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RESUMO

Este estudo desenvolve um modelo computacional para a andlise de relagdes literarias
utilizando redes complexas e aprendizado de maquina. O trabalho propde que a similaridade
literaria, tradicionalmente avaliada por especialistas, pode ser representada quantitativamente como
uma rede em que cada n6 corresponde a uma obra e cada aresta expressa proximidade semantica
derivada de metadados textuais. Dados bibliograficos do Goodreads, enriquecidos com informagdes
do Wikidata, foram processados por meio de uma abordagem hibrida de extracao de palavras-chave
(TF-IDF + RAKE) e codificados com Sentence-BERT embeddings. As similaridades par-a-par
foram calculadas via similaridade de cosseno, resultando em um grafo ponderado e ndo direcionado
construido no Neo4j. Aplicou-se o algoritmo Leiden para deteccao de comunidades, permitindo
identificar agrupamentos correspondentes a géneros e subgéneros literarios. Dois conjuntos foram
testados: uma rede multilingue com 5000 obras e uma rede em inglés com 10000 obras. Varreduras
paramétricas determinaram valores o6timos (limiar = 0,55; top-k = 25; a = 0,11) que equilibram
cobertura e modularidade. Os resultados demonstram que representacdes baseadas em redes
complexas capturam organizacdo tematica emergente: géneros e estilos literdrios surgem como
comunidades semanticas densas. A metodologia estabelece uma ponte entre modelagem
quantitativa e andlise literaria, oferecendo uma base reprodutivel para futuros sistemas de

recomendacao ¢ visualizacao.

Palavras-chave: redes literarias; similaridade semantica; detec¢do de comunidades; grafos

de conhecimento; humanidades digitais.

1. INTRODUCTION

1.1  CONTEXT AND PROBLEM STATEMENT

Over the centuries, humanity has accumulated vast amounts of cultural information, much of

it in analogue form. Although digitization has improved access, the sheer scale makes it impossible

for any individual to engage with more than a fraction of it. The landscape for books and other



print-based works remains fragmented, inconsistent, and poorly optimized for online discovery [9,
22].

Traditional cataloging systems—such as library classifications and subject taxonomies—still
reflect nineteenth- and twentieth-century conceptions of knowledge. Rebuilding them would require
recataloging entire collections, a task both logistically and financially prohibitive. As a result, users
outside those systems struggle to find new or unexpected connections between works.

This limitation parallels earlier challenges in film and music, where large portions of content
remained obscure until machine-learning-based recommender systems transformed access. Similar

hybrid approaches can, therefore, be adapted to cultural and literary analysis [1, 20].

1.2 THEORETICAL BACKGROUND AND RELATED WORK

Network theory offers a mathematical framework for representing complex systems as
relational structures, where entities are nodes and their interactions are edges. Such models reveal
global patterns like modularity and small-world organization [27, 3, 14], uncovering relationships
invisible in hierarchical taxonomies.

Modeling long-form texts poses a central challenge: defining edges that capture the many
dimensions of semantic similarity. Advances in representation learning now allow textual or
categorical data to be embedded in high-dimensional vector spaces, enabling numerical comparison
of meaning [4, 20]. When combined with graph structures, these embeddings form hybrid
knowledge graphs that integrate relational topology with semantic context.

These methods—blending machine learning and network analysis—have been effectively
applied to recommend, cluster, and visualize cultural data [25, 22, 9, 8], revealing thematic

communities across large literary corpora [5].

1.3 OBJECTIVES AND SCOPE OF WORK

This study constructs a knowledge network of literary works, combining methods from
complex network analysis and machine learning to uncover latent connections and patterns of

similarity between texts. The pipeline begins with the Goodreads dataset [6, 7], linking works,



editions, authors, series, and related metadata. These records are normalized and enriched with
Wikidata [28], and keywords are extracted from textual descriptions.

Subsequently, embedding and similarity computations model semantic relationships
between works, producing a weighted similarity network. Finally, community detection identifies

clusters whose qualitative characteristics correspond to literary genres and thematic groupings.

1.4  DATASET AND TOOLS

This work uses the Goodreads dataset curated by the UCSD Recommender Systems
Group [7, 25, 26], enriched with additional metadata retrieved from Wikidata [28].

The graph structure is stored in and queried through the Neo4j graph database [12], while
analytical operations use the NetworkX [13] and igraph [8] libraries. Machine-learning and
numerical operations employ scikit-learn [20], NumPy [15], and pandas [16]; embeddings are
computed with Sentence-Transformers [21].

The remainder of this text is organized as follows: Section 2 presents the materials and
methods, Section 3 reports the results and discusses their implications, and Section 4 summarizes
conclusions and outlines possible extensions.

All source code, data, and documentation for this project are available in the following

GitHub repository: <https://github.com/BeatrizCastex/literary-knowledge-network>. Information

on how to utilize the code archive, mathematical definitions of the algorithms and measures used

and samples of results can be found in the appendices: <https://tinyurl.com/4t373djn>.

For transparency, the author discloses the use of OpenAl’s GPT-5 model for literature
exploration, code assistance and debugging, qualitative cluster categorization, table rendering, text
review and code documentation. All algorithmic decisions, data processing, and analyses were

designed, executed, and validated by the author.

2 METHODS

2.1 OVERVIEW OF THE METHODOLOGICAL FRAMEWORK
This study combines methods from complex networks, information retrieval, and natural
language processing to construct and analyze a literary knowledge network. Figure 1 summarizes

the modular workflow, which proceeds through seven stages: data extraction and normalization,


https://github.com/BeatrizCastex/literary-knowledge-network
https://tinyurl.com/4t373djn

enrichment, keyword processing, embedding generation, similarity computation, community
detection, and evaluation/visualization.

Each stage transforms the representation of a literary work—from descriptive text to
structured metadata, from metadata to numerical vectors, and from vectors to a weighted relational
graph. The data preparation phase involves selection, normalization, and enrichment through
keyword extraction and external knowledge integration; the graph construction phase organizes
entities and relations in Neo4j; and the analysis phase computes similarities and applies community
detection to identify clusters reflecting literary genres and thematic affinities.

This approach follows principles of complex-systems modeling [14, 5], where large-scale
structures emerge from local similarity relations. Literary works are thus treated as entities in a
high-dimensional semantic space whose pairwise interactions give rise to observable macroscopic

patterns such as communities or thematic clusters.
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Figure 1 — Workflow of the methodological pipeline. Source: by the author.

2.2 DATASET DESCRIPTION AND SAMPLING

The dataset derives from the Goodreads metadata collection curated by the UCSD
Recommender Systems Group [25, 26], comprising millions of bibliographic records with
identifiers, titles, descriptions, and user-generated tags.

Although other sources such as Project Gutenberg provide full-text data, they lack
contemporary coverage and consistent metadata, making Goodreads more suitable for large-scale
relational modeling. Prior studies [22, 9] have shown that structured, semantically aligned metadata

can effectively capture literary relationships at scale.



This work uses the Meta-Data of Books subset, which links works, editions, authors, series,
and genre/tags. Non-thematic tags (e.g., to-read, wishlist) were removed, and missing attributes
were inferred from each work’s canonical “best book™ edition. Sampling was performed at three
levels: a 200-work pilot corpus for testing, a 5,000-work multilingual corpus for optimization, and a
10,000-work English-only corpus for scalability and community-resolution analysis. Each work
includes a 100-300-word description used as the textual basis for embedding and similarity

computation.

2.3 DATA CLEANING AND NORMALIZATION

Data normalization and entity resolution ensure the internal consistency of the dataset and
prevent multiple representations of the same entity. In large bibliographic collections such as
Goodreads, textual heterogeneity arises from variations in spelling, punctuation, and user-generated
metadata. Aligning these discrepancies is essential to preserve the integrity of relationships between
works, authors, and publishers.

The procedure follows three stages: metadata pruning, string normalization, and duplicate
detection. Non-semantic user tags (for instance “owned”, “wishlist”, “currently-reading”) were
removed using a stop-word list combined with fuzzy matching. Remaining textual fields were
normalized with pandas and rapidfuzz, applying lowercasing, punctuation stripping, and whitespace
standardization.

Duplicate entities were resolved through Levenshtein similarity, a character-level metric that
quantifies the minimum number of edits (insertions, deletions, or substitutions) required to
transform one string into another [10]. This method captures typographic and orthographic variation
that purely token-based measures (such as Jaccard) would miss, allowing unification of
near-duplicates like “Penguin” vs “Penglin”. The resulting unified dataset contains harmonized

identifiers and fields prepared for enrichment , ensuring relational consistency across the dataset.

2.4 METADATA ENRICHMENT AND KEYWORD EXTRACTION
To compensate for missing metadata, the script enrich-data.py queried Wikidata [28] for
each work and author using fuzzy-matched titles and names. Retrieved attributes included original

language, country of origin, and literary movement. These supplementary fields enhance the



contextual granularity of the network, enabling later analyses such as assortativity by language or
geography.

Textual enrichment relied on a hybrid keyword-extraction method combining Term
Frequency-Inverse Document Frequency (TF-IDF) and Rapid Automatic Keyword
Extraction (RAKE). The rationale for merging them is that TF-IDF captures statistically relevant
single terms, while RAKE identifies meaningful multi-word expressions.

The TF-ID weighting [19] quantifies how characteristic a term t is for a document d within

a corpus of N documents:

tidf(t,d) = fiu- 1c.gl (1)

where f d is the term frequency and n the number of documents containing t.

This function penalizes overly common words and amplifies rare, document-specific ones.

RAKE [18], on the other hand, proceeds differently. It divides the text at stop words,
producing candidate phrases, then constructs a co-occurrence graph where each keyword is linked
to others appearing in the same phrase. For each token ¢, its degree deg(t) is the number of
co-occurring neighbors, and its frequency freq(t) counts total occurrences.

The score of a phrase p is:

deg(
score(p) = Z frei (2)

Tokens with high co-occurrence diversity but low frequency gain prominence, highlighting
semantically rich phrases such as “post-colonial identity” or “magical realism”.

After extraction, both outputs were combined: the top RAKE phrases and top 15 TF-IDF
words per description were merged and deduplicated. This hybridization follows the
pattern-recognition perspective in complex systems [4], capturing both global statistical

significance and local contextual association.

2.5 GRAPH MODELING AND DATABASE STRUCTURE

The processed metadata was organized as a property graph, implemented in Neo4j [12], a
Java-based, open-source graph database that is used to manage and query highly connected data
more efficiently than traditional databases.

Neo4j’s model supports typed nodes and edges, each with their own attributes.



For example, in a film graph, nodes Person and Movie could be linked by a WORKED ON
relation whose property role = "Director”. Similarly, this project’s schema (Figure 2) defines seven
node types, Work, Person, Publisher, Tag, Series, Language, and Country, and multiple relationship
types such as WORKED ON, PUBLISHED BY, and PART OF. Each edge type includes attributes
inherited from Goodreads (for example, role in WORKED ON), preserving detailed authorship

information.
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Figure 2 — Entity-relationship model of the literary knowledge graph. Source: by the author

2.6 EMBEDDING GENERATION AND SIMILARITY COMPUTATION

While explicit relationships (e.g., authorship or publisher) describe known links, semantic
similarity between works must be inferred. This inference uses text embeddings, numerical vector
representations capturing contextual meaning in high-dimensional space.

Each description and keyword list was encoded using Sentence-BERT (SBERT),
specifically the all-MiniLM-L6-v2 model [17]. During inference, it converts any input text into a

fixed-size embedding Ve ]R384, this dimension corresponds to the size of the model’s final hidden

layer, determined during training. This enables efficient pairwise comparison via cosine similarity.
Two filters ensured manageable graph density:
1. Only the top k = 25 neighbors per node were kept;
2. Edges with sim(i, j) < 0.55 were discarded.
These filters serve complementary roles. The k-nearest-neighbors constraint ensures that

each work remains locally connected to its most similar peers, avoiding isolated nodes and



preserving overall graph connectivity. Conversely, the similarity threshold removes weak or noisy
links, improving the thematic coherence of detected communities.

Internal tests showed that using k-NN alone increased coverage but introduced low-weight
edges that diluted community purity, while applying the threshold alone produced high-purity
clusters at the cost of excessive fragmentation. Maintaining both filters therefore represents a
practical equilibrium between structural completeness and semantic precision, yielding networks
that are simultaneously interpretable and well connected.

A hybrid weighting incorporated both SBERT and TF-IDF similarities:

T.L‘i;}' = (1 — O:) SilﬂSBERT(i’:; _’}) + @ Sil'ﬂTF [Dp(i,j}

where o< [0,1] controls the lexical contribution of TF—IDF. A parameter sweep varied o
while monitoring graph coverage and keyword purity, identifying an optimum at a = 0.11 (= 11 %
TF-IDF weight), which balances contextual and lexical similarity. (see Section 3.2).

This weighting echoes hybrid recommender formulations where latent and explicit

similarities are linearly combined [29].
2.7 COMMUNITY DETECTION

Once the weighted graph is built, unsupervised community detection identifies densely
connected groups of works, potential analogs of genres or thematic clusters.

The Leiden algorithm [23] was chosen for its ability to guarantee well-connected
communities. The algorithm optimizes modularity (Q), a measure of how well a partition separates
dense internal connections from sparse external ones: Intuitively, Q compares the observed density
of intra-community edges with that expected in a random graph of identical degree distribution.

The Leiden optimization iterates through three phases:

1. Local movement, reassigning nodes to neighboring communities to improve modularity;

2. Refinement, splitting disconnected clusters to ensure internal connectivity;

3. Aggregation, collapsing communities into meta-nodes and repeating until Q converges.

Detected communities can be interpreted as data-driven genre clusters, revealing implicit
literary groupings without human-labeled categories. Similar methods are used in network-based

literary analysis [4, 22].



2.8 EVALUATION METRICS

The quality of the network and detected communities was evaluated using structural and
semantic indicators:

1. Graph coverage measures the proportion of non-isolated works and indicates the
connectedness of the network.

2. Keyword purity defined as P = |/—H,|, represents the inverse of normalized
Shannon entropy. Thus, P = [ indicates that a few keywords dominate (strongly
homogeneous or thematically coherent communities), whereas P = () corresponds to
high entropy (diverse or heterogeneous topics).

Together these metrics assess whether the graph’s structure corresponds to meaningful
thematic organization. A minimum of 0.30 graph coverage and 0.25 median keyword purity was
adopted as a practical criterion to ensure that networks were sufficiently connected for analysis
while maintaining thematic coherence within communities. These thresholds were determined

empirically from pilot runs.

3 RESULTS

3.1 NETWORK OVERVIEW

The final pipeline produced two comparable literary networks derived from Goodreads
metadata: a 5000-work multilingual corpus and a 10000-work English-only corpus.

Each work was represented as a node; similarity relations above the threshold = 0.55 and
top-k = 25 were modeled as weighted undirected edges.

The complete Neodj property graph, containing works, authors, publishers, series,
languages, and countries, reached approximately 1.6 x 10° total relations.

From this, the work-to-work similarity subgraph was extracted for analysis; because most
works remained weakly connected or isolated, these graphs contained only a few thousand weighted

edges, yielding a sparse but interpretable structure consistent with their reported coverage values.

Table 1 - Global network metrics



Metric 5k Works 10k Works

(Multi-Lingual) (English)
Edges ~ 1000 ~ 5000
Graph Coverage (%) 26.8 25.2
Modularity 0.904 0.865
Median Keyword 0.231 0.227
Purity

Source: authors computation from Goodreads data

Both networks exhibit the sparse, heterogeneous connectivity typical of cultural and
information graphs [14, 3]. The degree and weighted-degree distributions (see Figure 3) show a
strong skew: a small number of highly connected works function as hubs, while most remain
weakly linked. Combined with the high modularity values (= 0.9 and 0.86), this pattern suggests a
topology consistent with small-world-like organization — locally cohesive clusters connected
through a limited number of hub works. Such structure reflects the literary corpus itself, in which

widely read or referenced titles bridge otherwise distinct thematic regions.
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Figure 3 — Degree and weighted degree distribution showing the frequency of connections per node for the 10k node
network. Source: by the author.
Despite the difference in corpus size, both networks show similar purity and assortativity.

The multilingual dataset exhibits higher modularity because language boundaries produce clearer

community divisions, while the English-only dataset achieves finer thematic resolution within a

lower overall Q.

10



10k Works 5k Works

Figure 5 — 10k work and 5k work similarity networks with highlighted clusters Source: by the author.

3.2 PARAMETER OPTIMIZATION

Parameter optimization was carried out to identify the configuration that best balanced
structural connectivity and thematic coherence.
A first sweep was performed with a fixed TF-IDF weight of a = 0.3, serving as a baseline

hybrid configuration, while varying the similarity threshold and the number of retained neighbors

(top-k):

Table 2 - Threshold and Top-k Sweep (o = 0.3)

Median Keyword
Threshold Top-k Graph Coverage Purity
0.5 10 0.494 0.213
0.53 10 0.339 0.308
0.53 15 0.339 0.309
0.53 20 0.297 0.309
0.54 10 0.297 0.334
0.54 15 0.257 0.334
0.55 10 0.257 0.334
0.55 15 0.257 0.334
0.55 20 0.227 0.400
0.56 10 0.227 0.400
0.56 15 0.179 0.400
0.56 20 0.179 0.462
0.58 10 0.073 0.462
0.58 20 0.073 0.636
0.65 20 0.037 0.636
0.7 25 0.037 0.667
0.7 30 0.037 0.667

Source: author s computation from Goodreads data

This initial grid provided an overview of the trade-off between network density and

community cohesion. Coverage decreased as the similarity threshold increased, while median

11



keyword purity improved, revealing the expected inverse relationship between connectivity and

thematic focus.

A second sweep then varied a, keeping the threshold fixed at 0.53 and top-k at 20, to
evaluate the effect of the TF—IDF contribution to the hybrid similarity:

Table 3 - TF-IDF weight sweep (threshold = 0.53, top-k = 20)

Weight (o) Graph Coverage Median Keyword

Purity

0 0.339 0.309
0.01 0.321 0.334
0.025 0.297 0.334
0.05 0.258 0.334
0.1 0.207 0.446
0.15 0.163 0.546
0.2 0.137 0.542
0.25 0.107 0.692
0.3 0.091 0.707
0.35 0.084 0.710

Source: author's computation from Goodreads data

Although a = 0.01 achieved the best numeric balance between coverage and purity, this
value corresponds to an almost purely SBERT-based model, undermining the purpose of a hybrid
formulation.

To confirm whether a hybrid component remained beneficial, a third sweep was conducted
with a stricter similarity threshold (0.55) to ensure a minimum semantic relation between works,

and top-k = 25 to compensate for reduced density:

Table 4 - TF-IDF weight sweep (threshold = 0.55, top-k = 25)

Median Keyword

Weight (o) Graph Coverage Purity
0 0.494 0.220
0.025 0.445 0.289
0.08 0.334 0.334
0.09 0.316 0.334
0.1 0.301 0.346
0.12 0.272 0.334
0.15 0.238 0.384
0.18 0.209 0.435
0.2 0.192 0.462
0.3 0.133 0.696

Source: authors computation from Goodreads data

12



The results demonstrate a stable improvement in thematic cohesion up to a = 0.10-0.12,
beyond which purity gains plateau while coverage declines sharply.

Accordingly, the final configuration adopted for subsequent analyses was o = 0.10, threshold
=0.55, and top-k = 25.

This setting preserves a modest lexical contribution (~10 % TF-IDF) that enhances
community coherence without fragmenting the network, confirming the advantage of a hybrid
similarity representation.

To validate the parameter selection, the data from Table 4 was plotted as a relation between
graph coverage and median keyword purity (Figure 6). The resulting curve exhibits an exponential
decay, indicating the expected trade-off between connectivity and thematic cohesion. An
exponential model of the form y = ae™™ + ¢ was fitted to the data, and a piecewise linear
approximation was applied to the fitted curve to locate the curvature-based elbow point,
corresponding to the intersection of two locally linear regions.

This analysis identified an optimal TF-IDF weight of o = 0.125 (Figure 6, red marker).
However, since the measured purity values show a slight decline beyond o = 0.12 (see Table 4), the
configuration a = 0.10, threshold = 0.55, and top-k = 25 was retained as the final operational
setting. This choice maintains maximum stability while preserving strong thematic coherence

without excessive network fragmentation.
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Figure 6 — Relation between median keyword purity and graph coverage for different thresholds.
Source: by the author.

3.3 QUALITATIVE CLUSTER ANALYSIS
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After community detection, each network was decomposed into clusters corresponding to
emergent thematic or stylistic groups. To assign interpretive labels, a hybrid human—AlI procedure
was employed: the author manually verified and refined preliminary categorizations generated by
OpenAI’s GPT-5 model, which analyzed top-ranked keywords for each community. This assisted
interpretation ensured consistency while maintaining human oversight, in accordance with the

methodological framework stated in the project proposal.

3.3.1 Multilingual network

The 5000-work graph produced 71 communities, 17 of which contained more than 10
works. Because the dataset included multiple languages, clusters tended to align with linguistic or
regional boundaries rather than purely thematic affinities.

One large cluster composed of tokens that were mis-codified inside of the database, as they
were not alpha-numeric, seeming at first like random choice letters (Figure 7, Cluster 2) proved to
be Arabic-script text when properly interpreted by utf-8, its encoding was not recognized by the
English stop-word filter, resulting in a distinct “language artefact” cluster. Other large clusters
grouped together Northern-European literary fiction, Russian-language works, and Latin-American

poetry.
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Figure 7 — Word clouds representing the top keywords for the largest clusters in the Sk work network. Source: by the
author.

3.3.2  English-only network
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When restricted to English texts, the network produced 90 communities, 22 with more than
20 works. Linguistic uniformity removed the language-based separation seen earlier, allowing the
algorithm to discriminate subgenres within single literary domains. Whereas the multilingual
graph is clustered by region, the English-only graph is clustered by narrative content and tone.

This exemplifies the improved granularity achieved through linguistic normalization: the

model differentiates overlapping but distinct universes based purely on textual metadata.

Cluster 0 (n=214) Cluster 1 (n=189) Cluster 2 (n=149) Cluster 3 (n= 134) Cluster 4 (n=115)
ﬁrstwgstdeath Rl <l hance z abilities | fa
s oeaiit ¥ hothu s

RS RETNL g : y H
S qd Will :zllfe f f I I Ia g g Ie L on i iction:

o S L7 Uee ~E g ¥ one-three ¥ £ ~Ne
‘secret | doesn new = y f I:],] - )i 5

u rde r -noye[ﬁrStdemon fm‘“u 2 Ot ler : ¢ (aleby

life d etECtIVE‘ dark et | T 'I - I I a Im:l
alive= “kAow_s " - e =
Cluster 5 (n=115) Cluster 6 (n=108) Cluster 7 (n=107) Cluster 8 (n=102) Cluster 9 (n=92)

=[moon =f5 =] evil démaon
e =NSVEle! wnsloVe
| (U }foun‘d"é

i ()
ma!t rgive SISter, st .- o2 g
a5 S =

>
e d)
eeeeeeeee ght t\me

r bdrOt er auntqra:fv]sgusetalesllly

‘OV€

Tl s -

fairy

ﬂﬂﬂﬂ

9

Figure 8 — Word clouds representing the top keywords for the largest clusters in the 10k work network.
Source: by the author.

3.4 LANGUAGE ANALYSIS

34.1 Language metadata and encoding artifacts

Although the enrichment pipeline queried Wikidata for language metadata, few records
contained valid or consistent entries, and many used generic placeholders such as “English (United
States).” Consequently, language purity could not be reliably quantified.

All preprocessing steps — tokenization, lemmatization, and stop-word removal — used
primarily English filters. Attempts to include comprehensive multilingual stop-word lists proved
impractical. Descriptions written in other languages or non-Latin scripts were therefore not properly
tokenized, causing every token to be treated as valid and inflating pairwise similarity among those
works. The resulting language-based clusters, while artefactual, illustrate the model’s sensitivity to

systematic inconsistencies in the data.

Table 5 — Most connected cluster in the Sk Work Network (Arabic Encoding Artefact, average degree = 14.2)
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Median

Keyword Dominant Representative Titles
Purity Language Top Keywords (freq = 5) (sample)
0.89 Arabic (script) szl ¥l gy ks &jline ailad (Selected
alisJl,5mlall Poems), él=Ji dulys (The

Novel of Life), suslall sl
(Cairo Literature)

Source: identified by the author during qualitative keyword analysis with GPT-5

A strong example is the identified Arabic works cluster. Even though this community results
from incorrect encodings rather than semantics, its isolation by the algorithm is methodologically
relevant. It shows that the similarity model and community detection pipeline are capable of
flagging coherent patterns that deviate sharply from the rest of the network, an important property
for quality control in large heterogeneous datasets. Such behaviour can be exploited in future work
for anomaly detection, helping to identify clusters formed by metadata inconsistencies, duplicated

records, or language misclassifications.

3.5 NETWORK METRICS AND SUCCESS EVALUATION

To assess the validity of the constructed networks, quantitative indicators from both runs
were compared (Table 6). All metrics were computed using deterministic pipelines, ensuring

reproducibility across iterations.

Table 6 - Global network metrics

Graph Coverage . Median Keyword
Network (%) Modularity (Q) Purity
Sk Works 6.8 0.904 0.231
(Multilingual) ’
10k Works
(English only) 25.2 0.865 0.227

Source: author s computation from Goodreads data

Both networks display consistent modularity and purity, indicating that doubling the corpus
size did not compromise community quality. The 10 k-work graph shows a slight reduction in
modularity — a natural consequence of increased inter-cluster overlap among English texts, but its

larger size enhances genre resolution, revealing more finely separated subgenres. Tag purity,
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computed from Goodreads user shelves, remained close to zero, confirming that community
coherence arises from textual similarity rather than social tagging behavior. This divergence
underscores the advantage of semantic-embedding approaches for cultural network modeling [4].
Overall, both the statistical and qualitative results demonstrate that the pipeline yields stable,
high-modularity literary networks with interpretable thematic clusters, validating the hybrid

embedding and parameter-optimization methodology.

4 CONCLUSIONS AND FINAL CONSIDERATIONS

This work modeled literary similarity as a complex network, showing how large
bibliographic datasets can uncover emergent thematic and stylistic patterns. Using Goodreads
metadata enriched via Wikidata, two semantic networks were constructed: one with 5,000
multilingual works and another with 10,000 English-language works, linked through hybrid
similarity combining lexical and contextual embeddings.

The framework integrated TF-IDF and RAKE keyword extraction, Sentence-BERT
embeddings, and Leiden community detection in a reproducible Python—Neo4;j pipeline. Parameter
sweeps and exponential fitting identified an optimal configuration (threshold = 0.55, top-k = 25, a. =
0.11) balancing connectivity and coherence. The system exhibited transition-like behavior typical of
complex systems: as thresholds rose, the graph fragmented; as they fell, thematic boundaries
blurred. The resulting networks showed high modularity (Q = 0.9) and consistent keyword purity (=
0.23), indicating stable, interpretable communities that reflect meaningful literary relations.

Although overall coverage remained low due to sparse textual overlap, identified clusters
aligned with recognizable literary domains—poetry, fiction, science fiction, romance, and
comics—supporting the hypothesis that genres emerge as topological communities in semantic
space. Comparing both corpora revealed that linguistic uniformity enhances thematic resolution:
while the multilingual network clustered by language and region, the English-only graph resolved
fine-grained subgenres such as young-adult romance or distinct comic-book universes.

The results also validated a hybrid human—AlI interpretation process, where GPT-assisted
labeling complemented manual verification to maintain both scale and accuracy. Remaining
limitations include incomplete Goodreads metadata and the reliance on descriptions rather than full

texts, which restricts semantic depth. Nonetheless, the study demonstrates that hybrid embedding
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and network-based modeling can capture interpretable cultural structures from large-scale

bibliographic data.

4.1 FUTURE DIRECTIONS
Future extensions of this work may include:

1. Full-text embeddings — Applying document-level models to complete literary
works to capture narrative structure and stylistic depth.

2. Temporal evolution modeling — Building dynamic graphs to trace the propagation
of genres and stylistic features over time.

3. Cross-lingual integration — Using multilingual embedding models to bridge
language barriers and align regional corpora within a unified semantic space.

4. Interactive visualization platform — Implementing an exploration interface in Dash
+ Cytoscape or Neo4j Bloom, allowing users to navigate clusters and inspect
relationships visually.

5. Recommendation and influence systems — Leveraging the hybrid similarity model

to create tools for suggesting related works or mapping literary influence.

Ultimately, this study confirms that the methods of complex systems and machine learning
can provide quantitative insight into cultural structures. Even using limited textual information, the
resulting networks reproduce recognizable literary groupings and uncover latent relations invisible
to traditional cataloguing systems. This convergence of data science and literary analysis points
toward a future where knowledge graphs and embeddings serve not merely as technical artifacts but

as instruments for expanding how we perceive and navigate the world’s written culture.
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