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ABSTRACT

Train transportation promises many benefits when compared to its counterpart road,
bringing efficiency by transporting heavier loads faster and emitting less greenhouse gases.
For this reason growing the use of trains in transportation is part of plans from many
countries to lower the carbon dioxide emissions. To bring these benefits the rail system
has to maintain a higher utilization of tracks through the use of schedules. However,
similar to other transportation modes these trains are subject to unforeseen events, such
as passengers getting sick, maintenance stops and tracks breaking. These delay the trains
and make the planned schedule. The process of building a new schedule after these events
minimizing the effects and avoiding propagation of delays is called rescheduling. This is
currently done in many rail companies by a experienced worker without a optimization
software support. This graduation thesis focuses in studying a mathematical model that
optimizes the rescheduling process to assist these workers during these events. With
this objective an alternative graph model was chosen to do the rescheduling of trains
using mixed linear programming. Two other variations of this model are also proposed:
one simplifies the model by taking the binary variables that made the original model
a mixed integer linear problem and turning it into a pure linear problem; the second
extending the model by including a rescheduling measure, the rerouting, by adding binary
variables and making the model more complex. The three models were implemented
in the general purpose programming language python, using the libraries igraph and
pyomo as supporting packages, the first to built routes and the second to actually create
the mathematical model for a general purpose solver to optimize. The state of the art
mixed integer and linear programming solver Gurobi was used to test the models in
several instances made of data available on the internet and of data from a real-world
infrastructure from a company in the city of São Paulo. The tests showed that the
original and the extended models might not be able to solve the problem in a bigger
real-world infrastructure in the restricted time available, however, the simplified model is
more than fast enough and might help those workers that do not have any assistance in
this process.

Keywords: Train scheduling, Schedule recovery, Rescheduling, Train transportation,
Mixed integer linear programming.
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1 INTRODUCTION

This chapter provides a brief introduction to the research topic and its motivation,

as well as an overview of the main objectives and intended contributions of this work.

Sequentially, the structure of the remaining thesis is presented.

1.1 Topic and motivation

In the field of logistics, there is a transportation mode that promises to deliver sig-

nificant value to the sector. This is the rail transportation mode, which offers substantial

advantages over road transportation in many aspects. In 2023, DHL, a company with

a comprehensive portfolio of delivery products, published an article detailing the major

advantages and disadvantages of rail freight transport when compared to its counterpart

road transport (STEPPER, 2023). Table 1 presents these advantages and disadvantages.

Table 1: Advantages and disadvantages of rail transportation.

Advantages Disadvantages

Fewer greenhouse gas emissions Low level of flexibility of time and location

Efficiency thanks to high cargo capacity Transport costs

Safety Noise emissions

“Plannability” Non-uniform standards

Intermodality Infrastructure in need of expansion

Source: (STEPPER, 2023).

The two main advantages that deserve attention in Table 1 are the lower carbon

emission of trains and the “plannability” of this transportation mode. “Plannability”

refers to the quality or degree of being possible to be planned. In other words, it is the

capacity of something being organized and prepared for in advance. This characteristic

is present in rail transportation because its operation is controlled by timetables, which
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prevents sudden traffic jams from happening. By establishing specific travel times for

every train, timetables ensure a smooth flow of trains, unlike road transportation where

such congestion is common (STEPPER, 2023). This may appeal to the customer as he

can rely on trains being on time and being a comfortable way to travel.

The biggest appeal of rail transportation, however is not its “plannability”, rather

it is its greenhouse gases emissions. A 2021 study made by the European Environment

Agency found that a freight train emits an average of 24 grams of greenhouse gases per

ton/kilometer transported (MAHNKEN, 2023). This is less than one-fifth of the emissions

from road transportation. This difference in emissions is not only related to the energy

source but also to the efficiency of trains.

The rail system is already predominantly powered by electricity. In Europe, ap-

proximately 80% of all freight kilometers are covered electrically (STEPPER, 2023).In

Germany, however, this proportion is reduced to 62% of the state owned tracks and 54%

of all tracks in the country. Interestingly, 90% of the train transportation is made using

electricity powered vehicles in Germany, indicating a concentration of train travels on this

electrically covered infrastructure. The country has the objective of growing the present

electrical coverage of tracks from 62% to 70% of the state-owned tracks by 2025, with

the goal of further reducing the greenhouse gases emissions (ALLIANZ PRO SCHIENE,

2024).

Furthermore, trains can transport larger and heavier loads than its road counter-

parts. This can result in greater efficiency, both environmentally and economically, over

long-distance trips. This results in improvements in both logistics costs and in carbon

emissions, which are notable advantages when using rail instead of road transportation

(STEPPER, 2023).

Moreover, to achieve the European Green Deal initiated by the EU Commission,

Europe has a target to raise the rail share of freight transportation to 30% by 2030. Now

it is only responsible for 16.8%, with a heterogeneous distribution from 3.2% in Greece to

64.7% in Lithuania (MAHNKEN, 2023). This indicates a big demand for growth in this

transportation mode. However, this growth is being slowed down by its disadvantages

and the present situation of the infrastructure, which has effects on punctuality.

The two main disadvantages of rail transportation that deserve attention are the low

level of flexibility of time and the infrastructure in need of expansion and maintenance

work. The use of timetables in operations has a drawback: a resulting inflexibility in

time. To follow a schedule, trains must adhere to small time windows in order to carry
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out their journey (STEPPER, 2023). Add that to the fact that not everything can

be known in advance, and all transportation modes face uncertainty in their operation,

including rail transportation, which may result in unforeseen delays or even cancellations,

which may make the planned timetable infeasible. This means that other trains will also

become delayed, making trains less attractive as their punctuality becomes worse and

consequently their service level reduces. Examples of these unforeseen events include late

train arrivals or departures, unexpected track maintenance, vehicle breakdowns or even

bad weather (VISENTINI et al., 2014).

Infrastructure is also slowing down rail transportation. In many countries there is

not only a problem of tracks in need for expansion, but also the existing infrastructure

is outdated and need urgent maintenance in addition to the expansion measures (STEP-

PER, 2023). For example, in Germany, 16% of the existing tracks are out of service

(BALSER, 2018) and because of maintenance work trains are becoming frequently de-

layed (DEUTSCHE WELLE, 2024). On the other hand, Brazil has very few tracks, which

can hardly meet demand, making them frequently crowded or out of service (G1, 2024).

This lack of available tracks makes busy areas even more inflexible in time, as a result of

a even higher demand, leading to busier tracks which are more susceptible to propagating

delays.

With all that said, rail transportation is a highly attractive mode of transportation

and should be used more frequently due to its advantages. However, the disadvantages

discussed contribute to the current scenario of low service levels and unreliable timetables.

Therefore, more efficient operations management is needed to ensure that the advantages

outweigh the drawbacks, facilitating a transition towards more widespread use of rail

transportation for both people and goods.

An important task is to improve the process of rescheduling, which involves finding

a new feasible schedule that satisfies operational and safety constraints while also mini-

mizing an objective in the time-constrained environment of operations (FANG; YANG;

YAO, 2015). This can enhance time flexibility by providing a fast and reliable way to

create a new schedule when the original has become infeasible.

Nowadays, most rescheduling is done by an experienced worker called dispatcher in an

operation center, using only some rule of thumb or a contingency plan (QU; CORMAN;

LODEWIJKS, 2015; GHAEMI; CATS; GOVERDE, 2017). Alternatively, some cases

use an automated system, however, in the literature, there are only two cases of this

implementation (LAMORGESE; MANNINO, 2015).
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This work seeks to further evaluate the possibility of implementing optimization mod-

els to assist dispatchers in the rescheduling process, hopefully making this process more

efficient and consequently improving the current scenario in train operations.To do so,

the author communicated with a company of urban trains of São Paulo, the Compan-

hia Paulista de Trens Metropolitanos (CPTM), to further understand the problem and

applicability of algorithms, as well as to obtain data to test the algorithm in real-world

cases.

1.2 Research questions

With the exposed motivation and context in mind, the following research questions

are made:

1. How is the real time rescheduling problem modeled and optimized in the literature?

2. Can these optimization models solve complex instances, including real-world ones,

in real time?

3. Is there a way to improve these process?

To address these questions, the following tasks are proposed for the development of

this work:

I Conduct a literature research to develop a better understanding of the topic and

identify the main factors that influence rescheduling.

II Study a mathematical model of the rescheduling problem to address question 1.

III Implement a model found in the literature, as well as two variations of that model,

with the objective of improving the solution. This step prepares for the next task

and attempts to address question 3.

IV Conduct experiments using instances, available on the internet and from real-world

examples, to determine if the models and the exact solution can solve the problem

within the time limit, thus addressing question 2.

The objectives of this thesis are:

I To study the rescheduling problem, focusing in a real-world application.
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II To translate the problem into a mathematical optimization model that minimizes the

effects of perturbations in train operations.

III To implement different solution approaches in computational language and compare

the solutions in data available in the literature and the CPTM context.

This thesis hopes to bring the following contributions:

1. Testing if these solution approaches implemented can solve the rescheduling problem

in a real-world scenario.

2. Further improving the model found in the literature.

1.3 Structure

The structure of this work is organized into 6 chapters, according to the following

structure:

• Chapter 1 - Introduction: Presents the motivation for studying the subject, the

proposed activities, and the questions they aim to answer.

• Chapter 2 - Theoretical Background: Provides the theoretical knowledge necessary

to understand the problem based on the literature research.

• Chapter 3 - Problem Description: Introduces the problem studied and the real-world

examples used to test the solution.

• Chapter 4 - Mathematical Model: Describes the mathematical models implemented

in this thesis.

• Chapter 5 - Model implementation and solution approaches: Details the additional

approaches, alongside the mathematical modeling, necessary to the solution.

• Chapter 6 - Computational experiments: Details the computational tests conducted

comparing results from the different approaches proposed.

• Chapter 7 - Conclusions: Summarizes the thesis, answers the research questions

based on the work, and identifies possible critiques to the methodology as well as

opportunities for future research.
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2 THEORETICAL BACKGROUND

The information presented in this chapter is derived from a literature research em-

ploying the snowballing method. The research started with the reading of a literature

review on the subject of train rescheduling (CACCHIANI et al., 2014), and then pro-

ceeded with the reading of numerous other papers that were either cited in this review

or were considered relevant papers in the subject, because more recent and contained one

or more key words such as trains scheduling, rescheduling, operations, etc. This chapter

is divided into 3 sections: train operations theory, categories of unforeseen events in rail

track and rescheduling theory.

2.1 Train operations theory

In this section the knowledge needed to understand how trains operations work is

briefly presented. This will cover the information gathered from papers on the scheduling

and rescheduling of trains.

2.1.1 Resources

Resources are the main source of constraints in most of optimization problems since

all solutions must be restricted to using only the available resources. Train management

is no different. With that said, the two main resources in a rail system are the track

infrastructure and the trains. Because rail tracks are a shared resource, they impose

tighter restrictions to the problem as the infrastructure of other transportation modes

(VISENTINI et al., 2014).

Track infrastructure can be divided into elements, which are rail track, rail unit,

stations and communication (NARAYANASWAMI; RANGARAJ, 2011). The rail track

is composed from multiple rail units that can be called by rail segments, track section,

track segments, rail blocks or block section. Stations also contain these track units, but
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are special because are points where trains interact with their clients deserving special

attention. Communication devices called signals are usually placed in both the beginning

and end of every block section (D’ARIANO et al., 2008).

2.1.1.1 Signaling and blocking

To start to explain this resources an illustration can help clarify the idea. Figure

1 shows how this division of rail tracks works in a train line. This illustration is taken

from a very informative website on trains operations and shows that in every end of a

block section of rail track there is a signaling device that is used to communicate to the

conductor the status of the next track, if it is occupied or free (PRC Rail Consulting Ltd,

30/01/2023).

Figure 1: Signaling and blocks illustration

Source: PRC Rail Consulting Ltd (30/01/2023).

Each block section can have a different length and for safety reasons can only have

one train traveling through it at a time on the timetable. To further ensure safety the

signaling system composed by the signaling devices are used (LUSBY et al., 2011). These

devices can display either red, yellow or green lights. Red indicates that the next block is

either out of service or occupied by another train, which means a train can not enter it.

Yellow means the next block section is empty, but the one after it is occupied by another

train, meaning the speed is also limited for safety reasons. Green indicates that the two

subsequent block sections are empty and the train can run through it at maximum speed if

needed (D’ARIANO; PACCIARELLI; PRANZO, 2007). An example of these possibilities

is illustrated in Figure 1.
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Figure 2: Signalling device

Source: Toker (2024).

Figure 2 shows a real-world example of a signaling device on a CPTM track section.

These devices assist train traffic by communicating the track occupancy status to the

conductor, thereby indicating the appropriate speed limits (CAPPART; SCHAUS, 2017).

This system is designed to enhance safety in train operations. When two or more trains

attempt to occupy the same track simultaneously, a conflict arises (BAI et al., 2023),

representing the risk of collision. Such conflicts must be resolved by a dispatcher through

a rescheduling process (FANG; YANG; YAO, 2015).

With this division of the rail track infrastructure the rail system can be represented

as a collection of block sections connected to each other. Their attributes would be length

and their connections. A route of a train is then represented as a list of ordered block

sections through which it travels through.

2.1.1.2 Resulting problem elements

To guarantee that the solution is adherent to the available resources and operations

run smoothly with the safety measure, of only one train permitted to occupy each block

section, the following restrictions are imposed to the model: Minimal travel time and

Blocking.

The first constraint refers to the minimal time a train takes to travel through a block



25

section. That is the result of a function that involves both the speed a train can travel

through a block, and the length of the block. These can be dependent on both the train

and the track section, for example a train can be slower than others or the track can have

a curve which would also require trains to travel slower through it, or the track section

could be bigger in length, making the minimal time the train takes to travel through this

block higher (GODWIN; GOPALAN; NARENDRAN, 2007).

This constraint usually uses a simplified method to model speed. It models the speed

profile of a train as a uniformly fixed function equal to the average speed that the train

can achieve in a block section. This must be slower than the maximum speed that the

train can travel through that section of track (NARAYANASWAMI; RANGARAJ, 2011;

REYNOLDS, 2021). In other words, by imposing that the train takes more time than the

time required to run through the block with the maximum speed, the constraint ensures

that the train travels in a speed smaller than the maximum.

This minimal travel time starts when the front of the train enters the block section

and ends when that train has entered the next block section. The limit of the speed of

that train is its maximal speed, so the minimal travel time is the length of that block

section divided by this maximal speed. Trains normally travel with their scheduled speed,

and increasing that speed can be a measure to recovering a disturbed schedule, and the

maximum speed of the resources is the limit to the new scheduled speed (CORMAN et

al., 2012a).

Then the second constraint enforces that in each block section only one train is allowed

to be traveling through it in a given time. This is required, only during the scheduling, due

to safety reasons as was explained in the previous Subsection 2.1.1.1. During operation

the signaling device communicates this occupation to the conductor and trains may travel

in the same block section but with reduced speed. With that said this restriction of only

one train occupying a block is translated into the model of the problem of rescheduling,

with the purpose of avoiding conflicts and consequently possible collisions between trains.

The resources do also describe important parameters for the model, which are Setup

time, Dwell time and Priority. Setup time is the time between the front of the train

entering the next block section and the back of the train leaving the previous block

section (CORMAN et al., 2012a). This setup time enforces that trains run with a safe

distance between them at all times. This distance divided by the speed of the train is

also refereed to as headway. This may vary according to the safety standards with which

the company operates the rail system.
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Then dwell time is the time trains spend in a station. The lower limit to this time,

when considering a passenger train, is the time passengers take to board or leave the

train. There can also be an upper limit to this parameter as an attempt to increase

the utilization of a station capacity (LUSBY et al., 2011). However, usually only the

minimum dwell time is imposed so passengers can board the train with ease, while the

dwell time is minimized as an effect of the objective function.

Priority is an element connected to trains, which reflects their importance as a service

to their clients. In a system where both passenger and freight share the same infrastruc-

ture, a delay brings different consequences to each client, and passengers tend to have a

higher priority when compared with freight trains (QU; CORMAN; LODEWIJKS, 2015;

BAI et al., 2023). The higher the priority, the more the delay will be felt and the higher

the associated cost when rescheduling. With that said, priority is usually modeled as a

delay cost that multiplies a priority factor to the delay experienced by the train.

2.1.2 Management structure

This subsection will address some relevant points in the management structure of

rail systems to the rescheduling problem. It is divided in timetables, planning levels and

dispatchers coordination.

2.1.2.1 Timetables

Due to its importance to this work timetable has to be defined. It is the name given to

trains schedule. This means that timetabling is to provide a time value to departure and

arrival for a set of trains in a rail system. Moreover, the timetable is supposed to be an

easy to understand summary of all trains that travel through the rail system, specifying

all station on a train route, and the arrival and departure time of that train for each block

section in its path. By doing so it also indicates traveling time and dwell time on stations

(NARAYANASWAMI; RANGARAJ, 2011).

Another definition could be that a timetable specifies the paths of trains including

track lines used, junctions and stations traveled and the various interactions between

trains, including the planned time for all events, which comprises the time trains arrive in

each block section (HARROD, 2012). This means planning a schedule can be divided into

two tasks: first defining the path of the trains, then defining the arrival and departure

time from each block section in that path. Both tasks effect significantly the operation

of the rail system (QU; CORMAN; LODEWIJKS, 2015). With that said this work, as
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well as most of the works in the literature, assumes that railroads always operate with

timetables (KRAAY; HARKER, 1995).

The timetable can be either cyclic or non-cyclic. This means that it can either repeat

every given period, or change every time according to demand (CACCHIANI et al., 2014).

Non cyclic timetables are usually used for long distance passenger trains and freight trains

(NARAYANASWAMI; RANGARAJ, 2011), but the most common timetable is the cyclic

which is used for regional transport. However there is no mention of a pattern in the time

period in which these schedules repeat, meaning this could be specific to each rail system.

2.1.2.2 Planning levels

In the timetabling process there are, at least 3 (sometimes 4) levels (FANG; YANG;

YAO, 2015), in which different tasks are performed. These levels are: strategic, tactical,

operational and real time. These are shown in Figure 3.

Figure 3: Planing levels

Source: Narayanaswami & Rangaraj (2011).

Figure 3 summarizes well these levels and give the main factors that are different

in them. These are the planning and execution time horizon, stakeholders, criticality,

decision impacts and performance threats changes. As the level comes closer to execution

the tasks are each time more concrete and closer to the operation, while farther from it

the tasks are more strategic and abstract.

The farther from operation the bigger are both planning and execution horizon, which

means that actions taken will have a longer result and that the tasks have more time to be
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done, respectively. Moreover, whenever the planning horizon changes, the tasks and who

performs them also change, for example the dispatcher who does the rescheduling in the

real time level is usually not the same person who plans the infrastructure design, even

though this second task has a huge effect on the rescheduling. Furthermore, the farther

the plan is from execution the bigger impact and criticality it has, because it affects a

longer period of time and consequently has a bigger yield of performance. For example,

although both building a new track and re-timing a train are essential tasks for the best

operation on rail systems, the first task has a bigger impact than the second in the overall

rail system, but it also takes much longer to be done. And as the planning gets closer to

execution more performance threats are in the system and must be managed making the

complexity of the tasks bigger.

The strategic level has the characteristics of long time horizon typically involving

resources changing, either buying or selling. In the tactical level the task is to allocate

the available resources assuming that the infrastructure is fixed, some of the problems

solved in this level are planning lines, routing trains, scheduling rolling stock and crew

to build the original timetable (LUSBY et al., 2011; NARAYANASWAMI; RANGARAJ,

2011). And at the operational level, tasks that are performed daily, close to the time of

operation, are performed by local traffic managers (FANG; YANG; YAO, 2015). Finally,

real time tasks must be executed extremely quickly and focus on handling perturbations

to the plan with contingency tools, mainly summarized by the rescheduling task (FANG;

YANG; YAO, 2015; TÖRNQUIST, 2006). Some papers also stipulate the time available

to these tasks, that ranges from seconds to a few minutes (FISCHETTI; MONACI, 2017;

CACCHIANI et al., 2014).

2.1.2.3 Dispatchers coordination

Dispatchers are experienced workers who have the job of completing the operational

and real time planning level tasks so operations run as smoothly as possible (D’ARIANO;

PACCIARELLI; PRANZO, 2007). However, in many real-world scenarios the rail system

is too large for a single dispatcher. This is solved by a decentralized control, which means

that the rail network is divided into regions or sub-networks that are connected at border

stations called interchange points. Each of these regions is controlled by a dispatcher that

usually work in a operation control center (CORMAN et al., 2012b).

This division requires a coordination between the dispatchers so the optimization

of the individual regions combines into the optimization of the whole network. This is
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ensured by the imposition of border constraints by a coordinator, who has the task of

ensuring global feasibility of schedules and to pursue the overall quality of the global

solution (CORMAN et al., 2012b).

Figure 4: Dispatcher coordination illustration.

Source: Corman et al. (2012b).

Figure 4 illustrates how this dynamic between dispatchers and coordinator works,

with an example of network divided into k regions. For a further understanding of how

this is done refer to the article written by Corman et al. (2012b).

2.2 Categories of unforeseen events in rail track

The unforeseen events, previously mentioned, have not been defined in this work until

now. In this section they will be defined based on the literature on the train rescheduling

problem.

2.2.1 Perturbations, disturbances and disruptions

In the train rescheduling literature the unforeseen events that makes the original

schedule of the trains infeasible are called by three names: perturbation, disturbance or

disruptions. Perturbation is the name used to refer to any of these events that change

the schedule. Some examples of perturbations can be delays in tasks performed on trains,

like boarding, crew changes, or operational delays such as signal failures and engineering

works in progress, or catastrophes such as trains derailing, vandalism, severe weather,

cable theft and so on (BLUM; ESKANDARIAN, 2002; Office of Rail and Road, 2023).
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Disturbances are usually related to smaller perturbations in the railway system, such

as small delays, while disruptions are larger incidents that require more measures to

return the system to a schedule (CACCHIANI et al., 2014). With that said, some au-

thors differentiate them based on the deviation from the timetable, meaning that both

terms refer to delay, however, disturbances are smaller delays than disruptions, although

there is no sharp distinction between the terms (SHARMA et al., 2023; QU; CORMAN;

LODEWIJKS, 2015).

Moreover, some disruptions may require rescheduling not only the timetable but also

other resources such as crew and train wagons (CACCHIANI et al., 2014). These dis-

ruptions also have a bigger economic impact introducing additional costs and decreasing

service level (VISENTINI et al., 2014).

A simplification used by many of the papers in the subject is assuming that the

duration of the perturbation is known and fixed (DOLLEVOET et al., 2017). This is

done so the problem can be solved in a deterministic approach, and is only necessary

when handling disruptions, since they require rescheduling before ending, while smaller

delays can be rescheduled after the fact.

Both perturbations types, disturbance and disruption, create a delay that if not dealt

with efficiently can propagate and delay other trains in the system. This results in a

amplifying the original delay which may result in some undesired consequences for clients,

such as the example depicted in Figure 5.

Figure 5: Crowd waiting for delayed train in germany

Source: DPA picture alliance (2022).

In Germany delays have become more common with the increase of maintainance

needs of the infrastructure due to its age. Therefore, it has become a relevant issue

improving the responses to delays in operations (HÖLZL, 2023).
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2.2.2 Solutions

Until now the discussion has been focused on the context of the problem studied, but

the literature in this problem presents two possible solutions: one preventive and another

reactive. Both of these solutions will be briefly presented in this subsection.

2.2.2.1 Robust schedule

One possible solution to minimize consequences from unexpected events is through

robust scheduling. The robustness of a schedule is defined as the ability of that schedule

in absorbing perturbations. This is achieved through inserting buffers or slacks between

operations in the schedule. These buffers avoid conflicts when disturbances occur because

they keep trains far from each other even with the resulting delay (VISENTINI et al.,

2014).

With that said, robust scheduling is the preventive solution, which means that the

solution is implemented before the problem occurs. However, robustness is inversely

correlated to track utilization, because one of the few measures to increase capacity is to

reduce buffers in operations (NARAYANASWAMI; RANGARAJ, 2011; FANG; YANG;

YAO, 2015). Since high utilization is usually the operation standard to most railroads,

these are very suitable to conflicts and not very robust (BLUM; ESKANDARIAN, 2002).

The slacks and buffers, that result in robustness, are also correlated to the stability of

the schedule. Schedule stability refers to the ability to returning to normal operation after

a perturbation. In other words, the more robust is the schedule the more feasible will

be the reschedule (NARAYANASWAMI; RANGARAJ, 2011). That means the robust

scheduling is a problem strongly correlated to the rescheduling problem, even though

they are treated as isolated and independent (VISENTINI et al., 2014).

2.2.2.2 Rescheduling

The other solution to unexpected events is rescheduling, which is making a new

timetable with adjustments to account for the delays that resulted from these events

and make the train schedule feasible again (CACCHIANI et al., 2014). This means this

is the reactive solution approach to the problem because it takes place after the problem

has already happened.

The rescheduling problem was chosen to be studied because even with a robust sched-

ule, there may always be a need for rescheduling, especially in a disruption. Moreover,
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there is still little to no optimization software in the field to assist dispatchers with

rescheduling. In other words, in most cases, they have to rely on their experience, intu-

ition, and some general contingency plans to deal with all the perturbations that occur

during operations (GHAEMI; CATS; GOVERDE, 2017; VISENTINI et al., 2014; CAC-

CHIANI et al., 2014; QU; CORMAN; LODEWIJKS, 2015). In contrast, the scheduling

process already uses many computational optimization resources (TÖRNQUIST, 2006).

This opportunity space to help operators on improving the rescheduling quality have

motivated the literature to focus on this problem. Some of the names used in the literature

to refer to this problem is summarized in Table 2.

Table 2: Some of the possible names for the train rescheduling problem.

Name Abreviation Papers

Conflict resolution problem CRP
D’Ariano, Pacciarelli & Pranzo (2007),

D’Ariano, Pacciarelli & Pranzo (2008)

Train dispatching problem TD Lamorgese & Mannino (2013)

Train rescheduling problem TRP Visentini et al. (2014)

Train timetable rescheduling TTR Cacchiani et al. (2014), Bai et al. (2023)

Train timetable rescheduling problem TTRP Reynolds (2021)

Source: Own representation.

However, there are few examples listed in the literature of real-world implementations

of computational support in train rescheduling. These are: a proprietary decision support

system from Alston called ICONIS (FISCHETTI; MONACI, 2017) and two implemen-

tations of optimization based dispatching systems; one in Italy and the other in Norway

(LAMORGESE; MANNINO, 2015).

2.3 Rescheduling theory

Now that the operational tasks and the unexpected events have been explained, next

some important topics to understand the train rescheduling problem will be presented.

These points are the measures taken in the rescheduling process, how is the original

schedule considered during this process and the optimization models used in this problem.



33

2.3.1 Measures

In this work what is referred to as measures are the changes done to the timetable

in order to make it feasible again and minimize the consequences of the perturbations.

Most papers break the train rescheduling problem into 2 decisions which are choosing the

route of trains and than deciding the new time in which trains depart from each point

(CAPPART; SCHAUS, 2017; GODWIN; GOPALAN; NARENDRAN, 2007). In this last

part two rescheduling measures are applied which are the retiming and the reordering of

trains (QU; CORMAN; LODEWIJKS, 2015; CACCHIANI et al., 2014). With that said,

some other papers list further possible measures, some of which are summarized in Table

3.

Table 3: Train rescheduling measures.

Possible rescheduling measures

Retiming

Reordering

Rerouting

Adding Stop

Cancellation

Emergency Train

Skip stop

Short-turning

Rolling Stock Rescheduling

Speed Control

Changing dwell times of trains at stations

Breaking connections

Source: Sharma et al. (2023).

Most of the measures presented in Table 3 are self explanatory, however it is important

to explain the most important ones. Retiming means adjusting the time trains arrive and

depart from each block section in their route. Reordering is choosing the best order of

trains in each track section so the slower trains pass the track section after faster ones

if they would delay the faster trains. Rerouting is changing the route of trains, making

them follow a different order of track sections when compared to the original schedule

(SHARMA et al., 2023). The other measures may also be used in the practice, but will

not be modeled in the present work.
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2.3.2 Original schedule consideration

With the measures to rescheduling presented, it is interesting to understand the differ-

ence between scheduling and rescheduling and how does the rescheduling process considers

the original schedule in its decision process. While scheduling is creating a timetable from

start, rescheduling is modifying an existing, infeasible, schedule into a new one (TÖRN-

QUIST, 2006).

With that said both problems are usually formulated very similarly in mathematical

models, with some key differences. In the scheduling problem, the objective function is

maximizing customer satisfaction or minimizing costs. On the other hand, in rescheduling

models, the objective is minimizing the effects of perturbations, which means recovering

the initial schedule as soon as possible (NARAYANASWAMI; RANGARAJ, 2011).

The key differences come from the fact that the scheduling is a tactical planning level

problem while the rescheduling is done in the operational level. For this reason while

there is plenty of time to solve the scheduling problem there is only a few seconds to a few

minutes to solve the rescheduling problem (FISCHETTI; MONACI, 2017; CACCHIANI et

al., 2014). Furthermore, the rescheduling horizon is either until the end of the day, for non

cyclic schedules, or until the end of a cycle in a cyclic schedule, which are more common to

suburban traffic (CACCHIANI et al., 2014; NARAYANASWAMI; RANGARAJ, 2011),

while the scheduling horizon is at least until the end of the day, if not longer.

Moreover the train rescheduling problem must take under consideration the original

schedule as part of its objective function, as well as the current position of each train

in the rail system as constraints (QU; CORMAN; LODEWIJKS, 2015; VISENTINI et

al., 2014). This will reduce the feasible solution space due to the conflicts that are

present on the current operation making the original timetable infeasible and requiring

conflict resolution through a reschedule (D’ARIANO et al., 2008; NARAYANASWAMI;

RANGARAJ, 2011). On the other hand, the scheduling problem can only take under

consideration the customer demand, since it is performed before the position and the

original schedule exists.

The idea of recovering the original schedule as being the rescheduling objective func-

tion comes from the assumption that the original schedule is already the optimal timetable

for operations, since it was developed during the tactical planning level with optimization

tools (KRAAY; HARKER, 1995).
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2.3.3 Models

After presenting the previous information on the train rescheduling problem, this sub-

section is meant to present two of the most common models used to solve the problem,

giving a brief comparison and describing how the one chosen to be implemented works.

This subsection is divided into three parts: a categorization of the models by how it

considers the rail infrastructure, a division of the total delay into two parts: an unavoid-

able delay and a propagation delay, A comparison between the two main models and a

description of one of them.

2.3.3.1 Infrastructure consideration

In the literature there are two categories of models that are different on how they rep-

resent tracks. These are “microscopic” or “macroscopic”. “Microscopic” models consider

the infrastructure in more detail and each individual block section is considered sepa-

rately. Most of this models use Alternative Graph mathematical formulations. On the

other hand, macroscopic models aggregate many blocks together, creating a higher level

view of the railway network. Most of these models use the Event-Activity mathematical

formulation to model the railroad network (CACCHIANI et al., 2014; QU; CORMAN;

LODEWIJKS, 2015; SHARMA et al., 2023; DOLLEVOET et al., 2017).

In the context of the train rescheduling problem, choosing how to consider the infras-

tructure represent a trade-off between solution time and quality. Because solution time is

scarce on operational level it is an important point to be considered, requiring a balance

with the solution detail (FANG; YANG; YAO, 2015). The network representation, how-

ever, also describes how vehicles can be rescheduled (VISENTINI et al., 2014). However,

the aggregations performed in the macroscopic models both speed up the solution and

restrict the ability to reschedule trains. In that sense a vast part of macroscopic models

simplifies the representation of stations and do not consider the potential of train paths

crossing and the allocation of tracks within the stations, making them less representative

of the reality (TÖRNQUIST, 2006).

With all of that in mind, this work studies a microscopic model, since it is more de-

tailed, can have a better quality solution with the information closer to what a dispatcher

would need to implement it during operations. Regarding the trade-off with the solution

time, solution approaches are considered to reduce the solution time needed, for example

reducing the area of rescheduling to only the area that a single dispatcher controls.
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2.3.3.2 Primary and secondary delays

In the train rescheduling problem the objective is to minimize the delay resulting from

a unforeseen event. In this work the delay is defined as the difference between the time a

train arrives in a important point, usually a station, at the original schedule and time in

the new schedule. This delay can be divided into primary and secondary.

The primary delay is the direct result of a perturbation, being the original delay. This

part cannot be prevented and is part of the initial condition of the system in the problem

(CACCHIANI et al., 2014; CORMAN et al., 2012a). With the interaction between trains

and the surrounding traffic it can propagate through conflicts to other trains, making

them also delayed (TÖRNQUIST, 2006). This propagated part is called secondary delay

(CACCHIANI et al., 2014; CORMAN et al., 2012a).

With that said the train rescheduling process can only minimize the secondary de-

lay, because the primary is already part of the initial condition. To do so measures of

rescheduling are applied such as retiming, reordering and rerouting.

2.3.3.3 Comparison of main models

The two main microscopic models presented in the literature to solve the rescheduling

problem are the Discretized time model and the Alternative graph model. The Discretized

time model can also be called Binary integer occupancy model. It is an integer program-

ming problem, where variables are binary, and each one of them indicates the occupancy

of a track by a train during a time span (HARROD, 2012). By making time discrete,

the constraints are simplified and implicitly modeled (TÖRNQUIST, 2006). On the other

hand, it also may make some conflicts undetectable if the time period is not small enough

to consider all train interactions (GHAEMI; CATS; GOVERDE, 2017). And when the

time discretization step gets finer, in other words as the time periods become smaller,

the number of variables and constraints grows exponentially making the problem more

complex and consequently slower to solve (MANINO, 2011; TÖRNQUIST, 2006). For a

doctor dissertation on this model refer to Reynolds (2021).

The other model is an adaptation of a job shop scheduling problem modeling tech-

nique, with blocking and no-wait constraints, to the case of train rescheduling (MASCIS;

PACCIARELLI, 2002). The job shop scheduling problem is a well-known problem in the

field of operational research where jobs are scheduled to go through some machines in a

certain order, which are shared resources (YAMADA; NAKANO, 1997). Therefore the
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problem literature has a strong theoretical background, which was leveraged to solve the

rescheduling problem. In the adaptation the trains are the jobs that must go through the

track sections, which represent the machines, in a certain order. The processing time is

the running time required by the train to travel through a block section. The no-wait con-

straint means that the operations must be followed without interruption and the blocking

constraint means there is no storage between machines (MASCIS; PACCIARELLI, 2002).

The solution technique used to solve this problem is the alternative graph, which is a spe-

cial case of a disjunctive graph commonly used to solve job shop problems (LUSBY et al.,

2011). With this formulation, the model can use continuous variables to the times trains

arrive in each block section improving the speed of solving the problem. However this

formulation also makes the reordering decision be made comparing two trains at a time

with binary variables, hence making the number of trains probably a driver of complexity

to the model.

With both models in mind, the weaknesses and strengths of each problem make them

better in different situations. The Discretized time model is better for smaller time horizon

reschedules and the Alternative graph model is better to reschedule a smaller number of

trains. With that said, the literature tends to prefer the Alternative graph model for

rescheduling, for the benefits of using continuous time variables. For this reason this is

the model chosen to be studied in this work.

2.3.3.4 Solutions approaches

As both models described previously can become complex very quickly for even

medium size instances, the literature proposes a few solution approaches to try to mini-

mize the solution time. From these solution approaches, two of them are important: the

division of the network into subareas and the rolling horizon approach.

The division of the network implies in solving the problem in the space that only one

dispatcher supervises as described in Subsection 2.1.2.3. This way there are fewer trains

and the model is simplified. However to have the optimal solution for the entire network,

there are some boundary restrictions.

The rolling horizon on the other hand is a common solution approach for models used

to solve problems in long time horizons. In this approach, instead of solving the model for

the entire time horizon, this is divided into several smaller periods which are then solved

in sequence (BISCHI et al., 2019). This is specially useful in the case of this problem,

because trains that run in distinct times and share a block section end up creating a
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alternative arc even though in practice the conflict is very unlikely. Therefore by using

the rolling horizon solution approach the model is simplified lowering the processing time

without making the solution worse.

2.3.3.5 Alternative graph

In this section the most common alternative graph model in the literature is presented.

This model uses both retiming and reordering to solve the problem of rescheduling. To

explain the alternative graph model, the concept of the graph has to be explained. More

specifically, how it is built and how it is translated to a mathematical model. To do so a

simple example of an operation situation is depicted in Figure 6.

Figure 6: Simple example

Source: Own representation.

In this example a block section, I, is connected to two other block sections, J and K.

With that said, two trains share the block section I in their routes, the first train goes

from block section I to block section J and the other train goes from I to K. For this

small example the part of a alternative graph depicted in Figure 7 is built.



39

Figure 7: Alternative graph

Source: Own representation based on the paper by Espinosa-Aranda & Garćıa-Ródenas (2013).

In a alternative graph each node represents a block section in a train route. In Figure 7

there are two nodes representing the block section I because both trains have this block

in their routes. There are also two sets of arcs that connects these nodes: fixed arcs and

alternative arcs. The fixed arcs set connect the nodes in the route of a train, these are

represented by a black arrow in Figure 7. The alternative arcs set, on the other hand,

are created whenever two trains share a block section. These arcs are always presented

in pairs connecting the succeeding node of one of the trains routes to the shared block

node in the other trains route. These are represented in Figure 7 by red dashed arrows.

An example of a fixed arc in Figure 7 is the arrow connecting the nodes I and J in the

route of the train 1. An example of a alternative arc is the arc connecting the node J in

the route of train 1 with the node I in the route of the train 2.

With the alternative graph built the next step is to translate it into the mathematical

model. In this context, each node in the alternative graph will be translated into one

or more variable and each arc is translated into a constraint connecting these variables.

Because each node represents a block section in a route of a train, they are translated

into a continuous variable, which represents the time that train has arrived in that block

section. In the example of Figure 7 there would be 4 continuous variables, one for train

1 and node I, one for train 1 and node J, and so on for the other nodes. The arcs are

translated into precedence constraints. Fixed arcs are translated into the constraint that

the next node will only be arrived in a time bigger or equal to the time the train has
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arrived in the previous node plus the time it takes to travel through that node. For

example, train 1 will only arrive at node J after it has arrived and run through node I.

Alternative arcs, on the other hand, are translated into disjunctive constraints. These

are constraints that represent a choice, where only one of them needs to be satisfied in

order to satisfy both constraints. In this problem the alternative arcs represent the choice

of order of trains, which means it is the application of the reordering measure. These

arcs are translated into a constraint of precedence between trains, which means one of

the nodes will only be allowed to be reached after the other one plus a setup time. In the

example of Figure 7 the alternative arc that connects node J to I is translated into the

constraint that train 2 will only be allowed to arrive at node I after train 1 has arrived

node J and left node I. In other words, the time train 2 arrives at node I must be bigger

than the time train 1 has arrived node J plus the setup time of train 1. And the same

idea can be applied to the other alternative arc. Because these are disjunctive arcs, only

one of the two constraints must be active, and its restriction satisfied, which indicates the

choice of which train should go first. If the arc connecting node J to I is active, then

train 1 will go first.

To translate the alternative graph into a model the elements presented in the tables

below are necessary. The indexes and sets are presented in Table 4, then the decision

variables are presented in Table 5 and the parameters are presented in Table 6.
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Table 4: Indexes and sets of the model from the literature.

Elements Description

i, j ∈ T
i and j are the indexes of trains in the network, and T is the set

containing all train indexes.

u, v, x ∈ N u, v, x are block sections in the rail network N .

s ∈ Si

s is a station in the route of the train i, where Si is the set of

stations that train must visit.

(u, v), (u, x) ∈ Fi

(u, v) and (u, x) are fix arcs, where u, v, x are the block sections of the

network N connected by fixed arcs, and the set of all fixed arcs in the

route of train i is Fi.

(i, j, u) ∈ A

i and j are the indexes of trains and u is the block section of possible

conflict involved in the pair of alternative arc (i, j, u), where

A is the set that contains all pairs of alternative arcs.

Source: Own representation, based on model from paper (ESPINOSA-ARANDA;

GARCÍA-RÓDENAS, 2013; CACCHIANI et al., 2014).

Every block section in the rail network is contained in N . One point that has not been

mentioned yet is that every train goes through a set of stations in its route, these are all

present in the set Si for the train i. These nodes are important as they are the important

points of the network where the delay is calculated, which is used in the objective function

that the problem minimizes. And the alternative arcs are here summarized in a list of 3

numbers (i, j, u), where the first two numbers are the trains ids that share a block section

and the last number is that block id.

Table 5: Decision variables from the model from the literature.

Elements Description

ti,u
Continuous decision variable that indicates the time of arrival

from train i in block u.

Source: Own representation, based on model from paper (ESPINOSA-ARANDA;

GARCÍA-RÓDENAS, 2013; CACCHIANI et al., 2014).

Table 5 presents the continuous variable used to determine the time a train arrives in
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a block section. This variable is created for each node in the alternative graph, as it was

explained previously.

Table 6: Parameters from the model from the literature.

Elements Description

SCi,s Original schedule time that train i arrived in station s.

Pi The priority of the train i.

TOTi,u Minimum time on track that train i spends on block section u.

STi,u Setup time from train i in block u.

Source: Own representation, based on model from paper (ESPINOSA-ARANDA;

GARCÍA-RÓDENAS, 2013; CACCHIANI et al., 2014).

Table 6 present the parameters that bring both the original timetable information, as

well as necessary information of the resources to build the constraints and the objective

function of the model. The minimum time on track is given by the division of the length of

the block section by the maximum speed that train can travel, which is the translation of

the speed restriction presented in the resource Section 2.1.1.2. The setup time of train i in

block u is given by the division of that trains length by the maximum speed that train can

travel in that node. With all these elements presented in these tables the following non

linear model is built to perform the rescheduling in a rail system (ESPINOSA-ARANDA;

GARCÍA-RÓDENAS, 2013; CACCHIANI et al., 2014).

Minimize Z =
∑
i∈T

∑
s∈Si

Pimax(0, ti,s − SCi,s) (2.1)

Subject to:

ti,v − ti,u ≥ TOTi,u, ∀i ∈ T ; (u, v) ∈ Fi (2.2)

(ti,u − tj,v ≥ STj,u) ∨ (tj,u − ti,x ≥ STi,u), ∀(i, j, u) ∈ A; (u, v) ∈ Fj; (u, x) ∈ Fi (2.3)

The objective function (2.1) minimizes the cost function of delays in stations, which

is given by multiplying the train priority by the time difference between the time a train

would arrive in a station in the original timetable and the new time calculated by the
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reschedule. Constraints (2.2) is the translation of fixed arcs, which enforces that a train

may only arrive in the next block of its route after the arrival time in the previous

block plus the minimum time on track of that previous block. In the constraint (2.3)

there are two disjunctive inequations, they are merged by a or logic, which means that

if one inequations is satisfied, the constraint is satisfied. These inequations represent the

alternative arcs, which enforce that after a train leaves a shared block section, the next

train can only enter it after a setup time. This constraint also translates the blocking

restriction presented in Section 2.1.1.2.

With that said this model is not linear, because it has a or logic connecting two

inequations in a disjunctive restriction. To make it linear, the system is expanded adding

a binary decision variable for every alternative arc pair and breaking inequation (2.3) into

two constraints (ESPINOSA-ARANDA; GARCÍA-RÓDENAS, 2013; CACCHIANI et al.,

2014). The new decision variables are yi,j,u, which represent the decision of ordering the

trains. And the new constraint inequations are:

ti,u − tj,v ≥ STj,u −Myi,j,u ∀(i, j, u) ∈ A; i, j ∈ T ;u, v ∈ N ; (u, v) ∈ Fj (2.4)

tj,u − ti,v ≥ STi,u −M(1− yi,j,u) ∀(i, j, u) ∈ A; i, j ∈ T ;u, v ∈ N ; (u, v) ∈ Fi (2.5)

These constraints are built using the method of the “big M”, which uses a big num-

ber, the parameter M , to activate and deactivate restrictions based on a binary decision

variable value. This is a very popular method in mathematical modeling used to trans-

form disjunctive restrictions into linear restrictions. In the example model if the variable

yi,j,u is equal to 1 constraint (2.4) is deactivate and constraint (2.5) is activated enforcing

that train i comes before train j (Wayne Winston, 2003).

This model applies both retiming and reordering. Retiming is done with the contin-

uous variables ti,u and rerouting is done with the binary variables yi,j,u. To also consider

rerouting the model must be expanded. A possible expansion is presented in the paper

written by D’Ariano et al. (2014). An important point to be taken under consideration

is that the inclusion of new possible routes makes the model more complex. A previous

work with this model has shown that including too many routes makes the model too

complex to be solved in the real time context even with small instances (URBAN, 2023).
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3 PROBLEM DESCRIPTION

After explaining the theoretical background, the minimum knowledge necessary to

understand the problem is available to the reader. Therefore, describing the problem is

the next step in solving it. In this chapter the problem studied is described, explaining

some specific details and showing the perspective of the Companhia Paulista de Trens

Metropolitanos (CPTM) as a case studie of the problem in a real-world context. The

chapter is divided in the following sections: general setting and real-world example.

3.1 General setting

The idea in this problem is to assist the work of dispatchers on how to proceed with

train operations after a perturbation has occurred in the rail system. This is done by

creating a new feasible timetable with minimum changes done to the original schedule.

This is an interesting problem to study because currently there is almost no optimizing

software or algorithm assistance in this process in the real-world, and it is mostly done

based on the experience of the staff or with some general use contingency plan.

The inputs to the problem are the original timetable, as well as the present status

of the rail network, and the output is a new feasible timetable for the network. In this

work the focus is on cases of disturbances, because this is the main research area in this

topic and although a disturbance represents a smaller event it occurs more frequently

than disruptions on rail systems. The studied disturbances events are translated into

cases where the train takes longer than expected to travel through a block section. This

is modeled by significantly increasing the minimum time on track of a train in a track

section, which is represented by the parameter TOTi,u in Table 6, where i is the index of

a train and u is the index of a block section, both presented in Table 4. With this new

time on track, that represents the disturbance event, the rescheduling process is run and

the minimization is applied to the sum of the delays of all trains in the stations they visit.

This is chosen as objective function because it is the result of the unforeseen event that
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the client of the rail system can observe.

To illustrate this problem a new infrastructure is introduced in Figure 8 based on the

simple example from Figure 6.

Figure 8: Extension of the example

Source: Own representation.

In Figure 8 there are only four block sections in the network, with blocks I and L at

the extremes of the network and blocks J and K connecting them. The scenario consists

of this network and three trains that must travel from block I to block L, which represent

station block sections visited by the trains. Figure 9 shows the original timetable for this

scenario in a gant chart. In it each block section is represented in the vertical axis and

the time is represented in the horizontal axis, the bars are colored according to the train

they represent, and these bars mean that the train is in the corresponding block section

of the vertical axis during the time of the horizontal axis.
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Figure 9: Original timetable

Source: Own representation.

In the original timetable, the first and third trains follow the route of block sections

I, J, L, while the second train takes the route I,K, L. The setup time in this scenario is

one unit of time, which means that the trains leave the previous block section one unit

of time after they have arrived at the next one. For example, train one starts traveling

block section I at time zero and arrives at block section J at time five, but it does not

leave block I until time six, when train two enters this block.

Then a disturbance occurs during the original timetable while train one was in block

section J . This disturbance caused the first train to spend eighteen units of time in

block section J instead of the originally scheduled five units. The new scenario with the

disturbance is shown in the Gantt chart in Figure 10.
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Figure 10: Perturbed timetable

Source: Own representation.

With this perturbation, the original timetable is now infeasible, because trains one

and three try to occupy the same block section in both blocks J and L at the same time.

These situations are the so called conflicts and are shown in Figure 10 as the overlapping

of the blue and red bars on the respective blocks. This perturbed schedule now requires

a reschedule so that there is no more conflicts and the new timetable can be followed. To

solve this problem, the train rescheduling measures introduced in Table 3 can be applied.

3.2 Real-world example

With the general setting of the problem presented, in this section, the context of the

studied real-world case is presented. This is divided in: a brief description of the rail

system of the Metropolitan Company of Trains of São Paulo (CPTM) then a summary of

the contact with the company is presented.

3.2.1 Rail system

The CPTM operates currently five lines presented in Figure 11, from which lengths

summed is equal to a hundred and ninety six kilometers long. All of which start in the city

of São Paulo and usually end in another city, reaching in total eighteen cities. Moreover,

there are fifty seven stations in these lines (CPTM, 2024a).
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Figure 11: The CPTM infrastructure

Source: CPTM (2024c).

In these lines an average of thirty three million passengers enter the rail system every

month (CPTM, 2024b). This means approximately one million and nine hundred thou-

sand passengers enter the system on average during a weekday. From which five hundred

and thirty three thousand enter the system in line eleven, representing the line with the

biggest flow of passengers (CPTM, 2024a).

3.2.2 Communication with CPTM

After some email exchange with the company and a proof of the connection of this

work to the university, a meeting was scheduled to better understand the context of the

company as a real-world example and to answer some questions related to the subject.

Seventeen questions were prepared for this meeting divided into 2 topics: Operations and

Rescheduling. All these questions were answered by one of the operators of the company,

whose duties include the work of the dispatcher described in this thesis.
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3.2.2.1 Operations

The first questions were made to understand if the management of the rail system

is done according to what has been studied in the literature. In this sense, the rail

infrastructure is divided into block sections, which have a signaling device at each end that

looks like a traffic light. These devices automatically change their color according to the

occupancy of the following block sections, indicating the maximum speed at which trains

can travel. This is consistent with the description in the Theoretical Background Section

2.1.1.1. Some other confirmations of the theoretical background were: the company has

a fixed dwell time in stations, which can be changed according to demand, the tracks are

bi-directional, being possible to change the direction as well as the speed of the flow of

trains, and the operation is done according to a timetable made in advance by a tactical

department. In addition, the dispatchers are in direct contact with the conductors by

radio, which makes it possible to make changes to the timetable in real time.

Now, to understand the resources of the company, the following topics were discussed:

each block section can have a different size and the controller has the real time location

of the trains based on the block section it is. For this reason, they try to make all

block sections as small as possible to have finer control over train movement and optimize

track utilization. With regard to trains, the main attributes considered for scheduling are

power and carrying capacity. In this respect, the fleet of the company is very homogeneous,

having mostly the same speed limit, the same number of cars and therefore approximately

the same capacity. The only speed restrictions that may occur are in cases of red or yellow

signals, curved tracks or some types of programmed maintenance, but these are rare.

Other issues discussed were: the goal of the timetable, which is to meet the demand

of the population with only the available resources, so profit is not the explicit objective

function of the scheduling problem. The division of the system into zones controlled by

an operator is based on the flow of trains and not on the size of the tracks, which means

that operators can control smaller areas if more trains pass through them. The scheduling

process for schedule changes, usually due to maintenance, takes up to 15 days to be used

in operations.

3.2.2.2 Rescheduling

In the rescheduling process, the most common perturbation to service are freight trains

delaying passenger trains and passengers getting sick and needing assistance, which can

both be interpreted as disturbances. On the other hand, the most common disruptions are
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flooding, track breakage, copper wire theft, and maintenance outages. Having said that,

the rescheduling measures used by the company are usually; in case of major disruptions

that stop operations, a contingency plan that uses buses to transport passengers between

stations. In the case of smaller disturbances, the most common schedule recovery measure

is to add a train to the system, referred to as an emergency train in the Table 2.3.1.

The time available for rescheduling trains in the case of minor disturbances is almost

non-existent, in other words, changes to operations must be made immediately. On the

other hand, for major disruptions, there is usually 10 to 15 minutes to create a new

schedule. Therefore, the processing time limit for a solution that can be implemented in

the real-world is only seconds.

In addition, software is being developed in the company that may contain the solution

to the problem studied, but there is no official estimated date for the software to be

completed and implemented. With that said, it is hoped that this work can help provide

some insight into the problem and how to solve it.

3.2.2.3 Conclusions of the meeting

From the description of the company and the answers to the questions the conclusion

was that the company operates according to what was described in the literature. Fur-

thermore, there are common cases of disturbances that occur in the rail system indicating

that studying the problem of rescheduling in this kind of perturbations would help the

company in their operations. Considering the size of the company, its context is a good

case study because it represents a complex real-world case of the problem and operations

would benefit from this study.
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4 MATHEMATICAL MODELING

This chapter presents three mathematical models for solving the problem studied.

Each of them adds a new train reschedule measure to the previous model. The first

model uses only retiming to solve the problem. The second model introduces reordering

into the first model. The third model adds the rerouting measure to the second model.

However, each measure introduces more complexity into the solution approach, which

should yield better solution values in exchange for more processing time. The second

model was introduced in Chapter 2, and the first model was built by simplifying it, while

the third model is an extension of it.

Each model is presented in a separate section, which is divided into two subsections:

firstly, notation, and secondly, objective function and constraints. For ease of reading,

the entire model is presented in all sections, even when there are repetitive elements, so

that the reader does not have to refer to the previous model to understand the current

one.

To illustrate that each model creates a different alternative graph for the solution, the

extended example shown in Figure 8 is used to create the alternative graph of each model.

This example can show the differences between the solution of each model. In it, there

are four block sections I, J,K, L. Both trains go from block segment I to block segment

L. Originally, train one would go first and get to block section L via block section J ,

while train two would go travel through block section K instead of J . However, train one

is delayed in block section J and now the system needs rescheduling.

Similar to the alternative graph in Figure 7, the graphs in this chapter represent fixed

arcs, arcs that indicate a train route, as black arrows. Arcs that indicate the order of

trains are represented by red arrows. The dotted arrows mean that there is a decision,

either of route or order selection, which indicates disjunctive constraints.
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4.1 First model

The first model presented is a simplification of the model available in the literature. In

this first model, only the retiming measure is applied, so the model is simplified to contain

only the necessary elements for this measure. This simplifies the alternative graph and

constrain the alternatives. To illustrate the graph used to represent this model, consider

the extended example in Figure 8. In this model, the following graph is constructed:

Figure 12: Model 1 graph

Source: Own representation.

In the graph in Figure 12, there are only fixed arcs because the reordering measure

is not applied. This preserves the order of the trains in the blocks as in the original

timetable. In this example, train one travels through the block section L before train two.

This simplifies the model because it does not need the integer variables.

One addition in this graph is that because the whole route is represented, a dummy

node Z is added at the end of all routes, representing the exit of the train from the

network. It is used to build the order constraint between trains in case the last block

section of the routes is shared between them. Also, the route of train one starts in block

section J because the train was already there when the rescheduling started.

In Figure 12, there is an arc between block Z in the path of train one and block L in

the path of train two because these trains share this block L. Furthermore, this model

does not apply reordering due to simplification, making this arc fixed and forcing train

one to pass through block L before train two, even if train one is delayed, because this

was the original order.
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4.1.1 Notation

Next, the tables containing the elements of the model are presented in the following

order. First, the indexes and sets used in the model are introduced, then the main

parameters are presented, and finally the decision variables are summarized in the third

table.

Table 7: Indexes and sets of the first model.

Elements Description

i, j ∈ T
i and j are the index of trains in the network, and T is the set of

trains.

u, v ∈ N u and v are blocks in the set of blocks sections N of the rail network.

s ∈ Si

s is a station in the route of train i ∈ T , where Si ∈ N is

the set of stations in that train route.

(u, v) ∈ Fi

(u, v) is a fixed arc, where u and v are block sections of the set N

connected by the arc, and the set of fixed arcs in the route of

train i is Fi.

(i, j, u) ∈ A

i and j are the indexes of trains and u is the block section of possible

conflict involved in the pair of alternative arcs (i, j, u), where

set A is the set that contains all alternative arcs.

Source: Own representation based on model from paper by Espinosa-Aranda &

Garćıa-Ródenas (2013).

All blocks shared by two trains are considered a possible conflict block section, and

the alternative arcs are built for the trains and shared block sections. In this first model

the alternative arcs is simplified to a fixed arc where the original order is imposed. In

Figure 12 the trains only share the block section L making the only fixed arc that imposes

the order the one between block section Z in the path of train one and the block section

L of train two.
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Table 8: Parameters of the first model.

Elements Description

SCi,s Original scheduled time that train i should arrive at station s ∈ Si.

TOTi,u Minimum time on track that train i spends on block section u.

Pi Priority assigned to train i.

STi,u Setup time in block section u for train i.

Source: Own representation based on model from paper by Espinosa-Aranda &

Garćıa-Ródenas (2013).

Table 9: Decision variables of the first model.

Elements Description

ti,u
Continuous decision variable that indicates the arrival time

of train i in block section u.

di,s
Continuous decision variable that indicates the delay of train i

at station s.

Source: Own representation based on model from paper by Espinosa-Aranda &

Garćıa-Ródenas (2013).

4.1.2 Objective function and constraints

With the sets, parameters, and variables presented, the objective function and the

constraints can now be presented.

Objective function:

Minimize Z =
∑
i∈T

∑
s∈Si

Pi × di,s (4.1)

Constraints:

di,s ≥ ti,s − SCi,s ∀i ∈ T ; s ∈ Si (4.2)

ti,v − ti,u ≥ TOTi,u ∀i ∈ T ;u, v ∈ N ; (u, v) ∈ Fi (4.3)
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ti,u − tj,v ≥ STj,u ∀(i, j, u) ∈ A; i, j ∈ T ;u, v ∈ N ; (u, v) ∈ Fj (4.4)

di,s ≥ 0 ∀i ∈ T, s ∈ Si (4.5)

The objective function (4.1) minimizes a cost function of delay, where the delay of

each train is multiplied by the priority it has. This is subject to:

• Constraint (4.2) defines the value of the delay at a particular station as the difference

between the time the train arrives at that station and the time it should have arrived

according to the original schedule. If this difference is lower than zero, in other words

the train arrives earlier in that station, the delay becomes zero.

• Constraint (4.3) enforces the maximum speed for the train, where the arrival time

in the next block section of a train route minus the arrival time in the previous

block section must not be less than the smallest time it would take that train to

travel through that previous block. This minimum time is calculated by the length

of that block divided by the maximum speed that train can travel. This is part

of the fixed arc constraint, which also dictates the route that each train follows by

enforcing the order of the nodes that the train will pass through.

• Constraint (4.4) This is a constraint, which impose the order of trains in shared

block sections. Unlike the other models, this is not a disjunctive constraint, since

there is no binary variable needed and alternative constraint.

• Constraint (4.5) enforce the domain for the decision variable of delay. The variable

d must be non-negative.

In order to build the constraint (4.4) a preprocessing of the data was necessary when

building the set A. That is, the original schedule was used to compare the trains with

the original arrival time to the shared block sections, and whoever was first in the first

shared block section would be the first to pass through all the other block sections these

trains shared.

4.2 Second model

The second model is found in the literature presented in Chapter 2. It applies both

retiming and reordering to make the schedule feasible again and to minimize the effects
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of perturbations. The alternative graph for this model has already been illustrated in

Figure 7. However, to solve the extended example from Figure 8, the graph displayed in

Figure 13 is built to represent the second model.

Figure 13: Model 2 graph

Source: Own representation.

In this graph there is again the use of the alternative arcs, as described in Subsection

2.3.3.5 in contrast to the previous model that had only fixed arcs.

4.2.1 Notation

With the alternative graph built the following Tables 10, 11 and 12 present the ele-

ments needed to build the second model.



57

Table 10: Indexes and sets of the second model.

Elements Description

i, j ∈ T
i and j are indexes of trains in the network, which T is the set of

all trains.

u, v ∈ N u and v are block sections in the set of blocks N of the network.

s ∈ Si

s is a station in the route of train i ∈ T , where Si ∈ N is the set of

stations in that train route.

(u, v) ∈ Fi

(u, v) is a fixed arc, where u and v are the block sections of the network N

connected by the arc, and the set of fixed arcs of train i ∈ T is Fi.

(i, j, u) ∈ A

i and j are the indexes of trains and u is the block of possible

conflict involved in the pair of alternative arc (i, j, u), where

set A is the set that contains all pairs of alternative arcs.

Source: Adapted from Espinosa-Aranda & Garćıa-Ródenas (2013).

Table 11: Parameters of the second model.

Elements Description

SCi,s Original schedule time that train i arrived at stations s.

M A sufficiently large positive number.

TOTi,u Minimum time on track that train i spends on block section u.

Pi Priority assigned to train i.

STi,u Setup time in block section u for train i.

Source: Adapted from Espinosa-Aranda & Garćıa-Ródenas (2013).
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Table 12: Decision variables of the second model.

Elements Description

ti,u
Continuous decision variable that indicates the time of arrival

from train i at block section u.

di,s
Continuous decision variable that indicates the delay of train i

at station s.

yi,j,u
Binary decision variable of alternative arc pair that indicates

the order of trains i and j at block section u.

Source: Adapted from Espinosa-Aranda & Garćıa-Ródenas (2013).

4.2.2 Objective function and constraints

With the sets, parameters, and variables presented, the objective function and the

constraints can now be presented.

Objective function:

Minimize Z =
∑
i∈T

∑
s∈Si

Pi × di,s (4.6)

Constraints:

di,s ≥ ti,s − SCi,s ∀i ∈ T ; s ∈ Si (4.7)

ti,v − ti,u ≥ TOTi,u ∀i ∈ T ;u, v ∈ N ; (u, v) ∈ Fi (4.8)

ti,u − tj,v ≥ STj,u −Myi,j,u ∀(i, j, u) ∈ A; i, j ∈ T ;u, v ∈ N ; (u, v) ∈ Fj (4.9)

tj,u − ti,v ≥ STi,u −M(1− yi,j,u) ∀(i, j, u) ∈ A; i, j ∈ T ;u, v ∈ N ; (u, v) ∈ Fi (4.10)

di,s ≥ 0 ∀i ∈ T, s ∈ Si (4.11)
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yi,j,u ∈ {0, 1} ∀(i, j, u) ∈ A; i, j ∈ N (4.12)

The objective function, as mentioned in the first model, works by minimizing the

delay of the trains. This is done by Equation 4.6 which minimizes the sum of all delays of

the trains at their most important points, the stations, weighted by their priority. This

was chosen because it gives the model the freedom to optimally adjust the time in any

block section between stations, but minimizes the delay with which trains arrive at the

stations that are most important to those trains’ customers.

Then the constraints are explained in the topics:

• Constraint (4.7) defines the value of the delay at a particular station as the difference

between the time the train arrives at that station and the time it should have arrived

according to the original schedule. If this value is negative, which means that the

train arrived sooner than scheduled, the delay will be zero because it is the lower

limit to the solution space of the variable.

• Constraint (4.8) enforces the maximum speed for the train, where the arrival time

in the next block section of a trains route minus the arrival time in the previous

block must not be less than the smallest time it would take that train to travel

through that previous block. In other words, the length of that block divided by

the maximum speed that train can travel. This is the fixed arc constraint, which

also dictates the route that each train follows by enforcing the order of the nodes

that the train will pass through.

• Constraint (4.9) appears in pair with restriction 4.10. They are the alternative arc

constraints. They enforce that only one of each pair of alternative arcs in set A

become active at the solution of the model. This is done using the so-called big

M constraint technique, which is very important for integer programming. This

technique uses a binary variable (y in this case) to ensure that only one of the

constraints is imposed, depending on whether its value is 1 or 0. In the model,

when y equals 1, constraint 4.9 is deactivated by the big M parameter, while 4.10

remains active, this means train i would travel before train j. On the other hand,

if y is equal to 0, the opposite happens.

• Constraint (4.11) enforce the domain for the following decision variables. The delay

must be positive.
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• Constraint (4.12) enforce the domain for the following decision variables. The vari-

able y must be binary (either have the value 1 or 0).

4.3 Third model

The third and final model incorporates the rerouting measure into the second model.

This is done by extending the second model, adding some new binary variables, and

extending some constraints. If model three was applied to the extended example from

Figure 8 the alternative graph depicted in Figure 14 would be built.

Figure 14: Model 3 graph

Source: Own representation.

In this alternative graph, there are two possible routes for train two: either the

I, J, L, Z route or the I,K, L, Z route. The fixed arcs for this train are dashed lines

because in this case there is a choice between the two routes represented by the new

binary variables, while for train one the only possible route is J, L, Z because the pertur-

bation occurred while it was already in block J . The alternative arcs are also constructed

between the shared block segments and the dummy node Z, which in turn is used to

create the alternative arcs for the block segment L, which would be the last block in the

route of both trains. An important point to note is that even for this small example, this

model builds an expressively larger alternative graph.
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4.3.1 Notation

Table 13: Indexes and sets of the third model.

Elements Description

i, j ∈ T
i and j are indexes of trains in the network, and T is the set

containing all trains.

u, v ∈ N u and v are block sections in the set N of all blocks in the rail network.

s ∈ Si

s is a station in all the routes of train i ∈ T , where Si ∈ N is the set of

stations in that train route.

k, l ∈ Ri

k and l are routes in the set of routes from train i ∈ T , and Ri is the set of

all routes that train can use.

(u, v) ∈ Fi,k

(u, v) is a fixed arc, where u and v are the blocks of the network N

connected by the arc, and the set of fixed arcs is Fi,r for the

train i ∈ T and route k ∈ Ri.

(i, j, k, l, u) ∈ A

i and j are the indexes of trains, k ∈ Ri and l ∈ Rj are the routes

that those trains are following and u is the block section of

possible conflict involved in the pair of alternative arc (i, j, k, l, u),

where set A is the set that contains all pairs of alternative arcs.

Source: Adapted from D’Ariano et al. (2014).

Table 14: Parameters of the third model.

Elements Description

SCi,s Original schedule time that train i arrived at station s.

M A sufficiently large positive number.

TOTi,u Minimum time on track that train i spends on block section u.

Pi Priority assigned to train i.

STi,u Setup time of train i in node u.

Source: Adapted from D’Ariano et al. (2014).
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Table 15: Decision variables of the third model.

Elements Description

ti,k,u
Continuous decision variable that indicates the time of arrival

from train i, following route k, at block section u.

di,s
Continuous decision variable that indicates the delay of train i

at station s.

ri,k
Binary decision variable for route selection which, if

set to one, means that train i should follow route k.

yi,j,k,l,u
Binary decision variable of alternative arc pair that indicates

the order of trains i and j at block section u.

Source: Adapted from D’Ariano et al. (2014).

4.3.2 Objective function and constraints

With the sets, parameters, and variables presented, the objective function and the

constraints can now be presented.

Objective function:

Minimize Z =
∑
i∈T

∑
s∈Si

Pi × di,s (4.13)

Constraints:

di,s ≥
∑
k∈Ri

ti,k,s − SCi,s ∀i ∈ T ; s ∈ Si (4.14)

ti,k,v − ti,k,u ≥ TOTi,u −M(1− ri,k) ∀i ∈ T ;u, v ∈ N ; k ∈ Ri; (u, v) ∈ Fi,k (4.15)

ti,k,u − tj,l,v ≥ STj,u −Myi,j,k,l,v −M(1− ri,k)−M(1− rj,l)

∀(i, j, k, l, u) ∈ A; i, j ∈ T ;u, v ∈ N ; (u, v) ∈ Fj,l

(4.16)

tj,l,u − ti,k,v ≥ STi,u −M(1− yi,j,k,l,v)−M(1− ri,k)−M(1− rj,l)

∀(i, j, k, l, u) ∈ A; i, j ∈ T ;u, v ∈ N ; (u, v) ∈ Fj,l

(4.17)
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∑
k∈Ri

ri,k = 1 ∀i ∈ T (4.18)

di,s ≥ 0 ∀i ∈ T, s ∈ Si (4.19)

yi,j,k,l,u ∈ {0, 1} ∀(i, j, k, l, u) ∈ A; i, j ∈ T ;u ∈ N (4.20)

ri,k ∈ {0, 1} ∀i ∈ T, k ∈ R (4.21)

The objective function (4.13) remains unchanged from the first model and second

model, with the goal of minimizing the sum of delays experienced by trains at the stations

they visit. This is possible because, although more routes are considered, all routes are

built to pass through the exact same stations as the original route, in the same order.

Thus, the objective function is still applicable.

• Constraint (4.14) defines the value of the delay at a particular station as the dif-

ference between the time the train arrives at that station and the time it should

have arrived according to the original schedule. The time of arrival in the solution

is calculated by the sum of the time of arrival variable of all routes in that station.

This is based on the assumption that only the variable of the chosen route will as-

sume a value different from zero, while the rest of the routes will have their variables

minimized to zero.

• Constraint (4.15) is the fixed arc constraint. In addition to enforcing that the train

travels below its maximum speed, it also enforces the route that each train follows

by dictating the order of the nodes that the train will pass through. This is altered

in this model by adding the factor of more than one route to each train, which is

solved by the big M method to deactivate the constraints from not selected routes,

leaving only the constraints from the chosen route active.

• Constraint (4.16) is the alternative arc constraints, it is always presented in pairs

with (4.17). In this model, the difference here is the choice of route, which also

deactivates the constraints from routes that were not chosen. To achieve this goal,

the same big M method is utilized, where the value of both binary decision variables,

y and r, defines whether the constraint will remain active or will be deactivated.
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• Constraint (4.18) ensures that only a single route per train is selected, thereby

preventing multiple routes, or no route to be chosen to each train.

• Constraint (4.20) imposes restrictions on the domain for the decision variables y.

The alternative arc variable y is binary, which means that it must assume either the

value of 1 or 0, indicating the order of trains i and j in block section u.

• Constraint (4.19) impose restrictions on the domain for the delay decision variables.

This variables must be non-negative.

• Constraint (4.21) impose restrictions on the domain for the decision variables of

route choice. The route variable r is binary, which means that it can assume either

the value of 1 or 0, indicating if train i follows route k.
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5 MODEL IMPLEMENTATION AND

SOLUTION APPROACHES

The mathematical models were implemented in a programming language, with some

helper packages to preprocess the data, and solved with a general-purpose mixed-integer-

linear programming solver. All the work was saved and versioned in a repository for later

use in future researches. Figure 15 shows all the implementation tools used.

Figure 15: Implementation tools

Source: Own representation.

The programming language used was Python, a general purpose programming lan-

guage. It was chosen for its adaptability to solve many different problems, excellent

support and great packages, as well as its growing popularity as it has become the main

programming language for many of the current popular problems such as AI and working

with data.
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Pyomo was chosen as the modeling package for the implementation because it is an

independent package designed to be compatible with most of the popular general-purpose

state-of-the-art linear programming solvers such as CPLEX and Gurobi. To change the

solver, only one line of code would need to be changed, which brings an interesting versa-

tility to experiments with different solvers. All models have been programmed with this

package (BYNUM et al., 2021).

Igraph and Pandas were used as auxiliary packages. Igraph is a Python library de-

signed to solve complex network problems. It was used to create routes for the trains.

Pandas is a library for working with data, very popular in the Python community. It

can work with very large databases and is very efficient in working with tabular data.

It was mostly used to preprocess the instances data and store the results, being another

important package for the implementation (TEAM, 2024; CSáRDI, 2006).

Gurobi is the general purpose linear programming solver used. It is a state of the art

solver used to tackle a wide range of linear programming problems. It was used to solve

the models presented to obtain the best solution available to the problem of rescheduling

trains (Gurobi Optimization, LLC, 2024).

All of this was versioned using git, a versioning software commonly used for code

projects. It was all stored in a repository on GitHub that was kept private during the

project, with the intention of making it visible when the work was done. The repository

contains most of the data used, as well as all of the code implementing the models, making

it easy for future researchers to access the results of this work (URBAN, 2024). This is

how the present work intends to achieve the objective of making the results of the tests

available for future researchers to compare, as this is a reported gap in the literature

(FANG; YANG; YAO, 2015). The only data, that are not saved in the repository, are the

real-world instances, which were not allowed to be published due to CPTM rules.

5.1 Route creation

In this problem, what was called a route is usually called a path in the field of

operations research. New paths were generated for the third model as well as for the real-

world instances. This section explains the path generation process used. The shortest path

problem is a classic problem in operations research that can be mathematically modeled

and optimized. It studies how to find the shortest path of nodes in a graph between a

source and a sink. However, this problem was not studied in this work, which focused
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on the rescheduling of trains. The problem was solved using a “black box” approach. A

“black box” approach is a commonly used expression in engineering that refers to using

a tool to solve a problem without getting into the details of what the tool does, the only

parts we are interested in are the inputs and the outputs. The Igraph package was used

to create the routes. Figure 16 depicts this approach to the routing problem.

Figure 16: Routing method

Source: Own representation.

As shown in Figure 16, in order to create the paths, the package was first given the

characteristics of the rail network. These are the block sections present in the network

and the connections of each block. With this information Igraph built a graph with these

block sections as nodes and the arcs as their connections. To illustrate this better, let us

introduce a new infrastructure and then build the graph with it.
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Figure 17: New infrastructure

Source: Own representation.

Figure 17 shows an infrastructure where to get from block section I to L there are

three options, either go I, J,M,L or I,K, L, or I,N, L. This is translated into the graph

in Figure 18, which is used to create the paths.

Figure 18: Graph from new infrastructure

Source: Own representation based on the graph created by igraph (CSáRDI, 2006).

With the graph built, the Igraph package received an origin and a destination node as

input to one of two commands: all shortest path and all simple paths. Both create paths

between these two nodes, where a path refers to a list of ordered nodes connected by



69

arcs, with the first and last nodes being the origin and destination, respectively, and not

repeating nodes. The all shortest path command returns the paths with the least number

of block sections between the origin and the destination, this did not take into account

the length of the tracks because they were not provided to the package in the input. The

All Simple Paths command, on the other hand, returns all possible paths between the

origin and the destination.

Now, with the graph from Figure 18, the all simple paths command between I and

L returns the paths I,K, L and I,N, L, and I, J,M,L. It would not return a list like

I,K, I,K, L because that list repeats nodes, and it would not return a list like I, L or

I, J, L because those lists contain nodes that are not connected by arcs. These examples

are not paths. The all shortest paths command, on the other hand, will return I,K, L

and I,N, L, because these paths are one node shorter when compared to the other path

I, J,M,L. With that explained, the next two subsections explain how these commands

were used to create paths for the third model and for the real-world instances.

5.1.1 Paths created for new instances

To build the instances, data from the rail network as well as stations and train sched-

ules were written into tables. Then the data on the infrastructure was translated and given

to the Igraph package to build the route of each train using the shortest path command.

All trains start their route in one station in the studied instances.

To build the route, the first station visited by a train was used as the origin, and

the second station was used as the destination of the “all shortest paths” command.

This returned all the shortest paths between them, if there were more than one, one was

selected. Then the second and third stations were used as inputs to the same command,

which returned all the shortest paths between them. Again, if there was more than one

path, one was selected and added to the end of that route, and this was iterated until all

the stations visited by the train were in the route.

With all the available data of the routes and the scheduled arrival time of the train at

the stations, the second model was solved without perturbing the original schedule. This

was done to find the original schedule time in all other block sections of each train route

to use as input for the tests.
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5.1.2 Paths created for the third model

To build the routes for the third model, the “all simple paths” command was initially

used to solve the problem with instances available on the Internet. However, due to

the complexity of the network presented on the real-world instances, this command was

changed to “all shortest paths”. This is because using “all simple paths” made the

iterations to generate the routes for the third model too large and therefore took too long

to test.

A process similar to that used to create instances was used to create the routes for

the model. That is, for each train, the route started at the first node of that train’s route

in that instance then all the shortest paths between that first node and the next station

it would visit were given. Then, for each of these paths, all shortest path between that

station and the next one was added to the end of the route. This process was repeated

until the last station visited by the train was in every route of the train.

After all routes were created using the process described, the model would be solved

using a chosen number of routes per train. If this number was less than the number of

possible routes created for a train, the routes would be selected based on the number of

block sections in the route. This was done by adding all routes created for that train to

a list, then sorting the list in ascending order based on the number of block sections on

the routes, and then selecting the first routes to use in the model. For example, if four

routes were created for a train, but only two routes per train were used to solve the third

model, then the two routes with the smallest number of block sections would be used.

One simplification added to the routing problem so it would better represent the real-

world example is that trains cannot change platforms in stations when being rerouted.

This is different from how trains usually operate in other countries, because as an urban

passenger train company, operations are organized by line, and these lines do not change

platforms in stations. This restriction is taken into account when solving the routing

problem for the rerouting measure.

5.2 Solution approaches

In Chapter 2, where the theoretical background was presented, two different solution

approaches were introduced to help solve the model faster. These were the division of the

network into subareas and the rolling horizon approach. In the present work, only the

rolling horizon approach was tested in a simplified way.
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The rolling horizon approach was simplified. This was done by dividing the schedule

into several one-hour periods. With these instances created, the combined solution of all of

them can be compared to the solution of the entire schedule at once, showing the potential

processing time saved by this approach, even though the solution objective value is not

fully comparable to the traditional solution because it does not introduce the constraints

between solution periods.

As the subdivision of the network into subareas would require the introduction of new

constraints into the model, this solution approach was not tested, as these new constraints

could mean a more complex model, which might take longer to solve.

5.3 Implementation simplification

To solve the three models some simplifications were applied implicitly to the data

used in the tests. In this section the simplifications are presented explicitly. The first

simplification was the way in which the dwell time was handled. This time, when given

in the datasets, was introduced to the minimum time on track of the block sections from

the station. In this way, the model enforces minimum dwell time and maximum speed

with the same constraint, but they are implied in the solution output because there is no

distinction between them.

Another simplification used to build the third model was to split the problem into

two steps: firstly a routing problem, secondly a scheduling problem. This simplification

was already introduced in Chapter 2, as a common strategy. The routing problem has

been tackled using the process described. Then the rescheduling process is done using the

studied model of alternative graph.

The final simplification was done to the modeling of the schedule. A schedule of a

train is composed of the time it arrives and departs from every block section in its route.

However, only the arrival time was used in the model, where the departure times are

calculated according to the following rule: the departure of the train from a block section

is equal to the arrival time in the next block plus the setup time.
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6 COMPUTATIONAL EXPERIMENTS

This chapter presents the computational experiments that were performed. This

chapter is divided into three sections. Section 6.1 solves a disturbance in an example

scenario created based in the infrastructure illustrated by Figure 8. Section 6.2 presents

the solutions to the instances found in the literature of the Madrid railway infrastructure.

Section 6.3 presents the problem solved in a real system of CPTM with some randomly

created disturbances.

The first two sections could be used to validate the models, since these instances as

well as the models are available for future reference in the Github repository (URBAN,

2024). And the third section has the purpose to show the possibility of implementing the

models in the operation of a real railway company, as well as to show the potential savings

in applying the more complex models compared to the solution of simpler models.

All these tests were performed on a Dell G5 laptop equipped with a CPU Core i7

9750H and 16 GB of RAM. The solution time reported here is the time taken by the

solver to optimize the problem. This definition was based on the assumption that when

implementing these models, the pre- and post-processing would be insignificant compared

to the solver time. Furthermore, since there was no indication of priority in any of the

cases, all the tests, from the example to the real case, were performed assuming that all

the trains had the same priority. In other words, the priority parameters presented in

Tables 8, 11, and 14 were equal to one for all the trains.

6.1 Example

In this section, the solutions from each model to the scenario presented in Section

3.1 to illustrate the problem are presented as Gantt charts. This scenario has the orig-

inal timetable shown in Figure 9 and the perturbed schedule shown in Figure 10. The

disturbance that occurred after train one was on block section J caused that train to be

delayed fourteen units of time on that block section, creating a conflict with train three
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on both block sections J and L. In the original schedule train one arrived the last station

at time nine, train two at fifteen and train three at twenty one.

Figure 19: Solution of model 1

Source: Own representation.

The first model changes only the time at which each train arrives and leaves the

block sections. The order of the trains and the routes remain the same. With only these

changes, the resulting timetable is shown in Figure 19. In this solution, both trains two

and three are delayed so that they do not conflict with train one. This means that train

one arrives fourteen time units later than originally planned in the block section L, which

was a station. This delay is also propagated to both train two and train three. The total

delay of all trains in this block is forty two time units, because the arrival time in block

section L is: train one at time twenty three, train two at time twenty nine, and train

three at time thirty five. The only factor here that could reduce the total delay would

be buffers in the original timetable, but since there is no slack in the schedule of the two

block sections I and L, the delay propagates to the other trains and becomes three times

the primary delay. Nevertheless, the new timetable is feasible.
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Figure 20: Solution of model 2

Source: Own representation.

Figure 20 shows the solution of the second model, which, in addition to changing the

time that each train arrives at and leaves the block sections, also changes the order of the

trains. This addition changes the order of the trains in the block section L, where the

order was train one, then train two, and finally train three. In this solution, train two

passes through this block section before train one. This change avoids the delay of train

two and improves the overall delay of the system. Train three cannot be ordered before

train one because its route uses the same block section that train one occupies when the

disturbance occurs, block section J , which prevents the solution from improving. In this

solution found by the second model, the total delay is twenty two, which means that in

addition to the fourteen units of time from the primary delay, the secondary delay of train

three is equal to eight units of time. This is because the arrival time in block section L

is: for train one twenty three, for train two fifteen, and for train three twenty nine.
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Figure 21: Solution of model 3

Source: Own representation.

Figure 21 shows the solution from the third model. This model adds the ability to

reroute trains to the measures of model two. With this addition, the solution is further

improved by rerouting train three to follow the same route as train two. This makes it

possible to again change the order in block section L, where train three travels it before

train one. This change makes the total delay of the system to be minimized to eighteen

units of time. This means that this model delayed the first train four more units of time

to avoid delaying the other trains. This means that the new arrival time in block section

L is: for train one twenty seven, for train two fifteen, and for train three twenty one.

This was the solution found for equal priority between trains. Perhaps by changing the

priority the optimal solution could also be changed.

This example was designed to show the difference between each model in an ideal

example to illustrate the potential improvements from using a more complex model. In

this example, the solution of the third model was fifty seven percent better than the

solution of the first model. However, in a real-world situation, these improvements may

not be as easy to achieve, and solution time becomes an important factor in the solution

approach as instances become more complex to solve. Nevertheless, the following sections

present some more realistic examples of the application of the models.
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6.2 Madrid infrastructure

Here the tests carried out in the Madrid infrastructure, available online and first

presented in the paper of Espinosa-Aranda & Garćıa-Ródenas (2013), are presented. The

data were taken from the HINT project and no preprocessing was done, only a Python

script was run to transform the edb documents into inputs for the models (FRÜHSTÜCK,

2023).

6.2.1 Data available on the internet

This section gives a brief description of the dataset available on the internet that

was used to test the implemented models. The dataset represents the railway system of

Madrid, as shown in Figure 22, and was first presented in the paper by Espinosa-Aranda

& Garćıa-Ródenas (2013). Moreover, a project called Heuristic intelligence (HINT) also

used it, providing new versions of the same dataset but already preprocessed with per-

turbations in it, with twenty instances of one hour of the available schedule as well as

one instance of the entire twenty hours schedule (FRÜHSTÜCK, 2023). Both sources

solved the train rescheduling problem, the paper using the alternative graph model and

the project using a developed algorithm.

Figure 22: Madrid infrastructure
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Source: Espinosa-Aranda & Garćıa-Ródenas (2013).

The dataset consists of 93 block sections, 475 trains and 20 hours of schedule. This

means an average of 24 trains per hour in the system, with a peak of 36 and a minimum of

3 trains. The data is available in the paper as a XML document containing the infrastruc-
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ture and train data. On the infrastructure, there is a description of each block section,

including the start and end points, the size, if it is a station, the name of the station,

the maximum allowed speed, if there is a signaling device, and two other attributes not

relevant to the problem. There are also the connections between block sections, in other

words which block sections follow each other. On the trains there is information on the

time of entering the system, the maximum speed, the route assigned to it, its origin and

destination stations, as well as the time of arrival planned for each of the stations on its

route (ESPINOSA-ARANDA; GARCÍA-RÓDENAS, 2013).

On the site of the project that used the same data, the information is available in

documents of edb or edbz format. In addition, all of the above information is summarized

in the infrastructure distribution of the block section, without attributes, and the trains

with their route, time on track, and an initial schedule given to each block section on

its route. The instances used in this work to test the implemented models are the ones

available in the project website, because they are available completely including pertur-

bations, allowing future works to compare the results by only having access to the data

provided by the Heuristic intelligence (HINT) project and not having to generate new

perturbations (FRÜHSTÜCK, 2023).

This choice was made because each data source presents a problem for future compar-

ison of solutions. The paper did not provide the preprocessed data, that is, the data with

the perturbations, but only the data of the original timetable (ESPINOSA-ARANDA;

GARCÍA-RÓDENAS, 2013). Also, the paper is not clear on how to work with dwell time

as well as setup time. Therefore, the results are not exactly comparable. On the other

hand, the project has not made available on its website the solutions found for the cases

presented (FRÜHSTÜCK, 2023). They did publish the instances and the code to solve

the problem on their website, but the results of the solution, including objective function

value and solution time, were not provided. This is why the data from the project was

chosen, and why the work presented here is available on a repository, including the code,

data, and results, so that future work can validate the solution studied here (URBAN,

2024).

In these instances, the dwell time was already included in the station time. There is

also no indication of the setup time, so for these tests the setup time was considered to

be zero, meaning that as soon as a train entered a new block section, another train could

enter the previous block section.
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6.2.2 Solution comparison

In this subsection the first comparison between solutions is done. In Table 16 there

is a summary of the solutions of the one hour long instances.

Table 16: Madrid one hour long results
Model 1 Model 2 Model 3

Hour of schedule (HINT) Project instance name Number of trains O.V. S.T. O.V. S.T. O.V. S.T.

1 3600-input 5 0 0,02 0 0,04 0 0,04

2 7200-input 26 6 0,01 6 0,13 6 0,12

3 10800-input 34 169 0,03 169 0,27 169 0,25

4 14400-input 36 262 0,02 262 0,42 262 0,62

5 18000-input 32 228 0,01 228 0,19 228 0,20

6 21600-input 24 304 0,05 304 0,11 304 0,11

7 25200-input 21 12 0,01 12 0,10 12 0,07

8 28800-input 22 108 0,02 108 0,06 108 0,06

9 32400-input 20 10 0,01 10 0,04 10 0,06

10 36000-input 30 349 0,01 349 0,14 349 0,14

11 39600-input 26 34 0,01 34 0,09 34 0,08

12 43200-input 27 111 0,02 111 0,10 111 0,11

13 46800-input 24 70 0,01 70 0,08 70 0,08

14 50400-input 27 35 0,01 35 0,14 35 0,12

15 54000-input 29 218 0,02 218 0,13 218 0,15

16 57600-input 27 151 0,01 151 0,11 151 0,10

17 61200-input 24 49 0,01 49 0,07 49 0,07

18 64800-input 20 12 0,02 12 0,06 12 0,06

19 68400-input 18 88 0,01 88 0,06 88 0,06

20 72000-input 3 0 0,01 0 0,01 0 0,03

Source: Own representation with data from the paper by Espinosa-Aranda & Garćıa-Ródenas

(2013).

The first two columns are references to the instance that was solved. The first one

is the hour of the schedule on which the instance was built, for example, the first row

with the number one means that this instance was built on the first hour of the available

schedule. The second column is the name of the instance in the HINT project documents,

which also refers to the schedule time it was built on, for example the first line is called

3600-input, which was built on the first 3600 seconds of the schedule, in other words the

first hour. The next columns show the Solution Time (S.T.), in other words, the time it

took the solver to reach the solution, and the final value of the objective function (O.V.).

Unfortunately, the results of the paper by Espinosa-Aranda & Garćıa-Ródenas (2013)
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are not comparable to the results presented here, even though the same model is applied in

that paper and in the present work. This is because in the paper the disturbances applied

to the original schedule are randomly generated and not made available. Furthermore,

there is no indication whether the solution time also takes into account any pre- or post-

processing, which would make these values different as well. Therefore, it is hoped that

by making the code and solutions presented here available on Github, future works can

compare their results with those found here (URBAN, 2024).

On the comparison between the models studied on the present work, all three models

present the same objective value for each instance, and model one is the fastest, while

model two and model three take similar time to solve each instance. This could be ex-

plained by analyzing the infrastructure of the instances. Figure 23 shows the infrastructure

described in all the Madrid instances studied.

Figure 23: Madrid infrastructure graph

Source: Own representation with data from the project by Frühstück (2023).

Based on the graph, Madrid’s infrastructure could be described as predominantly line

based, with few block sections connected to more than two other block sections. This

means that there is little possibility to change the route and order of trains. Thus, if

a train was delayed, the other trains would not be able to overtake it by reordering or

rerouting, making the propagation of delays much more difficult to prevent. For this

reason, the objective value of the solutions of the three models is the same. The solution
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time of the second and third models are so similar because all instances were solved

considering only one route for each train, the routing method did not create other route

options for the third model. Therefore, the third model behaved like the second model,

but with an additional binary variable for each train that had to have the value one.

Considering that model two was taken from the literature, model one was a better fit for

this type of infrastructure because it maintained the same objective function while taking

less time to solve the instances.

6.2.3 Simplified rolling horizon approach

An additional analysis to make is to compare the approximation to the rolling horizon

solution with the solution of the entire schedule. Table 17 brings these solution values for

comparison. Here the rolling horizon approach is approximated as the sum of the solution

time and objective value of all one hour long instances solutions.

Table 17: Rolling horizon comparison
Solution Approach Model Objective value solution time # of binary variables Termination condition

Complete schedule 1 2218 2,51 0 optimal

Rolling horizon 1 2216 0,33 0 optimal

Complete schedule 2 2168 101,38 540740 optimal

Rolling horizon 2 2216 2,35 28746 optimal

Complete schedule 3 2168 275,74 541215 optimal

Rolling horizon 3 2216 2,53 29221 optimal

Source: Own representation with data from the project by Frühstück (2023).

The first column brings the information if the solution was done using the entire

schedule or if it is the approximation to the rolling horizon solution approach. The

second column shows the model used to solve the problem. Then the objective value and

the solution time are presented in the next two columns. The last two columns show

the number of binary variables generated by the models in each case and the termination

condition, if the model was solved to optimality or if the time limit of six hundred seconds

stopped the solver.

This table shows that for the more complex models, two and three, the rolling horizon

has a great potential to reduce the solution time while maintaining most of the solution

quality. This is because in the case of the third model, while the time was reduced

by ninety-nine percent, the objective value was only two percent larger. However, it is

interesting to note that model one could even solve the entire schedule in less than three
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seconds, thus being able to solve the problem in the required time without the need for

the solution approach. The other models could only solve the problem in “real time”

with the rolling horizon approach. The full schedule solution could have been worse than

the simplified rolling horizon solution with model one because the delay from one train

could have propagated to other trains, while models two and three were able to avoid this

propagation in the full schedule.

6.3 Real-world tests

The instances created to test the models in a real-world scenario were inspired by the

infrastructure shown in Figure 24, where they represent the real-world infrastructure and

schedule with randomly generated perturbations.

Figure 24: Real-world instances infrastructure

Source: CPTM (2024c).

For the tests, data from both lines eleven and thirteen of CPTM were used to create

instances that were then solved. Even though mapped, line twelve was not used for

the tests. Twenty and a half hour schedules were available for each line. Some of the

assumptions used to create the instances were that all trains had a maximum speed of

ninety kilometers per hour, which means that the minimum time on track for all trains

in all block sections was the length of that block section divided by ninety kilometers
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per hour. The average length of a CPTM train was approximately one hundred seventy

meters, so the setup time was that length divided by ninety kilometers per hour. There

was no priority differentiation between trains, so all delays were treated the same. That

is, the train priority parameter was all equal to one. These assumptions were chosen

based on the statement that the train fleet is homogeneous.

To create the test instances for each hour of the schedule, five trains in the system

were randomly selected without repetition, for which a random block section of their route

was selected. With these choices, a disturbance of one thousand to five thousand percent

was applied to the time on track of the selected pair, which means that the train spent

eleven to fifty one times the minimum time it was supposed to spend in that block section.

This was done because the time on track in the infrastructure described were usually very

small, so to create a real disturbance a high percentage of that time on track was needed,

the absolute disturbance sought was about ten minutes, which was approximately found

using this percentage through an empirical search. Then an instance was created with the

delayed train and one hour of the rest of the system following the original schedule. Thus,

by multiplying the twenty one, which was the original schedule time available rounded up,

by the five instances created for each hour, one hundred and five one hour instances were

created for each line. Each of these instances was combined with others that had the same

percentage of disturbances by adding the trains present in each of these instances into

a single instance of twenty one delayed trains. This created the five complete schedule

instances for each line, which, when added to one hour instances, resulted in a total of

one hundred and ten instances.

All of these one hundred and ten instances created for each line were solved by the

three models with a time limit of six hundred seconds, or in other words, ten minutes,

which is the time limit required by the problem for rescheduling disruptions. Tables 18

and 19 show some data about the perturbations applied to the instances.
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Table 18: Perturbation data for instances from line 11

Index Percentage perturbation Total absolute perturbation

1 1000 7299,6

2 2000 13080,8

3 3000 18679,2

4 4000 24707,2

5 5000 21600,0

Source: Own representation.

In Table 18, the first column represents the index of the instance, which refers to the

value of the percentage perturbation that was applied. This means that for the index one,

the first train in each hour of the schedule was randomly selected and a thousand percent

perturbation was applied to a random block section of its route, then no perturbation

was applied to the remaining trains and an hour long instance was created. This process

was repeated for the remaining indices. The second column shows the percentage of

disturbance applied to the selected train block section pair. This means that in the

index one, once the train and block section were selected for one hour of the timetable,

a perturbation of one thousand percent of the minimum time on track of that train in

that block section was applied. That is, the original time on track used in the maximum

speed constraint was multiplied by eleven and used as input to the rescheduling problem.

If the index was two, the time on track was multiplied by twenty one. The last column

is the sum of all the absolute perturbations applied to this index, that is, for index one,

the sum of the multiplication of ten by the time on track of the train and block section

selected in each hour of the schedule was seven thousand two hundred and ninety nine

seconds. This is because the disturbance was applied by multiplying the original time on

track by eleven, but if we consider that the original time on track was already scheduled,

the disturbance is the time on track multiplied by eleven minus one.
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Table 19: Perturbation data for instances from line 13

Index Percentage perturbation Total absolute perturbation

1 1000 3824,8

2 2000 5253,6

3 3000 10935,6

4 4000 16865,6

5 5000 14276,0

Source: Own representation.

When comparing the two Tables, 18 and 19, it is noticeable that the block sections of

line eleven tend to be larger, because all the combined complete schedule instances had a

larger absolute perturbation on line eleven than on line thirteen, even though the speed

of the trains was considered the same and the percentage perturbation applied was the

same. Furthermore, line eleven had five hundred and nineteen trains passing through it in

the twenty hours, while line thirteen had only one hundred and sixty four. All this means

that line eleven is a more difficult line to reschedule, with a more complex problem. This

is further emphasized by the Figure 25.
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Figure 25: Histogram of number of trains in the one hour long instances by lines

Source: Own representation.

This Figure shows the box plot of trains in the one hour instances on both lines.

Line eleven has significantly more trains with an average of about thirty one trains per

instance, while line thirteen has an average of about nine trains per instance.

6.3.1 Simplified rolling horizon approach

As for the comparison between rolling horizon and solving the problem with the full

schedule, Tables 20 and 21 show the results of both. Asterisk indicates that the problem

was to large to be solved.
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Table 20: Results from rolling horizon and complete schedule tests in line 11
Rolling horizon Complete schedule

Index model Objective value solution time number of binary variables Objective value solution time number of binary variables

0 1 45.240,08 0,42 - 20.578,16 5,79 -

1 1 110.875,64 0,39 - 101.048,72 5,60 -

2 1 205.825,60 0,39 - 232.618,32 5,74 -

3 1 224.701,44 0,36 - 212.137,72 6,89 -

4 1 243.162,40 0,36 - 232.988,84 6,13 -

0 2 32.870,76 8,23 73.730,00 15.471.232,60 600,47 958.367,00

1 2 87.059,08 43,82 74.662,00 42.629.464,36 623,16 959.466,00

2 2 119.077,48 896,30 75.970,00 39.080.052,24 642,28 947.195,00

3 2 198.072,96 989,95 75.791,00 39.756.272,08 600,45 993.249,00

4 2 224.302,00 1.465,85 72.196,00 39.779.763,44 633,68 989.721,00

0 3 263.288,20 8.993,24 1.908.945,00 * * *

1 3 40.550,16 9.690,43 1.927.170,00 * * *

2 3 7.066.578,36 10.633,16 2.012.726,00 * * *

3 3 85.765,28 9.923,25 1.976.221,00 * * *

4 3 233.939,32 10.605,78 1.907.722,00 * * *

Source: Own representation.

The first two columns show both the model used and the index of instances. The next

six columns are divided into two groups of three, where the first presents the results from

the simplified rolling horizon approach, then the second from solving the problem with the

complete schedule. The first column of these groups is the objective values, the second is

the solution time, and the third is the number of binary variables present in the solution.

The third model could not be solved for the instances of the complete schedule in line

eleven because the problem was too large to be preprocessed, causing the computer to

crash in the middle of the solution, probably due to running out of memory. Also, many

of the one hour long instances could not be solved by the third model in the six hundred

second time limit; these had their objective value considered zero in the aggregation done

to build the table, making the objective value of model three a bit deceptive. The solution

of all the instances are presented in tables in the Appendix 6.3
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Table 21: Results from rolling horizon and complete schedule tests in line 13
Rolling horizon Complete schedule

Index model Objective value solution time number of binary variables Objective value solution time number of binary variables

0 1 3.988,80 0,31 - 3.988,80 0,13 -

1 1 6.199,36 0,29 - 6.045,44 0,16 -

2 1 16.766,72 0,32 - 15.926,72 0,14 -

3 1 22.051,36 0,29 - 20.951,04 0,14 -

4 1 17.002,24 0,32 - 16.433,92 0,16 -

0 2 3.988,80 0,62 3.241,00 3.988,80 7,00 61.633,00

1 2 6.199,36 0,61 3.140,00 6.045,44 7,82 84.834,00

2 2 16.766,72 0,62 3.260,00 15.926,72 17,87 82.787,00

3 2 22.051,36 0,57 3.157,00 20.951,04 19,76 63.661,00

4 2 17.002,24 0,60 3.304,00 16.433,92 6,38 63.179,00

0 3 3.988,80 0,93 3.849,00 3.988,80 8,45 66.459,00

1 3 5.815,36 0,89 4.907,00 5.661,44 355,36 139.600,00

2 3 16.766,72 0,82 4.533,00 No objective value 600,20 152.268,00

3 3 22.051,36 0,93 3.754,00 20.951,04 11,29 68.613,00

4 3 17.002,24 0,90 3.921,00 16.433,92 9,86 68.348,00

Source: Own representation.

Both tables show some interesting results when comparing the solution approaches.

In Table 21 the rolling horizon starts to make sense only in the second model, because

in the first model, instead of speeding up the solution, it makes the solution slower, even

if only by some fractions of seconds. This means that it starts to make sense to use the

rolling horizon approach when the problem starts to take more than a second to solve,

otherwise it makes no sense to use it because the solution of the complete schedule is

already in the time constraint of the problem.

Table 20, on the other hand, shows the solution to problems much larger than the

previous table, and the simplified rolling horizon approach allows these problems to be

solved with more complex models, some of which even reach optimality. For example,

the third model can only solve the instances from line eleven with the simplified rolling

horizon approach, and the second model can only obtain solutions comparable to the

first model with the simplified rolling horizon approach. However, it is interesting to

note that this approach sometimes ends up taking longer to solve than the full schedule

approach because the solution time was calculated by adding the time to solve each one

hour instance in this simplification. This added up to some large solution times because

some one hour instances took too long to solve, making the simplified total solution time

with this approach larger than the proposed time limit. The first model, on the other

hand, is capable of solving all sizes of problems to optimality in just a few seconds, with

or without the rolling horizon approach.
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6.3.2 Models comparisons

When comparing all the models, the first model stands out in the tests performed

in this work. This is because it is able to obtain solutions not substantially worse than

the other models much faster. This could be explained, among other factors, by the

absence of integer and binary variables in this model. Because it is composed only of

continuous variables the simplex method is able to solve it much faster than the methods

of branch-and-bound used to solve the other models.

Figure 26: Binary variables and solution time of the second and third models

Source: Own representation.

The points present in the chart of Figure 26 are solutions of one hour long instances,

where the blue points are the solutions of the model two while the red points are the

solutions of model three. The assumption is partially illustrated by Figure 26, which

shows a bound on the number of binary variables with which the models can be solved

to optimality in less than six hundred seconds. Moreover, when making a correlation in

the one hour long instances, the solution time has a correlation of 0.82 with the number

of binary variables. This indicates that with more complex models and instances, more

binary variables are needed to describe the problem, and with more of these variables,

the solver takes more time to optimize the model.
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Figure 27: Binary variables by number of trains in the second model

Source: Own representation.

In this sense, Figures 27 and 28 show some strong correlations between the number

of binary variables and the number of trains in the second model, and the number of

routes in the third model. Therefore, reducing these factors would significantly reduce

the number of binary variables in the solution and possibly accelerate the solution of the

problem.

Figure 28: Binary variables by number of routes in the third model

Source: Own representation.

The solution approach studied in this work that reduces these factors in the solution
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was the simplified rolling horizon. An alternative would be to make the period even

smaller to a few minutes in an attempt to simplify the model solution and improve the

objective value. However, this has the risk of diminishing returns of the rolling horizon

approach, as was shown in line thirteen with the first model, where the solver took longer

to solve the problem in multiple instances than to solve one more complex instance.

In conclusion, with the results presented from both the Internet available data of

Madrid and the real-world data of CPTM, the first model returns a solution in the con-

strained time of the real time train rescheduling problem with a solution quality that is

not far from the other models. This difference in solution speed is probably due to the

difference in the number of binary variables, and there are approaches to mitigate this by

reducing the number of binary variables in the more complex models. Nevertheless, the

difference in solution quality in the tests was not so significant, due to the infrastructure

of the tests in both cases studied be based in lines, which tends to offer less opportunities

to improve the solution with the rescheduling measures implemented in models two and

three.
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7 CONCLUSION AND FUTURE

PERSPECTIVES

To summarize the present work, the problem studied was the rescheduling of trains.

This is a challenging problem because trains have rigid schedules with a high probability

of propagating delays to other trains. This problem is faced when unforeseen events occur

in the railway infrastructure and is currently solved in most companies without the help

of an optimization algorithm.

To solve this problem, an adaptation of the scheduling model for flow shops, called

the alternative graph model, has been studied in the literature. With the understanding

of this model, two other ones were proposed, a simplified model that eliminated the need

for integer variables, and an extension that introduced the decision of choosing the route

a train would take.

With the implementation of these three models, all of them were tested in the instances

available on the Internet, as well as in instances created based in the infrastructure of

a large urban railway company in São Paulo. Since all instances were based in a line

organization, the simplified model not only had the fastest solution, being able to be

solved in real time without any additional approach, but also the solution quality was

similar to the other models.

Although there are solution approaches that simplify the instances to allow more

complex models to solve the problem in a reasonable time, the first model is a good com-

promise to be implemented in the cases studied. This is because the line organization

reduces the ability of rerouting and reordering measures to improve the solution. More-

over, the implementation of the first model can already contribute to the solution of the

problem by suggesting a new feasible solution.
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7.1 Research questions answered

The first research question was how the rescheduling problem is modeled and opti-

mized in the literature. This is more commonly done by the alternative graph model

presented in the theory background and implemented in this work as the second model.

With this answer, the second question was whether these models could solve complex

instances, including real-world ones, in real time. The answer to this question is more

complex. While the second model was able to solve the Madrid instances as well as

the instances from line thirteen in real time, it had to use the rolling horizon solution

approach, which means that the data had to be divided into smaller instances of one hour

duration in order to be solved in real time. Thus, the second model was able to solve the

entire schedule of most instances in real time. However, line eleven had a few instances

that could not be solved by this model in real time even with the solution approach, which

means that this model cannot solve all real-world instances in real time.

The final question was whether there was a way to improve this process. To improve

this process, the proposed simplified model is the best option to be used in an implemen-

tation in a line-based infrastructure. Morever, other options to improve the applicability

of the models studied to the problem are presented in the next section as opportunities

for future work.

With that said, this work hopes to have contributed by introducing some real-world

examples that challenge the most popular model in the literature, as well as introducing

a simplified model that could solve these examples in real time.

Furthermore, the objective of studying the train rescheduling problem has been achieved

by researching the literature and understanding the context of the problem, then under-

standing the model that translates the problem into mathematical models, and even

introducing some slight variations in the first and third models. Lastly, applying the

models to instances created based on the real-world example of the CPTM infrastructure

in the sixth chapter. All the code and results of the data available on the Internet are

stored in a Github repository so that future works can use it to build on the work done

here (URBAN, 2024).
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7.2 Opportunities for future work

There are opportunities for future work on two main fronts: improving the models

and working to implement them. To improve the models, there are a few points that

could be studied. First, there are many rescheduling measures, some of which have been

presented in Table 3, that have not yet been mathematically modeled. Modeling these

measures is an interesting way to improve the quality of the solution. There are also

possibilities to explore in the sense of reducing the solution time of the more complex

models. Some alternatives to be studied are to make a real implementation of the rolling

horizon approach, instead of the simplification applied in the present work, and to reduce

the periods of the rolling horizon approach to less than one hour. In addition, there is the

possibility of modifying the model to have a binary variable for each pair of trains instead

of each pair of alternative arcs, thus possibly reducing significantly the number of binary

variables. Another point is that the models tend to reduce the time trains spend on the

track to the minimum time on the track when this is not necessary. To make the model

more consistent with the real-world, modifying the model so that the train uses all of the

time available to travel through the block section could be an interesting avenue for future

work, as it would improve the applicability of the models to the real-world problem.

When considering the implementation of these models, there are many other areas that

need to be investigated. First, there is the optimization of the pre- and post-processing of

the data for the models, which was assumed to be irrelevant in this work, but would need

to be optimized in an actual implementation. There is also the perspective of giving the

tool to the dispatchers so that they can use it and give feedback on the results, as well as

validate that this computational tool would help them.
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ESPINOSA-ARANDA, J. L.; GARCÍA-RÓDENAS, R. A demand-based weighted train
delay approach for rescheduling railway networks in real time. Journal of Rail Transport
Planning & Management, v. 3, n. 1-2, p. 1–13, 2013. ISSN 22109706.

FANG, W.; YANG, S.; YAO, X. A survey on problem models and solution approaches
to rescheduling in railway networks. IEEE Transactions on Intelligent Transportation
Systems, v. 16, n. 6, p. 2997–3016, 2015. ISSN 1524-9050.

FISCHETTI, M.; MONACI, M. Using a general-purpose mixed-integer linear
programming solver for the practical solution of real-time train rescheduling. European
Journal of Operational Research, v. 263, n. 1, p. 258–264, 2017. ISSN 03772217.
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APPENDIX A – REAL-WORLD TESTS

RESULTS

In this appendix the results from the tests in the real data are presented. These are

here so the reader can explore the results, because the company did not allowed their

data to be published for future reference.

In the first column of the next Tables the time of the instances are presented. This

is similar to the Table 16. Then the index of the perturbation is on the next column.

The third column presents the absolute perturbation applied in the instance. Than the

next column presents the model that was used to solve the problem. Than the number of

trains, the objective value of the solution and the solution time are presented in the next

three columns. Finally the number of routes in average for the trains used for the solution,

as well as the termination condition and the number of binary variables are shown for

each instance solved.
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Table 22: Line 11 model 1
Time Index percentage perturbation absolute perturbation model # of trains Objective value solution time # of routes Termination condition number of binary variables

4 0 1000 254,8 model 1 44 955,36 0,023 1 optimal 0
4 1 2000 912 model 1 44 10990,52 0,022 1 optimal 0
4 2 3000 840 model 1 44 9380 0,018 1 optimal 0
4 3 4000 1019,2 model 1 42 13642,88 0,018 1 optimal 0
4 4 5000 1480 model 1 45 28014,72 0,018 1 optimal 0
5 0 1000 267,2 model 1 44 1042,16 0,019 1 optimal 0
5 1 2000 271,2 model 1 44 1133,88 0,021 1 optimal 0
5 2 3000 764,4 model 1 44 6957,6 0,017 1 optimal 0
5 3 4000 1979,2 model 1 44 25613,84 0,017 1 optimal 0
5 4 5000 678 model 1 44 6214,88 0,019 1 optimal 0
6 0 1000 1000 model 1 41 23185,84 0,023 1 optimal 0
6 1 2000 160 model 1 44 240,48 0,019 1 optimal 0
6 2 3000 240 model 1 44 1281,68 0,017 1 optimal 0
6 3 4000 889,6 model 1 44 5405,76 0,018 1 optimal 0
6 4 5000 530 model 1 44 5985,04 0,017 1 optimal 0
7 0 1000 222,4 model 1 38 427,68 0,038 1 optimal 0
7 1 2000 2000 model 1 29 39340,48 0,016 1 optimal 0
7 2 3000 748,8 model 1 32 5091,48 0,018 1 optimal 0
7 3 4000 560 model 1 34 2738,68 0,019 1 optimal 0
7 4 5000 400 model 1 29 750,48 0,012 1 optimal 0
8 0 1000 224 model 1 29 472,12 0,016 1 optimal 0
8 1 2000 600 model 1 28 2291,76 0,016 1 optimal 0
8 2 3000 840 model 1 28 4706,64 0,016 1 optimal 0
8 3 4000 542,4 model 1 28 1945,68 0,013 1 optimal 0
8 4 5000 1274 model 1 28 9272,32 0,017 1 optimal 0
9 0 1000 135,6 model 1 28 271,2 0,016 1 optimal 0
9 1 2000 912 model 1 28 4791,2 0,013 1 optimal 0
9 2 3000 3000 model 1 28 40700 0,015 1 optimal 0
9 3 4000 1307,2 model 1 28 9737,12 0,017 1 optimal 0
9 4 5000 100 model 1 28 300 0,017 1 optimal 0
10 0 1000 182,8 model 1 28 365,6 0,025 1 optimal 0
10 1 2000 624,8 model 1 28 2465,36 0,013 1 optimal 0
10 2 3000 398,4 model 1 28 1157,36 0,015 1 optimal 0
10 3 4000 542,4 model 1 28 1945,68 0,015 1 optimal 0
10 4 5000 1634 model 1 28 13985,36 0,015 1 optimal 0
11 0 1000 868 model 1 28 3527,2 0,014 1 optimal 0
11 1 2000 989,6 model 1 28 8376,32 0,018 1 optimal 0
11 2 3000 420 model 1 28 1264,08 0,014 1 optimal 0
11 3 4000 1627,2 model 1 28 13876,56 0,017 1 optimal 0
11 4 5000 1480 model 1 28 12284,28 0,014 1 optimal 0
12 0 1000 140 model 1 28 280 0,028 1 optimal 0
12 1 2000 160 model 1 28 480 0,015 1 optimal 0
12 2 3000 312 model 1 28 811,76 0,015 1 optimal 0
12 3 4000 531,2 model 1 28 1878,48 0,017 1 optimal 0
12 4 5000 700 model 1 28 2991,76 0,017 1 optimal 0
13 0 1000 494,8 model 1 28 2494,88 0,015 1 optimal 0
13 1 2000 641,6 model 1 28 3872,68 0,015 1 optimal 0
13 2 3000 840 model 1 28 4706,64 0,021 1 optimal 0
13 3 4000 731,2 model 1 28 3232,16 0,015 1 optimal 0
13 4 5000 1500 model 1 28 11940,08 0,014 1 optimal 0
14 0 1000 296 model 1 28 760,12 0,032 1 optimal 0
14 1 2000 499,2 model 1 30 2534,48 0,016 1 optimal 0
14 2 3000 318 model 1 28 1247,72 0,016 1 optimal 0
14 3 4000 1068,8 model 1 28 6692,6 0,018 1 optimal 0
14 4 5000 914 model 1 30 5036,32 0,025 1 optimal 0
15 0 1000 249,6 model 1 42 299,36 0,022 1 optimal 0
15 1 2000 560 model 1 43 4948,92 0,016 1 optimal 0
15 2 3000 3000 model 1 42 78300,64 0,02 1 optimal 0
15 3 4000 531,2 model 1 44 3948,8 0,023 1 optimal 0
15 4 5000 1562 model 1 33 13906,88 0,018 1 optimal 0
16 0 1000 182,8 model 1 44 558,08 0,016 1 optimal 0
16 1 2000 989,6 model 1 44 6637,28 0,034 1 optimal 0
16 2 3000 60 model 1 44 60 0,015 1 optimal 0
16 3 4000 1019,2 model 1 44 12004,48 0,017 1 optimal 0
16 4 5000 1274 model 1 43 21333,92 0,019 1 optimal 0
17 0 1000 374 model 1 44 1869,2 0,02 1 optimal 0
17 1 2000 641,6 model 1 44 8048,08 0,016 1 optimal 0
17 2 3000 1220,4 model 1 44 17033,44 0,019 1 optimal 0
17 3 4000 16 model 1 44 16 0,017 1 optimal 0
17 4 5000 100 model 1 44 120,16 0,019 1 optimal 0
18 0 1000 456 model 1 44 2664 0,02 1 optimal 0
18 1 2000 560 model 1 44 4948,92 0,022 1 optimal 0
18 2 3000 398,4 model 1 44 2280,32 0,018 1 optimal 0
18 3 4000 80 model 1 44 80,16 0,022 1 optimal 0
18 4 5000 1870 model 1 44 45616,08 0,025 1 optimal 0
19 0 1000 406,8 model 1 30 2172 0,013 1 optimal 0
19 1 2000 624,8 model 1 42 4765,68 0,023 1 optimal 0
19 2 3000 60 model 1 37 180 0,019 1 optimal 0
19 3 4000 1627,2 model 1 44 31194,64 0,021 1 optimal 0
19 4 5000 1870 model 1 38 40139 0,018 1 optimal 0
20 0 1000 267,2 model 1 26 1042,16 0,014 1 optimal 0
20 1 2000 592 model 1 19 1644,12 0,018 1 optimal 0
20 2 3000 937,2 model 1 33 10958,88 0,02 1 optimal 0
20 3 4000 3472 model 1 23 47229,12 0,015 1 optimal 0
20 4 5000 940 model 1 28 9210,08 0,017 1 optimal 0
21 0 1000 374 model 1 19 772,16 0,015 1 optimal 0
21 1 2000 208 model 1 19 416 0,014 1 optimal 0
21 2 3000 1484,4 model 1 19 11359,52 0,015 1 optimal 0
21 3 4000 1307,2 model 1 19 6181,88 0,013 1 optimal 0
21 4 5000 1562 model 1 20 8257,6 0,016 1 optimal 0
22 0 1000 374 model 1 19 772,16 0,015 1 optimal 0
22 1 2000 534,4 model 1 20 1401,36 0,015 1 optimal 0
22 2 3000 764,4 model 1 19 2437,28 0,055 1 optimal 0
22 3 4000 1824 model 1 19 10952,4 0,016 1 optimal 0
22 4 5000 100 model 1 19 300 0,011 1 optimal 0
23 0 1000 280 model 1 18 560 0,016 1 optimal 0
23 1 2000 8 model 1 15 24 0,03 1 optimal 0
23 2 3000 548,4 model 1 18 1457,36 0,015 1 optimal 0
23 3 4000 560 model 1 18 1396,12 0,015 1 optimal 0
23 4 5000 520 model 1 15 1343,76 0,017 1 optimal 0
24 0 1000 249,6 model 1 14 748,8 0,025 1 optimal 0
24 1 2000 592 model 1 8 1524,12 0,013 1 optimal 0
24 2 3000 1484,4 model 1 6 4453,2 0,013 1 optimal 0
24 3 4000 3472 model 1 10 24988,4 0,013 1 optimal 0
24 4 5000 1112 model 1 12 6159,68 0,012 1 optimal 0
linha11 20 hours 0 1000 7299,6 model 1 519 20578,16 5,787 1 optimal 0
linha11 20 hours 1 2000 13080,8 model 1 519 101048,7 5,596 1 optimal 0
linha11 20 hours 2 3000 18679,2 model 1 519 232618,3 5,743 1 optimal 0
linha11 20 hours 3 4000 24707,2 model 1 519 212137,7 6,89 1 optimal 0
linha11 20 hours 4 5000 21600 model 1 519 232988,8 6,128 1 optimal 0
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Table 23: Line 11 model 2
Time Index percentage perturbation absolute perturbation model # of trains Objective value solution time # of routes Termination condition number of binary variables

4 0 1000 254,8 model 2 44 955,36 0,365 1 optimal 6248
4 1 2000 912 model 2 44 10005,24 10,249 1 optimal 6275
4 2 3000 840 model 2 44 8877,28 1,99 1 optimal 6258
4 3 4000 1019,2 model 2 42 11378,36 50,322 1 optimal 6249
4 4 5000 1480 model 2 45 24155,44 140,234 1 optimal 6326
5 0 1000 267,2 model 2 44 1042,16 0,605 1 optimal 6274
5 1 2000 271,2 model 2 44 1133,88 0,609 1 optimal 6310
5 2 3000 764,4 model 2 44 6882,12 11,958 1 optimal 6248
5 3 4000 1979,2 model 2 44 22830,84 391,383 1 optimal 6274
5 4 5000 678 model 2 44 5995,56 7,362 1 optimal 6310
6 0 1000 1000 model 2 41 10816,52 2,104 1 optimal 5609
6 1 2000 160 model 2 44 240,48 0,378 1 optimal 6299
6 2 3000 240 model 2 44 1281,68 0,384 1 optimal 6284
6 3 4000 889,6 model 2 44 5405,76 12,939 1 optimal 6266
6 4 5000 530 model 2 44 4544,96 0,621 1 optimal 6249
7 0 1000 222,4 model 2 38 427,68 0,314 1 optimal 4772
7 1 2000 2000 model 2 29 20776,52 1,609 1 optimal 2611
7 2 3000 748,8 model 2 32 4310,12 0,216 1 optimal 3068
7 3 4000 560 model 2 34 2738,68 0,374 1 optimal 3409
7 4 5000 400 model 2 29 750,48 0,149 1 optimal 2557
8 0 1000 224 model 2 29 472,12 0,174 1 optimal 2522
8 1 2000 600 model 2 28 2291,76 0,249 1 optimal 2458
8 2 3000 840 model 2 28 4706,64 0,432 1 optimal 2453
8 3 4000 542,4 model 2 28 1945,68 0,175 1 optimal 2462
8 4 5000 1274 model 2 28 9272,32 2,353 1 optimal 2482
9 0 1000 135,6 model 2 28 271,2 0,109 1 optimal 2451
9 1 2000 912 model 2 28 4791,2 0,564 1 optimal 2503
9 2 3000 3000 model 2 28 39695,6 53,736 1 optimal 2497
9 3 4000 1307,2 model 2 28 9697,8 1,664 1 optimal 2483
9 4 5000 100 model 2 28 300 0,132 1 optimal 2468
10 0 1000 182,8 model 2 28 365,6 0,118 1 optimal 2520
10 1 2000 624,8 model 2 28 2465,36 0,273 1 optimal 2468
10 2 3000 398,4 model 2 28 1157,36 0,125 1 optimal 2462
10 3 4000 542,4 model 2 28 1945,68 0,159 1 optimal 2451
10 4 5000 1634 model 2 28 13843,52 5,919 1 optimal 2483
11 0 1000 868 model 2 28 3527,2 0,305 1 optimal 2457
11 1 2000 989,6 model 2 28 7829,36 0,428 1 optimal 2462
11 2 3000 420 model 2 28 1264,08 0,156 1 optimal 2472
11 3 4000 1627,2 model 2 28 13741,52 6,758 1 optimal 2509
11 4 5000 1480 model 2 28 12284,28 1,563 1 optimal 2473
12 0 1000 140 model 2 28 280 0,115 1 optimal 2480
12 1 2000 160 model 2 28 480 0,114 1 optimal 2461
12 2 3000 312 model 2 28 811,76 0,127 1 optimal 2458
12 3 4000 531,2 model 2 28 1878,48 0,129 1 optimal 2462
12 4 5000 700 model 2 28 2991,76 0,192 1 optimal 2472
13 0 1000 494,8 model 2 28 2494,88 0,174 1 optimal 2462
13 1 2000 641,6 model 2 28 3872,68 0,24 1 optimal 2513
13 2 3000 840 model 2 28 4706,64 0,381 1 optimal 2453
13 3 4000 731,2 model 2 28 3232,16 0,419 1 optimal 2457
13 4 5000 1500 model 2 28 11874,56 3,81 1 optimal 2458
14 0 1000 296 model 2 28 760,12 0,117 1 optimal 2473
14 1 2000 499,2 model 2 30 2534,48 0,211 1 optimal 2801
14 2 3000 318 model 2 28 1247,72 0,139 1 optimal 2531
14 3 4000 1068,8 model 2 28 6692,6 0,86 1 optimal 2483
14 4 5000 914 model 2 30 5036,32 0,303 1 optimal 2775
15 0 1000 249,6 model 2 42 299,36 0,234 1 optimal 5928
15 1 2000 560 model 2 43 3832,84 0,684 1 optimal 6091
15 2 3000 3000 model 2 42 No objective value 600,203 1 maxTimeLimit 6075
15 3 4000 531,2 model 2 44 3948,8 1,662 1 optimal 6335
15 4 5000 1562 model 2 33 13602,04 2,716 1 optimal 3310
16 0 1000 182,8 model 2 44 558,08 0,404 1 optimal 6266
16 1 2000 989,6 model 2 44 6637,28 16,761 1 optimal 6274
16 2 3000 60 model 2 44 60 0,263 1 optimal 6308
16 3 4000 1019,2 model 2 44 11215,6 21,891 1 optimal 6248
16 4 5000 1274 model 2 43 17032 159,286 1 optimal 6225
17 0 1000 374 model 2 44 1869,2 0,75 1 optimal 6290
17 1 2000 641,6 model 2 44 6319,2 1,992 1 optimal 6249
17 2 3000 1220,4 model 2 44 14830,32 213,217 1 optimal 6257
17 3 4000 16 model 2 44 16 0,256 1 optimal 6275
17 4 5000 100 model 2 44 120,16 0,291 1 optimal 6308
18 0 1000 456 model 2 44 2664 1,08 1 optimal 6327
18 1 2000 560 model 2 44 4337,92 1,566 1 optimal 6274
18 2 3000 398,4 model 2 44 2280,32 0,765 1 optimal 6335
18 3 4000 80 model 2 44 80,16 0,274 1 optimal 6308
18 4 5000 1870 model 2 44 42209,32 600,296 1 maxTimeLimit 6290
19 0 1000 406,8 model 2 30 2172 0,707 1 optimal 2773
19 1 2000 624,8 model 2 42 4501,28 7,437 1 optimal 6196
19 2 3000 60 model 2 37 180 0,305 1 optimal 4937
19 3 4000 1627,2 model 2 44 24900,16 493,695 1 optimal 6257
19 4 5000 1870 model 2 38 36173,88 534,527 1 optimal 5037
20 0 1000 267,2 model 2 26 1042,16 0,16 1 optimal 1901
20 1 2000 592 model 2 19 1644,12 0,107 1 optimal 1148
20 2 3000 937,2 model 2 33 9216,56 11,273 1 optimal 3498
20 3 4000 3472 model 2 23 32905,88 4,728 1 optimal 1318
20 4 5000 940 model 2 28 8960,8 5,591 1 optimal 2485
21 0 1000 374 model 2 19 772,16 0,096 1 optimal 1130
21 1 2000 208 model 2 19 416 0,087 1 optimal 1140
21 2 3000 1484,4 model 2 19 9221,44 0,249 1 optimal 1144
21 3 4000 1307,2 model 2 19 6181,88 0,238 1 optimal 1148
21 4 5000 1562 model 2 20 7454,4 0,208 1 optimal 1166
22 0 1000 374 model 2 19 772,16 0,097 1 optimal 1130
22 1 2000 534,4 model 2 20 1401,36 0,081 1 optimal 1131
22 2 3000 764,4 model 2 19 2437,28 0,155 1 optimal 1144
22 3 4000 1824 model 2 19 10952,4 1,24 1 optimal 1127
22 4 5000 100 model 2 19 300 0,091 1 optimal 990
23 0 1000 280 model 2 18 560 0,096 1 optimal 1068
23 1 2000 8 model 2 15 24 0,104 1 optimal 792
23 2 3000 548,4 model 2 18 1457,36 0,181 1 optimal 995
23 3 4000 560 model 2 18 1396,12 0,109 1 optimal 935
23 4 5000 520 model 2 15 1343,76 0,113 1 optimal 816
24 0 1000 249,6 model 2 14 748,8 0,102 1 optimal 649
24 1 2000 592 model 2 8 1524,12 0,074 1 optimal 206
24 2 3000 1484,4 model 2 6 4453,2 0,044 1 optimal 93
24 3 4000 3472 model 2 10 24988,4 0,671 1 optimal 335
24 4 5000 1112 model 2 12 6056,44 0,09 1 optimal 516
linha11 20 hours 0 1000 7299,6 model 2 519 15471233 600,471 1 maxTimeLimit 958367
linha11 20 hours 1 2000 13080,8 model 2 519 42629464 623,164 1 maxTimeLimit 959466
linha11 20 hours 2 3000 18679,2 model 2 519 39080052 642,278 1 maxTimeLimit 947195
linha11 20 hours 3 4000 24707,2 model 2 519 39756272 600,447 1 maxTimeLimit 993249
linha11 20 hours 4 5000 21600 model 2 519 39779763 633,677 1 maxTimeLimit 989721
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Table 24: Line 11 model 3
Time Index percentage perturbation absolute perturbation model # of trains Objective value solution time # of routes Termination condition number of binary variables
4 0 1000 254,8 model 3 44 90372,68 600,165 175 maxTimeLimit 164965
4 1 2000 912 model 3 44 No objective value 602,329 175 maxTimeLimit 170552
4 2 3000 840 model 3 44 No objective value 600,098 176 maxTimeLimit 170639
4 3 4000 1019,2 model 3 42 No objective value 600,084 173 maxTimeLimit 166438
4 4 5000 1480 model 3 45 No objective value 602,672 173 maxTimeLimit 159940
5 0 1000 267,2 model 3 44 No objective value 600,102 173 maxTimeLimit 158975
5 1 2000 271,2 model 3 44 No objective value 600,219 172 maxTimeLimit 160944
5 2 3000 764,4 model 3 44 No objective value 600,092 175 maxTimeLimit 164965
5 3 4000 1979,2 model 3 44 No objective value 600,961 172 maxTimeLimit 160252
5 4 5000 678 model 3 44 No objective value 600,087 172 maxTimeLimit 160944
6 0 1000 1000 model 3 41 No objective value 600,133 163 maxTimeLimit 146476
6 1 2000 160 model 3 44 No objective value 600,858 175 maxTimeLimit 168591
6 2 3000 240 model 3 44 77994 600,497 172 maxTimeLimit 160074
6 3 4000 889,6 model 3 44 No objective value 602,301 175 maxTimeLimit 167050
6 4 5000 530 model 3 44 No objective value 600,121 171 maxTimeLimit 157217
7 0 1000 222,4 model 3 38 No objective value 601,053 147 maxTimeLimit 115516
7 1 2000 2000 model 3 29 20156,84 600,283 111 maxTimeLimit 64927
7 2 3000 748,8 model 3 32 16993,92 600,392 119 maxTimeLimit 71484
7 3 4000 560 model 3 34 3591,32 600,518 119 maxTimeLimit 71734
7 4 5000 400 model 3 29 935,12 600,464 113 maxTimeLimit 67076
8 0 1000 224 model 3 29 1410,36 600,35 108 maxTimeLimit 62220
8 1 2000 600 model 3 28 2680,48 600,366 112 maxTimeLimit 66136
8 2 3000 840 model 3 28 9646,24 600,332 112 maxTimeLimit 66110
8 3 4000 542,4 model 3 28 3011,12 600,284 110 maxTimeLimit 63830
8 4 5000 1274 model 3 28 10363,52 600,375 111 maxTimeLimit 65229
9 0 1000 135,6 model 3 28 271,2 194,031 110 optimal 63809
9 1 2000 912 model 3 28 1891,76 388,779 107 optimal 62242
9 2 3000 3000 model 3 28 10356,2 600,266 107 maxTimeLimit 62226
9 3 4000 1307,2 model 3 28 3399,24 600,424 112 maxTimeLimit 66546
9 4 5000 100 model 3 28 3414,76 600,405 112 maxTimeLimit 67234
10 0 1000 182,8 model 3 28 365,6 169,558 111 optimal 65178
10 1 2000 624,8 model 3 28 1688,24 600,449 111 maxTimeLimit 65367
10 2 3000 398,4 model 3 28 3834,6 600,357 111 maxTimeLimit 65964
10 3 4000 542,4 model 3 28 1945,68 215,268 110 optimal 63809
10 4 5000 1634 model 3 28 No objective value 600,322 112 maxTimeLimit 66533
11 0 1000 868 model 3 28 5657,52 600,288 111 maxTimeLimit 65302
11 1 2000 989,6 model 3 28 No objective value 600,458 107 maxTimeLimit 62035
11 2 3000 420 model 3 28 1264,08 235,89 111 optimal 65711
11 3 4000 1627,2 model 3 28 4386,68 600,235 111 maxTimeLimit 65032
11 4 5000 1480 model 3 28 5520,08 600,292 111 maxTimeLimit 66110
12 0 1000 140 model 3 28 2534,12 600,379 111 maxTimeLimit 65604
12 1 2000 160 model 3 28 626,72 600,413 110 maxTimeLimit 64393
12 2 3000 312 model 3 28 811,76 167,221 111 optimal 65337
12 3 4000 531,2 model 3 28 4799,56 600,377 111 maxTimeLimit 65964
12 4 5000 700 model 3 28 2363,76 173,765 111 optimal 65711
13 0 1000 494,8 model 3 28 2775,04 600,287 107 maxTimeLimit 62035
13 1 2000 641,6 model 3 28 6612,84 600,259 107 maxTimeLimit 62786
13 2 3000 840 model 3 28 No objective value 600,697 112 maxTimeLimit 66110
13 3 4000 731,2 model 3 28 272,64 298,324 112 optimal 66298
13 4 5000 1500 model 3 28 44096,04 600,249 112 maxTimeLimit 66136
14 0 1000 296 model 3 28 1448,12 600,241 111 maxTimeLimit 66110
14 1 2000 499,2 model 3 30 2534,48 600,619 114 maxTimeLimit 72202
14 2 3000 318 model 3 28 1273 600,366 107 maxTimeLimit 63438
14 3 4000 1068,8 model 3 28 -6,5E-09 172,526 112 optimal 66513
14 4 5000 914 model 3 30 3635,04 600,218 120 maxTimeLimit 75308
15 0 1000 249,6 model 3 42 125048,4 600,567 172 maxTimeLimit 159770
15 1 2000 560 model 3 43 No objective value 600,357 172 maxTimeLimit 159142
15 2 3000 3000 model 3 42 No objective value 600,324 173 maxTimeLimit 168460
15 3 4000 531,2 model 3 44 No objective value 600,484 175 maxTimeLimit 170429
15 4 5000 1562 model 3 33 No objective value 601,103 131 maxTimeLimit 94313
16 0 1000 182,8 model 3 44 No objective value 600,343 173 maxTimeLimit 158987
16 1 2000 989,6 model 3 44 No objective value 600,126 172 maxTimeLimit 160252
16 2 3000 60 model 3 44 No objective value 600,446 175 maxTimeLimit 168608
16 3 4000 1019,2 model 3 44 No objective value 600,104 175 maxTimeLimit 164965
16 4 5000 1274 model 3 43 No objective value 600,09 174 maxTimeLimit 166158
17 0 1000 374 model 3 44 No objective value 600,295 175 maxTimeLimit 168574
17 1 2000 641,6 model 3 44 No objective value 600,202 171 maxTimeLimit 156447
17 2 3000 1220,4 model 3 44 No objective value 600,373 175 maxTimeLimit 164990
17 3 4000 16 model 3 44 No objective value 601,044 175 maxTimeLimit 167067
17 4 5000 100 model 3 44 152127,1 600,833 175 maxTimeLimit 168608
18 0 1000 456 model 3 44 No objective value 600,379 172 maxTimeLimit 160992
18 1 2000 560 model 3 44 No objective value 601,515 173 maxTimeLimit 159033
18 2 3000 398,4 model 3 44 No objective value 603,497 175 maxTimeLimit 170429
18 3 4000 80 model 3 44 No objective value 600,648 175 maxTimeLimit 168608
18 4 5000 1870 model 3 44 No objective value 600,092 175 maxTimeLimit 168574
19 0 1000 406,8 model 3 30 29509,92 600,481 120 maxTimeLimit 75326
19 1 2000 624,8 model 3 42 No objective value 600,25 172 maxTimeLimit 160021
19 2 3000 60 model 3 37 No objective value 600,322 156 maxTimeLimit 137214
19 3 4000 1627,2 model 3 44 No objective value 600,095 175 maxTimeLimit 164990
19 4 5000 1870 model 3 38 No objective value 600,259 157 maxTimeLimit 139119
20 0 1000 267,2 model 3 26 1042,16 153,777 103 optimal 50683
20 1 2000 592 model 3 19 1201,32 225,159 76 optimal 29105
20 2 3000 937,2 model 3 33 6928293 600,322 135 maxTimeLimit 97462
20 3 4000 3472 model 3 23 32918,52 600,247 84 maxTimeLimit 30905
20 4 5000 940 model 3 28 No objective value 600,759 113 maxTimeLimit 68243
21 0 1000 374 model 3 19 772,16 18,512 76 optimal 29364
21 1 2000 208 model 3 19 416 9,209 77 optimal 29085
21 2 3000 1484,4 model 3 19 9221,44 600,237 76 maxTimeLimit 29097
21 3 4000 1307,2 model 3 19 2614,4 14,635 75 optimal 28451
21 4 5000 1562 model 3 20 3783,68 193,692 75 optimal 28295
22 0 1000 374 model 3 19 772,16 23,248 76 optimal 29364
22 1 2000 534,4 model 3 20 1401,36 36,17 77 optimal 28941
22 2 3000 764,4 model 3 19 2437,28 600,478 77 maxTimeLimit 29050
22 3 4000 1824 model 3 19 4007,92 182,842 76 optimal 28916
22 4 5000 100 model 3 19 300 9,986 71 optimal 23921
23 0 1000 280 model 3 18 560 17,312 71 optimal 25572
23 1 2000 8 model 3 15 24 21,238 64 optimal 22192
23 2 3000 548,4 model 3 18 -1,5E-10 20,858 71 optimal 24933
23 3 4000 560 model 3 18 1396,12 600,181 69 maxTimeLimit 23441
23 4 5000 520 model 3 15 1343,76 19,741 65 optimal 22785
24 0 1000 249,6 model 3 14 748,8 11,738 56 optimal 14123
24 1 2000 592 model 3 8 1316,12 1,168 27 optimal 2777
24 2 3000 1484,4 model 3 6 4453,2 0,098 15 optimal 425
24 3 4000 3472 model 3 10 23422,08 31,672 37 optimal 4983
24 4 5000 1112 model 3 12 6056,44 600,252 46 maxTimeLimit 10268
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Table 25: Line 13 model 1
Time Index percentage perturbation absolute perturbation model # of trains Objective value solution time # of routes Termination condition number of binary variables

4 0 1000 154 model 1 10 154 0,015 1 optimal 0
4 1 2000 172 model 1 10 212,32 0,011 1 optimal 0
4 2 3000 462 model 1 10 462 0,013 1 optimal 0
4 3 4000 616 model 1 10 1100,32 0,018 1 optimal 0
4 4 5000 480 model 1 8 960 0,014 1 optimal 0
5 0 1000 154 model 1 10 176,32 0,015 1 optimal 0
5 1 2000 497,6 model 1 10 863,52 0,015 1 optimal 0
5 2 3000 462 model 1 10 462 0,013 1 optimal 0
5 3 4000 622,4 model 1 10 1113,12 0,014 1 optimal 0
5 4 5000 770 model 1 10 1408,32 0,012 1 optimal 0
6 0 1000 248,8 model 1 10 248,8 0,012 1 optimal 0
6 1 2000 308 model 1 10 308 0,012 1 optimal 0
6 2 3000 428,4 model 1 10 856,8 0,025 1 optimal 0
6 3 4000 622,4 model 1 10 1113,12 0,015 1 optimal 0
6 4 5000 770 model 1 10 770 0,013 1 optimal 0
7 0 1000 154 model 1 10 176,32 0,013 1 optimal 0
7 1 2000 198,4 model 1 10 265,12 0,011 1 optimal 0
7 2 3000 462 model 1 10 462 0,017 1 optimal 0
7 3 4000 995,2 model 1 10 1163,68 0,013 1 optimal 0
7 4 5000 758 model 1 10 758 0,013 1 optimal 0
8 0 1000 154 model 1 10 176,32 0,013 1 optimal 0
8 1 2000 308 model 1 10 484,32 0,012 1 optimal 0
8 2 3000 2078,4 model 1 10 5448,48 0,014 1 optimal 0
8 3 4000 606,4 model 1 10 606,4 0,018 1 optimal 0
8 4 5000 496 model 1 10 860,32 0,011 1 optimal 0
9 0 1000 65,2 model 1 10 65,2 0,014 1 optimal 0
9 1 2000 285,6 model 1 9 153,92 0,014 1 optimal 0
9 2 3000 258 model 1 10 384,32 0,026 1 optimal 0
9 3 4000 616 model 1 10 616 0,017 1 optimal 0
9 4 5000 770 model 1 10 770 0,014 1 optimal 0
10 0 1000 99,2 model 1 10 99,2 0,014 1 optimal 0
10 1 2000 130,4 model 1 10 130,4 0,014 1 optimal 0
10 2 3000 457,2 model 1 10 782,72 0,013 1 optimal 0
10 3 4000 616 model 1 10 616 0,011 1 optimal 0
10 4 5000 700 model 1 10 568,32 0,014 1 optimal 0
11 0 1000 154 model 1 10 154 0,022 1 optimal 0
11 1 2000 303,2 model 1 10 474,72 0,01 1 optimal 0
11 2 3000 462 model 1 10 462 0,013 1 optimal 0
11 3 4000 344 model 1 10 556,32 0,013 1 optimal 0
11 4 5000 326 model 1 10 520,32 0,015 1 optimal 0
12 0 1000 154 model 1 10 154 0,015 1 optimal 0
12 1 2000 130,4 model 1 10 130,4 0,014 1 optimal 0
12 2 3000 462 model 1 10 792,32 0,022 1 optimal 0
12 3 4000 616 model 1 10 1100,32 0,012 1 optimal 0
12 4 5000 480 model 1 10 960 0,012 1 optimal 0
13 0 1000 152,4 model 1 10 173,12 0,015 1 optimal 0
13 1 2000 198,4 model 1 10 265,12 0,028 1 optimal 0
13 2 3000 428,4 model 1 9 296,72 0,013 1 optimal 0
13 3 4000 616 model 1 10 1100,32 0,012 1 optimal 0
13 4 5000 770 model 1 10 770 0,015 1 optimal 0
14 0 1000 154 model 1 10 176,32 0,012 1 optimal 0
14 1 2000 308 model 1 10 308 0,011 1 optimal 0
14 2 3000 428,4 model 1 10 856,8 0,015 1 optimal 0
14 3 4000 616 model 1 10 616 0,014 1 optimal 0
14 4 5000 326 model 1 10 520,32 0,013 1 optimal 0
15 0 1000 154 model 1 10 154 0,014 1 optimal 0
15 1 2000 308 model 1 10 484,32 0,013 1 optimal 0
15 2 3000 462 model 1 10 462 0,013 1 optimal 0
15 3 4000 344 model 1 10 556,32 0,014 1 optimal 0
15 4 5000 770 model 1 10 770 0,013 1 optimal 0
16 0 1000 248,8 model 1 10 248,8 0,014 1 optimal 0
16 1 2000 192 model 1 10 384 0,011 1 optimal 0
16 2 3000 420 model 1 10 840 0,013 1 optimal 0
16 3 4000 616 model 1 10 1100,32 0,014 1 optimal 0
16 4 5000 700 model 1 10 568,32 0,02 1 optimal 0
17 0 1000 248,8 model 1 10 365,92 0,015 1 optimal 0
17 1 2000 172 model 1 10 212,32 0,013 1 optimal 0
17 2 3000 462 model 1 10 792,32 0,012 1 optimal 0
17 3 4000 2771,2 model 1 10 2639,52 0,013 1 optimal 0
17 4 5000 770 model 1 10 770 0,022 1 optimal 0
18 0 1000 65,2 model 1 10 65,2 0,015 1 optimal 0
18 1 2000 192 model 1 9 192 0,014 1 optimal 0
18 2 3000 428,4 model 1 9 296,72 0,016 1 optimal 0
18 3 4000 396,8 model 1 10 396,8 0,013 1 optimal 0
18 4 5000 770 model 1 10 770 0,018 1 optimal 0
19 0 1000 692,8 model 1 10 561,12 0,017 1 optimal 0
19 1 2000 198,4 model 1 10 198,4 0,014 1 optimal 0
19 2 3000 454,8 model 1 10 454,8 0,013 1 optimal 0
19 3 4000 616 model 1 10 1100,32 0,011 1 optimal 0
19 4 5000 770 model 1 10 1408,32 0,016 1 optimal 0
20 0 1000 154 model 1 10 154 0,016 1 optimal 0
20 1 2000 280 model 1 10 148,32 0,014 1 optimal 0
20 2 3000 466,8 model 1 10 801,92 0,017 1 optimal 0
20 3 4000 616 model 1 10 1100,32 0,013 1 optimal 0
20 4 5000 770 model 1 10 770 0,016 1 optimal 0
21 0 1000 154 model 1 10 176,32 0,02 1 optimal 0
21 1 2000 308 model 1 10 484,32 0,013 1 optimal 0
21 2 3000 462 model 1 10 462 0,012 1 optimal 0
21 3 4000 616 model 1 10 1100,32 0,018 1 optimal 0
21 4 5000 770 model 1 10 770 0,016 1 optimal 0
22 0 1000 154 model 1 10 176,32 0,013 1 optimal 0
22 1 2000 192 model 1 9 192 0,013 1 optimal 0
22 2 3000 462 model 1 10 462 0,013 1 optimal 0
22 3 4000 616 model 1 10 1100,32 0,014 1 optimal 0
22 4 5000 770 model 1 10 770 0,013 1 optimal 0
23 0 1000 155,6 model 1 10 179,52 0,017 1 optimal 0
23 1 2000 285,6 model 1 5 153,92 0,015 1 optimal 0
23 2 3000 466,8 model 1 10 466,8 0,013 1 optimal 0
23 3 4000 616 model 1 8 616 0,013 1 optimal 0
23 4 5000 770 model 1 10 770 0,017 1 optimal 0
24 0 1000 154 model 1 4 154 0,013 1 optimal 0
24 1 2000 285,6 model 1 5 153,92 0,02 1 optimal 0
24 2 3000 462 model 1 2 462 0,013 1 optimal 0
24 3 4000 2771,2 model 1 2 2639,52 0,013 1 optimal 0
24 4 5000 770 model 1 6 770 0,021 1 optimal 0
linha13 20 hours 0 1000 3824,8 model 1 164 3988,8 0,127 1 optimal 0
linha13 20 hours 1 2000 5253,6 model 1 164 6045,44 0,159 1 optimal 0
linha13 20 hours 2 3000 10935,6 model 1 164 15926,72 0,142 1 optimal 0
linha13 20 hours 3 4000 16865,6 model 1 164 20951,04 0,141 1 optimal 0
linha13 20 hours 4 5000 14276 model 1 164 16433,92 0,159 1 optimal 0
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Table 26: Line 13 model 2
Time Index percentage perturbation absolute perturbation model # of trains Objective value solution time # of routes Termination condition number of binary variables

4 0 1000 154 model 2 10 154 0,043 1 optimal 160
4 1 2000 172 model 2 10 212,32 0,03 1 optimal 160
4 2 3000 462 model 2 10 462 0,041 1 optimal 164
4 3 4000 616 model 2 10 1100,32 0,033 1 optimal 160
4 4 5000 480 model 2 8 960 0,045 1 optimal 156
5 0 1000 154 model 2 10 176,32 0,036 1 optimal 160
5 1 2000 497,6 model 2 10 863,52 0,03 1 optimal 160
5 2 3000 462 model 2 10 462 0,026 1 optimal 164
5 3 4000 622,4 model 2 10 1113,12 0,024 1 optimal 160
5 4 5000 770 model 2 10 1408,32 0,032 1 optimal 160
6 0 1000 248,8 model 2 10 248,8 0,024 1 optimal 164
6 1 2000 308 model 2 10 308 0,031 1 optimal 164
6 2 3000 428,4 model 2 10 856,8 0,035 1 optimal 164
6 3 4000 622,4 model 2 10 1113,12 0,037 1 optimal 160
6 4 5000 770 model 2 10 770 0,034 1 optimal 164
7 0 1000 154 model 2 10 176,32 0,025 1 optimal 160
7 1 2000 198,4 model 2 10 265,12 0,027 1 optimal 160
7 2 3000 462 model 2 10 462 0,026 1 optimal 164
7 3 4000 995,2 model 2 10 1163,68 0,03 1 optimal 164
7 4 5000 758 model 2 10 758 0,025 1 optimal 164
8 0 1000 154 model 2 10 176,32 0,029 1 optimal 160
8 1 2000 308 model 2 10 484,32 0,025 1 optimal 160
8 2 3000 2078,4 model 2 10 5448,48 0,039 1 optimal 164
8 3 4000 606,4 model 2 10 606,4 0,025 1 optimal 164
8 4 5000 496 model 2 10 860,32 0,024 1 optimal 160
9 0 1000 65,2 model 2 10 65,2 0,023 1 optimal 160
9 1 2000 285,6 model 2 9 153,92 0,033 1 optimal 164
9 2 3000 258 model 2 10 384,32 0,028 1 optimal 160
9 3 4000 616 model 2 10 616 0,028 1 optimal 164
9 4 5000 770 model 2 10 770 0,025 1 optimal 164
10 0 1000 99,2 model 2 10 99,2 0,029 1 optimal 160
10 1 2000 130,4 model 2 10 130,4 0,029 1 optimal 164
10 2 3000 457,2 model 2 10 782,72 0,037 1 optimal 160
10 3 4000 616 model 2 10 616 0,028 1 optimal 164
10 4 5000 700 model 2 10 568,32 0,025 1 optimal 160
11 0 1000 154 model 2 10 154 0,029 1 optimal 164
11 1 2000 303,2 model 2 10 474,72 0,026 1 optimal 160
11 2 3000 462 model 2 10 462 0,03 1 optimal 164
11 3 4000 344 model 2 10 556,32 0,026 1 optimal 160
11 4 5000 326 model 2 10 520,32 0,027 1 optimal 160
12 0 1000 154 model 2 10 154 0,039 1 optimal 164
12 1 2000 130,4 model 2 10 130,4 0,024 1 optimal 160
12 2 3000 462 model 2 10 792,32 0,024 1 optimal 160
12 3 4000 616 model 2 10 1100,32 0,027 1 optimal 160
12 4 5000 480 model 2 10 960 0,029 1 optimal 164
13 0 1000 152,4 model 2 10 173,12 0,028 1 optimal 160
13 1 2000 198,4 model 2 10 265,12 0,028 1 optimal 160
13 2 3000 428,4 model 2 9 296,72 0,035 1 optimal 164
13 3 4000 616 model 2 10 1100,32 0,026 1 optimal 160
13 4 5000 770 model 2 10 770 0,031 1 optimal 164
14 0 1000 154 model 2 10 176,32 0,027 1 optimal 160
14 1 2000 308 model 2 10 308 0,041 1 optimal 164
14 2 3000 428,4 model 2 10 856,8 0,026 1 optimal 164
14 3 4000 616 model 2 10 616 0,025 1 optimal 164
14 4 5000 326 model 2 10 520,32 0,029 1 optimal 160
15 0 1000 154 model 2 10 154 0,033 1 optimal 164
15 1 2000 308 model 2 10 484,32 0,028 1 optimal 160
15 2 3000 462 model 2 10 462 0,024 1 optimal 164
15 3 4000 344 model 2 10 556,32 0,023 1 optimal 160
15 4 5000 770 model 2 10 770 0,023 1 optimal 164
16 0 1000 248,8 model 2 10 248,8 0,03 1 optimal 164
16 1 2000 192 model 2 10 384 0,024 1 optimal 164
16 2 3000 420 model 2 10 840 0,023 1 optimal 164
16 3 4000 616 model 2 10 1100,32 0,036 1 optimal 160
16 4 5000 700 model 2 10 568,32 0,023 1 optimal 160
17 0 1000 248,8 model 2 10 365,92 0,025 1 optimal 160
17 1 2000 172 model 2 10 212,32 0,025 1 optimal 160
17 2 3000 462 model 2 10 792,32 0,024 1 optimal 160
17 3 4000 2771,2 model 2 10 2639,52 0,036 1 optimal 160
17 4 5000 770 model 2 10 770 0,025 1 optimal 164
18 0 1000 65,2 model 2 10 65,2 0,024 1 optimal 160
18 1 2000 192 model 2 9 192 0,052 1 optimal 164
18 2 3000 428,4 model 2 9 296,72 0,028 1 optimal 164
18 3 4000 396,8 model 2 10 396,8 0,027 1 optimal 164
18 4 5000 770 model 2 10 770 0,026 1 optimal 164
19 0 1000 692,8 model 2 10 561,12 0,023 1 optimal 160
19 1 2000 198,4 model 2 10 198,4 0,041 1 optimal 164
19 2 3000 454,8 model 2 10 454,8 0,038 1 optimal 164
19 3 4000 616 model 2 10 1100,32 0,028 1 optimal 160
19 4 5000 770 model 2 10 1408,32 0,024 1 optimal 160
20 0 1000 154 model 2 10 154 0,023 1 optimal 164
20 1 2000 280 model 2 10 148,32 0,025 1 optimal 160
20 2 3000 466,8 model 2 10 801,92 0,027 1 optimal 160
20 3 4000 616 model 2 10 1100,32 0,024 1 optimal 160
20 4 5000 770 model 2 10 770 0,037 1 optimal 164
21 0 1000 154 model 2 10 176,32 0,024 1 optimal 160
21 1 2000 308 model 2 10 484,32 0,025 1 optimal 160
21 2 3000 462 model 2 10 462 0,027 1 optimal 164
21 3 4000 616 model 2 10 1100,32 0,026 1 optimal 160
21 4 5000 770 model 2 10 770 0,025 1 optimal 164
22 0 1000 154 model 2 10 176,32 0,026 1 optimal 160
22 1 2000 192 model 2 9 192 0,021 1 optimal 164
22 2 3000 462 model 2 10 462 0,036 1 optimal 164
22 3 4000 616 model 2 10 1100,32 0,024 1 optimal 160
22 4 5000 770 model 2 10 770 0,03 1 optimal 164
23 0 1000 155,6 model 2 10 179,52 0,03 1 optimal 160
23 1 2000 285,6 model 2 5 153,92 0,022 1 optimal 34
23 2 3000 466,8 model 2 10 466,8 0,025 1 optimal 164
23 3 4000 616 model 2 8 616 0,024 1 optimal 93
23 4 5000 770 model 2 10 770 0,025 1 optimal 164
24 0 1000 154 model 2 4 154 0,049 1 optimal 17
24 1 2000 285,6 model 2 5 153,92 0,025 1 optimal 34
24 2 3000 462 model 2 2 462 0,02 1 optimal 0
24 3 4000 2771,2 model 2 2 2639,52 0,017 1 optimal 0
24 4 5000 770 model 2 6 770 0,034 1 optimal 60
linha13 20 hours 0 1000 3824,8 model 2 164 3988,8 6,996 1 optimal 61633
linha13 20 hours 1 2000 5253,6 model 2 164 6045,44 7,821 1 optimal 84834
linha13 20 hours 2 3000 10935,6 model 2 164 15926,72 17,868 1 optimal 82787
linha13 20 hours 3 4000 16865,6 model 2 164 20951,04 19,764 1 optimal 63661
linha13 20 hours 4 5000 14276 model 2 164 16433,92 6,38 1 optimal 63179
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Table 27: Line 13 model 3
Time Index percentage perturbation absolute perturbation model # of trains Objective value solution time # of routes Termination condition number of binary variables

4 0 1000 154 model 3 10 154 0,033 14 optimal 190
4 1 2000 172 model 3 10 212,32 0,055 14 optimal 190
4 2 3000 462 model 3 10 462 0,034 14 optimal 194
4 3 4000 616 model 3 10 1100,32 0,059 14 optimal 190
4 4 5000 480 model 3 8 960 0,03 12 optimal 184
5 0 1000 154 model 3 10 176,32 0,05 14 optimal 190
5 1 2000 497,6 model 3 10 863,52 0,037 14 optimal 190
5 2 3000 462 model 3 10 462 0,034 14 optimal 194
5 3 4000 622,4 model 3 10 1113,12 0,042 14 optimal 190
5 4 5000 770 model 3 10 1408,32 0,053 14 optimal 190
6 0 1000 248,8 model 3 10 248,8 0,037 14 optimal 194
6 1 2000 308 model 3 10 308 0,056 14 optimal 194
6 2 3000 428,4 model 3 10 856,8 0,036 14 optimal 198
6 3 4000 622,4 model 3 10 1113,12 0,029 14 optimal 190
6 4 5000 770 model 3 10 770 0,045 14 optimal 194
7 0 1000 154 model 3 10 176,32 0,052 14 optimal 190
7 1 2000 198,4 model 3 10 265,12 0,046 14 optimal 190
7 2 3000 462 model 3 10 462 0,047 14 optimal 194
7 3 4000 995,2 model 3 10 1163,68 0,037 14 optimal 194
7 4 5000 758 model 3 10 758 0,04 14 optimal 194
8 0 1000 154 model 3 10 176,32 0,049 14 optimal 190
8 1 2000 308 model 3 10 484,32 0,031 14 optimal 190
8 2 3000 2078,4 model 3 10 5448,48 0,065 14 optimal 194
8 3 4000 606,4 model 3 10 606,4 0,04 14 optimal 194
8 4 5000 496 model 3 10 860,32 0,065 14 optimal 190
9 0 1000 65,2 model 3 10 65,2 0,032 14 optimal 190
9 1 2000 285,6 model 3 9 153,92 0,032 13 optimal 525
9 2 3000 258 model 3 10 384,32 0,046 14 optimal 190
9 3 4000 616 model 3 10 616 0,035 14 optimal 194
9 4 5000 770 model 3 10 770 0,041 14 optimal 194
10 0 1000 99,2 model 3 10 99,2 0,043 14 optimal 190
10 1 2000 130,4 model 3 10 130,4 0,039 14 optimal 194
10 2 3000 457,2 model 3 10 782,72 0,045 14 optimal 190
10 3 4000 616 model 3 10 616 0,035 14 optimal 194
10 4 5000 700 model 3 10 568,32 0,065 14 optimal 190
11 0 1000 154 model 3 10 154 0,035 14 optimal 194
11 1 2000 303,2 model 3 10 474,72 0,066 14 optimal 190
11 2 3000 462 model 3 10 462 0,044 14 optimal 194
11 3 4000 344 model 3 10 556,32 0,078 14 optimal 190
11 4 5000 326 model 3 10 520,32 0,036 14 optimal 190
12 0 1000 154 model 3 10 154 0,036 14 optimal 194
12 1 2000 130,4 model 3 10 130,4 0,047 14 optimal 190
12 2 3000 462 model 3 10 792,32 0,032 14 optimal 190
12 3 4000 616 model 3 10 1100,32 0,048 14 optimal 190
12 4 5000 480 model 3 10 960 0,048 14 optimal 198
13 0 1000 152,4 model 3 10 173,12 0,046 14 optimal 190
13 1 2000 198,4 model 3 10 265,12 0,047 14 optimal 190
13 2 3000 428,4 model 3 9 296,72 0,035 13 optimal 525
13 3 4000 616 model 3 10 1100,32 0,054 14 optimal 190
13 4 5000 770 model 3 10 770 0,039 14 optimal 194
14 0 1000 154 model 3 10 176,32 0,048 14 optimal 190
14 1 2000 308 model 3 10 308 0,034 14 optimal 194
14 2 3000 428,4 model 3 10 856,8 0,046 14 optimal 198
14 3 4000 616 model 3 10 616 0,033 14 optimal 194
14 4 5000 326 model 3 10 520,32 0,032 14 optimal 190
15 0 1000 154 model 3 10 154 0,038 14 optimal 194
15 1 2000 308 model 3 10 484,32 0,056 14 optimal 190
15 2 3000 462 model 3 10 462 0,034 14 optimal 194
15 3 4000 344 model 3 10 556,32 0,051 14 optimal 190
15 4 5000 770 model 3 10 770 0,051 14 optimal 194
16 0 1000 248,8 model 3 10 248,8 0,037 14 optimal 194
16 1 2000 192 model 3 10 384 0,038 14 optimal 198
16 2 3000 420 model 3 10 840 0,035 14 optimal 194
16 3 4000 616 model 3 10 1100,32 0,056 14 optimal 190
16 4 5000 700 model 3 10 568,32 0,05 14 optimal 190
17 0 1000 248,8 model 3 10 365,92 0,034 14 optimal 190
17 1 2000 172 model 3 10 212,32 0,053 14 optimal 190
17 2 3000 462 model 3 10 792,32 0,036 14 optimal 190
17 3 4000 2771,2 model 3 10 2639,52 0,044 14 optimal 190
17 4 5000 770 model 3 10 770 0,035 14 optimal 194
18 0 1000 65,2 model 3 10 65,2 0,036 14 optimal 190
18 1 2000 192 model 3 9 -4,3E-09 0,037 13 optimal 515
18 2 3000 428,4 model 3 9 296,72 0,04 13 optimal 525
18 3 4000 396,8 model 3 10 396,8 0,033 14 optimal 194
18 4 5000 770 model 3 10 770 0,042 14 optimal 194
19 0 1000 692,8 model 3 10 561,12 0,056 14 optimal 190
19 1 2000 198,4 model 3 10 198,4 0,044 14 optimal 194
19 2 3000 454,8 model 3 10 454,8 0,042 14 optimal 194
19 3 4000 616 model 3 10 1100,32 0,049 14 optimal 190
19 4 5000 770 model 3 10 1408,32 0,043 14 optimal 190
20 0 1000 154 model 3 10 154 0,07 14 optimal 194
20 1 2000 280 model 3 10 148,32 0,044 14 optimal 190
20 2 3000 466,8 model 3 10 801,92 0,033 14 optimal 190
20 3 4000 616 model 3 10 1100,32 0,049 14 optimal 190
20 4 5000 770 model 3 10 770 0,037 14 optimal 194
21 0 1000 154 model 3 10 176,32 0,076 14 optimal 190
21 1 2000 308 model 3 10 484,32 0,031 14 optimal 190
21 2 3000 462 model 3 10 462 0,043 14 optimal 194
21 3 4000 616 model 3 10 1100,32 0,042 14 optimal 190
21 4 5000 770 model 3 10 770 0,035 14 optimal 194
22 0 1000 154 model 3 10 176,32 0,045 14 optimal 190
22 1 2000 192 model 3 9 -4,3E-09 0,042 13 optimal 515
22 2 3000 462 model 3 10 462 0,04 14 optimal 194
22 3 4000 616 model 3 10 1100,32 0,033 14 optimal 190
22 4 5000 770 model 3 10 770 0,032 14 optimal 194
23 0 1000 155,6 model 3 10 179,52 0,035 14 optimal 190
23 1 2000 285,6 model 3 5 153,92 0,034 8 optimal 144
23 2 3000 466,8 model 3 10 466,8 0,034 14 optimal 194
23 3 4000 616 model 3 8 616 0,042 12 optimal 117
23 4 5000 770 model 3 10 770 0,041 14 optimal 194
24 0 1000 154 model 3 4 154 0,037 6 optimal 25
24 1 2000 285,6 model 3 5 153,92 0,021 8 optimal 144
24 2 3000 462 model 3 2 462 0,017 3 optimal 3
24 3 4000 2771,2 model 3 2 2639,52 0,036 3 optimal 3
24 4 5000 770 model 3 6 770 0,036 9 optimal 75
linha13 20 hours 0 1000 3824,8 model 3 164 3988,8 8,455 238 optimal 66459
linha13 20 hours 1 2000 5253,6 model 3 164 5661,44 355,355 239 optimal 139600
linha13 20 hours 2 3000 10935,6 model 3 164 No objective value 600,204 236 maxTimeLimit 152268
linha13 20 hours 3 4000 16865,6 model 3 164 20951,04 11,287 240 optimal 68613
linha13 20 hours 4 5000 14276 model 3 164 16433,92 9,86 241 optimal 68348


