95

when ST RASI =>
- - 30ns since actIvate.
state x <= ST_RAS2;

when ST_RAS2 =>
- - 40ns since activate.
- - Tras (Active to precharge Command Period) 45ns mIn .
- - PRECHARGE command will be active in the next cycle.
state x <= ST_PRECHARGE;
cmd x <= CMD_PRECHARGE;

addr_x (10) <= ' 1 ' ; - - Precharge all banks .
buf dout x <= sdData_io;

when ST_PRECHARGE =>
- - 50ns since activate .
- - PRECHARGE presented to SDRAM .
state x <= ST_IDLE;
done_o <= ' 1 ' ;
timer_x <= 1;

Read data is ready and should be latched by the host .
Buffer to make sure host takes down memory request before golng IDLE

end case;
end if ;

end process;

process (clk_i)
begin

if rising_edge(clk_1) then
if reset i = ' 1' then
state r <= ST_INIT_WAIT;
timer_r <= o;
cmd r <= CMD_NOP;

cke_r <= ' O ' ;
ready_r <= ' O ' ;
else
state_r <= state_x ;
timer_r <= tImer_x ;
refcnt_r <= refcnt_x;
cke_r <= cke_x ;
cmd_r <= cmd_x ;
bank_r <= bank_x ;
addr_r <= addr_x ;
sd_clout_r <= sd_clout_x ;
sd busdir_r <= sd_busdir_x ;
sd_dqmu_r <= sd_dqmu_x ;
sd_dqml_r <= sd_dqml_x ;
ready_r <= ready_x ;
buf clout_r <= buf_dout_x;

CKE to SDRAM.

Command to SDRAM.
Bank to SDRAM .
Address to SDRAM.

- Data to SDRAM.

- - SDRAM bus direction .
- Upper byte enable to SDRAM.

- - Lower byte enable to SDRAM.

end if ;
end if ;

end process;

end architecture;
Fim do sdram_simple .vhd
vga_controller . vhd

FileName : vga_controller . vhd
Dependencies : none
Design Software : Quartus I1 64-bit Version 12.1 Build 177 SJ Full Version

HDL CODE IS PROVIDED I' AS IS." DIGI-KEY EXPRESSLY DISCLAIMS ANY
WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL DIGI-KEY
BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, LOST PROFITS OR LOST DATA, HARM TO YOUR EQUIPMENT, COST OF
PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS

BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF),
ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS.

96

Version HIstory
Version 1.0 05/10/2013 Scott Larson

Initial Public Release

LIBRARY reee;
USE ieee . std_logic_1164 . all;

ENTITY vga_controller IS
GENERIC(

h_pulse : INTEGER := 96; --horiztonal sync pulse width in pIxeIs
h_bp : INTEGER := 48; --horiztonal back porch width in pixels
h_pixels : INTEGER := 640; --horiztonal display width in pixels
h_fp : INTEGER : = 16; --horiztonal front porch width in pixels
h_pol , STD_L06rc := '0 ' ; --horizontal sync pulse polaritY (1 = pc'sitiver O = rlegatlve)
v_pulse : INTEGER : = 2; - -vertical sync pulse width in rows
v_bp : INTEGER : = 33; - -vertical back porch width in rows
v_pixels : INTEGER : = 480; - -vertical display width in rows
v_fp : INTEGER : = 10; - -vertical front porch width in rows
v_pol : STD_LOGIC := ' O ') ; - -vertical sync pulse polarity (1 = positive, a = negative)

pixel_clk : IN STD_LOGIC; --pixel clock at frequency of VGA mode being used
reset n : IN STD_LOGIC; - -active low asycnchronous reset
h_sync : OUT STD_LOGiC; --horiztonal sync pulse
v_sync : OUT STD_LOGIC; - -vertical sync pulse
disp_ena : OUT STD_L061C; - -display enable (' I ' = display time, ’ O ' = blanking time)
column : OUT INTEGER range 0 to h_pixels-1 : =0; - -horizontal pixel coordinate
row : ouT INTEGER range 0 to v_pixels-1 :=0; - -vertical pixel coordinate
n blank : ouT STD_LOGiC; - -direct blacking output to DAC

n_sync : OUT STD_LOGIC) ; - - sync-on-green outPut to DAC

END vga_controller ;

PORT (

ARCHITECTURE behavior OF vga_controller IS
CONSTANT h_period : INTEGER : = h_pulse + h_bp + h_pixels + h–fp;

row
CONSTANT v_period : INTEGER : = v_pulse + v_bp + v_pixels + v_fp;

BEGIN

- -total number of pixel clocks in a

- -total number of rows in column

n blank <= ' 1 ' ; - -no direct blanking
n_sync <= 101 ; - -no Sync on green

PROCESS(plxel_clk, reset_n)
VARIABLE h count : INTEGER RANGE 0 TO h_period - 1

columns)
VARIABLE v count : INTEGER RANGE 0 TO v_period - 1

BEGIN

- -horizontal counter (counts the

- -vertical counter (counts the rows)

IF (reset_n = ' a ') THEN
h_count : = 0;
v_count := 0;
h_sync <= NOT h_pol;
v_sync <= NOT v_pol;
disp_ena <= ' 0 ' ;
column <= 0;
row <= 0;

- - reset asserted
- -reset horizontal counter
- -reset vertical counter

--deassert horizontal sync
--deassert vertical sync

- -disable display
- - reset column pixel coordinate
- - reset row pixel coordinate

ELSIF(pixel_clk ' EVENT AND pixel_clk = I') THEN

- -counters
IF(h_count < h_period - 1) THEN
h count : = h_count + 1;
ELSE

h_count := 0;
IF(v_count < v_period - 1) THEN
v count := v_count + 1;
ELSE
v_count
END IF;
END IF;

- -horizontal counter (pixels)

--veritcal counter (rows)

97

- -horizontal sync signal
IF(h_count < h_pixels + h_fp 0R h_count > h_pixels + h_fp + h_pulse) THEN

h_sync <= NOT h_pol; --deassert horiztonal sync pulse
ELSE

h_sync <= h_pol; - -assert horiztonal sync pulse
END IF;

- -vertical sync signal
IF (v_count < v_pixels + v_fp DR v_count > v_pixels + v_fp
v_sync <= NOT v_pol; --deassert vertical sync pulse
ELSE

v_sync <= v_pol; - -assert vertical sync pulse
END IF;

v_pulse) THEN

- -set pixel coordinates
IF(h_count < h_pixels) THEN --horiztonal display time
column <= h_count; - -set horiztonal pixel coordinate
END IF;
IF (v_count < v_pixels) THEN - -vertical display time
row <= v_count ; - -set vertical pixel coordinate
END IF;

- -set display enable output
IF(h_count < h_pixels AND v_count
disp_ena <= ' 1 ' ;
ELSE

disp_ena <=
END IF;

v_pixels) THEN - -display time
-enable display

--blanking time
- -disable display

END IF;
END PROCESS;

END behavior ;

Fim do vga_controller.vhd

98

APENDICE C

Decisao de arquiteturas, pIanos de implementaQao e crit6rios considerados estao
presentes nesta segao. Estes dados nao forarn incluidos no corpo principal do texto
devido a extensao e a nao participagao na implementaQao – no entanto, foram
extremamente relevantes no curso do projeto e, por isso, encontram-se abaixo.

Abordagens de projeto

O pIano A rnostra-se o mais adequado segundo os requisitos e as restriQ6es do
projeto OpenGPU. A ideia de construir apenas uma etapa do pipeline grafico ja havia
sido proposta anteriormente. Essa abordagem facilita o desenvolvirnento do sisterna,
reduzindo a possibilidade de atrasos ou nao finalizagao do pIano.

O pIano B foi considerado inicialmente como melhor opQao, mas na primeira sernana
demonstrou nao ser viavel em um tempo tao curto dada a complexidade dos
processadores de prop6sito geral e a arquitetura escolhida – outro ponto negativo 6
a dificuldade em visualizar a profundidade do trabalho a ser executado durante o
desenvolvimento do driver Gallium, que deveria conter um compilador no pIano B.

De modo geral, deve haver 3 meses disponiveis para execuQao do pIano A.
Entretanto, caso essa prirneira concepQao demonstre atrasos excessivos ou
inviabilidade at6 no maximo 2 meses ap6s inicio de sua execugao, os outros pIanos
serao considerados como substitutos provaveis a fim de concluir o projeto e entregar
ao menos alguns dos requisitos propostos.

1. PIano A: Desenvolver m6dulo de rasterizaQao
o Rasterizador
o Gerenciador de tarefas
o Bus de interconexao
o Gerenciador de mem6ria
o Controlador de video

2 PIano B: Unir rn6dulos de projetos diferentes
o NClcleos

• AltOr32
• Amber 23/25
• ARM4U
• BERI
• HiCoVec
• Hive
• LEON2/3/4
• Leros
• LXP32
• MB-Lite
• MicroCore

99

NE0430
Nyuzi
OpenMSP430
OpenPiton
OpenRISC
Potato Processor
RISCV Rocket-Chip Generator
Simply RISC Sl
TotalCPU (TCP U)
UCore
Zet
Zip Cpu

•
•
•
•
•
•
•
•
•
•
•

Dispatcher
GPU ISA

Usar a mesma do nOcleo•
Usar a mesma do TGSI, convertendo para a do nOcleo

Compilador•
LLVM

•

0

0

0

0
0
0
0

Controlador de mem6ria
Fung6es fixas
Bus de interconexao
Modo de transfer6ncia de comandos CPU->GPU

Interface pr6pria•
Mem6ria•

Mem6ria do GPU
Compartilhada com CPU(host)•
Exclusivaa

C: Adequar projeto Nyuzi para DEI SoC
D: Construir pipeline grafico fixo sobre OpenGL 1.0
E: Adequar processador a ISA de um GPU comercial

0

PIano
PIano
PIano

3.
4
5.

DescriQao dos pIanos de projeto
1. PIano A: Desenvolver m6dulo de rasterizaQao

100

Figura 25 - Sistema projetado

Mem6ria do sistema

Gerenciador de mem6ria do CPU/HPS

Unidade
de

Gerencia-
mento de
Tarefas
(TM U)

Bus

Unidade de
Raster izaga

o (RU)

Unidade de

gerenciame
nto de

mem6ria
(MMU)

V6rtices.
clipping e
pri mid vas

Gerencia
dor de pq Fragment

rasterizag LJ os
ao (RM)

OpenG
L App Adaptaaor Gallium

Gallium Framework

Mesa Framework
Contro
lador

de
video

CPU/HP 1 1 GPU/FPGA

Fonte: autora

Abaixo, a descrigao de cada m6dulo do projeto:

• RASTERIZADOR(RU)
Representa a unidade de rasterizagao. Neste rn6dulo, dados de

polfgonos sao transformados em pixels. Os dados estarao sempre em
algum buffer na mem6ria do sistema de modo que sejam acessfveis
pelos m6dulos de interesse.

Optou-se pelo desenvolvimento do rasterizador por ter sido
demonstrado que ele representa a maior parte do ternpo de
processamento grafico[9]. Outro motivo 6 sua independ6ncia dos
shaders no pipeline grafico, sendo urna fungao fixa.

Etapas internas:
Estudo
Ha varios m6todos de rasterizaQao que serao estudados

nesta etapa. O crit6rio de escolha sera a facilidade de implementagao – dado
que outras necessidades, como performance, nao sao objetivo deste projeto.

ImplementaQao

que verifique os varios subm6dulos necessarios para o m6todo
de rasterizaQao escolhido.

Um testbench em hardware devera ser desenvolvido para

Teste

0

0

0

101

Urn testbench via simulaQao devera ser desenvolvido
para que verifique os varios subm6dulos necessarios para o
m6todo de rasterizaQao escolhido.

• GERENCIADOR DE CLOCK E SINCRONIA (SCMU, Clock
Synchrony Manager Unit)
Este m6dulo devera distribuir sinais de re16gio entre todos os

m6dulos.
0

6

Pesquisa de sistemas de distribuiQao de clock
A sincronia dos m6dulos devera ser observada, assirn

como um m6todo de configuraQao.
o ImplementaQao do clock manager

Os sinais de clock necessarios por cada m6dulo serao
produzidos individualmente e um m6todo que garanta a
sincronia sera implementado.

o Testes do clock manager
Uma sim ulaQao comportamental

demonstrando a sincronia dos sinais de clock .
suficiente ,

• GERENCIADOR DE MEMORIA (MMU, Memory Manager Unit)
o Estudo de sistemas de gerenciamento de mem6ria

Etapa fundamental para que sejam definidos os
paradigmas de desenvolvimento da MMU. EIa sera responsavel
pela interface entre o bus e a mem6ria do sistema.

o ImplementaQao da MMU
A MMU devera ter uma interface compatfvel com o bus e

outra corn a mem6ria do sistema. Pelo fato desse projeto utilizar
a DE-1 SoC, sera necessario compatibilizar a MMU com o
controlador de mem6ria da DDR3

o Testes da MMU

A MMU devera ser capaz de acessar a DDR3 disponfvel
na DE-1 SoC. Uma verificaQao com padr6es de dados devera
ser executada garantindo o funcionarnento completo da MMU.

• VIA DE COMUNICA(,"Ao (Bus)
O bus de comunicagao deve ser explorado e definido nesta fase.

o Estudo de viabilidade do Wishbone e alternativas

Wishbone 6 prioritario dada a disponibilidade de cores
abertos com esta interface. Sua viabilidade sera observada

nesta etapa e definira a necessidade ou nao de outros tipos de
bus. Devera haver um arbitrador capaz de priorizar e organizar
os acessos a mem6ria.

o ImplementaQao inicial do bus escolhido

102

O bus mais adequado de acordo corn o previsto
anteriormente sera implementado, visando a generalidade da
conexao e possibilidade de ser modificado futuramente.

o ImplementaQao do arbitrador
O arbitrador devera seguir as especificaQ6es anteriores e

ser configuravel quanto a prioridade de acesso dos m6dulos
conectados ao bus

o Testes do bus e arbitrador

Urn teste sera elaborado e aplicado de acordo com o
funcionamento elementar, capacidade de transfer6ncia –
visando orientar modificaQ6es futuras a fim de evitar 'gargalos’
de performance. Os testes do arbitrador e o bus deverao ser
executados em conjunto.

GERENCIADOR DE TAREFAS (TMU, Task Manager Unit)
O gerenciador de tarefas deve ser capaz de modificar as regi6es

de mem6ria relativas a m01tiplos rasterizadores . assim como verificar a
disponibilidade de cada um, equalizando a carga de execuQao

O gerenciador de tarefas precisara interpretar comandos
advindos do CPU. Para isso, sua inicializagao executara uma regiao
pr6-determinada na mem6ria, na qual o CPU executara modificag6es,
repassando comandos e ponteiros para dados. Esse sistema de
interpretaQao sera atualizado conforme a execugao das fases
seguintes. Este m6dulo devera ser um processador especializado em
interpretar cornandos e distribuir tarefas, embora nao processe os
dados em si.

©

o Estudo de m6todos de distribui9ao de carga
M6todos deverao ser pesquisados e um escolhido

crit6rios de seleQao do m6todo deverao ser coerentes com as
necessidades do projeto. A interpretagao de comandos devera
ser observada para que o TMU seja capaz de executa-los.

o ImplementaQao inicial do gerenciador de tarefas
O m6todo escolhido anteriormente devera

implementado nesta etapa.
o Testes do gerenciador de tarefas

Os rn6todos anteriores serao verificados nesta etapa. Um
teste de comandos e distribuQao de carga para mOtiplos
rasterizadores devera ser preparado e executado.

ser

• ADAPTADOR GALLIUM (Gallium Driver)
O driver 6 a interface entre o framework Gallium e o hardware

o ImplementaQao do gerenciador de tarefas e rasterizador
vlrtuals

103

O gerenciador de tarefas virtual sera urn modelo

comportamental do TIMU. Ele sera executado no CPU (f70sD e
servira de refer6ncia a implementaQao do driver . pois funcionara
corn o rasterizador virtual a fim de sirnular o comportamento do
sisterna que sera desenvolvido em hardware.

Esses modelos comportamentais deverao ser
desenvolvidos em C ou C++

o ImplernentaQao do driver
O adaptador deve ser capaz de implementar os minimos

recursos extgidos pelo Gallium e comandar os m6dulos do
pipeline gr6fico. Os m6dulos anteriores e posteriores a etapa de
rasterizaQao deverao ser copiados de outro driver Gallium –
softpipe, llvmpipe ou outro que apresente melhor facilidade no
desenvolvirnento geral do projeto. Efetivamente, o m6dulo
responsavel por comandar o rasterizador no hardware sera o
principal foco no desenvolvimento.

o Testes do driver

O sisterna devera responder adequadamente ao
gerenciador de tarefas virtual e exibir graficos gerados por uma
aplicagao OpenGL.

• CONTROLADOR DE VIDEO (Video Controller Unit)
Responsavel por exibir o video, devera ser configuravel para ler

urna regiao especifica da mem6ria – framebuffer . Exibira o conte fIdo deste
buffer na saida VGA – de acordo com as configurag6es de resoluQao e
frequ6ncia de atualizaQao.

o Implementagao do Video Controller
Seguira as especificag6es acima e, adicionalmente,

devera conter um buffer FIFO na leitura da mem6ria –
responsavel por garantir o fluxo constante de pixels para a
exibiQao de video. Esse buffer 6 devido ao sistema estar
conectado ao mesmo bus dos outros m6dulos – que a principio
consurnirao tempo notavel do sistema de mem6ria.

Interiorizara um m6dulo controlador de VGA. O registro
de configura96es devera estar na mem6ria do sistema e sera
observado num intervalo de tempo de 200rns ou outro que seja
pouco custoso ao bus e permita mudangas de configuraQao
rapidas para humanos.

o Testes do Video Controller

Leitura de uma regiao especificada da mem6ria contendo
o registro de configuraQao, do framebuffer e do buffer FIFO na entrada.
ResoluQ6es e frequ6ncias diferentes devem ser obtidas dentro das limitag6es
do controlador VGA

104

CRONOGRAMA DO PLANO A

O tempo estirnado para cada fase 6 definido nesta seQao. Considera-se 1 dia de

trabalho de 8 horas (ou dois integrantes, 4 horas) e 1 semana com 5 dias. Algumas

fases serao realizadas simultaneamente. A expectativa de finalizaQao do projeto 6
em 8 semanas.

Abaixo as etapas em ordem crono16gica e o tempo estirnado de conclusao:
Gallium driver-. 4 semanas e 4 dias
RU: 2 semanas e 1 dia
SCMU: 3 dia
MMU: 4 dias
Bus'. 1 semana
Teste I
TMU: 8 semanas
VCU: 1 semana
Teste 2
Benchmarking

Link do cronograma (6 necessario ter o app Gantter instalado no Google driver para
acessa-lo) : https://goo.gl/rkg91w

TESTES DE M6DULos E DE SISTEMA E BENCHMARKING

Um testbench (Teste I) sera elaborado para verificar RU, bus, arbitrador,
SCMU e MMU

Havera um teste final (Teste 2) ap6s o desenvolvimento de todos os m6dulos,
seguido de um benchmarking. Ambos serao desenvolvidos ap6s a finalizaQao dos
m6dulos.

Os rn6dulos s6 serao considerados finalizados caso passem em testes
exclusivos a cada um. Esses testes serao elaborados conforme a compreensao da
tecnologia de cara fase.

2 PIano B: Unir m6dulos de projetos diferentes
o NOCLEO: Primeira fase de escolha (28 processadores)

•

•

Estabilidade
o Teste em FPGA comprovando funcionamento
o Metas ou caracterfsticas principais cumpridas

Configurabilidade
o Disponibilidade de configuraQ6es que perrnitam

arquitetura interna do CPU
OperaQ6es com vetores
OperaQ6es com ponto flutuante 32 bits (single precision)
Gerenciarnento de mern6ria (MMU)

alterar a

•

•

•

105

0

Cache
Multicore (SMP, AMP)
Multithreading (SMT)
Larg u ra

o 32 bits ou mais
DocumentaQao

o Qualidade
NOCLEO: Segunda
OpenSPARCT2)

Virtualizagao no acesso a mem6ria

•

•

•

•

0 fase de escolha (Nyuzi, OpenRISC e

• Maturidade do projeto
o Nyuzi e OpenSPARC T2 tem a mator maturidade, visto que sao

projetos funcionais e implementaram todas ou a maior parte das
especificaQ6es.

Nfvel de otimizaQ6es (area e performance)
o OtimizaQ6es de area ou de performance vdm do projeto com

vi6s mais comercial que 6 o OpenSPARC T2. Os outros nacleos
ainda objetivam terminar especificag6es ou sao de vi6s
acad6mico. O RISC-V BOOM tem demonstrado performance

•

comparavel a processadores comerciais.
Processamento vetorial de ponto flutuante

o Nyuzi desenvolveu m6dulos de processamento vetorial de ponto
flutuante. OpenSPARC T2 aparentemente realiza a mesrna
tarefa, mas nao fica claro numa prirneira leitura se o faz
paralelarnente como o Nyuzi.

Configurabilidade
o Morlkx 6 o projeto mais versatil – e este 6 um dos seus

objetivos. Nyuzi e or1200 tamb6m apresentam urn grau de
configuraQao. OpenSPARC T2 nao oferece configuraQ6es
facilitadas – objetiva ser um projeto final e nao algo a ser
implementado em outros sistemas, ernbora nao restrinja esta
Oltima opQao. Diferentemente, os processadores do Rocket Chip
Generator oferecern alto grau de modificagao.

ConcepQao de GPU/CPU multicore
o Nyuzi e OpenSPARC T2 SaO CPU multicore, corn O Nyuzi

modificado para uma concepQao GPU mais elaborada. Essas
arquiteturas sao pr6ximas as utilizadas nos GPU comerciais –
conhecidas como SIMT, que significa Single Instruction Multiple
Threads (do ing16s, Instrugao Onica, M01tiplos Contextos),
assentada em mOtiplos nOcleos. Essa arquitetura permite que
diversos contextos de processamento ocorram dentro de urn
processador, diminuindo seu tempo de 6cio. Quando urn thread
acessa urn recurso indisponfvel e precisa aguardar os dados,
outro thread pode ser processado e, assim, otirnizar o
funcionamento do sistema. lsso, associado a diversos nOcleos,

•

•

•

106

representa uma arquitetura que tem se mostrado eficiente em
relaQao a processamento paralelo independente.

Compatibilidade com outras ISAs
o Morlkx, or1200 e OpenSPARC T2 sao ISAs bem estabelecidas

– OpenRISC corn o documento publicado da ISA e o
OpenSPARC T2 corn a SPARC v9. Rocket e BOOM
implementam a RISC-V que 6 uma arquitetura recente, mas
promissora – e ja bem estabelecida.

Concep9ao comerctal
o OpenSPARC T2 tem a maior caracterfstica comercial. E um

produto finalizado, testado e depurado. Ele implementa a
SPARC V9 completarnente – a rnenos de operaQ6es quad float
– e tem otimizag6es diversas quanto area e performance.
Rocket e BOOM tamb6m caminham nesse sentido, embora
projetos nao maduros.

Documentagao
o A docurnenta9ao do OpenSPARCT2 6 mais completa e

detalhada que as outras, embora a do Nyuzi e do or1200 sejam
muito claras tamb6m

OrganizaQao/documentagao de c6digo
o O c6digo de todos esti bem comentado, apesar do morlkx e do

OpenSPARC T2 terern alguns trechos um pouco complexos sem
explicaQ6es claras do funcionamento do c6digo.

•

•

•

o NUCLEO: Decisao baseada na tabela de comparaQao
Houve urn empate entre OpenSPARC T2 e RISC-V BOOM. Por urn

lado, OpenSPARC T2 oferece processamento vetorial e grande estabitidade;
por outro, BOOM oferece perspectiva de ser fortemente compatfvel com
novos m6dulos de hardware no futuro pr6ximo – se a RISC-V se tornar uma
ISA popular, sera possivel manter o desenvolvimento do OpenGPU com
auxflio de outros projetos.

Outro ponto negativo do OpenSPARC T2 6 seu tamanho excessivo
(cerca de 60K LUT na versao OpenSPARC Tl, parecida com a T2) para ser
executado em um FPGA SoC – a DEI SoC tem 85K LUT. lsso possivelmente
pode ser contornado reduzindo o nOmero de threads e tamanho de cache –
entretanto, nao 6 claro no presente momento a facilidade de execu(,ao dessa
tarefa e o impacto no funcionarnento geral do sistema.

O projeto Rocket Chip Generator utiliza Chipsel como linguagem
descritora de hardware . Embora gere c6digos Verilog sintetizaveis nos
toolchain para FPG A e ASIC, eIa representa mais uma etapa de aprendizado
– o que 6 um ponto negativo dada a quantidade conteOdo a ser

compreendido (Gallium, pipeline grafica, dispatcher , arquitetura do nOcleo

escolhido, cores complementares, ...). Adicionalmente, o processador de
ponto flutuante do projeto Rocket nao esta maduro o bastante – o que
podera representar problemas no desenvolvimento.

107

O processador utilizado no OpenGPU sera o OpenSPARC T2. O RISC-
V BOOM sera explorado apenas se o desenvolvimento com o OpenSPARC
T2 for inviavel.

o DISPATCHER E GPU ISA

O dispatcher depende da ISA escolhida. Ele 6 o m6dulo responsavel
por dividir tarefas e envia-las aos nOcleos. Este m6dulo precisa ser
desenvolvido, ja que nao havera um m6dulo pronto que atinja as mesmas
especificag6es deste projeto – principalmente a compatibilidade com
OpenGL, viabilizada pelo projeto Mesa.

• ISA baseada no instruction set do nOcleo

A CPU escolhida foi a OpenSPARC T2 e, portanto, a ISA interna
sera a SPARC v9. Este nacleo implementa quase a totalidade da ISA
SPARC v9, o que facilita o desenvolvimento do dispatcher quanto a
variedade de instruQ6es ja preparadas. Outro ponto positivo 6 a
tend6ncia RISC da arquitetura SPARC, isso 6, de simplificar as
instruQ6es ao rnaximo, ao inv6s de instruQ6es mais complexas.

InstruQ6es simples permitem mais versatilidade ao realizar
processarnento sem, necessariamente, perder performance. O ponto
negativo 6 a necessidade do compilador ou o dispatcher ser mais
complexo para aproveitar essas instrug6es da melhor forma possfvel.

• ISAbaseada no TGSI

TGSI 6 uma representaQao interrnediaria usada pelo Gallium, do
projeto Mesa. EIa representa shaders e como devern ser processados.
Essa linguagem 6 de baixo nivel, sendo parecida com assembly. Os
drivers do Gallium convertem TGSI em c6digo de maquina do GPU a
que sao destinados.

Uma possibilidade seria utilizar o TGSI como instruction set
parcial. As outras instruQ6es relativas ao funcionamento do GPU
seriarn acrescentadas conforme a necessidade. Inicializagao e
configuraQao de estados do GPU sao exemplos possfveis de
instruQ6es nao presentes na TGSI.

lsso simplificaria o driver . mas complicaria o dispatcher , ja que
todo o trabalho de converter entre TGSI e a ISA SPARC V9 ficaria em

hardware. Esse tipo de abordagem 6 a utilizada na maioria dos GPU
comerciais – shaders sao intepretados em tempo real dentro do GPU.
O CPU fica, portanto, desobrigado em realizar esta tarefa que 6
bastante custosa em termos de processamento. Por isso, os GPU
cornerciais caminharn neste sentido, a custo de aurnento na
complexidade do projeto – o que 6 um ponto negativo para o projeto
OpenGPU, dada a limitaQao de tempo e recursos humanos.

• Decisao do ISA GPU

108

Os c6digos em TGSI nao sao otimizados antes de chegar no
dr/b'er[3] – o que implica menor performance se forem utilizados como
estao. Dai a necessidade de otimizaQao em hardware ou de aceitar a
performance reduzida, deixando este t6pico ser explorado em urn
momento futuro. Buscando uma performance minima, existe urna outra
abordagem intermediaria em termos de velocidade de processarnento

o c6digo TGSI pode ser convertido em uma ISA construida
especificamente para este GPU, utilizando um compilador modular.

LLVM 6 um compilador modular 6 uma 6tima opQao para
desenvolver ou converter entre linguagens, sendo aplicado inclusive
em programas e sistemas cornerciais. A Sony tem usado o LLVM no
SDK do PS4[4]. O llvmpipe 6 um driver Gallium e utiliza o LLVM para
converter TGSI em c6digo x86, aproveitando caracteristicas intrinsecas
dos CPU Intel para realizar diversas otimizaQ6es nos shaders – o que
melhorou a performance grafica dos GPU de baixo custo da Intel
Desenvolver uma linguagem de programaQao pode ser relativamente
rapido[2] com o LLVM.

A opQao deste projeto sera, portanto, explorar as capacidades
do LLVM gerando c6digo para uma ISA desenvolvida especificarnente
para o Open(3PU. Tr6s raz6es embasam esta decisao:

• Um sistema de compilaQao modular abstrai o sistema, criando
uma linguagem intermediaria largamente difundida, explorada e
desenvolvida. lsso contribui para o objetivo do projeto OpenGPU
de ser futuramente base de novos projetos;

• Reduz a carga de desenvolvimento, ja que boa parte da
tecnologia de compila(,ao esta presente dentro do LLVM e nao
precisa ser refeita;

• Aumenta a versatilidade do projeto e a possibilidade de incluir
ou remover especificaQ6es de hardware rnais facilrnente.

o CONTROLADOR DEMEM6RIA

Ha varias opQ6es de controlador de mem6ria. Ha depend6ncia, no
entanto, de como os processadores e o dIspatcher estarao organizados. O
Cyclone v presente na placa DE-1 SoC 6 um FPGA com um controlador
DDR3. E importante notar que o MMU presente no OpenSPARC T2 utiliza
mem6rias DDR2 – sendo necessario fazer a adaptaQao para DDR3. lsso
pode significar reescrever totalmente o c6digo do MMU para que o sistema
funcione de acordo com o previsto.

o FUN(,'6ES FIXAS
Ha diversas funQ6es fixas importantes de serem implementadas,

enquanto outras sao opcionais. Para este projeto, apenas o controlador de
saida de vfdeo sera considerado fundamental – ja que se espera obter
imagem na saida VGA da placa. Os demais itens na lista(nao exaustiva) a

109

seguir figurarn em ordem de prefer6ncia,

implementado a menos que haja tempo extra:
• Controlador de Saida de Video:
• Rasterizador – a princfpio sera implementado via software dentro dos

nClcleos, mas havendo tempo, podera ser colocado em hardware como
coprocessador ao lado dos nOcleos de prop6sito geral;

• Compressor/Decompressor de dados;
• Codificador/Decodificador de video

codificaQao.

mas nenhurn devera ser

a escolher padrao de

o BUS DEINTERcoNExAo
O uso do Wishbone 6 a primeira tentativa. Trata-se de um bus de

c6digo aberto utilizado em diversos sistemas e 6 mantido pelo OpenCores.
Dada a facilidade de encontrar IP cores neste banco de dados, espera-se
utiliza-lo de rnodo a diminuir o esforQO de interconexao entre os sisternas.
Apesar disso, sistemas de conexao diferentes poderao ser utilizados ou
implementados a depender da necessidade e escassez de tempo.

O OpenSPARC T2 oferece sistemas de conexao ja implementados
como o CCX entre caches L2 e os nOcleos. Esta e outras interfaces poderao
ser reaproveitadas ou modificadas.

Os buses da Altera tamb6m sao outra opt,ao, sobretudo para facilitar o
uso dos recursos dentro do Cyclone v.

o TRANSFERENCIA DE DADOS ENTRE CPU E GPU
A proposta mais simples e largamente utilizada, inclusive

comercialmente, 6 passar instruQ6es para o GPU via mem6ria, tanto de
shaders quanto de configuraQ6es de estados. lsso assume tamb6m o
compartilhamento de mem6ria RAM. Atualmente, os sistemas contam com
mem6ria RAM bastante abundante em relaQao as necessidades
computacionais, o que diminui a expectativa de tornar exclusiva a mem6ria
disponivel para o GPU. Esta condiQao pode ser revista num projeto futuro, ja
que bastaria acrescentar instruQ6es de transfer6ncia de dados ou utilizar urn
DMA acionado pelo CPU de modo a intermediar as mem6rias de uso geral e
de video.

o ARQUITETURAESCOLHIDA
0

110

Figura 26 - Sisterna projetado

Mem6ria do sistema

Gerenciador de mem6ria do CPU/HPS

Ge=n;:ad 1 Compilado
estados I F

Gerenc I J
;ado;’ I II NOcle

de I I O
tarefas 1 1

NOcle
0

MM
U

op,„G,„pp 1 1 Adaptador Gallium

Gallium Framework Bus

Mesa Framework
Contro
lador

de
video

CPU/HP 1 1 GPU/FPGA

Fonte: autoral

Observa-se na figura, a arquitetura num nivel mais detalhado. As cores
representam os m6dulos que serao desenvolvidos. A ligaQao software e
hardware indica a relagao 16gica entre software (CPU) e hardware (GPU) .
Uma opgao importante foi a alocagao de 2 nOcleos – isso se justifica pela
necessidade de um GPU ser multicore , apesar da limitaQao de recursos no
FPGA disponivel. Desta forma, poderao ser testadas rotinas de multiplicaQao
de cores que sejam funcionais para um nClrnero maior de nClcleos – e
internamente de threads, que deverao ser restritos tarnb6m a 2 por nOcleo
pelo mesmo motivo.

Abaixo, a descrigao de cada m6dulo do projeto:
• NOCLEO (Core)

Representa o nClcleo escolhido anteriorrnente. Nesta fase, ele
sera modificado para obter a configuragao minima. Depois, sera
testado atrav6s de um testbench apropriado. Etapas internas:

o Estudo das caracteristicas no nClcleo

O nOcleo OpenSPARC T2 sera estudado com objetivo de
melhorar a compreensao de suas estruturas e das suas
interfaces a fim de ser conectado isoladamente ao bus de

interesse. As possibilidades de configuragao tamb6m serao
exploradas nesta etapa.

o Elaboragao de teste
ElaboraQao de teste do nClcleo isolado. Um teste

preliminar sera executado para que se garanta o funcionamento
inicial do nClcleo isolado

111

o ReduQao do nClcleo

O OpenSPARC T2 sera simplificado para que contenha
apenas 2 threads e o menor cache possfvel. Como tarefa
secundaria, serao feitas variaveis externas para facilitar a
configuraQao posterior.

o Execugao de teste em nOcleo modificado
Teste do nOcleo com a reduQao anterior.

o Estudo do ISA SPARC V9

Compreensao da ISA SPARC v9 e suas caracteristicas.
Esta etapa deve servir corno pr6via para implementaQao do
dispatcher e do compilador baseado no LLVM .

o ConfiguraQao do nOcleo

Os threads deverao executar uma regiao previamente
definida da mem6ria. Para posterior comunica9ao com o
dispatcher , cada urn devera registrar na mem6ria o estado de
execuQao – ocupado ou aguardando uma tarefa.

• GERENCIADOR DE CLOCK E SINCRONIA (SCMU, Clock
Synchrony Manager Unit)
Este m6dulo devera distribuir sinais de re16gio entre todos os

m6dulos.
Pesquisa de sistemas de distribuigao de clock
A sincronia dos m6dulos devera ser observada, assim

como urn m6todo de configuraQao.
o ImplementaQao do clock manager

Os sinais de clock necessarios por cada m6dulo serao
produzidos individualmente e urn m6todo que garanta a
sincronia sera implementado.

o Testes do clock manager
Uma sim ulagao com portamental

demonstrando a sincronia dos sinais de clock.
6

0

suficiente

• CACHE (CMU, Cache Manager Unit)
Os nOcleos compartilharao um segundo nfvel de cache (L2)

daquele que cada um cont6m internamente (Ll).
o Pesquisa de sistemas de cache L2

O cache deve diminuir a espera de dados dos nOcleos,

Esta informaQao estara disponfvel somente com o sistema
completo, por isso, sera necessario usar um cache simples e
pequeno, que apenas demonstre sua presenQa e permita sua
configuraQao, sem se ater a performance.

o ImplementaQao do L2
O cache L2 devera ser configuravel e totalmente

compativel com o nOcleo e com o bus.

112

o Testes do L2

O cache precisara ser testado conforme especificaQ6es
da etapa anterior.

GERENCIADOR DE MEMORI A (MMU, Memory Manager Unit)
o Estudo de sistemas de gerenciamento de rnem6ria

Etapa fundamental para que sejam definidos os
paradigmas de desenvolvimento da MMU. EIa sera responsavel
pela interface entre o bus e a mem6ria do sistema.

o Implementagao da MMU
A MMU devera ter uma interface compatfvel com o bus e

outra corn a mem6ria do sistema. Pelo fato desse projeto utilizar
a DE-1 SoC, sera necessario compatibilizar a MMU com o
controlador de mem6ria da DDR3

o Testes da MMU

A MMU devera ser capaz de acessar a DDR3 disponivel
na DE-1 SoC. Uma verificaQao de dados devera ser executada
garantindo o funcionamento completo da MMU .

• VIA DE COMUNICA(,"Ao (Bus)
O bus de comunicaQao deve ser explorado e definido nesta fase.

o Estudo de viabilidade do Wishbone e alternativas

Wishbone 6 prioritario dada a disponibilidade de cores
abertos com esta interface. Sua viabilidade sera observada
nesta etapa e definira a necessidade ou nao de outros tipos de
bus – inclusive aqueles presentes perifericamente ao nOcleo
OpenSPARC T2. Devera haver um arbitrador capaz de priorizar
e organlzar os acessos a mem6ria.

o ImplementaQao inicial do bus escolhido
O bus mais adequado de acordo com o previsto

anteriormente sera implementado, visando a generalidade da
conexao e possibilidade de ser modificado futuramente.

o ImplementaQao do arbitrador
O arbitrador devera seguir as especificaQ6es anteriores e

ser configuravel quanto a prioridade de acesso dos m6dulos
conectados ao bus

o Testes do bus e arbitrador

Um teste sera elaborado e aplicado de acordo com o
funcionamento elementar, capacidade de transfer6ncia –
visando orientar rnodificaQ6es futuras a fim de evitar 'gargalos’
de performance. Os testes do arbitrador e o bus deverao ser
executados em conjunto.

• GERENCIADOR DE TAREFAS (TMU, Task Manager Unit)

113

O gerenciador de tarefas deve ser capaz de modificar as regi6es
de mem6ria relativas aos threads dos nOcleos, assim como verificar a
disponibilidade de cada um, equalizando a carga de execuQao.

O gerenciador de tarefas precisara interpretar comandos
advindos do CPU, Para isso, sua inicializaQao executara urna regiao
pr6-determinada na mem6ria, na qual o CPU executara modificag6es,
repassando comandos e ponteiros para dados. Esse sistema de
interpretaQao sera atualizado conforme a execuQao das fases
seguintes. Este m6dulo devera ser um processador especializado em
interpretar comandos e distribuir tarefas, ernbora nao processe os
dados em si.

o Estudo de m6todos de distribuiQao de carga
M6todos deverao ser pesquisados e urn escolhido –

crit6rios de seleQao do m6todo deverao ser coerentes com as
necessidades do projeto. A interpretaQao de comandos devera
ser observada para que o dispatcher seja capaz de executa-los.

o ImplementaQao inicial do gerenciador de tarefas
O m6todo escolhido anteriormente devera

implementado nesta etapa.
o Testes do gerenciador de tarefas

Os m6todos anteriores serao verificados nesta etapa. Um
teste de comandos e distribugao de carga para os nOcleos

devera ser preparado e executado.

ser

• GERENCIADOR DE ESTADOS (SMU, State Manager Unit)
Responsavel por configurar o gerenciador de tarefas presente

no GPU. InformaQ6es como regiao de mem6ria de video, resoluQao e
controle das tarefas devera ser preparado por este m6dulo. Com
auxilio do m6dulo compilador, enviara processos/shaders para o GPU.

o ImplementaQao do SMU(Slate Manager Unit)
Esta etapa implementara urn c6digo em software para

controlar o GPU. Sera importante estudar detalhes do Gallium Framework a
fim de receber e enviar os comandos e dados corretos.

o Testes do SMU

Esta etapa de testes devera funcionar junto ao TMU.

COMPILADOR (Compiler)
Esta fase representa o m6dulo de compilaQao de c6digo TGSI e

dos comandos de gerenciamento de estados. A saida deste compilador
serao c6digos de maquina com a ISA desenvolvida para o OpenGPU.
Esta ISA sera interpretada pelo TMU .

o Estudo do LLVM

Fase de compreensao do sistema de compilaQao LLVM.
Esta foi a base escolhida para o compilador.

114

o Implementagao do compilador
O compilador deve ser capaz de converter os c6digos

prevlstos.
o Testes do compilador

Os testes deverao ser confirmados com auxilio do TMU .

• ADAPTADOR GALLIUM (Gallium Driver)
O driver 6 a interface entre o framework Gallium e os m6dulos

Compiler e SMU .
o Implementagao do driver

O adaptador deve ser capaz de implementar os minimos
recursos exigidos pelo Gallium e comandar os m6dulos
Compiler e SMU .

• CONTROLADOR DE VIDEO (Video Controller)
Responsavel por exibir o video, devera ser configuravel para ler

uma regiao especifica da mem6ria – framebuffer . Exibira o conteOdo deste
buffer na safda VGA – de acordo com as configurag6es de resoluQao e
frequ6ncia de atualizagao.

o Implementagao do Video Controller
Seguira as especificaQ6es acima e, adicionalmente,

devera conter um buffer FIFO na leitura da mem6ria –
responsavel por garantir o fluxo constante de pixels para a
exibiQao de video. Esse buffer 6 devido ao sisterna estar
conectado ao mesmo bus dos outros m6dulos – que a princfpio
consumirao tempo notavel do sisterna de mem6ria.

Interiorizara um m6dulo controlador de VGA. O registro
de configuraQ6es devera estar na mem6ria do sistema e sera
observado num intervalo de tempo de 200rns ou outro que seja
pouco custoso ao bus e permita mudanQas de configuraQao
rapidas para humanos.

o Testes do Video Controller

Leitura de uma regiao especificada da mem6ria contendo
o registro de configuraQao, do framebuffer e do buffer FIFO na entrada.
ResoluQ6es e frequ6ncias diferentes devern ser obtidas dentro das limitaQ6es
do controlador VGA.

CRONOGRAMA DO PLANO B

O tempo estimado para cada fase 6 definido nesta seQao. Considera-se 1 dia de

trabalho de 8 horas (ou dois integrantes, 4 horas) e 1 semana com 5 dias. Algumas
fases serao realizadas simultaneamente.

Abaixo os m6dulos e o tempo estirnado de conclusao:

115

•

•

•

•

•

•

•

@

Core-. 10 sernana
SCMU: 1 dia
CMU: 2 sernanas
MMU: 1 semana
Bus-. 1 semana
TMU: 8 semanas
SMU: 8 semanas
Compiler. 8 semanas
Driver. 8 semanas
Video Controller'. 1 semana

TESTES DE M6DULOS E DE SISTEMA E BENCHMARKING

Um testbench sera elaborado para verificar os nOcleos, o cache, o bus. o
arbitrador e a MMU. Os nOcleos deverao ser capazes de acessar a mem6ria em
suas regi6es previamente configuradas e cada qual executar um programa
simultaneamente.

Havera um teste final ap6s o desenvolvimento de todos os m6dulos, seguido
de um benchmarking . Ambos serao desenvolvidos ap6s a finalizaQao dos m6dulos.

Os m6dulos s6 serao considerados finalizados caso passem em testes
exclusivos a cada um. Esses testes serao elaborados conforme a compreensao da
tecnologia de cara fase.

Adequar projeto Nyuzi para DEI SoC
Outra abordagem 6 adaptar o projeto Nyuzi complernentando-o corn um

3

driver Gallium adequado, Esse driver roda em cima do CPU ARM em cima do
sistema Mesa. O bus de interconexao deve ser projetado para que o Nyuzi acesse a
mem6ria DDR3 da placa e possa receber instruQ6es do CPU.

O Nyuzi utiliza o LLVM como sistema para gerar o compilador. Este, por sua
vez, recebe c6digos C/C++ e produz c6digo de maquina especffico para o
processador Nyuzi. lsso mostra que os programas executados no Nyuzi nao sao
gerados em tempo real, definindo a necessidade de embarcar esse compilador no
driver Gallium produzido neste projeto para que seja possivel executar uma pipeline
grafica em tempo real. O comparativo com o driver llvmpipe e seu funcionarnento
pode ser produtivo nessa etapa.

O projeto de adequaQao ao Nyuzi 6 definido nas seguintes etapas e no
segulnte tempo:

1. Preparagao e estudo do projeto Nyuzi (1 semana)
a. Fazer processador Nyuzi rodar na placa DE-1 SoC;
b. Compreensao do hardware do processador Nyuzi;
c. Compreensao das ferramentas de software'.

2. Desenvolvimento (3 semanas)
a. Hardware que realize interface entre mem6ria e CPU (host)'.
b. Driver Gallium baseado em compilador LLVM.

Essas etapas devem acompanhadas de fases de testes e depura(,ao previamente
preparadas. A principio, essa tarefa nao deve ultrapassar urn mas supondo o tempo
descrito acima.

116

4. Construir pipeline grafico fixo sobre OpenGL 1.0
OpenGL 1.0 foi o inicio das especificaQ6es de graficos. Nao havia shaders no

inicio dos anos 90 (OSI, 2016). E isso se traduz num ponto positivo desta
abordagern: pipeline fixo ao inv6s de programavel. Esta perspectiva reduz
consideravelmente o trabalho ao dispensar a tarefa de desenvolver processadores
para os shaders . Os aspectos negativos sao: o pipeline grafico nao pode ser
implementado em trechos tao pequenos e modulares, o que exige o
desenvolvimento de blocos extensos de hardware e experi6ncia em processamento
grafico; pouca versatilidade do hardware de desenvolvido, o que reduz a
possibilidade de expandir o projeto dada incapacidade shaders – cuja arquitetura
necessaria 6 bastante diferente de um pipeline .

Pode haver m6todos de desenvolver hardware desse tipo dentro do prazo
esperado pelo OpenGPU. Implementar apenas controladores de mem6ria e o
rasterizador em hardware pode ser uma destas tentativas. Caso as outras
abordagens nao sejam suficientes, esta podera ser outra opgao a ser explorada.

5. Adequar processador a ISA de um GPU comercial
Hi o projeto MIAOW que implementou minimamente o ISA AMD Southern

Islands. Baseado nisso, 6 possivel desenvolver hardware apenas pelo ISA, ligando-o
em drivers ja estabelecidos tanto no sistema Mesa quanto nos softwares dos
fabricantes

O aspecto positivo esta na redugao do trabalho com software e todo o
desenvolvirnento conjunto corn o hardware. O produto final tamb6rn seria de boa
qualidade, ja que os drivers costumam ser bastante estaveis e completos quanto
suas capacidades e especificag6es. Por outro lado, a complexidade de hardware
seria bastante elevada, fazendo com o que o tempo de projeto seja alto. Talvez haja
meios de implementar uma ISA parcialmente, reduzindo esse esforQO e viabilizando
o projeto no tempo disponivel – por isso tamb6m 6 um pIano considerado caso os
as outras opg6es nao sejam viaveis.

117

118

APENDICE D

C6digo de modificaQao do driver softpipe, parte do projeto Mesa e de seu subprojeto

Gallium. O trecho modificado esta em destaque abaixo.

Caminho do arquivo: mesa/src/gallium/drivers/softpipe/sp_flush.c

* Copyright 2007 VMware, Inc
* All Rights Reserved

* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
+ "software") r to deal in the software without restrIction, including
* without limitation the rights tO use, COpy, modifYr merger publlsh/
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions :

* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.

* THE SOFTWARE IS PROVIDED '' AS ISI', WITHOUT WARRANTY OF ANY KIND, EXPRESS

* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

* MERC,HANTABILITYr FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR

* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTp

* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE

/* Author :

Keith Whitwell <keithw@vmware . com>

/

#include "pipe/p_defines .h"
#include "pipe/p_screen.h"
#include "draw/draw_context .h"
#include "sp_flush.h"
#include "sp_context .h"
#include "sp_state.h"
#include "sp_tile_cache . h"

#include "sp_tex_tile_cache .h"
#include "util/u_memory-h"
#include "util/u_string.h"

void

softpipe_flush (struct pipe_context *pipe,
unsigned flags,
struct pipe_fence_handle * *fence)

119

struct softpipe_context *softpipe ; softpipe_context (pipe) ;

urnt l;

{

draw_flush(softpipe->draw) ;

if (flags & SP_FLUSH_TEXTURE_CACHE) {

unsigned sh;

for (sh = 0; sh < Elements (softplpe->tex_cache) ; sh++) {
for (i = 0; i < softpipe->num_sampler_views [sh] ; i++) {
sp_flush_tex_tile_cache(softpipe->tex_cache [sh] [i]) ;

}

)

}

/* if this is a swapbuffers, just flush color buffers .

* The zbuffer changes are not discarded, but held in the cache
* in the hope that a later clear will wipe them out .
/

for (i = 0; i < softpipe->framebuffer .nr_cbufs ; i++)
if (softpipe->cbuf_cache[i])

sp_flush_tile_cache(softpipe->cbuf_cache [i]) ;

if (softpipe->zsbuf_cache)
sp_flush_tile_cache(softpipe->zsbuf_cache) ;

softpipe->dirty_render_cache = FALSE;

/’ Enable to dump BMPS of the color/depth buffers each frame */
#if 1

//if (flags & PIPE_FLUSH_END_OF_FRAME) {

static unsigned frame_no = 1;
static char filename[256] ;

util_snprintf (filename, sizeof (filename) , ’'cbuf_%u . bmp", frame_no) ;

debug_dump_surface_bmp(pipe, filename, softpipe->framebuffer.cbufs[0]) ;

util_snprintf (filename, sizeof (filename) , "zsbuf_%u . bmp", frame_no) ;
debug_dump_surface_bmp(pipe, filename, softpipe->framebuffer.zsbuf) ;

++frame_no ;

//}
#endif

if (fence)
fence = (void)(intptr_t)1;

}

void
softpipe_flush_wrapped (struct pipe_context *pipe,

struct pipe_fence_handle **fence,
unsigned flags)

softpipe_flush (pipe, SP_FLUSH_TEXTURE_CACHE, fence) ;

{

}

Flush context if necessary.

Returns FALSE if it would have block. but do not block was set . TRUE

120

otherwise

* TOD0 : move this logic to an auxiliary library?
/

boolean

softpipe_flush_resource(struct pipe_context *pipe,
struct pipe_resource *texture,
unsigned level,
int layer,
unsigned flush_flags,
boolean read_only,
boolean cpu_access,

boolean do_not_block)
{

unsigned referenced;

referenced = softpipe_is_resource_referenced(pipe, texture, level, layer) ;

If ((referenced & SP_REFERENCED_FOR_WRITE) II

((referenced & SP_REFERENCED_FaR_READ) && ! read_only)) {

/

* TODO : The semantics of these flush flags are too obtuse. They should

* disappear and the pipe driver should just ensure that all visible
* side-effects happen when they need to happen .

/

if (referenced & SP_REFERENCED_FDR_READ)

fIUSh_fIags I = SP_FLUSH_TEXTURE_CACHE;

if (cpu_access) {

/*
* Flush and wait .

'/

struct pipe_fence_handle *fence = NULL;

if (do_not_block)

return FALSE;

softpipe_flush (pipe, flush_flags, &fence) ;

if (fence) {

/’
* This is for illustrative purposes only, as softpipe does not
* have fences .

/

pipe->screen->fence_finish (pipe->screen, fence,
PIPE_TIMEOUT_INFINITE) ;

pipe->screen->fence_reference(pipe->screen, &fence, NULL) ;

}

} else {

/

* Just flush .

/

softpipe_flush (pipe, flush_flags, NULL) ;

}

}

return TRUE;

}

121

APENDICE E

Arquivos VHDL do OpenGPU e respectiva rnodificaQao no arquivo setup.c no
Mesa3D para funcionamento do OpenGPU na placa DEI SoC.

Modificag6es no setup.c:

//OGPU
#include "hps 0 . h" / /HPS FPGA DEI SoC Board definitions for this project

#define soc cv av //TODO : remove this and do cross compiling in altera environment
#include "hwlib,h" //TODO : remove this and do cross compiling in altera environment
#include "socal/socal.h" / /TODO: remove this and do cross compiling in altera environment
#include "socal/hps.h" //TODO: remove this and do cross compiling in altera environment
#include "socal/alt gpio+h" //TODO: remove this and do cross compiling in altera environment

#include <stdio.h>
#include <unistd . h>
#include <fcnt1 nh>
#include <sys/mman . h>
#include <stdlib. h>
#include <stddef . h>
#include <stdint . h>
#include <assert . h>

#include <string. h>
#include <math .h>
#include <time . h>

#define HW REGS BASE (ALT STM OFST)
#define HW REGS SPAN (0x04000000)
#define HW REGS_MASK (HW_REGS_SPAN - 1)

#define ALT AXI FPGASLVS orsT (0xC0000000) // axl master
#define HW FPGA AXI SPAN (OxFBFFFFFF-ALT AXI FPGASLVS OFST+1) // Bridge span
#define HW FPGA AXI MASK (HW FPGA AXI SPAN - 1)
//OGPU end

//--OPENGPU
typedef ulnt8 t ogpu_bit ;
typedef uint8 t ogpu command;

enum OGPU COMMAND

{

OGPU CMD NOP=0,
OGPU CMD PREPARE=0xA5 ,
OGPU CMD RASTER=0xAA

}

struct ogpu edge
{

uint:32 t xO,yO ;
uint32 t x1,y1 ;

};

struct ogpu box
{

float xO,yO ;
float xl,y1 ;

};

struct ogpu quad
{

//Fragment-vector element correspondence
// +===+===+
// to Ill
// +===+===+
// 12l31
// +===+ ===+
uint16 t m[4] [2] ;

};

struct ogpu tile

uint16 t xO,yO ;
uint16 t xl,y1 ;

{

}

122

struct ogpu depth_coef
{

int32 t a , b, c ;
};

struct ogpu depth quad

int32 t m[4] ;
{

};

struct ogpu quad_buffer_cell
{

uint16 t x, y; //quad (X, Y) top left coord
uint8 t mask: 4 ; //quad mask on same quad order referenced above
uint8 t stencil [4] ; //RESERVED to stencil for future implementation
float depth [4] ;

};

struct ogpu quad buffer
{

uint16 t n ; //number of elements
struct ogpu quad buffer cell *b;
struct ogpu tile tile;

//buffer pointer

};

#define OGPU DEPTH_DEPTH ((1<<30)-1) //depth buffer precision

static inline int32 t ogpu_fix_float (float f)
{

return (int32 t) f ;

}

static inline uint32 t ogpu_uf ix_float (float f)

return (ulnt32 t) f ;
{

}

static void ogpu setup (ogpu bit clock ,
/ / INPUTS
const ogpu bit start raster ,
const float (*vO) [2] , const float (*vl) [2] , const float (’'v2) [2] ,
/ / OUTPUTS
//struct ogpu box *box, / /bound box
struct ogpu edge ''eC) , struct Of;pu_edge *el, struct ogpu_edge ’'e2 ,
ogpu bit *setup_done)

{

//v+ : input vertices

//et : edges

static ogpu bit clock=0 ;
II II II II II II Ill III
I / COMB I I
II II II II II II II II II
//Edges data allocating and fixing floating points
eO->x0=ogpu uflx_float(vO [0] [0]) ; e0->yO=ogpu_uf ix_float (vO [0] [1]) ;
e0->xl=ogpu ufix float (vl [0] [0]) ; eO–>yl=ogpu_uf ix_float (vl 10] [1]) ;

el->x0=ogpu ufix float (vl [0] [0]) ;
el->xl=ogpu uf ix float(v2 [0] [0]) ;

el->yO=ogpu uf ix float (vI [0] [1]) ;
el->yl=ogpu ufix_float(v2 [0] [1]) ;

e2->x0=o9pu ufix float(v2 [0] [0]) ;
e2->xl=ogpu ufix float(vO [0] [0]) ;

e2->yO=ogpu ufix_float(v2 [0] [1]) ;

e2->yl=ogpu ufix_float(vO [0] [1]) ;

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//Define triangle bound box //SOFTPIPE
ogpu bit cl, c2 , c3 ;
cl=v0 [0] [0]<=vl [0] [0] ;
c2=v0 [0] [0]<=v2 [0] [0] ;
c3=vl [0] [0]<=v2 [0] [0] ;
if (cl)
{

S CLIPRECT DEFINES BOUND BOX BEFORE RASTERIZER STAGE

if (c3)
{

box->x0=v0 [0] [0] ;
box->xl=v2 [0] [0] ;

}

else
{

if (c2)
{

box->x0=v0 [0] [0] ;
box->xI=vl [0] [0] ;

}

else
{

box->x0=v2 [0] [0] ;

123

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

box->xl=vl [0] [0] ;

}
}

}

else
{

if (c2)
{

box->x0=vl [0] [0] ;
box->xl=v2 [0] [0] ;

}

else
{

if (c3)
{

box->x0=vI [0] [0] ;
box->xl=v0 [0] [0] ;

}

else
{

box->x0=v2 [0] [0] ;
box->xI=va [0] [0] ;

}

cl=v0 [0] [1]<=vl [0] [1] ;
c2=v0 [0] [1]<=v2 [0] [1] ;
c3=vl [0][1]<=v2 [0] [1] ;

if (cl)
{

if (c3)
{

box–>yC)=v0 [0] [1] ;
box->yl=v2 [0] [1] ;

}

else
{

if (c2)
{

box->y0=v0 [0] [1] ;
box->yl=vl [0] [1] ;

}
else
{

box->yC)=v2 [0] [1] ;
box->yl=vl [0] [1] ;

}
}

}

else
{

if (c2)
{

box->y0=vl [0] [1] ;
box->yl=v2 [0] [1] ;

}

else
{

if (c3)
{

box–>y0=vl [0] [1] ;

box->yl=v0 [0] [1] ;

}
else
{

box->y0=v2 [0] [1] ;
box->yl=v0 [0] [1] ;

}

II II II II II II II II II
II sxc) it
II II II II II II II II if
if (clock ! = clock)
{

clock=clock ;

if (clock)
{

/ /CLOCK RISING EDGE

if (start raster)
<

*setup done=1 ;
}

else

124

{

}

}

else
{

}

*setup done=0 ;

//CLOCK FALLING EDGE

}

}

static void ogpu quad_generator(ogpu bit clock,
/ / INPUTS

const ogpu bit next quad,
const struct ogpu box box,

(x1/yl)

//(xO,yO) must be at left and at upper side of

(x1/y1)
const struct ogpu tile tile, //(xO,yO) must be at left and at upper side of

/ /OUTPUTS

ogpu bit *quad ready,
ogpu bit *end tile,
struct ogpu quad *quad)

static ogpu bit generate quads=0 ;
static ogpu bit _clock=0 ;

static uint16 t i=0 , j=0 ,x0=C),y0=0,xl=0,yl=0 ;
II II II II II II II II II
I I COMB / 1
II II II II II II II II II

II II II II II II II II II
II SEQ II
II II II II II II II II II
if (clock ! = clock)
{

clock=clock ;
if (clock)
{

//CLOCK RISING EDGE

if (next quad)
{

if (! generate quads)
{

*end tile=0 ;
if ((tile . xl <

//checks if box is not
box a xO) [(tile,xO > box axl)) {*quad ready=0 ; *end tile=1 ; return ; }

//intersecting tile
if((tile.yl < box o yO) If (tileoy0 > box +)'1)) { *quad ready=0 ; *end_tile=1 ; return; }

generate quads=1 ; //else generate quads
//clip tile : this helps discard void areas
i=y0=(tile,yO <= box .yO)?(uint16 t)box.y0:tile+y0 ; //yO is not used?
j=x0=(tile.xO <= box .xO)?(uint16 t)box.x0:tile.xO ;
xl= (tile axl >= box ,xl)?(uint16 t)box . xl : tile .xl ;

yl=(tile.y1 >= boxoy1)?(uint16 t)box+yl:tile.yl ;
//end clip tile
i&=- (1<<0) ; //guarantee even number clearing first bit, this
xC)= j&=- (1<<0) ; / /is important to maintain quads at same place

//independently of clipping
}

//generate quad coords
quad->m[0] [0] = j ; quad->m[1] [0] = j+1 ;
quad–>m[0] [1] =i ; quad->m[1] [1] =i ;
quad->m[2] [0] = j ; quad->m[3] [0] = j+1 ;

quad–>m[2] [1] =i+1 ; quad->m[3] [1] =i+1 ;
j+=2 ;
if (j >Xl)

{

j =X0 ;
i+=2 ;
if (i>y1)
{

*end tile=1 ;

generate quads=0 ;

}

*quad ready=1 ;

}

}

else
{

*quad ready=0 ;

}

else //CLOCK FALLING EDGE

125

{

}

}

}

static inline ogpu bit ogpu edge test (struct ogpu_edge e,uint32_t x,uint32_t y)
{

//TODO: implement hardware oriented solution (fast fix point computing)
if (

(((int32 t)x-(int32_t)(e.xO))t((int32_t)(e.yl) - (int32_t)(e.yO)) -
((int32 t)(e.x1)–(int32 t)(e.xO))+((int32 t)y-(int32 t)(e.yO))) >=0) return 1 ;

else return 0 ;

static void ogpu quad_edge_test(ogpu bit clock,
/ /INPUTS
struct ogpu edge e, struct ogpu quad
ogpu bit edge test,
/ /OUTPUTS
ogpu bit (*edge mask) [4] ,
ogpu bit *edge ready)

quad ,

//static ogpu bit clock=0 ;
II II II II II II II II II
I I COMB I /
II II II II II II II Ill I
edge mask [0] [0] =ogpu_edge_test (e , quad .m[0] [0] , quad .m[0] [1]) ;
edge mask [0][1]=ogpu_edge_test (e, quad .m[1] [0] , quad .m[1] [1]) ;
edge mask [0][2]=ogpu edge test (e, quad.m[2] [0] , quad .m[2] [1]) ;
edge mask [0][3]=ogpu edge test (e, quad em[3] [0] , quad .m[3] [1]) ;
II II II II II II II II II
II sxc) II
II II II II II II II II II
//if (clock ! = clock)
{

// clock=clock;
//if (clock)
{

//CLOCK RISING EDGE

}

//else
{

}

*edge ready=edge test;

//CLOCK FALLING EDGE

static void ogpu triangle edge test(ogpu bit clock,
/ / INPUTS
ogpu bit (*edge_ready)[3],ogpu_bit (''edge_mask0) [4] ,
ogpu bit (+edge_mask1)[4],ogpu_bit (''edge_mask2) [4] ,
/ / OUTPUTS

ogpu bit (*quad mask) [4] ,
ogpu bit *draw quad ,ogpu bit +discard quad)

{

static ogpu bit clock=0 ;
ogpu bit quad mask [4] ;
ogpu bit draw quad ;
II II II II II II II II II
/ / cows II
II li II II II II II II II
//if edge bits from one fragment are 1, 1, 1 or 0 , 0 , 0 , draw fragment

quad mask [0] = (edge mask0 [0] [0] &&edge maskl [0] [0] & &edge mask2 [0] [0]) II

(! (edge maskC) [0] [0] II edge mask1 [0 } [0] IF edge mask2 [0] [0])) ;
quad mask [1] = (edge mask0 [0] [1] &&edge maskl [0 } [1] &&edge mask2 [0] [1]) 1

(! (edge mask0 [0] [1] 1 jedge maskl [0] [1] 1 jedge mask2 [0] [1])) ;
quad mask [2] = (edge mask0 [0] [2] &&edge mask1 [0] [2] &&edge mask2 [0] [21) 1

(! (edge mask0 [0] [2] 1 jedge maskl [0] [2] II edge mask2 [0] [2])) ;
quad mask [3] =(edge mask0 [0] [3] &&edge maskl [0] [3] &&edge mask2 [0] [3])

(! (edge mask0 [0] [3] II edge maskl [0] [3] II edge mask2 [0] [3])) ;
_draw quad= quad mask [0] II quad mask [1] II quad mask [2] II quad mask [3] ;

II II II II II II Ill III
II sxc} II
I / II II II II II II II II
if (clock! = clock)
{

clock=clock ;
if (clock)
{

//CLOCK RISING EDGE

if (edge_ready [0] [0] &&edge ready [0] [1] &&edge_ready [0] [2])
{

if (draw quad)
{

126

*draw quad=1 ;
*discard quad=0 ;
quad mask [0] [0] = quad mask [0] ;

quad_mask [0] [1] = quad mask [1] ;
quad mask [0] [2] = quad mask [2] ;

quad_mask [0] [3] =_quad_mask [3] ;
}

else
{

+draw quad=0 ;
*discard quad=1 ;

}

else
{

}

*draw quad=0 ;
+discard quad=0 ;

}

else
{

}

}

//CLOCK FALLING EDGE

}

}

static void ogpu depth coef (const float (*vC)) [4] , const float
struct ogpu depth coe f *coef)

(+vl) [4] , const float (*V2) [4] r

float A, B , C; //Cross product components
float vx,vy,vz ,wx, ICy , wz ;

vx=(vl[0][0]-v0 [0] [0]) ; //V vector
vy= (V1 tOt 11] -vO [Ol [1]) ;
vz= (v 1 [0] 121-vO [0] [2]) ;
wx=(v2[0][0]-v0 [0] [0]) ; //W vector
wy= (v21 O] t 1] -vO tO J [1]) ;
wz=(v2[0][2]-v0 [0] [2]) ;
//This is a simple algorithm for calculate the plane equation from three points a
//Calculating cross product VxW to obtain normal vector ,
//The normal vector and a point (vO) define a plane
//Then we calculate the z function -- that returns z value for any x, y
//Here , we calculate the coefficients a, b, c for function z=a*x+b*y+c
//The fInal products and sums are performed inside hardware , while this
//pre–calculations are performed in software, because they are constant for each
//triangle + More details , consult OpenGPU project documentation .
A=vy+wz-vz+wy ;

B=vz*wx-vx*wz ;

C=vx'''wy-vy'-wx ;

coef->a=ogpu_fix_float ((-A/C)*(OGPU DEPTH DEPTH)) ;
coef->b=ogpu fix_float ((-B/C)*(OGPU DEPTH DEPTH)) ;
coef->c=ogpu_fix_float ((vO [0][2]+A/C*v0 [0] [0] +B/C*v0 [0] [1])*(OGPU DEPTH DEPTH)) ;

where P=v0
}

//c=Pz +A/C*Px+B/C*Py

static void ogpu_quad_depth_test(ogpu_bit clock ,
/ / INPUTS
struct ogpu quad quad ,
ogpu bit depth test ,
struct ogpu depth coef coef ,
/ / OUTPUTS

ogpu_bit *depth ready ,
struct ogpu depth quad *depth quad

{

static ogpu bit clock=0 ;
static ogpu bit depth test=0 ;
II II II II II II II II II
I I COMB I I
II II II II II II II II II

II II II II II II II II II
II SEQ II
II II II II II II II II II
if (clock ! = clock)
{

clock=clock ;
if (clock)
{

//CLOCK RISING EDGE

if (depth test
{

!= _depth test) // RISING EDGE

depth test = depth test;
if (depth test)
{

depth quad->m[0]=coef . a*quad . m[0] [0]+coef . b+quad .m[0][1]+coef . c ;

127

depth quad->m[1]=coef . a*quad .m[1] [0] +coef . b*quad .m[1] [1] +coef . c ;
depth quad->m[2]=coef . a*quad .m[2] [0]+coef . b*quad .m[2] [1] +coef . c ;

depth quad->m[3]=coef . a*quad .m[3] [0]+coef . b*quad .m[3] [1]+coef . c ;

*depth ready=1 ;
}

else
{

*depth ready=0 ;

}

}

else
{

}

//CLOCK rALLING EDGE

}

}

static
{

// static uint32 t size = 0 ;
// uint32 t size=((tile+xl-tile,xO) /2+1)*((tile.yl-tile.yO) /2+1) ;
/ / if (size==0 ll quad buffer->b==0)
// {
// quad buffer->b
ogpu quad buffer cell) *size) ;
// if (quad buffer–>b == 0) return -1 ; //memory a11ocation failed
// }
I / else
// {
// if (size> size)
11 {
// size=size ;
// quad buffer->b = (struct
ogpu quad buffer cell) *size) ;
// if (quad buffer->b == 0) return -2 ; //memory allocation failed
11)
//
// }
//
//
//

int ogpu_quad_buffer alloc (struct ogpu quad buffer *quad buffer, const struct ogpu_tile tile)

(struct ogpu quad buffer cell+)malloc(sizeof (struct

ogpu_quad buffer_cell*)realloc (quad_buffer->b ,sizeof (struct

quad buffer->n=0 ;

quad buffer->tile=tile ;

return 0 ;
return -1 ;

static void ogpu_quad_buffer free (struct ogpu_quad buffer *quad_buffer)

//if (quad buffer->b) free (quad buffer->b) ;
//quad buffer->b=0 ;

{

}

static inline float ogpu float fix(int32 t x)
{

return ((float) x) / ((long) (1<<31) –2) ;
}

static void ogpu_quad_store(ogpu bit clock,
/ / INPUTS
ogpu bit (*quad mask) [4] ,
struct ogpu quad quad,
ogpu bit start raster,
ogpu bit store quad,
struct ogpu tile tile,
struct ogpu depth quad depth quad,
/ /OUTPUTS
ogpu bit *quad stored,
struct ogpu quad buffer *quad_buffer
)

{

static ogpu bit clock=0 ;
static ogpu bit start raster=0 ;
static ogpu bit store quad=0 ;
static uint16 t quad counter=0 ;
II II II II II II II II II
II cows II
fIll III JIll if I fIll

If II II II II II II II II
II SEQ II
II II II II II II II II II
if (start raster ! = start raster)
{

start raster=start raster;
if (start raster) //–Rising edge

128

quad counter=0 ;

}

if (clock != clock)
{

clock=clock ;
if (clock)
{

//CLOCK RISING EDGE

if (store quad
{

!= store quad)

store quad = store quad;
if (store quad) // RISING EDGE
{

quad buffer->b[quad counter] .x=quad .m[0] [0] ;
quad buffer->b[quad counter] .y=quad .m[0] [1] ;
quad buffer->b[quad counter] +mask=

juad mask [0] [0] <<01 quad mask [0 } [1 }<<11
quad mask [0 } [2]<<2 1 quad mask [0] [3]<<3 ;

quad buffer->b [quad counter] . stencil [0]=0 ;
quad buffer->b [quad counter] . stencil [1] =0 ;
quad buffer->b[quad counter] . stencil [2] =0 ;
quad buffer->b [quad counter] . stencil [3]=0 ;
quad buffer->b [quad_counter] . depth [0]=ogpu_float_fix (depth_quad .mI 0]) ;
quad buffer->b [quad counter] , depth [1]=ogpu_float_fix (depth_quad .mIll) ;
quad buffer->b [quad counter] . depth [2]=ogpu_float_fix (depth_quad .m[2]) ;
quad buffer->b [quad counter] , depth [3]=ogpu_float_fix (depth_quad . m[3]) ;
quad buffer->tile=tile;

quad counter++ ;
quad buffer->n=_quad_counter ;
*quad stored=1 ;

}
else

*quad stored=0 ;
{

}
}

}

else
{

}

//CLOCK FALLING EDGE

}

}

enum OGPU RASTER CONTROL STATE

{
OGPU RASTER CONTROL IDLE=0,
OGPU RASTER CONTROL DONE ,

OGPU RASTER CONTROL SETUP.
OGPU RASTER CONTROL QUAD GEN,
OGPU RASTER–CONTROL QUAD TEST,
OGPU RASTER CONTROL STORE QUAD

static void ogpu raster control (ogpu bit clock,
/ /INPUTS
ogpu command cmd,
ogpu bit setup done,
ogpu bit end tile ,
ogpu bit quad ready,
ogpu bit depth ready,
ogpu bit quad stored,
ogpu bit draw quad,
ogpu bit discard quad,
/ /OUTPUTS

ogpu bit *start raster,
ogpu bit +next quad,
ogpu bit +edge test ,
ogpu bit *depth test,
ogpu bit +store quad ,
ogpu bit ''busy,
ogpu bit +done
)

{

static unsigned state=OGPU RASTER CONTROL IDLE ;
static ogpu bit clock=0 ;
if (clock ! = clock)
{

clock=clock ;
if (clock)
{

//CLOCK RISING EDGE

// //!//

129

// CAUTION: ' if '

switch (state)
{
default :
case OGPU RASTER CONTROL IDLE :

if (cmd==OGPU–CMD RAS6ER)
{

order matters , because it does part of logic some state transitions

state=OGPU RASTER CONTROL SETUP ;
*busy=1 ;
*done=0 ;
*start raster=1 :
break ;

}

break ;

case OGPU RASTER CONTROL DONE :
if (cmd==OGPU CMD PREiARE)
{

state=OGPU RASTER CONTROL IDLE :
*done=0 :
+busy=0 ;
*start raster=0 :

*next quad=0 ;
*edge test=0 ;
*depth test=0 ;
*store quad=0 ;
break ;

}

break ;

case OGPU RASTER CONTROL SETUP:

if (setup done)
{

state=OGPU RASTER CONTROL QUAD GEN ;
*next quad=1 ;

*store quad=0 ;
*edge test=0 ;
*depth test=0 ;
break ;

}

break ;

case OGPU RASTER CONTROL QUAD GEN :
if (quad ready)
{

state=OGPU RASTER CONTROL QUAD TEST;
,1;next quad=0 ;
*edge test=1 ;

*depth test=1 ;
break ;

}

if (end tile)
{

state=OGPU RASTER CONTROL DONE ;

*done=1 ;

*busy=0 ;

*start raster=0 ;

*next quad=0 ;

*edge test=0 ;

*depth test=0 ;

*store quad=0 ;

break ;

}

break ;

case OGPU RASTER CONTROL QUAD TEST:
if (draw_quad && depti reaay)
{

state=OGPU RASTER CONTROL STORE QUAD;
*store quad=1 ;
break ;

}

if (end tile)

{
state=OGPU RASTER CONTROL DONE ;

*done=1 :
+busy=0 ;
''start raster=0 :
*next quad=0 ;
*edge test=0 ;

*depth test=0 ;
"store quad=0 ;
break ;

130

}

if (discard quad)
{

state=OGPU RASTER CONTROL QUAD GEN ;

*next quad=1 ;
*store quad=0 ;
*edge test=0 ;
*depth test=0 ;
break ;

}

break ;

case OGPU RASTER CONTROL STORE QUAD:

if (end tile)
{

state=OGPU RASTER CONTROL DONE ;
*done=1 ;
+busy=0 ;
*start raster=0 :

*next quad=0 ;
*edge test=0 ;
*depth test=0 ;
*store quad=0 ;
break ;

}

if (quad stored)
{

state=OGPU RASTER CONTROL QUAD GEN ;

+next quad=1 ;

*store quad=0 ;
*edge test=0 ;

*depth test=0 ;
break ;

}

break ;

}

else
{

}

}

/ /CLOCK FALLING EDGE

}

}

//HARDWARE FUNCTIONS FOR FPGA
static int ipow(int base, int
{

DEI SoC
exp)

int result =
while (exp)
{

1;

if (exp & 1)
result *= base :

exp >>= 1 ;
base *= base ;

>

return result ;

>

II Seven
uint8 t

Seq display : 0 , 1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A, B, C, D, E , F, - ,
seven mask [] ={

Ox3F, //0
0x06 , //1
0x5B, //2
Ox4F, //3
Ox66 , //4
0x6D, //5
Ox7D, //6
0x07 , 1 /1
Ox7F, //8
Ox6F, //9
0x7? , IfX
0x7c , //B
0x39 , //C
Ox5E , / /D

Ox79 , //E
0x71, //F
Ox40 , //-

OxOO } ; //

static uint8 t d2ss (int value, int digit) //returns
' value '

uint8 t res=0xFF ;
{

segment ' digit ' confIguration according entered

131

if (digit<0)
{

if (value<0) res= seven mask [16] ;
else res= seven_mask[17] ;

}

else if (digit<100)
{

uint8 t n ;

if (value>0)
else n=17 ;

n= (value%ipow (10 , digit+1))/ipow (10 , digit) ;

res= seven_mask [n] ;
}
res=-res ;
return res ;

}

static uint8 t h2ss (int
hexadecimal ' value '

{

value, int digit) / /returns seven segment ' digit configuration according entered

uint8 t res=0xFF ;

if (digit<0)
{

if (value<0) res= seven mask[16] ;
else res= seven_mask[17] ;

}

else if (digit<100)
{

uint8 t n;
if (value>0)
else n=17 ;

n= (value8ipow (10 , digit+1)) /ipow (10 , digit) ;

res= seven_mask [n] ;

return res ;

}
res = + res :

}

//

const float (*vC)) [4] ,
const float (*vl) [4] ,
const float (*v2) [4])

/
+ Do triangle rasterization using OPENGPU VIRTUAL RASTERIZER.

/

void
CIgpU raster tri (struct setup context *setup,

////SOFTPIPE RASTERIZER SETUP FUNCTIONS
//TODO: REPLACE THIS FUNCTIONS WITH CUSTOM ONES

struct quad stage +pipe = setup->softpipe–>quad . first;

float det;

uint layer = 0 ;
unsigned viewport index = 0 ;

if (setup->softpipe->no rast I
return ;

setup->softpipe->rasterizer->rasterizer discard)

det = calc det (vO , vI, v2) ;

if (! setup sort vertices (setup, det, vO , vl, v2))
return ;

setup tri_coefficients (setup) ;

if (setup->softpipe->layer slot > 0) {
layer = * (unsigned *) setup->vprovoke [setup->softpipe–>laYer_slot] ;

layer = MIN2 (layer, setup–>max layer) ;
}

if (setup->softpipe->viewport index slot > 0) {
unsigned *udata = (unsigned*)vO [setup->softpipe–>viewport_index_slot] ;
viewport index = sp_clamp_viewport_idx(*udata) ;

}
////

//TEST DEI
void *virtual base,*h2f virtual base ;
int fdi
//int loop count;
static int led direction=0 ;
static int led mask=0xl ;

132

void
void
void
void
void
void
void
void
void
void
void
void

*h2p lw led addr,*h2p lw sw addr;
*seven seq addr [6] ;
+rl reg, +rl data high , +rl data low, *rl ack ;
*rl reset ;
*rl command ;
trl vOx, *rl vOy, +rl vOz ;
*rl vlx, *rl vly,*r1 vIz ;
trl v2x, +rl v2y, +rl v2z ;
+rl clip rect0 , +rl clip rect1 ;
*rl_tile0,*rl_tile1, *rl_depth coef a, *rl depth coef b, *rl depth coef
*rl quad buffer addr high , trl quad buffer addr low;
*rl status ;

_C ;

// map the address space for the LED registers into user space so we can interact with them.
// we'll actually map in the entire CSR span of the HPS since we want to access various registers

within that span

if ((fd = open ("/dev/mem" , (O RDWR I O SYNC))) == –1) {
printf ("ERROR: could not open \" /dev/mem\" ...\n") ;
return ;

}

virtual base = mmap (NULL, HW REGS SPAN, (
HW REGS BASE) ;

PROT READ PROT WRITE) , MAP SHARED, fd ,

if (virtual base == MAP FAILED) {
printf ("ERROR: mmap() failed ...\n"
close (fd) ;

return ;

);

h2p lw led addr= (unsigned long)virtual base + (
LED PIO BASE) & (unsigned long) (HW REGS MASK)) ;

h2p Iw sw addr= (unsigned long) virtual base + (
DIPSW_PIO_BASE) & (unsigned long) (HW REGS MASK)) ;

seven seq addr [0] = (unsigned long)virtual base
SEVEN SEG 0 BASE) & (unsigned long) (HW REGS MASK)) ;

seven seg addr [1]= (unsigned long) virtual base
SEVEN SEG I BASE) & (unsigned long) (HW REGS MASK)) ;

seven seq addr [2]= (unsigned long)virtual base
SEVEN SEG 2 BASE) & (unsigned long) (HW REGS MASK)) ;

seven seg addr[3] = (unsigned long) virtual base
SEVEN_SEG_3_BASE) & (unsigned long) (HW REGS MASK)) ;

seven seq addr [4] = (unsigned long) virtual base

SEVEN_SEG_4_BASE) & (unsigned long) (HW REGS MASK)) ;
seven seq addr [5] = (unsigned long) virtual base

SEVEN_SEG_5_BASE) & (unsigned long) (HW_REGS MASK)) ;

(unsigned long) (ALT LWFPGASLVS OFST +

(unsigned long) (ALT LWFPGASLVS OFST

+ ((unsigned long) (ALT LWFPGASLVS OFST

(unsigned long) (ALT LWFPGASLVS OFST +

+ ((unsigned long) (ALT LWFPGASLVS OFST +

(unsigned long) (ALT LWFPGASLVS_OFST +

(unsigned long) (ALT LWFPGASLVS_OFST +

(unsigned long) (ALT LWFPGASLVS_OFST +

h2f virtual base = mmap (NULL, HW FPGA AXI SPAN,
fd, ALT AXI FPGASLVS OFST) ;

if (h2f virtual base == MAP FAILED) {

(

if (munmap(h2f virtual base , HW FPGA AXI SPAN) ! = 0) {
printf ("ERROR: munmap() failed .+.\n") ;
close (fd) ;
return ;

PROT READ I PROT WRITE) , MAP SHARED,

}

printf ("ERROR: mmap ()

close (fd) ;

return ;

failed for h2f mapping . . . \n");

rl reset= (unsigned long)h2f virtual base + ((unsigned long
rl reg= (unsigned long)h2f virtual base + ((unsigned long
r:L data high= (unsigned long)h2f virtual base +

OGPU QUAD STORE DATA HIGH BASE)) ;
rl data low= (unsigned long)h2f virtual base

OGPU QUAD STORE DATA LOW BASE)) ;
+

rl_ack= (unsigned long)h2f virtual base + ((unsigned long

) (OGPU RESET BASE)) ;
) (OGPU QUAD STORE REQ BASE)) ;

((unsigned long
(

)

(

(unsigned long

) (OGPU QUAD STORE ACK_BASE)) ;

)) ;
rI command=(unsigned long)h2f virtual base+ ((unsigned long) (OGPU RASTER UNIT COMMAND_BASE

rl vOx= (unsigned long)h2f virtual base + (
rl_vOy= (unsigned long)h2f virtual base + (
rl vOz= (unsigned long)h2f virtual base + (
rl vlx= (unsigned long)h2f virtual base + (
rl vly= (unsigned long)h2f virtual base + (
rl vlz= (unsigned long)h2f virtual base + (
rl v2x= (unsigned long)h2f vIrtual base + (
rl v2y= (unsigned long)h2f virtual base + (
rl v2z= (unsigned long)h2f virtual base + (
rl clip rect0= (unsigned long)h2f

OGPU RASTER UNIT CLIP RECTO BASE)) ;

(unsigned long) (
(unsigned long) (
(unsigned long) (
(unsigned long) (
(unsigned long) (
(unsigned long) (
(unsigned long) (
(unsigned long) (
(unsigned long) (
virtual base +

OGPU RASTER UNIT VOX BASE
OGPU–RASTER UNIT VOY BASE
OGPU RASTER UNIT VOZ BASE
OGPU–RASTER–UNIT VIX BASE
OGPU RASTER UNIT VIY BASE
OGPU RASTER UNIT VIZ BASE
OGPU–RASTER–UNIT V2X BASE
OGPU RASTER UNIT V2Y BASE
OGPU–RASTER UNIT V2Z BASE

((unsigned long

)) ;

)) ;

)) ;

)) ;

)) ;

)) ;

)) ;

)) ;

)) ;

(

)

133

(

rl clip rectl= (unsigned long)h2f virtual base
OGPU RASTER UNIT CLIP RECTI BASE)) ;

+

rl tile0= (unsigned long)h2f virtual base + ((unsigned long
rl tilel=(unsigned long)h2f virtual base + ((unsigned long
rl depth coef a= (unsigned long)h2f virtual base

OGPU RASTER UNIT DEPTH COEF A BASE)) ;
rl depth coef b= (unsigned long)h2f virtual base

OGPU RASTER UNIT DEPTH COEF B BASE)) ;
rl depth coef c= (unsigned long)h2f virtual base

OGPU RASTER UNIT DEPTH COEF C BASE)) ;
rl quad buffer addr high= (unsigned long

OGPU RASTER UNIT QUAD BUFFER ADDR HIGH BASE)) ;
rl quad buffer addr low= (unsigned long

OGPU RASTER UNIT QUAD BUFFER ADDR LOW BASE)) ;
rl status= (unsigned long)h2f virtual base

OGPU RASTER UNIT STATUS BASE)) ;

+

+

+

(
unsigned long

(

(

(

(

(

(

) (OGPU RASTER UNIT TILEO BASE

) (OGPU RASTER UNIT TILEI BASE
((unsigned long

)) ;
)) ;

)

)

)

(unsigned long

(
unsigned long

)h2f virtual_base unsigned long
)

)

)

)h2f virtual base unsigned long

unsigned long

int sw = alt read hword(h2p lw sw addr) & 0x3FF;
static unsigned f counter = 0 ;

f counter++ ;

if (sw&4) //

{

information ON

static clock t tC)=0 :

double seconds = ((double)(clocko-to)) /CLOCKS PER SEC ;
if (seconds>0 . 25)
{

unsigned fps= (unsigned) ((f counter/seconds) * 1000) ;
tC)=clock () ;

if (SW&2)
{

//Total frame number after switching to this mode

alt write word (seven seg addr [0],d2ss (f counter , 0)) ;
alt write word (seven seq addr [1],d2ss (f counter , 1)) ;

alt write word (seven seq addr [2],d2ss (f counter , 2)) ;
alt write word (seven seq addr [3],d2ss (f counter, 3)) ;

alt write word (seven seq addr [4],d2ss (f counter, 4)) ;
alt_write word (seven_seq_addr [5] , d2ss (f_counter , 5)) ;

}

else //FPS
{

alt write word (seven seq addr [0],d2ss (fps , 0)) ;
alt write word (seven seq addr [1],d2ss (fps , 1)) ;
alt write word (seven seq addr [2],d2ss (fps , 2)) ;
alt write word (seven seq addr [3],d2ss (-1, 0)) ;
alt write word (seven seq addr [4],d2ss (fps , 3)) ;
alt write word (seven_seq addr [5],d2ss (fps , 4)) ;
f counter=0 ;

}

}

// control led
if (sw&1) *(uint32 t *)h2p lw led addr = led mask;
else *(uint32_t *)h2p_lw_led addr = -led_mask;

// update led mask
if (led direction == 0) {

led mask <<= 1 ;
if (led mask == (0x01 << (LED PIO DATA WIDTH-1)))

led direction = 1 ;
}else{

led mask >>= 1 :

if (led mask == 0x01) {
led direction = 0 ;

}

if (sw& 1) 1 /if sw0 is one, do OGPU HARDWARE APPROACH

static struct ogpu box box;
static struct ogpu tile tile;

{

uint8 t command ;
uint16_t vOx=ogpu uf ix float(vO [0] [0]) ,

vOy=ogpu ufix float(vO [0] [1]) ,
vOz=ogpu ufix float (vo [0] [2]) ;

uint16 t vlx=ogpu ufix float (vl [0] [0]) ,

134

vly=ogpu uf ix float (vl [0] [1]) ,

vlz=ogpu ufix float (vI [0] [2]) ;
uint16 t v2x=ogpu ufix float(v2 [0] [0]) ,

v2y=ogpu uf ix float(v2 [0] [1]) ,
v2z=ogpu ufix float(v2 [0] [2]) ;

uint32 t clip rectO , clip rectl,tile0,tilel ;
box . xo=setup->softpipe->cliprect [viewport index].minx ;

box . yO=setup->softpipe->cliprect [viewport index] . rainy ;
box .xl=setup->softpipe->cliprect [viewport index] . maxx ;
box , y 1=setup->softpipe->cliprect [viewport index] .maxY ;
//p,i„t£ ("clip ,e,t , pO (gd, td) pl (gd, gd) \n" ,xO,yO,x1,y1) ;

:i!:–::::?:}::i=–£i:::t::: : ::: : :: : :iE; I E ===: ii:::t== E ::: : :: iE::::: } ;] ; IT ! ;!
tile . xC)=setup–>softpipe->cliprect [viewport index] .minx;
tile .yO=setup->softpipe->cliprect [viewport index] .miny ;
tile.xl=tile.x0+62 ;
tile.yl=tileoy0+62 ;
LileO= (tile , xo<<16)1(tile.yO&OxFFFF);//xO I ya tile of 64x64 pixels
tilel=(tile .xl<<16) 1 (tile.yl&oxrEFF) ;//xll vl
//printf ("tile: pO (gx) pl (8x) \n" ,tileO,tile1) ;

//printf ("status : tx\n" , alt read word (rl status)) ;
alt write word(rl vox, vOx) ; alt_write_word (rl_vOy,vOy) ; alt_write_word (rl_vOzrvOz) ;

; } : : : i : : :: : : : : : : : i : : : i : : ; = t : :: : i E : :: : : 3 : : : :: : : : : ii : : : it :: : it : :: : :: : : : :: : : : : : : : :
alt write word(rl_clip_rectO ,clip_rectO) ; alt_write_word (rl_clip_rectll cllp_rectl) ;alt write word(rl tileO,tileO) ; alt write WOrd (rl_tilelrtile1) ;
//ogpu depth coef(vO,v1,v2 , &coef) ;
alt write word (rl depth coef a, 0) ;
alt write word(rl depth coef b, 0) ;
alt write word (rl depth coef c, 0) ;
alt write_word (r 1_quad_buffer_addr_high , 0) ; alt write_word (r 1_quad_buffer_addr_low , 0) ;

alt write word(rI reset, 0) ; // reset gpu (active low)
alt–write_word(rl_reset, 1) ; // active gpu

static struct ogpu quad buffer quad buffer ;
#define OGPU HW TILE SIZE 64 //by now, it's limited to TILE: SIZE in sp_tile_cache.h

stru–ct –ogpu quad buffer cell _qb [OGPU_HW_TILE_SIZE/2*OGPU_HW_TILE_SIZE:/2] ;
memset ((void*) qb , 0 , sizeof (struct

ogp. qu,d_b,ff er_,eII) *OC,PU_HW_TILE_SIZ£/2*OGPU_HW_TILE_SIZE/2) ;

quad buffer ob=_qb;

do//TILE LOOP

{

quad buffer . n=0 ;

quad buffer . tile=tile ;

failed\n") ; return ; }
/ /if (ogpu quad_buffer_alloc (&quad_buffer , tile) <0) { printf ("Memory allocation

unsigned ibuf=0 ;

uint32 t dataH,datal, st, rt ;
command=0xAA ;

alt write word (rI command , command) ;

st=alt read word(rl status) ;

white(Tst&1) ==0) //while DONE bit is zero

{
st=alt read word (rl status) ;

rt=alt read_word (rl_reg) ;
if (rt)
{

data II=alt read word(rl data high) ;
dataL=alt–read word (rl data low) ;
alt write word(rl ack, 1) ;
//usleep (10000) ;
while (alt read word (rI reg)) ; // while reg signal is high
alt write word (rl ack, 0) ;

/ /m=m bufTibuf++]=(uint64_t) ((((uint64_t)dataH) <<32) 1 (datal)) ;
quad buffer . b[ibuf]+x=(uint16 t)(dataH>>16) ;
quad buffer . b [ibuf] . y= (clint 16_t) (dat:aH&0xFFFF) ;
quad buffer . b [ibuf] .mask= (uint8_t)(dataL&0xOF) ;
ibuf++ ;

}

if (ibuf>=8192) break;
}

st=alt read_word (rl_status) ;

quad buffer . n=ibuf ;

conunand=OxA5; //PREPARE FOR NEXT RASTER

135

alt write word (rl command, command) ;
do

{
st=alt read word (rI status) ;
//printf ("status (prepare) (gd us) :
//usleep (i) ;
//i+=100 ;

}while ((st&1) 1=0) ; //while DONE bit is one

gx\n " , i , s) ;

//
//
//
//
//
//
//

printf ("e0\tx0 : td yO : 8d\txl : %d y1 : 8d\n"
"el\tx0 : gd yO : %d\tx1 : %d yl : gd\n"
"e2\tx0 : gd yO : 8d\txl : gd yl :8d\n" , eO .xO , eO .yO , eO . xI, eO .y1,

el . xO,e1.yO,el.xl,e1.y1 ,
e2.xO,e2.yO,e2.x1,e2 . yI) ;

printf ("BO (8 . If , 8 . If) \n "
"BI(%.If,8.If)\n" , box . xO , box . yO , box . xl , box .y1) ;

unsigned q, s , m, c ;

#define OGPU HW QUAD SIZE MAX QUADS
struct quad header sp_quad[OGPU_SOFT_QUAD_SIZE] ;
struct quad header *sp quad_ptrs [OGPU_SOFT_QUAD_SIZE] ;

m=quad buffer + n ;
C=0

s=OGPU HW QUAD SIZE ;

//
//

do//MEMORY LOOP -- QUAD BUFFER READING AND SOFTPIPE NEXT STAGE INTERFACING
{

if (m<s) s=m;
£or (q=O ; q':S ; q++ r C++)
{

setup->quad [q] . input . xO=quad buffer . b [c] . x ;
setup->quad [q] . input . yO=quad buffer . b [c] .y ;

setup–>quad [q] . input . layer=layer ;

setup->quad [q] . input . viewport index=viewport_index ;
setup->quad [q] . input . coverage [0] =0 ;

setup->quad [q] , input . coverage [1] =0 ;
setup–>quad [q] . input . coverage [2] =0 ;
setup–>quad [q] . input . coverage [3] =0 ;
setup–>quad [q] . input . facing=setup->facing ;
setup–>quad [q] . inout ,mask=quad buffer . b [c] . mask ;
setup–>quad [q] . output . depth [0] =0 ; / /quad buffer .bIc) . depth [0] ;
setup->quad [q] . output . depth [1] =0 ; / /quad buffer . b [c] . depth [1] ;
setup–>quad [q] . output . depth [2] =0 ; / /quad buffer . bIc] . depth [2] ;
setup->quad [q] . output . depth [3]=0 ; / /quad buffer . b[c] . depth [3] ;

// printf ("Dtd\t8f\t8f\n\t8f\t8f \n\n" , c , quad buffer . bIc] . depth [0] ,
/ / quad buffer , b[c] . depth [1] , quad_buffer . b [c) . depth [2] ,

/ / quad buffer . b[c] , depth [3]) ;
setup

>quad [q] . output , stencil [0] =0 ; / /quad buffer .b[c] . stencil [0] ;
setup-

>quad [q] . output . stencil [1]=0 : / /quad buffer .bIc] . stencil [0] ;
setup-

>quad [q] . output , stencil [2] =0 ; / /quad buffer .b [c] + stencil [0] ;
setup-

>quad [q] , output . stencil [3] =0 ; //quad buffer .b[c] . stencil [0] ;
setup–>quad [q] . coef=setup–>coef ;
setup–>quad [q] . posCoef =&setup->posCoef ;

}

if (s) pipe–>run (pipe, S

m-=s ;
}while (m) ;

tile.x0+=64 ;
tile.xl=tile.x0+62 :

if (tile , xC)>=setup->softpipe->cliprect [viewport index] .maxx)
{

setup->quad ptrs [q]=&setup->quad [q) ;

setup->quad ptrs ,);

tile.x0=0 ;
tileoxl=tile.x0+62 ;
tile.y0+=64 ;
tile+yl=tile.y0+62 ;

}

}while (tile . y 0<setup->softpipe->cliprect [viewport
}

else
{

index] .maxy) ;

// if swO is zero, do software approach

if (sw& (1<<9)) // if one, ogpu software model
{

//
//

static unsigned counter=0 ;
printf ("Tri gd\nvQ\tx :8.If\ty:g.If\tz : % .If\tw:8.If\n"

136

//
//
//

''vr\tx,t.r£\ty,8.r£\tz:8.r£\tw:%.If\n"
"v2 \tx,8.If\ty,8.If\tz : g . If \tw : % . If \n\n '’ , counter++ r

vO[O][0],v0[0j[1],vO [0]

[2]rVO[0] [3]I
// V 110] [0] 1 Vl [0] [1] / V 1 tO]

[2] , vl [0] [3] ,

[2]rV2 [0] [31) ;
// V2[O][O]rv2[O][1]rV2 [0]

start–raster=0 ’ next–quad= 0 ’ quaFt–JrFly;;J:nJ;Ii:;;::::JJ;rt ::;;0 ;0 } ledge_test=0 ;
static ogpu bit edge_maskO []={0 , 0 , 0 , 0} ;
static ogpu bit edge_mas}{1 []={0,0,0,0} ;
static OgpU bit edge_mask2 [] ={0 , Or OrO } ;
static ogpu bit clock=0 ;
static ogpu bit draw quad=0 ;
static ogpu bit discard quad=0 ;
static ogpu bit quad_mask[] ={0 , 0 , 0 , 0} ;
static ogpu bit depth_ready=0 ;
static ogpu bit depth test=0 ;
static ogpu bit store quad=0 ;
static ogpu bit quad stored=0 ;
static ogpu bit done=0 ;
static ogpu bit busy=0 ;
static ogpu command cmd=OGPU CMD_RASTER;
static struct ogpu edge eO,e1,e2 ;
static struct ocgpu box box ;
static struct ogpu quad quad;
static struct ogpu tile tile;
static struct ogpu depth_coef coef ;
static struct ogpu depth_quad depth_quad;
static struct ogpu quad_buffer quad_buffer ;

#de£i„e OGPU TILE SIZE–64 //by now, it's limited to TILE_SIZE in sp_tile_cache'h
str,.,t o;pu qi,d_buffer_cell _qb [o(,Pu_TrLE_sizE/2*OGPU_TiLE_SiZE/2] ;

statIC ogpu bit

ogpu depth coef(vO , vl ,v2 , &coe£) ;
tile . xO=setup->softpipe–>cliprect [viewport_index] . minx ;
tile . yO=setup_>softpipe->cl iprect [viewport_index] . rainy ;

box , xO=setup->softpipe->cliprect [viewport_index] . minx ;
box . yo=setup–>softpipe->cliprect [viewport_index] . minY ;

box . xI=setup–>soft_pipe->cliprect [viewport_index] . maxx ;

box . y 1=setup->softplpe->cliprect [viewport_index] • maxY ;

tile , xl=tile . xD+62 ; tileoyl=tile.yC)+62 ;

quad buffer . b=
do//TILE LOOP
{

_qb ;

clock=0 ;
quad buffer . n=0 ;
quad buffer . tile=tile ;

unsigned next_raster= 1 ;

allocation failed\n") ; return; }
/ /if (ogpu quad_buffer_a11oc (&quad_buffer , tile) <0) { printf ("Memory

do//OGPU LOOP -- behavior algorithm
{

implementation

if (next raster)
{

if (! done)
{

cmd=OGPU CMD RASTER;
next raiter=o ;

}

else
{

}

cmd=OGPU CMD PREPARE ;

c)gpu raster control (clock , cmd , setup_done , end_tile , quad_readY , depth_readY ! quad_stored ,
draw quad , discard_quad ,

&start raster , &next_quad , &edge_test , &depth_test p & store_quad /
&busy , &done) ;

[2])vl, (const float (*)[2])v2 ,
ogpu setup(clock, start_raster, (const float (*) [2])VOr (const float (*)

&e0 , &el , &e2 , &setup done) ;

ogpu quad generator (clock, next_quad, box, tile,
&quad ready , &end_tile, &quad) ;

137

ogpu quad_edge_test (clock , eO , quad , edge_test , &edge_mask0 , &edge_readY tO]) ;

ogpu quad_edge_test (clock , el , quad , edge_test , &edge_mask1 , &edge_readY [1]) ;

ogpu quad_edge_test (clock , e2 , quad , edge_test , &edge_mask2 , &edge_readY [2]) ;

ogpu–triangle–edge–test (clock’ &edge–ready ’ &edge–maskO ’ &edge–mask1 ’;qe::Jl:aa;k , &’draw_quad , &discard_quad) ;

ogpu quad depth test (clock, quad, depth_test,coef ,
&depth_ready , &depth_quad) ;

0 g P U q U a d S t O r e (C 1 0 C k r & q U a d][1[1 a S k r quad r start raster rSt o;;uJJa:cJ::: /:;f:JJJ;f£r) ;

clock’=1 ;
}while (! done I ! next_raster) ;

//
//
//
//
//
//
//

p,i.tf (",O\t*O , 8d yO , gd\t'1 ' gd yr : 8d\n"
"el\txO , gd yO , %d\txl : gd y1 : 8d\n"
"e2\tx0 : gd yO : 8d\tx1 : 8d yI : td\n" , eO . xO I eO . YO leO . xl r eO 'Y1 ,

el .xO,eloy0,el+xl,e1.y1 ,
e2.xO,e2 .yO,e2.x1,e2.y1) ;

print£ (" BO (t . lr , 8 . r£) \n "
"Br(%.1£ , g . If) \n '’ , box. XO , box . yO , box .XlrbOX.y1) ;

unsigned q, s ,m, c ;

#define OGPU SOFT QUAD SIZE MAX QUADS
struct quai heaaer sj_quad [OGPU_SOFT_QUAD_SIZE] ;

struct quad header *sp_quad_ptrs [OGPU_SOFT_QUAD_SIZE] ;

m=quad buffer . n;
c=0
s=OGPU SOFT QUAD_SIZE ;

//
//

INTERFAC ING

do//ME.MORY LOOP -– QUAD BUFFER READING AND SOFTPIPE NEXT STAGE

{

if (m<s) s=m;
for (q= 0 ; q<S ; q++ r c++)

{

setup–>quad [q] . input . xC)=quad buffer .b[c]• x ;

setup–>quad [q] . input . y0=quad_buffer + b [c] nY ;

setup–>quad [q] . input . layer=layer ;
setup_>quad [q] . input . viewport_index=viewport_index ;

setup–>quad [q] . input . coverage [0] =0 ;

setup–>quad [q] . input . coverage [1] =0 ;
setup–>quad [q] . input . coverage [2] =0 ;
setup->quad [q] . input . coverage [3] =0 ;
setup->quad [q] . input . facing=setup->facing ;
setup–>quad [q] . inout . mask=quad buffer . b [c] . mask ;

setup–>quad [q] . output . depth [0] =0 ; //quad_buffer . b [c] . depth [0] ;
setup–>quad [q] . output . depth [1]=0 ; / /quad_buffer . b [c] • depth [1] ;

setup->quad [q] . output . depth [2] =0 ; / /quad_buffer . b [c] • depth t 2] ;

setup->quad [q] . output . depth [3] =0 ; / /quad_buffer . b [c] . depth [3] ;
pri„t£ ("D%d\t8f \t%f\n\t%f\t8f\n\n" , C , quad_buffer . b[c] . depth I O] f

quad buffer . b [c] . depth [1] , quad_buffer . bIc I • depth t 2] r
quad buffer . b[c] .depth [3]) ;

setup->quad [q] . output . stencil [0] =0 ; / /quad_buffer . b [c] . stencil 1 0] ;
setup–>quad [q] . output . stencil [1] =0 ; / /quad_buffer . b [c] . stencil tO] ;
setup->quad [q] . output . stencil [2] =0 ; / /quad_buffer . b [c] . stencil t 0] ;
setup->quad [q] . output . stencil [3] =0 ; / /quad_buffer . b [c] . stencil [0] ;

setup->quad [q] . coef=setup->coef ;

setup–>quad [q] . posCoef =&setup->posCoef ;

//
//
//

}

if (s) pipe->run (pipe, setup->quad_ptrs , s) ;
m-=s ;

}while (m) ;
tile.x0+=64 ;
tile.xl=tile.x0+62 ;
if (tile . xO>=setup->softpipe->cliprect [viewport_index] . maxx)

setup->quad ptrs Iq] =& setup->quad [q] ;

tile . xC)=0 ;
tile,xl=tile.x0+62 ;
tile,y0+=64 ;
tile.yl=tile.y0+62 ;

}

}while (tile . yO''setup->softpipe–>cliprect [viewport_index] ' maxY) ;

//ogpu quad_buffer_free (&quad_buffer) ;

138

}

else sp_setup tri(setup,vO,vl,v2) ; // if sw9 is zero, use softpipe original functIon
}

if (munmap (virtual base , HW REGS SPAN) ! = 0) {
if (munmap(h2f_virtual base, HW_FPGA_AXI SPAN) ! = 0) {

printf ("ERROR: h2f munmap() failed ..+\n"
close(fd) ;
return ;

);

}

printf (
close (fd
return ;

" ERROR :

);
munmap () failed . . . \n");

}

else
{

if (munmap (h2f virtual base , HW FPGA AXI SPAN) ! = 0) {
printf ("ERROR: h2f munmap() failed . . . \n"
close (fd) ;
return ;

);

}

}

close(fd) ;
//T£ST DEI END-

)
//--OPENGPU

139

<?xml version=" 1.0 '’ encoding="UTF-8" ?>
<system name= " § $ {FILENAME } " >
<component

name= " $ $ { FILENAME } "
displayName= " $ $ {FILENAME } "

version= " 1 . 0 "
description= " "
tags= " "
categories= "System" />

<parameter name="bonusData ">< ! [CDATA [bonusData
{

element alt vip itc 0
{

datum sort Index
{

value = "11" ;
type = "int" ;

}
datum sopceditor expanded

value = "1" ;
type = "boolean" ;

{

}
}
element alt vip vfr vga

datum sort Index

value = "10" ;

{

type = "rnt" ;

{

}

datum sopceditor expanded

value = "1" ;
{

type = "boolean" ;

}

>

element alt vip vfr vga . avalon slave
{

datum lockedAddres s
{

value = " 1 " ;

type = "boolean" ;

}
datum baseAddress

value = "256" ;
{

type = "String" ;
}

}

element button pto
{

datum sort Index
{

value = " 6 " ;

type = "int" ;

}

datum sopceditor expanded
{

value = "1" ;
type = "boolean" ;

}
}
element button pio . sl

{
datum lockedAddres s
{

value = " 1 " ;

type = "boolean" ;

}
datum baseAddress
{

value = " 65728 " ;

type = "String" ;

}

}
element clk 0
{

datum sort Index
{

value = "0" ;
type = "int" ;

}

140

datum sopceditor expanded
{

value = " 1 " ;
type = "boolean" ;

}
}
element dbg csig
{

datum sort Index
{

value = "39" ;
type = " int" ;

}
}
element dbg ram
{

datum sort Index
{

value = "40" ;
type = "int" ;

}
}
element dipsw plo
{

datum sort Index
{

value = "5" ;
type = "int" ;

}
datum sopceditor expanded
{

value = "1" ;
type = "boolean" ;

}
}
element dipsw pto . external_connection
{

datum tags
{

value =

type = "String
}

}
element dipsw plo . sI
{

datum lockec]Address
{

value = "1" ;
type = "boolean" ;

}
datum baseAddress
{

value = "65664" ;
type = "String" ;

}
}
element hps 0
{

datum sort Index
{

value = " 1 " ;
type = "int" ;

}
datum sopceditor expanded
{

value = "1" ;
type = "boolean" ;

}
}
element hps 0 .f2h axi slave
{

datum baseAddress
{

value = "0" ;
type = "String'’ ;

}
}
element intr capturer_0
{

datum sort Index
{

value = "9" ;
type = "int" ;

141

}

datum sopceditor expanded

value = "1" ;
type = "boolean" ;

{

}
}
element intr capturer 0 . avalon slave 0

datum lockedAddres s

{
value = " 1 " ;
type = "boolean" ;

}
datum tags

value = " " ;
type = "String" ;

{

}
datum baseAddress

value = "196608" ;
type = "String" ;

{

}
}
element jtag uart

datum sortIndex

value = "7" ;
type = "int" ;

{

}
datum sopceditor expanded

value = " 1 " ;

}

{

type = "boolean" ;
}

{

}
}
element led plo

{
value = "4 " ;
type = "int" ;

{

}
datum sopceditor expanded

value = "1" ;
{

type = "boolean" ;
}

}
element led plo . sl
{

datum lockedAddres s

{
value = "1" ;
type = "boolean

value = " 1 " :
{

datum lockedAddres s

}
datum baseAddress

type = "boolean" ;

value = " 131072 " ;
type = "StrIng" ;

value = "65600" ;

datum sort Index

datum baseAddress

type = "String" ;
}

datum sort Index

element jtag uart . avalon jtag slave

{

}

{

element master non sec

{
value = "8 " ;
type = "int" ;

{

{

}

{

142

}

datum sopceditor expanded
{

value = " 1 " ;
type = "boolean" ;

}
}
element master secure
{

datum sort Index
{

value = "2 " ;
type = "int" ;

}
datum sopceditor expanded
{

value = "1" ;
type = "boolean" ;

}
}
element ogpu quad store ack
{

datum sort Index
{

value = "44" ;
type = "rnt" ;

}
}
element ogpu quad store ack . sI
{

datum baseAddress
{

value = "48 " ;
type = "String" ;

}
}
element ogpu quad store data high
{

datum sort Index
{

value = "42 " ;
type = "int" ;

}
}
element ogpu quad store data high . sl
{

datum baseAddress
{

value = " 16 '’ ;
type = "String" ;

}

>
element ogpu quad store data low
{

datum sort Index
{

value = "43" ;
type = " int" ;

}
}
element ogpu quad store data low esl
{

datum baseAddress
{

value = "32" ;
type = "String" ;

}
}
element ogpu quad store reg
{

datum sort Index
{

value = " 41 " ;
type = "int" ;

}
}
element ogpu raster_unit clip rect0
{

datum sort Index
{

value = "21" ;
type = "int" ;

143

}

element ogpu raster unit clip rect=0 . sl
{

datum baseAddress

value = "65712" ;
{

type = "String" ;
}

}
element ogpu raster unit clip rectl

datum sort Index
{

{
value = "22" ;
type = '’rnt" ;

}
}
element ogpu raster unit clip rect1, sl

datum baseAddress

value = "65728" ;
{

type = "String" ;
}

}

{

{

}
}

{

{

}
}

{
datum sort Index

value = "25" ;
type = " Int" ;

{

}
}
element ogE>u_raster_unit_depth coef a . sl
{

datum baseAddress
{

value = "65776" ;
type = "String" ;

}

datum sort Index

value = "65696" ;
type = "String" ;

value = "20 " ;

datum baseAddress

element ogpu raster unit depth coef a

element ogpu raster unit command

type = " Int" ;

element ogpu raster unit command , sl

{

}
element ogpu raster unit depth coef b
{

datum sort Index
{

value = ’'26" ;
type = " int" ;

}
}
element ogpu raster unit depth coef b, sl
{

datum baseAddress
{

value = " 65792 " ;
type = "String" ;

}
}
element ogpu raster_unit depth coef c
{

datum sort Index

value = "27" ;
type = "int" ;

{

}
}

element ogpu raster unit depth coef c , sl
{

144

datum baseAddress
{

value = "65808'’ ;
type = "String" ;

}
}
element ogpu_raster_unit quad buffer addr high

datum sort Index

value = '’29 " ;
{

type = "int" ;
}

}
element ogpu_raster_unit_quad_buffer addr high . sl

datum baseAddress

value = "65840" ;

{

{

type = "String" ;
}

)
element ogpu_raster_unit_quad_buffer_addr low

datum sort Index

value = "28 " ;
{

type = " int" ;

}

{

}

{

type = "int" ;

{

}

{

type = "String" ;
}

}

{

{

}
}
element ogpu raster unit tile0 . sl
{

{
value = " 65744 " ;
type = "String'’ ;

value = " 19 " :

datum sort Index

}

element ogpu_raster_unit status

datum baseAddress

element ogpu raster_unit status . sl

element ogpu_raster_unit_quad_buffer_addr low . sl

value = "65824" ;
type = "St:ring" ;

{

datum sort Index

}

datum baseAddress

value = "65680" :

{

}

datum baseAddress

element ogpu raster unit tile0

value = "23" ;
type = "int" ;

}

{

}
element ogpu_raster unit tile1

datum sort Index

value = "24 " ;
type = "int" ;

{

{

{

}
}
element ogpu raster unit tile1, sl
{

datum baseAddress
{

value = " 65760 " ;

145

}

}

element ogpu raster_unit_vOx
{

datum sort Index

value = " 30 " ;
type = "int" ;

{

}
}
element ogpu raster_unit_vOx , sI
{

datum baseAddress
{

value = "65536" ;
type = "String" ;

}
}
element ogpu raster unit_vOy

datum sort Index
{

{
value = " 31 " ;
type = '’int" ;

}

}

element ogpu raster_unit_vOy . sl

datum baseAddress
{

value = " 65552 " ;

type = "String" ;

{

}
}
element ogpu raster unit_vOz
{

datum sort Index

value = "32 " ;
type = "int" ;

}

{

}

element ogpu raster_unit_vOz . s 1

datum baseAddress
{

{

value = "65568" ;
type = "Strrng" ;

}

}

element ogpu raster_unit_vlx

datum sort Index
{

{

value = " 33 " ;
type = " int" ;

}
}
element ogpu raster_unit_vlx esl
{

datum baseAddress
{

value = " 65584
type = "String

}

type = "String" ;

}

element ogpu raster_unit_vly
{

datum sort Index

value = "34" ;
type = " int" ;

{

}

}

element ogpu raster unit_vly esl

datum baseAddress
{

value = " 65600 " ;

type = "String" ;

{

}
}

146

element ogpu raster unit_vIz
{

datum sort Index
{

value = "35" ;
type = "int" ;

}
}
element ogpu raster unit_vlz . 51

datum baseAddress
{

{
value = "65616" ;
type = "String" ;

}

}

element ogpu raster unit v2x
{

datum sort Index
{

value = "36" ;
type = "rnt" ;

}
}
element ogpu raster unit_v2x . sI
{

datum baseAddress
{

value = "65632" ;
type = "String" ;

}

}

element ogpu raster_unit_v2y
{

datum sort Index
{

value = '’37" ;
type = "int" ;

}
}
element ogpu raster unit_v2y . s 1
{

datum baseAddress
{

value = "65648" ;
type = "String" ;

}
}
element ogpu raster unit_v2z
{

datum sort Index
{

value = "38" ;
type = "int" ;

}
}
element ogpu raster_unit_v2z . sl
{

datum baseAddress
{

value = "65664" ;
type = "String" ;

}
}
element ogpu reset
{

datum sort Index
{

value = "45" ;
type = "rnt" ;

}

}

element ogpu reset . sl

{
datum baseAddress
{

value = " 64 " ;
type = "String" ;

}

}

element pII stream
{

datum sort Index

147

{

value = " 12 " ;

type = ’' int" ;

}

datum sopceditor expanded
{

value = " 1 " ;
type = "boolean" ;

}
}
element seven seq_0
{

datum sort Index
{

value = "13" ;
type = "int" ;

}

}

element seven seq 0 . sl
{

datum baseAddress
{

value = " 80 " ;

type = "String
}

}

element seven seq 1
{

datum sort Index
{

value = " 14 " ;
type = " int" ;

}
}
element seven seg_1.51
{

datum baseAddress
{

value = "64" ;
type = "StrIng" ;

}

}

element seven seq 2
{

datum sort Index
{

value = " 15 " ;

type = "int" ;

}

}
element seven seq 2 . sl

{
datum baseAddress
{

value = "48" ;
type = "Strrng" ;

}

}

element seven seq_3
{

datum sort Index
{

value = " 16 " ;
type = "int" ;

}
}
element seven seq 3 esl
{

datum baseAddress
{

value = "32" ;
type = "String" ;

}

}

element seven seq_4
{

datum sort Index
{

value = "17" ;
type = "int" ;

}
}
element seven seq 4 nsl

148

datum baseAddress
{

value = "16" ;
type = "String'’ ;

}

element seven seq 5
{

}

datum sort Index
{

value = "18" ;
type = "rnt" ;

}

element seven seq 5 . sl
{

}

datum baseAddress

value = "0 " ;
type = "String

}

element sysid qsys
{

}

datum sort Index
{

value = "3 " ;
type = "int" ;

}

datum sopceditor expanded
{

value = " 1 " ;
type = "boolean" ;

}

element sysid qsys . control slave
{

}

datum lockedAddres s

{
value = "1" ;
type = "boolean" ;

}

datum baseAddress
{

value = "65536" ;
type = "String" ;

}

}

}

]] ></parameter>
<parameter name="clockCrossingAdapter " value="HANDSHAKE" />
<parameter name="device" value="5CSEMA5F31C6" />
<parameter name="deviceFamily" value="Cyclone V" />
<parameter name="deviceSpeedGrade" value= " 6 " />
<parameter name="fabricMode" value='’QSYS" />
<parameter name= " generateLegacySim" value=" false " />
<parameter name="generationId" value="0" />
<parameter name="globaIResetBus" value=" false " />
<parameter name='’hdILanguage " value="VERILOG" />
<parameter name="hideFromIPCatalog" value="false" />
<parameter name="lockedInterf aceDefinition" value=’' " />
<parameter name="maxAdditionaILatency" value=" 1 " />
<parameter name="projectName">DEI SOC Linux FB.qpf </parameter>
<parameter name="sopcBorderPoints" value="false" />
<parameter name="systemHash" value="0" />
<parameter name="testBenchDutName" value=" " />
<parameter name="timeStamp" value="0" />
<parameter name="useTestBenchNamingPattern" value="false" />
<instanceScr ipt></instanceScript>
<interface

name="alt vip itc 0 clocked video"
internal=" alt vip itc 0 . clocked video"
type= " conduit "
dir="end" />

<interface
name="button plo external connection"
internal="but:ton plo o external connection"
type= " conduit "
dir="end" />

<interface name="clk"
<interface

name= "cIbg csig probes"

internal="clk C) .clk_in" type="clock" dir="end"/>

149

internal="dbg csig.probes"
type= " conduit "
dir="end" />

<interface
name="dbg ram probes "
internal="dbg ram . probes "
type= " conduit "
dir="end" />

<interface
name="dipsw pio external connection"
internal="dipsw plo . external_connection "
type= " conduit "
dir='’end" />

<interface
name="hps 0 h2f reset"
internal= " hps 0 ,h2 f_reset
type= " reset "
dir="start" />

<interface name="hps 0 hps_io" internal="hps_0 .hps_io" tYpe="condult'
<interface

name=" led plo external_connection"
internal=" led pto . external connection"
type= " conduit "
dir="end" />

<interface name="memory" internal="hps_0 .memorY" tYpe= "conduit " dlr="end"
<interface

name="c)gpu quad store ack external connection"
internal=''ogpu quad_store_ack, external_connection"
type= " conduit "
dir="end" />

<interface
name= " ogpu quad_store_data_high_external_connection "

internal='’ogpu quad_store_data_high . external_connection "
type= " conduit "
dir="end" />

<interface
name= " c>gpu quad_store_data_low_external_connection "
internal= ''ogpu quad_store_data_low . external_connection "
type= " conduit
dir="end" />

<interface
name=" ogp Ir quad_store_reg_external_connection"
internal="ogpu quad_store_reg . external_connection "

type= " conduit "
dir="end" />

<interface
name= " c)gpu raster_unit_clip_rectO_external_connection
internal=''ogpu raster_unit_clip_rect O . external_connection"
type= " conduit "
dir="end" />

<interface
name= " c)gpu raster_unit_clip_rect l_external_connection "

internal="ogpu raster_unit_clip_rect 1 . external_connection"
type= " conduit "
dir="end" />

<interface
name=''ogpu raster_unit_command_external_connection "

internal=''ogpu raster_unit_conunand . external_connection "
type= " conduit "
dir="end" />

< interface
name= "c)gpu raster_unit_depth_coef_a_external_connection "

internal=''ogpu raster_unit_depth_coef_a . external_connection "

type= " conduit "
dir="end" />

<interface
name= ''ogpu raster_unit_depth_coef_b_external_connection "

internal= " ogpu raster_unit_depth_coef_b . external_connection "

type= " conduit "
dir="end" />

<interface
name= " c)gpu raster_unit_depth_coef_c_external_connection "
internal="ogpu raster_unit_depth_coef_c . external_connection"
type= " conduit "
dir="end" />

<interface
name= u OgpU raster_unit_qUad_bUffer_addr_high_eXternal_COnneCtiOn "

internal= " ogpu raster_unit_quad_buffer_addr_high • external_connect to:
type= " conduit "
dir="end" />

<interface
name= " (,)gpu raster_unit_quad_buffer_addr_low_external_connection "

internal= II C)gpU raster_unit_quad_buffer_addr_lOW . external_connection

dir=" end ' />

/>

150

type= " conduit "
dir="end" />

<interface
nune="ogpu raster unit status external_connection"
internal="ogpu raster unit status . external_connection"
type= '’ conduit "
dir="end" />

<interface
name="ogpu raster unit tileo external_connection"
internal="ogpu raster unit tile0 .external_connection"
type= " conduit "
dir= "end" />

<interface
name="ogpu raster unit tilel external connection"
internal="ogpu raster unit tilel.external_connection"
type= " conduit "
dir="end" />

<interface
name="ogpu raster unit vOx external connection"
internal="ogpu raster unit vOx.external connection"
type= " conduit "
dir="end" />

<interface
name="ogpu raster_unit_vOy_external_connection "
internal="ogpu raster_unit_voy . external_connection"
type= '’ conduit
dir="end" />

<interface
name="ogpu raster unit voz external_connection"
internal="ogpu raster unit vOz . external_connection"
type= " conduit
dir='’end" />

<interface
name="ogpu raster unit vlx external connection"
internal="ogpu raster unit vlx. external_connection "
type= " conduit "
dir="end" />

<interface
name="ogpu raster_unit_vly_external_connection "
internal= " ogpu raster_unit_vly e external_connection "

type= " conduit "

dir="end" />
<interface

name="ogpu raster unit vIz external_connection
internal="ogpu raster unit vIz . external_connection "

type=" conduit "
dir= "end" />

<interface
name="ogpu raster unit v2x external_connection"
internal="ogpu raster unit v2x . external_connection "
type= " conduit "
dir= "end" I>

<interface
name="ogpu raster_unit_v2 y_external_connection '’
internal="ogpu raster_unit_v2y , external_connection"
type= " conduit "
dir= "end" />

<interface
name='’ogpu raster unit v2z external_connection"
internal='’ogpu raster unit v2z . external_connection"
type= " conduit "
dir="end" />

<interface
name="ogpu reset external connection"
internal="ogpu reset . external connection "
type=" conduit '’
dir="end" />

<interface name="reset" internal="clk 0.clk in reset"
<interface

name="seven seq 0 external connection"
internal=" seven seq 0 . external connection"
type=" conduit "

dir="end" />
<interface

name="seven seq 1 external connection"
internal=" seven seg I. external connection"
type= " conduit "
dir="end" />

<interface
name="seven seq 2 external connection"
internal=" seven seq 2 . external connection"
type= " conduit
dir="end" />

type= " reset dir="end" />

151

<interface
name="seven seq 3 external connection"
internal="seven seq 3 . external_connection"
type= " conduit "
dir="end" />

<interface
name="seven seq 4 external connection"
internal=" seven seg 4 , external connection"
type=" conduit "
dir="end" />

<interface
name="seven seq 5 external connection"
internal=" seven seq 5 , external connection"
type= " conduit "
dir="end" />

<module name=" alt vip_itc_0 " kind="alt_vip_itc" version=" 14 .O" enabled=" 1 " >
<parameter name=" ACCEPT COLOURS_IN_SEQ" value="O" />
<parameter name=" ANC LINE" value="0" />
<parameter name=" AP LINE" value="O" />
<parameter name="BPS" value="8" />
<parameter name="CLOCKS ARE SAME" value="O" />
<parameter name="COLOUR PLANES ARE_IN_PARALLEL" value="1" />
<parameter name="FAMILY" value="CYclone V" />
<parameter name="FIELDO ANC LINE" value="O" />
<parameter name="FIELDO V_BACK_PORCH" value=" 0 " />
<para„,eter name="rIELDO V BLANK" value="O" />
,.parameter name="FIELDO v FRONT_PORCH" value="O" />
<parameter name="FIELDO V RISING EDGE" value=" O " />
<parameter name=''FIELDO V SYNC LENGTH" value="O" />
<parameter name="FIFO DEPTH" value="1920" />
<parameter name="F FALLING_EDGE" value="O" />
<parameter name="F RISiNG_EDGE" value="O" />
<parameter name="GENERATE SYNC" value="O" />
<parameter name="H ACTIVE PIXELS" value="l024" />
<parameter name="H BACK PORCH" value="160" />
<parameter name="H BLANK" value="O" />
<parameter name="H FRONT_PORCH" value="24" />
<parameter name=" H SYNC_LENGTH" value=" 136 " />
<parameter name="INTERLACED" value=" O " />
<parameter name="NO OF MODES" value='’1" />
,'parameter name="NUMBER OF COLOUR PLANES" value="4" />
<parameter name="STD WIDTH" value="1" />
<parameter name="THRESHOLD" value="1919" />
<parameter name="USE CONTROL" value="O" />
<parameter name="USE EMBEDDED SYNCS " value=" O " />
<parameter name="V ACTIVE_LINES" value="768" />
<parameter name="V BACK PORCH" value=" 29 " />
<parameter name="v BLANK" value="0" />
<parameter name="V FRONT PORCH" value="3" />
<parameter name="V SYNC_LENGTH" value="6" />

< /module>
<module name="alt vIp vfr vga" kind="alt_vip_vfr" version="14.O" enabled="1">

<parameter name= " AUTO CLOCK_MASTER_CLOCK_RATE" value= " 50000000" />
,'parameter name=" AUTO CLOCK RESET_CLOCK_RATE" value=" 130000000" />
,'parameter name="BITS PER PIXEL PER COLOR_PLANE" value="8" />
<parameter name="CLOCKS ARE_SEPARATE" value=" 1 " />
<parameter name="FAMILY" value="Cyclone V" />
<parameter name="MAX IMAGE_HEIGHT" value="768" />
<parameter name="MAX IMAGE WIDTH" value="l024" />
<parameter name="MEM PORT WIDTH" value="128" />
<parameter name="NUMBER OF_CHANNELS_IN_PARATILEL" value="4" />
<parameter name="NUMBER OF CHANNELS IN_SEQUENCE" value="1" />
<parameter name="RMASTER BURST_TARGET" value="32" />
<parameter name="lWASTER FIFO_DEPTH" value="64" />

< /module>
<module name="button pio" kind="altera avalon_plo" version=" 16.O" enabled=" 1 ">
<parameter name="bitClearingEdgeCapReg" value=" true" /
<parameter name="bitModifyingOutReg " value=" false " />
<parameter name="captureEdge" value="true" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value=" Input" />
<parameter name="edgeType" value="FALLING'’ />
<parameter name="generateIRQ" value="true" />
<parameter name="irqType" value="EDGE" />
<parameter name="resetValue" value="O " />

>

<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value=" O " />
<parameter name="width" value="2 " />

< /module>
<module name="clk 0" kind="clock source" version="16.O" enabled="1">

<parameter name=TclockFrequency" value="50000000" />
,,parameter name="clockFrequencyKnown " value="true" />
<parameter name=" inputClockFrequency" value="O" />

152

<parameter name="resetSynchronousEdges '’ value="NONE" />
< /module>
<module

name="dbg csig"
kind="altera in system sources probes "
version= " 1 6 + 0 "

enabled= " 1 " >

<parameter name="create source clock" value="false" />
<parameter name="create source clock_enable" value="false" />
<parameter name="device family" value="Cyclone V" />
<parameter name="gui use auto index" value="true" />
<parameter name="instance id" value="CSIG" />
<parameter name="probe width" value="12" />
<parameter name="sld instance index" value="O" />
<parameter name="source initial value" value="O" />
<parameter name="source width" value="O" />

< /module>
<module

name= " tlbg ram"
kind="altera in system sources probes"
version= " 1 6 + 0 "

enabled= " 1 " >

<parameter name="create source clock" value="false" />
<parameter name="create source clock enable" value="false" />
<parameter name="device family" value="Cyclone V" />
<parameter name="gui use auto index" value="true" />
<parameter name="instance id" value="RAMO" />
<parameter name="probe width" value="91" />
<parameter name="sId instance index" value="O" />
<parameter name="source initial value" value=" O " />
<parameter name="source width" value="O" />

< /module>
<module name="dipsw plo" kind="altera avalon pio" version= " 16.O"
<parameter name="bitClearingEdgeCapReg" value="true" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value= "true" />
<parameter name="clockRate" value=" 50000000 '’ />
<parameter name="direction" value=" Input" />
<parameter name="edgeType" value="ANY" />
<parameter name="generateIRQ" value="true" />
<parameter name="irqType" value="EDGE" />
<parameter name="resetValue" value=" O " />
<parameter name="simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value= " O " />
<parameter name="width" value="lO" />

< /module>
<module name="hps 0" kind="altera hps" version="16.O" enabled=" 1 ">
<parameter name=" ABSTRACT REAL COMPARE_TEST" value="false" />
<parameter name=" ABS mM MEM INIT FILENAME" value="meminit" />
<parameter name="ACV PHY CLK ADD FR_PHASE" value="O.O"
<parameter name=" AC PACKAGE DESKEW" value='’false" />

/>

,,parameter name=" AC ROM USER ADD 0" value="0_0000_0000_0000" />
<parameter name=" AC ROM USER ADD 1 " value="O_OOOO_OOOO_IOOO" />
<parameter name=" ADDR ORDER" value="O" />
<parameter name=" ADD EFFICIENCY MONITOR" value="false" />
<parameter name=" ADD EXTERNAL SEQ DEBUG NIOS" value="false" />
<parameter name=" ADVANCED CK PHASES" value="false" />
<parameter name="ADVERTIZE SEQUENCER SW BUILD FILES" value="false" />
<parameter name=" AFI DEBUG INFO WIDTH" value="32" />
<parameter name="ALTMEMPHY COMPATIBLE_MODE" value="false" />
<parameter name=" AP MODE" value="false" />
<parameter name=" AP MODE EN" value="O" />
<parameter name=" AUTO DEVICE SPEEDGRADE" value="6" />
<parameter name=" AUTO PD CYCLES" value="O" />
<parameter name=" AUTO POWERDN EN" value="false" />
<parameter name="AVL DATA WIDTH PORT" value=" 32 , 32 , 32 , 32 , 32 , 32 ’' />
<parameter name="AVL MAX SIZE" value="4" />
<parameter name="BONDING OUT ENABLED" value="false" />
<parameter name="BOOTFROMFPGA Enable" value="true" />
<parameter name="BSEL" value="1" />
<parameter name="BSEL EN" value="false" />
<parameter name="BYTE ENABLE" value="true" />
<parameter name="C2P WRITE CLOCK ADD PHASE" value="O.O" />
<parameter name="CALIBRATION MODE" value="Skip" />
<parameter name="CALIB REG WIDTH" value="8"
<parameter name="CANO Mode" value="N/A" />

/>

<parameter name="CANO PinMuxing" value="Unused" />
<parameter name="CANI Mode" value="N/A" />
<parameter name="CANI PinMuxing" value="Unused" />
<parameter name="CFG DATA REORDERING TYPE " value="INTER_BANK" /

<parameter name="CFG REORDER DATA" value="true" />
<parameter name="CFG TCCD NS" value="2.5" />
<parameter name="COMMAND PHASE" value="O.O" />

enabled= " 1 " >

153

<parameter name="CONTROLLER LATENCY" value="5" />
<parameter name="CORE DEBUG_CONNECTION" value="EXPORT"

/parameter>

<parameter
name=„cpORT TyPE PORT" >BIdirectional , Bidirectional , Bidirectional , Bidirectional , Bidirectional I Bidirectlonal<

<parameter name="CSEL" value=" 0 " />
<parameter name="cSEL EN" value="false" />
<parameter name="CTI Enable" value= " false" />
<parNneter name="CTL AUTOPCH EN" value="false" />
<parameter name="CTL CMD QUEUE DEPTH" value="8" />
,,para„,ete, „a„,e=''CTL CSR CONNECTION" v'lu'="INTERNAL_JTAG" />
<parameter name="CTL CSR ENABLED" value="false" />
<parameter name="CTL CSR READ_ONLY" value=" 1 " />
<parameter name="CTL DEEP POWERDN EN" value="false" />
<parameter name="CTL DYNAMIC BANK ALLOCATION" value="false" />
<parameter name="CTL DYNAMrC_BANK_NUM" value="4 " />
,'parameter name=''CTL ECC AUTO CORRECTION_ENABLED" value="false" />
<parameter name="CTL ECC ENABLED" value="false" />
<parameter name=''CTL ENABLE BURST INTERRUPT" value="true" />
<parameter name=''CTL ENABLE BURST TERMINATE" value="true" />
<parameter name="cTL HRB ENABLED" value="false" />
<parameter name="CTL LOOK AHEAD DEPTH" value="4" />
<parameter name="cTL SELF_REFRESH_EN" value="false" /
<parameter name="CTL USR REFRESH_EN" value="false" />
<parameter name="c'TL ZQCAL EN" value="false" />
<parameter name="CUT NEW FAMILY TIMING" value="true" />
<parameter name="DAT DATA WIDTH" value="32" />
<parameter name="DEBUGAPB Enable" value="false" />
<parameter name="DEBUG MODE" value="false" />
<parameter name="DEVICE DEPTH" value="1" />
<parameter name="D=VICE rAMiLY PARAM'’ value=" " />
<parameter name="DISABLE CHILD MESSAGING" value="false" />
<parameter name="DISCRETE FLY BY" value="true" />
<parameter name="DLL SHARING MODE:" value="None" />
<parameter name=" DMA Enable " >No , No , No , No , No , No , No r No< /parameter>
<parameter name="DQS DQSN MODE" value="DIFFERENTIAL" />
<parameter name="DQ INPUT REG USE CLKN" value="false" />
<parameter name="DUPLICATE AC" value="false" />
<parameter name="ED EXPORT SEQ DEBUG" value="false" />
<parameter name="EMACO Mode" value="N/A" />
<parameter name="EMACO PTP" value="false" />
<parameter name="EMACO PinMuxing" value="Unused" />
<parameter name="EMACI Mode" value="RGMII" />
<parameter name="EMACI PTP" value="false" />
<parameter name="EMACI PinMuxing" value="HPS 1/O Set 0" />
<parameter name="ENABLE ABS RAM MEM_INIT'’ value="false" />
<parameter name="ENABLE BONDING" value="false" />
<parameter name="£NABbE BURST MERGE" value="false" />
<parameter name="ENABLE CTRL AVALON INTERFACE" value="true" />
<parameter name="ENABLE DELAY CHAIN WRITE" value="false" />
<parameter name="ENABLE EMIT BPM MASTER" value="false" />
<parameter name="ENABLE EXPORT SEQ DEBUG BRIDGE" value="false" />
<parameter name="ENABLE EXTRA REPORTING" value="false" />
<parameter name="ENABLE ISS PROBES" value="false" />
<parameter name="ENABLE NON DESTRUCTIVE_CALIB" value="false" />
<parameter name="ENABLE NON DES CAL" value="false" />
<parameter name="ENABLE NON DES_CAL_TEST" value="false" />
<parameter name="ENABLE SEQUENCER MARGINING_ON_BY_DEFAULT" value="false" />
<parameter name="ENABLE USER ECC" value="false" />
<parameter name="EXPORT AFI HALF CLK" value="false" />
<parameter name="EXTRA SETTiNGS" value=" " />
<parameter name="F2H AXI CLOCK_FREQ" value="50000000" />
<parameter name="F2H SDRAMO CLOCK FREQ" value="lOO" />
<parameter name="F2H SDRAMl_CLOCK_FREQ" value="lOO" />
<parameter name="F2H SDRAM2 CLOCK FREQ" value="lOO" />
<parameter name="F2H SDRAM3 CLOCK_FREQ" value=" 100 " />
<parameter name="F2H SDRAM4 CLOCK FREQ" value="lOO" />
<parameter name="F2H SDRAM5_CLOCK_FREQ" value=" 100 " />
<parameter name="F2SCLK COLDRST Enable" value="false" />
<parameter name="F2SCLK DBGRST Enable" value="false" />
,.parameter name="F2SCLK PERIPHCLK_Enable" value="false" />
<parameter name=''r2SCbK P£RIPHCLK FREQ'’ value="O" />
<parameter name="F2SCLK SDRAMCLK Enable" value="false" />
<parameter name="F2SCLK SDRAMCLK FREQ" value="O" />
<parameter name="F2SCLK WARMRST_Enable" value="false" />
<parameter name="F2SDRAM Type" value=" " />
<parameter name="F2SDRAM Width" value=" " />
<parameter name="F2SINTERRUPT Enable" value="true" />
<parameter name='’F2S Width" value=" 3 " />
<parameter name="rIX READ LATENCY" value="8" />
<parameter name="FORCED NON LDC ADDR_CMD_MEM_CK_INVERT" value="false" />
,.p,ra„,eter na„,e=''FORC£D NUM WRITE rR CYCLE SHIFTS" value="O" I>
<parameter name="FORCE DQS_TRACKING" value="AUTO" />

1)

154

<parameter name=''rORCE MAX LAT£NCY COUNT WIDTH" value="O" />
<parameter name="FORCE SEQUENCER TCL DEBUG MODE" value="false" />
<parameter name="FORCE SHADOW REGS" value="AUTO" />
<parameter name="FORCE SYNTHESiS LANGUAGE" value=" " />
<parameter name="FPGA FERIPHERAL INPUT_CLOCK_FREQ_EMACO_RX_CLK_IN" value="IOO" />
<parameter name=''FPGA PERIPHERAL INPUT CLOCK FREQ_EMACO_TX_CLK_IN" value="IOO" />
<parameter name="rPGA PERIPHERAL INPUT CLOCK_FREQ_EMACI_RX_CLK_IN" value=" 100 " />
<parameter name= ''FPGA–PERIPHERAL_INPUT_CLOCK_FREQ_EMACl_TX_CLK_IN" value=" 100 " />
<parameter

name=''FPGA PERIPHERAL INPUT CLOCK FREQ EMAC PTP REF CLOCK"
value=„ 100 „ />

,,parameter name=''FPGA PERIPHERAL INPUT CLOCK FREQ_12CO_SCL_IN" value="lOO" />
<parameter name="FPGA PERIPHERAL INPUT_CLOCK_FREQ_12Cl_SCL_IN" value=" IOO " />
<parameter name="FPGA PERIPHERAL INPUT CLOCK FREQ_12C2_SCL_IN" value=" IOO " />
,'parameter name=''FPGA PERIPHERAI. INPUT CLOCK_FREQ_12C3_SCL_IN" value="lOO" />
,'parameter name=''FPGA PERIPHERAI,_INPUT_CLOCK_FREQ_SDIO_CLK_IN" value= " 100 " />
,,parameter name="FP(,A PERIPHERAL INPUT CLOCK_FREQ_SPISO_SCLK_IN" value=" 100 " />
,,parameter name=''FPGA–PERIPHERAL INPUT CLOCK FREQ_SPISl_SCLK_IN" value=" IOO" />
,'parameter name=''FPGA PERIPHERAT. INPUT CLOCK_FREQ_USBO_CLK_IN" value='’lOO" />
<parameter name="FPGA PERIPHERAL INPUT CLOCK_FREQ_USBI_CLK_IN" value="100" />
<parameter name="FPGA PERIPHERAL OUTPUT_CLOCK_FREQ_EMACO_GTX_CLK" value=" IOO " />
<parameter name="FPGA PERIPHERAL OUTPUT CLOCK_FREQ_EMACO_MD_CLK" value= " IOO.O" />
<parameter name="FPGA–PERIPHERAL_OUTPUT_CLOCK_FREQ_EMACI_GTX_CLK" value= " 100 " />
<parameter name='’FPGA PERIPHERAL OUTPUT CLOCK FREQ EMACl_MD_CLK" value= " 100.0 " />
<parameter name="FPGA PERIPHERAL OUTPUT_CLOCK_FREQ_12CO_CLK" value= " 100 " />
<parameter name="FPGA–PERIPHERAL OUTPUT CLOCK_FREQ_12Cl_CLK" value= " 100 " />
<parameter name="FPGA PERIPHERAL OUTPUT_CLOCK_FREQ_12C2_CLK" value=" IOO " />
<parameter name="FPGA–PERIPHERAL OUTPUT CLOCK_FREQ_12C3_CLK" value=" IOO" />
<parameter name="FPGA PERIPHERAL OUTPUT CLOCK_FREQ_QSPI_SCLK_OUT" value="lOO" />
<parameter name='’FPGA PERIPHERATI OUTPUT_CLOCK_FREQ_SDIO_CCLK" value=" 100 " />
<parameter name="FPGA PERIPHERAL OUTPUT CLOCK_FREQ_SPIMO_SCLK_OUT" value="IOO" />
<parameter name="FPGA PERIPHERATI_OUTPUT_CLOCK_FREQ_SPIMI_SCLK_OUT" value=" IOO " />

<parameter
name= „GPIO Enable " >No , No , No , No , No , NO , No , No , No , Yes r No r No 1 No r NO / No r No / No 1 No , NO , No , No , No , No , No , No , No ’ No’ No ’ No’

No , NO , No , Ni, No , NO , Yes , No , No , No , No , Yes , No , No , NO , No , No , No , No , Yes , No , No , NOr NOr Yes I Yes I Nof NOr No , No , No , No , Yes , No
r No r No r No r No r No , NOr NOr No 1 No 1 NOr NOr No / No ' N

o , No< /parameter>
<parameter name="GP Enable" value='’false" />
<parameter name="H2F AXI CLOCK FREQ" value="50000000" />
<parameter name="H2F CTI CLOCK_FREQ" value=" 100 " />
<parameter name="H2F DEBUG APB CLOCK_FREQ" value=" 100 " />
,'parameter name="H2F LW AXI CLOCK FREQ" value="50000000" />
<parameter name="H2F TPIU CLOCK IN FREQ" value=" 100" />
<parameter name="HARD EMIF" value="true" />
<parameter name="HCX COMPAT MODE" value="false" />
<parameter name="HHP HPS" value="true" />
<parameter name="HHP HPS SIMULATION" value=" false" />
<parameter name="HHP HPS VERIFICATION" value="false" />
<parameter name="HLGPI Enable" value="false" />
<parameter name="HPS PROTOCOL" value="DDR3" />
<parameter name="12C0 Mode" value="12C" />
<parameter name="12C0 PinMuxing" value="HPS I/O Set 0 " />
<parameter name="12CI Mode" value="12C" />
<parameter name="12CI PinMuxing" value= "HPS I/O Set 0 " />
<parameter name="12C2 Mode" value="N/A" />
<parameter name="12C2 PinMuxing" value="Unused" />
<parameter name="12C3 Mode" value="N/A" />
<parameter name="12C3 PinMuxing" value="Unused" />
<parameter nNne="INCLUDE BOARD DELAY MODEL" value="false" />
<parameter name='’ INCLUDE MULTIRANK BOARD DELAY_MODEL" value="false" />
<parameter name="IS ES_DEViCE" value="false" />

<parameter
name= „LOANIO Enable " >No , No , No , No , No , No , No , No , No , No , No , No r No r No 1 No 1 No / No 1 No / No , No ' No , No , No , No , No , No ' No’ No ’ No
. No . No . No . NoTNo , No , No , No , No , No , No , No , No , No , No , No / No r No r No r NOr NOr NOr No / No , No , No , No , No , No , No , No , No ’ No’ No ’ No’ N

O , No , No , No , No , No , No , No , No , No , No , No , No , No , No , No , No , No , No , No , NOr NOr NOr NOr NOr NOr NOr No , No , No ' No , No , No , No , No ’ No<
/ parameter >

<parameter name="LOCAL ID WIDTH" value="8" />
<parameter name="LRDIMM EXTENDED CONFIG">0x0000 00000000000000</parameter>
<parameter name="LWH2F Enable" value="true" />
<parameter name="MARGIN VARIATION TEST" value="false" />
<parameter name="MAX PENDING RD CMD" value="16" />
<parameter name="MAX PENDING WR CMD" value="8" />
<parameter name="MEM ASR" value="Manual" />
<parameter name="MEM ATCL" value="Disabled" />
<parameter name="MEM AUTO LEVELING_MODE" value="true" />
<parameter name="MEM BANKADDR WIDTH" value="3" />
<parameter name="MEM BL" value="OTF" />
<parameter name="MEM BT" value="Sequential" />
<parameter name="MEM CK PHASE" value="O+O" />
<parameter name="MEM CK WIDTH" value=" 1 " />
<parameter name="MEM CLK EN WIDTH" value="1" />
<parameter name="MEM CLK FREQ" value="400oO" />
<parameter name="MEM CLK_FREQ_MAX" value="800+0" />

155

<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter
<parameter

name="MEM COL ADDR WIDTH" value="lO'’ />
name=„MEM–CS GIDTH„ value="1" />
name=„MEM–DEVICE„ value= "MISSING MODEL" />
name=„MEM–DLL EN„ value=„true„ />
name="MEM–DQ PER DQS" value="8" />
name="MEM–DQ WIDTH" value="32" />
name="MEM DRV STR" value="RZQ/7'’ />
name=„MEM–FORnAT" value= " DiSCRETE:" />

name=„MEM GUARANTEED WRITE INIT" value="false"
name=„MEM–IF BOARD BASE DELAY" value="lO" />
name='’MEM–IF–DM PINS EN" value="true'’ />
name="MEM–IF–DQiN EN" value="true" />
name=„MEM–IF–SIM VALID wrNDOw" value="O" />
name=„MEM–INiT EN„ value=" false " />
name=„MEM–INIT FILE" value=" " />
name=„MEM–MIRROR ADDRESSING" value=" O " />
name=„MBM–NUMBER OF DIMMS" value="1" />

/>

name=„MEM–NUMBER OF RANKS PER DEViCE" value="1" />
name=„MEM–NUMBER–OF–RANKS–PER DIMM" value="1" />
name=„MEM–PD„ vaiue=„DLL iff „ />
name=„MEM RANK MULTIPLICATION FACTOR" value="1" />
name=„MEM–ROW iDDR WIDTH„ value="15" />
name=„MEM–RTT–NOM" value="RZQ/4 " />
name="M£M RTT tVR" value="RZQ/4" />
name=„MEM–SRT„ value="Normal " />
name=„MEM TCL" value=" Il " />
name=„MEM TFAW NS„ value="30.0" />
name=„MEM–TINIT US" value="500" />
name=„MEM TMRD CK„ value=„4„ />
name=„MEM–TRAS NS„ value="35.0" />
name=„MEM–TRCD NS" value="13.75" />
name=„MEM–TREFI US„ value=" 7.8 " />
name=„MEM–TREC NS " value="260.O" />
name=„MEM TRP NS" value="13.75'’ />
name=„MEM–TRRD NS„ value="7.5" />
name=„MEM TRTP NS„ value="7.5" />
name=„MEM–TWR NS„ value="15.0" />
name=„MEM TWTR" value="4" />
name=„MEM USER LEVELING MODE" value="Leveling" />
name=„MEM VENDOR„ value="J£DEC" />
name=„MEM VERBOSE" value="true" />
name=„MEM VOLTAGE„ value="1.5V DDR3" />
name=„MEM WTCL" value="8 " />
name=„MPU EVENTS Enable" value="false" />
name=„MRS MIRROR PING PONG ATSO" value="false" />
name=„MUL6ICAST iN" v;lue="false" />
name=„NAND Mode" value="N/A" />
name="NAND PinMuxing" value="Unused" />
name=„NEXTGEN" value="true" />
name="NIOS ROM DATA WIDTH" value="32 " />
name=„NUM iLL iHARING INTERFACES" value="1" />
name=„NUM–EXTRA REPORT PATH" value="lO" />
name=„NUM–OCT SiARrNG iNTERrACES" value="1" />
name=„NUM–OF PORTS " value=" 1 " />

name=..NUM–PLL SHARING INTERFACES" value=" 1 " />
name=„OCT–SHARING MOD£„ value="None" />
name=„P2C–READ CLOCK ADD PHASE" value="O.O" />
name=„PACkAGE BESKEwT value="false" />
name=„PARSE FRIENDLY DEVICE FAMILY PARAM" value="" />
name= „ PARSE–FRIENDLY–DEVICE–FAMILY PARAM VALID" value= " false "
name=„PHY CiR CONNEC6ION„ v;lue=" 1 ETERNAL JTAG" />

name='’PHY CSR ENABLED" value='’false" />
name= „pRY–ONLY „ value=„false" />
name=„PINGPONGPHY EN„ value="false" />
name=„PLL ADDR CMD CLK DIV PARAM" value="O" />
name=„PLL–ADDR–CMD–CLK FREQ PARAM" value="OoO" />
name=„PLL–ADDR–CMD CLK FREQ SIM STR PARAM" value="" />
name=„pLL–ADDR–CMD–CLK–MULT–PARAM" value='’ O" />
name=„PLL–ADDR–CMD–CLK–PHASE PS PARAM" value="O" />
name='.PLL–ADDR–CMD–CLK–PHASE PS SIM STR PARAM" value=" " />
name=„PI,L–ArI ELK bIV iARAM„–vaiue=„O" />
name=„PLL–AFI CLK FREQ PARAM" value="O.O" />
name=„PLL–API CLK FREQ SIM STR PARAM" value="" />
name=„PLL–ArI–CLK–MULT–PARAM" value=" O " />
name=„PLL–AFI–CLK PHASE PS PARAM" value="O’' />
name=„PLL–AFI CLK PHASE PS SIM STR PARAM" value="" />
n„„e=„pLL–AFI–HALF CLK BIv–pARAM'’ value="O" />
name=„PLL–AFI–HALF–CLK FREQ PARAM" value="O.O" />
name=„PLL–AFI–HALF CLK FREQ SIM STR PARAM" value=" " />
name=„PLL–ArI–HALr–CLK–MULT–PAMM" value=" O" />
name=„PLL–AFI–HALF–CLK–PHASE PS PARAM" value="O" />
name=„PLL–AFI–HALF–CLK–PHASE–PS SIM STR PARNM" value=" " />
name=„PLL–ArI–PHY ILK SIV PAiAMT vaiue="o" />

/>

156

<parameter name="PLL AFI PHY CLK FREQ PARAM" value=" 0.0 ’' />
<pa,„„eter „a„,e='’PLL AFI PHY CLK FREQ SIM STR PARAM" value="" />
<para„leter na„,e="PLL Arl PHy CLX MULT PARAM" value="O" />
<parameter name="PLL AFI PHY CLK PHASE PS PARAM" value="0" />
<parameter name="PLL AFI PHY CLK PHASE PS SIM STR PARAM" value=" " />
<parameter name="PLL C2P WRITE CLK DIV PARAM" value="O" />
<parameter name="PLL c2P WRiTE CLK FREQ PARAM" value="O.O'’ />
<parameter name="PI,L C2P WRITE CLK FREQ SIM STR PARAM" value=" " />
<pa,a„,eter „a„,e="Pbl C2P WRITE CLK MULT PARAM" value="O" />
<parameter name="PLL c2P WRITE CLK PHASE PS PARAM" value="O" />
<parameter name="PLL C2P WRITE CLK PHASE PS SIM STR PARAM" value=" " />
<parameter name='’PLL CLK PARAM VALID" value="false" />
<parameter name="PI,L CONFIG CLK DIV PARAM" value="0" />
<para,r,eter na„,e='’PLL coNrrG CLK rREQ PARAM" value="O.O" />
<parameter name="PLL CONFIG CLK FREQ SIM STR PARAM" value="" />
<parameter name="PLL coNrrG CLK MULT PARAM" value="O'’ />
<parameter name="PLL CONFIG CLK PHASE PS PARAM" value="0" />
<parameter name="PLL CONFIG CLK PHASE PS SIM STR PARAM'’ value="" />
<parameter name="PLL DR CLK DIV PARAM" value="O" />
<parameter name="PLL DR C[,K FR8Q PARAM" value="0.0" />
<parar„eter name="PL 1, DR CLK FREQ srM STR PARAM" value="" />
<parameter name="PLL DR CLK MULT PARAM" value="O" />
<para„,eter na„,e="PLL DR CLK PHAS£ PS PARAM" value="O" />
<parameter name="PLL DR CLK PHASE PS SIM STR PARAM" value="" />
<parameter name="PLL HR CLK DIV PARAM" value="O" />
<parameter name="PLL HR CLK rREQ PARAM" value="O.O" />
<parameter na„,e="PLL HR CLK FREQ srM STR PARAM" value="" />
<parameter name="PLL HR CLK MULT PARAM" value="O" />
<parameter name="PLL HR CLK PHASE PS PARAM" value="0" />
<para„,eter „a„,e="PLL HR CLK PHASE PS SIM STR PARAM" value='’" />
<parameter name="PLL LOCATiON" value="Top Bottom" />
<parameter name="PLL MEM CLK DIV PARAM" value="O" />
<parameter name="PLL MEM CLK FREQ PARAM" value="0.0" />
<parameter name="PLL MEM CLK FREQ SIM STR PARAM" value=" " />
<parameter name="PLL MEM CLK MULT PARAM" value=" O " />
<parameter name="PLL M=M CLK PHASE PS PARAM" value="O" />
<parameter name="PLL MEM CLK PHASE PS SIM STR PARAM" value=" " />
<parameter name="PLL NIOS CLK DIV PARAM'’ value="O" />
<parameter name="PLL NIOS CLK FREQ PARAM" value="O.O" />
<parameter name="PLL NIOS CLK FREQ SIM STR PARAM" value="" />
<parameter name="PLL NIOS CLK MULT PARAM" value="O" />
<parameter name="PLL NIOS CLK PHASE PS PARAM" value="O" />
<para„,eter „a„,e='’PLL NIOS CLK PHASE PS SIM STR PARAM" value="" />
<parameter name="PLL P2c READ CLK DIV PARAM" value="O" />
<parameter name="PLL P2C READ CLK FREQ PARAM" value="0.0'’ />
<parameter name="PLL P2C READ CLK FREQ SIM STR PARAM" value="" />
<parameter name="PLL P2C READ CLK MULT PARAM" value="O" />
<parameter name="PLL P2C READ CLK PHASE PS PARAM" value="O " />
<para„,eter name="PLL P2C READ CLK PHASE PS SIM STR PARAM" value="" />
<parameter name="PLL SHARING MODE" value="None'’ />
<parameter name="PLL WRITE CLK DIV PARAM" value="0" />
<parameter name="PLL WRITE CLK FREQ PARAM" value="O.O" />
<parameter name="PLL WRITE CLK FREQ SIM STR PARAM" value="" />
<parameter name="PLL WRITE CLK MULT PARAM" value=" O " />
<parameter name="PLL WRITE CLK PHASE PS PARAM" value="O" />
<parameter name="PLL WRITE CLK PHASE PS SIM STR PARAM" value=" " />
<parameter name="POWER OF TWO BUS" value="false" />
<parameter name="PRIORITY PORT" value=" 1,1,1,1,1,1" />
<parameter name="QSPI Mode" value=" 1 SS '’ />
<parameter name="QSPI PinMuxing" value="HPS I/O Set O" />
<parameter name="RATE" value="Full" />
<parameter name="RDIMM CONFIG" value="0000000000000000" 1>
<parameter name="READ DQ DQS CLOCK SOURCE" value="INVERTED_DQS_BUS" />
<parameter name="READ FIFO SIZE" value="8" />
<parameter name="REFRESH BURST VALIDATION" value="false" />
<parameter name="REFRESH INTERVAL" value="15000" />
<parameter name="REF CLK FREQ" value="25.O" />
<parameter name="REF CLK FREQ MAX PARAM" value="O.O" />
<parameter name="REF CLK FREQ MIN PARAM" value="0.O" />
<parameter name="REF CLK FREQ PARAM VALID" value="false" />
<parameter name="S2FCLK COLDRST Enable" value="false" />
<parameter name="S2FCLK PENDINGRST Enable" value="false" />
<parameter name="S2FCLK USEROCI,K Enable" value="false" />
<parameter name="S2FCLK USERICI,K Enable " value="false" />
<parameter name="S2FCLK USERICLK FREQ" value="100.O" />
<parameter name="S2FCLK USER2CLK" value=" 1 '’ />
<parameter name="s2FCLK USER2CLK Enable" value="false" />
<parameter name="S2FCLK USER2CLK FREQ" value='’lOO+O" />
<parameter name="S2FINTERRUPT CAN Enable" value="false" />
<parameter name="S2FINTERRUPT CLOCKPERiPHERAL Enable" value="false" />
<parameter name="S2FINTERRUPT CTI Enable" value="false" />
<parameter name="S2FINTERRUPT DMA Enable" value="false" />
<parameter name="S2RINTERRUPT £MAC Enable" value="false" />

157

<parameter name="S2FINTERRUPT FPGAMANAGER Enable" value="false"
<parameter name="S2FINTERRUPT GPIO Enable" value="false" />
<parameter name="S2FINTERRUPT 12CEMAC Enable" value="false" />
<parameter name="S2FINTERRUPT 12CPERIPHERATI Enable" value="false'’
<parameter name="S2FINTERRUPT L4TIMER Enable" value="false" />
<parameter name="S2FINTERRUPT NAND Enable" value="false" />
<parameter name="S2FINTERRUPT OSCTIMER Enable" value="false" />
<parameter name="S2FINTERRUPT QSPI Enable" value="false" />
<parameter name="S2FINTERRUPT SDMMC Enable" value="false" />
<parameter name="S2FINTERRUPT SPIMASTER Enable" value="false" />
<parameter name="S2FINTERRUPT SPISLAVE Enable" value="false" />
<parameter name="S2FINTERRUPT UART Enable" value="false" />
<parameter name="S2FINTERRUPT USB Enable" value="false" />
<parameter name="S2FINTERRUPT WATCHDOG Enable" value="false" />
<parameter name="S2F Width" value="2" />
<parameter name="SDIO Mode" value=" 4-bit Data" />
<parameter name="SDIO PinMuxing" value="HPS I/O Set 0 " />
<parameter name="SEQUENCER TYPE" value="NrOS" />
<parameter name="SEQ MODE" value="0" />
<parameter name="sKrp MEM rNIT" value="true" />
<parameter name="SOPC COMPAT RESET" value="false" />
<parameter name="SPEED GRADE'’ value="7" />
<parameter name='’SPIMO Mode" value="N/A" />
<parameter name="SPIMO PinMuxing" value="Unused" />
<parameter name="SPIMI Mode" value="Single Slave Select" />
<Darameter name="SPIMI PinMuxinq" value="HPS I/O Set 0 " />

/>

1)

<parameter name="SPISO–Mode" value="N/A" />
<parameter name="SPISO PinMuxing" value="Unused" />
<parameter name="SPISI Mode" value="N/A'’ />
<parameter name="SPISI PinMuxing" value="Unused" />
<parameter name="STARVE LIMIT" value="lO" />
<parameter name="STM Enable" value="false" />
<parameter name="SYS INFO DEVICE FAMILY" value="Cyclone V" />
<parameter name="TEST Enable" value="false" />
<parameter „a„,e="TIMING BOARD AC EYE REDUCTION_H" value="O.O" />
<parameter name="TIMING BOARD AC EYE REDUCTION SU" value="O.O" />
<parameter name="TIMING BOARD AC SKEW" value="0.03" />
<parameter name="TIMING BOARD AC SLEW RATE" value="1.O" />
<parameter name="TIMING–BOARD–AC–TO CK SKEW" value="O.O" />
<parameter name="TIMING BOARD CK CKN SLEW RATE" value="2.O" />
<parameter na„,e="TIMING BOARD DELTA DQS ARRIVAL_TIME" value="O.O" />
<parameter name="TIMING BOARD DELTA READ DQS ARRIVAL TIME" value="O.O"
<para„,ete, „a„,e="TIMING BOARD DERATE METHOD" value="AUTO" />
<parameter name="TIMING BOARD DQS DQSN SLEW RAT£" value="2.O'’ />
<parameter name="TIMING BOARD DQ EYE REDUCTION" value="O.O" />
<parameter name="TIMING BOARD DQ SLEW RATE" value="1.0" />
<parameter name="TIMrNG BOARD DQ TO DQS SKEW" value="O.O" />
<parameter name="TIMING BOARD rsl M£THOD'’ value="AUTO" />
<para„,eter „a„,e="TIMING BOARD MAX CK DELAY" value=’'O.03" />
<parameter name="TIMrNG BOARD MAX DQS DELAy" value="0.02" />
<narameter name="TIMING BOARD READ DQ EYE REDUCTION" value="O.O" />
<parameter name="TIMING–BOARD–SKEW BETWEEN DIMMS" value="O.05" />
<parameter name="TIMING BOARD SKEW BETWEEN DQS" value="O.08" />
<parameter name="TIMING BOARD SKEW CKDQS DIMM MAX" value="O.16" />

<parameter name="TIMING BOARD SKEW CKDQS DIMM MIN" value="O.09" />
<parameter name="TIMING BOARD SKEW WITHIN DQS" value=" 0.01 " />
<parameter name="TIMING BOARD TDH" value=" 0.0 " />
<parameter name="TIMING BOARD TDS" value="O.O" />
<parameter name="TIMING BOARD TIH" value="O.O" />
<parameter name="TIMING BOARD TIS“ value="0.0" />
<parameter name="TIMING TDH" value="65" />
<parameter name="TIMING TDQSCK" value=’'255" />
<parameter name="TIMING TDQSCKDL" value="1200" />
<parameter name="TIMING TDQSCKDM" value="900" />
<parameter name="TIMING TDQSCKDS" value="450" />
<parameter name="TIMING TDQSH" value=" 0.35 " />
<parameter name="TIMING TDQSQ" value="125" />
<parameter name="TIMING TDQSS" value="0.25" />
<parameter name="TIMING TDS" value="30" />
<parameter name="TIMING TDSH" value="O.2" />
<parameter name="TIMING TDSS" value="0.2 " />
<parameter name="TIMING TIH" value='’140" />
<parameter name="TIMING TIS" value="180" />
<parameter name="TIMING TQH" value="0.38" />
<parameter name="TIMING TQHS" value="300" />
<parameter name="TIMING TQSH" value="0.4" />
<parameter name="TPIUFPGA Enable" value="false" />
<parameter name="TPIUFPGA alt" value="false" />
<parameter name="TRACE Mode" value="N/A" />

parameter name="TRACE PinMuxing" value="Unused" />
<klrameter name="TRACKING ERROR TEST" value="false" />
<pa,ameter na„te="TRACKING WATCH TEST" value="false" />
<para'leter name="TREFI" value="35100" />

/>

158

<parameter name="TRFC" value="350" />
<parameter name="UARTO Mode" value="No Flow Control" />
<parameter name="UARTO PinMuxing" value="HPS I/O Set 0 " />
<parameter name="UARTI Mode" value="N/A" />
<parameter name="UARTI PinMuxing" value="Unused" />
<parameter name="USBO Mode" value="N/A" />
<parameter name="USBO PinMuxing" value="Unused" />
<parameter name="USBI Mode" value="SDR" />
<parameter name="USBI PinMuxing" value="HPS I/O Set 0 " />
<parameter name="USER DEBUG LEVEL" value=" 1 " />
<parameter name="USE AXI ADAPTOR" value="false" />
<parameter name="USE FAKE PHY" value="false" />
<parameter name="USE MEN CLK FREQ" value="false" />
<parameter name="USE MM ADAPTOR" value="true" />
<parameter name="USE SEQUENCER BFM" value="false" />

<parameter name="WEIGHT PORT" value="0,0,0,0,0,0" />
<parameter name="WRBUFFER ADDR WIDTH" value="6" />
<parameter name="can0 clk div" value=" 1 " />
<parameter name="canl elk div" value=" 1 " />
<parameter name="configure advanced parameters " value="false"
<parameter name="customize device pII info" value="false" />
<parameter name="dbctrl stayoscl" value="true" />
<parameter name="dbg at clk div" value="0"
<parameter name="dbg clk div" value="1" />

/>

<parameter name="dbg trace clk div" value=" 0 " />
<parameter name="desired can0 clk mhz " value=" 100.0 " />
<parameter name="desired can1 elk mhz" value="100.0" />
<parameter name="desired cf g clk mhz " value=" 100.0 " />
<parameter name="desired emac0 clk mhz " value="250.0" />
<parameter name="desired emacl clk mhz " value="250.0" />
<parameter name="desired gpio db clk hz" value="32000" />
<parameter name="desired 14 mp clk mhz " value="100.0" />
<parameter name="desired 14 sp clk mhz" value="100.0" />
<parameter name="desired mpu elk mhz " value='’800.0" />
<parameter name="desired nantI clk mhz " value="12.5" />
<parameter name="desired qspi elk mhz" value="400,0" />
<parameter name="desired sdmmc clk mhz " value=" 200.0 " />
<parameter name="desired spi m elk mhz" value="200.0" />
<parameter name="desired usb mp clk mhz " value="200.0" />
<parameter name="device name" value="5CSEMA5F31C6" />

400000000400000000}</parameter>
<parameter name="eosc1 clk mhz " value="25.0" />
<parameter name="eosc2 clk mhz " value="25.0" />
<parameter name="gpio db elk div" value="6249" />
<parameter name="13 mp elk div" value=" 1 " />
<parameter name="13 sp clk div" value=" 1 " />
<parameter name="14 mp elk div" value=" 1 " />
<parameter name="14 mp clk source" value="1" />
<parameter name="14 sp clk div" value="1" />
<parameter name="14 sp clk source" value=" 1 " />
<parameter name="main pII c3 " value="3" />
<parameter name="main pII c4" value="3" />
<parameter name="main pII c5" value="15" />
<parameter name="main pII m" value="63" />
<parameter name="main pII n" value="0" />
<parameter name="nand clk source" value="2 " />
<parameter name="periph pII c0" value="3" />
<parameter name="periph pll cl" value="3" />
<parameter name="periph pll c2" value="1" />
<parameter name="periph pll c3" value="19" />
<parameter name="periph pII c4 " value="4 " />
<parameter name="periph pII c5" value="9" />
<parameter name="periph pII m" value="79" />
<parameter name="periph pII n" value=" 1 " />
<parameter name="periph pII source" value=" 0 '’ />
<parameter name="qspi clk source" value="1" />
<parameter name="quartus ini hps emif pIl" value="false" />
<parameter

name="quartus ini hps ip enable all peripheral fpga interfaces "
value="false" />

<parameter name="quartus ini hps ip enable bsel csel" value="false" />
<parameter

name="quartus ini hps ip enable emac0 peripheral fpga interface"
value="false" />

<parameter
name="quartus ini hps ip enable low speed serial fpga interfaces "
value="false" />

<parameter name="quartus ini hps ip enable test interface" value="false" />
<parameter name="quartus ini hps ip f2sdram bonding out" value="false" />
<parameter name="quartus ini hps ip fast f2sdram sim model " value="false" />
<parameter name="quartus ini hps ip suppress sdram synth" value="false" />
<parameter name="sdmmc elk source" value="2 " />

/>

<parameter name="device pII info manual">{320000000 1600000000} {320000000 1000000000} {800000000

159

: : : : : = = t : : = = = = : : : : : : : : : = = : : : : i := = = =: : = = i = g == : : : = = : ii : : : : faT sell / >
<parameter name=" show–warning_as_error_msg" value=" false " />
<parameter name="spi m clk_div" value="O " />
<parameter name="usb mp_clk_div" value=" O " />
<parameter name=''use default._mpu_clk’' value="true" />

< /module>
<module

name=" intr capturer_0 "
kind=" intr capturer"
version= „ 100.99.98.97 "
enabled= " 1 " >

<parameter name=" AUTO INTERRUPT_RECEIVER_INTERRUPTS_USED" value=" 7 " />
<parameter name="NUM_INTR" value="32" />

< /module>
<module

name= " jt:ag uart"
kind="altera avalon jtag uart"
version= „ 1 6 + 0 "

enabled= " 1 " >

,,parameter name=" allowMultipleConnections " value="true" />
<parameter name="avalonSpec" value="2oO" />
<parameter name="clkFreq" value="50000000" />
<parameter name="hublnstanceID" value=" O " />
<parameter name="readBufferDePth" value="64" />
<parameter name="readIRQThreshold" value="8" />
,'.parameter name=" simInputCharacterStream" value=" '’ />
<parameter name= " simInteractiveOptions " >INTERACTIVE_ASCI I–OUTPUT< /parameter>
,,parameter name= "useRegistersForReadBuffer" value= " false" I>.
,'.parameter name="useRegistersForWriteBuffer" value=" false" />
<parameter name="useRelativePathForSimFile" value="false" />
,'.parameter name=''writeBufferDepth" value="64" />
<parameter name="writeIRQThreshold" value="8" />

< /module>
<module name= " led pio" kind="altera avalon_plo" version=" 16•O" enabled=" 1">
<parameter name="bitClearingEdgeCapReg" value=" false" />
<parameter name="bitModifyingOutReg" value="false"
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
.'para„,eter „a„,e=''edgeType'' value="RISrNG" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="O" />

>

<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value="O" />
<parameter name="width" value=" IO" />

< /module>
<module

name="master non sec"
kind="altera–jtag avalon_master"
version= " 1 6 n 0 "

enabled= " 1 " >

<parameter name="AUTO_DEVICE" value="5CSEPLA5F31C6" />
,,parameter name='' AUTO DEVICE_FAMILY" value="Cyclone V" />
.,parameter name=" AUTO DEVICE_SPEEDGRADE" value="6" />
<parameter name="COMPONENT_CLOCK" value=" O " />
,,parameter name="FAST VER" value="O" />
<parameter name="FIFO DEPTHS" value="2" />
,.'parameter name=''PLI PORT" value="50000" />
<parameter name="USE_PLI" value="O" />

< /module>
<module

name= "master secure 11
kind="altera jtag avalon_master"
version= " 1 6 . O "
enabled= " 1 " >

,,parameter name="AUTO_DEVICE" value=" 5CSEMA5F31C6 " />
<parameter name=" AUTO–DEVICE_FAMILY" value="CYclone V" />
<parameter name=" AUTO DEVICE_SPEEDGRADE" value="6" />
<parameter name="COMPONENT_CLOCK" value=" O " />
,,parameter name="FAST VER" value="O" />
<parameter name="FIFO DEPTHS" value="2" />
,'parameter name="PLI PORT" value="50000" />
<parameter name="USE_PLI" value=" O " />

< /module>
<module

name="ogpu quad store_ack"
kind="altera avalon pto"
version= " 1 6 . 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCaPReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />

160

<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value='’Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="0" />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value="0" />
<parameter name="width" value=" 1 " />

< /module>
<module

name="ogpu quad store data high"
kind="altera avalon pio"
version=" 1 6 . 0 "

enabled= '’ 1 " >

<parameter name= "bitClearingEdgeCapReg" value=" false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name='’direction" value="Input" />
<parameter name="edgeType" value="RISING" I>
<parameter name="generateIRQ" value="false"
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value= " 0 " />

/>

<parameter name="simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value= " 0 " />
<parameter name="width" value="32" />

< /module>
<module

name="ogpu quad store data low"
kind="altera avalon pio"
version= " 1 6 , 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value=" Input" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value= " 0 " />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value=" 0 " />
<parameter name="width " value="32" />

< /module>
<module

name="ogpu quad store reg"
kind="altera avalon pio"
version= " 1 6 , 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value=" Input" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value=" 0 " />
<parameter name= '’ simDoTestBenchWiring " value= " false" />
<parameter name="simDrivenValue" value= " 0 " />
<parameter name="width" value="1" />

< /module>
<module

name="ogpu raster unit clip rect0"
kind="altera avalon pio"
version= " 1 6 . 0 "

enabled= " 1 " >

<parameter name="bItClearingEdgeCapReg " value=" false" />
<parameter name="bitModifyirlgOutReg " value="false" />
<parameter name="captureEdge'’ value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="0" />
<parameter name=" simDoTestBenchWiring" value= " false" />
<parameter name="simDrivenValue" value="0" />
<parameter name= "width " value= " 32 " 1>

< /module>

161

<module
name="ogpu raster unit_clip_rect1 "
kind="altera avalon pto"
version= " 1 6 + 0 "

enabled= " 1 " >

<parameter name="bitClearingEdgeCaPReg" value="false"
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="£alse" />
<parameter name="clockRate" value=" 50000000 " />
<parameter name="direction" value="Output" />
,,parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value= " O " />

/>

<parameter name='' simDoTestBenchWiring" value="false" />
,,parameter name="simDrivenValue" value=" O" />
<parameter name="width" value=’'32'’ />

< /module>
<module

name="ogpu raster unit command"
kind="altera avalon plo"
version=" 1 6 . 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCaPReg" value=" false" />
<parameter name= "bitModifyingOutReg" value= " false" />
<parameter name="captureEdge" value="false" />
,,parameter name="clockRate" value="50000000" />
,’parameter name="direction'’ value="Output" />
,,parameter name=''edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value=" O " />
<parameter name= " sirnDoTestBenchWiring " value="false" />
,,parameter name="simDrivenValue" value="O" />
<parameter name="width" value="8" />

< /module>
<module

name="ogpu raster_unit_depth_coef_a
kind="altera avalon plo"
version= " 1 6 + 0 "

enabled= " 1 " >
,'.parameter name="bitclearingEdgeCapReg" value="false" />
,,parameter name="bitModifyingOutReg" value="false" />
,_parameter name="captureEdge" value="false" />
,'parameter name="clockRate" value="50000000" />
<parameter name="direction" value='’Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value=" false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value=" O " />
<parameter name= " simDoTestBenchWiring" value="false" />

<parameter name="simDrivenValue" value="O" />
<parameter name="width" value="32" />

< /mod II le>
<module

name= " ogpu raster_unit_depth_coe f_b
kind="altera avalon plo"
vers ion= " 1 6 . 0 "
enabled= " 1 " >

,'parameter name="bitclearingEdgeCapReg" value= " false " />
<parameter name="bitModifyingOutReg" value="false" />
,'parameter name="captureEdge" value=’'false" />
,,parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
,,parameter name='’edgeType" value="RISING" />
<parameter name="generateIRQ" value= " false " />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="O" />
<parameter name=" simDoTestBenchWiring'’ value="false" />
<parameter name="simDrivenValue" value=’'O" />
<parameter name="width" value="32" />

</ module>
<module

name="ogpu raster_unit_depth_coef_c "
kind="altera avalon plo"
version= " 1 6 . 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value=" false" />
,,parameter name="bitModifyirlgOutReg " value= " false " />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
,,parameter name='’direction" value="Output" />
,'parameter name="edgeType" value="RISING" />

162

<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="0" />
<parameter name= " simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value=" O " />
<parameter name="width" value="32" />

< /module>
<module

name="ogpu raster unit quad buffer addr_high
kind='’altera avalon pio"
version= " 1 6 . 0 "

enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value=" false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value=" O " />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value="O" />
<parameter name="width" value="32" />

</module>
<module

name='’ogpu raster unit quad buffer_addr_low"
kind="altera avalon plo"
version= „ 1 6 . O "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false'’ />
<parameter name="clockRate" value=’'50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name=''generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="O" />
<parameter name= "simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value=" O " />
<parameter name="width" value="32" />

< /module>
<module

name="ogpu raster unit status "

kind="altera avalon pio"
version=" 1 6 + 0 "

enabled= " 1 " >

<parameter name="bitclearingEdgeCapReg" value="false" />
<parameter name= "bitModifyirlgOutReg " value="false" />
<parameter name="captureEdge" value= " false " />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Input" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue’' value="O" />
<parameter name="simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value="O" />
<parameter name="width" value="32" />

< /module>
<module

name="ogpu raster unit tile0"
kind="altera avalon plo"
version= " 1 6 + 0 11

enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value='’50000000" />
<parameter name="direction" value=’'Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType'’ value="LEVEL" />
<parameter name="resetValue" value= " O " />
<parameter name="simDoTestBenchIfiring" value= " false " />
<parameter name="simDrivenValue" value="O" />
<parameter name="width " value="32" />

< /module>
<module

name="ogpu raster unit tilel
kind="altera avalon pio"
version= " 1 6 . 0 "

163

enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name=’'captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value=’'LEVEL" />
<parameter name="resetValue" value=" 0 " />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value=" 0 " />
<parameter name="width" value="32"

</modu le>
<modu le

name="ogpu raster unit vOx"
kind="altera avalon pio"
version= " 1 6 . 0 "
enabled= " 1 " >

/>

<parameter name="bitClearingEdgeCapReg" value= " false" />
<parameter name="bitModif yingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name='’irqType" value="LEVEL" />
<parameter name="resetValue" value= "0 " />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name='’simDrivenValue" value=" 0 " />
<parameter name="width" value="16" />

< /module>
<module

name="ogpu raster unit vOy
kind="altera avalon plo"
version= " 1 6 . 0 "
enabled=" 1 '’ >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg " value='’false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value='’RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" I>
<parameter name="resetValue" value='’0" />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value= " o " />
<parameter name="width" value="16" />

< /module>
<module

name="ogpu raster unit vOz"
kind="altera avalon plo"
version= " 1 6 + 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value=" false" />
<parameter name="bitModifyingOutReg " value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false'’ />
<parameter name='’irqType" value="LEVEL" />
<parameter name="resetValue" value= "0 " />
<parameter name=" simDoTestBenchWirirIg " value="false" />
<parameter name="simDrivenValue" value="0 " />
<parameter name="width" value="16" />

< /module>
<module

name="ogpu raster unit vlx"
kind="altera avalon pio"
version= " 1 6 + 0 "
enabled=" 1 " >

<parameter name="bitClearingEdgeCapReg" value=" false" />
<parameter name="bitModifyingOutReg " value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType'’ value=’'RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value= " 0 " />
<parameter name="simDoTestBenchWiring" value="false" />

164

<parameter name="simDrivenValue" value= " 0 " />
<parameter name="width " value= " 16 " />

< /module>
<module

name="ogpu raster unit vly"
kind="altera avalon plo "
version= " 1 6 . 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="0 " />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value=" 0 " />
<parameter name="width " value="16" />

</module>
<module

name="ogpu raster unit vIz"
kind="altera avalon pio"
version=" 1 6 , 0 "
enabled= " 1 " >

<parameter name= "bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg " value= " false "
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name= " direction " value="Output" 1)
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="0" />
<parameter name= " simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value="o" />
<parameter name="width" value="16" />

< /module>
<module

name="ogpu raster unit v2x"
kind="altera avalon plo"
version=" 1 6 . 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value= " false " />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate'’ value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL'’ />
<parameter name="resetValue" value=" 0 " />
<parameter name= " sirnDoTestBenchWiring " value= " false " 1)
<parameter name="simDrivenValue" value=" 0 " />
<parameter name="width" value="16" />

< /module>
<module

name="ogpu raster unit v2y"
kind="altera avalon pio"
version= " 1 6 . 0 "
enabled= " 1 " >

<parameter name= "bitClearingEdgeCapReg" value= " false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue " value= " 0 " />
<parameter name="simDoTestBenchWiring" value=" false " />
<parameter name="simDrivenValue" value= " 0 " />
<parameter name="width" value="16" />

< /module>
<module

name="ogpu raster unit v2z"
kind="altera avalon pio"
version= " 1 6 . 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />

/>

<parameter name="captureEdge" value="false" />

165

<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType'’ value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType'' value="LEVEL" />
<parameter name="resetValue" value=" 0 " />
<parameter name=" simDoTestBenchtgiring" value="false" />
<parameter name="simDrivenValue" value=" O " />
<parameter name="width" value="16" />

< /module>
<module name="ogpu reset" kind="altera avalon pio" version="16.O"
<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg" value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name='’edgeType" value="RISING" />
<parameter name='’generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value=" O " />
<parameter name=" simDoTestBenchIqiring" value="false" />
<parameter name="simDrivenValue" value="O" />
<parameter name="width" value=" 1 " />

< /module>
<module name='’pII stream" kind="altera pll" version="16.O" enabled="1">
<parameter name="debug print output" value="false" />
<parameter name="debug use rbc taf method" value="false" />
<parameter name="device " value="5CSEMA5F31C6" />
<parameter name="device family" value="Cyclone V" />
<parameter name="gui active clk" value="false" />
<parameter name="gui actual output clock frequencyo " value=" 0 MHz" />
<parameter name="gui actual output clock frequencyl" value=" 0 MHz " />
<parameter name="gui_actual_output clock frequency10" value=" 0 MHz " />
<parameter name="gui actual output clock frequencyll" value=" 0 MHz " />
<parameter name="gui actual output clock frequency12" value=" 0 MHz " />
<parameter name="gui actual output clock frequency13" value=" 0 MHz " />
<parameter name="gui_actual output clock frequency14" value=" 0 MHz " />
<parameter name="gui actual output clock frequency15" value="0 MHz " />
<parameter name="gui actual output clock frequency16" value=" 0 MHz " />
<parameter name="gui actual output clock frequency17" value=" 0 MHz " />
<parameter name="gui actual output clock frequency2" value=" 0 MHz " />
<parameter name='’gui actual output clock frequency3" value= " 0 MHz " />
<parameter name="gui actual output clock frequency4" value="o MHz " />
<parameter name="gui actual output clock frequency5" value=" 0 MHz " />
<parameter name="gui actual output clock frequency6" value=" 0 MHz " />
<parameter name="gui_actual_output clock frequency7" value=" 0 MHz" />
<parameter name="gui actual output clock frequency8" value=" 0 MHz " />
<parameter name="gui actual output clock frequency9 " value=" 0 MHz " I>
<parameter name="gui actual phase shifto " value="O" />
<parameter name="gui actual phase shiftl" value="O" />
<parameter name="gui actual phase shift10" value=" O " />
<parameter name="gui actual phase shiftll" value=" O " />
<parameter name="gui actual phase shift12" value="O" />
<parameter name="gui actual phase shift13" value="0" />
<parameter name="gui actual phase shift14" value="0" />
<parameter name="gui_actual phase shift15" value="O" />
<parameter name="gui actual phase shift16" value=" 0 " />
<parameter name="gui actual phase shift17" value="O" />
<parameter name="gui actual phase shift2" value="O" />
<parameter name="gui actual phase shift3" value=" O " />
<parameter name="gui actual phase shift4" value=" O " />
<parameter name="gui actual phase shiftS " value=" O" />
<parameter name="gui actual phase shift6" value="O" />
<parameter name="gui actual phase shift7" value='’ O " />
<parameter name="gui actual phase shift:8 " value=" O " />
<parameter name="gui actual phase shift9" value=" o" />
<parameter name="gui cascade counter0" value="false" />
<parameter name="gui cascade counterl" value="false" />
<parameter name="gui cascade counter10" value="false" />
<parameter name="gui cascade counterll" value="false" />
<parameter name="gui cascade counter12" value="false" />
<parameter name="gui cascade counter13" value="false" />
<parameter name="gui cascade counter14" value="false" />
<parameter name="gui cascade counter15" value="false" />
<parameter name="gui cascade counter16" value="false" />
<parameter name="gui cascade counter17" value="false" />
<parameter name="gui cascade counter2" value="false" />
<parameter name="gui cascade counter3" value="false" />
<parameter name="gui cascade counter4" value='’false" />
<parameter name="gui cascade counter5" value="false" />
<parameter name="gui cascade counter6" value="false" />
<parameter name="gui cascade counter7" value="false" />
<parameter name="gui cascade counter8" value='’false" />

enabled= " 1 " >

166

<parameter name="gui cascade_counter9" value="false" />
,,parameter name='’gui cascade outclk_index" value="O" />
<parameter name="gui channel_spacing" value="O.O" />
,,parameter name="gui clk_bad" value="false" />
<parameter name="gui device speed_grade" value="2" />
<parameter name="gui divide_factor_cO " value=" 1" />
<parameter name="gui divide_factor_cl " value=" 1 " />
<parameter name="gui divide_factor_clO" value=" 1" />
<parameter name=" gui divide_factor_cll " value=" 1" />
<parameter name=" gui divIde_factor_c12" value=" 1 " />
,’parameter name="gui divide factor_c13" value="1" />
<parameter name="gui divide_factor_c14" value=" 1" />
<parameter name="gui divide factor_c15" value="1" />
,'parameter name=" gui divide_factor_c16 '’ value=" 1 " />
<parameter name="gui divide factor_c17" value="1" />
<parameter name=" gui divide_factor_c2" value=" 1 " />
<parameter name="gui divide_factor_c3" value=" 1" />
<parameter name="gui divide_factor_c4" value=" 1" />
<parameter name="gui divide_factor_c5" value=" 1 " />
<parameter name="gui divide_factor_c6" value=" 1 " />
<parameter name="gui divide_factor_c7" value=" 1 " />
<parameter name="gui divide_factor_c8" value=" 1 '’ />
<parameter name="gui divide_factor_c9" value="1" />
<parameter name="gui divide_factor_n" value="1" />
<parameter name="gui dps cntr" value="CO" />
,,parameter name="gui dps_dir" value="Positive" />
<parameter name="gui dps num" value="1" />
<parameter name="gui dsm_out_sel" value="lst_order" />
<parameter name="gui duty_cycleO" value="50" />
<parameter name="gui duty cycle1 ’' value="50" />
<parameter name="gui duty_cYclelO" value="50" />
<parameter name="gui duty CYclell" value="50" />
<parameter name="gui duty CYcle12" value="50" />

/><parameter name=" gui duty_cYcle13" value=" 50 "
<parameter name="gui duty CYcle14" value="50" />
<parameter name="gui dutY_cYcle15" value="50" />
<parameter name="gui duty cycle16" value="50 1)
<parameter name="gui duty cycle17" value="50" />
<parameter name="gui duty_cYcle2" value="50" />
<parameter name="gui duty_cycle3" value="50" />
<parameter name="gui duty_cYcle4" value="50" />
<parameter name="gui_duty_cYcle5" value="50" />
,,parameter name="gui duty_cycle6" value="50" />
<parameter name="gui duty_cYcle7" value="50" />
,,parameter name="gui duty_cycle8" value="50" />
<parameter name="gui duty CYcle9" value="50" />
<parameter name="gui en adv_params" value="false" />
,,parameter name="gui en_dps_ports" value="false" />
<parameter name="gui en phout_ports" value="false" />
<parameter name=" gui en_reconf" value="false" />
<parameter name="gui enable cascade_in" value="false" /
<parameter name="gui enable_cascade_out" value="false" />
,'.parameter name="gui enable mif_dps " value="false" />
<parameter name="gui feedback_clock" value="Global Clock" />
<parameter name="gui f rac multipIY_factor" value="1" />
<parameter name="gui fractional cout" value="32" />
,,parameter name=''gui mif generate" value="false" />
<parameter name="gui multiply factor" value="1" />
<parameter name="gui number of_clocks" value="1" />
,'.parameter name="gui operation_mode" value="normal " />
<parameter name="gui outPut clock_£requencYO" value=" 130 'O" />
<parameter name= " gui output_clock_frequencYl " value='’ 130 ' O " />
<parameter name="gui output_clock_frequencYIO" value= " 100 • O " />
<parameter name=" gui output_clock_frequencYll " value= " 100 ' O " />
<parameter name=" gui output clock_frequency12" value="lOO.O" />
<parameter name="gui output_clock_frequencY13" value= " IOO'O" />
<parameter name=" gui output_clock_frequencY14 " value="lOO• O " />
<parameter name=" gui output_clock_frequencY15 " value=" IOO ' 0 " />
<parameter name=" gui output_clock_frequencY16 " value= " 100 • O " />
<parameter name="gui output clock_frequency17" value="IOO.O" />
<parameter name=" gui output_clock_frequencY2 " value= " IOO'O" />
<parameter name=" gui output_clock_frequencY3 " value= " 1 00 ' 0 "

>

<parameter name="gui output clock_frequencY4 " value= " 100.0
<parameter name= " gui output_clock_frequencY5 " value=" IOO ' O '

/>
1)

<parameter name=" gui output_clock_frequencY6 ’' value=" IOO•O" />
<parameter name=" gui output_clock_frequencY7" value= " 100 ' O " />
,,parameter name= " gui output_clock_frequency8" value= " 100.0 " />
<parameter name="gui output clock_frequency9" value="100.O" />
<parameter name="gui phase_shiftO" value=" O '’ />
<parameter name="gui phase shiftl" value="O" />
<parameter name="gui phase_shiftlO" value="O" />
<parameter name="gui phase_shift11" value="O" />
<parameter name="gui phase_shift12" value=" O " />

167

<parameter name="gui phase shift13" value="0" />
<parameter name="gui phase shift14" value=" 0 " />
<parameter name="gui phase shift15" value="0" />
<parameter name="gui phase shift16" value="0" />
<parameter name="gui phase shift17" value=" 0 '’ />
<parameter name="gui phase shift2" value=" 0 " />
<parameter name="gui phase shift3" value="0" />
<parameter name="gui phase shift'! ’' value="0
<parameter name="gui phase shift5" value="0"
<parameter name="gui phase shift6" value=" 0 '

1>
/>
/>

<parameter name="gui phase shift7" value=" 0 " />
<parameter name="gui phase shift8" value="0" />
<parameter name="gui phase shift9" value="0" />
<parameter name="gui phase shift deg0" value=" 0.0 " />
<parameter name="gui phase shift degl '’ value="0.0" />
<parameter name="gui phase shift deg10" value=" 0.0 '’ />
<parameter name="gui phase shift degll '’ value="0.0" />
<parameter name="gui phase shift deg12" value="0.0" />
<parameter name="gui phase shift deg13" value="0+O" />
<parameter name="gui phase shift deg14" value="0.0" />
<parameter name="gui phase shift deg15" value="0.0" />
<parameter name="gui phase shift deg16" value="0.O" />
<parameter name="gui phase shift deg17" value="0.0" />
<parameter name="gui phase shift deg2" value="0.0" />
<parameter name="gui phase shift deg3" value="0.0" />
<parameter name="gui phase shift deg4" value="0.0" />
<parameter name="gui phase shift deg5" value="0.0" />
<parameter name="gui phase shift deg6" value="0.0" />
<parameter name="gui phase shift deg7" value=" 0.0 " />
<parameter name="gui phase shift deg8" value="0.0" />
<parameter name=" gui phase_shift_deg9" value="0.0" />
<parameter name="gui phout division" value="1" />
<parameter name="gui pII auto reset" value="Off" />
<parameter name="gui pll bandwidth preset" value=" Auto" />

<parameter name=" gui pII cascading mode " >Create an ad jp11in
PLL< /parameter>

<parameter name="gui pII mode " value="Fractional-N PLL" />
<parameter name="gui ps units0" value="ps " />
<parameter name="gui ps unitsl" value="ps" />
<parameter name="gui ps units 10 " value="ps '’ />
<parameter name="gui ps unitsll" value="ps" />
<parameter name="gui ps units 12 " value="ps" />
<parameter name="gui ps units 13" value="ps" />
<parameter name="gui ps units 14" value="ps " />
<parameter name="gui ps units15" value="ps" />
<parameter name="gui ps units16" value="ps " />
<parameter name="gui ps units17" value="ps " />
<parameter name="gui ps units2" value="ps " />
<parameter name="gui ps units3" value="ps " />
<parameter name="gui ps units4" value="ps " />
<parameter name="gui ps units5" value="ps" />
<parameter name="gui ps units6" value="ps " />
<parameter name="gui ps units7" value="ps" />
<parameter name="gui ps units8" value="ps " />
<parameter name="gui ps units9" value="ps" />
<parameter name="gui refclkl frequency" value=" 100 .0" />
<parameter name="gui refclk switch" value="false" />
<parameter name="gui reference clock frequency" value="50+O" />
<parameter name="gui switchover delay" value="0" />
<parameter name="gui switchover mode">Automatic Switchover</parameter>
<parameter name="gui use locked" value="true" />

< /module>
<module

name="seven seq O '1
kind="altera avalon plo"
version=" 1 6 , 0 "

enabled= " 1 " >
<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg'’ value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction" value="Output" />
<parameter name="edgeType'’ value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value=" 0 " />
<parameter name="simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value="0" />
<parameter name="width" value="7" />

< /modu le>
<module

name="seven seq 1 '1
kind="altera avalon pio"

signal to connect with upstream

168

vers ion= " 1 6 . 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg " value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value=" 50000000 " />
<parameter name="direction" value="Output " />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="O" />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value="0" />
<parameter name="width" value="7" />

</modu le>
<module

name=" seven seq 2 "
kind="altera avalon pio"
version= " 1 6 , 0 "
enabled= " 1 " >

<parameter name= "bitClearingEdgeCapReg" value= " false " />
<parameter name="bitModifyingOutReg" value="false"
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value;"50000000" />
<parameter name= "direction" value="Output" / >

<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value= " false " />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value= " 0 " />
<parameter name= " siInDoTestBenchWiring " value="false" />
<parameter name="simDrivenValue" value="O" />
<parameter name="width" value="7" />

< /module>
<module

name="seven seq 3"
kind="altera avalon pio"
version= " 1 6 . 0 "
enabled= " 1 " >

<parameter name= "bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg " value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name='’direction" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value= "LEVEL"/>
<parameter name="resetValue" value= " 0 " />
<parameter name=" simDoTestBenchWiring" value="false" />
<parameter name="simDrivenValue" value="O" />
<parameter name="width" value="7" />

< /module>
<module

name="seven seq 4 "
kind="altera avalon pio"
version= „ 1 6 . 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyingOutReg " value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="direction " value= "Output " />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="O" />
<parameter name= " simDoTestBenchWiring" value=" false" />
<parameter name="simDrivenValue" value="0" />
<parameter name="width" value=" 7 " />

< /module>
<module

name="seven seq 5 "
kind="altera avalon pio"
version=" 1 6 , 0 "
enabled= " 1 " >

<parameter name="bitClearingEdgeCapReg" value="false" />
<parameter name="bitModifyirlgOutReg " value="false" />
<parameter name="captureEdge" value="false" />
<parameter name="clockRate" value="50000000" />
<parameter name="directlion" value="Output" />
<parameter name="edgeType" value="RISING" />
<parameter name="generateIRQ" value="false" />
<parameter name="irqType" value="LEVEL" />
<parameter name="resetValue" value="O" />

/>

169

<parameter name="simDoTestBenchWiring" value="false"
<parameter name="simDrivenValue" value=" 0 " />
<parameter name="width" value="7" />

< /module>
<modu le

name="sysid qsys"
kind="altera avalon_sysid_qsys"
version= " 1 6 . O "
enabled= " 1 " >

<parameter name="id" value="–1395322110" />
< /module>
<connectIon

kind=" avalon "
version= " 1 6 + 0 "

start= " alt vip vfr_vga . avalon_master "
end="hps 0.f2h axi slave">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x0000" />
<parameter name="def aultConnection" value="false" />

</connection>
<connectIon

kind=" avalon "
version= " 1 6 + 0 "

start="hps 0.h2f axi master"
end="ogpu raster unit quad buffer addr_high .sl">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress '’ value="0x00010130" />
<parameter name="def aultConnection" value="false" />

</connection>
<connectIon

kind= " avalon "
version= " 1 6 . 0 "

start="hps 0.h2f axl master"
end= " o,gpu raster_unit_quad_buffer_addr_low . s 1 " >

<parameter name="arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="Ox00010120" />
<parameter name="def aultconnection" value="false" />

</connection>
<connectIon

kind= " avalon "
version= " 1 6 . 0 "

start="hps C).h2f axi master"
end='’ogpu raster unit depth coef c.sl">

<parameter name=" arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="OxOOOI0110" />
<parameter name="defaultConnection" value="false" />

</connection>
<connectIon

kind= " avalon "

version= " 1 6 . 0 "
start="hps 0 ,h2£ axi master"
end="ogpu raster unit depth coef b.sl">

<parameter name="arbitrationPriority'’ value="1" />
<parameter name="baseAddress" value="0xC)0010100 " />
<parameter name="def aultConnection" value="false" />

< /connection>
<connection

kind= " avalon "

version= " 1 6 . O "

start="hps 0 .h2f axi master"
end="ogpu raster unit depth coef a.sl">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="OxOOOIOOfO" />
<parameter name="def aultConnection" value="false" />

</connection>
<connection

kind="avalon"
version= " 1 6 . 0 "
start="hps 0.h2f axl master"
end="ogpu raster unit tilel.sl">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x000100eO " />
<parameter name="defaultConnection" value="false" />

</connection>
<connection

kind= " avalon
version=" 1 6 . 0 "
start="hps 0 .h2f axi master"
end="ogpu raster unit tile0.sl">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value= " 0x000100dO " />
<parameter name="def aultConnection" value='’false" />

</connection>

/>

170

<connection
kind="avalon"
version= " 1 6 . 0 "
start="hps 0.h2f axi master"
end="ogpu raster unit clip rect1.sl">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress " value="0x000100c0 " />
<parameter name="def aultConnection" value="false" />

</connection>
<connectIon

kind="avalon"
version=" 1 6 . 0 "

start="hps 0 .h2f axi master"
end="ogpu raster unit clip rect0.sl">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x000100b0 " />
<parameter name="def aultConnection" value="false" />

</connection>
<connectIon

kind= " avalon "

version= " 1 6 , 0 "

start="hps 0.h2f axi master"
end="ogpu raster unit command . sl ">

<parameter name="arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="0x000100a0 " />
<parameter name= "defaultConnection" value="false" />

</connection>
<connectIon

kind="avalon"
version= " 1 6 , 0 "

start="hps 0.h2f axl master"
end="ogpu raster unit status . sl ">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x00010090 " />
<parameter name="defaultConnection" value="false" />

</connection>
<connection

kind= " avalon "

version=" 1 6 . 0 "
start="hps 0 .h2f axi master"
end="ogpu raster unit v2z.sl">

<parameter name="arbitrationPriority" value=" 1" />
<parameter name="baseAddress" value="0x00010080" />
<parameter name="def aultConnection" value="false" />

< /connection>
<connectIon

kind= " avalon "

version=" 1 6 . 0 "
start="hps 0 .h2f axl master"
end="ogpu raster unit v2y.sl">

<parameter name="arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="0x00010070 " />
<parameter name="defaultConnection" value="false" />

< /connection>
<connection

kind= " avalon "

version= " 1 6 . 0 '’

start="hps 0.h2f axi master"
end="ogpu raster unit v2x.sl">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x00010060 " />
<parameter name="def aultConnection" value="false" />

</connection>
<connectIon

kind= " avalon "

version= " 1 6 . 0 "
start="hps 0.h2f axi master"
end="ogpu raster unit vlz.sl">

<parameter name="arbitrationPriorIty" value=" 1 " />
<parameter name="baseAddress" value="0x00C)10050 " />
<parameter name="def aultConnection" value="false" />

</connection>
<connectIon

kind= " avalon "

version= '’ 1 6 + 0 "
start="hps 0 ,h2f axi master"
end="ogpu raster unit vly.sl">

<parameter name="arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="0x00010040 " />
<parameter name="defaultConnection" value="false" />

< /connection>
<connection

kind="avalon"

171

version= " 1 6 . 0 "

start="hps 0.h2f axi master"
end="ogpu raster unit vlx.sl">

'’parameter name="arbitrationPriority " value=" 1 " />
,,parameter name="baseAddress '’ value="0x000 10030 " />
<parameter name="def aultConnection" value="false" />

< /connection>
<connection

kind="avalon"
version=" 1 6 . 0 "

start="hps 0 .h2f axi master"
end="ogpu raster unit vOz.sl">

<parameter name="arbitrationPrioritY" value="1" />
<parameter name="baseAddress" value="OxOOOIO020" />
<parameter name="def aultConnection" value="false" />

< /connection>
<connection

kind= " avalon "
version=" 16 + 0 "

start="hps 0+h2f axi master"
end= " ogpu raster_unit_vOy . s 1 " >

<parameter name="arbitrationPriority" value='’ 1 " />
,,parameter name="baseAddress" value=’'0x00010010 " />
/parameter name="def aultConnection" value="false" />

< /connection>
<connection

kind= " avalon "
version= " 1 6 . 0 "

start="hps 0 .h2f axl master"
end="ogpu raster unit vOx.sl">

,.parameter name="arbitrationPriority" value="1" />
'.parameter name="baseAddress" value="0xC)0010000 " />
<parameter name="def aultConnection" value="false" />

</connection>
<connection

kind= " avalon "
version= " 1 6 . 0 "

start="hps 0.h2f axi master"
end="ogpu quad store_reg . sl " >

<parameter name="arbitrationPrioritY" value=" 1 " />
<parameter name="baseAddress" value="OxOOOO '’ />
<parameter name="defaultConnection " value=" false " />

</connection>
<connect lon

kind=" avalon
version= " 1 6 . 0 "
start="hps 0 .h2f axl master"
end="ogpu quad store data_high .sl">

<parameter name=" arbitrationPriority" value= " 1 " />
<parameter name="baseAddress " value="OxOOIO " />
<parameter name="def aultConnection" value=" false" />

</connection>
<connection

kind="avalon"
version=" 1 6 . 0 "

start="hps 0 .h2f axl master"
end="ogpu quad store data low. sl ">

<parameter name="arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="OxO020" />
,.parameter name="def aultconnection" value="false" />

< /connection>
<connectIon

kind="avalon"
version= " 1 6 . 0 "
start="hps 0.h2f axl master"
end="ogpu quad store ack . sl " >

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x0030" />
,'parameter name="def aultconnection" value="false" />

</connection>
<connection

kind= " avalon
version= ’' 1 6 . 0 "
start="hps 0 .h2f axl master"
end= "ogpu reset + s 1 " >

,'parameter name="arbitrationPriority" value="1" />
,,parameter name="baseAddress" value="0xOC)40" />
'.parameter name="def aultconnection" value="false" />

< /connection>
<connection

kind= " avalon "

version= " 1 6 . 0 "
start="hps 0 .h2f Iw axl master"

172

end= " j tag uart . avalon_jtag_slave " >
,,parameter–name=" arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="OxOO020000" />
<parameter name="defaultConnection'’ value="false" />

< /connection>
<connection

kind= " avalon "
version=" 1 6 + 0 "

start=''hps O.h2f lw axi master"
end="alt vip vfr vga . avalon_slave">

<paramete; name=" arbitrationPrioritY" value=" 1 '’ />
<parameter name="baseAddress" value="OxOIOO" />
<parameter name="defaultConnection " value="false" />

< /connection>
<connectIon

kind= " avalon
version= " 1 6 . 0 "
start=''hps O.h2f lw axi master"
end= ''sysid qsys . control_slave'’>

<parameter name="arbitrationPriority" value="1" />
,p,,..„„eter .,me="b,,,Add,e,," v,ru,=''o”00010000 " />
<parameter name="defaultConnection " value= " false " />

< /connection>
<connect lon

kind= " avalon "

version= " 1 6 . 0 "
start="hps O.h2f lw axi_master"
end="led pio.sl">

,,parameter name=" arbitrationPriority" value=" 1" />
<parameter name="baseAddress" value="OxOOOIO04 O " />
<,parameter name="def aultConnection" value="false" />

</connection>
<connection

kind= " avalon "
version=" 1 6 . O "

start=''hps O.h2f lw axi_master"
end="button pio . sl " >

<parameter n=me="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="OxOOOIOOcO" />
<parameter name=" def aultConnection'’ value="false" />

< /connection>
<connectIon

kind="avalon"
version= " 1 6 . 0 "
start="hps 0.h2f lw axi master"
end="seven seq 00 sll'>

<parameter ;ame="arbitrationPrioritY" value="1" />
<parameter name="baseAddress" value="OxO050" />
<parameter name="def aultConnection" value="false" />

< /connection>
<connectIon

kind="avalon"
version= " 1 6 + 0 "

start="hps 0 .h2f lw axi master"
end="seven seq 1. sl ">

,,parameter ;ame=" arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="OxO040" />
<parameter name="def aultconnection" value="false" />

</connection>
<connectIOn

kind= " avalon "
version= " 1 6 + 0 "

start="hps 0.h2f lw axi_master"
end="seven seq 2 . sl ">

<parameter ;ame= " arbitrationPrioritY" value= " 1 " />
<parameter name="baseAddress" value="OxO030" />
<parameter name="def aultConnection" value="false'’ />

</connection>
<connect ron

kind=" avalon
version= " 1 6 . 0 "

start='’hps 0 .h2f Iw_axl_master"
end="seven seq 3 . sl ">

<parameter lame= " arbitrationPriority" value= " 1 " />
<parameter name="baseAddress" value="OxO020" />
,’parameter name="defaultConnection" value="false" />

</connection>
<connection

kind= " avalon
version= " 1 6 . 0 "

start="hps 0 .h2f lw_axi_master'’
end=" seven seg 4.sl">

<parameter ;ame="arbitrationpriority'’ value=" 1 " />

173

<parameter name="baseAddress" value="0x0010" />
<parameter name="def aultconnection" value="false" />

</connection>
<connectIon

kind="avalon"
version= " 1 6 . 0 "

start="hps 0 .h2f lw axi master"
end="dipsw plo . sl ">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x00010080 " />
<parameter name="def aultConnection" value="false" />

< /connection>
<connectIon

kind="avalon"
version= " 1 6 + 0 "

start="hps o .h2f lw axi master"
end="seven seq 5 . sl ">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="OxOOOO" />
<parameter name="def aultConnection" value="false" />

</connection>
<connectIon

kind= " avalon "
version= " 1 6 . 0 '
start="master non sec . master "

end= " j tag uari . avalon_jtag_s lave " >
<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x00020000" />
<parameter name="def aultconnection" value="false" />

< /connection>
<connectIon

kind= " avalon "
version= " 1 6 . 0 "
start="master non sec .master
end="alt vip ifr vga . avalon slave">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x0100" />
<parameter name="def aultconnection" value="false" />

</connection>
<connection

kind="avalon"
version= " 1 6 + 0 '
start="master non sec . master "

end="intr capiurer 0 . avalon slave O">
<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress '’ value="OxOO030000 " />
<parameter name="def aultconnection" value="false" />

</connection>
<connectIon

kind=" avalon "

version= " 1 6 . 0 '
start= "master non sec . master "

end="sysid qs is . control slave">
<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value=" OxC)0010000 " />
<parameter name="def aultConnection" value="false" />

</connection>
<connect ron

kind='’avalon"
version= " 1 6 + 0 "

start= "master secure + master "
end="hps 0 .f2h axi slave">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="OxOOOO" />
<parameter name="def aultconnection" value="false" />

< /connection>
<connectIon

kind="avalon"
version= " 1 6 . 0 "
start= "master non sec . master "
end= " led pto . sl ">

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x00010040" />
<parameter name="def aultConnection" value='’false" />

</connection>
<connectIon

kind="avalon"
version= " 1 6 . 0 "
start="master non sec .master "
end= " button pio . sl " >

<parameter name="arbitrationPriority" value="1" />
<parameter name="baseAddress" value="0x000100c0" />
<parameter name="def aultConnection" value="false" />

174

</connection>
<connectIon

kind="avalon"
version=" 1 6 . 0 "
start="master non sec .master "

end= "dipsw plo . sl ">
<parameter name="arbitrationPriority" value=" 1 " />
<parameter name="baseAddress" value="0x00010080 " />
<parameter name= "def aultConnection" value="false" />

</connection>
<connection

kind="avalon streaming"
version= " 1 6 . 0 ’'

start="alt vip vfr vga . avalon streaming source"
end="alt vip itc 0 . din" />

<connection kind='’clock'’ version= " 16 , 0 " start=„clk O.clk"
version="16.0„ start=„clk 0.clk"
version="16.0„ start=„clk 0.clk"

<connection kind="clock
<connection kind="clock"
<connectIon

kind= " clock
version=" 1 6 . 0 "

start="clk 0.clk"
end="master non sec.clk„ />

<connection kind="clock„ version=„16.0„ start=„clk 0.clk"
<connection kind="clock" version=„16.0„ start=„clk 0.clk'’
<connection kind="clock" version="16.O" start=„clk O.clk"
<connection

kind="clock"
version= " 1 6 . 0 "
start="clk 0,clk"
end="ogpu raster unit v2z.clk" />

<connection
kind= " clock "
version= " 1 6 . 0 "
start='’clk 0.clk"
end="ogpu_raster_unit v2y.clk" />

<connection
kind="clock"
version= " 1 6 . 0 "
start="clk 0 . elk
end="ogpu raster unit v2x.clk" />

<connectIon
kind= " clock "
version=" 1 6 + 0 "
start="clk 0.clk"
end="ogpu_raster_unit vIz.clk" />

<connection
kind= " clock "
version= " 1 6 . 0 "
start="clk 0.clk"
end="ogpu raster unit vly.clk" />

<connection
kind= " c lock "
version= " 1 6 . 0 "
start="clk 0.clk"
end="ogpu raster_unit vlx.clk" />

<connection
kind= " clock "
version= " 1 6 . 0 "
start="clk 0.clk"
end="ogpu raster unit vOz,clk" />

<connection
kind="clock"
version=" 1 6 . 0 "
start="clk 0.clk"
end="ogpu raster unit vOy.clk" />

<connection
kind= " clock "
version= " 1 6 + 0 "

start="clk 0,clk"
end="ogpu raster unit vOx,clk" />

<connection
kind= " clock "
version= " 1 6 , 0 "
start="clk 0.clk"
end="ogpu_raster_unit_quad_buffer addr high ,clk" />

<connection
kind= " clock "
version= " 1 6 + 0 "
start="clk 0.clk"
end="ogpu_raster_unit_quad_buffer addr low,clk" />

<connection
kind= " clock ’'

end="master secure .clk"
end="sysid qsys.clk" />
end=" led pio+clk" />

/>

end="dipsw pio.clk" />
end="button plo .clk" />
end="jtag uart.clk" />

175

version= " 1 6 . 0 "
start="clk O.clk"
end= " c>gpu raster_unit_depth_coef_c . clk" />

<connectIon
kind= " clock '’

version= " 1 6 + 0 "
start="clk O.clk"
end= " c>gpu raster_unit_depth_coef_b .clk" />

<connectIOn
kind="clock"
version= " 1 6 + 0 "
start="clk 0.clk"
end=''ogpu raster_unit_depth_coef_a .clk" />

<connectIon
kind="clock"
version=" 16 . 0 '’
start="clk O.clk"
end=''ogpu raster_unit_tilel.clk" />

<connection
kind="clock"
version= " 16 . 0 "
start="clk O.clk"
end=''ogpu raster_unit_tile0 .clk" />

<connection
kind="clock"
version= " 1 6 . 0 "
start="clk 0+clk"
end=''ogpu raster_unit_clip_rect1.clk" />

<connectIon
kind= " c lock "

version= " 1 6 . 0 "
start="clk 0.clk"
end="ogpu raster_unit_clip_rectO.clk’' />

<connection
kind="clock"
version= " 1 6 + 0 "
start="clk 0.clk"
end=''ogpu raster_unit_command .clk" />

<connectIon
kind="clock"
version=" 1 6 . 0 "
start="clk 0.clk"
end=''ogpu raster unit status .clk" />

<connection kind="clock" version= " 16.0 " start="clk_0 •clk"
<connection kind="c:lock" version=" 16.0 " start="clk_0 'clk"
<connection kind="clock" version=" 16.O" start="clk_0 •clk"
<connection kind="clock" version= " 16.0 " start="clk_0 •clk"
<'connection kind=''c,lock'' version="16,O" start="clk 0.clk’'
<connection kind="clock" version="16.O" start="clk_0 •clk"
<connectIon

kind= " c lock "

version=" 1 6 . 0 "
start="clk 0.clk"
end='’ogpu quad_store_req.clk" />

<connect lon
kind= " clock "

version= " 1 6 . O ’'
start="clk 0.clk"
end="ogpu quad_store_data_high .clk" />

<connectIon
kind= " clock "

version= " 1 6 + 0 "
start="clk 0+clk"
end= "ogpu quad_store_data_low.clk" />

<connect ron
kind="clock"
version= " 1 6 o O "
start="clk 0.clk"
end="ogpu quad store_ack.clk" />

<connection kind="clock" versio:
<connection

kind= " clock "
version= " 1 6 . 0 "
start="clk 0+clk"
end="intr capturer_0 .clock" />

<connect lon
kind= " clock "
version= " 1 6 . 0 "
start="clk Ooclk"
end= " alt, vip_vfr_vga . clock_master " />

<connectIOn
kind="clock"
version= " 1 6 . 0 "

end="seven seq 5.clk" />
end=" seven seq 4 .clk" />
end=" seven seq 3 .clk" />
end="seven seq 2+clk" />
end="seven seg_l.clk" />
end="seven seq_0 +clk" />

start="clk 0.clk" end="ogpu reset.clk" />

176

start="clk 0+clk
end=''hps O.f2h axi clock" />

<connectIOn
kind="clock"
version=" 1 6 . O "
start="clk 0.clk"
end="hps O,h2f_axi_clock" />

<connectIOn
kind= " clock "
version= " 1 6 . 0 "

start="clk 0.clk"
end="hps O.h2f Iw axl clock" />

<connection kind="clock’' version="16.O"
<connectIOn

kind= " clock "
version=" 1 6 . 0 "

start="pII stream. outclkO"
end="alt. vip_vfr_vga.clock_reset" />

<connectIOn
kind="clock"
version=" 1 6 . 0 "
start="pll stream. outclk0"
end="alt vip itc_0.is_clk_rst" />

<connectIOn
kind=" interrupt "
version=" 1 6 . 0 "
start="hps 0,f2h_irqO"
end="jtag uart . irq">

<parameter name="irqNumber" value=" O " />
< /connection>
<connectIOn

kind= '’ interrupt '’

version=" 1 6 . 0 "
start="hps O.f2h_irq0"
end="button plo . irq">

<parameter name= " ircaNumber " value=" 1 " />
</connection>
<connect ron

kind=" interrupt "
version=" 1 6 . 0 "
start="hps O.f2h_irq0"
end="dipsw plo . irq">

<parameter name=" irc;Number " value="2" />
< /connection>
<connectIOn

kind= " interrupt "
version=" 1 6 + 0 11
start=" intr capturer_0 + interrupt_receiver "
end=" jtag uart . irq" >

<parameter name="irqNumber" value= " O " />
< /connection>
<connectIon

kind= " interrupt "

version=" 1 6 . 0 11
start=''intr capturer_0 . interrupt_receiver "

end="button plo . irq">
<parameter name="irqNumber" value="1" />

< /connection>
<connect ron

kind= " interrupt "

version=" 1 6 + 0 "
start=''intr capturer_0 . interrupt_receiver "
end="dipsw plo . irq'’>

<parameter name="irqNumber" value="2" />
< /connection>
<connection

kind="reset"
version=" 1 6 . O '1

start="clk 0.clk reset"
end=..maste; non sec.clk reset" />

<connectIOn
kind="reset"
version=" 1 6 . 0 "
start="clk O.clk reset"
end="maste; secure .clk reset" />

<connection
kind= " reset "

version=" 1 6 . 0 "
start="clk 0.clk reset"
end= " alt vip_vfr_vga . clock_master_reset"

<connection
kind="reset"
version=" 1 6 . 0 "

start="clk 0.clk" end="pII stream.refclk" 1>

/>

177

start="clk 0+clk reset'
end= " alt vip_vfr_vga .clock_reset_reset" />

<connection
kind="reset"
version= " 1 6 . 0 "

start="clk 0+clk reset"
end= "alt vip itc 0 . is clk_rst_reset" />

<connection
kind="reset"
version= " 1 6 . 0 "

start="clk 0.clk reset"
end= " seven–seq 0 . reset" />

<connectIOn
kind=" reset
version= 11 1 6 + 0 "

start="clk 0.clk reset"
end= " seven–seq 5.reset" />

<connectIon
kind= " reset
version= " 1 6 . 0 "
start="clk 0.clk reset"
end="seven–seq 4.reset" />

<connectIon
kind="reset"
version= " 1 6 . 0 "
start="clk 0.clk reset"
end= " seven–seq 3 . reset " />

<connectIon
kind="reset"
version= " 1 6 . 0 "
start="clk 0.clk reset"
end=" seven–seq 2+reset" />

<connectIOn
kind= " reset "

version= " 1 6 . 0 "
start="clk 0.clk reset
end= "seven–seq I,reset" />

<connection
kind=" reset
version= " 1 6 . 0 "
start="clk O.clk reset"
end="pII stream.reset" />

<connection
kind="reset"
version=" 1 6 + 0 "

start="clk O.clk reset"
end="jtag =art.reset" />

<connection
kind= " reset "

version= " 1 6 + 0 "

start="clk 0 + elk reset
end="butto; plo .reset" />

<connectIOn
kind= " reset
version= " 1 6 . 0 "
start="clk 0+clk reset"
end= "dipsw–pio.reset" />

<connection
kind="reset"
version= " 1 6 . 0 "
start="clk O.clk reset"
end="led pio+reset'’ />

<connection
kind=" reset "

version=" 1 6 . 0 "
start="clk 0.clk reset"
end="sysid–qsys .reset" />

<connectIOn
kind="reset"
version= " 1 6 + 0 "
start="clk 0.clk reset"
end= "c>gpu ;aster_unit_clip_rectl.reset" />

<connection
kind="reset"
version= " 1 6 + 0 "
start="clk 0+clk reset"
end="ogpu ;aster_unit_clip_rectO .reset" />

<connection
kind="reset"
version= " 1 6 + 0 "
start="clk 0.clk reset"
end= '' c)gpu ;aster_unit_quad_buffer_addr_high . reset"

<connection
/>

178

kind="reset"
vers ion= " 1 6 . O "

start="clk 0.clk reset"
end=''c.)gpu ;aster unit_status.reset" />

<connection
kind= " reset
version= " 1 6 . 0 "
start="clk 0,clk reset"
end= ''c)gpu Faster_unit_command .reset" />

<connectIOn
kind="reset"
versIon= " 1 6 . 0 "
st'art="clk O.clk reset
end= " c>gpu ;aster_unit_tileO . reset '’ />

<connection
kind="reset"
version= " 1 6 . 0 "
st.art="clk O.clk reset"
end=''ogpu ;aster unit_tilel.reset" />

<connection
kind= " reset "
vers ion= " 1 6 . 0 "
start="clk 0+clk reset"
end= " ogpu Taster_unit_depth_coe f_a . reset

<connectIon
kind= " reset "
version= " 1 6 . 0 "
start="clk 0.clk reset"
end= " ogpu ;aster_unit_depth_coef_b . reset

<connectIon
kind=" reset
version=" 1 6 . 0 "

start="clk O,clk reset"
end= ''ogpu ;aster_unit_depth_coef_c . reset

<connection
kind= " reset "
version=" 1 6 . 0 "

start="clk O,clk reset"
end= "ogpu Taster_unit_quad_buffer_addr_1

<connection
kind="reset"
version= " 1 6 . 0 "
start="clk 0+clk reset
end="ogpu ;aster_unit_vOx.reset" />

<connect ron
kind="reset"
version= " 1 6 n 0 "

start="elk 0 .elk reset"
end=''ogpu Taster_unit_v2z.reset" />

<connection
kind= " reset "

version= " 1 6 + 0 "
start="clk O,clk reset"
end="ogpu ;aster_unit_v2y .reset" />

<connection
kind= " reset "

version= " 1 6 . 0 "
start="clk 0oclk reset"
end=''ogpu ;aster_unit_v2x .reset" />

<connectIOn
kind= " reset "

version= " 1 6 . 0 "
st'art="clk O.clk reset"
end="ogpu ;aster_unit_vlz +reset" />

<connection
kind= " reset "

version= " 1 6 . O "

start="clk 0.clk reset"
end=''ogpu ;aster_unit_vly . reset" />

<connection
kind="reset"
version= " 1 6 . 0 "
start="elk 0 .clk reset"
end="ogpu ;aster_unit_vlx. reset " />

<connection
kind= " reset "

version= " 1 6 + 0 11
st,art="clk O.clk reset "
end=''c>gpu ;aster_unit_vOz . reset " />

<connection
kind="reset"
version= " 1 6 . 0 "
start="clk 0,clk reset"

)W . reset

179

end="ogpu raster unit vOy.reset" />
<connection

kind="reset"
version=" 1 6 . 0
start="clk 0.clk reset
end="ogpu quad store_req.reset" />

<connection
kind="reset"
version= " 1 6 . 0 "

start="clk 0.clk reset"
end="ogpu quad store data high +reset" />

<connection
kind="reset"
version= " 1 6 + 0 "

start="clk 0.clk reset
end="ogpu auad store data low+reset" />

<connection
kind="reset"
version= " 1 6 , 0 "

start="elk 0 .clk reset"
end="ogpu juad store ack.reset" />

<connection
kind= " reset "
version= " 1 6 . 0 "
start="clk 0+clk reset"
end="ogpu reset . reset" />

<connection
kind="reset"
version= " 1 6 . 0 "
start="clk 0 . elk reset"
end="intr capturer 0 . reset sink" />

<interconnectRequirement for="§system" name="qsys mm. clockCrossingAdapter"
<interconnectRequirement for=" $system'’ name="qsys mm .maxAdditionaILatency "

< / system>

value="HANDSHAKE" />
value=" 1 " />

180

//
// copyright, (c) 2013 by Terasic Technologies Inc .
// ==
//
// Permission :
//
// Terasic grants permission to use and modify this code for use
/ / in synthesis for all Terasic Development Boards and Altera Development
// Kits made by Terasic . Other use of this code, including the selllng
/ / , duplication, or modifIcation of any portion is strictIY prohibited •
//
/ / Disclaimer :
//
// This VHDL/Verilog or c/c++ source code is intended as a design reference
// which illustrates how these types of functions can be implemented •
/ / it is the user's responsibility to verify their design for
// consistency and functionality through the use of formal
// verification methods . Terasic provides no warranty regarding the use
/ / or functionality of this code .
//
//
//
// Terasic Technologies Inc
/ / 9F o / No . 1761 Sec , 2 , Gongdao 5th Rd, East Dist , Hsinchu City, 30070 . Taiwan
//
//
//
//
//
//
/ /Date : Thu Jul 11 11 : 26 : 45 2013
// ==

= = = = = =

nUn W T = = = = = = = = = = = = = = = = == = =

= =

web: http: //www.terasic . com/
email : supporteterasic .com

' define ENABLE ADC
define ENABLE AUD

-define ENABLE CLOCK2
' define ENABLE CLOCK3
-define ENABLE CLOCK4
- define ENABLE CLOCK

- define ENABLE DRAM

define ENABLE FAN
'define ENABLE FPGA
' define ENABLE GPIO
- define ENABLE HEX
//' define ENABLE HPS

' define ENABLE IRDA
- define ENABLE KEY
'define ENABLE LEDR

- define ENABLE PS2
- define ENABLE SW

define ENABLE TD
- define ENABLE VGA

module DEI SOC_golden_top (

/* Enable, ADC - 3.3V */
- if def ENABLE ADC

output
output
input
output

ADC CONVST,
ADC DIN,
ADC DOUT,
ADC SCLK,

endif

/* Enables AUD – 3o3V *I
if def ENABLE AUD

input
inout
inout
output
inout
output

AUD ADCDAT,
AUD ADCLRCK,
AUD BCLK,
AUD DACDAT,
AUD DACLRCK,
AUD XCK,

endif

I* Enables CLOCK2 * /
' if def ENABLE CLOCK2

input CLOCK2 50,
endif

/* Enables CLOCK3 *1

181

ifdef ENABLE CLOCK3

input CLOCK3 50,
endif

/* Enables CLOCK4 */
- if def ENABLE CLOCK4

input CLOCK4 50,
endif

/* Enables CLOCK *I
ifdef ENABLE CLOCK

input CLOCK 50,
endif

1* Enables DRAM - 3.3V */
- if def ENABLE DRAM

output [12 : 0] DRAM ADDR,
outPut [1 :01 DRAM BA,
outPut DRAM CAS N,
output DRAM CKE:,
output DRAM CLK,
output DRAM CS N /

inout [15 : 0] DRAM DQ,

output DRAM LDQM,
outPut DRAM RAS_N,
output DRAM UDQM,

outPut DRAM WE_N ,
endif

/* E.able, FAN - 3.3V *I
- if def ENABLE FAN

outPut FAN CTRL,
endif

/* Enables FPGA - 3.3V *I
- if def ENABLE FPGA

outPut FPGA 12C SCLK,
inout FPGA 12C SDAT,

endif

/* En,bre, GPIO - 3.3V *I
if def ENABLE GPIO

inout [35 : 0]
inout [35 : 0]

endif

GPIO O,
GPIO I,

/* Enables HEX - 3+3V *I
- if def ENABLE HEX

outPut [6:0] HEXO,
outPut [6:0] HEXI,
outPut [6:0] HEX2,
outPut [6:0] HEX3,
output [6 : 0] HEX4 ,

outPut [6:0] HEX5,
endif

/* Enables HPS +1
- if def ENABLE HPS

inout HPS CONV USB N

outPut [14:0] HPS–DDR3:ADDR,
outPut [2:0] HPS DDR3_BA,
outPut HPS DDR3_CAS_N
output HPS DDR3 CKE,
outp,t HPS DDR3 CK N, //r.5v
output HPS DDR3 CK_P, //r.5v
outPut HPS DDR3_CS_N,
outPut [3:0] HPS DDR3_DM,
inout [31:0] HPS DDR3 DQ,
inout [3:0] HPS DDR3 DQS N
inout [3:0] HPS DDR3 DQS P
output HPS DDR3 ODT,
outPut HPS DDR3_RAS_N,
outPut HPS DDR3_RESET_N,
input HPS DDR3 RZQ,
outPut HPS DDR3 WB_N,
outPut HPS ENET_GTX_CLK,
inout HPS ENET INT N,

outPut HPS ENET_MDC,
inout HPS ENET MDIO,

Input HPS ENET RX CLK,
input [3 :0] HPS ENET RX_DATA ,

input HPS ENET_RX_DV,

182

output
output
inout
output
output
inout
inout
inout
inout
inout
inout
inout
inout:
inout:
output
inout
inout
output
input
output
inout
input
output
input
inout
input
input
output

endif

[3:0]

[3:0]

HPS ENET TX DATA,
HPS–ENET–TX ENr
HPS–FLASi DATA,
HPS–FLASH DCLK,
HPS–FLASH NCSO,
HPS GSENSOR INT,
HPS 12CI SCLK,
HPS–12CI SDAT,
HPS 12C2 SCLK,
HPS–12C2 SDAT,
HPS–12C CONTROL ,

HPS KEY,
HPS LED,
HPS LTC GPIO,
HPS SD CLK,
HPS–SD CMD,
HPS SD DATA,
HPS–SPIM CLK,
HPS SPIM MISO,
HPS SPIM MOSI,
HPS–SPIM SS,
HPS UART RX,
HPS–UART TX,
HPS USB CLKOUT,
HPS USB DATA,
HPS USB DIR,
HPS USB NXT,
HPS–USB STP,

[3:0]

[7 :0]

/+ Enable, IRDA - 3.3V */
ifdef ENABLE IRDA

input IRDA_RXD ,

outPut IRDA_TXD ,
endif

/+ Enables KEY - 3.3V +/
' if def ENABLE KEY

input [3:0] KEY,
endif

/+ En,bre, LEDR - 3.3V */
- if def ENABLE LEDR

output [9 : 0] LEDR ,
endif

/* Enables PS2 - 3o3V */
-ifdef ENABLE PS2

inout_ PS2 CLK,
inout PS2 CLK2 ,
inout PS2 DAT,
inc)ut PS2 DAT2,

endif

/* Enables SW - 3.3V *I
if def ENABLE SW

input [9 : 0] SW ,
endif

/* Enables TD - 3.3V *I
- if def ENABLE TD

input TD CLK27 ,
input [7 : 0] TD DATA,
input TD HS /
outPut TD RESET_N,
input TD VS r

endif

/* Enables VGA - 3.3V */
if def ENABLE VGA

outPut [7 : 0] VGA B,
outPut VGA_BLANK_N ,
outPut VGA CLK,
OUtpUt [7 : 0] VGA_G r
OUtput VGA HS r
outPut [7 : 0] VGA R,
output VGA SYNC_N/
outPut VGA_VS

endif
);

/ / ===

183

/ / REG/WIRE declarations
/ /===

/ /===
/ / Structural coding
/ /===

endmodu le

184

library ieee ;
use ieee . std logic 1164 . all;
use ieee . numeric std . all ;

package ogpu data_record_pkg

type ogpu float is
record
__ TODO : implement float point conversion to fix notatlon

sig : std logic ;
exp: std logic vector (30 downto 23) ;
fr-ac : std logic vector (22 downto O) ;
int : unsi;ned (15 downto O) ; -- fixed notation

end record;
for initial implementation

type ogpu vertex IS
record

x, y, z : ogpu_float ;
end record;

type ogpu box is
record

–xO , yO : ogpu float ;
--x1,yl : ogpu float ;
xO , yO : unsigned(15 downto O) ;
x1,yl : unsigned (15 downto O) ;

end record;

type ogpu tile
record

xo ,yO : unsigned (15 downto O) ;
x1/yl : unsigned (15 downto 0) ;

end record;

type ogpu edge
record

xO , yO : unsigned (15 downto O) ;
xl,yl : unsigned (15 downto O) ;

end record;

type ogpu quad
record

xo , yo , xl,y1 : unsigned (15 downto O) ;
x2,y2,x3,y3 : unsigned (15 downto O) ;

end record;

type ogpu depth_coefficients is
record

a,b, c : signed (31 downto 0) ;
end record;

tYpe ogpu depth_quad is array (0 to 3) of signed (31 downto 0) ;

type ogpu setup_in_type
record

vxO : ogpu float;
vyO : ogpu float ;

vx1 : ogpu float;
vyl : ogpu float ;

vx2 : ogpu float;
vy2 : ogpu float;
start raster : std_logic ;

end record;

type ogpu setup_out_type IS
record

setup done : std_logic ;
eO : ogpu edge ;
el : ogpu edge ;
e2 : ogpu edge ;

end record;

type ogpu quad_generator_in_type
record

clip rect : ogpu_box;
tile: ogpu tile;
next quad : std_logic ;

end record;

type ogpu quad_generator_out_tyPe IS
record

end tile : std logic ;
quaa ready : std_logic ;

185

quad: ogpu quad;
end record;

type t..)gpu quad_edge_test_in_tyPe IS
record

edge test : std_logic ;
quad : ogpu quad ;
e : ogpu edge ;

end record ;

type ogpu quad_edge_test_out_type IS
record

edge ready :
edge mask :

end record;

std logic ;

std logic_vector (0 to 3) ;

type ogpu triangle_edge_test_in_tYPe IS
record

edge ready :
edge mask0 :
edge mask1 :
edge mask2 :

end record;

std logic vector(0 to 2) ;
std logic vector (0 to 3) ;
std logic vector (0 to 3) ;
std logic_vector (0 to 3) ;

type ogpu triangle_edge_test_out_tYPe is
record

draw quad : std logic ;
discard quad : std logic ;
quad mask : std_logic_vector (0 to 3) ;

end record;

type oqpu depth_test_in_type rs
record

depth coef : ogpu_depth_coefficients ;
quad : ogpu quad;
depth test : std_logic ;

end record ;

type ogpu depth_test_out_type IS
record

depth ready : std_logic ;
depth quad : ogpu_depth_quad;

end record;

type ogpu quad_store_in_type IS
record

quad mask : std logic_vector (0 to 3) ;
quad: ogpu quad;
depth quad: ogpu_depth_quad;
start raster : std IOgIC ;
store quad : std_logic ;

buffer ack : std logic ;
addr: :td logic vector (63 downto O) ;

end record;

type ogpu quad_store_out_tYPe IS
record

quad stored : std_logic ;

quad buffer length : std_logic_vector (23 downto O) ;
buffer address : std logic vector (15 downto O) ;
buffer–byte enable : std_logic_vector (7 downto O) ;
buffer write : std logic ;
buffer–write data : std logic vector (63 downto O) ;

end record;

type ogpu command is (0(,PU_CMD_NOP, OGPU_CMD_PREPARE ,OGPU_CMD_RASTER, OGPU_CMD_ERROR) ;

r.„,ti:„ ;gp. ,td_rogi,_t,:,„„i,„d_£unc–(s:–std_logic_vector (7 dowrlto O)) retLlrl:1 ')gpLl_co1'11'taT’d;

type ogpu raster_control_in_tyPe
record

is

command : ogpu command;
setup done : std_logic ;end tile: std logic;
quai ready : std_logic ;
depth ready: std_logic ;
quad stored : std_logic ;
draw quad : std_logic ;
discard quad : std logic ;

end record;

type ogpu raster_control_out_tYPe IS

186

record
start raster : std logic;
next quad: std logic ;
edge test : std_logic ;
depth test : std logic ;
store quad : std logic ;
busy : std logic ;
done : std logic ;

end record;

end package ogpu_data record pkg ;

package body ogpu data record pkg

function ogpu std logic to command func
variable r : ogpu command ;

(s : std logic vector (7 downto 0)) return ogpu command is

begin
case s is

when "00000000" => r:=OGPU CMD NOP;
when " 10100101 „ => r:=OGPU CMD PREPARE ;
when " 10101010" => r:=OGPU–CMD RASTER:
when others => r:=OGPU CMD–ERROR:

end case;
return r;

end function;

end package body;

187

library ieee ;
use ieee. std logic 1164 . all ;
use work.ogpu data record pkg . all ;
use ieee . numeric std . all ;

––TODO: implement depth test algorithm used in

0' ;

r <=

software model

entity ogpu depth test is
port (clock : in std logic ;

reset : in std logic ;
d : in ogpu depth test in type ;
q : out ogpu depth test out type) ;

end ogpu depth_test;

architecture depth test 1 of ogpu depth test is
type reg type is record

depth test : std logic ;
depth ready : std logic ;
depth quad: ogpu depth quad ;

end record ;

signal r, rin : reg type ;
begin
comb : process (reset , d, r)

variable v : reg type;
begin

V : = r; --default assignment

v. depth test : = d . depth test ;
v, depth ready : = d. depth test;
vodepth quad := (others => to signed (0 , 32)) ;

if reset = ' 1 ' then

v . depth_ready
end if ;

rln <= V ; -- drive register inputs

q . depth ready <= r . depth ready ; -- drive module outputs
q. depth quad <= vodepth quad;

end process ;

seq : process (clock)
begin

if rising edge (clock) then
end process ;

end depth test 1 ;

rin ; end if ;

188

library ieee ;
use ieee. std logic 1164 . all ;
use work .ogpu data record plcg, all ;

library ieee ;
use ieee . std logic 1164 Ball ;

use ieee . numeric std . all ;

entity ogpu quad_edge test is
port (clock : in std logic ;

reset : in std logic ;
d : in ogpu quad edge test in type;
q: out ogpu quad edge_test_out_type) ;

end ogpu_quad edge_test ;

architecture edge test 1 of ogpu quad edge test is
function ogpu edge test f unc (e : ogpu edge;

downto 0) ;
unsigned (15

y : unsigned (15
downto 0))

return std logic
variable xt,yt,xOt,yOt,xlt,ylt, r : signed(31 downto 0) ;
variable xt,yt,xOt,yOt,xlt,ylt, i : integer;
variable r : signed (31 downto 0) ;

begin
xt : = to signed (to integer (x) , 32) ;
yt : = to signed (to integer (y) , 32) ;
xOt := to signed (to integer(enx0) , 32) ;
yOt := to signed(to integer(e.yO) , 32) ;
xlt : = to signed (to integer (e . xl) , 32) ;
ylt : = to signed (to integer(e.yl) , 32) ;
xt : = to integer (x) ;

yt : = to integer (y) ;
xOt : = to integer(e.xO) ;
yOt : = to integer(e.yO) ;
xlt : = to integer (e . xl) ;
ylt := to integer(e.y1) ;

i : = ((xt-xOt)*(ylt-yOt)

r : = to signed (i , 32) ;
if r >= 0 then

return ' 1

(xlt–xOt)+(yt-yOt)) ;

else

end if i
end ogpu_edge test func ;

return

type reg type is record
edge test : std logic ;

edge_ready : std logic ;
edge_mask: std logic vector (0

end record ;

signal r, rin : reg type;

to 3) ;

begin
comb : process (reset , d , r)

variable v : reg type ;
begin

v : = r ; --default assignment
v.edge test := d.edge test;
v. edge_ready : = r . edge test ;

v. edge mask (0)
v . edge mask (1)

v . edge mask (2)

v. edge mask (3)

ogpu edge test func (d . e, d,quad . xD , d .quad .yO) ;
ogpu edge test func (d . e, d +quad . xl, d .quad .yl) ;
ogpu edge test func(d,e,d,quad.x2 , d .quad .y2) ;
ogpu edge test func (d.e,dequad.x3 , d.quad .y3) ;

if reset = ' 1 ' then
vo edge ready := ' 0 ' ;
v . edge mask := (others

end if ;
=> 101) ;

<= V; -- drive register inputs

q . edge ready <= r + edge ready; -– drive module outputs
q . edge_mask <= v . edge mask ;

end process ;

seq : process (clock)
begin

if rising edge (clock) then r <= rin ; end if ;

189

end process ;

end edge test 1 ;

190

library ieee ;
use ieee . std logic 1164 . all ;
use ieee . numeric std . all ;

use work . ogpu data record_pkg . all ;

entity ogpu edge test testbench is
end ogpu edge test_testbench ;

architecture ogpu edge test tbl of ogpu edge test testbench
constant clock period : time : = 20 ns ;
signal clock, reset : std logic : = ' 0 ' ;

IS

over

over

J

signal edge test : std logic : = ' 0 ' ;
signal edge ready : std logic := ' 0 ' ;
signal edge mask : std logic vector (0 to 3) ;
–- DATAPATH/CONTROL interface signals
signal quad : ogpu quad;
signal e : ogpu edge ;

begin
ETI : entity work.ogpu quad edge test (edge test_1) port map (

IN
clock=>clock , reset=>reset ,

d . edge test=>edge_test , d . e=>e ,
d . quad=>quad ,
-- OUT
q . edge ready=>edge_ready ,
q . edge mask=>edge_mask) ;

reset proc : process
begin

--reset <= ' 0 ' ;

--wait for 5*clock period ;
reset <= ' 1 ' ;

wait for 5*clock period;
reset <= ' 0 ' ;
wait ;

end process ;

strm proc : process
begin

edge test <= ' 0 ' ;
e . ><0<=to unsigned (1, 16) ;
e.y0<=to unsigned (1, 16) ;
e . xl<=to unsigned (100 , 16) ;
e.yl<=to unsigned (100 , 16) ;

-- quad at (1, 20) : at left, under edge
quad .x0<=to unsigned(1, 16) ;
quad+y0<=to unsigned (20 , 16) ;

quad . xl<=to unsigned (2 , 16) ;
quad .yl<=to unsigned (20 , 16) ;

quad .x2<=to unsigned (1, 16) ;
quad.y2<=to unsigned (21, 16) ;

wait for 6*clock period;
edge test <= ' 1 ' ;
wait for 2*clock period;
edge test <= ' 0 ' ;
wait for 2*clock period;

quad .x3<=to unsigned (2 , 16) ;
quad .y3<=to unsigned (21 , 16) ;

-- other quad (30 , 30) : exactly
quad.x0<=to unsigned (30 , 16) ;
quad +y0<=to unsigned (30 , 16) ;

edge
quad .xl<=to unsigned (31, 16) ;
quad .yl<=to unsigned(30 , 16) ;

quad .x2<=to unsigned (30 , 16) ;
quad .y2<=to unsigned (31, 16) ;
wait for 6*clock period;
edge test <= ' 1 ' ;
wait for 2 *clock period;
edge test <= ' 0 ' ;
wait for 2*clock period;

quad . x:3<=to unsigned (31 , 16) ;
quad .y3<=to unsigned(31 , 16) ;

-- other quad (60 , 15) : at right ,
quad+x0<=to unsigned (60 , 16) ;
quad .y0<=to unsigned (15 , 16) ;

edge
quad . xl<=to unsigned (61 , 16) ;
quad .yl<=to unsigned (15 , 16) ;

quad . x2<=to unsigned (60 , 16) ;

quad.y2<=to unsigned(16 , 16) ;
wait for 6*clock period;
edge test <= ' 1 ' ;
wait for 2*clock period ;
edge test <= ' 0 ' ;
wait for 2*clock period;

quad .x3<=to unsigned (61 , 16) ;
quad ,y=3<=to unsigned (16 , 16) ;

191

-- The same , but with another edge
edge test <= ' 0 ' ;
e.x0<=to unsigned(20 , 16) ;
e.y0<=to unsigned (10 , 16) ;
e .xI<=to unsigned (5 , 16) ;

e.yl<=to unsigned (40 , 16) ;

-- quad at (2 , 3) : at left , over edge
quad .x0<=to unsigned (2 , 16) ;
quad +y0<=to unsigned (3 , 16) ;

quad . xl<=to unsigned (3 , 16) ;
quad .yl<=to unsigned(3 , 16) ;

quad +x2<=to unsigned (2 , 16) ;

quad .y2<=to unsigned (4 , 16) ;
wait for 6*clock period;
edge test <= ' 1 ’ ;
wait for 2*clock period;
edge test <= ' 0 ' ;
wait for 2*clock period;

quad .x:3<=to unsigned (3 , 16) ;
quad .y=3<=to unsigned (4 , 16) ;

-- other quad (60 , 90) : at right , under edge
quad . xO<=to unsigned (60 , 16) ; quad . xl<=to_unsigned (61 , 16) ;
quad .y0<=to unsigned (90 , 16) ; quad .yl<=to_unsigned (90 , 16) ;

quad .x2<=to unsigned (60 , 16) ;
quadoy2<=to unsigned (91 , 16) ;
wait for 6*clock period;
edge test <= ' 1 ' ;
wait for 2*clock period ;
edge test <= ' 0 ' ;
wait for 2*clock period;

quad . x=3<=to unsigned (61 , 16) ;
quad .y=3<=to unsigned (91, 16) ;

wait ;
end process ;

clock process :
begin

process

clock <= not clock ;

wait for clock period/2 ;
end process ;

end ogpu_edge test_tbl ;

192

library ieee;
use ieee . std logic 1164 . all ;
use ieee . numeric std . all ;

use workoogpu data record pkg . all ;

--TODO : improve this algorithm, optmize for speed

entity ogpu quad generator is
port (clock : in std logic ;

reset : in std logic ;
d : in ogpu quad generator in type;
q : out ogpu quad generator out type) ;

end ogpu quad generator;

architecture generator_1 of ogpu quad generator is
type reg type is record

next quad: std logic ;

end tile : std logic ;

quad_ready: std logic ;

quad : OtgpU quad;
generate quads : std logic ;

i,j,xO , xl, yI : unsigned(15 downto 0) ;
end record ;
signal r, rin : reg type;

begin
comb: process (reset , d, r)

variable v : reg type ;

begin
v : = r; --default assignment
v . next quad : = d . next quad;
voquad ready : = ' 0 ' ;

if d . n

elsif

;t quad = ' 1 ' and renext quad
Ve end tile := ' 0 ’ ;

next quad= ' 1 ' then

0

if r . generate quads= ' 0 ' and r . end tile =
v+end tile : = ' 0 ' ;
v. i : = (others => ' 0 ') ;
v. j : = (others => ' 0 ') ;

v . xC) : = (others => ’ 0 ') ;
v . xl : = (others => ' 0 ') ;
voyl : = (others => ' 0 ') ;

if (d . tile . xl < d . clip rect . xD) or
v. quad ready := ' 0 ’ ;
v. end tile : = ' 1 ' ;

then

0' then

(d +tile.xO doclip rect .xI) then

else

then
if (d,tile.y1 < d . clip rect.yO) or (d .tile.yO d. clip rect . yI)

v. quad ready : = ' 0 ' ;

v. end tile : = ' 1 ' ;
else

-- tile is valid, so, generate quads
v. generate quads : = ' 1 ' ;
-- clip tile, discarding void areas
if d . tile . yo <= d . clip rect.yO then

v, i : = d . clip rect+y0 ;
else

end if ;

V . 1 d .tile.yO

if d .tile.xO
Vel

else

d . clip rect.xO then
d . clip rect.xO ;

end if ;
v.xO : =

d .tile.xO ;

if d . tile .xl >= d . clip rect . xl then
v . xl : = d ,clip rect + xl ;

else
v axl : = d . tile o xl ;

end if ;

if d,tile.yl >= d ,clip rect.yl
v.y1 : = d . clip rect . yI ;

then

else
v .y1 : = d .tile.yl ;

end if :

-- after clipping , guarantee even number for i or xO

-- this is for avoid quads starting with odd position
v . i (0) : = ’ 0 ' ;
v.xO (0) : = ' 0 ' ;

end if ;

193

end if ;
elsiE r . generate quads= ' 1 '

v. quad . xa : = v. j ;
v . quad .yO := v. i ;
v.quad .x2 := v . j ;
v.quad .y2 : = v . i+1 ;

and r .end tile =
v . quad . xI

v . quad . y 1
v . quad . x3

v . quad .y3

0 ' then
: = v . j+1 ;
: = V O ! ;
: = vo j+1 ;
: = v . i+1 ;

v. j : = v. j+2 ;
if v. j>v .xl then

v. j : = v.xO ;
v. i : = v . i+2 ;

if v. i>v,yI then
v. end tile
v. generate quad,

end if ;
O ' ;

end if ;
v . quad ready

end if ;

:= ' I

else

end if ;
v,quad ready := ' O ' ;

if reset = ' 1 ' then

v.quad ready := ' O ’ ;
v. end tile : = ' 0 ' ;
v. generate quads := ' O ' ;
v. i : = (others => ' 0 ') ;
v. j :=(others => ' O ') ;
v.xO : =(others => ' O ') ;
v,xl : = (others => ' 0 ') ;
v,y1 : = (others => ' 0 ') ;

end if ;

<= V; -- drive register inputs

--q,quad ready <= v. quad_ready; -- drive module outPuts
q .quad ready <= r ,quad_ready; -- drive module outPuts
q, end tile <= v . end_tile ;
q.quad <= v. quad;

end process ;

seq : process (clock)
begin

if rising edge (clock) then
end process ;

end generator 1 ;

rin ; end if ;

194

library ieee;
use ieee. std logic 1164 . all ;
use ieee . numeric std . all i

use work.ogpu data record pkg, all ;

entity ogpu quad generator testbench
end ogp Il_quad generator test:bench ;

IS

is

1 ’ ;

architecture ogpu quad generator tb1 of ogpu quad generator testbench
constant clock period : time : = 20 ns ;
signal clock, reset : std logic : = ' 0 ' ;

signal quad : ogpu quad
:=(x0=> (others=> ' 0 '),yC)=> (others=> ' 0 ') , xl=> (others=> ' 0 '),yl=> (others=> ' 0 ') , x2=> (others=> ' O ') , y2=> (o

thers=> ' 0 '),x3=> (others=> ' 0 '),y3=> (others=> ' 0 ')) ;

signal tile : ogpu tile
:=(x0=> (others=> ’ 0 '),y0=> (others=> ' 0 ') , xl=> (others=> ' 0 ') ,yl=> (others=> ' 0 ')) ;
signal clip rect : ogpu box
:=(xO=> (others=> ’ 0 '),y0=> (others=> ' 0 ') , xl=> (others=> ' 0 '),yl=> (others=> ' 0 ')) ;
-- DATAPATH/CONTROL interface signals
signal next quad : std logic : = ' 0 ' ;
signal quad ready : std logic : = ' 0 ' ;

signal end tile : std logic : = ' 0 ' ;
begin
QGI : entity work.ogpu quad generator (generator. 1) port map(

-- IN
clock=>clock , reset=>reset ,

d . clip_rect=>clip_rect , d . tile=>tile , d . next_quad=>next_quad ,
OUT

q . end_tile=>end_tile, q . quad ready=>quad ready ,
q . quad=>quad) ;

reset proc : process
begin

--reset <= ' 0 ' ;

--wait for 5*clock period ;
reset <= ' 1 ' ;

wait for 5 *clock period;
reset <= ' 0 ' ;
wait ;

end process ;

Init proc : process
begin

--wait for 5*clock period;
tile .xO <= to unsigned (0 , 16) ;

tile .xI <= to unsigned (62 , 16) ;
clip rect.xO <= to unsigned (0 , 16) ;

clip rect . xl <= to unsigned(128 , 16) ;
wait ;

end process ;

tile . y 1

tile.yO <= to unsigned(0 , 16) ;
<= to unsigned (62 , 16) ;

clip rect.yO <= to_unsigned(0 , 16) ;

clip_rect.y1 <= to_unsigned (128 , 16) ;

stim proc : process
begin

next quad <= ' 1 ' ;
wait until quad ready
next quad <= ' 0 ' ;
wait for clock period;

end process ;

clock process : process
begin

clock <= not clock ;

wait for clock period/2 ;
end process ;

end ogpu quad generator tbl ;

195

library ieee;
use ieee . std logic 1164 . all ;
use ieee . numeric std . all ;

use work .ogpu data_record_pkg . all ;

entity ogpu quad_store is
port (clock: in std logic ;

reset : in std logic ;

d: in ogpu quad_store_in_type ;
q : out ogpu quad_store_out_type) ;

end ogpu quad_store ;

architecture quad store 1 of ogpu_quad_store is
--first implementation : without passing depth_quad
-- packet size : 64 bits
-- 63 : X (16) (Big endian) 1 47 : Y (16)
type reg type is record

start raster : std logic ;
store quad : std logic ;
buffer ack : std logic ;
buffer ready : std_logic ;

(Big endian) I 31 : quad mask(4) I 27-0 : reserved (28)

quad stored : std logic ;

quad buffer length : unsigned (23 downto O) ;
buffer address : std logic vector(15 downto O) ;
buffer byte enable : std logic vector (7 downto O) ;
buffer write : std logic ;

buffer write_data : std_logic_vector (63 downto O) ;

buffer pointer :

end record;
signal r , rin

unsigned (15 downto O) ;

begin
comb: process (reset , d, r)

variable v : reg type ;
begin

reg type ;

v : = r; --default assignment
v. start raster : = d . start raster;
v . store–quad := d . store_quad ;
v. buffer ack : = d ,buffer ack;

SIze

if d . buffer ack = ’ 1 ' and r . buffer ack
v. buffer write : = ' 0 ' ;

end if i

' 0 ' then

if d .buffer ack = ' O ' and r. buffer ack = ' 1 ' then
v. quad stored : = ' 1 ' ;

end if ;

if r . quad stored = ' 1 ' then
v,quad stored : = ' O ' ;

end if ;

if d, store quad = ' O ' and r . store_quad = ’ 1 ' then
v. buffer ready := ' 1 ' ;

end if ;

if r . store quad = ' 1 ' and r , start_raster = ’ 1 ' and r .buffer_readY
v . buffer ready : = ' O ' ;
v . buffer address := std logic vector (r . buffer_pointer) ; -- get

without calculating +1 in same clock
v . buffer write data (63 downto 48) : = std logic vector (d .quad . xO) ;
v.buffer–write data (47 downto 32) := std logic vector (d .quad . YO) ;
v.buffer–write data(27 downto 4) : = (others => ' O ') ; -- reserved = 0
v,buffer write data(3) : = d+quad mask (3) ;

v ,buffer write data (2) : = d . quad mask (2) ;
v .buffer–write data (1) : = d .quad mask (1) ;
v .buffer write data (0) : = d . quad mask (0) ;
v .buffer write : = ' 1 ' ;

v . buffer byte_enable : = "11111111" ;

1' then

Improve speed

anterior 10

v, quad buffer_length : =r . quad_buffer_length+1 ; -- TODO restrict to buffer 's llmlt

v ,buffer pointer : =ro buffer_pointer+8 ; -- 8 bYtes for each memorY word
end if ;

if r . start raster = ' 0 ' then
v,buffer pointer : = (others => ' O ') ;
v ,buffer address := (others => ' O ') ; –- drive module outPuts
v .buffer byte enable : = (others => ' O ') ;
v .buffer write : = ' 0
v . quad buffer length : = (others => ' O ') ;

v ,quad stored : = ' O '

196

v, buffer ready : = ' 1 ' ;

end if i

if reset = ' 1 ' then
v ,buffer pointer : = (others => ' 0 ') ;
v . buffer address : = (others => ' O ') ; --
v. buffer byte enable := (others => ' O ') ;
v . buffer write : = ' 0 ' ;
v. buffer write data := (others => ' O ') ;
v,quad bif fer length := (others => ' O ') ;
v. start raster : = ' O ’ ;

v, store quad := ' O ' ;
v,quad stored := ' 0 ' ;
v, buffer ack := ' 0 ' ;

v . buffer ready : = ' 1 ' ;

drive module outputs

end if ;

rin <= v; -– drive register inputs
q.buffer address <= v.buffer address ; -- drive module outPuts
q,buffer byte enable <= v.buffer byte enable ;
q ,buffer write <= r +buffer write ;
q,buffer write data <= vobuf fer write data ;
q . quad buffer length <= std_logic_vector (v.quad_buffer_length) ;

q,quad stored <= r .quad_stored;

end process ;

seq : process (clock)
begin

if rising edge (clock) then r <= rin ; end if ;
end process ;

end quad store_1 ;

architecture quad store 2 of ogpu_quad_store is
--first implementation: without passing depth quad
-- packet size : 64 bits
-- 63 : X (16) (Big endian) 1 47 : Y (16)
type reg type is record

start raster : std logic ;
store quad: std logic;
buffer ack : std logic ;

buffer ready : std_logic ;

(Big endian) 1 31 : quad mask (4) 1 27-o : reserved (28)

quad stored : std logic ;
quad buffer length : unsigned (23 downto 0) ;
buffer address : std logic vector (15 downto O) ;
buffer byte enable : std logic vector (7 downto O) ;
buffer write : std logic ;
buffer write data : std_logic_vector (63 downto O) ;

buffer pointer :
end record;
signal r, rin

unsigned(15 downto O) ;

begin
comb: process (reset , d , r)

variable v : reg type;
begin

reg type ;

v : = r ; -–default assignment
v . start raster : = d . start raster ;

v, store–quad := d . store_quad ;
v .buffer ack := d .buffer ack;

if reset = ' 1 ' then
v.buffer pointer := (others => ' O ') ;
v .buffer address := (others => ' O ') ; -- drive module outPuts
v.buffer byte enable : = (others => ' O ') ;
v .buffer write := ' 0 ' ;
v. buffer write data : = (others => ' 0
v,quad buffer length := (others => ' O ') ;
v . start raster := ' O ' ;
v . store quad := ' 0 ' ;
v ,quad stored := ' 0 ' ;
v,buffer ack := ' 0 ' ;
v. buffer ready := ' 1 ' ;

else
if r , start raster = ' 1 ' then

if d, store quad =
then

1 ' and r . store quad '0 ' and v,buffer ready ' I '

get
v,buffer ready : = ' 0
v , buffer address : =

anterior to improve speed without calculating +1 in same clock
v.buffer write data (63

std logic_vector (r . buffer_pointer) ;

std logic vector (d.quad . xO) ;

down to 48)

197

std logic_vector (d . quad .yO) ;

v. buffer write data (47 downt o 32)

v . buffer write data (31) := d . quad mask (3) ;
v. buffer write data (30) : = d . quad mask (2) ;

v. buffer write data (29) : = d . quad mask(1) ;

v. buffer write data (28) : = d . quad mask (0) ;
v . buffer write data (27 downto O) : = (others =>

=0
-- reserved

v,buffer write : = ' 1 ' ;

v, buffer byte_enable : = "11111111" ;

to buffer 's limit size
v. quad buffer length : =r .quad_buffer_length+1 ; -- TODO restrict

word
v. buffer pointer : =r . buffer_pointer+8 ; -- 8 bytes for each memorY

memory control (buffer ack signal)

––v. quad stored : = ' 1 ' ; -- remove comment to bypass external

elsif d. store quad = ' 0 ' then
v.quad stored : = ' O ' ;
v,buffer write : = ' 0 ' ;

end if ;
else

if d , start raster = ' 1 ' then
v .quad buffer length : = (others=> ' O ') ;
v .buffer pointer : = (others => ' O ') ;

end if ;

v. quad stored : = ' 0 ’ ;
v,buffer write : = ' 0 ' ;

v. buffer ready : = ' 1 ' ;

end if ;
end if ;

if d.buffer ack = ' 1 ' then
v. buffer ready : = ' 1 ' ;
v. buffer write := ' 0 ' ;
v.quad stored : = ' 1 ' ;
v,buffer byte_enable : = "00000000" ;

end if ;

rin <= v; –– drive register inputs
q , buffer address <= v , buffer address ; -- drive module outPuts
q. buffer byte enable <= v . buffer byte enable ;
q,buffer write <= r . buffer write;
q , buffer write data <= v . buffer write data ;

q , quad buffer_length <= std_logic_vector (v . quad_buffer_length) ;
q . quad stored <= r . quad_stored ;

end process ;

seq : process (clock)
begin

if rising edge (clock) then r <= rin ; end if ;
end process ;

end quad store 2 ;

architecture test 1 of ogpu quad store is
–- test implementation for writing in external buffer
type reg type is record

start raster : std logic ;

store quad : std logic ;

buffer ack: std_logic ;

quad stored : std logic ;
quad buffer length : unsigned (23 downto 0) ;
buffer address : std logic vector (15 downto O) ;
buffer byte enable : std logic vector (7 downto O) ;
buffer write : std logic ;
buffer write_data : std_logic_vector (63 downto O) ;

buffer pointer :

end record;
signal r , rin

unsigned (15 downto 0) ;

begin
comb : process (reset, d, r)

variable v : reg type ;
begin

reg type ;

v : = r ; –-default assignment
v. start raster : = d . start raster ;
v. store–quad : = d . store quad;
v.buffer ack : = d .buffer ack;

v,quad stored : = ' 1 ' ;

198

if reset = ' 1 ' then

v. buffer pointer := (others => ' O ') ;
v. buffer address : = (others => ' O ') ;
v. buffer byte enable : = (others => ' O ') ;
v. buffer write : = ' 0 ' ;
v. buffer write data : = (others => ' O ') ;

' O ') ;v.quad buffer length := (others =>
v. start raster : = ' O ' ;

v. store quad : = ' 0 ' ;
v .quad stored : = ' O ' ;
v . buffer ack := ' 0 ' ;

elsif d . buffer ack = ' 0 ' then

v . buffer address : = std_logic_vector (r . buffer_pointer) ;

without calculating +1 in same clock
v. buffer write data (63 downto 32) : = (others => ' 1 ') ;
v. buffer write data (31 downto 16) := (others => ’ O ') ;

v . buffer–write data (15 downto 0) : = std_logic_vector (r . buffer_pointer) ;
v. buffer write : = ' 1 ' ;

v. buffer byte_enable : = "11111111" ;

Improve speed

0

r <=

get anterIor 10

v . quad buffer length : =r . quad buffer_length+1 ;

v. buffer pointer : =v. buffer_pointer+8 ; -- 8 bYtes for each memorY word

v. quad stored := ' 1
else

v . buffer write : =

end if ;

if d . buffer ack = ' 1 ' then
v. buffer write : = ' 0 ' ;
v.quad stored : = ' 1 ' ;
v. buffer byte_enable : = "OOOOOOOO" ;

end if ;

rin <= v; –- drive register Inputs
q . buffer address <= v. buffer address ; –- drive module outPuts
q . buffer byte enable <= v . buffer_byte_enable ;

q . buffer write <= v.buffer write ;
q . buffer write data <= v. buffer write data;
q . quad buffer length <= std_logic_vector (v .quad_buffer_length) ;
q .quad stored <= r .quad_stored;

end process ;

seq : process (clock)
begin

if rising edge (clock) then
end process ;

end test 1 ;

rin; end if ;

199

library ieee;
use ieee . std logic 1164 . all ;
use ieee . numeric std . all ;
use work .ogpu data_record_pkgo aII ;

entity ogpu quad store_testbench is
end ogpu quad store_testbench;

architecture ogpu quad store testbench_tbl of ogpu_quad_store_testbench is
constant clock period : time : = 20 ns ;
signal clock, reset : std logic : = ' O ' ;

signal quad mask : std_logic_vector (0 to 3) ;
signal quad : ogpu quad;
signal depth quad : ogpu_depth_quad;

signal buffer ack : std logic : = ' O ' ;
signal addr : std logic_vector (63 downto O) ;

signal quad buffer length : std logic_vector (23 downto O) ;
signal buffer address : std logic vector (15 downto O) ;
signal buffer byte enable : std_logic_vector (7 downto O) ;
signal buffer write : std logic : = ' O ' ;
signal buffer write_data : std_logic_vector(63 downto O) ;

-- DATAPATH/CONTROL interface signals
signal start raster : std_logic : = ' O ' ;
signal store quad : std logic : = ' O ' ;

signal quad stored: std_logic : = ' O ' ;

--internal testbench signals
signal run proc : std_logic : = ' O ' ;

begin
QSI : entity work .ogpu quad_store (quad_store_1) port map (

IN
clock=>clock , reset=>reset ,
d . addr=>addr ,
d . quad mask=>quad_mask ,
d , quad=>quad ,
d . depth quad=>depth_quad ,
d . start raster=>start raster,
d . store–quad=>store_quad ,
d .buffer ack=>buffer ack,
-- OUT
q . quad stored=>quad_stored ,

q , quad buffer_length=>quad_buffer_length ,

q . buffer address=>buffer_address ,

q . buffer byte_enable=>buffer_byte_enable ,
q . buffer write=>buffer_write ,

q . buffer write_data=>buffer_write_data) ;

reset proc : process
begin

--reset <= ' 0 ' ;
--wait for 5*clock period ;
reset <= ' 1 ' ;
wait for 5*clock period;
reset <= ' 0 ' ;
waIt ;

end process ;

ext memory proc :

begin
process

wait until buffer write = ' 1 ’ ;
wait until falling edge (clock)
wait for 3*clock period;
buffer ack <= ' 1 ' ;
wait for clock period;
buffer ack <= ' O ' ;

end process ;

and clock

init stInt proc :

begin
process

wait until reset = ' O ' ;
depth quad <= (others=>(others=> ' 0
addr<= (others=> ' 0 ') ;

run proc<= ' 1 ' ;
wait ;

)) ;

200

end process ;

stInt proc : process
variable i : integer : =0 ;
variable j : integer : =0 ;
begin

if run proc = ' 0 ’ then
wait until run proc
start raster <= ' 1 ' ;
wait for 3*clock period ;

end if
quad mask<=std logic vector (to unsigned (ir 4)) ;
quad:xO<=to unsigned (i , 16) ; quad . xl<=to_unsigned (i+l1 16) ;
quad . yO<=to unsigned (j , 16) ; quad .yl<=to_unsigned (ir 16) ;
quad.x2<=to unsigned (i , 16) ; quad ox3<=to_unsigned (i+1 r 16) ;
quad,y2<=to unsigned (j+1 , 16) ; quad .Y3<=to_unsigned (i+1 r 16) ;

store quad <= ' 1 ' ;
wait until quad stored
store quad <= ' O ’ ;
i : =1+2 ;
if i>63 then

i : =0 ;
5 :=j+2 ;
if j>63 then

j :=o;
start raster<= ' O ' ;
wait for 3+clock period ;

start raster<= ' 1 ' ;

end if i
wait for 2*clock period;

process ;

end if ;

end

clock process :
begin

process

clock <= not clock ;

wait for clock period/2 ;
end process ;

end ogpu quad store_testbench_tbl ;

201

library ieee ;
use ieee . std logic 1164 Ball ;
use ieee . numeric std Ball ;
use work .ogpu data_record_pkg . all ;

entity ogpu raster control is
port (clock : in std logic ;

reset : in std logic ;

d : in ogpu raster_control_in_type ;
q: out ogpu raster_control_out_type) ;

end ogpu raster_control ;

architecture raster contro1_1 of ogpu_raster_control
type state type IS (

OGPU RASTER CONTROL IDLE,
OGPU–RASTER–CONTROL DONE ,
OGPU–RASTER–CONTROL SETUP ,
OGPU–RASTER–CONTROL QUAD GEN,
OGPU–RASTER–CONTROL QUAD TESTr

OGPU–MSTER:CONTROL:STORE_QUAD) ;

IS

case

O ’ ;

type reg type is record
setup done : std_logic ;
end tile: std logic ;
quai ready : std_logic ;
depth ready : std_logic ;
quad stored : std_logic ;
draw quad : std_logic ;
discard quad : std_logic ;
start raster : std logic ;
next quad : std_logic ;
edge test : std_logic ;
depth test : std_logic ;
store quad: std logic ;
busy : std logic ;
done: std logic ;

state :

end record;
signal r , rin

state type ;

begin
comb : process (reset / dIr)

variable v : reg type ;

begin

reg type;

V : = r ; --default assignment

v, setup done := d . setup done;
v. end tile : = d . end tile ;

v.quaa ready := d . quad_ready ;
v. depth ready : = d . depth_readY ;
v,quad stored : = d . quad stored ;

v . draw quad := d . draw quad;
v. discard quad : = d . discard_quad;

r . state IS

when OGPU RASTER CONTROL DONE =>
;f d.coliRand = OGPU CMD PREPARE then

v.state := –OGPU RASTER CONTROL

v , done : = ’ O ' ;

v .busy : = ' O ’ ;

v . start raster : = ' 0

v . next quad : = ' O ' ;

v. edge test := ' 0 ' ;
v. depth test : = ' O ' ;

v . store quad : = ' O ' ;

IDLE ;

end if ;

when OGPU RASTER CONTROL SETUP =>
ff v . setup done = ' 1 ' then

v.,tate ,= OGPU RASTER CONTROL QUAD GEN;
v . next quad : = ' 1 ' ;
v . store quad : = ’ O ' ;

v. edge test : = ' 0 ' ;

v.depth test := ' O ' ;
--v, start raster : =

end if ;

when OGPU RASTER CONTROL QUAD GEN =>
I=f v . (]uil ready = ' 1 ' then

v. state : = OGPU RASTER CONTROL QUAD TEST;
v, next quad : = ' O ' ;
v . edge test : = ' 1 ' ;
v .depth test : = ' 1 ' ;

202

elsif v . end tile =
v . state

' 1 ' then

:= OGPU RASTER CONTROL DONE;
v. done := ' 1 ' ;
v . busy := ' 0 ’ ;
v& start raster : = ' 0
v . next quad : = ' 0 ' ;
v. edge test : = ' 0 ' ;
v+depth test : = ’ 0 ' ;
v. store quad : = ’ 0 ' ;

end if ;

when OGPU RASTER CONTROL QUAD TEST =>
if (v+draw_quad –and v–. depth ready) = ' 1 ' then

v. state : = OGPU RASTER CONTROL STORE QUAD ;
v . store quad : = ' 1 ' ;

elsif v . end tile = ' 1 ' then
v . state : = OGPU RASTER CONTROL DONE ;

v.done : = ' 1 ' ;

v. busy := ’ 0 ' ;
v . start raster : = ' 0
v . next quad : = ’ 0 ' ;
v. edge test : = ' 0 ' ;
v.depth test : = ’ 0 ' ;

v. store quad : = ' O ' ;
elsif v.discard quad = ' 1 ' then

v . state : = OGPU RASTER CONTROL QUAD GEN;
v. next quad : = ' 1 ' ;

v. store quad : = ' 0 ' ;
v+edge test : = ' 0 ' ;
v. depth test : = ' 0 ' ;

end if ;

when OGPU RASTER CONTROL STORE QUAD =>
if v. end tile = ' 1 ' then

v. state : = OGPU RASTER CONTROL DONE ;
v . done := ' 1 ' ;

v . busy : = ' 0 ’ ;
v. start raster := ' 0
v . next quad : = ' 0 ' ;

v . edge test : = ' 0 ' ;
v . depth test : = ' 0 ' ;
v . store quad : = ' 0 ' ;

elsiE v . quad stored = ' 1 ' then
v . state : = OGPU RASTER CONTROL QUAD GEN;
v+ next quad : = ' 1 ' ;
v. store quad : = ' 0 ' ;
v. edge test : = ' 0 ' ;
v. depth test : = ' 0 ' ;

end if i

when others => -– including OGPU RASTER CONTROL IDLE
if d . command = OGPU CMD RASTER then

v. state : = OGPU RASTER CONTROL SETUP :

v. busy : = ' 1 ' ;
v. done := ' 0 ’ ;
v. start raster

end case ;
end if ;

if reset = 1 then
v. start raster : =

v . next quad : = ' O ' ;
v. edge test := ' 0 ’ ;
v . depth test : = ' 0 ' ;

v . store quad := ' 0 ' ;
v . busy : = ’ 0 ' ;
v . done : = ' 0 ' ;

'0 ' ;

end
v . state OGPU RASTER CONTROL IDLE;

rin <= -- drive register inputs

-- drive module outputs
q. start raster <= r. start raster;
q +next_quad <= r + next quad;
q . edge_test <= r + edge test ;
q .depth_test <= r . depth test ;
q . store_quad <= restore quad ;
q. busy <= r . busy ;
q. done <= r .done;

end process ;

203

seq : process (clock)
begin

if rising edge (clock) then
end process ;

end raster control 1 ;

rin; end if ;

204

OGPU -- RASTER STRUCTURAL MODEL

library ieee ;
use ieee . std logic 1164 . all ;
use ieee . numeric std. all ;
use work .ogpu_data_record pkg, all ;

entity ogpu raster unit is
port (clock: in std logic ;

reset : in std logic ;
command : in std logic vector (7 downto 0) ;
vOx,vOy, vaz : in std logic vector(15 downto 0) ;
vlx,vly,vIz : in std logic vector (15 downto 0) ;
v2x,v2y,v2z : in std logic vector (15 downto 0) ;
clip_rect0 : in std_logic vector (31 downto 0) ;
clip rectl : in std logic vector (31 downto 0) ;
tileO : in std logic vector (31 downto 0) ;
tile1 : in std logic vector (31 downto 0) ;
depth coef a : in std logic_vector (31 downto O) ;
depth_coef_b: in std_logic_vector (31 downto O) ;
depth coef c : in std logic vector (31 downto O) ;
quad buffer addr: in std logic vector (63 downto 0) ;
done : out std logic ;
busy: out std logic ;
quad_buffer_length : out std logic vector (23 downto 0) ;
--external buffer interface
ext buffer ack: in std logic ;
ext buffer address : out std logic vector (15 downto 0) ;
ext buffer byte enable : out std logic vector (7 downto O) ;
ext buffer write: out std logic ;
ext buffer write data : out std logic vector (63 downto O) ; --) ;
--debug interface

tlbg : out std_logic vector (11 downto 0)) ;
end ogpu raster unit;

architecture structure_1 of ogpu raster unit is

signal int command :
signal int vC) :
signal int vl :
signal int v2 :
signal int_clip rect :
signal int tile :
signal int_depth coef :

ogpu command ;
ogpu vertex;
ogpu vertex;
ogpu vertex;

ogpu box;
ogpu tile ;

ogpu depth coefficients ;

signal eO : ogpu edge
: = (xO=> (others=> ' 0 ') , yC)=> (others=> ' 0 ') , xl=> (others=> ' 0 ') , yI=> (others=> ' 0 ')) ;
signal el : ogpu edge
: = (xO=> (others=> ’ 0 '),y0=> (others=> ' 0 ') , xl=> (others=> ' 0 '),yl=> (others=> ' 0 ')) ;
signal e2 : ogpu edge
: = (xO=> (others=> ' 0 '),yC)=> (others=> ' 0 ') , xI=> (others=> ' O '),yl=> (others=> ' 0 ')) ;
signal quad : ogpu quad
: = (xO=> (others=> ' 0 ') , y0=> (others=> ' 0 ') , xl=> (others=> ' 0 ') , yI=> (others=> ' 0

thers=> ’ 0 '),x3=> (others=> ' 0 '),y3=> (others=> ' O ')) ;
signal edge mask0 : std logic vector (0 to 3)
signal edge_mask1 : std logic vector (0 to 3)
signal edge_mask2 : std logic vector (0 to 3)
signal edge_ready : std logic vector (0 to 2)
signal quad mask : std logic vector (0 to 3)
signal depth_quad : ogpu depth quad
-- DATAPATH/CONTROL interface signals
signal start raster : std logic : = ' O ’ ;
signal next_quad : std logic : = ' O ' ;
signal quad_ready: std logic : = ' O ' ;
signal depth test : std logic : = ' O ' ;
signal edge test : std logic := ’ 0 ' ;
signal store_quad : std logic : = ' O ' ;
signal setup done :

signal end tile :

signal draw quad :

signal discard quad :

signal depth ready :

signal quad stored :

),x2=> (others=> ' 0 ') , y2=> (o

: = (others=> ' 0 ') ;

: = (others=> ' 0 ') ;
: = (others=> ' 0 ') ;
: = (others=> ' 0 ') ;
: = (others=> ' 0 ') ;

: = (others=> (others=> ' 0 ')) ;

std logic : = ' 0 ' ;

std logic := ’ 0 ' ;
std logic : = ' 0 ' ;

std logic : = ' 0 ' ;

std logic : = ' 0 ' ;
std logic := ' 0 ' ;

begin
-–debug
dbg(0)<=start raster ;
dbg (1)<=next quad ;
dbg (2)<=quad ready ;

dbg (3) <=depth test ;
dbg (4) <=edge test ;
dbg (5)<=store quad ;
dbg (6)<=setup done ;
tlbg(7)<=end tile;

205

dbg (8) <=draw quad ;
dbg (9) <=discard quad;
tlbg (10) <=depth ready ;

dbg (11) <=quad stored ;

-- input/output packing
int conunand <= ogpu std logic_to_command_f unc (command) ;
int–vO . x . int<=unsigned (vOx) ; int_vO . Y . int<=unsigned (vOY) ;

int vO . z . int<=unsigned (vOz) ;
int–vI . x + int<=unsigned (vlx) ; int_vl . y . int<=unsigned (vly) ;

int vl . z . int<=unsigned (vl z) ;
int–v2 . x . int<=unsigned (v2x) ; int_v2 • Y ' int<=unSIgned (v2Y) ;

int_ v2 . z . int<=unsigned(v2z) ;
int clip rect . xo<=unsigned (clip_rect0 (15 downto O)) ;
int–clip reGt .yO<=unsigned (clip_rectO (31 downto 16)) ;
int clip rect . xl<=unsigned (clip rectl (15 downto O)) ;
int–clip rect.yl<=unsigned (clip_rect1 (31 downto 16)) ;
int tile . xO<=unsigned (tile0 (15 downto O)) ;
int tile .yO<=unsigned (tile0 (31 downto 16)) ;
int tile .xl<=unsigned (tilel (15 downto O)) ;
int ti]_e.yl<=unsigned (tile1 (31 downto 16)) ;
int depth coef . a<=signed (depth_coef_a) ;
int depth coef . b<=signed (depth_coef_b) ;

int depth_coef . c<=signed (depth_coef_c) ;

–- CONTROL

RC'1 : entity work . ogpu raster_control (raster_contro1_1) port map (clock=>clock , reset=>reset ,
-- IN
d , command=>int command ,

d . setup done=>setup_done ,
d . end tile=>end tile ,

d .quaa ready=>quad_ready ,
d . dept,h ready=>depth_ready ,

d . quad stored=>quad_stored ,
d . draw quad=>draw quad ,
d . discard quad=>discard_quad I
-- OUT
q . start raster=>start_raster ,
q . next quad=>next_quad ,
q . edge test=>edge_test ,
q . depth test=>depth_test ,
q . store quad=>store_quad ,
q . busy=>busy ,
q . done=>done) ;

-- DATAPATH

STI : entity work .ogpu setup(setup_1) port map (-- IN
clock=>clock , reset=>reset ,

d ,vxo=>int vO , x, d .vy0=>int_v0 . y ,

d .vxl=>int vl . x , d . vyl=>int_vl . y ,

d . vx2=>int v2 . x , d . vy2=>int_v2 + Y ,
d , start raster=>start raster r
-– OUT
q . setup done=>setup_done ,
q . eO=>eO,q.el=>e1,q.e2=>e2) ;

QGI : entity work.ogpu quad_generator (generator_1) port map (-- IN
clock=>clock , reset=>reset ,

d . clip rec,..'t=>int_clip_rect , d . tile=>int_tile , d . next_quad=>next_quad ,
OUT

q . end tile=>end_tile , q . quad_ready=>quad_readY ,

rTI : entity work . Olgpu quad_edge_test (edge_test_1) port map (

q . quad=>quad) ;

-- IN
clock=>clock , reset=>reset ,

d . edge test=>edge_test , d . e=>e0 ,
d . quad=>quad ,
-- OUT

q , edge ready=>edge_readY (0) 1
q . edge mask=>edge_maskO) ;

ET2 : entity work.ogpu quad_edge_test (edge_test_1) port map (-- IN
clock=>clock , reset=>reset ,

d . edge test=>edge_test , d . e=>el ,
d . quad=>quad ,
-- OUT
q + edge ready=>edge_ready (1) ,

q . edge mask=>edge_maskl) ;

206

ET3 : entity work .ogpu_quad_edge_test (edge test 1) port map(
-- IN
clock=>clock , reset=>reset ,

d . edge test=>edge test,d,e=>e2 ,
d . quad=>quad ,
-- OUT
q .edge ready=>edge ready (2) ,

q . edge mask=>edge_mask2) ;
TEI : entity work eogpu_triangle_edge_test (triangle_test_1) port map(

IN
clock=>clock , reset=>reset ,

d . edge ready=>edge ready ,

d . edge_maskO=>edge_mask0 ,deedge maskl=>edge maskl , d . edge mas)<2=>edge mask2 ,
OUT

q . draw_quad=>draw_quad , q . discard quad=>discard quad,

DTI : entity work.ogpu_depth_test (depth test 1) port map (
q . quad mask=>quad mask) ;

-- IN
clock=>clock , reset=>reset ,

d,depth coef =>int depth_coef ,
d . quad=>quad ,
d . depth test=>depth test ,
-- OUT
q .depth ready=>depth ready ,
q . depth quad=>depth_quad) ;

QSI : entity work .ogpu_quad_store (quad store 1) port map(
-- IN
clock=>clock , reset=>reset ,

d , addr=>quad buffer addr ,
d. quad mask=>quad mask,
d + quad=>quad ,
d . depth_quad=>depth_quad ,
d. start raster=>start raster,
d , store–quad=>store quad ,
d ,buffer ack=>ext buffer ack,
-- OUT
q .quad stored=>quad stored,

q . quad_buffer_length=>quad buffer length ,

q o buffer_address=>ext buffer address ,

q . buffer_byte_enable=>ext buffer byte enable,

go buffer_write=>ext buffer write,

q . buffer write data=>ext buffer write data) ;
end structure 1 ;

207

library ieee ;
use ieee o std logic 1164• aII ;
use ieee + numeric std . all ;

use work .ogpu data_record_pkg . all ;

entity ogpu raster unit_testbench is
end ogpu raster_unit_testbench ;

architecture ogpu raster unit testbench_tbl of ogpu_raster_unit_testbench is
constant clock period : time : = 20 ns ;
signal clock, reset : std_logic := ' O ' ;

,ig.,1 ,,m,„,„d, ,td logic_vector(7 downto O) :=(others =>' O ') ;
signal vOx,vOy,vOz :
signal vlx,vly,vlz :
signal v2x,v2y,v2z :
signal clip rect0 :
signal clip rect1 :
signal tileO :
signal tilel :
signal depth coef_a :
signal depth coef_b:
signal depth coef_c :
signal quad buffer_addr:
signal done :
signal busy :
signal quad buffer_length :
--external buffer interface
signal ext buffer_ack :
signal ext buffer address :
signal ext buffer_byte_enable :
signal ext buffer write :
signal ext buffer_write_data :

std logic vector (15 downto O) ;
std logic vector(15 downto O) ;
std logic vector (15 downto O) ;

std logic vector (31 downto O) ;
std logic vector (31 downto O) ;
std logic vector(31 downto O) ;
std logic vector (31 downto O) ;

std logic vector (31 downto O) ;
std logic vector (31 downto O) ;
std logic vector(31 downto O) ;

std logic vector (63 downto O) ;
std logic : = ' O ' ;

std logic : = ' O ' ;
std logic_vector (23 downto0) ;

0) ;
std logic := ' O ' ;
std logic vector (15 downto

std logic vector (7 downto O) ;
std logic := ' O ' ;

std logic_vector (63 downto O) ;

signal dbg : std logic_vector (11 downto O) ;

begin

RUI : entity work.ogpu raster unit (structure_1)

reset=>reset ,

comrnand=>command ,

vc)x=>vax , vC)y=>vOy,vOz=>vO z ,

vlx=>vlx,vly=>vly,vlz=>vlz ,

v2x=>v2x,v2y=>v2y,v2z=>v2 z ,

clip rectO=>clip rect0 ,

clip rectl=>clip_rectl,
tile0=>tile0 ,

tilel=>tile1 ,

depth coef a=>depth coef_a ,

depth coef b=>depth coef_b,
depth coef c=>depth coef c ,

quad buffer addr=>quad_buffer_addr,
done=>done ,

busy=>busy ,

quad buffer length=>quad_buffer_lengthr
--external buffer interface
ext buffer ack=>ext buffer ack,

: : : : : = F F : : : : : : : := = = : : : : ;= = f := = F : : : : = ; : : enabler
ext buffer write=>ext buffer writer
ext–buffer:write_data:>ext_buffer_write_data ,
--debug interface

dbg=>dbg) ;

port map(clock=>clock,

reset proc : process
begin

reset <= ' 1 ' ;

vox<=std logic vector (to unsigned (1/ 16)) ;
vc)y<=std logic vector (to_unsigned (lr 16)) ;
vOz<=std logic_vector (to_unsigned (lr 16)) ;

vlx<=std logic vector (to unsigned (100 , 16)) ;

vly<=std logic vector (to_unsigned (lr 16)) ;
vlz<=std logic_vector (to_unsigned (1/ 16)) ;

v2x<=std logic vector (to unsigned (1/ 16)) ;
v2y<=std–logic vector (to_unsigned (100 / 16)) ;
v2z<=std logic_vector (to_unsigned (Ir 16)) ;

depth coef a<= (others => ’ O ') ;
depth coef b<= (others => ' O ') ;
depth coef_c<= (others => ' O ') ;

208

quad buffer addr<= (others => ' 0 ') ;

wait for 5*clock period ;
reset <= ' 0 ’ ;
wait ;

end process ;

ext memory proc :
begin

process

wait until ext buffer write = ' 1 ' ;
wait until falling edge (clock) ;
wait for 3+clock period ;
ext buffer ack <= ' 1 ’ ;

wait for clock period;
ext buffer ack <= ' 0 ' ;

end process ;

strm proc : process
variable i : integer : =0 ;
variable j : integer : =0 ;
begin

if reset = ’ 1 ' then
wait until reset = ' 0 ' ;
wait for 1+clock period;

end if ;

clip rect0 (31 downto 16) <=std logic vector (to unsigned (1, 16)) ; –– xO
clip rect0 (15 downto 0)<=std logic vector(to unsigned(1, 16)) ; -- yO
clip rectl (31 downto 16)<=std logic vector (to unsigned (100 , 16)) ; -- xl
clip rect1 (15 downto 0) <=std_logic_vector (to_unsigned (100 , 16)) ; -- yl

tile0 (31 downto 16) <=std logic vector (to unsigned (0 , 16)) ; –- xO
tileO (15 downto O)<=std logic vector (to unsigned (0 , 16)) ; -- yO
tile1 (31 downto 16)<=std logic vector (to unsigned (63 , 16)) ; -- xl
tile1 (15 downto 0) <=std logic_vector (to_unsigned (63 , 16)) ; -- y1

command<=std logic vector (to_unsigned (16#AA# , 8)) ;

wait until busy = ' 1 ' ;

wait until done = ' 1 ' ;

command<=std logic vector (to unsigned (16#A5# , 8)) ;

wait until done = ' 0 ' ;

wait ;

end process ;

clock process :
begin

process

clock <= not clock;
wait for clock period/2 ;

end process ;
end ogpu raster unit testbench tbl ;

209

library ieee;
use ieee. std logic 1164 . all ;
use work.ogpu data_record_pkg . all ;

entity ogpu setup is
port (clock : in std logic ;

reset : in std logic ;
d: in ogpu setup_in_type;
q : out ogpu setup_out_type) ;

end ogpu setup ;

architecture setup 1 of ogpu_setup is
type reg type is record

start raster : std logic ;
setup done : std_logic ;
eC) : ogpu edge ;
el : ogpu edge;
e2 : ogpu edge ;

end record;
signal r, rin

begin
comb: process (reset , d, r)

variable v : reg type;
begin

reg type;

v, start raster : = do start raster;
v. setup done : = ' O ' ;

v. eC) ,xo := d .vx0 . int;
v.eO.yO := d .vy0 . int ;
v. eC) .xl : = d +vx1. int ;
v.eO.yl : = d .vy1. int ;

v.e1.xO : = d .vxl. int;
v,e1.yO : = d .vyl. int;
v. el.xl := d ,vx2 . int;
v ,el.yl : = d ,vy2 + int ;

v .e2.xO : = d .vx2 . int;
v.e2.yO : = d .vy2 . int ;
v.e2 .xl := d .vx0 . int ;
v,e2.yl := d .vy0 . int ;

if d. start raster = ' 1 ' then
v, setup done := ' 1 ' ;

end if ;
if reset= ' 1 ' then vo setup done end if ;

rin <= V; -- drive register inputs

q. setup done
q. eC) <= voe0 ;
q. el <= vo el ;
q.e2 <= v.e2 ;

end process ;

r , setup done ; drive module outputs

seq : process (clock)
begin

if rising edge (clock)
r <= rin;

then

end if ;
end process ;

end setup 1 ;

210

Open(3PU Testbench --

library ieee ;
use ieee . std logic 1164 . all ;

use ieee . numeric std . all ;

use work .ogpu data record_pkg . all ;

entity ogpu setup testbench is
end ogpu setup testbench;

architecture ogpu setup tbl of ogpu setup_testbench
constant clock period : time : = 20 ns ;
signal clock, reset : std logic : = ' 0

signal vx0 : ogpu float ;
signal vy0 : ogpu float ;
signal vxl : ogpu float ;
signal vyl : ogpu float;
signal vx2 : ogpu float ;
signal vy2 : ogpu float;
signal eO : ogpu edge;
signal el : ogpu edge ;
signal e2 : ogpu edge ;
-- DATAPATH/CONTROL interface signals
signal start raster : std logic ;
signal setup done : std logic ;

begin
STI : entity work .ogpu setup(setup_1) port map(

IN
clock=>clock , reset=>reset ,
d . vx0=>vx0 , d . vy0=>vy0 ,

d . vxl=>vxl , d . vyl=>vy I ,
d ,vx2=>vx2 , d . vy2=>vy2 ,

d, start raster=>start raster ,
-- OUT
q , setup done=>setup_done ,
q . eC)=>e0,q.el=>el,q.e2=>e2) ;

reset proc : process
begin

--reset <= ' 0 ' :

--wait for 5*clock period;
reset <= ' 1 ' ;
wait for 5*clock period;
reset <= ' 0 ' ;
wait :

end process ;

st:im proc : process
begin

start raster <= ' 1 ' ;
wait for 4*clock period ;
start raster <= ' 0 ' :
wait for 4*clock period;

end process ;

stim proc2 : process
variable i : integer : =1 ;

begin
vx0 . int <= to unsigned (1*i , 16) ;
vx1. int <= to unsigned (6*i, 16) ;
vx2 . int <= to unsigned (2*i , 16) ;
wait for 6*clock period ;
i :=1+1 :
if i>10 then i : =0 ; end if i

end process ;

vy0 . int <= to unsigned (1*i, 16) ;
vy1 . int <= to unsigned (2*i, 16) ;
vy2 . int <= to unsigned (5*i, 16) ;

clock process : process
begin

clock <= not clock;
wait for clock period/2 ;

end process ;
end ogpu setup tbl ;

211

library ieee;
use ieee . std logic 1164 . all ;
use work , ogpu_data_record_pkg . all ;

entity ogpu triangle_edge_test is
port (clock: in std logic ;

reset : in std logic ;
d : in ogpu triangle_edge_test_in_type ;
q : out ogpu triangle_edge_test_out_type) ;

end ogpu triangle_edge_test ;

architecture triangle test_1 of ogp tr_triangle_edge_test
type reg type is record

edge ready : std_logic_vector (0 to 2) ;
draw quad : std logic ;
discard quad : std logic ;
quad mask : std logic vector (0 to 3) ;

end record;

begin
comb: process (reset , d, r)

variable et0 , etl , et2 , et3
variable ot0 , ot:1 , ot2 , ot3
variable v : reg type ;
begin

signal rr rin reg type ;

: std logic ;
: std logic ;

V := r ; --default assignment

v. edge ready : = d+edge_ready;

if (v. edge ready (0) and v. edge_ready (1) and v. edge_readY(2))= ' 1 ’ then
this logic comes from algorithm to check need of drawing quad fragment

etO := d.edge mask0 (0) and d.edge maskl (0) and d . edge_mask2 (0) ;
etl : = d,edge mask0 (1) and d . edge mask1 (1) and d . edge_mask2 (1) ;

et2 := d.edge mask0 (2) and doedge mask1 (2) and d .edge_mask2 (2) ;
et3 : = d . edge maskO (3) and doedge mask1 (3) and d . edge_mask2 (3) ;

otC) : = d . edge mask0 (0) or d . edge maskl (0) or d. edge_mask2 (0) ;
ot1 := d.edge mask0 (1) or d. edge maskl (1) or d•edge_mask2 (1) ;
ot2 : = d . edge masko (2) or d oedge mask1 (2) or d +edge_mask2 (2) ;
ot:3 := d+edge maskO (3) or d. edge mask1 (3) or d.edge_mask2 (3) ;
v . quad mask (0) : = (et0) or (not (ot0)) ; -- if >all< edge tests

(0, 0, 0) then draw fragment
(Ir 1l1)

v,quad mask (1):=(etl) or (not(otl)) ;
v .quad mask(2):=(et2) or (not(ot2)) ;
v,quad mask(3):=(et3) or (not (ot3)) ;
v . draw quad : = v . quad_mask (0)

v ,quad mask (3) ;

or v ,quad mask (1) v .quad mask(2)

else
v. discard quad := not v. draw_quad;

v . draw quad : =

v ,discard quad
end if ;

if reset = ' 1 ' then
v . draw quad := ' O ' ;
v. discard quad := ' 0

end if ;

rin <= V -- drive register inputs

q , draw quad <= r . draw quad; –- drive module outPuts
q . discard quad <= r . discard_quad ;

q .quad mask <= v.quad_mask ;

end process ;

seq : process (clock)
begin

if risIng edge (clock) then
end process ;

end triangle test 1 ;

rin ; end if ;

212

library ieee ;
use ieee. std logic 1164 . all ;
use ieee + numeric std . all ;

use work.ogpu data_record_pkg . all ;

entity ogpu triangle edge test testbench is
end ogpu triangle_edge_test_testbench ;

architecture ogpu triangle_edge_test_tbl of ogpu_triangle_edge_test_testbench is
constant clock period : time := 20 ns ;
signal clock, reset : std logic : = ’ 0 ' ;

signal edge ready : std logic vector (0 to 2) : = (others=> ' O ') ;
signal edge masko : std logic vector(0 to 3) ;
signal edge mas)<1 : std logic vector (0 to 3) ;
signal edge mask2 : std logic vector(0 to 3) ;
signal quad mask: std logic vector (0 to 3) ;
-- DATAPATH/CONTROL interface signals
signal draw quad : std logic ;

signal discard quad: std_logic ;

begin
TEI : entity work .ogpu triangle_edge_test (triangle_test_1) port map(

IITa

clock=>clock , reset=>reset ,

d . edge ready=>edge_ready ,

d . edge masko=>edge_maskO , d , edge_maskl=>edge_maskl , d . edge_mask2=>edge_mask2 ,
OUT

q , draw quad=>draw_quad , q . discard_quad=>discard_quad ,
q . quad mask=>quad_mask) ;

reset proc : process
begin

--reset <= ' 0 ’ ;
--wait for 5*clock period;
reset <= ' 1 ' ;
wait for 5*clock period;
reset <= ' 0 ' ;
wait ;

end process ;

stInt proc : process
begin

--wait for 5*clock period;
edge mask0 <= " 0110 " ;
edge mask1 <= " 0101 " ;
edge mask2 <= "0110" ;

-- expects quad mask="1100" ,
sItuatIon

because only (0 , 0 , 0) and (1, 1 , 1) " inside triangle"

wait for 6*clock period;
edge ready (0)<= ' 1 ' ;

wait for clock period;
edge ready (1) <= ' 1 ' ;
wait for clock period;
edge ready (2) <= ’ 1 ' ;
wait for 2*clock period;
edge ready<="000" ;
wait for clock period;

edge mask0 <= "1111" ;
edge mask1 <= "1111" ;
edge mask2 <= "0000" ;
-- expects quad mask="OOOO" , because only (0 , 0 , 0) and (1 flr 1)

situation
" inside triangle"

wait for 1+clock period;
edge ready<=" 111 " ;
wait for 2*clock period;
edge ready<=" 000" ;
wait for clock period;

edge mask0 <= " 1110 " ;
edge mask1 <= " 0100 " ;
edge mask2 <= " 0110 " ;
-- expects quad mask="0101 " , because only (0 , 0 , 0) and (1 flr 1)

situation
" inside triangle"

wait for 1*clock period;
edge ready<= " 111 " ;
wait for 2*clock period;
edge ready<= " 000 " ;
wait for clock period;

edge mask0 <= " 0011 " ;

213

edge maskl <= '’0110 " ;
edge mask2 <= "0011" ;
-- expects quad mask="1010" , because only (0 , 0 , 0) and (1/ 1/ 1)

situation
" inside triangle"

wait for 1*clock period;
edge ready<=" 1 11 " ;
wait for 2*clock period;
edge ready<= " 000 " ;
wait for clock period;

edge masko <= " 1001 " ;
edge maskl <= " 0011 " ;
edge mask2 <= " 1001 " ;
-- expects quad mask=" 0101 " , because only (0 , 0 , 0) and (1 flr 1)

situation
" inside triangle"

wait for 1*clock period ;
edge ready<= " 1 11 " ;
wait for 2*clock period;
edge ready<="000" ;
wait for clock period;

edge mask0 <= "1100" ;
edge mask1 <= " 1001 " ;
edge mask2 <= "1100" ;
-– expects quad mask=" 1010 " , because only (0 , 0 , 0) and (1 flr 1)

situation
" inside triangle"

wait for 1*clock period;
edge ready<= " 1 1 1 " ;
wait for 2*clock period;
edge ready<="000" ;
wait for clock period;

wait ;
end process ;

clock process : process
begin

clock <= not clock ;
wait for clock period/2 ;

end process ;
end ogpu triangle_edge_test_tbl ;

214

Ul
C
0
8

a
a)
+

V

8
a
cD 0

CO
0
a) rD 88888 Ul

C
00
aD

To

F)

a
-J

a)

0

a
al

a)
a)
(aa

B0
QC

10

a
CU

1-
C/)
ac
an
CO
-e

0
a)

LO0
C)

a)a
C
0

Fa

a)
Toa
JO

7)
a)

a)
V)
8
3al
a)0
a)
3
T)
a)

C
C)

<?
E

C)
C
a)

JO

a/
a)

a;

a)
a)
la
a)
3al
a)0
Sh

C
LU

a
C\I

0 0'+ a)
C
00
10a

b
nr

a
cD 0

10
in VBr O 98 O •=r O E

8
qq

nBRIna
a)
;::
F)

a
a)

aa)
bqPl

a
()

O r- O O n r swon a) a) on a 0a
agm

C
Lr)a)
a)
d
eu

a)
C

a
al

(\I aa

n
bUnI

a)

JeQ
C

Jg

a;

a;

a)1
a)la
a)

3a
V)
0

a

L)0
C)
I
C)C
a)
JD

a;
I

a/a
a)‘a)
B
ala0

-a)

b

T)
C
a)

JO

as

a;

a)‘
V)
10
a)

3al
al
0

C/)
a)

Iaa)
la
a)
,f
C)C
Jg

a)
.1

a;H
a)
a)
18

I3al
a)
9

ID
10
a)

a)
a)
18
E
C)
C
a)

JO

a
Q

a;

a)1a)
IB

3al
a)
-0

JC
Ln
rD

E
a)Ia)
la
a)
E
C)C

JB

a;
I
af
a)

;1a)la
a)

I3al
8

la
CC

ar
C
L)
C
a)

JO

a)

a
a)

a)Vl
la
a)

:1
al

-8)

a
a
CU

0
(\1

aN r
P (\I> X

RICH
eu a)> X

al
a)

>

aa

>

E
00
0

quad edge test

215

J(obFo r
b
r

COr N

HUgh=,0
hUI,or
HUPbnl

q+
r
enel

in
r

Vr LOr

Jc\Ihnd r
a)
r

(\1
r

a)
r

C/)C
00
a)

a)
a)
caa

a
++B
P+lh•Ub0
r
b===P

0
r

r
r

0
r

a0
nc

& a> a) 00 a)
(0
r0
al
b
C/)
ac
on
(\I
(\I
\I0
(\Ir

Lr)0
O
a)a
C
0
E
a)

annHl

caa
r
JO

LI
0

+

ca

a)
C
a)

at
a3
Q:3
al
a)0
g3

annHI

O
a)

+

£
O

<=

£
O
C
a)

JO
C/)

a)

:1
0
ca

a)
C
a)

at
ID
(a3
OF

D
al
a)
0
>,

1-
LLI

10

+HP,0
bHyPO

nAH=R

SHIOF CO CD N
a)
C
00
C\I

'+ In

a
b===1

a\
SHbnP

C/)
C

CO0
a)
N
a)
qP

(\I a) a)

C/)
C
00
'F

UneP

O

CL

+1

d==1

la

•=Pb•R

b=+P
Heenb

bund

nBPURe

q-nbHf

\•nhPUl

++h=H

pennI

bend

Hdlhnn

X

anIn-HI

X
bRini

X
X
X

f<

X
SHOP

X

la(a3
-Or

C
a)

JO
C/)
a)

I

0
ca

a)
C
a)

Cti

ca3
cr

;

a)
-0

CO

nI
10
+IHl

0
0
a)'a

a)

bnHl

C)

Hdbnl

+1

+

annHl

bnOf

V)

p-n=i

a)C
a)

b==f

(a

n

(\1

JO
C/)
a)

'1

0

la
ca

OF
I

ala)
0

a
CUr
qnHl

B
(\1
r
UP-P

a
++P

ca
la

al

nI

+

Q:3

3

0)0

+=IIbnb0
q•nHl

C)
a)

f)'
O

C)

a)
JO
C/)
a)

0
to
a)
C
a)
a)

U)
C
00
C:)

JC
O0
O

OC
a)a

ann.J

C/)
a)
+1
0
(a
a)
a)
a)
ID'
ca3
OF

3
al
a)
0

C
a)
a)
10
(a

OF

+1

a)

:

AnOI

ala)
-0

a)
cr)
a)

C
O

a)
JO
tri
a)

I

0
ta

0 (\I >> >, X> XX
la
(a
:

OF

a)
JO

O

a)

C

t/)
a)

0

a)

a)a)
ID
(a

A===1

eH

0

AnnIX

ca

C

3a
al
a)

>,
ID
ca
a)

10'
ca

OF
E
OC
a)

JO

a)

0

a)

3
al

a)

a)0

d=•+

C/)

la

OF

d==I

ca

3

+

a)

ca

C
O
C
a)

JO

a)

a

a)

In

C

3'

0

da

a)

a)

ca
=

+1
0

Ila

a)
CL

quadgen0 inside tile

216

+=nUll

:++
nypd r

K)r '+
F
H-==la

10

c L a)
r SI

a)
r
U•Hl•HP

nbnHHI

0
a)
a)
caa

a CD a) 00 0)
Ul
C
00
(\I
qP

B0
ac

10
r0
CU

}-
C/)
nc
on
r0
CO0
(\Ir

Lr)0
C)
a)a
C0
E
a)

a==1

caa
r
JO

II0
+

ca
a)C
a)

ai
la3
Q:3
al
a)0
g3

annHl

O
a)

+

r-
O
<1
C
O
C
a)
JO
C/)
a)
:1
0
CO

a)
C
a)
oila
ca

:a
3a
a)0
>,

n=
C

LU

fR

10
10

JC
O
0

-1

=

CR3

0

a)

O''_
C
O
C
a)
JO
dnnnP

tri
a)
wI
0
(a

a)C
a)

la
(a

ala)
U-.\

a)
C/)

a)

£
O
C
a)

AnnI

+1

a)

+1

a)

\

JO
C/)

LI
0
(a

a)C
a)

Ila
(a3
a\3
al
a)0n\n

la
ca
3
OF

£
OC
a)
JO
C/)

a)

II
0•bl
ca

+B

a)

\

C
a)

at
ID
(a3
a:3
OL
a)0\h

0
X

0 PM> X (\IX (\1 C)>, X a)
>i

a)

a£
OC
a)

JO
C/)

a)

:1
0

a)

+

ca

C
a)a)
la
(a3
Ol3
CL0)
0
'qb

:1

0

C
a)
a)
la
ca3

:al

+

0)

+

OF

0

C)
a)

O
\a
O
C
a)

JO
C/)

a)

ca

a)

\nb

la
ca3

El
X
a)
C

0
ca

a)C
a)a)

+1

la

h•nl

ca3
ol3al

+1

a)0

\b-
f
O
C
a)

JO
C/)

a)

bI

\n_

>
ID
ca
a)

I

IO
ca

:

OF

a

r

II

:

JO

ID:

OC

3

a)

el

C/)

0

a)
0

+1

a)

\n-

a)

C
a)V)

la
ca

\

a)

ai

0

=

ca

a)

al
0

3

a)
C/)

JO

wI
laC
a)

\

r
O
C
a)
+1

+=-1

la

a)

+1

a

(a

OF

a)
hq,_

quadgenl inside_tile

217

a)
a)
caa

B0
nc

COr=
0
(\I
1-
C/)
GC

an

0
qF
A0
(\I
P

Lr)0
O
a)a
C
0
E
a)

danHI

daa
r
JO

+1
0

+

ca

a)C
a)
o2
la
ca3
aS
;al
a)
0
g3

an==

O
a)

+

C
O
L=

<
E
O
C
a)

JO
+

C/)
a)
+1
0
ca

a)C
a)

a-i
ID
ca3a
3
OLa)0
>,

=
C
LU

iS-nHl 8 in
LO iS

in
LO

C\1
10

£

C/)

a)

LI
0
(a

a)

a)

l=i
CD
:

CR3
ala)
0

+,+1

C

•=
CUb_

a)

bnHl

a)

nOeOn

b=UPUP

•=n•=L

b•mini
Hdlb•n•0

Hdh•=•

b•HbPHl

(\I
CD

0

C)C

JOel

\

ef>!
r {

a)
LO
IBn==n

C\I
LO

a)
LO
T
P
LO

a)
X

10
C
00
qa
r
10

0
LO

0
X

(\I
CD

0>
10
P (\I

CD
0
LO

(\IX

a)
CO

(\I>

a)
CO

a)>\

a)
JO
C/)
a)

LI
Un•nf

A
(a

nB

a)

\

C
a)

+d

a)

q-nHl

0

la
3

HAHnba
C)
a)

a
O
r-
O
C

ca

C:3
al
0)e

JC
C)
0
O
r£
O
C
a)

JO
C/)

d===I

a)

:1

\b

0
ca

a)
C
a)

]:i
ca3
al3
al
a)0

\

a)

=?
ca

al
3

3
al

+

C

a)0

h+I

a)

a)
C/)

a)
\-
(d
O
C
a)

JO
cr)
a)

0
CO

\

la
CO3
OF

C)

la
ca3
cr

I3
al
a)0

bbb_

C-

C
a)
JO
anneI

C/)

a)
J=•nUI

bI0
ca

a)C
a)
CEi

\

X
P la

caD

ElX
a)
C

a)

OF

al
a)

W

3

=

0

\

E
O
C
a)

JO
+

G/)

a)

b-
0
ca

a)
C
a)

ID
CO

\

>b
ID
ca
a)L-

Ila
ca3
cr

C

a)

al
0)0

+P

:1

O

a)

a)
trl

JO

r

0

C

a)
a)

I

CR3

-\

(a

la
ca
=

a)

laC
a)

al

a)

JO

';1

+1

C

=

ca

3

a)

+1

a)0

C
td

(a

O

C/)

\

a)

0

a)a)
-1

la

cr

bbb

quadgen2_inside tile

218

tri
C
0
LO
(\I

C/)
C
00
(\I

a)
a)
caa

B0
nc

10
P
0
(\I
t-
C/)
QC
on
00
LO

6)0
(\I
r

LO0
C)
a)a
C0
E
a)
Ra
P
JO
+

0
And

La
a)C
a)
a)
la
(a3
a:3
ala)0
a)
3+1
O
a)

+

F
E)
<
£
C)
C
a)
JO+1
\r)
a)
wI
0+1
ca
a)
C
a)
a)
la
ca3
al3
ala)0
>1
n=C
LU

C/)
C
0
Lr)
r

C/)
C
00
r

X
X

UHf

\n+P

f<

f<

HAn

hUInI
a•elbe=H

P-lb-I

Hdlb=•

qnIHl

beeP

f<

X
X
q•nUPHP

%nlP-I

f<

bnFUi

C/)
C
0
Lr)gEt

bnpHI

rD

++n=b

F

(\I
r
bnOf
nihnb

iS
q•nHl
HAn

ig
bebeI

C/)
C
00
C>

JC
O0
£O
C)

\

C
a)
JO•bl
C/)
a)el

0I
La
a)
C
a)a)

10
ca3
ol
:

al
0)0h'\

C/)
a)

£

a)

II

a)

#

a)

\

O

+1
a)

C

JO
+

C/)
a)

0
(a

C

a)
la
ca3
CI\3
al
a)
g

la
(a
:

g£
C)
C
a)

JO
C/)
a)

:1
0

+

+1
(a

a)C
a)

:=t
ca3
al3al
a)0

\

a)

(a3

3

0

annI

al

+1

a)

+

al

eE
O
C
a)

JO
C/)
a)

0
ca

a)C
a)

I=ti

\

O
a)

al

C

a)

i

+1

3
al

+1
tr)

3
ala)
g

O''hb

£

+

OC
a)

JO

a)

:10
ca

a)

a)

la
ca3
CI:

:1
0

a)a)
I

C

la
ca3

dUnnI

CO

a)

alJ
al
a)0

)<
a)
C\\£
OC
a)

JO
C/)
a)

\\n

>
ID
ca
a)

I

10
ca3
OF

CEt

ca3

C

0:

d==P

a)

0

a)
C/)

JO

C
a)

3
V)

nUJ

O

0

W

C

la

CL

a)

-\h

ca

\h-

a)

tr)
a)

0
76
a)

C

a)

C
a)

JO
a)

a)

C

O
£

la

ca
I
OF

al
0)
3

0

la

';1

\

+

\

quadgen0_outside_tile

219

Q0
8
8
g
g0(\I0a6

6

oa
jn

f)

8
8

in
C

8a) a)
a)
raa

B0
ac

CD

0
(\1

Us
ac
no
eD
al
K)
q
Lrj

Ln0
8a
C
0E
aj
aa

JO

I
C)
a
Jg
Br
a)

I
a)
b
Hr

10
10aa

a
8)
aS

3
i)
-E
E)
<(
I
L)C
a)
JO

a;

g
B
trI

la(a3
cr
Dal
a)0
>b

E
LU

I
C
C
a
a
n

a
0

cn
C

8
Cy

00
8 LL

LL

P
B
a
B E

8g
X

><

f<

X
2B
r<
Ibn=01

r<++
ID
103a
r-
C)
C

J8

a;

a)'
a

la
ca
:J

CR
:el
a)
0

8
8
8
8

ig

b=IP+

a)

b
7)

10
ca
3a
:Jal
a)
'0

U=+1

a

nW=

D

P<

r<

r<

la
CD

OF

EL
ID
Je
E)
a)
JD

U)
a)

a)'

X
X
XX

JC
Qa
t)

.r=C)
C
a)
JO

a)

a)
B

i
la
(a3
al3
al
a)0

i)
g

JC
C)
C

Jg

i;

g)
0

IE:) I

IB:t

al
D
ala)
0

JC
U)
rE

E
la
ra3a
r-
E
a)
JO

a;
I

g0
1K) I

R3a

JC
U
ca

hI
a)

:

g
Q
C
a)
E
Br
a)

a)'

B
Ila

CS

:

OF

3
el
VI
0

X , g 8 \nuiCC0000doIB
ID
rD
f’
C)
C
a)
JQ

i;
a)I
b
a/

!la
(a

Er
3a
a)
Q

I
a)C
C)

a
I

JO

B3
ar
,iC)

1)
JO
7)
a)

a)'
6
Br

la
103a
3
el
a)0

I
B
CD

hI
a)

3
JPa
C)
C
a)

JO

3/
a)

gg
cn

Ila
rB3
OF

3
al
8)

a)
Ja
d
a)

abJO

b
3
JO

g
F)
JO
ar
a)

a)I
6
a/

IB
;a
3al
0)0

a)
;

a
a)
af
ca

C
ca

a/
Je
C)
C
a)

JQ

&

a)I
b
3/
la
al3
a
a
-8)

larD3
OF

g0
Hr

JiQ
C
Jg

a;

a)'
a
3/

la
CD
3
OF

3al
8)

IDa)

b
Ila

ra3
gC
C)
C

Jg
a/
a)

+1
g
0

al
10
ca3
ar
3al
a)
0

8

al
C3

= X

JC
C)
C
a)

JO
a/
g)

g0
n/
la
ca
3
cr
3
ala)
0

a
D

JO
E
C)
C
a)

JO

a;

a)'
a

la
ca3
or
3
elal
0

a)'
E
3
a
3
9li
E
a)
JQ

a;

g
Q

la
rD
D
OF

3
CL

gn

3
alVI0

quad store0

220

0
g&

eD

g 8
U)
C
a0
r\I
a)
eu

C

C
a
To

I
a
Q

g
g
8
8

g

a)
CD
rD

a

i
ac

10

0
r\i
F-
C/)
nc
an
0qf
bq
LO

Lr)0
O
a)a
C
0
E
aj
aa
JO

I
C)
C

Jg

a;

g0
ar

ID
CO3a
3
CL
a)
0
g
D
a
a)

-C
b)

q(
JC
QC
a)
JO
7)
Q

g0
ar

la
103
Cr
3al
a)0
>b

C
LU

g

a)
V
a)
10

8
(\1
10
helP+

SI

8
a\
10

fu
CO

bnP=

0aa
£3g

U)
C

hla)

g

b

b

Pb
8
a;
10
a)
(\I
CU

a
a
0
a
la
CO3a

JC1

EL
a)
la
f
C)
En

a)
JO
U)
a)

g0
al
ID
CS3a
aal
a)
-0

;\\a
CD
LL
LL

•nH

8

a
E
D
caJ
pr
JC
L)C
Jg
7)
2
a)'
a

= 1
rD3
al3
el
Bn

Jt
O0
C)

C
C)
C
a)

JO
ar
a)

a) I
a

ar

la(a
3a
3
al
a)0

C)
Ln
a)

1
L)
C
a)

JO

cr)
a)

a)‘

B

la
rD
3
cr
3
ala)
9

lccg3a
E
C)

[>
JO

af
a)

I
a)

B
a)
la
rD

;

ala
0

C)
ra

-a

g
JC

C)
C

Jg

lj
a)’

B

la
CD
3
or
3al
a)0

0
lbla
(a
„t T

E
a)
JO

Br
a)

g 10
Br

DI
103

:1al
a)0

a)(\I0
C
a)
C
a)

a
=

JO

la
faa

-or
JI
E
a)
JO

a/
a)

90

Fa
D
OF

3aa)0

0
LL
LL

Ul
cr)

9la
IO
(a

a
3
JP
JC
L)
C
a)

JO
a/
a)

g
0
ar

ID
tO3a
D
al
8)

LL
LL

a)
To
caC
a)
a)1

SJO

j
I

JO

E
a)
JO

cr)
a)

a)I
a
3/

IE3a
3
ela0

d
a)
8

ca

ca
ID

a)E

:

a
:JqC
E
a)

La
a;

a)I
b

la
CD
aa
3
al
a)0

a)

I
a)

3
JO£
C)
C

Jg
Hr
a)

a)'
a
7)
la
10
3
cr
3a
Vfl0

a)
7)
CD

a
La
cn
1-
Oa

JgI
a)'
a

la
(B3
a-
3
al
a)0

la
ca

ar

ga
ar

X=Q
C

Jg

a;

a)1

a

I
10

ca3a
3al
a)
0

la
a)
a

IID
(a3a

JC

C
a)

JO
ar
a)
HI
gg
cr)

lla
ca3
a:
Da
a)0

O
9
ChC3

==
C
C)
C
g
a;

a)'
B

10
(a

;

ar
3
al
G)0

quad storel

221

B
I
g

a S

i
1::

}

i

!!
8
g

]

cS

El

g i

d

g
iI B8iiiiiiii ii g:

a

i
gE

&g B
'i

!

!
g

g
i

;!!

:: : : iH :1:

i

gigi

{ { $ $
g' ! !' €

gig g
ig # #

raster unito

222

8
DE

!!

g

g

8

Br

g

a

i IE:

}

i

8:
8
g

g Ir
IIZ

i

.i
g

g
i

!
!
i
g

i
B

IE

g

$

J
8

g
0

g

i
al

E
iE
a

g

i
!,

!! !!1III
g

gigi ii

!!
!' !
gg
gi

g

i;ii ; } } } ; ;iii
o g E gP

!!!!!:

! ! [g

raster unitl

223

iE

g

}

g

i
F)
$

8

8
g

!

if

i

!

g

g

i

i
{

!'
g
g
i

0 P

&

i
E6:

#

a
8

k

g

8
ac

P
2
ac

a
g Z

a

i
R

d

0

, iii gigi !! ! ! !! ! iii : g

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

i:
; a gE ! !

raster unit2

224

a

i
a

g :
!!
6:

IE!!

g

E

g
g:

8
I
!

g

;D

S
g
al

g

i
!

!

g

i
t

a

g
al

!

al

g

a

i
[i

iR

I

„„„„, iiiiii!! ;i

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

g

i $
ge

i gb ie

a

iI

g

{{} } ; } } } { } {

raster unit:3

225

\n
C
0a
aD

IN

Sr !- !- igF:
UP= bnP= HPnI nHl U+

7

gIg $1 : : 8 : : tq
in
a)

rD
+n ,+, O N N O ++
CD (Darpa) tOUpa

nI
q=W•n

8 g g 8 e g 8 g g 8 Qan•nn Inn ann ••••

d
a)

V)
C
0
8

a)
a)
CDaa

n, ++ t>- C>’ e>- in- ++
HEIp !:ip :ip =1 =+ !! gEt

a uS
(\1

89 gBP 9 bag ! be

fo

7al

:+
7

C+

re

a
eu

an
%Rpa

alC
0
?

CD

0
(\1
1-
CD
ac
on
Na)
Lr)

(\i
Lr)0
C)
a)a
Ca
S
aj
Toa
JO

d3
a
a)
3al
at0
a)
3
C)
g
'1
C)

<:
£OC
Jg

a;

f)
D
a
U)

3
al
a)0
>b

E
LU

n. HU. Teve\ibnp+ bHP
+h n, el
GOOD CV

rD

X BR a
al

a
C\I

Co

a
+We

r)
a)

C)

8
F)
bnHI

rDbnpHITo Ta
a +, +U
PV tO f)

hWa

a
00 too

b=PHI

10 10

re
nI

al

t\1
bnPU

FI

FI

0

Le

F:
re

fJrlnRPB b=HI

CU

bHpa

n. aver (\I sIN
+nunI

0

FI
a
+

bHPa hnPal

a
.a)

B
a)

JO

7)a)

fIl3
B

dlVI
9

a
Re

R
a

a)i
LI
C
a)

JO

a;

f)'
3
a
tn
3ala
0

C
=

F)

LI
Cq
a)

,1 :
Qa

JB

ii
d3
T)
U)

3al
0)0

=

0
;

,F
C)
C

Jg

ai

nI3
C)
U)

3
al
8)

=

0
;

1 "
C)
C

Jg
a/
2
n,I3
3
in

aa)
0

rD

;r
QC
Jg
a)
B
d3
a

aa)0

a\

>

>

f,
Q
C
a)

JO
a)

a
mI3
a
3
ela)0

nI

(\I
;

I
g
a)
JO
cn
a)

n'3a
3el
al
Q

a
OU

>

>

E
a)
JO
a)
a)

nII
a

:Ja
a)0

0
p tO (\I

0
K)
0

a)
C

8
0Jd

C)0t)
jc

C)
C
a)

in
gi

d
D
a
VI

3al

8)

a)

a;

Ji
Q
C

Jg

a;
HIal3
C)
U)

3
al
a)
-0

0 P> X >
a
U)
10

I
C
ca
ar
JC
C)
C
a)
JO
a/
a)

;J3
3

IIaa)6

a)
C0
ID
d3
i
iQ
C
a)
JO

a/
g!

d
:

a
Ul

I
ala)
0

setup

226

8 E
b
bN
0;
Lf)

0
a)

g)a

i
or

CD

0
(\1

}-
C/)
ac
on
a)

d)
CU

a)

LO0
ga
C
0
2
a)
Ba
JO

a/
a)

a)a
18

a)
a)
C
ca

a
al
0)
0
a)
=1

i)
I
t)

<

I
O

F)
JO

a
a)

Br
a)

a)
V)

18

a)
a)
C
rD

3al
a)0

=

E
LU

8

Ea0

o = o :3RIpOn 588883 a)
C
a0
6JC

C)
0
t)i
O
C
a)

JO
ar
Q

a/
a
a)a)
IDa)

a)I
a)
C
CS

=

alal
-6

g
g
I
C)
C

Jg
a;

a:
a)
a)la
a)
a)'
a)
C
ca

3al
8)

>,
IDa
a)

a)a
B£Q
C
a)
JO

7)
(D

'1
3/
a)

it
a)
IDa)

I

a)
a)C
(a

Elal
a)9

0
a
ca

E

a)'a)
ID
-a)
Jq

a
JO

cr)
a)

a/
a)

a)a)
18

a)'
a)
C
(a

3
al
VI
0

f/3
(a
E

a)'a)
la
a)

E
t)
JO
U)
a)

a/
a)

a)'a)
18

a)I
a)C
(a

3
al
a)0

Sy
tn
ca

E

a)’a)
la
a)
E

a
LD

U)
a)

VI

as
HI
a)a)

: 1
a)
C
ca

I3
al
0)0

JC

rd
E

leg3a
E
L)
C
a)

JQ

I
7)
a)

a)
a)
la
a)
a)'
B)
C
10
C

3ala
-0

leg
D
OF

1?
JC
OC
a)
JO

7)
a)

a
a)

a)
al
18

all
a)C
CDC

3
ala0

i
IB3
cr-1
IP
ca
U
a)
ha
Je
C)
C

Jg

a;

a)
IB)
aDI
aVI
C
rD

3
al
V)

a)
a/

I

9

triangle edge test0

227

0
a

00U p
bb In

C
0a
a)

a)

8)a

Ba
QC

10

0
r\1
1-
C/)
ac
ona0
;\\
a)

Ln0
8a
C0
E
a)
Faa
JO

ar
Q

a)1a)
18

a)
a)
C
10

3
ala)0
a)
3
B

i)
<(
JC
L)
C
a)
JO
3/
a)

B/
a)

a)
a)
18

a)
a)
C
ra

3
ala)0
B
E
LU

80

in
C

8(\I

Ul
C0
00

a POP
p O p
bbb

8

jC
U0
t)
iVC
a)
JO

a;
I

B
a)‘
a)
ID
a)
a)‘
B)C
CS

HI

ala)0

d)

a)

i
L)
C
a)

JO
U)
a)

as

a)'a
la
aDI
a)
a)
C
nb
=

3
ala)
0

>

ID
ca
a)

a)
a)

ID
a)

C
Q
C
a)

JO

a;

a/
a)

a)

IED
a)

a)
a)
C
CG

=

I3
ala)
9

0X
rd
E

a)‘
a)
18
t'L)
C
a)
JQ

a;
-1

7)
a)

a)
a)
ID
a)

a)‘
a)
C
ca
=

3al
a)
P

JC

rd
E

a)
al
ID

a)
ct
O
C

Jg

ii
ar
a)

a)
alla
a)
a)'
a)
C
ca
E

dal
VI
Q

CU

'iFI
ca

E
I

a)
a)la
a)
1
C)
C
a)

JO
C/)

2
HI
tri
a)

iIa)
B

I
a)
a)
C
CS

C
I

3al
a)
0

JC
cn
ca
E
la
rE3a
1-Q
C
a)
JO

ar
a)

E)
a)
alla
a)

a)'
a)a
CD

3
alal
-0

la
ca
3
OF

a
10

lb
JIQ
C
a)
JO
Br
a)

a;

a)
11=1nla
a)
a)'
a/C
(a

3al
a)0

ID
ca3
OF

le
El
U)
ID
I
C)
C
a)
JO

a;

a;

a)'a)
IB
all
a)
C
10

3
CL
al0

triangle edge testl

228

0
b

868
a)
VI
caa

a0
ac

10

0
CU

1-
C/)
nc
on
a)0
tr)
(\1
a)

tr)0
C)
a)a
Ca
E
a)
aa
JO

'1

g)

;10)
ID
a)
a)
0)C
a

a
al
a)0
a)3
7)
a)
I
E)

<

=

QC
a)
JO

Br
a)

g
a)
a)
la
a)

a)I
a)C
10

3
ala)0
>

E
LU

0
3 in

C

8
qi

r U r

g : g

oo6
= = 600

JC
C)0
t)
1'
C)
C

Jg
Of
a)

g
g
E

L)
C

JB

a;

a;

a)a
la
a)

Ia)
B)C
ca

el3
al
a)0

>,
ID
ca
a)

I
a)
V
B
I
O
C
a)

JO
in
a)

I
ar
a)

;1
VI

B
I

a)
a)
E
rE
=

itel
a)
9

0
th
ca
E
a>1
a)la
a)
JiL)
C
a)

JO
a)
a)

ar
a)

a)
a)
ID
a)
a)'
B)
C
ca

=1al
a)
0

r C\Ja 17)ca aEE1 1a) aa) a)laID
ig Jg0 0C Ca) a)
eLDV) a2 a

Ia =/a) a)

iI :Ia a)
lgB
a)I ol
era)C Cca a
iI :IaLaa)a)0 0

JC

rd

E
la
ca3
OF

1:
O
C
a)

JO

a;

i;
a)
a)
ID
a)

a)'
B)C
rDC

'1
=a
a)0

la
CD3a
a
CO

IB
JeC)
C
a)
JO

a;

a;

a)

Ign
a)
a)’
a)
C
CD

3al
a)
-0

la
CO

3a
IOl

8
Ln

ToI
L)
C

Jg

B

g;
a)1a)
t:
a)I
B)
C
10C

3al
a)0

a)a
la
a)

a)'
a)
C
ca

+1
3al
0)
-0

triangle edge test2

229

a)
a)
CDa

0
8 Ua0

CD

CD

a
Al
}-
C/)
ac
on

Cy
LO
(\1
a)

Lr)0
C)
a)a
C0

=

a)
Ra
JO

Br
a)

a)
g)
a)
a)
a)C
CD

3al
a)0
a)
3
T)
a)
'1
t)

<

JC
OC
a)
JO

a
a)

ar
a)

a)a
ID
a)

a)
a)C
CD

3
al0)0
+

E
LU

0
6

O q= Q000r O r

a0a

g
8
Ln

b
8389
r 0 p

JC

3
i
E
a)

JO

as

i;
a)
a)
B

a)1

6)
C
(a

:Jala0

a)
a)

L
g
a)
JO
ar
a)

a/
C)

a)a
18
a)'
a)
C
10

I3
ala)
0

IB
(a
a)

a

IB
al

JC
Q
C
a)

JO

a;

a;

a)
a)
ID

a)

a)'
a)
C
fC

I3
al0)
g

a
JC

rJ
E

a)
V)
10
C)
E
C)
C
a)

JO

a;

3
a)a)
10
a)

a)T
B)
C
ca

3el
a)
-0

U
f:
E

I

a)
a)la
a)
IC)
C
JB

a;

a;

a)
V)la
a)

a)'
a)
C
10

3al
a)0

Cy
JC
a)
CD

E

a)
a)
18
Je
C)
E
a)a
ai

a$
a)
a)la
a)

a)I
a)
C
rE
E

Dal

B)

rd
E

IE3a
1-

E
a)
In
a/
a)

a/a)
I

a)
a)
18

I
a)
a)
C
10

I3
ala)
0

la
rD
3a

gi
10

f)
a)
JO
7)
a)

7)
a)

I

a)a)
8
a)I
B/
C
ca

HI3
ala)0

la
fC3cr
nO'

aO
hS
Jd

g
a)
JO

a)
a)

8/
a)

a)
lgB
a)
a)'
a)
C
rD'=

I3el
a)

Q

triangle edge test3

