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RESUMO 

 

Este estudo desenvolve um modelo computacional para a análise de relações literárias 

utilizando redes complexas e aprendizado de máquina. O trabalho propõe que a similaridade 

literária, tradicionalmente avaliada por especialistas, pode ser representada quantitativamente como 

uma rede em que cada nó corresponde a uma obra e cada aresta expressa proximidade semântica 

derivada de metadados textuais. Dados bibliográficos do Goodreads, enriquecidos com informações 

do Wikidata, foram processados por meio de uma abordagem híbrida de extração de palavras-chave 

(TF–IDF + RAKE) e codificados com Sentence-BERT embeddings. As similaridades par-a-par 

foram calculadas via similaridade de cosseno, resultando em um grafo ponderado e não direcionado 

construído no Neo4j. Aplicou-se o algoritmo Leiden para detecção de comunidades, permitindo 

identificar agrupamentos correspondentes a gêneros e subgêneros literários. Dois conjuntos foram 

testados: uma rede multilíngue com 5000 obras e uma rede em inglês com 10000 obras. Varreduras 

paramétricas determinaram valores ótimos (limiar = 0,55; top-k = 25; α = 0,11) que equilibram 

cobertura e modularidade. Os resultados demonstram que representações baseadas em redes 

complexas capturam organização temática emergente: gêneros e estilos literários surgem como 

comunidades semânticas densas. A metodologia estabelece uma ponte entre modelagem 

quantitativa e análise literária, oferecendo uma base reprodutível para futuros sistemas de 

recomendação e visualização. 

Palavras-chave: redes literárias; similaridade semântica; detecção de comunidades; grafos 

de conhecimento; humanidades digitais. 

 

1. INTRODUCTION 

 

1.1​ CONTEXT AND PROBLEM STATEMENT 

 

Over the centuries, humanity has accumulated vast amounts of cultural information, much of 

it in analogue form. Although digitization has improved access, the sheer scale makes it impossible 

for any individual to engage with more than a fraction of it. The landscape for books and other 
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print-based works remains fragmented, inconsistent, and poorly optimized for online discovery [9, 

22]. 

Traditional cataloging systems—such as library classifications and subject taxonomies—still 

reflect nineteenth- and twentieth-century conceptions of knowledge. Rebuilding them would require 

recataloging entire collections, a task both logistically and financially prohibitive. As a result, users 

outside those systems struggle to find new or unexpected connections between works. 

This limitation parallels earlier challenges in film and music, where large portions of content 

remained obscure until machine-learning-based recommender systems transformed access. Similar 

hybrid approaches can, therefore, be adapted to cultural and literary analysis [1, 20]. 

 

1.2​ THEORETICAL BACKGROUND AND RELATED WORK 

 

Network theory offers a mathematical framework for representing complex systems as 

relational structures, where entities are nodes and their interactions are edges. Such models reveal 

global patterns like modularity and small-world organization [27, 3, 14], uncovering relationships 

invisible in hierarchical taxonomies. 

Modeling long-form texts poses a central challenge: defining edges that capture the many 

dimensions of semantic similarity. Advances in representation learning now allow textual or 

categorical data to be embedded in high-dimensional vector spaces, enabling numerical comparison 

of meaning [4, 20]. When combined with graph structures, these embeddings form hybrid 

knowledge graphs that integrate relational topology with semantic context. 

These methods—blending machine learning and network analysis—have been effectively 

applied to recommend, cluster, and visualize cultural data [25, 22, 9, 8], revealing thematic 

communities across large literary corpora [5]. 

 

1.3​ OBJECTIVES AND SCOPE OF WORK 

 

This study constructs a knowledge network of literary works, combining methods from 

complex network analysis and machine learning to uncover latent connections and patterns of 

similarity between texts. The pipeline begins with the Goodreads dataset [6, 7], linking works, 
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editions, authors, series, and related metadata. These records are normalized and enriched with 

Wikidata [28], and keywords are extracted from textual descriptions. 

Subsequently, embedding and similarity computations model semantic relationships 

between works, producing a weighted similarity network. Finally, community detection identifies 

clusters whose qualitative characteristics correspond to literary genres and thematic groupings. 

 

1.4​ DATASET AND TOOLS 

 

This work uses the Goodreads dataset curated by the UCSD Recommender Systems 

Group [7, 25, 26], enriched with additional metadata retrieved from Wikidata [28].   

The graph structure is stored in and queried through the Neo4j graph database [12], while 

analytical operations use the NetworkX [13] and igraph [8] libraries. Machine-learning and 

numerical operations employ scikit-learn [20], NumPy [15], and pandas [16]; embeddings are 

computed with Sentence-Transformers [21].  

The remainder of this text is organized as follows: Section 2 presents the materials and 

methods, Section 3 reports the results and discusses their implications, and Section 4 summarizes 

conclusions and outlines possible extensions. 

All source code, data, and documentation for this project are available in the following 

GitHub repository: <https://github.com/BeatrizCastex/literary-knowledge-network>. Information 

on how to utilize the code archive, mathematical definitions of the algorithms and measures used 

and samples of results can be found in the appendices: <https://tinyurl.com/4t373djn>. 

For transparency, the author discloses the use of OpenAI’s GPT-5 model for literature 

exploration, code assistance and debugging, qualitative cluster categorization, table rendering, text 

review and code documentation.  All algorithmic decisions, data processing, and analyses were 

designed, executed, and validated by the author. 

 

2​ METHODS 

 

2.1 OVERVIEW OF THE METHODOLOGICAL FRAMEWORK 

This study combines methods from complex networks, information retrieval, and natural 

language processing to construct and analyze a literary knowledge network. Figure 1 summarizes 

the modular workflow, which proceeds through seven stages: data extraction and normalization, 
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enrichment, keyword processing, embedding generation, similarity computation, community 

detection, and evaluation/visualization. 

Each stage transforms the representation of a literary work—from descriptive text to 

structured metadata, from metadata to numerical vectors, and from vectors to a weighted relational 

graph. The data preparation phase involves selection, normalization, and enrichment through 

keyword extraction and external knowledge integration; the graph construction phase organizes 

entities and relations in Neo4j; and the analysis phase computes similarities and applies community 

detection to identify clusters reflecting literary genres and thematic affinities. 

This approach follows principles of complex-systems modeling [14, 5], where large-scale 

structures emerge from local similarity relations. Literary works are thus treated as entities in a 

high-dimensional semantic space whose pairwise interactions give rise to observable macroscopic 

patterns such as communities or thematic clusters. 

 
Figure 1 – Workflow of the methodological pipeline. Source: by the author. 

 

2.2 DATASET DESCRIPTION AND SAMPLING 

 

The dataset derives from the Goodreads metadata collection curated by the UCSD 

Recommender Systems Group [25, 26], comprising millions of bibliographic records with 

identifiers, titles, descriptions, and user-generated tags. 

Although other sources such as Project Gutenberg provide full-text data, they lack 

contemporary coverage and consistent metadata, making Goodreads more suitable for large-scale 

relational modeling. Prior studies [22, 9] have shown that structured, semantically aligned metadata 

can effectively capture literary relationships at scale. 
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This work uses the Meta-Data of Books subset, which links works, editions, authors, series, 

and genre/tags. Non-thematic tags (e.g., to-read, wishlist) were removed, and missing attributes 

were inferred from each work’s canonical “best book” edition. Sampling was performed at three 

levels: a 200-work pilot corpus for testing, a 5,000-work multilingual corpus for optimization, and a 

10,000-work English-only corpus for scalability and community-resolution analysis. Each work 

includes a 100–300-word description used as the textual basis for embedding and similarity 

computation. 

 

2.3 DATA CLEANING AND NORMALIZATION 

 

Data normalization and entity resolution ensure the internal consistency of the dataset and 

prevent multiple representations of the same entity. In large bibliographic collections such as 

Goodreads, textual heterogeneity arises from variations in spelling, punctuation, and user-generated 

metadata. Aligning these discrepancies is essential to preserve the integrity of relationships between 

works, authors, and publishers. 

The procedure follows three stages: metadata pruning, string normalization, and duplicate 

detection. Non-semantic user tags (for instance “owned”, “wishlist”, “currently-reading”) were 

removed using a stop-word list combined with fuzzy matching. Remaining textual fields were 

normalized with pandas and rapidfuzz, applying lowercasing, punctuation stripping, and whitespace 

standardization. 

Duplicate entities were resolved through Levenshtein similarity, a character-level metric that 

quantifies the minimum number of edits (insertions, deletions, or substitutions) required to 

transform one string into another [10]. This method captures typographic and orthographic variation 

that purely token-based measures (such as Jaccard) would miss, allowing unification of 

near-duplicates like “Penguin” vs “Penglin”. The resulting unified dataset contains harmonized 

identifiers and fields prepared for enrichment , ensuring relational consistency across the dataset. 

 

2.4 METADATA ENRICHMENT AND KEYWORD EXTRACTION 

To compensate for missing metadata, the script enrich-data.py queried Wikidata [28] for 

each work and author using fuzzy-matched titles and names. Retrieved attributes included original 

language, country of origin, and literary movement. These supplementary fields enhance the 
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contextual granularity of the network, enabling later analyses such as assortativity by language or 

geography. 

Textual enrichment relied on a hybrid keyword-extraction method combining Term 

Frequency–Inverse Document Frequency (TF–IDF) and Rapid Automatic Keyword 

Extraction (RAKE). The rationale for merging them is that TF–IDF captures statistically relevant 

single terms, while RAKE identifies meaningful multi-word expressions. 

The TF–ID weighting  [19] quantifies how characteristic a term  is for a document d within 𝑡

a corpus of  documents: 𝑁

where  is the term frequency and  the number of documents containing .   𝑓
𝑡,𝑑

𝑛
𝑡

𝑡

This function penalizes overly common words and amplifies rare, document-specific ones. 

RAKE [18], on the other hand, proceeds differently. It divides the text at stop words, 

producing candidate phrases, then constructs a co-occurrence graph where each keyword is linked 

to others appearing in the same phrase. For each token , its degree  is the number of 𝑡 𝑑𝑒𝑔(𝑡)

co-occurring neighbors, and its frequency f  counts total occurrences.   𝑟𝑒𝑞(𝑡)

The score of a phrase  is: 𝑝

Tokens with high co-occurrence diversity but low frequency gain prominence, highlighting 

semantically rich phrases such as “post-colonial identity” or “magical realism”. 

After extraction, both outputs were combined: the top RAKE phrases and top 15 TF–IDF 

words per description were merged and deduplicated. This hybridization follows the 

pattern-recognition perspective in complex systems [4], capturing both global statistical 

significance and local contextual association. 

 

2.5 GRAPH MODELING AND DATABASE STRUCTURE 

The processed metadata was organized as a property graph, implemented in Neo4j [12], a 

Java-based, open-source graph database that is used to manage and query highly connected data 

more efficiently than traditional databases.   

Neo4j’s model supports typed nodes and edges, each with their own attributes.   
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For example, in a film graph, nodes Person and Movie could be linked by a WORKED_ON 

relation whose property role = "Director".  Similarly, this project’s schema (Figure 2) defines seven 

node types, Work, Person, Publisher, Tag, Series, Language, and Country, and multiple relationship 

types such as WORKED_ON, PUBLISHED_BY, and PART_OF.  Each edge type includes attributes 

inherited from Goodreads (for example, role in WORKED_ON), preserving detailed authorship 

information. 

Figure 2 – Entity-relationship model of the literary knowledge graph. Source: by the author 
 

2.6 EMBEDDING GENERATION AND SIMILARITY COMPUTATION 

 

While explicit relationships (e.g., authorship or publisher) describe known links, semantic 

similarity between works must be inferred. This inference uses text embeddings, numerical vector 

representations capturing contextual meaning in high-dimensional space. 

Each description and keyword list was encoded using Sentence-BERT (SBERT), 

specifically the all-MiniLM-L6-v2 model [17].  During inference, it converts any input text into a 

fixed-size embedding , this dimension corresponds to the size of the model’s final hidden 𝐯
𝑖
 ϵ ℝ384

layer, determined during training. This enables efficient pairwise comparison via cosine similarity. 

​Two filters ensured manageable graph density:   

1.​  Only the top  neighbors per node were kept;   𝑘 = 25

2.​  Edges with  were discarded. 𝑠𝑖𝑚(𝑖,  𝑗) <  0. 55

These filters serve complementary roles. The k-nearest-neighbors constraint ensures that 

each work remains locally connected to its most similar peers, avoiding isolated nodes and 
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preserving overall graph connectivity. Conversely, the similarity threshold removes weak or noisy 

links, improving the thematic coherence of detected communities. 

Internal tests showed that using k-NN alone increased coverage but introduced low-weight 

edges that diluted community purity, while applying the threshold alone produced high-purity 

clusters at the cost of excessive fragmentation. Maintaining both filters therefore represents a 

practical equilibrium between structural completeness and semantic precision, yielding networks 

that are simultaneously interpretable and well connected. 

A hybrid weighting incorporated both SBERT and TF–IDF similarities: 

where α∈[0,1] controls the lexical contribution of TF–IDF. A parameter sweep varied α 

while monitoring graph coverage and keyword purity, identifying an optimum at α ≈ 0.11 (≈ 11 % 

TF–IDF weight), which balances contextual and lexical similarity. (see Section 3.2).   

This weighting echoes hybrid recommender formulations where latent and explicit 

similarities are linearly combined  [29]. 

 

2.7 COMMUNITY DETECTION 

 

Once the weighted graph is built, unsupervised community detection identifies densely 

connected groups of works, potential analogs of genres or thematic clusters.   

The Leiden algorithm [23] was chosen for its ability to guarantee well-connected 

communities. The algorithm optimizes modularity (Q), a measure of how well a partition separates 

dense internal connections from sparse external ones: Intuitively,  compares the observed density 𝑄

of intra-community edges with that expected in a random graph of identical degree distribution. 

The Leiden optimization iterates through three phases: 

1. Local movement, reassigning nodes to neighboring communities to improve modularity; 

2. Refinement, splitting disconnected clusters to ensure internal connectivity; 

3. Aggregation, collapsing communities into meta-nodes and repeating until  converges. 𝑄

Detected communities can be interpreted as data-driven genre clusters, revealing implicit 

literary groupings without human-labeled categories. Similar methods are used in network-based 

literary analysis [4, 22]. 
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2.8 EVALUATION METRICS 

 

The quality of the network and detected communities was evaluated using structural and 

semantic indicators: 

1.​ Graph coverage measures the proportion of non-isolated works and indicates the 

connectedness of the network. 

2.​ Keyword purity defined as P = ∣1−Hn∣​, represents the inverse of normalized 

Shannon entropy. Thus, P ≈ 1 indicates that a few keywords dominate (strongly 

homogeneous or thematically coherent communities), whereas P ≈ 0 corresponds to 

high entropy (diverse or heterogeneous topics). 

Together these metrics assess whether the graph’s structure corresponds to meaningful 

thematic organization.  A minimum of 0.30 graph coverage and 0.25 median keyword purity was 

adopted as a practical criterion to ensure that networks were sufficiently connected for analysis 

while maintaining thematic coherence within communities. These thresholds were determined 

empirically from pilot runs. 

 

3​ RESULTS 

 

3.1​ NETWORK OVERVIEW 

The final pipeline produced two comparable literary networks derived from Goodreads 

metadata: a 5000-work multilingual corpus and a 10000-work English-only corpus.   

Each work was represented as a node; similarity relations above the threshold = 0.55 and 

top-k = 25 were modeled as weighted undirected edges. 

The complete Neo4j property graph, containing works, authors, publishers, series, 

languages, and countries, reached approximately 1.6 × 10⁵ total relations.   

From this, the work-to-work similarity subgraph was extracted for analysis; because most 

works remained weakly connected or isolated, these graphs contained only a few thousand weighted 

edges, yielding a sparse but interpretable structure consistent with their reported coverage values. 

 

 

 
Table 1 - Global network metrics 
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Metric 5k Works 
(Multi-Lingual) 

10k Works 
(English) 

Edges ≈ 1000 ≈ 5000 

Graph Coverage (%) 26.8 25.2 
Modularity 0.904 0.865 

Median Keyword 
Purity 

0.231 0.227 

Source: author’s computation from Goodreads data 
 

Both networks exhibit the sparse, heterogeneous connectivity typical of cultural and 

information graphs [14, 3]. The degree and weighted-degree distributions (see Figure 3) show a 

strong skew: a small number of highly connected works function as hubs, while most remain 

weakly linked. Combined with the high modularity values (≈ 0.9 and 0.86), this pattern suggests a 

topology consistent with small-world-like organization – locally cohesive clusters connected 

through a limited number of hub works. Such structure reflects the literary corpus itself, in which 

widely read or referenced titles bridge otherwise distinct thematic regions. 

 
 

Figure 3 – Degree and weighted degree distribution showing the frequency of connections per node for the 10k node 
network. Source: by the author. 

 

Despite the difference in corpus size, both networks show similar purity and assortativity.  

The multilingual dataset exhibits higher modularity because language boundaries produce clearer 

community divisions, while the English-only dataset achieves finer thematic resolution within a 

lower overall .  𝑄
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Figure 5 –  10k work and 5k work similarity networks with highlighted clusters Source: by the author. 
 

3.2​ PARAMETER OPTIMIZATION 

 

Parameter optimization was carried out to identify the configuration that best balanced 

structural connectivity and thematic coherence. 

A first sweep was performed with a fixed TF–IDF weight of α = 0.3, serving as a baseline 

hybrid configuration, while varying the similarity threshold and the number of retained neighbors 

(top-k): 
 
Table 2 - Threshold and Top-k Sweep ( α = 0.3) 

Threshold Top-k Graph Coverage Median Keyword 
Purity 

0.5 10 0.494 0.213 
0.53 10 0.339 0.308 
0.53 15 0.339 0.309 
0.53 20 0.297 0.309 
0.54 10 0.297 0.334 
0.54 15 0.257 0.334 
0.55 10 0.257 0.334 
0.55 15 0.257 0.334 
0.55 20 0.227 0.400 
0.56 10 0.227 0.400 
0.56 15 0.179 0.400 
0.56 20 0.179 0.462 
0.58 10 0.073 0.462 
0.58 20 0.073 0.636 
0.65 20 0.037 0.636 
0.7 25 0.037 0.667 
0.7 30 0.037 0.667 

Source: author’s computation from Goodreads data 
 

This initial grid provided an overview of the trade-off between network density and 

community cohesion. Coverage decreased as the similarity threshold increased, while median 
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keyword purity improved, revealing the expected inverse relationship between connectivity and 

thematic focus. 

A second sweep then varied α, keeping the threshold fixed at 0.53 and top-k at 20, to 

evaluate the effect of the TF–IDF contribution to the hybrid similarity: 

Table 3 - TF-IDF weight sweep (threshold = 0.53, top-k = 20) 

Weight ( α ) Graph Coverage Median Keyword 
Purity 

0 0.339 0.309 
0.01 0.321 0.334 
0.025 0.297 0.334 
0.05 0.258 0.334 
0.1 0.207 0.446 
0.15 0.163 0.546 
0.2 0.137 0.542 
0.25 0.107 0.692 
0.3 0.091 0.707 
0.35 0.084 0.710 

Source: author’s computation from Goodreads data 
 

Although α ≈ 0.01 achieved the best numeric balance between coverage and purity, this 

value corresponds to an almost purely SBERT-based model, undermining the purpose of a hybrid 

formulation. 

To confirm whether a hybrid component remained beneficial, a third sweep was conducted 

with a stricter similarity threshold (0.55) to ensure a minimum semantic relation between works, 

and top-k = 25 to compensate for reduced density: 
 

Table 4 - TF-IDF weight sweep (threshold = 0.55, top-k = 25) 

Weight ( α ) Graph Coverage Median Keyword 
Purity 

0 0.494 0.220 
0.025 0.445 0.289 
0.08 0.334 0.334 
0.09 0.316 0.334 
0.1 0.301 0.346 
0.12 0.272 0.334 
0.15 0.238 0.384 
0.18 0.209 0.435 
0.2 0.192 0.462 
0.3 0.133 0.696 

Source: author’s computation from Goodreads data 
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The results demonstrate a stable improvement in thematic cohesion up to α ≈ 0.10–0.12, 

beyond which purity gains plateau while coverage declines sharply. 

Accordingly, the final configuration adopted for subsequent analyses was α = 0.10, threshold 

= 0.55, and top-k = 25. 

This setting preserves a modest lexical contribution (~10 % TF–IDF) that enhances 

community coherence without fragmenting the network, confirming the advantage of a hybrid 

similarity representation. 

To validate the parameter selection, the data from Table 4 was plotted as a relation between 

graph coverage and median keyword purity (Figure 6). The resulting curve exhibits an exponential 

decay, indicating the expected trade-off between connectivity and thematic cohesion. An 

exponential model of the form y = ae−bx + c was fitted to the data, and a piecewise linear 

approximation was applied to the fitted curve to locate the curvature-based elbow point, 

corresponding to the intersection of two locally linear regions. 

This analysis identified an optimal TF–IDF weight of α ≈ 0.125 (Figure 6, red marker). 

However, since the measured purity values show a slight decline beyond α ≈ 0.12 (see Table 4), the 

configuration α = 0.10, threshold = 0.55, and top-k = 25 was retained as the final operational 

setting. This choice maintains maximum stability while preserving strong thematic coherence 

without excessive network fragmentation. 

 
Figure 6 –  Relation between median keyword purity and graph coverage for different thresholds. 

Source: by the author. 
 

 

3.3​ QUALITATIVE CLUSTER ANALYSIS 
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After community detection, each network was decomposed into clusters corresponding to 

emergent thematic or stylistic groups. To assign interpretive labels, a hybrid human–AI procedure 

was employed: the author manually verified and refined preliminary categorizations generated by 

OpenAI’s GPT-5 model, which analyzed top-ranked keywords for each community.  This assisted 

interpretation ensured consistency while maintaining human oversight, in accordance with the 

methodological framework stated in the project proposal. 

 

3.3.1​ Multilingual network 

 

The 5000-work graph produced 71 communities, 17 of which contained more than 10 

works.  Because the dataset included multiple languages, clusters tended to align with linguistic or 

regional boundaries rather than purely thematic affinities.   

One large cluster composed of tokens that were mis-codified inside of the database, as they 

were not alpha-numeric, seeming at first like random choice letters (Figure 7, Cluster 2) proved to 

be Arabic-script text when properly interpreted by utf-8, its encoding was not recognized by the 

English stop-word filter, resulting in a distinct “language artefact” cluster.  Other large clusters 

grouped together Northern-European literary fiction, Russian-language works, and Latin-American 

poetry.  

  
Figure 7 –  Word clouds representing the top keywords for the largest clusters in the 5k work network. Source: by the 

author. 
 

3.3.2​ English-only network 
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When restricted to English texts, the network produced 90 communities, 22 with more than 

20 works.  Linguistic uniformity removed the language-based separation seen earlier, allowing the 

algorithm to discriminate subgenres within single literary domains. Whereas the multilingual 

graph is clustered by region, the English-only graph is clustered by narrative content and tone. 

This exemplifies the improved granularity achieved through linguistic normalization: the 

model differentiates overlapping but distinct universes based purely on textual metadata. 

Figure 8 –  Word clouds representing the top keywords for the largest clusters in the 10k work network. 
Source: by the author. 

 

 

3.4​ LANGUAGE ANALYSIS 

 

3.4.1​ Language metadata and encoding artifacts 

 

Although the enrichment pipeline queried Wikidata for language metadata, few records 

contained valid or consistent entries, and many used generic placeholders such as “English (United 

States).” Consequently, language purity could not be reliably quantified. 

All preprocessing steps – tokenization, lemmatization, and stop-word removal – used 

primarily English filters. Attempts to include comprehensive multilingual stop-word lists proved 

impractical. Descriptions written in other languages or non-Latin scripts were therefore not properly 

tokenized, causing every token to be treated as valid and inflating pairwise similarity among those 

works. The resulting language-based clusters, while artefactual, illustrate the model’s sensitivity to 

systematic inconsistencies in the data. 

 
Table 5 – Most connected cluster in the 5k Work Network (Arabic Encoding Artefact, average degree = 14.2) 
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Source: identified by the author during qualitative keyword analysis with GPT-5 
 

A strong example is the identified Arabic works cluster. Even though this community results 

from incorrect encodings rather than semantics, its isolation by the algorithm is methodologically 

relevant. It shows that the similarity model and community detection pipeline are capable of 

flagging coherent patterns that deviate sharply from the rest of the network, an important property 

for quality control in large heterogeneous datasets. Such behaviour can be exploited in future work 

for anomaly detection, helping to identify clusters formed by metadata inconsistencies, duplicated 

records, or language misclassifications. 

 

3.5​ NETWORK METRICS AND SUCCESS EVALUATION 

 

​ To assess the validity of the constructed networks, quantitative indicators from both runs 

were compared (Table 6).  All metrics were computed using deterministic pipelines, ensuring 

reproducibility across iterations. 
 

Table 6 - Global network metrics 

Network Graph Coverage 
(%) Modularity (Q) Median Keyword 

Purity 
5k Works 

(Multilingual) 26.8 0.904 0.231 

10k Works  
(English only) 25.2 0.865 0.227 

Source: author’s computation from Goodreads data 
 

Both networks display consistent modularity and purity, indicating that doubling the corpus 

size did not compromise community quality. The 10 k-work graph shows a slight reduction in 

modularity – a natural consequence of increased inter-cluster overlap among English texts, but its 

larger size enhances genre resolution, revealing more finely separated subgenres. Tag purity, 
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computed from Goodreads user shelves, remained close to zero, confirming that community 

coherence arises from textual similarity rather than social tagging behavior. This divergence 

underscores the advantage of semantic-embedding approaches for cultural network modeling [4]. 

Overall, both the statistical and qualitative results demonstrate that the pipeline yields stable, 

high-modularity literary networks with interpretable thematic clusters, validating the hybrid 

embedding and parameter-optimization methodology. 

 

4​ CONCLUSIONS AND FINAL CONSIDERATIONS 

 

This work modeled literary similarity as a complex network, showing how large 

bibliographic datasets can uncover emergent thematic and stylistic patterns. Using Goodreads 

metadata enriched via Wikidata, two semantic networks were constructed: one with 5,000 

multilingual works and another with 10,000 English-language works, linked through hybrid 

similarity combining lexical and contextual embeddings. 

The framework integrated TF–IDF and RAKE keyword extraction, Sentence-BERT 

embeddings, and Leiden community detection in a reproducible Python–Neo4j pipeline. Parameter 

sweeps and exponential fitting identified an optimal configuration (threshold = 0.55, top-k = 25, α = 

0.11) balancing connectivity and coherence. The system exhibited transition-like behavior typical of 

complex systems: as thresholds rose, the graph fragmented; as they fell, thematic boundaries 

blurred. The resulting networks showed high modularity (Q ≈ 0.9) and consistent keyword purity (≈ 

0.23), indicating stable, interpretable communities that reflect meaningful literary relations. 

Although overall coverage remained low due to sparse textual overlap, identified clusters 

aligned with recognizable literary domains—poetry, fiction, science fiction, romance, and 

comics—supporting the hypothesis that genres emerge as topological communities in semantic 

space. Comparing both corpora revealed that linguistic uniformity enhances thematic resolution: 

while the multilingual network clustered by language and region, the English-only graph resolved 

fine-grained subgenres such as young-adult romance or distinct comic-book universes. 

The results also validated a hybrid human–AI interpretation process, where GPT-assisted 

labeling complemented manual verification to maintain both scale and accuracy. Remaining 

limitations include incomplete Goodreads metadata and the reliance on descriptions rather than full 

texts, which restricts semantic depth. Nonetheless, the study demonstrates that hybrid embedding 
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and network-based modeling can capture interpretable cultural structures from large-scale 

bibliographic data. 

 

4.1​ FUTURE DIRECTIONS 

​ Future extensions of this work may include: 

1.​ Full-text embeddings — Applying document-level models to complete literary 

works to capture narrative structure and stylistic depth. 

2.​ Temporal evolution modeling — Building dynamic graphs to trace the propagation 

of genres and stylistic features over time. 

3.​ Cross-lingual integration — Using multilingual embedding models to bridge 

language barriers and align regional corpora within a unified semantic space. 

4.​ Interactive visualization platform — Implementing an exploration interface in Dash 

+ Cytoscape or Neo4j Bloom, allowing users to navigate clusters and inspect 

relationships visually. 

5.​ Recommendation and influence systems — Leveraging the hybrid similarity model 

to create tools for suggesting related works or mapping literary influence. 

 

Ultimately, this study confirms that the methods of complex systems and machine learning 

can provide quantitative insight into cultural structures.  Even using limited textual information, the 

resulting networks reproduce recognizable literary groupings and uncover latent relations invisible 

to traditional cataloguing systems. This convergence of data science and literary analysis points 

toward a future where knowledge graphs and embeddings serve not merely as technical artifacts but 

as instruments for expanding how we perceive and navigate the world’s written culture. 
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