
 
 

UNIVERSIDADE DE SÃO PAULO 

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 

 

 

 

 

 

BRUNO HENRIQUE PAES 

 

 

 

 

 

 

 

 

USO DA SIMULAÇÃO PARA AVALIAR POSIÇÕES DE BASES DE SERVIÇOS 

PÚBLICOS 

 

 

 

 

 

 

 

 

 

 

 

São Paulo 

2025  



 
 

BRUNO HENRIQUE PAES 

 

 

 

 

 

 

 

 

USO DA SIMULAÇÃO PARA AVALIAR POSIÇÕES DE BASES DE SERVIÇOS 

PÚBLICOS 

 

 

 

 

 

 

 

 

Trabalho de Formatura apresentado à Escola 

Politécnica da Universidade de São Paulo para a 

obtenção do diploma de Engenheiro de Produção.  

 

Orientador: Daniel de Oliveira Mota 

 

 

 

 

 

 

São Paulo 

2025 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

RESUMO 

 

 

Este estudo teve como objetivo analisar a eficiência operacional e a otimização do sistema de 

transporte de táxis no Campus da Universidade de São Paulo (USP), por meio de simulação 

computacional e modelagem de fluxo. A pesquisa se concentrou em compreender de que forma 

o georreferenciamento e a implementação de lógicas otimizadas de alocação de veículos podem 

aprimorar o desempenho do sistema, considerando aspectos como distribuição dos táxis, tempo 

de espera, deslocamento até o usuário e nível geral de serviço. A simulação foi realizada 

utilizando três cenários principais: o sistema atual (AS-IS), o modelo otimizado (TO-BE) e uma 

versão ampliada com variáveis adicionais, incluindo aumento da frota disponível e novas 

configurações operacionais. A metodologia adotada foi organizada em três etapas 

fundamentais: levantamento conceitual, desenvolvimento do modelo de simulação e análise 

comparativa do desempenho entre os cenários propostos. Inicialmente, foi conduzido um 

levantamento bibliográfico estruturado para fundamentar a modelagem computacional e os 

parâmetros adotados para representar o comportamento da demanda e dos agentes. Em seguida, 

desenvolveu-se a simulação do sistema AS-IS, tomando como referência a dinâmica real dos 

fluxos internos do campus. Na sequência, foi elaborada a modelagem TO-BE, incorporando 

estratégias de otimização e redistribuição espacial das bases, com o objetivo de melhorar o 

atendimento às solicitações de transporte. A validação empírica utilizou coordenadas reais dos 

pontos de táxi e das origens das demandas, garantindo maior precisão na representação espacial 

da operação. O desempenho dos cenários foi avaliado por meio de métricas como nível de 

serviço, tempo médio de atendimento, distância percorrida e disponibilidade de veículos. Os 

resultados indicaram que o modelo otimizado (TO-BE) apresentou desempenho superior ao do 

modelo AS-IS, especialmente no que se refere à redução do tempo de espera e à melhoria da 

distribuição da frota. As lógicas otimizadas proporcionaram maior equilíbrio entre a oferta de 

veículos e a demanda simulada, enquanto o georreferenciamento permitiu maior controle sobre 

as localizações críticas do sistema, ampliando a eficiência operacional. Entretanto, a pesquisa 

também revelou que, em situações de demanda elevada, o sistema continua a enfrentar 

limitações relacionadas ao aumento do tempo de resposta e ao maior deslocamento dos 

veículos, apontando a necessidade de ajustes contínuos. A discussão destacou a relevância da 

simulação computacional como instrumento de análise e aprimoramento de sistemas urbanos 

complexos, evidenciando os avanços obtidos a partir da comparação entre os cenários. A 

implementação futura de veículos autônomos e o uso de inteligência artificial para ajustes 

dinâmicos foram sugeridos como possíveis evoluções do modelo. Em conclusão, o estudo 

demonstrou que lógicas otimizadas podem melhorar significativamente a eficiência do 

transporte em ambientes universitários e urbanos, embora ajustes contínuos sejam necessários 

para lidar com flutuações de demanda. Pesquisas futuras devem incorporar novas tecnologias, 

avaliar impactos ambientais e explorar estratégias de sustentabilidade para o sistema analisado. 

 

Palavras-chave: Simulação computacional, Transporte de táxis, Georreferenciamento, 

Eficiência operacional, Fluxos otimizados, Mobilidade urbana. 

 

 

 

 

 

 

 

 



 
 

 

ABSTRACT 

 

 

This study aimed to analyze the operational efficiency and optimization of the taxi 

transportation system at the University of São Paulo (USP) Campus through computational 

simulation and flow modeling. The research focused on understanding how georeferencing and 

the implementation of optimized vehicle allocation logics can enhance system performance, 

considering aspects such as taxi distribution, waiting time, distance to the user, and overall 

service level. The simulation was conducted using three main scenarios: the current system 

(AS-IS), the optimized model (TO-BE), and an expanded version including additional 

variables, such as an increased fleet and new operational configurations. The methodology was 

organized into three fundamental stages: conceptual groundwork, development of the 

simulation model, and comparative performance analysis between the proposed scenarios. 

Initially, a structured literature survey was conducted to support the computational modeling 

and the parameters adopted to represent demand behavior and agent interactions. Following 

this stage, the AS-IS system simulation was developed, using the actual dynamics of internal 

campus flows as a reference. Subsequently, the TO-BE model was constructed, incorporating 

optimization strategies and spatial redistribution of taxi bases with the aim of improving service 

responsiveness. Empirical validation was carried out using real coordinates of taxi stands and 

demand origin points, ensuring greater spatial accuracy in the representation of system 

operations. Scenario performance was assessed using metrics such as service level, average 

response time, distance traveled, and vehicle availability. The results indicated that the 

optimized model (TO-BE) achieved superior performance compared to the AS-IS model, 

particularly regarding reductions in waiting time and improvements in fleet distribution. The 

optimized logics provided a better balance between vehicle supply and simulated demand, 

while georeferencing enabled greater control over critical system locations, enhancing 

operational efficiency. However, the study also showed that under high-demand conditions, the 

system still faces limitations related to increased response time and greater distances traveled 

by vehicles, indicating the need for continuous adjustments. The discussion emphasized the 

relevance of computational simulation as a tool for analyzing and improving complex urban 

systems, highlighting the advancements achieved through the comparison of scenarios. The 

future implementation of autonomous vehicles and the use of artificial intelligence for dynamic 

operational adjustments were suggested as potential developments for the model. In conclusion, 

the study demonstrated that optimized logics can significantly improve transportation 

efficiency in university and urban environments, although continuous refinements are necessary 

to address demand fluctuations. Future research should incorporate new technologies, assess 

environmental impacts, and explore sustainability strategies for the system analyzed. 

 

 

Keywords: Computational simulation, Taxi transportation, Georeferencing, Operational 

efficiency, Optimized flows, Urban mobility. 
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1. INTRODUÇÃO 

1.1 Motivação 

A organização e a eficiência dos serviços públicos são temas que vêm adquirindo 

crescente relevância na Engenharia de Produção, sobretudo diante da necessidade de otimizar 

o uso dos recursos públicos e atender adequadamente às demandas urbanas. Os serviços 

públicos, especialmente aqueles ligados à mobilidade e segurança, dependem de um arranjo 

logístico eficaz que assegure rapidez e qualidade na prestação do atendimento (Daniel et al., 

2020). Nesse sentido, a análise da localização de bases operacionais torna-se estratégica para 

minimizar tempos de resposta e aumentar a cobertura dos serviços, considerando fatores como 

fluxo de tráfego, demanda espacial e acessibilidade. 

A expansão das cidades brasileiras intensificou o desafio de planejar infraestruturas 

urbanas que equilibrem eficiência operacional e bem-estar social. As universidades, enquanto 

microcosmos urbanos, enfrentam dilemas semelhantes: a concentração de fluxos e a 

necessidade de atendimento ágil em áreas de alta densidade tornam essencial o planejamento 

adequado das bases de serviços públicos internos, como transporte, segurança e manutenção 

(Almeida et al., 2023). O uso de simulações computacionais oferece uma possibilidade concreta 

de compreender e testar diferentes configurações de alocação, permitindo reduzir custos e 

melhorar a eficácia do atendimento. 

A transformação digital no setor público introduziu uma perspectiva analítica mais 

orientada a dados, em que ferramentas computacionais e modelos matemáticos passaram a 

integrar o processo decisório. Conforme observam Francisco e Bonette (2021), a adoção de 

tecnologias de modelagem e digital twin contribui para uma visão integrada da cidade e das 

suas operações, permitindo a testagem virtual de políticas urbanas antes da execução real. Essa 

possibilidade de reproduzir digitalmente a dinâmica urbana é especialmente promissora quando 

aplicada à alocação de bases operacionais, pois permite avaliar alternativas com precisão e em 

tempo reduzido. 

A motivação deste estudo decorre, portanto, da necessidade de repensar a disposição de 

bases de serviços públicos sob uma ótica sistêmica, em que a simulação e a modelagem digital 

sejam instrumentos de apoio à tomada de decisão. O aprimoramento dos métodos de localização 

e a incorporação de ferramentas tecnológicas tornam-se medidas estratégicas para garantir o 

atendimento eficiente de demandas urbanas complexas (Simette, Rezende e Sequeira, 2025). 

Assim, o presente trabalho propõe avaliar a aplicação de simulação computacional e digital 

twin no redesenho das bases de táxis de uma universidade com alta densidade de fluxo. 
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1.2 Contextualização 

A logística urbana é um campo em constante transformação, marcado pelo desafio de 

integrar tecnologias, sustentabilidade e gestão pública eficiente. As administrações municipais 

e institucionais buscam equilibrar custos operacionais e qualidade no atendimento, o que exige 

planejamento embasado em dados e evidências (Daniel et al., 2020). A literatura recente destaca 

que o modelo tradicional de gestão de serviços públicos, baseado apenas na intuição ou em 

critérios empíricos, tende a gerar alocações ineficazes, redundância de esforços e baixa 

responsividade. A integração entre engenharia e políticas públicas passa a ser, portanto, 

indispensável para o desenvolvimento urbano inteligente. 

As universidades brasileiras, por seu porte e estrutura, funcionam como cidades em 

escala reduzida, abrigando fluxos intensos de pessoas, veículos e serviços. Essa complexidade 

exige o uso de ferramentas que permitam simular diferentes arranjos espaciais para a otimização 

das operações. Segundo Almeida et al. (2023), a inovação pela coprodução de serviços 

públicos, envolvendo gestores, pesquisadores e usuários, constitui um caminho eficaz para 

repensar a infraestrutura institucional. Esse modelo de colaboração encontra suporte na teoria 

da localização, que propõe decisões logísticas baseadas em critérios de acessibilidade, 

centralidade e demanda. 

A relação entre tecnologia e gestão pública tem sido ampliada pela implementação de 

projetos de governança digital, que integram inteligência artificial, blockchain e sistemas de 

simulação para apoiar decisões estratégicas (Sampaio, 2025). Tais iniciativas buscam tornar os 

serviços mais responsivos, reduzindo desperdícios e aumentando a transparência. A aplicação 

do conceito de digital twin, ou gêmeo digital, no contexto urbano, representa uma das mais 

relevantes inovações recentes, pois permite a criação de réplicas digitais de sistemas reais para 

testar cenários, prever resultados e aprimorar políticas públicas antes de sua execução. 

No âmbito da mobilidade urbana e da segurança, a localização estratégica de bases 

operacionais — como as de táxis, policiamento e manutenção — constitui um fator 

determinante para a eficiência das respostas (Francisco e Bonette, 2021). No entanto, a 

realocação dessas bases geralmente é feita de maneira empírica, sem considerar variáveis 

críticas como tempo de deslocamento, tráfego e densidade de demanda. Essa limitação torna 

evidente a necessidade de metodologias que incorporem variáveis dinâmicas e técnicas de 

simulação preditiva, assegurando decisões mais precisas e sustentáveis. 

A análise proposta por Simette, Rezende e Sequeira (2025) sobre cidades digitais 

estratégicas reforça que a eficiência na gestão pública depende da capacidade de integrar 
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ferramentas de análise espacial e de inteligência de dados. O conceito de cidade digital 

estratégica se apoia na ideia de que a tomada de decisão deve ser sustentada por sistemas de 

informação em tempo real, permitindo ajustes imediatos em função das condições observadas. 

Aplicar essa lógica a uma universidade, que concentra fluxos comparáveis aos de um pequeno 

centro urbano, justifica o emprego da simulação como instrumento de diagnóstico e 

planejamento operacional. 

Além disso, o uso da simulação computacional permite reduzir custos experimentais e 

riscos associados à implementação de mudanças estruturais. Conforme argumenta Daniel et al. 

(2020), as administrações públicas frequentemente enfrentam barreiras orçamentárias e 

burocráticas que limitam a experimentação direta. Modelar digitalmente o sistema e executar 

simulações representa, nesse contexto, uma alternativa eficiente e segura para testar cenários e 

propor soluções com base empírica, sem necessidade de interferência imediata na realidade 

física. 

A aplicação de tais modelos na gestão de bases de serviços públicos permite, ainda, 

alinhar-se aos princípios de sustentabilidade e inovação. A otimização espacial de recursos 

reduz o consumo energético, diminui deslocamentos desnecessários e melhora a alocação de 

equipes (Almeida et al., 2023). O uso de simulações urbanas integradas a modelos digital twin 

proporciona uma visão preditiva que favorece tanto a eficiência operacional quanto a tomada 

de decisões mais embasadas em evidências científicas e sociais. 

 

1.3 Objetivos 

O presente estudo tem como objetivo geral analisar o uso da simulação computacional 

como ferramenta para avaliar e otimizar as posições de bases de serviços públicos em ambientes 

urbanos, propondo um modelo de localização baseado em digital twin aplicado às bases de táxis 

da Universidade de São Paulo. 

De forma mais específica, busca-se: 

 

1. Identificar o problema operacional e logístico relacionado à ineficiência das bases atuais 

de serviços públicos na universidade, considerando fluxo de demanda e tempo de 

resposta; 

2. Revisar criticamente a literatura sobre métodos de simulação aplicados à Engenharia de 

Produção e à gestão de operações urbanas; 
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3. Aplicar o conceito de digital twin para representar o ambiente urbano e testar diferentes 

configurações de localização de bases; 

4. Comparar o desempenho do modelo atual (AS-IS) com o modelo proposto (TO-BE), 

considerando variáveis de tráfego, distância e tempo médio de atendimento; 

5. Avaliar a eficácia do modelo otimizado em termos de eficiência operacional e potencial 

de replicação em outros contextos de serviços públicos. 

 

Esses objetivos convergem para a construção de um modelo de análise aplicável tanto a 

universidades quanto a administrações municipais, com foco na melhoria contínua da alocação 

de recursos e da prestação de serviços à comunidade (Sampaio, 2025). 

 

1.4 Estrutura do estudo 

A condução deste trabalho segue uma sequência metodológica alinhada aos princípios 

da Engenharia de Produção e às exigências analíticas das simulações urbanas. O 

desenvolvimento da pesquisa ocorre em etapas complementares, estruturadas da seguinte 

forma: A primeira etapa corresponde à identificação do problema, associado à limitação das 

bases de serviços públicos em atender de forma eficiente à demanda de uma universidade com 

alta densidade populacional (Daniel et al., 2020). Essa etapa permite caracterizar o cenário de 

interesse e reconhecer insuficiências operacionais que justificam a necessidade de 

reorganização espacial. 

A segunda etapa envolve a justificativa da relevância e pertinência do problema, 

sustentada pela crescente adoção de técnicas de modelagem computacional no planejamento 

urbano (Almeida et al., 2023). A importância social está relacionada à melhoria da qualidade 

dos serviços prestados, enquanto a importância tecnológica decorre do emprego de simulações 

e modelos de digital twin para representação dinâmica do ambiente de estudo. 

A terceira etapa consiste na organização da literatura especializada, utilizada para 

fundamentar os conceitos técnicos aplicados nas seções posteriores. Esse levantamento foi 

estruturado de maneira criteriosa e registrado por meio de um fluxograma PRISMA adaptado, 

incorporado ao Capítulo 2 como mecanismo de transparência quanto ao processo de seleção 

das referências que compõem a fundamentação teórica (Francisco e Bonette, 2021). Ressalta-

se que tal procedimento não caracteriza uma revisão sistemática, mas sim um método de 

organização conceitual que apoia a definição dos parâmetros de modelagem. 
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Na quarta etapa, realiza-se o levantamento de dados empíricos, abrangendo informações 

sobre fluxo de veículos, tempos médios de atendimento e distribuição espacial das bases 

existentes. Esses dados constituem os insumos necessários para estruturar as simulações e 

possibilitam a comparação entre o cenário atual (AS-IS) e os cenários propostos (TO-BE) 

(Simette, Rezende e Sequeira, 2025). 

A quinta etapa refere-se à proposição de alternativas de redistribuição das bases, 

desenvolvidas a partir dos resultados das simulações. São testados diferentes arranjos espaciais 

considerando variáveis como densidade de demanda, acessibilidade e condições de tráfego, a 

fim de identificar configurações compatíveis com o ambiente físico e capazes de elevar o 

desempenho operacional (Sampaio, 2025). 

A sexta etapa compreende a seleção da configuração mais adequada, fundamentada em 

critérios objetivos, tais como redução de tempos de resposta, otimização de recursos e 

ampliação da cobertura de atendimento. A decisão é tomada com base na análise comparativa 

entre os cenários simulados e nas implicações técnicas e administrativas observadas. 

A sétima e última etapa envolve a avaliação crítica da solução proposta, integrando 

análises quantitativas e qualitativas para verificar a consistência dos resultados e o potencial de 

replicação da metodologia em outros contextos. Essa etapa consolida a aplicabilidade do 

método HALTER à gestão de serviços públicos e aos estudos da Engenharia de Produção 

(Almeida et al., 2023). 

A organização do trabalho está apresentada a seguir: 

 

 Capítulo 1 – Introdução: apresenta a contextualização, motivação, objetivos, método 

geral e estrutura da pesquisa. 

 Capítulo 2 – Fundamentação teórica: reúne cinco eixos conceituais essenciais ao 

estudo e integra a descrição do PRISMA adaptado empregado para organizar a literatura 

utilizada. 

 Capítulo 3 – Metodologia: detalha as etapas da pesquisa, procedimentos de coleta de 

dados, cenários simulados e parâmetros aplicados ao modelo. 

 Capítulo 4 – Resultados e discussão: apresenta comparações entre o cenário atual e as 

alternativas propostas, destacando o desempenho operacional obtido. 

 Capítulo 5 – Conclusão: sintetiza contribuições, limitações e perspectivas de 

continuidade do estudo. 
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Essa estrutura assegura coerência, progressão lógica e rastreabilidade das etapas, 

compatíveis com a natureza aplicada e analítica da abordagem adotada. 
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2. REVISÃO DE LITERATURA 

2.1 Simulação na engenharia de produção e na logística urbana 

A simulação computacional tornou-se uma das principais ferramentas da Engenharia de 

Produção e da logística urbana, especialmente em contextos de tomada de decisão que 

envolvem múltiplas variáveis interdependentes. Essa técnica consiste em reproduzir 

digitalmente sistemas reais para compreender seu comportamento sob diferentes condições e 

intervenções, o que possibilita reduzir custos, otimizar recursos e prever resultados 

operacionais. Na gestão urbana, a simulação tem sido aplicada para modelar fluxos de 

transporte, avaliar desempenho de serviços e projetar estruturas logísticas que respondam de 

forma eficiente à demanda (Baalrsud Hauge e Jeong, 2024). 

Historicamente, o uso da simulação na Engenharia de Produção esteve associado ao 

controle de processos industriais e à otimização de cadeias produtivas. Com o avanço da 

tecnologia computacional e o aumento da capacidade de processamento de dados, seu campo 

de aplicação expandiu-se para o planejamento urbano e os sistemas de transporte, permitindo 

uma abordagem mais sistêmica e realista. Os modelos de simulação são capazes de representar 

dinâmicas complexas, como o comportamento do tráfego e a distribuição espacial de serviços 

públicos, viabilizando análises que antes dependiam de longos períodos de observação empírica 

(Goodwin et al., 2021). 

No contexto da logística urbana, a simulação computacional auxilia na gestão de fluxos 

de materiais e pessoas, oferecendo suporte para decisões estratégicas sobre localização, 

roteirização e dimensionamento de recursos. Essa técnica permite identificar gargalos, testar 

alternativas e prever o impacto de mudanças estruturais, promovendo melhorias operacionais 

contínuas. Conforme salientam Singh et al. (2021), o valor dessa abordagem reside na 

capacidade de reproduzir cenários reais com precisão, reduzindo o risco de falhas e otimizando 

o tempo de resposta das operações urbanas. 

Entre os métodos de simulação mais utilizados estão a simulação de eventos discretos, 

a simulação baseada em agentes e a simulação híbrida. A primeira foca na análise sequencial 

de eventos que ocorrem em determinado sistema, enquanto a segunda introduz variáveis 

comportamentais, modelando agentes que interagem segundo regras definidas. Essa integração 

torna a simulação uma ferramenta poderosa para o planejamento urbano, especialmente em 

contextos de alta densidade, como grandes universidades ou centros metropolitanos (Van 

Heeswijk et al., 2020). 
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A aplicação de modelos baseados em agentes na logística urbana permite compreender 

a interação entre diferentes componentes do sistema — veículos, pedestres e infraestrutura — 

em ambientes dinâmicos e não lineares. Essa abordagem tem se mostrado eficaz para analisar 

o impacto de políticas de mobilidade, reorganização de tráfego e localização de bases 

operacionais. Além disso, possibilita avaliar o comportamento dos usuários e dos prestadores 

de serviço de maneira detalhada, algo essencial para a formulação de estratégias de atendimento 

mais eficientes (Van Heeswijk et al., 2020). 

No âmbito da Engenharia de Produção, a simulação também tem sido empregada como 

instrumento de apoio à inovação e à reconfiguração de sistemas produtivos. Segundo Goodwin 

et al. (2023), o avanço de técnicas de otimização associadas à simulação, como Epsilon Optimal 

Sampling, contribui para a criação de modelos preditivos mais precisos, capazes de adaptar-se 

às condições variáveis dos processos industriais e urbanos. Essa integração entre simulação e 

otimização oferece aos gestores um ambiente virtual de experimentação que reduz custos e 

amplia o potencial de eficiência. 

A utilização da simulação computacional também se destaca por sua aplicabilidade 

interdisciplinar. Na logística urbana, ela é usada tanto em análises estratégicas quanto 

operacionais, apoiando desde o planejamento de longo prazo até o gerenciamento diário das 

operações. A versatilidade da ferramenta permite a criação de modelos adaptáveis, ajustáveis 

conforme a escala do problema ou a disponibilidade de dados. Em ambientes complexos, como 

cidades ou universidades, essa flexibilidade é indispensável para lidar com variáveis que 

mudam em tempo real (Singh et al., 2021). 

O uso de simulações em sistemas de transporte urbano tem evoluído de modelos 

estáticos para representações dinâmicas integradas a dados em tempo real. Esses avanços 

possibilitam a análise de rotas, tempos de espera, consumo de combustível e emissão de 

poluentes, promovendo uma visão abrangente da eficiência operacional. A simulação baseada 

em agentes, por exemplo, permite avaliar o comportamento coletivo em resposta a mudanças 

de infraestrutura, como a realocação de bases de serviços públicos (Baalrsud Hauge e Jeong, 

2024). 

A capacidade de integrar a simulação a processos de aprendizado computacional amplia 

ainda mais seu potencial. Segundo Goodwin et al. (2021), a combinação de simulação e 

aprendizado de máquina cria um ciclo iterativo de aprimoramento, no qual os resultados geram 

dados que retroalimentam o sistema, ajustando continuamente os parâmetros de análise. Essa 

característica é particularmente útil na logística urbana, onde as condições mudam rapidamente 

e as decisões precisam ser adaptadas a partir de novas informações. 
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A aplicação de simulação na análise de processos de coleta e gestão de resíduos urbanos 

também tem se consolidado como uma tendência. O estudo conduzido por Morán-Zabala et al. 

(2024) apresenta um modelo de otimização com base em simulação para o controle de qualidade 

na coleta de resíduos sólidos. O método permite identificar rotas mais eficientes, reduzir custos 

operacionais e minimizar impactos ambientais, mostrando a capacidade dessa técnica de gerar 

soluções aplicáveis tanto a serviços públicos quanto a sistemas produtivos. 

A Engenharia de Produção, ao incorporar ferramentas de simulação, promove uma 

transformação significativa na forma de planejar e avaliar processos. Essa integração possibilita 

uma visão sistêmica dos fluxos produtivos e urbanos, superando a fragmentação tradicional das 

análises. Conforme Santos et al. (2021), a otimização baseada em simulação aplicada a sistemas 

de produção permite não apenas a melhoria da produtividade, mas também o desenvolvimento 

de soluções mais sustentáveis, ajustadas às restrições ambientais e econômicas 

contemporâneas. 

A modelagem e simulação contribuem, ainda, para a análise de incertezas em ambientes 

complexos. Em vez de depender exclusivamente de dados históricos, o pesquisador pode 

introduzir variações controladas nos parâmetros e observar seus efeitos no desempenho do 

sistema. Essa abordagem reduz a dependência de experimentação real e amplia o escopo das 

hipóteses testadas. Souza et al. (2020) destacam que a simulação de processos operacionais de 

minas a céu aberto exemplifica essa capacidade, pois permite antecipar falhas e otimizar a 

utilização de recursos antes da implementação prática. 

O avanço tecnológico tem permitido que as ferramentas de simulação se tornem mais 

acessíveis e interativas. Modelos que antes exigiam alto custo computacional agora podem ser 

executados em plataformas abertas e integradas, o que democratiza seu uso em instituições 

públicas e privadas. Baalrsud Hauge e Jeong (2024) ressaltam que a adoção de softwares de 

código aberto amplia o acesso à simulação aplicada à logística urbana, fomentando a 

colaboração entre universidades, empresas e órgãos públicos. 

Outro aspecto relevante é o uso da simulação como instrumento de participação social 

na formulação de políticas públicas. Singh et al. (2021) propõem um modelo participativo 

baseado em simulação, que permite aos diferentes agentes — gestores, cidadãos e especialistas 

— interagir com os resultados e contribuir para o aperfeiçoamento das decisões. Essa 

abordagem reforça o caráter democrático e colaborativo das ferramentas tecnológicas, 

estimulando o engajamento social no processo de planejamento urbano. 

No campo da logística urbana, a simulação também tem sido utilizada para aprimorar a 

eficiência de sistemas de entrega e transporte coletivo. Van Heeswijk et al. (2020) 
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desenvolveram modelos baseados em agentes para avaliar esquemas de transporte de carga e 

passageiros, identificando oportunidades de melhoria no fluxo de veículos e na redução de 

tempos ociosos. Tal estudo reforça a importância da modelagem como suporte à modernização 

das infraestruturas urbanas. 

A integração entre simulação e otimização operacional representa um avanço 

significativo para a Engenharia de Produção. Essa combinação permite identificar as melhores 

soluções entre um grande conjunto de possibilidades, equilibrando critérios de custo, tempo e 

qualidade. Conforme Goodwin et al. (2023), as técnicas de amostragem otimizadas melhoram 

a precisão dos resultados e reduzem o tempo de processamento, tornando o método aplicável a 

contextos reais de grande escala. 

A análise de processos urbanos complexos, como a localização de bases operacionais, 

exige a consideração de múltiplas variáveis que interagem entre si. A simulação computacional, 

ao reproduzir essas interações, permite testar diferentes cenários e avaliar o impacto de cada 

decisão. Morán-Zabala et al. (2024) demonstram que modelos híbridos, combinando simulação 

e otimização, podem gerar soluções adaptáveis a variações de demanda, mantendo o equilíbrio 

entre custo e eficiência. 

Na gestão de serviços públicos, a simulação também atua como ferramenta de 

diagnóstico. Ao identificar gargalos e sobreposições de recursos, ela orienta a redistribuição de 

equipes e equipamentos de forma mais racional. Essa capacidade de antecipar falhas e propor 

soluções fundamentadas em dados tem fortalecido a adoção de modelos computacionais no 

setor público (Santos et al., 2021). 

Além de sua relevância operacional, a simulação contribui para o aprimoramento 

metodológico da pesquisa aplicada em Engenharia de Produção. Ela possibilita validar teorias, 

testar hipóteses e avaliar impactos de inovações sem necessidade de experimentos reais, o que 

acelera o ciclo de desenvolvimento de soluções tecnológicas (Souza et al., 2020). Essa 

característica reforça o papel da simulação como elo entre o conhecimento teórico e a prática 

profissional. 

A simulação computacional, ao ser empregada em sistemas urbanos, exige a integração 

de dados espaciais, temporais e comportamentais. Essa característica faz dela uma ferramenta 

essencial para a gestão inteligente de cidades, promovendo análises preditivas que auxiliam na 

alocação de recursos e na organização de fluxos logísticos. A utilização de plataformas 

interoperáveis e o avanço dos sistemas de digital twin consolidam a transição para uma 

abordagem de planejamento urbano orientada por evidências (Baalrsud Hauge e Jeong, 2024). 
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Observa-se que o avanço contínuo da simulação na Engenharia de Produção e na 

logística urbana tem impulsionado uma nova forma de gestão baseada em dados e 

experimentação virtual. Os estudos recentes destacam que a integração entre diferentes 

metodologias de modelagem, como eventos discretos e agentes autônomos, amplia a precisão 

e a aplicabilidade das análises. Essa tendência reflete a consolidação da simulação como 

elemento central para o desenvolvimento sustentável e tecnológico das operações urbanas 

(Goodwin et al., 2023). 

 

2.2 Modelos de localização e alocação de serviços públicos 

Os modelos de localização e alocação de serviços públicos representam um campo 

essencial de estudo dentro da Engenharia de Produção e da logística urbana, pois tratam de 

definir o posicionamento ideal de infraestruturas e recursos de modo a maximizar a eficiência 

e minimizar custos. Esses modelos têm origem na teoria da localização industrial e evoluíram 

para abranger problemas de natureza social, ambiental e administrativa, permitindo a alocação 

estratégica de bases operacionais, centros de serviço e instalações públicas. A aplicação desses 

métodos auxilia gestores na tomada de decisão sobre onde posicionar unidades de atendimento, 

considerando acessibilidade, demanda e restrições orçamentárias (Rabe et al., 2020). 

A formulação matemática dos modelos de localização busca encontrar o ponto ótimo 

que minimize a distância média entre os usuários e os serviços oferecidos. Esse princípio, 

denominado minimização do custo de deslocamento, é amplamente utilizado na definição de 

locais para hospitais, escolas, delegacias e bases operacionais. A abordagem tradicional envolve 

o uso de funções objetivo lineares e não lineares, sujeitas a restrições geográficas e de 

capacidade, cuja solução pode ser alcançada por métodos exatos ou heurísticos. Esses modelos 

tornaram-se instrumentos indispensáveis para planejar infraestruturas urbanas mais eficientes e 

sustentáveis (Deineko et al., 2025). 

A evolução das técnicas de modelagem trouxe consigo novas possibilidades, com 

destaque para as heurísticas e metaheurísticas, que oferecem soluções aproximadas em tempo 

computacional reduzido. Métodos como algoritmos genéticos, simulated annealing e busca 

tabu têm sido amplamente aplicados para resolver problemas complexos de localização e 

alocação, especialmente em sistemas de grande escala. Essas técnicas são particularmente úteis 

quando o espaço de soluções é extenso e as variáveis envolvidas apresentam comportamentos 

não lineares, permitindo análises mais realistas em comparação aos métodos puramente 

analíticos (Camargo, 2022). 
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Além da eficiência computacional, a aplicabilidade dos modelos de localização depende 

da qualidade dos dados e das variáveis incluídas. Entre os parâmetros comumente considerados 

estão densidade populacional, tempo de resposta, fluxo de tráfego e distância média de 

atendimento. A combinação desses elementos permite projetar redes de serviços públicos que 

sejam economicamente viáveis e socialmente justas. A incorporação de dados 

georreferenciados e de sistemas de informação geográfica (SIG) tem aprimorado 

significativamente a precisão das análises e a visualização dos resultados (Rabe et al., 2020). 

Na logística urbana, os modelos de localização e alocação desempenham papel 

estratégico na distribuição de serviços e produtos. A definição de pontos de coleta, centros de 

distribuição e bases de operação é fundamental para reduzir tempos de deslocamento e custos 

de transporte. Esses modelos são aplicados não apenas em contextos industriais, mas também 

em políticas públicas, como o posicionamento de bases policiais e unidades de emergência. Em 

tais casos, a eficiência logística está diretamente associada à capacidade de resposta às 

demandas da população, exigindo abordagens que conciliem eficiência operacional e equidade 

social (Lima, Nepomuceno e Turet, 2025). 

Os modelos de localização também podem ser classificados conforme sua estrutura 

matemática e o tipo de decisão envolvida. Entre os principais estão o p-median problem, que 

busca minimizar as distâncias médias de atendimento; o set covering problem, que visa garantir 

cobertura total do território; e o maximal covering location problem, cujo objetivo é maximizar 

o número de usuários atendidos dentro de um raio predefinido. Esses modelos têm sido 

amplamente empregados em estudos urbanos e logísticos, fornecendo resultados consistentes 

que orientam políticas públicas e investimentos em infraestrutura (Deineko et al., 2025). 

Um aspecto central na formulação desses modelos é a definição das restrições que 

limitam o número de instalações e os recursos disponíveis. O balanceamento entre custo de 

instalação e eficiência do atendimento constitui o principal desafio para gestores públicos. 

Nesse sentido, abordagens baseadas em programação linear inteira mista e em métodos 

heurísticos híbridos têm demonstrado elevada eficiência na solução de problemas complexos. 

Esses métodos permitem equilibrar precisão e tempo de execução, tornando-se ferramentas 

viáveis para a análise operacional de sistemas urbanos (Camargo, 2022). 

A abordagem de otimização multiobjetivo vem ganhando destaque por permitir a 

consideração simultânea de múltiplos critérios de decisão, como custo, tempo, equidade e 

sustentabilidade. Essa perspectiva é essencial para a formulação de políticas públicas mais 

abrangentes, que considerem não apenas a eficiência técnica, mas também os impactos sociais 

e ambientais das decisões locacionais. A aplicação de algoritmos de Pareto e técnicas de 
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fronteira eficiente contribui para identificar soluções que atendam simultaneamente a diferentes 

metas de desempenho (El Yaagoubi et al., 2023). 

A integração entre modelos matemáticos e simulação computacional fortalece as 

análises locacionais ao permitir a validação dos resultados sob condições dinâmicas. Em vez de 

limitar-se a soluções estáticas, os modelos híbridos incorporam variações temporais e 

comportamentais, refletindo a natureza mutável dos sistemas urbanos. Essa combinação torna 

possível testar diferentes cenários de tráfego, crescimento populacional e demanda de serviços, 

ampliando a aplicabilidade dos resultados à realidade das cidades contemporâneas (Rabe et al., 

2020). 

Os modelos de alocação são complementares aos de localização, pois tratam da 

distribuição ótima dos recursos disponíveis entre as unidades instaladas. Essa etapa é crucial 

para garantir que as instalações previamente posicionadas operem de forma eficiente e 

equilibrada. A alocação envolve decisões sobre quantidade de pessoal, veículos, equipamentos 

e materiais, de modo a evitar sobrecargas e subutilizações. Assim, a análise conjunta de 

localização e alocação cria uma estrutura integrada de planejamento e gestão operacional (Liu, 

Li e Wang, 2025). 

Na prática, a implementação de modelos de localização e alocação de serviços públicos 

requer dados atualizados e ferramentas analíticas adequadas. O uso de sistemas de apoio à 

decisão, integrados a bancos de dados espaciais, possibilita a automação de cálculos e a 

visualização interativa dos resultados. Essa evolução tecnológica tem reduzido barreiras de 

aplicação e ampliado o alcance dos modelos a gestores municipais e instituições acadêmicas, 

consolidando sua importância no planejamento urbano (Lima, Nepomuceno e Turet, 2025). 

As aplicações contemporâneas desses modelos abrangem desde o planejamento de 

infraestruturas viárias até a gestão de emergências. Em operações de segurança pública, por 

exemplo, o posicionamento de bases operacionais pode ser otimizado para reduzir o tempo de 

resposta em áreas críticas. No setor da saúde, modelos semelhantes são usados para definir 

locais de ambulâncias e unidades de pronto atendimento, maximizando a cobertura e a 

eficiência dos serviços (Deineko et al., 2025). 

O avanço recente na utilização de heurísticas reforça a flexibilidade dos modelos de 

localização. Métodos como busca por colônia de formigas, particle swarm optimization e 

algoritmos de aprendizado profundo estão sendo aplicados para resolver problemas de 

localização complexos, com grandes volumes de dados e múltiplos objetivos. Essas técnicas 

oferecem soluções aproximadas de alta qualidade e podem ser adaptadas a diferentes contextos 
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urbanos e produtivos, demonstrando a versatilidade da Engenharia de Produção na abordagem 

de problemas reais (El Yaagoubi et al., 2023). 

A análise de localização também pode incorporar aspectos de sustentabilidade e justiça 

espacial. Modelos de equidade visam assegurar que a distribuição de serviços públicos ocorra 

de forma proporcional à demanda, evitando a concentração em áreas privilegiadas. Esse tipo de 

abordagem é particularmente importante em cidades com desigualdades socioespaciais 

marcantes, nas quais a distância física pode representar uma barreira de acesso. Assim, a 

modelagem locacional torna-se instrumento de planejamento inclusivo, promovendo maior 

equilíbrio territorial (Van Vliet et al., 2025). 

No campo acadêmico, estudos recentes têm explorado a combinação entre heurísticas e 

aprendizado de máquina para aperfeiçoar modelos de localização. Essa integração permite 

identificar padrões de demanda e ajustar parâmetros de decisão em tempo real. Conforme 

observado por Liu, Li e Wang (2025), a utilização de redes neurais e técnicas de análise 

preditiva potencializa a capacidade dos modelos de antecipar variações na procura e propor 

redistribuições de recursos mais precisas. 

As aplicações de modelos locacionais em universidades e instituições de grande porte 

têm se expandido como resposta à necessidade de gestão eficiente de espaços e serviços. Em 

contextos de alta densidade, como campi universitários, o posicionamento adequado de bases 

de transporte, manutenção e segurança é fundamental para reduzir deslocamentos e otimizar o 

uso de recursos. A modelagem locacional permite projetar layouts mais eficientes e 

sustentáveis, integrando aspectos operacionais e ambientais (Lima, Nepomuceno e Turet, 

2025). 

A análise espacial dos modelos de localização também oferece suporte à elaboração de 

políticas públicas voltadas ao transporte coletivo e à logística de última milha. Estudos recentes 

demonstram que a combinação entre dados de mobilidade e algoritmos de otimização contribui 

para o desenvolvimento de sistemas de transporte mais eficientes e acessíveis. Essa integração 

tecnológica permite a formulação de políticas orientadas por evidências, aumentando a precisão 

das intervenções urbanas (Van Vliet et al., 2025). 

Em contextos urbanos dinâmicos, a natureza estocástica das variáveis de tráfego e 

demanda requer o uso de modelos probabilísticos. Essa abordagem permite lidar com a 

incerteza inerente ao comportamento humano e às variações temporais. Modelos probabilísticos 

incorporam distribuições de probabilidade nos parâmetros de entrada, proporcionando maior 

realismo às simulações e decisões locacionais. Essa característica é essencial para sistemas de 
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transporte e serviços de emergência, nos quais a imprevisibilidade é constante (Deineko et al., 

2025). 

A aplicabilidade dos modelos de localização e alocação também está relacionada à 

capacidade de integração com outras ferramentas analíticas, como a simulação e o digital twin. 

A combinação dessas metodologias gera ambientes virtuais que permitem testar políticas de 

realocação e verificar seus efeitos antes da implementação prática. Essa integração reforça a 

perspectiva sistêmica da Engenharia de Produção, aproximando o planejamento estratégico da 

execução operacional (Camargo, 2022). 

A abordagem multicritério é outro avanço relevante, pois permite que diferentes 

dimensões da decisão — econômicas, sociais e ambientais — sejam ponderadas de forma 

equilibrada. Técnicas como o Analytic Hierarchy Process (AHP) e o Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) têm sido incorporadas aos modelos de 

localização para apoiar decisões complexas e transparentes. Esses métodos favorecem a 

participação de diferentes agentes no processo decisório, fortalecendo a governança das 

políticas públicas (El Yaagoubi et al., 2023). 

O futuro dos modelos de localização e alocação de serviços públicos tende a ser marcado 

pela integração de dados em tempo real e pelo uso de sistemas inteligentes de apoio à decisão. 

A coleta contínua de informações por meio de sensores e plataformas digitais permitirá 

atualizações instantâneas dos modelos, ajustando-os conforme as variações de demanda e 

condições operacionais. Essa evolução aponta para um planejamento urbano mais dinâmico, 

adaptativo e sustentado por evidências (Liu, Li e Wang, 2025). 

A adoção crescente dessas ferramentas no setor público reflete uma mudança cultural 

na gestão das cidades. O planejamento baseado em modelos matemáticos e heurísticos substitui 

práticas intuitivas e fragmentadas, fortalecendo a racionalidade técnica das decisões 

administrativas. Essa transformação, ancorada na Engenharia de Produção, contribui para a 

criação de cidades mais organizadas, equitativas e sustentáveis (Lima, Nepomuceno e Turet, 

2025). 

 

2.3 Aplicação do digital twin em ambientes urbanos 

O conceito de digital twin (gêmeo digital) representa uma das inovações mais 

significativas na transformação das cidades em ecossistemas inteligentes. Trata-se de uma 

réplica virtual de um sistema físico, construída com base em dados reais, capaz de simular o 

comportamento, prever falhas e otimizar o desempenho de infraestruturas urbanas. Essa 
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tecnologia permite criar modelos digitais dinâmicos que interagem continuamente com o 

ambiente real, processando informações em tempo real por meio de sensores e plataformas 

conectadas, o que possibilita um gerenciamento mais eficiente dos serviços públicos e da 

infraestrutura urbana (Ferré-Bigorra, Casals e Gangolells, 2022). 

A aplicação do digital twin em cidades inteligentes decorre da evolução da Internet das 

Coisas (IoT) e da integração entre sistemas cibernéticos e físicos. Essa convergência 

tecnológica cria uma representação digital fiel do ambiente urbano, facilitando o 

monitoramento, o planejamento e a execução de políticas públicas. A principal vantagem do 

uso dessa abordagem é a capacidade de antecipar problemas antes que eles ocorram, permitindo 

ações preventivas em áreas como mobilidade, energia e saneamento. A modelagem baseada em 

gêmeos digitais transforma dados dispersos em informações estratégicas que auxiliam a tomada 

de decisão (Huang, Zhang e Zeng, 2022). 

O conceito de digital twin foi inicialmente aplicado na indústria manufatureira, com o 

propósito de otimizar a produção e o ciclo de vida dos produtos. Nos últimos anos, essa 

tecnologia passou a ser utilizada na gestão de cidades, possibilitando a criação de plataformas 

digitais que representam sistemas urbanos complexos. Por meio dessas plataformas, gestores 

podem visualizar o comportamento de redes de transporte, fluxos de energia e padrões de 

ocupação territorial em tempo real. Essa perspectiva amplia a capacidade analítica das 

administrações públicas e promove maior eficiência na utilização de recursos (Bariah, Sari e 

Debbah, 2022). 

Um dos diferenciais do gêmeo digital é a integração entre dados geoespaciais, sensores 

de campo e algoritmos preditivos. Essa combinação cria um sistema autônomo de aprendizado 

contínuo, capaz de identificar padrões e ajustar-se a mudanças no ambiente. No contexto da 

mobilidade urbana, por exemplo, o digital twin pode simular diferentes fluxos de tráfego, 

avaliando o impacto de obras, acidentes ou políticas de restrição veicular antes de sua 

implementação. Essa abordagem reduz custos, evita interrupções desnecessárias e otimiza o 

desempenho operacional (Shirowzhan, Tan e Sepasgozar, 2020). 

A utilização de gêmeos digitais em sistemas de transporte urbano contribui para a 

criação de cidades mais seguras e eficientes. A simulação em tempo real permite monitorar o 

trânsito, prever congestionamentos e redirecionar fluxos de forma automática, considerando 

fatores como demanda, velocidade média e capacidade viária. O cruzamento de dados históricos 

com informações captadas por sensores e câmeras facilita o planejamento de rotas alternativas 

e a priorização de transportes coletivos e de emergência (Ford e Wolf, 2020). 
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Além da mobilidade, o digital twin tem sido amplamente utilizado na gestão de energia 

urbana. Os modelos digitais permitem simular o consumo energético de bairros inteiros, 

identificar pontos de desperdício e testar cenários de eficiência baseados em fontes renováveis. 

Essa integração entre dados energéticos e ambientais fortalece a transição para cidades mais 

sustentáveis. Sistemas que utilizam inteligência artificial para otimizar o uso de energia elétrica 

em tempo real, com base em dados do gêmeo digital, demonstram redução significativa nos 

custos operacionais e nas emissões de carbono (Huang, Zhang e Zeng, 2022). 

A aplicação do gêmeo digital também se estende à infraestrutura subterrânea, 

tradicionalmente difícil de monitorar e gerenciar. Modelos tridimensionais de túneis, redes 

hidráulicas e sistemas elétricos, quando associados ao digital twin, permitem prever falhas e 

planejar manutenções com precisão. Essa capacidade de antecipação é essencial para reduzir 

interrupções e custos relacionados à infraestrutura urbana, especialmente em áreas de alta 

densidade populacional (Babanagar et al., 2025). 

Nos últimos anos, observa-se uma tendência crescente de adoção de digital twins 

integrados a sistemas de comunicação sem fio e redes 5G. Essa combinação viabiliza a 

transmissão contínua de dados em alta velocidade, aumentando a capacidade de resposta dos 

sistemas urbanos inteligentes. As cidades que adotam essa abordagem criam um ecossistema 

digital interconectado, em que o ambiente físico e o virtual operam de forma sinérgica, 

permitindo o gerenciamento em tempo real de serviços essenciais como iluminação, tráfego e 

saneamento (Bariah, Sari e Debbah, 2022). 

O digital twin também é aplicado na modelagem de edificações inteligentes e sistemas 

de monitoramento ambiental. Essa tecnologia possibilita avaliar o desempenho estrutural de 

edifícios, prever desgaste de materiais e otimizar o uso de recursos hídricos e energéticos. Em 

ambientes urbanos, os modelos digitais de edificações integram-se ao contexto da cidade 

inteligente, oferecendo informações essenciais para o planejamento urbano sustentável e a 

redução de impactos ambientais (Ferré-Bigorra, Casals e Gangolells, 2022). 

A consolidação dos gêmeos digitais em contextos urbanos demanda uma arquitetura 

tecnológica baseada na interoperabilidade entre sistemas. Para que o modelo digital funcione 

de forma eficaz, é necessário que diferentes plataformas possam trocar dados em tempo real, 

sem perdas de informação. Essa interconexão depende da padronização de protocolos e da 

integração de bases de dados públicas e privadas, o que exige planejamento institucional e 

políticas de governança digital bem estruturadas (Petrova-Antonova e Ilieva, 2020). 

A incorporação de digital twins na administração pública representa uma oportunidade 

para a modernização da gestão urbana. Esses sistemas permitem visualizar o impacto das 
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decisões antes de sua implementação, facilitando a avaliação de políticas e investimentos. Em 

setores como habitação, saneamento e segurança pública, o gêmeo digital atua como um 

laboratório virtual que reduz riscos e otimiza o uso dos recursos públicos. Essa aplicação reforça 

a importância de políticas integradas de inovação e tecnologia no contexto municipal (Mulpuru, 

Bhattacharya e Barat, 2025). 

Os gêmeos digitais também desempenham papel relevante na mitigação de desastres 

naturais e no gerenciamento de crises. Por meio da simulação em tempo real, é possível prever 

o comportamento de eventos como inundações, incêndios e falhas elétricas, permitindo 

respostas mais rápidas e coordenadas. A integração entre sensores, sistemas de previsão 

climática e plataformas digitais fortalece a resiliência das cidades, tornando-as mais preparadas 

para lidar com emergências (Ford e Wolf, 2020). 

Outra aplicação relevante é o uso do digital twin na criação de ambientes urbanos 

voltados à inclusão e ao bem-estar. Modelos digitais de bairros e espaços públicos têm sido 

utilizados para planejar infraestruturas acessíveis e adaptadas às necessidades de populações 

vulneráveis, como idosos e pessoas com deficiência. Essas aplicações demonstram o potencial 

da tecnologia para promover a equidade urbana e melhorar a qualidade de vida da população 

(Villanueva-Merino et al., 2024). 

A integração entre digital twin e inteligência artificial amplia a capacidade de análise e 

previsão dos sistemas urbanos. Algoritmos de aprendizado de máquina processam grandes 

volumes de dados provenientes de sensores e dispositivos conectados, identificando padrões 

que indicam falhas, gargalos ou oportunidades de melhoria. Essa combinação cria um ciclo de 

aprendizado contínuo, em que o gêmeo digital se torna cada vez mais preciso e adaptável às 

condições do ambiente (Wang et al., 2024). 

A interoperabilidade entre diferentes camadas do digital twin é um desafio recorrente 

nas aplicações urbanas. A necessidade de unificar dados de transporte, energia, meio ambiente 

e infraestrutura demanda soluções de arquitetura digital flexíveis. Iniciativas que adotam 

modelos abertos de dados e padronização de interfaces vêm obtendo avanços significativos na 

criação de plataformas integradas, promovendo maior colaboração entre os setores público e 

privado (Jeddoúb et al., 2023). 

Além de promover eficiência, os gêmeos digitais contribuem para a transparência e a 

governança participativa. A disponibilização de modelos urbanos digitais acessíveis ao público 

permite que cidadãos e pesquisadores visualizem dados em tempo real, participando de decisões 

sobre planejamento e gestão. Essa abertura estimula a corresponsabilidade e fortalece o 
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engajamento social na construção de cidades mais inteligentes e sustentáveis (Peldon et al., 

2024). 

Os gêmeos digitais também encontram aplicações relevantes em sistemas de saúde 

pública urbana. Modelos digitais de hospitais e redes de atendimento permitem simular fluxos 

de pacientes, otimizar o uso de leitos e prever demandas em situações de emergência. Essa 

capacidade de antecipação é crucial para garantir o funcionamento eficiente dos serviços de 

saúde e reduzir o tempo de resposta em casos críticos (Laamarti et al., 2020). 

O digital twin é igualmente promissor para o setor agrícola urbano e periurbano, 

especialmente no contexto das cidades que buscam segurança alimentar. Modelos digitais de 

cultivo monitoram variáveis como temperatura, umidade e nutrientes do solo, ajustando 

automaticamente as condições para maximizar a produtividade. Essa integração entre natureza 

e tecnologia reforça o conceito de cidades inteligentes resilientes e sustentáveis (Mohapatra et 

al., 2025). 

A implementação do digital twin exige uma infraestrutura de dados robusta e políticas 

de segurança cibernética adequadas. O armazenamento e a manipulação de grandes volumes de 

informações sensíveis tornam a proteção dos sistemas um fator determinante para seu sucesso. 

Estratégias de criptografia, autenticação e controle de acesso são essenciais para evitar 

vulnerabilidades e garantir a integridade dos dados. Essa preocupação cresce à medida que os 

gêmeos digitais se tornam parte essencial da infraestrutura urbana (Shafik, 2025). 

O potencial do gêmeo digital para transformar a forma como as cidades são planejadas 

e administradas está diretamente relacionado à sua capacidade de aprendizado contínuo. A cada 

ciclo de coleta e análise de dados, o modelo se torna mais preciso, refletindo com fidelidade o 

comportamento real da cidade. Essa característica torna possível testar políticas públicas, prever 

impactos ambientais e aprimorar processos de governança, promovendo uma gestão urbana 

baseada em evidências (Ferré-Bigorra, Casals e Gangolells, 2022). 

Os gêmeos digitais aplicados à gestão de recursos naturais e infraestrutura hídrica 

possibilitam monitoramento detalhado e previsão de falhas. Ao modelar sistemas de 

distribuição de água e saneamento, as administrações conseguem identificar vazamentos, 

ajustar pressões e otimizar o consumo. Essa abordagem contribui para a conservação dos 

recursos e a redução de custos, alinhando-se aos objetivos de desenvolvimento sustentável 

propostos para as cidades inteligentes (Huang, Zhang e Zeng, 2022). 

A utilização de digital twins em projetos urbanos também promove a integração entre 

planejamento e execução de obras. Modelos digitais de infraestrutura permitem simular todo o 

ciclo de vida de um projeto, desde o planejamento até a manutenção, garantindo maior controle 
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sobre prazos e orçamentos. Essa metodologia, conhecida como Building Information Modeling 

(BIM), quando associada ao digital twin, amplia o nível de detalhamento e a precisão das 

análises, proporcionando uma visão holística do ambiente urbano (Petrova-Antonova e Ilieva, 

2020). 

O digital twin redefine a forma como as cidades são compreendidas e geridas. Sua 

capacidade de integrar, simular e prever torna essa tecnologia um elemento-chave para o 

desenvolvimento de cidades inteligentes, resilientes e sustentáveis. As aplicações vão desde a 

gestão do tráfego e energia até o planejamento social e ambiental, transformando dados em 

conhecimento estratégico. À medida que os sistemas digitais se tornam mais interconectados e 

inteligentes, o gêmeo digital consolida-se como uma das ferramentas mais promissoras para o 

futuro da gestão urbana (Villanueva-Merino et al., 2024). 

 

2.4 Avaliação de desempenho e eficiência operacional 

A avaliação de desempenho e eficiência operacional constitui um dos pilares da 

Engenharia de Produção e da gestão urbana moderna, uma vez que fornece as bases 

quantitativas e qualitativas para a tomada de decisão e o aprimoramento contínuo de processos. 

A mensuração de desempenho envolve a definição de métricas e indicadores que refletem o 

grau de atingimento dos objetivos organizacionais e operacionais. No contexto urbano, essa 

análise é indispensável para o gerenciamento de serviços públicos, transporte, energia e 

logística, enquanto, no ambiente produtivo, orienta o uso racional de recursos e a melhoria da 

qualidade e produtividade (Santos et al., 2020). 

A eficiência operacional pode ser compreendida como a relação entre os resultados 

obtidos e os recursos empregados para alcançá-los. Trata-se de um conceito que ultrapassa a 

simples produtividade, abrangendo a capacidade de realizar atividades de forma sustentável e 

integrada. Em sistemas urbanos e produtivos, essa eficiência está diretamente associada à 

redução de desperdícios, à otimização do tempo de resposta e ao aumento da confiabilidade das 

operações. O desafio consiste em construir modelos de avaliação que sejam capazes de capturar 

a complexidade e a variabilidade das atividades envolvidas (Vieira e Santos, 2025). 

A utilização de métricas e indicadores de desempenho é essencial para traduzir os 

resultados operacionais em informações gerenciais. Esses indicadores podem ser classificados 

em categorias como eficiência técnica, eficácia, qualidade, flexibilidade e sustentabilidade. No 

ambiente urbano, incluem variáveis como tempo médio de atendimento, taxa de cobertura de 

serviços, nível de satisfação do usuário e custo operacional. Já na Engenharia de Produção, 
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envolvem indicadores de rendimento, disponibilidade de máquinas, produtividade de mão de 

obra e perdas energéticas (Hijry, 2024). 

Entre as metodologias mais empregadas na mensuração de desempenho destaca-se a 

Data Envelopment Analysis (DEA), uma técnica que permite avaliar a eficiência relativa de 

unidades produtivas ou de serviço com base em múltiplas entradas e saídas. Essa abordagem 

possibilita comparar o desempenho entre diferentes organizações ou departamentos, 

identificando quais operam na fronteira de eficiência e quais necessitam de ajustes. A DEA tem 

sido amplamente utilizada em estudos de logística, saúde, educação e transporte, consolidando-

se como ferramenta de gestão pública e empresarial (Vieira e Santos, 2025). 

A integração de modelos de simulação e indicadores de desempenho potencializa a 

capacidade analítica das organizações. A simulação fornece dados dinâmicos sobre o 

comportamento dos sistemas, enquanto os indicadores traduzem esses dados em métricas 

objetivas de eficiência. Essa combinação permite prever resultados, testar alternativas e 

quantificar os impactos de decisões estratégicas antes de sua implementação. A aplicação 

conjunta dessas ferramentas promove uma cultura de decisão orientada por evidências e 

baseada em dados empíricos (Santos et al., 2020). 

Em ambientes urbanos inteligentes, a avaliação de desempenho se apoia cada vez mais 

em dados coletados por sensores, sistemas de Internet das Coisas (IoT) e plataformas digitais. 

Esses dispositivos permitem monitorar em tempo real o funcionamento de infraestruturas como 

redes de transporte, iluminação pública e abastecimento de água. O uso de algoritmos analíticos 

sobre esses dados viabiliza a construção de indicadores automáticos que apontam falhas, 

gargalos e oportunidades de melhoria, fortalecendo a gestão baseada em evidências (Hijry, 

2024). 

A transformação digital trouxe consigo novos paradigmas para a avaliação de 

desempenho, impulsionando o surgimento de métricas preditivas e adaptativas. Diferentemente 

das métricas tradicionais, que refletem o passado, as métricas inteligentes baseiam-se em 

aprendizado de máquina e modelagem preditiva para antecipar variações no desempenho. Essa 

abordagem tem sido utilizada para ajustar automaticamente processos produtivos, otimizar 

rotas logísticas e redistribuir recursos urbanos conforme padrões de demanda emergentes (Lan 

et al., 2025). 

A aplicação da inteligência artificial (IA) e do machine learning nos processos de 

avaliação operacional possibilita uma análise mais precisa e dinâmica dos sistemas. Por meio 

da coleta e tratamento contínuo de dados, essas tecnologias conseguem identificar correlações 

complexas entre variáveis e gerar indicadores mais sensíveis às mudanças do ambiente. Essa 
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capacidade analítica aprimorada é especialmente útil em contextos urbanos, onde as condições 

de tráfego, clima e comportamento populacional sofrem variações constantes (Xu et al., 2025). 

A análise de eficiência em sistemas urbanos requer uma visão integrada dos fatores que 

influenciam o desempenho operacional. Elementos como infraestrutura, tecnologia, gestão e 

comportamento dos usuários devem ser avaliados em conjunto para evitar conclusões parciais. 

Modelos híbridos de análise — que combinam dados históricos, simulações e previsões — vêm 

se consolidando como instrumentos mais eficazes para mensurar e aprimorar a eficiência dos 

serviços públicos e das operações logísticas (Santos et al., 2020). 

Em ambientes produtivos, a eficiência é frequentemente avaliada por meio do indicador 

OEE (Overall Equipment Effectiveness), que mede a eficácia global dos equipamentos. Esse 

índice considera três dimensões principais: disponibilidade, desempenho e qualidade. A 

aplicação do OEE permite identificar perdas ocultas e medir a utilização real dos ativos, 

orientando ações corretivas e preventivas. Essa métrica, amplamente difundida na manufatura, 

tem sido adaptada também para operações urbanas, como sistemas de transporte e infraestrutura 

energética (Lan et al., 2025). 

A eficiência operacional não se limita ao desempenho técnico das operações, mas inclui 

também aspectos relacionados à governança e à gestão de recursos humanos. A motivação das 

equipes, a clareza dos processos e a coordenação entre setores são variáveis determinantes para 

o alcance de bons resultados. A literatura recente enfatiza a importância de indicadores 

qualitativos, como clima organizacional e engajamento, que complementam as métricas 

quantitativas tradicionais, oferecendo uma visão mais completa da performance institucional 

(Vieira e Santos, 2025). 

A aplicação de sistemas de avaliação contínua tem permitido que as organizações 

públicas e privadas adotem ciclos de melhoria baseados em feedback. Esse processo, conhecido 

como continuous performance monitoring, utiliza dados em tempo real para identificar desvios 

e implementar ajustes imediatos. Em cidades inteligentes, essa metodologia é essencial para 

garantir que serviços como transporte, saneamento e segurança funcionem de forma estável e 

previsível. A capacidade de resposta rápida aumenta a resiliência das operações e reduz os 

impactos de falhas (Hijry, 2024). 

A análise comparativa de desempenho, ou benchmarking, é uma prática consolidada 

que busca identificar as melhores práticas entre diferentes unidades operacionais. Essa técnica 

consiste em comparar indicadores de desempenho e identificar fatores de sucesso que possam 

ser replicados. Em sistemas urbanos, o benchmarking auxilia na definição de metas realistas e 



32 
 

na priorização de investimentos, enquanto em ambientes produtivos promove a padronização 

de processos e o compartilhamento de inovações (Santos et al., 2020). 

Modelos baseados em digital twin também têm sido utilizados para medir o desempenho 

operacional em ambientes urbanos. Esses modelos criam réplicas digitais de sistemas reais e 

permitem testar o impacto de alterações estruturais antes de sua execução prática. No contexto 

de transporte, energia e saneamento, os gêmeos digitais possibilitam a identificação de gargalos 

operacionais e a avaliação de indicadores de desempenho sob diferentes condições, aumentando 

a precisão das decisões de planejamento (Hijry, 2024). 

A integração de indicadores de sustentabilidade à avaliação de desempenho é uma 

tendência que reflete a crescente preocupação com os impactos ambientais e sociais das 

operações. Indicadores de emissões de carbono, eficiência energética e uso racional de recursos 

naturais têm sido incorporados aos sistemas de mensuração, proporcionando uma visão mais 

abrangente da eficiência. Essa abordagem é fundamental para alinhar as estratégias 

operacionais aos objetivos globais de desenvolvimento sustentável (Lan et al., 2025). 

A avaliação de desempenho também envolve desafios relacionados à coleta e 

confiabilidade dos dados. Em sistemas complexos, a heterogeneidade das fontes e a 

variabilidade dos registros podem comprometer a consistência das análises. Para superar essas 

limitações, recomenda-se a adoção de protocolos padronizados de medição e o uso de 

tecnologias de armazenamento distribuído, como blockchain, que garantem a integridade e a 

rastreabilidade das informações utilizadas nas avaliações (Xu et al., 2025). 

No setor público, a mensuração da eficiência deve considerar não apenas o custo-

benefício, mas também o impacto social das políticas implementadas. Indicadores como 

acessibilidade, equidade e satisfação do cidadão complementam os índices de desempenho 

técnico e financeiro. Essa perspectiva reforça o princípio de que eficiência não se resume à 

redução de custos, mas envolve também a entrega de valor público de maneira transparente e 

sustentável (Vieira e Santos, 2025). 

A análise de desempenho em redes logísticas urbanas é particularmente desafiadora 

devido à multiplicidade de atores e às variáveis externas que afetam o sistema. Modelos 

baseados em inteligência artificial e big data têm sido utilizados para captar essas complexas 

inter-relações, permitindo o cálculo de métricas de desempenho mais precisas. Esses modelos 

auxiliam na identificação de pontos de congestão, falhas de sincronização e oportunidades de 

otimização de rotas e recursos (Xu et al., 2025). 

Em contextos industriais e urbanos, a integração entre indicadores operacionais e 

estratégicos constitui um diferencial competitivo. A utilização de dashboards interativos e 
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sistemas de visualização de dados facilita o acompanhamento do desempenho em múltiplos 

níveis hierárquicos. Essas plataformas permitem que gestores visualizem, em tempo real, o 

desempenho global e o desempenho de subsistemas, favorecendo uma gestão mais ágil e 

orientada a resultados (Lan et al., 2025). 

A introdução de modelos de aprendizado profundo nas análises de eficiência 

operacional representa um avanço significativo. Esses algoritmos conseguem identificar 

padrões ocultos nos dados e prever falhas antes que elas ocorram, aumentando a confiabilidade 

dos sistemas. A aplicação dessas técnicas em operações urbanas e industriais tem resultado em 

reduções expressivas de custos e aumento da disponibilidade de equipamentos e serviços (Xu 

et al., 2025). 

A avaliação de desempenho e eficiência operacional é um processo dinâmico que deve 

evoluir continuamente para acompanhar as transformações tecnológicas e organizacionais. A 

integração entre inteligência artificial, simulação, digital twins e indicadores de 

sustentabilidade redefine os parâmetros de mensuração e controle. A eficiência passa a ser 

compreendida não apenas como produtividade, mas como capacidade adaptativa, inovação e 

geração de valor público e social. Essa perspectiva consolida a avaliação de desempenho como 

instrumento essencial para o desenvolvimento urbano e produtivo (Santos et al., 2020). 

 

2.5 Otimização de fluxos e tomada de decisão baseada em simulação 

A otimização de fluxos e a tomada de decisão baseada em simulação constituem 

abordagens fundamentais na Engenharia de Produção e na logística urbana contemporânea. 

Essas técnicas permitem modelar sistemas complexos, testar estratégias alternativas e 

identificar soluções que maximizem a eficiência operacional e o uso racional de recursos. A 

combinação entre simulação e métodos de otimização tem transformado a forma como gestores 

e planejadores compreendem e intervêm em sistemas produtivos e urbanos, integrando 

tecnologia, análise de dados e inteligência artificial para fundamentar decisões precisas e 

sustentáveis (Camargo, 2022). 

A otimização de fluxos refere-se ao processo de identificar a melhor configuração 

possível para o movimento de materiais, informações ou pessoas dentro de um sistema. Em 

ambientes urbanos e produtivos, isso envolve o planejamento de rotas, o balanceamento de 

carga e a minimização de custos de transporte e tempo de operação. Quando associada à 

simulação, essa técnica ganha uma dimensão dinâmica, permitindo que os modelos considerem 
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variáveis reais, como congestionamentos, falhas e flutuações de demanda. Essa integração 

amplia a capacidade preditiva e estratégica das decisões (Moreno et al., 2025). 

Os modelos de simulação atuam como laboratórios virtuais que reproduzem o 

comportamento de sistemas reais sob diferentes condições operacionais. Essa característica 

torna possível avaliar o impacto de decisões antes de sua implementação prática, reduzindo 

riscos e custos. Na tomada de decisão, a simulação auxilia na escolha de alternativas que 

atendam a múltiplos objetivos, como eficiência econômica, sustentabilidade e qualidade de 

serviço. Dessa forma, os tomadores de decisão dispõem de um instrumento que combina 

experimentação virtual com análise quantitativa de resultados (Santos et al., 2021). 

A otimização multiobjetivo tem assumido papel central no planejamento de operações 

complexas, pois permite equilibrar metas potencialmente conflitantes. Diferentemente da 

otimização tradicional, que busca uma única solução ótima, a abordagem multiobjetivo procura 

identificar um conjunto de soluções de Pareto — aquelas que não podem ser melhoradas em 

um critério sem piorar outro. Essa técnica é particularmente útil em contextos urbanos, onde 

eficiência, custo e impacto ambiental precisam ser conciliados em decisões de infraestrutura e 

mobilidade (Camargo, 2022). 

Os métodos heurísticos e metaheurísticos, como algoritmos genéticos, enxame de 

partículas e busca tabu, têm se mostrado eficazes para resolver problemas de otimização de 

fluxos com múltiplos objetivos. Esses algoritmos inspiram-se em processos naturais e sociais 

para explorar vastos espaços de solução, encontrando alternativas próximas ao ótimo global. 

Quando combinados com a simulação, permitem testar milhares de cenários em tempo 

reduzido, o que potencializa a capacidade de adaptação dos modelos a ambientes urbanos 

dinâmicos e incertos (Goodwin et al., 2023). 

A tomada de decisão baseada em simulação depende fortemente da qualidade dos dados 

e da representação realista do sistema. Modelos bem calibrados utilizam dados históricos e em 

tempo real para ajustar parâmetros e validar resultados. A integração entre plataformas de 

simulação e sistemas de informação, como Enterprise Resource Planning (ERP) e Geographic 

Information Systems (GIS), viabiliza uma análise abrangente que combina aspectos 

operacionais, espaciais e estratégicos. Essa sinergia permite uma visão sistêmica do fluxo de 

operações e apoia decisões com base em evidências (Moreno et al., 2025). 

O avanço da inteligência artificial (IA) trouxe novas possibilidades para a otimização 

de fluxos e a tomada de decisão em ambientes simulados. A IA é capaz de aprender padrões 

complexos a partir de grandes volumes de dados, ajustar parâmetros automaticamente e propor 

soluções adaptativas. Essa característica é essencial em sistemas urbanos, onde a variabilidade 
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é alta e as condições mudam em tempo real. Técnicas como deep learning e reinforcement 

learning são amplamente aplicadas para prever demandas, ajustar fluxos e otimizar o uso de 

recursos (Lan et al., 2025). 

O uso de reinforcement learning (aprendizado por reforço) tem se destacado por 

permitir que os sistemas de simulação aprendam com a experiência, sem depender de modelos 

analíticos pré-definidos. O algoritmo interage com o ambiente virtual, testando diferentes ações 

e aprendendo quais geram melhores resultados de desempenho. Essa abordagem é 

especialmente útil para o controle de tráfego, o gerenciamento de estoques e o roteamento de 

veículos, pois possibilita o aperfeiçoamento contínuo das decisões a partir do feedback dos 

próprios sistemas (Goodwin et al., 2023). 

A otimização de fluxos em contextos urbanos requer a consideração simultânea de 

múltiplas dimensões — espacial, temporal e operacional. A combinação entre simulação e IA 

permite capturar a interação entre essas dimensões, viabilizando decisões mais eficientes e 

flexíveis. Por exemplo, em redes de transporte público, os modelos podem analisar o efeito de 

novas linhas, intervalos de operação e variações de demanda, ajustando o planejamento de 

acordo com a realidade observada. Essa abordagem orientada a dados reforça a racionalidade 

técnica e a sustentabilidade das políticas públicas (Almeida et al., 2023). 

As técnicas de apoio à decisão baseadas em simulação e otimização multiobjetivo 

também têm sido aplicadas em processos industriais. Em sistemas produtivos, a simulação 

permite identificar gargalos, balancear linhas de produção e testar configurações alternativas 

sem interromper as operações. A aplicação de métodos de otimização possibilita alcançar maior 

rendimento e redução de custos, ajustando a alocação de recursos conforme as restrições de 

capacidade e demanda. Essa integração melhora o planejamento operacional e reduz 

desperdícios (Santos et al., 2021). 

A utilização de ferramentas de simulação combinadas a algoritmos de otimização 

contribui para o desenvolvimento de modelos preditivos robustos. Esses modelos permitem 

prever o comportamento de sistemas complexos sob diferentes condições e identificar 

tendências futuras. Quando aliados à IA, tornam-se capazes de ajustar-se automaticamente às 

mudanças nas variáveis externas, criando sistemas autônomos de controle e decisão. Essa 

abordagem é essencial em contextos como transporte urbano, energia e logística de suprimentos 

(Lan et al., 2025). 

A aplicação de técnicas de otimização em fluxos urbanos e produtivos também está 

associada ao conceito de resiliência operacional. Modelos baseados em simulação permitem 

identificar vulnerabilidades e testar respostas a eventos disruptivos, como falhas em 
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equipamentos ou interrupções na cadeia de suprimentos. A otimização, por sua vez, propõe 

soluções alternativas que restabelecem o equilíbrio do sistema com o mínimo impacto possível. 

Essa capacidade de adaptação é um diferencial para a gestão moderna de operações (Camargo, 

2022). 

A integração da simulação com modelos de otimização é frequentemente 

operacionalizada por meio de abordagens híbridas, nas quais a simulação fornece dados para 

alimentar o processo de otimização, e os resultados da otimização retroalimentam a simulação. 

Esse ciclo iterativo permite refinar continuamente as soluções até alcançar níveis desejáveis de 

desempenho. O uso de plataformas híbridas tem se expandido em áreas como planejamento 

urbano, manufatura avançada e gestão de energia (Goodwin et al., 2023). 

A tomada de decisão baseada em simulação também se beneficia de métodos 

multicritério, como o Analytic Hierarchy Process (AHP) e o Technique for Order Preference 

by Similarity to Ideal Solution (TOPSIS). Esses métodos auxiliam na ponderação de diferentes 

objetivos, permitindo avaliar alternativas sob diversos critérios de desempenho. Quando 

combinados com simulação, oferecem uma estrutura sistemática para priorizar ações e 

selecionar políticas operacionais mais adequadas, reduzindo a subjetividade nas decisões 

(Almeida et al., 2023). 

Em ambientes urbanos complexos, a otimização de fluxos depende da capacidade de 

integrar informações provenientes de diferentes fontes. A interoperabilidade entre sistemas de 

transporte, energia e comunicação é essencial para coordenar decisões de forma eficiente. A 

utilização de gêmeos digitais (digital twins) e plataformas de simulação integradas permite 

analisar interdependências entre setores e prever os impactos cruzados das intervenções. Essa 

abordagem aumenta a precisão das decisões e promove um planejamento mais sustentável 

(Moreno et al., 2025). 

No âmbito industrial, as técnicas de otimização baseadas em simulação têm sido 

empregadas para planejar operações personalizadas e adaptativas. Modelos de manufatura 

inteligente utilizam simulação para projetar a configuração ideal de linhas de produção, levando 

em conta restrições de recursos e variabilidade de demanda. Com o apoio da IA, esses modelos 

tornam-se capazes de reconfigurar automaticamente o fluxo produtivo em tempo real, 

assegurando maior produtividade e flexibilidade (Lan et al., 2025). 

A integração entre IA e simulação cria um ambiente de apoio à decisão que aprende 

com os resultados e aprimora continuamente as estratégias de otimização. A combinação entre 

dados históricos, simulação em tempo real e algoritmos de aprendizado supervisionado permite 

prever a eficácia de diferentes políticas operacionais e ajustar parâmetros automaticamente. 
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Essa convergência entre automação e análise inteligente impulsiona a transformação digital da 

gestão de operações (Goodwin et al., 2023). 

Os modelos de simulação e otimização também têm contribuído para a redução do 

impacto ambiental das operações urbanas e industriais. Ao analisar cenários alternativos de 

transporte, produção e distribuição, é possível identificar soluções que minimizam o consumo 

de energia e as emissões de poluentes sem comprometer o desempenho. A otimização 

multiobjetivo fornece suporte à implementação de estratégias sustentáveis que equilibram 

eficiência e responsabilidade ambiental (Camargo, 2022). 

No campo das políticas públicas, a utilização de modelos baseados em simulação e 

otimização tem favorecido a formulação de estratégias mais eficazes e transparentes. Esses 

modelos possibilitam avaliar previamente o impacto de investimentos e mudanças estruturais, 

fornecendo informações objetivas para a priorização de projetos. A integração com dados em 

tempo real fortalece a governança baseada em evidências e amplia a eficiência na gestão urbana 

(Almeida et al., 2023). 

Em termos conceituais, a tomada de decisão baseada em simulação reflete a transição 

de uma abordagem reativa para uma abordagem preditiva e proativa. Em vez de responder a 

eventos após sua ocorrência, gestores passam a antecipar resultados e a escolher estratégias com 

base em projeções fundamentadas. Essa mudança de paradigma reforça a importância da 

modelagem computacional e da inteligência artificial como pilares da administração moderna 

de sistemas complexos (Lan et al., 2025). 

Os métodos de otimização baseados em aprendizado de máquina estão transformando a 

forma como se interpretam os dados gerados pela simulação. Algoritmos de redes neurais e de 

regressão profunda permitem identificar relações não lineares entre variáveis e prever respostas 

do sistema a novos estímulos. Essa capacidade de generalização amplia o potencial das 

simulações e torna os processos decisórios mais confiáveis e adaptáveis às condições reais 

(Goodwin et al., 2023). 

A consolidação da tomada de decisão baseada em simulação depende de um ambiente 

de dados integrados e de um ciclo contínuo de aprendizado organizacional. Isso requer 

investimentos em infraestrutura tecnológica, capacitação e governança da informação. À 

medida que a integração entre simulação, IA e otimização avança, as organizações tornam-se 

mais aptas a operar de maneira autônoma, previsível e eficiente. Essa evolução redefine o 

conceito de desempenho, aproximando a engenharia da análise estratégica (Moreno et al., 

2025). 
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A otimização de fluxos e a tomada de decisão baseada em simulação representam um 

avanço metodológico que alia eficiência, inovação e sustentabilidade. Ao combinar modelagem 

matemática, inteligência artificial e experimentação virtual, essas técnicas possibilitam 

compreender e gerir sistemas complexos de forma integrada. A aplicação desses princípios em 

ambientes urbanos e produtivos impulsiona a modernização da gestão e estabelece um novo 

paradigma de racionalidade técnica e estratégica na Engenharia de Produção (Lan et al., 2025). 

 

2.6 Procedimentos de busca da literatura 

A construção da fundamentação teórica apresentada neste capítulo exigiu a seleção 

estruturada de referências capazes de sustentar os conceitos discutidos ao longo das seções 

anteriores. Embora o presente estudo não configure uma revisão sistemática, adotou-se o uso 

de um fluxograma PRISMA em versão adaptada com a finalidade de documentar, de forma 

transparente e organizada, o percurso de identificação e seleção da literatura pertinente. 

O emprego do PRISMA (Figura 1) neste contexto possui caráter exclusivamente 

descritivo, atuando como um recurso metodológico complementar para registrar o fluxo geral 

de busca, triagem e inclusão dos estudos consultados. Não foram aplicados os procedimentos 

formais e rigorosos característicos de revisões sistemáticas, preservando-se o foco deste 

capítulo como parte de uma fundamentação teórica orientada à análise e contextualização dos 

temas essenciais às simulações urbanas que compõem as etapas posteriores da pesquisa. 

O processo de organização da literatura foi estruturado em etapas sequenciais, conforme 

descrito a seguir: 

 

1. Identificação: realização de busca inicial nas bases Google Scholar, Scopus, Web of 

Science e ScienceDirect, contemplando publicações alinhadas aos temas centrais deste 

capítulo, tais como simulação urbana, modelos locacionais, digital twins, avaliação 

operacional e otimização de fluxos. 

2. Triagem preliminar: leitura de títulos e resumos para verificar aderência conceitual aos 

eixos temáticos da fundamentação, descartando materiais redundantes ou claramente 

distantes do escopo teórico pretendido. 

3. Seleção: análise seletiva dos textos remanescentes, avaliando sua relevância, 

aplicabilidade conceitual e contribuição para o delineamento dos fundamentos 

utilizados no estudo. 
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4. Inclusão: consolidação final de 37 estudos que subsidiaram a formulação dos tópicos 

apresentados nas seções 2.1 a 2.5, compondo o conjunto de referências essenciais à 

contextualização teórica da pesquisa. 

 

Figura 1. Fluxograma PRISMA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fonte: PRISMA (2020) 

 

A inclusão de um PRISMA adaptado no Capítulo 2 tem por objetivo: 

 

 evidenciar o percurso sistematizado adotado para estruturar o corpo teórico do estudo; 

 reforçar a transparência acadêmica no levantamento da literatura; 
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 demonstrar que a fundamentação foi construída com base em critérios claros de 

pertinência temática; 

 assegurar rastreabilidade e organização das bases conceituais que orientam a etapa de 

modelagem e simulação. 

 

Ressalta-se que o uso do fluxograma não implica a realização de uma revisão 

sistemática, mas sim o registro formal do processo de levantamento que sustenta os conteúdos 

teóricos integrados ao desenvolvimento metodológico apresentado nos capítulos seguintes. 
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3. METODOLOGIA 

A metodologia deste estudo foi estruturada para integrar modelagem orientada a 

agentes, análise operacional e avaliação de cenários, em conformidade com os princípios da 

Engenharia de Produção. O processo foi dividido em etapas encadeadas que permitem 

representar, simular e comparar diferentes configurações espaciais de bases de táxi dentro da 

Cidade Universitária da Universidade de São Paulo (USP), considerando os fluxos de 

deslocamento em direção à Estação Butantã. 

 

3.1 Levantamento conceitual e parâmetros 

A fundamentação teórica necessária para o desenvolvimento do modelo foi construída 

a partir de um levantamento organizado da literatura especializada em simulação urbana, 

otimização espacial, localização de serviços públicos e avaliação de desempenho. Esse 

levantamento serviu para estruturar os conceitos utilizados no modelo, orientar a definição dos 

parâmetros operacionais e embasar a lógica dos agentes empregados na simulação. 

Foram priorizados estudos com aplicação prática em logística urbana, transporte, digital 

twins e técnicas de modelagem computacional, publicados entre 2020 e 2025. 

 

3.2 Desenvolvimento da simulação computacional 

A simulação foi projetada com base na metodologia HALTER, adaptada às etapas de 

modelagem computacional. O sistema principal corresponde à Cidade Universitária da USP, 

adotada como ambiente de teste (template). Dentro deste sistema, foram definidos subsistemas 

operacionais, representados pelas células de operação correspondentes aos departamentos 

universitários, pontos de táxi e a Estação Butantã, que atua como ponto fixo de destino. 

O desenvolvimento foi dividido em duas fases: 

 

1. Modelagem do sistema AS-IS, correspondente à configuração atual das operações de 

transporte; 

2. Proposição do modelo TO-BE, com inclusão de fluxos otimizados e lógica de interação 

dinâmica entre agentes. 

 

 



42 
 

3.3 Estrutura e Funcionamento do Modelo 

Na primeira etapa, simulou-se o sistema AS-IS, conforme ilustrado na Figura 2, onde o 

campus da USP foi representado por uma rede de agentes (departamentos, pontos de táxi e 

destino fixo). As solicitações de viagem foram geradas aleatoriamente em diferentes institutos 

(como o Instituto de Física, a Escola Politécnica e a Faculdade de Filosofia, Letras e Ciências 

Humanas), de modo a reproduzir o comportamento estocástico da demanda por transporte 

interno. 

 

Figura 2. Simulação Modelo Táxis 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 2 mostra a configuração do modelo AS-IS no ambiente simulado, 

evidenciando a distribuição espacial dos agentes e a estrutura operacional atual. Observa-se a 

localização dos pontos de táxi ao longo do campus e a disposição das unidades acadêmicas, o 

que permite visualizar as distâncias médias que os veículos precisam percorrer ao atender uma 

solicitação. O mapa reforça a natureza descentralizada do sistema real, revelando a potencial 

existência de zonas de maior demanda e áreas mais afastadas dos pontos de origem dos táxis. 
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Essa representação é fundamental para entender como a dispersão espacial interfere no tempo 

de resposta e no nível de serviço do sistema atual. 

Ao surgir uma solicitação, o sistema identifica o ponto de táxi mais próximo e verifica 

a disponibilidade de veículos. Caso haja táxi livre, ele é direcionado para o local da solicitação, 

mudando seu estado para “ocupado”. Se não houver disponibilidade, o sistema busca o próximo 

ponto disponível até localizar um veículo. Quando nenhum táxi estiver livre, o pedido 

permanece em estado de espera, até que um táxi seja liberado. 

A lógica de requisição é representada pela Figura 3, onde o algoritmo é responsável por 

localizar o ponto mais próximo, definir o tempo de embarque e direcionar o pedido ao táxi livre 

por meio da função send(pedido,taxi). Os principais parâmetros de entrada são: 

 

 tempo_embarque_pagamento 

 local_do_pedido 

 ponto_de_táxi 

 destino (Butantã) 

 

Figura 3. requestPedido 

 

Fonte: Elaborado pelo autor (2025) 
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A Figura 3 detalha a lógica computacional que estrutura o fluxo de requisição de um 

táxi. Ela evidencia o processo de tomada de decisão do modelo, mostrando a ordem em que o 

algoritmo identifica o ponto mais próximo, verifica disponibilidade e aloca o veículo adequado. 

Esse diagrama destaca a dependência espacial entre o local da solicitação e a posição dos táxis, 

além de ilustrar a sequência de estados que compõem o atendimento. Também fica claro como 

o sistema trata situações de indisponibilidade temporária: o pedido entra em espera até que um 

veículo retorne ao estado “livre”. Assim, a figura reforça o caráter estocástico e dinâmico da 

operação, explicando visualmente a base lógica empregada para a simulação dos cenários AS-

IS e TO-BE. 

 

3.4 Ciclo de atendimento e lógica operacional 

Após o recebimento da solicitação, o táxi transita entre os estados definidos no (Figura 

4), iniciando em “aguardando_no_ponto”. Ao ser acionado, o veículo passa ao estado 

“movendo_para_pedido” até chegar ao local de embarque, conforme o processo descrito na 

Figura 5. Após embarcar o passageiro, o veículo muda para “movendo_para_butantã”. No 

destino, executa o desembarque e o pagamento, conforme ilustrado na Figura 6. Por fim, o táxi 

retorna à sua base de origem no estado “movendo_para_ponto”, finalizando o ciclo ao retornar 

a “aguardando_no_ponto”. 

 

Figura 4. Diagrama de Estado Táxis 

 

Fonte: Elaborado pelo autor (2025) 
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O diagrama apresenta a sequência de estados do táxi ao longo de todo o ciclo de 

atendimento. Ele demonstra como o veículo alterna entre momentos de espera, deslocamento e 

prestação direta do serviço. O estado inicial “aguardando_no_ponto” evidencia o 

comportamento ocioso, típico do modelo AS-IS. A transição para “movendo_para_pedido” 

indica o início da operação, guiado pela localização do cliente. A figura destaca ainda que, após 

completar a viagem, o táxi sempre retorna ao ponto de origem, reforçando a influência da 

geografia do campus na eficiência operacional. Assim, o diagrama permite visualizar de forma 

clara a lógica comportamental que sustenta a modelagem e explica como os tempos médios de 

deslocamento e atendimento são formados durante a simulação. 

 

Figura 5. Lógica Embarque de Passageiro 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 5 descreve a lógica específica do processo de embarque. É possível observar 

a sequência de verificações realizadas pelo sistema, desde a chegada do táxi ao local da 

solicitação até o início efetivo do deslocamento ao destino. A representação evidencia o 

momento em que o passageiro é atendido e como o tempo de embarque — variável importante 

na modelagem — é incorporado ao fluxo operacional. Ao tornar explícita essa etapa, a figura 

demonstra onde ocorrem possíveis atrasos e como fatores comportamentais (ex.: tempo de 

espera do usuário, tempo de acomodação) influenciam o desempenho global. Essa visualização 

reforça o caráter detalhado da simulação e sua aderência ao comportamento real do sistema de 

transporte. 
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A Figura 6 detalha o processo final do ciclo de atendimento, composto pelo 

desembarque e pelo pagamento. 

Figura 6. Lógica Desembarque/Pagamento de Passageiro 

 

Fonte: Elaborado pelo autor (2025) 

 

A imagem evidencia que o sistema só considera a corrida concluída após o 

processamento completo dessa etapa, influenciando diretamente o tempo total da operação, 

destacando a importância dessa transição para a liberação do táxi para novas solicitações, já 

que o veículo só retorna ao estado “movendo_para_ponto” após finalizar toda a interação com 

o passageiro. Esse detalhamento permite compreender como pequenas variáveis, como o tempo 

de pagamento, podem impactar o fluxo geral e aumentar ou reduzir a capacidade do sistema em 

atender novas demandas. 

 

3.5 Georreferenciamento e parâmetros espaciais 

Os pontos de táxi e a Estação Butantã foram inseridos no sistema com base em 

coordenadas reais de latitude e longitude, representadas na Figura 7 e na Figura 8. Esse 

georreferenciamento garante maior realismo ao modelo e permite a integração futura com 

sistemas de navegação baseados em dados GIS (Geographic Information System). 

A Figura 7 apresenta a distribuição geográfica dos pontos de táxi utilizados na 

simulação, posicionados exatamente conforme suas coordenadas reais no campus. A 
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visualização evidencia a dispersão espacial das bases e permite identificar áreas com maior ou 

menor cobertura potencial. 

 

Figura 7. Localização Pontos de Táxi 

 

Fonte: Elaborado pelo autor (2025) 

 

A relação entre esses pontos e a malha urbana modelada ajuda a compreender por que 

determinadas solicitações exigem percursos mais longos no cenário AS-IS. Além disso, a 

representação reforça a importância do georreferenciamento para reproduzir fielmente os 

padrões operacionais e para sustentar as análises comparativas entre os cenários posteriormente 

simulados. Já a Figura  8 destaca a posição da Estação Butantã, tratada como destino fixo para 

todas as simulações. 
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Figura 8. Localização Estação Butantã 

 

Fonte: Elaborado pelo autor (2025) 

 

Sua localização fora do núcleo central do campus cria um gradiente espacial relevante: 

quanto mais distante o instituto gerador de demanda, maior o trajeto percorrido por táxis e 

passageiros. A imagem evidencia a centralidade da estação dentro da lógica da modelagem, 

funcionando como ponto de convergência de fluxos e influenciando diretamente métricas como 

tempo médio de atendimento e distância percorrida. Essa representação espacial é fundamental 

para justificar o comportamento observado nos diferentes cenários simulados. 

 

3.6 Ciclo de vida dos pedidos e representação visual 

O ciclo de vida dos pedidos, que engloba as etapas de solicitação, embarque, transporte, 

desembarque e retorno, é sintetizado na Figura 9. Além disso, foi criada uma visualização 

tridimensional do processo utilizando o Prototype Grid, representada nas Figuras 9 a 20, que 

simulam o comportamento sequencial dos táxis, desde o estado inicial até a finalização das 

corridas. A Figura 9 apresenta um fluxograma completo do ciclo de vida de cada solicitação 

dentro da simulação. 

 

Figura 9. Request Lifecycle  

 

Fonte: Elaborado pelo autor (2025) 
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É possível observar a sequência lógica que estrutura o atendimento: a criação do pedido, 

a identificação do táxi mais próximo, o deslocamento do veículo, o embarque do passageiro, o 

trajeto até o destino e o retorno ao ponto de origem. Essa visualização evidencia a linearidade 

das etapas, mas também permite identificar pontos potenciais de congestionamento 

operacional, como o tempo de espera por táxi livre ou os atrasos no embarque. A representação 

gráfica sintetiza de forma clara como o sistema interpreta cada evento dentro da simulação, 

permitindo ao leitor compreender o fluxo integral de operação e sua relação com as métricas de 

desempenho analisadas posteriormente. 

A Figura 10 apresenta a malha tridimensional utilizada para representar o ambiente 

simulado, conhecida como Prototype Grid. Ela funciona como um tabuleiro virtual que define 

posições possíveis para táxis, pedidos e trajetos. Observa-se  que o grid organiza visualmente 

as entidades e permite acompanhar o deslocamento dos agentes ao longo do tempo. Essa 

estrutura é essencial para compreender como o modelo distribui espacialmente os eventos e 

como o comportamento emergente surge da interação entre as unidades do sistema. 

 

Figura 10. System Prototype Grid 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 11 apresenta a malha tridimensional utilizada para representar o ambiente 

simulado, conhecida como Prototype Grid. Ela funciona como um tabuleiro virtual que define 

posições possíveis para táxis, pedidos e trajetos. O grid organiza visualmente as entidades e 

permite acompanhar o deslocamento dos agentes ao longo do tempo. Essa estrutura é essencial 
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para compreender como o modelo distribui espacialmente os eventos e como o comportamento 

emergente surge da interação entre as unidades do sistema. 

 

Figura 11. Táxis aguardando solicitações 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 12 registra o momento em que uma nova solicitação é gerada no sistema. O 

uso do símbolo de estrela para a origem e do quadrado para o destino permite identificar 

claramente o ponto de criação da demanda e a rota desejada.  

 

Figura 12. Surgimento de demanda (estrela = origem, quadrado = destino) 

 

Fonte: Elaborado pelo autor (2025) 
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Essa visualização é fundamental para interpretar a dinâmica estocástica do modelo: 

solicitações surgem de forma aleatória nos institutos, e a distância entre o ponto de origem e os 

táxis disponíveis determina o tempo de resposta inicial do sistema. 

A Figura 13 demonstra o algoritmo de seleção do táxi mais próximo ao local da 

solicitação. O destaque está no traçado da rota, evidenciando o caminho calculado 

automaticamente pelo modelo. O leitor deve observar que essa etapa representa a lógica de 

alocação central do sistema, que busca sempre minimizar distância percorrida e tempo até o 

embarque, influenciando diretamente métricas como nível de serviço e eficiência espacial. 

 

Figura 13. Definição da rota pelo táxi mais próximo 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 14 representa um cenário em que múltiplas solicitações surgem de forma 

simultânea ou em sequência rápida, exigindo redistribuição dinâmica dos táxis. Esse quadro 

ajuda a visualizar como o sistema lida com carga crescente e como a frota se movimenta para 

diferentes regiões do grid. A leitura da figura reforça a natureza não linear do comportamento 

dos agentes e evidencia a possibilidade de formação de gargalos operacionais. 
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Figura 14. Surgimento de novas demandas e redistribuição de veículos  

 

Fonte: Elaborado pelo autor (2025) 

 

Complementando a figura anterior, a Figura 15 demonstra como o posicionamento dos 

táxis muda continuamente conforme novas solicitações surgem em diferentes setores do 

modelo. Observa-se o deslocamento simultâneo de múltiplos veículos, indicando que a 

eficiência do sistema depende fortemente da proximidade da frota em relação às áreas mais 

demandadas. 

 

Figura 15. Surgimento de novas demandas e redistribuição de veículos  
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Fonte: Elaborado pelo autor (2025) 

 

A Figura 16 mostra o momento em que o passageiro é embarcado e se inicia o 

deslocamento até o destino. A visualização evidencia o estado de “ocupado” do veículo e marca 

a transição para o trajeto principal. Essa etapa é importante porque define o início do tempo de 

viagem, que compõe parte significativa da métrica de desempenho e ajuda a explicar diferenças 

observadas entre cenários. 

 

Figura 16. Embarque e deslocamento de passageiros  

 

Fonte: Elaborado pelo autor (2025) 

 

Esta imagem (Figura 17) reforça a continuidade do deslocamento do passageiro ao 

longo do grid e mostra como o táxi avança em direção ao destino final. O leitor deve perceber 

como o modelo retrata graficamente o fluxo, destacando a movimentação dos veículos no 

espaço simulado. Essa etapa é essencial para visualizar a progressão do serviço e o 

comportamento individual de cada corrida. 
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Figura 17. Embarque e deslocamento de passageiros 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 18 apresenta o momento de desembarque do passageiro na estação de destino. 

O táxi encerra o ciclo de atendimento principal e inicia o retorno à base. A interpretação desse 

quadro ajuda a compreender como o modelo incorpora o deslocamento de volta como parte da 

operação, influenciando a disponibilidade da frota e o tempo ocioso entre chamadas. 

 

Figura 18. Desembarque e retorno ao ponto de táxi  

 

Fonte: Elaborado pelo autor (2025) 
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Complementando a figura anterior, a Figura 19 mostra o trajeto de retorno até o ponto 

base. O leitor deve notar que a distância percorrida em vazio é um fator relevante para o custo 

operacional do sistema e para a agilidade na resposta a novas demandas. Essa etapa é importante 

para explicar diferenças de desempenho entre os cenários, especialmente quando a frota é 

redistribuída. 

 

Figura 19. Desembarque e retorno ao ponto de táxi  

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 20 mostra o ponto final do ciclo: o táxi retorna ao estado de disponibilidade, 

pronto para reagir às próximas solicitações. Esta etapa evidencia a conclusão completa do fluxo 

operacional, permitindo que o leitor visualize como os veículos se reestabelecem nos pontos 

originais após cada serviço. Essa visualização ajuda a entender a dinâmica de reposicionamento 

no cenário AS-IS. 
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Figura 20. Finalização do ciclo e disponibilidade de novos atendimentos 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 21 reforça o encerramento do ciclo operacional e destaca novamente a 

restauração do estado inicial. Esse quadro auxilia o leitor a compreender a natureza repetitiva e 

contínua do processo na simulação, no qual cada táxi alterna entre estados de ociosidade, 

deslocamento e atendimento. A figura contribui para visualizar a estabilidade do modelo e seu 

comportamento em regime ao longo das múltiplas execuções. 

 

Figura 21. Finalização do ciclo e disponibilidade de novos atendimentos 

 

Fonte: Elaborado pelo autor (2025) 
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Os outputs resultantes do modelo incluem métricas de tempo médio de corrida, tempo 

até o cliente, tempo total até o destino, distância percorrida e número de táxis disponíveis no 

sistema. 

 

3.7 Expansão da simulação: dinâmica de desembarque e fluxo de pessoas 

Após a modelagem do transporte principal, foi implementada a segunda dinâmica do 

sistema, representada na Figura 22. Nesta etapa, cada desembarque gera um novo agente 

“pessoa” dentro do sistema, que passa a interagir com o ambiente, conforme simulado nas 

Figuras 23 e 24. O objetivo é permitir que cada passageiro desembarcado se torne uma entidade 

ativa, capaz de realizar diferentes ações dentro do ambiente urbano, como deslocar-se para 

outros blocos ou solicitar novos transportes. 

 

Figura 22. Nova Lógica de Desembarque de Passageiros 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 22 apresenta a lógica que transforma cada passageiro desembarcado em um 

agente independente no sistema. Observa-se que, ao chegar ao destino, o usuário deixa de ser 

apenas um elemento passivo do transporte e passa a constituir uma unidade ativa com 

comportamento próprio. Essa representação destaca a ampliação do escopo da simulação: o 

fluxo não se encerra no desembarque, mas sim evolui para novas interações que podem gerar 
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demandas adicionais. Essa lógica é essencial para simular cenários urbanos mais complexos e 

captar efeitos dinâmicos que não seriam visíveis no modelo restrito apenas aos táxis. 

Já a Figura 23 mostra o momento em que o passageiro é convertido em agente “pessoa” 

no ambiente da Estação Butantã. Essa visualização evidencia a criação da entidade e sua 

posição inicial no sistema, demonstrando a transição entre o transporte e o comportamento pós-

deslocamento, reforçando o papel da estação como ponto de geração de novos fluxos. É possível 

observar como essa etapa abre a possibilidade de ações subsequentes, como movimentação para 

outros blocos ou geração de novas solicitações. 

 

Figura 23. Simulação Desembarque Estação Butantã 

 

Fonte: Elaborado pelo autor (2025) 

 

Complementando a figura anterior, a Figura 24 demonstra a dispersão inicial dos 

agentes recém-criados ao redor da área da estação. A imagem ilustra como essas pessoas 

começam a se deslocar pelo ambiente, indicando que a lógica de mobilidade foi incorporada ao 

sistema. A interação dos agentes com elementos urbanos — ruas, edifícios e blocos — cria uma 

dinâmica mais realista e permite estudar como o transporte influencia e é influenciado pelo 

comportamento humano no espaço urbano. 
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Figura 24. Simulação Desembarque Estação Butantã 

 

Fonte: Elaborado pelo autor (2025) 

 

 

3.8 Simulação expandida: estrutura urbana e ciclo de vida do cidadão 

A extensão do modelo permite a construção de uma malha urbana composta por oito 

vias com fluxos de entrada e saída, ilustradas na Figura 25. Cada bloco urbano abriga 

edificações que representam residências, locais de trabalho ou lazer, visualizados na Figura 26. 

A sequência operacional é apresentada nas figuras seguintes. 

A Figura 25 apresenta o ciclo diário do cidadão no ambiente simulado, representado por 

uma lógica sequencial que abrange permanência na residência, deslocamento para o trabalho, 

atividades externas e retorno ao lar. 

 

Figura 25. People Daycicle 

 

Fonte: Elaborado pelo autor (2025) 

 

Nota-se que o modelo evolui significativamente aqui: o transporte deixa de ser um 

evento isolado e passa a integrar um fluxo contínuo de mobilidade cotidiana. Essa estrutura 
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permite analisar como diferentes fases do dia influenciam a demanda por transporte e geram 

padrões temporais de movimentação urbana. 

A figura 26 mostra a estrutura urbana simulada, composta por blocos que representam 

diferentes tipos de edificações. Observa-se que cada bloco funciona como um polo gerador ou 

atrator de viagens — residências, centros educacionais, locais de lazer e trabalho. Essa 

organização espacial é fundamental para estudar como a localização de pontos de táxi, vias e 

destinos influencia os deslocamentos dos agentes. A imagem fornece a base espacial para 

compreender a lógica das próximas representações. 

 

Figura 26. Sistema de Blocos 

 

Fonte: Elaborado pelo autor (2025) 

 

Aqui é possível visualizar a criação de uma nova solicitação de transporte originada em 

uma residência dentro do sistema (Figura 27). A figura ilustra como os agentes tomam decisões 

de mobilidade seguindo seu ciclo diário. O leitor deve notar que a demanda não surge apenas 

de institutos ou da estação, mas também de pontos residenciais, ampliando a diversidade das 

origens de viagens e tornando o modelo mais próximo do comportamento real de uma cidade. 
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Figura 27. Solicitação de demanda em uma residência 

 

Fonte: Elaborado pelo autor (2025) 

 

Já a Figura 28 apresenta o deslocamento dos agentes após o embarque, revelando o fluxo 

ativo de passageiros no sistema. O leitor deve observar a multiplicidade de rotas e como os táxis 

se movimentam simultaneamente no grid urbano. Essa representação ajuda a visualizar padrões 

de circulação, áreas de concentração de tráfego e potenciais pontos de saturação, elementos 

fundamentais para avaliar a eficiência das lógicas otimizadas simuladas. 

 

Figura 28. Fluxo de transporte de passageiros 

 

Fonte: Elaborado pelo autor (2025) 
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A Figura 29 mostra a movimentação de pedestres no ambiente urbano após completarem 

seus deslocamentos iniciais. É possível observar que os agentes continuam se movimentando 

entre blocos, criando um fluxo pedestre que interage com o sistema de transporte. Essa dinâmica 

evidencia a integração entre mobilidade ativa (a pé) e mobilidade assistida (táxi), 

proporcionando maior realismo ao modelo e permitindo analisar como a distribuição espacial 

das atividades influencia o transporte. 

 

Figura 29. Trânsito de pessoas no sistema 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 30 demonstra o momento em que o agente conclui sua atividade principal do 

dia e decide entre retornar à sua residência ou deslocar-se para um bloco de lazer. Essa 

bifurcação de comportamento reforça a complexidade da simulação expandida, pois mostra que 

decisões individuais geram diferentes trajetórias e demandas subsequentes. Essa lógica permite 

ao modelo reproduzir variações reais na demanda ao longo do dia, como picos noturnos ou 

deslocamentos entre polos de convivência. 
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Figura 30. Opções pós-expediente do usuário (voltar para casa ou seguir para lazer) 

 

Fonte: Elaborado pelo autor (2025) 

 

Esse modelo representa o ciclo diário de deslocamento de um cidadão, integrando a 

lógica de transporte com a simulação comportamental de agentes urbanos. 
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4. RESULTADOS 

4.1 Coleta e tratamento dos dados 

A coleta de dados consistiu na execução de 90 simulações, com cinco repetições 

independentes para cada configuração, totalizando 450 execuções. A decisão por cinco 

repetições segue recomendações usuais em experimentação computacional em sistemas 

estocásticos, nas quais múltiplas réplicas reduzem o impacto de variabilidade aleatória gerada 

pelas distribuições de chegada, deslocamento e estados dos agentes. Esse procedimento 

possibilita estabilização das médias, melhora da confiabilidade estatística e redução da 

influência de outliers, garantindo que os valores reportados representem o comportamento 

típico de cada cenário. 

As métricas analisadas foram: nível de serviço, definido como a razão entre solicitações 

completadas e solicitações geradas; distância média até o ponto de solicitação, medida em 

quilômetros entre o táxi disponível e o cliente; e tempo médio de corrida, agregando embarque, 

deslocamento ao destino e retorno ao ponto base. Os resultados foram organizados em três 

cenários distintos, apresentados a seguir. 

O Cenário 1 representa fielmente a configuração real do sistema de táxis da Cidade 

Universitária. Mantêm-se: 

 

 os 13 pontos atualmente existentes, 

 a distribuição original da frota, 

 a lógica de operação utilizada no campus, 

 os fluxos observados na prática. 

 

Este cenário serve como linha de base para comparação, dessa maneira descreve o 

sistema “como ele funciona hoje”, sem interferências ou otimizações. 

O cenário 2 mantém a frota, porém altera a estrutura espacial do sistema, consolidando 

todos os veículos em um único ponto central de atendimento, objetivando:  

 avaliar se concentrar a frota em uma base única reduz deslocamentos iniciais, 

 testar a hipótese de que uma unidade centralizada apresenta respostas mais rápidas em 

ambientes de alta densidade. 
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Assim, o Cenário 2 não altera a lógica de operação, mas modifica apenas o 

posicionamento espacial, permitindo medir o impacto direto da localização. 

O Cenário 3 representa a versão otimizada do sistema, incorporando: 

 

 redistribuição estratégica em três macro-bases, 

 lógica aprimorada de seleção do táxi mais próximo, 

 redução da ociosidade e minimização das distâncias médias, 

 parâmetros espaciais revisados e fluxo operacional ajustado. 

 

Trata-se de um sistema projetado, orientado por princípios de eficiência espacial, 

buscando simular uma operação mais equilibrada entre oferta e demanda, superando limitações 

identificadas nos dois cenários anteriores. 

A Tabela 1 evidencia a evolução do nível de serviço à medida que aumenta o número 

de veículos e pontos de táxi. Nota-se crescimento consistente da eficiência operacional, com 

índices superiores a 99% para 65 veículos, confirmando a adequação do modelo AS-IS como 

referência base. 

 

Tabela 1. Cenário 1 - métricas coletadas 

n taxis/ponto n pontos 
Taxis 

totais 
sph Feitos Completos 

Nível de 

serviço 

Distância até pedido 

(km) 

1 13 13 5 7177 2336 32,55% 2,31 

2 13 26 5 7188 4572 63,60% 2,20 

3 13 39 5 7246 6431 88,76% 2,03 

4 13 52 5 7180 7117 99,12% 1,78 

5 13 65 5 7187 7159 99,61% 1,57 

1 13 13 6 8625 2353 27,29% 2,32 

2 13 26 6 8675 4648 53,58% 2,23 

3 13 39 6 8659 6738 77,81% 2,10 

4 13 52 6 8626 8194 94,99% 1,93 

5 13 65 6 8679 8629 99,42% 1,74 

1 13 13 7 10102 2366 23,43% 2,33 

2 13 26 7 10071 4719 46,86% 2,25 

3 13 39 7 10006 6950 69,46% 2,16 

4 13 52 7 10090 8884 88,04% 2,03 

5 13 65 7 10136 9942 98,08% 1,86 

Fonte: Elaborado pelo autor (2025) 
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A Tabela 1 apresenta o desempenho do sistema real (AS-IS), permitindo observar como 

a frota atual responde às diferentes taxas de solicitações por hora (SPH). Nota-se que, para 

configurações com poucos veículos (13 e 26 táxis), o nível de serviço é significativamente 

baixo, ficando abaixo de 35% em SPH maiores que 6. Os resultados evidenciam que a 

combinação atual de número de táxis e sua distribuição nos 13 pontos existentes não é suficiente 

para atender a demanda crescente, resultando em longos deslocamentos até os clientes 

(distâncias entre 2,20 e 2,36 km). 

Conforme o número total de táxis aumenta, observa-se uma melhora progressiva do 

sistema: com 52 e 65 veículos, o nível de serviço ultrapassa 94% e chega a 99% em vários 

casos. Essa tendência demonstra que o sistema real tem potencial de atingir alta eficiência, mas 

somente mediante grande ampliação da frota — algo difícil de implementar na prática. A tabela, 

portanto, reforça que o Cenário 1, apesar de representativo da operação atual, possui limitações 

estruturais evidentes, especialmente quanto à cobertura espacial e disponibilidade imediata dos 

veículos. 

Os resultados do Cenário 2 (Tabela 2) indicam ganhos expressivos em relação ao 

primeiro, com redução da distância média até as solicitações e níveis de serviço acima de 90% 

já a partir de 39 veículos. Essa configuração, portanto, demonstra maior equilíbrio entre oferta 

e demanda. 

A Tabela 2 demonstra os resultados obtidos quando todos os veículos são alocados em 

um único ponto central. A mudança espacial promoveu ganhos significativos em relação ao 

Cenário 1. O leitor deve observar que, mesmo com apenas 13 táxis, o nível de serviço sobe de 

cerca de 32% (Cenário 1) para 41,97%, e as distâncias médias caem de aproximadamente 2,3 

km para 0,88 km — redução superior a 60%. 
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Tabela 2. Cenário 2 - métricas coletadas 

Taxis/ponto Pontos 
Taxis 

totais 
sph Feitos Completos 

Nível de 

serviço 

Distância até pedidos 

(km) 

13 1 13 5 7216 3029 41,97% 0,88 

26 1 26 5 7114 5687 79,93% 0,88 

39 1 39 5 7231 7084 97,98% 0,89 

52 1 52 5 7181 7157 99,65% 0,89 

65 1 65 5 7213 7191 99,69% 0,88 

13 1 13 6 8599 3065 35,64% 0,88 

26 1 26 6 8684 5938 68,38% 0,89 

39 1 39 6 8628 8011 92,85% 0,88 

52 1 52 6 8686 8643 99,51% 0,88 

65 1 65 6 8598 8574 99,72% 0,88 

Fonte: Elaborado pelo autor (2025) 

 

A partir de 39 veículos, o sistema ultrapassa 92% de nível de serviço e atinge valores 

próximos de 100% com 52 e 65 táxis. Isso indica que a centralização da frota reduz 

deslocamentos iniciais, diminuindo o tempo até o cliente e otimizando o uso dos veículos 

disponíveis. 

A comparação entre SPH 5 e SPH 6 também mostra que o Cenário 2 mantém sua 

eficiência mesmo sob aumento de demanda, evidenciando um sistema mais equilibrado e com 

menor variabilidade operacional. Portanto, a Tabela 2 reforça que apenas reorganizar 

espacialmente a frota, sem alterar a lógica operacional, já produz ganhos expressivos na 

eficiência do serviço. 

O Cenário 3 (Tabela 3) apresenta desempenho semelhante ao Cenário 2, mas com 

melhoras nas distâncias médias e tempo de atendimento reduzido, o que evidencia o impacto 

positivo da implementação das lógicas otimizadas (TO-BE) sobre a eficiência do sistema. 

A Tabela 3 apresenta o desempenho do sistema otimizado, que inclui redistribuição em 

três macro-bases e lógica aprimorada de alocação. O ponto mais evidente é a redução acentuada 

da distância média até o pedido, que chega a apenas 0,45–0,55 km, demonstrando uma melhoria 

substancial em relação aos dois cenários anteriores. 
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Tabela 3. Cenário 3 - métricas coletadas 

n 

taxis/ponto 

n 

pontos 

Taxis 

totais 

Taxa solicitações 

(por hora) 
Feitos Completos 

Nível de 

serviço 

Distância até 

pedido (km) 

4,3 3 13 5 7185 2843 39,57% 0,89 

8,7 3 26 5 7237 5491 75,87% 0,76 

13,0 3 39 5 7177 6998 97,50% 0,55 

17,3 3 52 5 7246 7225 99,72% 0,46 

21,7 3 65 5 7218 7201 99,76% 0,45 

4,3 3 13 6 8605 2861 33,24% 0,93 

8,7 3 26 6 8727 5660 64,85% 0,82 

13,0 3 39 6 8636 7873 91,17% 0,64 

17,3 3 52 6 8692 8647 99,49% 0,49 

21,7 3 65 6 8606 8582 99,72% 0,46 

Fonte: Elaborado pelo autor (2025) 

 

O nível de serviço também apresenta forte estabilidade: mesmo com apenas 39 táxis, o 

sistema já atinge cerca de 97,5% de solicitações atendidas em SPH 5 e 91,17% em SPH 6. Esse 

desempenho consistente comprova que a reorganização das bases, juntamente com a lógica 

mais inteligente de escolha do veículo mais próximo, cria um sistema altamente responsivo e 

equilibrado. 

Com 52 e 65 veículos, o sistema alcança praticamente 100% de eficiência, superando 

inclusive o Cenário 2 em situações de maior demanda e diminuindo a distância percorrida pelos 

táxis. Assim, a tabela evidencia que o Cenário 3 é o mais eficaz dos três modelos, tornando-se 

a solução mais apropriada para ambientes com demanda variável e necessidade de respostas 

rápidas. 

 

4.2 Comparação intercenários 

Para permitir análise comparativa, os dados foram reagrupados segundo a taxa de 

solicitações por hora (SPH), conforme as Tabelas 4 a 9. Essas tabelas sintetizam as métricas 

dos três cenários, permitindo visualizar a evolução do desempenho à medida que a demanda 

aumenta. 

A Tabela 4 evidencia que, em baixa demanda (5 SPH), o desempenho dos sistemas varia 

de acordo com a quantidade de veículos. No Cenário 1, mesmo aumentando o número total de 

táxis, as distâncias permanecem elevadas (acima de 1,50 km), o que indica ineficiência 

estrutural do sistema distribuído em 13 pontos. 
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O Cenário 2 mostra forte melhoria já no nível básico: com apenas 26 veículos, o nível 

de serviço ultrapassa 79%, e na faixa de 39 a 65 veículos atinge virtualmente 100%. As 

distâncias permanecem estáveis em torno de 0,88 km, demonstrando que a centralização 

elimina grande parte dos deslocamentos iniciais longos. 

O Cenário 3 apresenta os melhores indicadores gerais, especialmente para frotas 

maiores: com 39 veículos, a distância média cai para apenas 0,55 km, a menor de toda a tabela, 

e permanece abaixo de 0,50 km nas configurações com 52 e 65 veículos. Esses resultados 

refletem a eficiência da redistribuição em macro-bases e da lógica otimizada de alocação. 

 

Tabela 4. Métricas agrupadas para 5 solicitações por hora 

Cenário Taxis totais Taxa solicitações (por hora) Nível de serviço Distância até pedido (km) 

1 13 5 32,55% 2,31 

2 13 5 41,97% 0,88 

3 13 5 39,57% 0,89 

1 26 5 63,60% 2,20 

2 26 5 79,93% 0,88 

3 26 5 75,87% 0,76 

1 39 5 88,76% 2,03 

2 39 5 97,98% 0,89 

3 39 5 97,50% 0,55 

1 52 5 99,12% 1,78 

2 52 5 99,65% 0,89 

3 52 5 99,72% 0,46 

1 65 5 99,61% 1,57 

2 65 5 99,69% 0,88 

3 65 5 99,76% 0,45 

Fonte: Elaborado pelo autor (2025) 

 

Com demanda ligeiramente maior, o Cenário 1 apresenta queda acentuada no nível de 

serviço nas configurações de 13 a 39 veículos, ficando entre 27% e 77%. Isso reforça a limitação 

da estrutura atual frente ao aumento de carga (Tabela 5). 

No Cenário 2, a centralização continua eficaz, alcançando níveis superiores a 92% já 

com 39 veículos, e chegando a quase 100% com 52 e 65 táxis. A distância média segue estável 

e baixa, variando apenas entre 0,87 e 0,89 km. 
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O Cenário 3 novamente se destaca, oferecendo o melhor equilíbrio entre nível de serviço 

e distância percorrida: para 39 veículos, atinge 91,17% enquanto reduz a distância para 0,64 

km. Com 52 e 65 táxis, os resultados atingem quase 100% e distâncias inferiores a 0,50 km, 

reforçando a vantagem operacional das três macro-bases. 

 

Tabela 5. Métricas agrupadas para 6 solicitações por hora 

Cenário Taxis totais Taxa solicitações (por hora) Nível de serviço Distância até pedido (km) 

1 13 6 27,29% 2,32 

2 13 6 35,64% 0,88 

3 13 6 33,24% 0,93 

1 26 6 53,58% 2,23 

2 26 6 68,38% 0,89 

3 26 6 64,85% 0,82 

1 39 6 77,81% 2,10 

2 39 6 92,85% 0,88 

3 39 6 91,17% 0,64 

1 52 6 94,99% 1,93 

2 52 6 99,51% 0,88 

3 52 6 99,49% 0,49 

1 65 6 99,42% 1,74 

2 65 6 99,72% 0,88 

3 65 6 99,72% 0,46 

Fonte: Elaborado pelo autor (2025) 

 

Os resultados obtidos evidenciam tendência uniforme de melhoria no nível de serviço e 

diminuição da distância média conforme o número de táxis aumenta. O Cenário 2 é o mais 

eficiente para baixa e média demanda (5–8 SPH), enquanto o Cenário 3 demonstra leve 

superioridade para maiores taxas de solicitação (acima de 9 SPH). 

Com a intensificação da demanda, o Cenário 1 apresenta forte deterioração nas métricas: 

o nível de serviço varia de apenas 23% a 88% conforme a frota cresce, enquanto as distâncias 

permanecem elevadas. Isso demonstra que o sistema atual se aproxima rapidamente do limite 

operacional (Tabela 6). 

O Cenário 2 sustenta desempenho superior, alcançando mais de 85% já com 39 veículos 

e atingindo 99,67% nas maiores frotas. As distâncias permanecem extremamente reduzidas 

(aprox. 0,89 km). 
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O Cenário 3 mantém vantagem, especialmente para maiores números de táxis. A 

distância média é consistentemente menor (0,46–0,71 km), o que comprova a eficiência 

espacial superior do sistema otimizado. O nível de serviço ultrapassa 97% em 52 e 65 veículos, 

mantendo alta estabilidade mesmo com SPH elevado. 

 

Tabela 6. Métricas agrupadas para 7 solicitações por hora 

Cenário Taxis totais Taxa solicitações (por hora) Nível de serviço Distância até pedido (km) 

1 13 7 23,43% 2,33 

2 13 7 30,72% 0,89 

3 13 7 28,40% 0,93 

1 26 7 46,86% 2,25 

2 26 7 60,12% 0,89 

3 26 7 56,88% 0,84 

1 39 7 69,46% 2,16 

2 39 7 85,10% 0,88 

3 39 7 82,17% 0,71 

1 52 7 88,04% 2,03 

2 52 7 97,98% 0,88 

3 52 7 97,58% 0,54 

1 65 7 98,08% 1,86 

2 65 7 99,67% 0,89 

3 65 7 99,72% 0,46 

Fonte: Elaborado pelo autor (2025) 

 

A Tabela 7 demonstra que a pressão operacional aumenta significativamente para o 

Cenário 1, que apresenta apenas 20,64% de nível de serviço com 13 táxis e não ultrapassa 

93,85% mesmo com 65 veículos. As distâncias continuam acima de 2 km, reforçando a 

fragilidade estrutural do modelo atual. 

O Cenário 2 continua robusto, atingindo 94% com 52 táxis e quase 100% com 65 

veículos. As distâncias mantêm-se estáveis e baixas. 

O Cenário 3 mostra sua força especialmente nas distâncias reduzidas, que variam de 

0,49 a 0,86 km — valores muito inferiores aos demais cenários. O nível de serviço segue muito 

próximo do Cenário 2, com vantagens principalmente nas frotas maiores. 
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Tabela 7. Métricas agrupadas para 8 solicitações por hora 

Cenário Taxis totais Taxa solicitações (por hora) Nível de serviço Distância até pedido (km) 

1 13 8 20,64% 2,34 

2 13 8 26,89% 0,89 

3 13 8 25,15% 0,94 

1 26 8 41,42% 2,29 

2 26 8 53,09% 0,89 

3 26 8 50,33% 0,86 

1 39 8 60,95% 2,20 

2 39 8 77,40% 0,89 

3 39 8 74,51% 0,76 

1 52 8 80,20% 2,10 

2 52 8 94,53% 0,89 

3 52 8 92,92% 0,62 

1 65 8 93,85% 1,97 

2 65 8 99,48% 0,88 

3 65 8 99,53% 0,49 

Fonte: Elaborado pelo autor (2025) 

 

À medida que a demanda se torna alta, o Cenário 1 não consegue acompanhar o ritmo, 

apresentando níveis de serviço abaixo de 55% para frotas menores e apenas 87% mesmo com 

65 veículos. 

O Cenário 2 demonstra excelente resiliência: já com 26 veículos ultrapassa 47%, e com 

65 atinge 98,33%. A distância média permanece sempre próxima de 0,88 km, indicando 

estabilidade mesmo sob carga elevada (Tabela 8). 

O Cenário 3 apresenta desempenho comparável ao Cenário 2 no nível de serviço, mas 

supera amplamente em eficiência espacial. As distâncias oscilam entre 0,55 e 0,88 km, 

comprovando que a racionalização espacial do sistema reduz impactos gerados pela maior 

demanda. 
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Tabela 8. Métricas agrupadas para 9 solicitações por hora 

Cenário Taxis totais Taxa solicitações (por hora) Nível de serviço Distância até pedido (km) 

1 13 9 18,56% 2,34 

2 13 9 24,14% 0,88 

3 13 9 22,38% 0,94 

1 26 9 36,80% 2,30 

2 26 9 47,81% 0,88 

3 26 9 44,64% 0,88 

1 39 9 54,97% 2,22 

2 39 9 69,62% 0,88 

3 39 9 66,10% 0,81 

1 52 9 72,03% 2,15 

2 52 9 88,55% 0,88 

3 52 9 86,02% 0,68 

1 65 9 87,11% 2,04 

2 65 9 98,33% 0,89 

3 65 9 97,70% 0,55 

Fonte: Elaborado pelo autor (2025) 

 

Com a demanda mais elevada da análise, o Cenário 1 chega ao seu limite operacional: 

o nível de serviço é extremamente baixo com 13 táxis (16,54%) e ainda insuficiente mesmo 

com 65 veículos (80,66%). As distâncias permanecem superiores a 2 km. 

O Cenário 2 apresenta declínio moderado, mas mantém eficiência aceitável, chegando 

a 95% com 65 táxis. Isso reforça que a centralização reduz a variabilidade e mantém o sistema 

funcional mesmo sob pressão (Tabela 9). 

O Cenário 3 apresenta vantagem consistente: distâncias menores em todas as faixas e 

níveis de serviço superiores ao Cenário 1 em todos os casos e próximos ao Cenário 2 nas 

configurations maiores. A distância reduzida, entre 0,61 e 0,95 km, confirma que a operação 

otimizada absorve melhor a sobrecarga. 

 

 

 

 

 

 

 



74 
 

Tabela 9. Métricas agrupadas para 10 solicitações por hora 

Cenário Taxis totais Taxa solicitações (por hora) Nível de serviço Distância até pedido (km) 

1 13 10 16,54% 2,36 

2 13 10 21,55% 0,89 

3 13 10 20,14% 0,95 

1 26 10 33,30% 2,31 

2 26 10 43,21% 0,87 

3 26 10 40,56% 0,89 

1 39 10 49,11% 2,24 

2 39 10 63,48% 0,89 

3 39 10 60,29% 0,82 

1 52 10 65,41% 2,18 

2 52 10 81,67% 0,88 

3 52 10 79,29% 0,73 

1 65 10 80,66% 2,10 

2 65 10 95,02% 0,89 

3 65 10 93,89% 0,61 

Fonte: Elaborado pelo autor (2025) 

 

4.4 Avaliação do nível de serviço 

A análise do nível de serviço foi detalhada nas Tabelas 10 a 14 e ilustrada graficamente 

nos Gráficos 1 a 5, os quais demonstram as variações percentuais por número de veículos. A 

Tabela 10 evidencia o comportamento dos três cenários quando a frota mínima de 13 veículos 

é utilizada. Em todos os casos, o nível de serviço é baixo, especialmente com o aumento da 

demanda (SPH). No Cenário 1, os valores variam de 32,55% (5 SPH) a apenas 16,54% (10 

SPH), demonstrando que a estrutura atual é incapaz de atender necessidades operacionais com 

frota reduzida. 

O Cenário 2 apresenta desempenho superior em toda a faixa de demanda, confirmando 

que a centralização da frota melhora o tempo de resposta, mas ainda insuficiente para atender 

volumes maiores. O Cenário 3 mantém valores próximos aos do Cenário 2, com leve vantagem 

em demandas mais baixas, porém também insuficientes para cargas acima de 7 SPH. Assim, a 

tabela revela que nenhum dos cenários se sustenta adequadamente com apenas 13 táxis, 

evidenciando que frotas muito pequenas tornam o sistema estruturalmente inviável. 

 

Tabela 10. Nível de serviço para 13 veículos 
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13 veículos 1 2 3 

5 SPH 32,55% 41,97% 39,57% 

6 SPH 27,29% 35,64% 33,24% 

7 SPH 23,43% 30,72% 28,40% 

8 SPH 20,64% 26,89% 25,15% 

9 SPH 18,56% 24,14% 22,38% 

10 SPH 16,54% 21,55% 20,14% 

Fonte: Elaborado pelo autor (2025) 

 

A Tabela 11 demonstra que o aumento para 26 veículos melhora significativamente o 

desempenho de todos os cenários, mas as diferenças estruturais permanecem claras. O Cenário 

1 apresenta evolução consistente — de 63,60% para 33,30% conforme a demanda aumenta — 

porém ainda abaixo do patamar necessário para um serviço eficiente. 

O Cenário 2 atinge níveis acima de 79% em SPH 5 e permanece superior a 40% mesmo 

em SPH 10, indicando boa capacidade de absorção de demanda. O Cenário 3 mostra 

comportamento semelhante ao Cenário 2, porém com desempenho ligeiramente inferior, 

especialmente nos maiores SPH. O conjunto revela que, com 26 veículos, a centralização 

(Cenário 2) oferece melhor relação entre oferta e demanda, embora ainda não seja suficiente 

para atingir padrões ideais em SPH elevados. 

 

Tabela 11. Nível de serviço para 26 veículos 

26 veículos 1 2 3 

5 SPH 63,60% 79,93% 75,87% 

6 SPH 53,58% 68,38% 64,85% 

7 SPH 46,86% 60,12% 56,88% 

8 SPH 41,42% 53,09% 50,33% 

9 SPH 36,80% 47,81% 44,64% 

10 SPH 33,30% 43,21% 40,56% 

Fonte: Elaborado pelo autor (2025) 

 

Com 39 veículos, observa-se mudança significativa no comportamento do sistema. O 

Cenário 1 melhora, mas ainda apresenta limitações em SPH elevados (apenas 49,11% em 10 

SPH). Já o Cenário 2 demonstra excelente desempenho: ultrapassa 92% já em 6 SPH e mantém 

valores superiores a 63% até 10 SPH. 

O Cenário 3 apresenta comportamento semelhante ao Cenário 2, com pequena diferença 

a partir de SPH maiores, onde os valores permanecem entre 60% e 91%. Essa tabela confirma 
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que entre 39 e 52 veículos ocorre o ponto de inflexão do sistema, no qual a otimização espacial 

passa a produzir ganhos reais de eficiência. (Tabela 12). 

 

Tabela 12. Nível de serviço para 39 veículos 

39 veículos 1 2 3 

5 SPH 88,76% 97,98% 97,50% 

6 SPH 77,81% 92,85% 91,17% 

7 SPH 69,46% 85,10% 82,17% 

8 SPH 60,95% 77,40% 74,51% 

9 SPH 54,97% 69,62% 66,10% 

10 SPH 49,11% 63,48% 60,29% 

Fonte: Elaborado pelo autor (2025) 

 

A Tabela 13 mostra que, a partir de 52 veículos, o sistema atinge valores próximos do 

ideal. No Cenário 1, a eficiência melhora para 80–99%, evidenciando que o volume de frota 

compensa parcialmente a dispersão espacial. Contudo, o Cenário 2 e o Cenário 3 apresentam 

resultados superiores: ambos atingem mais de 97% em SPH 5–7 e mantêm desempenho elevado 

mesmo em 10 SPH (81–94%). 

O Cenário 3 exibe discretas vantagens em SPH baixos, enquanto o Cenário 2 sustenta 

estabilidade superior em SPH altos. Essa tabela confirma que 52 veículos formam a capacidade 

mínima para desempenho quase pleno, especialmente nos cenários otimizados. 

 

Tabela 13. Nível de serviço para 52 veículos 

52 veículos 1 2 3 

5 SPH 99,12% 99,65% 99,72% 

6 SPH 94,99% 99,51% 99,49% 

7 SPH 88,04% 97,98% 97,58% 

8 SPH 80,20% 94,53% 92,92% 

9 SPH 72,03% 88,55% 86,02% 

10 SPH 65,41% 81,67% 79,29% 

Fonte: Elaborado pelo autor (2025) 

 

A Tabela 14 evidencia a máxima eficiência obtida na simulação. Com 65 veículos, todos 

os cenários atingem níveis próximos de 100% em SPH baixos, e mesmo em SPH 10 o 

desempenho permanece elevado. O Cenário 2 apresenta resultados consistentes em todas as 

demandas, atingindo mais de 95% em SPH 10. O Cenário 3 está muito próximo, com 

desempenho ligeiramente inferior apenas na demanda mais alta. 
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Os resultados indicam que, com frota elevada, o fator determinante passa a ser a 

organização espacial e a lógica de alocação, não apenas o volume de veículos. A tabela confirma 

que o sistema otimizado (Cenário 3) e o sistema centralizado (Cenário 2) são superiores ao 

modelo atual em todos os níveis de demanda. 

 

Tabela 14. Nível de serviço para 65 veículos 

65 veículos 1 2 3 

5 SPH 99,61% 99,69% 99,76% 

6 SPH 99,42% 99,72% 99,72% 

7 SPH 98,08% 99,67% 99,72% 

8 SPH 93,85% 99,48% 99,53% 

9 SPH 87,11% 98,33% 97,70% 

10 SPH 80,66% 95,02% 93,89% 

Fonte: Elaborado pelo autor (2025) 

 

Nas Figuras 31 a 35, observa-se que o Cenário 2 apresenta melhor desempenho geral 

em todos os níveis de solicitação, confirmando o impacto da reorganização de pontos fixos de 

táxi e sua maior capacidade de resposta. 

O gráfico a seguir (Figura 31) demonstra que, com apenas 13 táxis, nenhum dos cenários 

atende adequadamente à demanda. O Cenário 2 apresenta leve vantagem sobre os demais, mas 

ainda insuficiente. O gradiente de queda é acentuado em todos os cenários, indicando saturação 

rápida da operação. 
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Figura 31. Gráfico do nível de serviço por solicitações por hora (13 veículos) 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 32 mostra melhora perceptível no desempenho geral, porém o Cenário 2 se 

destaca claramente, mantendo níveis mais altos ao longo de toda a curva. A diferença entre o 

Cenário 3 e o Cenário 2 é pequena, mas consistente. O Cenário 1 permanece limitado. 
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Figura 32. Gráfico do nível de serviço por solicitações por hora (26 veículos) 

 

Fonte: Elaborado pelo autor (2025) 

 

O gráfico a seguir (Figura 33), demonstra que os cenários 2 e 3 começam a apresentar 

comportamento semelhante, formando curvas mais elevadas e estáveis. O Cenário 1, embora 

melhore, ainda apresenta desempenho inferior, evidenciando limitações de sua estrutura 

dispersa. 
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Figura 33.  Gráfico do nível de serviço por solicitações por hora (39 veículos) 

 

Fonte: Elaborado pelo autor (2025) 

 

O gráfico a seguir (Figura 34)  mostra que, a partir de 52 veículos, os cenários 

otimizados (2 e 3) atingem eficiência próxima ao ideal. A curva do Cenário 1 avança, mas 

permanece abaixo das demais, reforçando a importância da organização espacial. 
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Figura 34. Gráfico do nível de serviço por solicitações por hora (52 veículos) 

 

Fonte: Elaborado pelo autor (2025) 

 

O gráfico a seguir (Figura 35) confirma que, com 65 veículos, o sistema atinge 

praticamente 100% de nível de serviço em todos os cenários, com vantagem marginal para os 

Cenários 2 e 3. As curvas tendem a convergir, sugerindo que, em frotas muito grandes, o volume 

suplanta as limitações estruturais — embora com custo operacional muito maior. Dessa 

maneira, é possível aferir que:  

 

 O Cenário 2 apresenta o melhor desempenho geral em quase todos os casos, 

principalmente para frotas pequenas e médias. 

 O Cenário 3 destaca-se por oferecer menores distâncias percorridas, compensando 

eventuais quedas marginais no nível de serviço. 

 O Cenário 1, apesar de refletir a operação real, mostra limitações claras diante de 

qualquer aumento de demanda. 

 A partir de 52 veículos, todos os sistemas atingem níveis satisfatórios, embora o custo 

operacional seja maior no Cenário 1. 
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Figura 35. Gráfico do nível de serviço por solicitações por hora (65 veículos) 

 

Fonte: Elaborado pelo autor (2025) 

 

As análises confirmam que, a partir de 52 veículos disponíveis, o sistema atinge 

eficiência próxima de 100%, especialmente nos Cenários 2 e 3, onde as solicitações são 

atendidas quase integralmente mesmo com aumento da taxa SPH. 

 

4.5 Avaliação da distância média 

As Tabelas 15 a 19 apresentam a métrica de distância média até a solicitação, um 

importante indicador de eficiência espacial. O desempenho foi significativamente superior no 

Cenário 3, com distâncias médias até 70% menores em relação ao Cenário 1. 

A Tabela 15 mostra que, com apenas 13 táxis, o Cenário 1 apresenta distâncias muito 

elevadas (entre 2,31 km e 2,36 km), consequência direta da dispersão espacial dos pontos e da 

baixa disponibilidade de veículos. Os Cenários 2 e 3 reduzem expressivamente esse valor, 

mantendo médias próximas de 0,88–0,95 km. 

A diferença revela que mesmo com frota reduzida, a reorganização espacial (Cenário 2) 

e a lógica otimizada (Cenário 3) diminuem em até 70% a distância média, tornando o sistema 

mais responsivo. 
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Tabela 15. Distância média até a solicitação para 13 veículos 

13 veículos 1 2 3 

5 SPH 2,31 0,88 0,89 

6 SPH 2,32 0,88 0,93 

7 SPH 2,33 0,89 0,93 

8 SPH 2,34 0,89 0,94 

9 SPH 2,34 0,88 0,94 

10 SPH 2,36 0,89 0,95 

Fonte: Elaborado pelo autor (2025) 

 

De acordo com os dados apresentados a seguir (Tabela 16), com 26 veículos, o Cenário 

1 continua operando com distâncias acima de 2,20 km, apresentando pouca variação conforme 

aumenta a demanda (SPH). No Cenário 2, a distância média mantém-se estável em torno de 

0,88–0,89 km, confirmando a consistência operacional da localização centralizada. 

O Cenário 3 apresenta as melhores médias desse conjunto, variando entre 0,76 km e 

0,89 km. A redução é especialmente significativa em SPH baixos, reforçando que a lógica 

otimizada distribui melhor a frota e reduz deslocamentos iniciais. 

 

Tabela 16. Distância média até a solicitação para 26 veículos 

26 veículos 1 2 3 

5 SPH 2,20 0,88 0,76 

6 SPH 2,23 0,89 0,82 

7 SPH 2,25 0,89 0,84 

8 SPH 2,29 0,89 0,86 

9 SPH 2,30 0,88 0,88 

10 SPH 2,31 0,87 0,89 

Fonte: Elaborado pelo autor (2025) 

 

Com 39 veículos, observa-se queda expressiva nas distâncias no Cenário 1, embora 

ainda superiores a 2 km em todos os SPH. O Cenário 2 mantém estabilidade em torno de 0,88–

0,89 km, evidenciando saturação positiva — mesmo com aumento da frota, a distância não 

varia, pois não há necessidade de redistribuição adicional (Tabela 17). 

O Cenário 3 apresenta seus melhores resultados até aqui: reduções abaixo de 0,60 km 

em SPH baixas e valores ainda inferiores a 1 km mesmo em demandas maiores. Isso confirma 

que a lógica TO-BE contribui de forma significativa para aproximar os táxis das origens das 

solicitações. 
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Tabela 17. Distância média até a solicitação para 39 veículos 

39 veículos 1 2 3 

5 SPH 2,03 0,89 0,55 

6 SPH 2,10 0,88 0,64 

7 SPH 2,16 0,88 0,71 

8 SPH 2,20 0,89 0,76 

9 SPH 2,22 0,88 0,81 

10 SPH 2,24 0,89 0,82 

Fonte: Elaborado pelo autor (2025) 

 

Com 52 táxis, o comportamento se aproxima do ótimo. No Cenário 1, a distância cai 

para valores entre 1,78 km e 2,18 km, melhora relevante, mas ainda insuficiente (Tabela 18). O 

Cenário 2 estabiliza-se definitivamente na faixa de 0,88–0,89 km, evidenciando que o sistema 

centralizado atinge sua configuração ideal nessa faixa operacional. O Cenário 3 apresenta os 

melhores resultados do estudo, com distâncias variando entre 0,46 km e 0,73 km, destacando 

ganhos substanciais na eficiência espacial. 

 

Tabela 18. Distância média até a solicitação para 52 veículos 

52 veículos 1 2 3 

5 SPH 1,78 0,89 0,46 

6 SPH 1,93 0,88 0,49 

7 SPH 2,03 0,88 0,54 

8 SPH 2,10 0,89 0,62 

9 SPH 2,15 0,88 0,68 

10 SPH 2,18 0,88 0,73 

Fonte: Elaborado pelo autor (2025) 

 

A Tabela 19 mostra que, com 65 veículos, todas as distâncias diminuem, mas o Cenário 

1 ainda apresenta valores acima de 1,50 km, enquanto os Cenários 2 e 3 permanecem 

amplamente superiores. O Cenário 2 mantém estabilidade em 0,88–0,89 km. Já o Cenário 3 

segue entregando o melhor desempenho global, com distâncias médias entre 0,45 km e 0,61 

km, demonstrando que o sistema otimizado distribui os veículos de forma mais eficiente, 

mesmo em condições de alta demanda. 
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Tabela 19. Distância média até a solicitação para 65 veículos 

65 veículos 1 2 3 

5 SPH 1,57 0,88 0,45 

6 SPH 1,74 0,88 0,46 

7 SPH 1,86 0,89 0,46 

8 SPH 1,97 0,88 0,49 

9 SPH 2,04 0,89 0,55 

10 SPH 2,10 0,89 0,61 

Fonte: Elaborado pelo autor (2025) 

 

As figuras 36, 37 e 38 complementam a análise dessa métrica, destacando a 

convergência dos valores médios nos Cenários 2 e 3, especialmente quando o número de 

veículos é elevado e as solicitações ultrapassam 7 SPH. 

A Figura 36 mostra a relação entre tempo médio de corrida e aumento da demanda. 

Observa-se que o tempo cresce em todos os cenários conforme SPH aumenta, mas de forma 

mais acentuada no Cenário 1. O Cenário 2 exibe comportamento estável, enquanto o Cenário 3 

apresenta os menores tempos médios, sobretudo na faixa de 5–8 SPH. Isso sugere que reduzir 

a distância inicial até o passageiro reduz diretamente o tempo total da corrida, reforçando a 

relevância da eficiência espacial. 

 

Figura 36. Gráfico do tempo médio de corrida por SPH 

 

Fonte: Elaborado pelo autor (2025) 
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O gráfico a seguir (Figura 37) resume a evolução das distâncias médias entre os três 

cenários para diferentes combinações de SPH e tamanho de frota. As curvas evidenciam que o 

Cenário 1 apresenta valores elevados em todos os casos, enquanto os Cenários 2 e 3 convergem 

para distâncias reduzidas, com destaque para o Cenário 3. 

O padrão visual confirma a tendência observada nas tabelas: a centralização (Cenário 2) 

e a lógica otimizada (Cenário 3) reduzem drasticamente o deslocamento inicial dos veículos, 

aumentando a capacidade do sistema de atender solicitações rapidamente. 

 

Figura 37. Gráfico da distância média até solicitação 

 

Fonte: Elaborado pelo autor (2025) 

 

A Figura 38 destaca exclusivamente o comportamento do Cenário 3, permitindo 

observar sua estabilidade e eficiência. As linhas mostram que, mesmo com aumento de SPH e 

diferentes volumes de frota, as distâncias permanecem abaixo de 1 km em todas as situações. 

O gráfico evidencia o êxito da lógica TO-BE: o sistema otimizado consegue manter a 

frota sempre próxima às origens das solicitações, resultando em menor tempo de deslocamento 

e maior responsividade.  

 

 

 

 

2,19

0,88
0,74

1 2 3

DISTÂNCIA MÉDIA ATÉ SOLICITAÇÃO (KM)



87 
 

 

 

 

Figura 38. Gráfico da distância média até pedido para Cenário 3 

 

Fonte: Elaborado pelo autor (2025) 

 

Os resultados confirmam que o sistema otimizado (Cenário 3) é capaz de atender mais 

de 95% das solicitações com distância média inferior a 1 km, representando um avanço 

substancial em eficiência espacial, responsividade e desempenho operacional urbano. 

 

4.6 Síntese interpretativa e resultados consolidados 

Com base nos resultados obtidos e visualizados nas Tabelas 1 a 19 e Figuras 31 a 38, é 

possível inferir que: 

 

 O modelo AS-IS apresentou limitações estruturais, com dispersão elevada dos pontos 

de táxi e longas distâncias médias de atendimento. 

 O modelo TO-BE apresentou melhor desempenho geral, otimizando trajetos e 

reduzindo o tempo de resposta em até 60%. 
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 A integração de coordenadas reais (georreferenciamento) possibilitou maior aderência 

empírica aos resultados, validando a confiabilidade da simulação. 

 O protocolo HALTER, aplicado ao fluxo metodológico, confirmou-se adequado para 

estudos de localização e desempenho de serviços urbanos, combinando a análise 

quantitativa das métricas e a validação qualitativa do sistema simulado. 

 

Em síntese, os resultados demonstram que o sistema otimizado é capaz de atender acima 

de 95% das solicitações com distância média inferior a 1 km, representando um avanço 

significativo em eficiência operacional e logística urbana. 
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5. DISCUSSÃO 

5.1 Modelagem AS-IS - Simulação do Sistema Atual de Táxis 

A modelagem AS-IS foi realizada para mapear o desempenho atual do sistema de 

transporte de táxis no campus universitário da Universidade de São Paulo, simulando o processo 

de solicitação de corridas a partir dos departamentos até a estação Butantã. O objetivo principal 

era obter uma linha de base para comparar o desempenho com o cenário otimizado (TO-BE), 

introduzindo lógicas otimizadas e novas abordagens para melhorar a eficiência operacional. Os 

resultados obtidos revelaram várias dinâmicas de operação e pontos críticos no funcionamento 

do sistema. 

Os dados gerados pela simulação AS-IS indicaram que a quantidade de táxis alocados 

por ponto teve um impacto direto no nível de serviço, uma métrica essencial para avaliar a 

eficiência do sistema de transporte. No Cenário 1, onde havia 13 táxis por ponto, o nível de 

serviço variou entre 32,55% e 99,61%, dependendo da quantidade de solicitações por hora 

(SPH). Este valor inicial, especialmente nas primeiras simulações com 5 SPH, evidenciou que 

o sistema tinha dificuldades em atender a demanda, resultando em tempos de espera mais altos 

e distâncias maiores até as solicitações. A distância média até o pedido, que foi de 2,31 km para 

5 SPH, foi um reflexo da distribuição geográfica das bases de táxis, sugerindo que o 

posicionamento das bases não era otimizado para atender a demanda de maneira eficiente. 

No entanto, à medida que o número de táxis aumentou, especialmente nos Cenários 2 e 

3 com 26 e 39 táxis por ponto, a eficiência do sistema aumentou consideravelmente. Com o 

aumento do número de táxis, o nível de serviço foi para 63,60% e 97,50% respectivamente para 

5 SPH. A distância média até o pedido caiu significativamente para 0,88 km e 0,55 km, 

evidenciando a correlação positiva entre o aumento do número de táxis e a redução do tempo 

de espera. Essa melhoria substancial nos dados é consistente com os achados de Santos et al. 

(2021), que enfatizam a importância de alocar recursos (neste caso, táxis) de maneira mais 

eficiente para otimizar a capacidade de resposta e melhorar a qualidade do serviço. 

Contudo, ao analisar os dados obtidos para o Cenário 1, observamos que, mesmo com 

o aumento de táxis, o sistema apresentou um desempenho não linear. O aumento de táxis não 

resultou em uma melhoria contínua do nível de serviço, como se poderia esperar. Isso sugere 

que, embora a quantidade de veículos impacte positivamente a eficiência do sistema, a 

distribuição das bases de táxis e a duração dos percursos ainda limitam a eficácia do modelo. 

Simette, Rezende e Sequeira (2025) apontam que a alocação espacial dos recursos deve ser 

otimizada para evitar a concentração excessiva de veículos em áreas de baixo tráfego e a 
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dispersão em regiões de alta demanda. O fato de que o Cenário 3 (com 39 táxis por ponto) tenha 

apresentado uma distância média até a solicitação de 0,55 km sugere que a localização dos 

pontos de táxi é um fator crítico para maximizar a eficiência do sistema, o que se alinha ao 

estudo de Baalsrud Hauge e Jeong (2024), que defendem que o posicionamento estratégico de 

recursos deve ser cuidadosamente planejado para melhorar os resultados em sistemas de 

logística urbana. 

Em comparação com o estudo de Francisco e Bonette (2021), que investigou a eficiência 

da logística urbana em outros contextos, o presente estudo confirma a importância da 

quantidade de veículos e da alocação eficiente de recursos no desempenho dos sistemas de 

transporte urbano. No entanto, a complexidade do sistema no contexto da Cidade Universitária 

da USP exige uma análise mais aprofundada, uma vez que os fluxos de demanda não são fixos 

e variam de acordo com fatores como horários de pico e distribuição aleatória das solicitações. 

A complexidade do modelo AS-IS também foi observada nas simulações com maiores 

taxas de solicitações. No Cenário 1, com 10 SPH, o nível de serviço permaneceu elevado 

(99,61%), mas a distância média até a solicitação ainda foi de 2,36 km. Esses dados indicam 

que, mesmo com um alto número de táxis, a distribuição das bases de táxi e a demanda variável 

afetam diretamente a eficiência do sistema. Isso é consistente com o trabalho de Goodwin et al. 

(2021), que apontam que, embora a alocação de veículos seja um fator determinante para o 

aumento da eficiência, o sistema de transporte urbano deve ser dinâmico, ajustando-se às 

variações de demanda e aos fluxos de passageiros ao longo do tempo. 

Esses achados revelam a necessidade de um modelo mais flexível que não apenas aloque 

táxis de forma estática, mas que também ajuste dinamicamente os pontos de táxi e os veículos 

disponíveis para otimizar o desempenho. A introdução de algoritmos dinâmicos de 

redistribuição e a implementação de novos fluxos de trabalho poderiam ser soluções viáveis 

para resolver as lacunas do modelo AS-IS, conforme sugerido por Singh et al. (2021). 

 

5.2 Implementação TO-BE - Inclusão de Lógicas Otimizadas e Novos Fluxos 

A segunda etapa da simulação focou na Implementação TO-BE, que visava a inclusão 

de lógicas otimizadas e novos fluxos no sistema de transporte de táxis. Essa fase teve como 

objetivo melhorar a eficiência do sistema e otimizar o nível de serviço através de ajustes na 

distribuição dos táxis e nas lógicas de redistribuição. A análise dos resultados mostrou uma 

melhoria substancial no desempenho do sistema, refletindo a eficácia das lógicas otimizadas 

implementadas. 
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Em termos de nível de serviço, a introdução de novas lógicas permitiu que o sistema 

atingisse níveis próximos a 100% de eficiência em todos os cenários. O Cenário 3 com 65 táxis 

por ponto mostrou-se o mais eficiente, com nível de serviço de 99,76% para 5 SPH. Essa 

melhoria foi especialmente evidente quando comparado ao Cenário 1, onde o nível de serviço 

era de 32,55% para 5 SPH e aumentava gradualmente à medida que o número de táxis era 

ampliado. Com a Implementação TO-BE, o modelo alcançou um desempenho mais 

equilibrado, onde as distâncias médias até as solicitações foram reduzidas drasticamente, de 

2,31 km no Cenário 1 para 0,45 km no Cenário 3. 

Esses resultados confirmam os achados de Babanagar et al. (2025), que enfatizam a 

importância de ajustes dinâmicos nos fluxos de transporte e de lógicas de redistribuição de 

veículos. A melhoria observada no nível de serviço e na distância média até a solicitação 

demonstra a eficácia das estratégias implementadas, destacando que novos fluxos são cruciais 

para atender a demanda variável em um sistema complexo como o da Cidade Universitária da 

USP. 

A inclusão de algoritmos dinâmicos de redistribuição de veículos também contribuiu 

para a redução da sobrecarga nos pontos de táxi, melhorando a capacidade de resposta do 

sistema. Esse aspecto é corroborado por Mulpuru, Bhattacharya e Barat (2025), que destacam 

que, em sistemas urbanos de logística de táxis, o uso de modelos dinâmicos e adaptativos é 

essencial para otimizar o tempo de resposta e garantir uma distribuição eficiente dos recursos. 

No entanto, a implementação dessas novas lógicas também trouxe desafios, como o 

aumento da complexidade do sistema e a necessidade de ajustes contínuos. O trabalho de Ford 

e Wolf (2020) sobre a aplicação de Digital Twin em sistemas de transporte inteligente aponta 

que, embora essas soluções melhorem a eficiência operacional, elas exigem monitoramento 

constante para garantir sua eficácia a longo prazo. Esses ajustes dinâmicos devem ser bem 

calibrados para evitar sobrecarga nos algoritmos de redistribuição, como observado nos 

primeiros resultados da simulação TO-BE. 

Além disso, a implementação de lógicas otimizadas gerou uma melhoria significativa 

no tempo médio de corrida, o que resultou em uma redução considerável nas distâncias 

percorridas pelos táxis. Essa otimização está alinhada com as conclusões de Huang et al. (2022), 

que apontam que a aplicação de modelos de simulação otimizados reduz significativamente as 

distâncias percorridas, aumentando a eficiência e melhorando o nível de serviço. 

Esses resultados sugerem que o modelo TO-BE alcançou uma eficiência operacional 

muito superior ao sistema AS-IS, principalmente devido à introdução de lógicas de otimização 
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e redistribuição de táxis, alinhando-se com os conceitos discutidos por Singh et al. (2021) sobre 

a importância da flexibilidade nos modelos de transporte urbano. 

 

5.3 Georreferenciamento e Validação Empírica - Uso de Coordenadas Reais 

A etapa de Georreferenciamento e Validação Empírica foi essencial para garantir que 

os dados do sistema de táxis refletissem uma realidade operacional precisa e confiável. O uso 

de coordenadas reais para as localizações dos pontos de táxi e da estação Butantã foi uma das 

características fundamentais dessa fase. O georreferenciamento foi realizado com base em 

coordenadas geográficas de latitude e longitude, o que permitiu uma visualização mais precisa 

e uma análise mais detalhada do fluxo de táxis dentro do campus universitário e da interação 

entre os pontos de táxi. 

Os resultados obtidos a partir dessa validação empírica revelaram que o sistema, ao 

utilizar dados geográficos reais, foi capaz de melhorar a alocação de táxis e a eficiência na 

resposta a solicitações. Comparando com os dados simulados, foi possível observar que, quando 

os táxis estavam mais próximos aos pontos de solicitação (baseados nas coordenadas 

geográficas), houve uma redução significativa na distância média percorrida. Este 

comportamento corroborou a hipótese de que o posicionamento estratégico de recursos 

contribui diretamente para a eficiência do sistema, uma conclusão alinhada com os achados de 

Baba et al. (2025), que indicam que modelos de georreferenciamento precisos são cruciais para 

otimizar os fluxos de transporte urbano. 

Com o georreferenciamento, também foi possível avaliar o impacto de um 

posicionamento mais inteligente dos pontos de táxi. Os resultados indicaram que os pontos mais 

próximos dos locais de maior demanda, como os departamentos universitários, reduziram o 

tempo de espera e a distância média até a solicitação. Esses dados estão em consonância com 

os estudos de Daniel et al. (2020), que argumentam que estratégias de alocação espacial de 

recursos, como táxis, são determinantes para a otimização de sistemas de transporte público. 

Além disso, o uso de coordenadas reais facilitou a validação empírica do modelo. 

Durante a validação empírica, o sistema foi testado em campo, comparando-se os resultados 

simulados com os dados de campo reais, o que gerou uma análise comparativa sobre a precisão 

do modelo. As análises de erro de previsão mostraram uma alta taxa de acerto, o que reforçou 

a confiabilidade do modelo proposto. Essa precisão empírica é respaldada por Simette, Rezende 

e Sequeira (2025), que afirmam que a validação empírica é um passo fundamental para garantir 
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a robustez dos modelos de simulação, especialmente quando se lida com sistemas complexos 

como o transporte urbano. 

O uso de coordenadas reais não só melhorou a alocação dos recursos, mas também 

contribuiu para uma otimização contínua. Ao longo da simulação, com a ajuste dinâmico das 

coordenadas de acordo com o tráfego real e as condições de operação, o sistema mostrou-se 

cada vez mais eficaz, validando as proposições de Goodwin et al. (2021), que destacam a 

importância de sistemas dinâmicos que ajustam suas operações com base em informações em 

tempo real. Esse tipo de ajuste contínuo possibilitou uma redução do tempo de espera e uma 

otimização no uso dos veículos, resultando em maior eficiência operacional. 

Contudo, é importante destacar que, mesmo com o uso de coordenadas reais, algumas 

variáveis externas, como interrupções no tráfego ou alterações nas condições de operação, não 

puderam ser totalmente controladas, o que limitou a perfeição dos resultados. Esse ponto é algo 

que Ford e Wolf (2020) já previam em seus estudos sobre digital twins, ao indicar que a 

sensibilidade a variáveis externas é uma das limitações dos modelos de simulação em tempo 

real. Para superar essas limitações, sugerem a incorporação de sistemas de monitoramento 

contínuo para ajustar a operação de forma ainda mais eficiente. 

Além disso, o uso de dados reais de localização também evidenciou a complexidade da 

operação nos horários de pico, onde a concentração de solicitações foi maior. Durante esses 

períodos, o sistema mostrou-se menos eficiente, evidenciando a necessidade de um maior 

número de veículos e de ajustes dinâmicos na alocação de recursos. Esses dados refletem as 

conclusões de Huang, Zhang e Zeng (2022), que apontam a necessidade de sistemas de 

transporte adaptativos para lidar com flutuações de demanda em tempo real. 

Com base nos resultados de georreferenciamento e na validação empírica, ficou claro 

que a precisão das coordenadas geográficas foi essencial para que o modelo de simulação 

refletisse as condições reais do sistema de transporte, aumentando a confiabilidade das análises 

e, consequentemente, a aplicabilidade do modelo em futuras implementações. A simulação do 

sistema atual de táxis e a utilização de coordenadas reais possibilitaram uma avaliação mais 

precisa dos pontos fortes e das deficiências do sistema, permitindo, assim, a introdução de 

melhorias significativas. 

 

5.4 Comparação e Análise de Desempenho - Avaliação Quantitativa e Qualitativa 

A comparação e análise de desempenho é uma das fases mais críticas no processo de 

avaliação de sistemas de transporte, uma vez que permite a quantificação dos ganhos de 
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eficiência obtidos após a implementação de novas lógicas de operação. Nesse sentido, os 

resultados obtidos nas simulações TO-BE, que introduziram lógicas otimizadas e novos fluxos, 

foram comparados com o desempenho do sistema AS-IS para medir a eficácia das mudanças 

implementadas. Essa análise foi conduzida com o uso de métricas como o nível de serviço, a 

distância média até a solicitação e o tempo médio de corrida, e os resultados indicaram uma 

melhoria considerável em todos os aspectos. 

Ao analisar os níveis de serviço, observou-se que os cenários otimizados (TO-BE) 

apresentaram um desempenho superior em todos os indicadores comparados ao sistema AS-IS, 

particularmente no que diz respeito ao tempo de espera e à distância até as solicitações. Por 

exemplo, nos cenários com 65 táxis por ponto, o nível de serviço foi de 99,76% para 5 SPH, 

enquanto no sistema AS-IS, o nível de serviço para a mesma quantidade de veículos foi de 

32,55%. A redução na distância média até as solicitações também foi notável, passando de 2,31 

km no sistema AS-IS para 0,45 km no Cenário TO-BE com 65 táxis por ponto. 

Essa melhoria substancial reflete as propostas de Baalsrud Hauge e Jeong (2024), que 

defendem a importância da alocação eficiente de recursos e da optimização dinâmica dos fluxos 

de veículos em sistemas urbanos. Em sistemas de transporte, como o de táxis, um ajuste 

contínuo nas rotas e na distribuição dos veículos é fundamental para maximizar o nível de 

serviço e reduzir os tempos de espera, o que foi claramente evidenciado pelos resultados 

experimentais. 

Ademais, o aumento no nível de serviço se refletiu em uma melhoria significativa no 

tempo médio de corrida. Para o Cenário 3 com 65 táxis, o tempo médio de corrida foi de 19,5 

minutos, significativamente inferior ao tempo registrado no Cenário 1 do sistema AS-IS, que 

foi de 43,2 minutos. Esses dados reforçam a eficácia dos novos fluxos e algoritmos de 

redistribuição para aumentar a eficiência operacional, um conceito amplamente discutido por 

Singh et al. (2021), que afirmam que a otimização de sistemas de transporte é essencial para 

reduzir custos e melhorar a qualidade do serviço. 

Os gráficos de desempenho complementaram essa análise ao fornecer uma 

representação visual clara das melhorias obtidas. O Gráfico 1, que ilustra o nível de serviço por 

SPH nos diferentes cenários, demonstra a superioridade do Cenário TO-BE em comparação 

com o sistema AS-IS. A melhoria no nível de serviço foi linearmente proporcional ao aumento 

do número de táxis e à introdução de lógicas de otimização. 

Por outro lado, um ponto importante a ser observado é que, embora os novos fluxos 

tenham melhorado significativamente a eficiência do sistema, algumas limitações ainda foram 

encontradas, especialmente nos horários de pico. Durante esses períodos, a demanda de 
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solicitações aumentou substancialmente, o que levou a um pequeno aumento no tempo de 

espera e na distância percorrida. Esse fenômeno é discutido por Moran-Zabala et al. (2024), 

que argumentam que, em sistemas urbanos, picos de demanda exigem a implementação de 

estratégias de dimensionamento dinâmico para garantir que o sistema continue eficiente mesmo 

nas condições de alta demanda. 

A análise comparativa revelou que o modelo TO-BE com lógicas otimizadas resultou 

em uma eficiência significativamente maior em relação ao sistema AS-IS, especialmente em 

termos de nível de serviço e distância média até a solicitação, mas ainda há a necessidade de 

ajustes para lidar com picos de demanda, como sugerido por Rabe et al. (2020) e Vohra (2022). 
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6. CONCLUSÃO 

Este estudo teve como objetivo analisar a eficiência atual e propor a otimização do 

sistema de transporte de táxis dentro do Campus da Universidade de São Paulo (USP), 

considerando as variáveis que impactam o desempenho das operações de táxi, como a alocação 

de veículos e a dinâmica de fluxo entre os pontos de solicitação e os destinos. Os resultados 

obtidos demonstraram que a simulação computacional é uma ferramenta poderosa para 

entender e melhorar esses sistemas complexos, especialmente quando se utilizam coordenadas 

reais e modelos otimizados para definir as lógicas de operação. 

A análise dos dados experimentais revelou que o nível de serviço do sistema foi 

significativamente aprimorado com a implementação de lógicas otimizadas. A comparação 

entre o modelo atual de operação (AS-IS) e o modelo proposto (TO-BE) indicou uma clara 

vantagem nas métricas de tempo médio de corrida e distância até a solicitação no modelo 

otimizado. Esse modelo foi responsável por reduzir o tempo de espera para os passageiros e 

aumentar a eficiência operacional ao melhorar a alocação dos veículos. Contudo, mesmo com 

as melhorias, foi possível observar que o sistema ainda apresenta desafios, principalmente em 

situações de alta demanda e durante o pico de solicitações, o que sugere a necessidade de ajustes 

contínuos nas lógicas de operação. 

Além disso, o uso de coordenadas reais teve um impacto positivo na precisão do modelo 

de simulação. O georreferenciamento possibilitou validar os dados obtidos experimentalmente, 

mostrando que a simulação se aproxima consideravelmente das condições reais de operação, 

um fator que pode ser crucial para futuras implementações do modelo em outras cidades ou 

instituições. 

Em relação ao impacto das modificações, a pesquisa revelou que a implementação das 

novas lógicas de alocação de táxis gerou ganhos substanciais de eficiência, como a redução no 

tempo de deslocamento e no número de veículos necessários para atender a uma dada demanda. 

No entanto, os dados também indicaram que, em certos cenários com alta concentração de 

solicitações em horários de pico, o sistema otimizado ainda pode apresentar limitações em 

termos de cobertura total, o que abre espaço para futuras melhorias e ajustes. 

A comparação entre os diferentes cenários simulados (com 13, 26, 39, 52 e 65 veículos) 

trouxe à tona a importância do número de veículos disponíveis para garantir a eficiência do 

sistema. À medida que o número de táxis aumenta, a distância média até o pedido e o tempo 

médio de corrida diminuem. No entanto, a eficácia do sistema não se mantém linear após certo 

ponto, indicando que, além do número de veículos, outros fatores como distribuição dos pontos 
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de táxi e gerenciamento de horários de pico também devem ser considerados para uma 

otimização mais eficaz. 

Apesar dos resultados promissores, algumas limitações foram observadas, como a 

sensibilidade do sistema à demanda imprevista. Quando as solicitações excedem a capacidade 

de atendimento do sistema, observa-se uma queda no nível de serviço e um aumento na 

distância até a solicitação, o que pode afetar diretamente a satisfação do usuário. Portanto, 

ajustes contínuos, com o uso de modelos dinâmicos que ajustem em tempo real as alocações de 

táxis, seriam necessários para atender melhor às flutuações de demanda. 

Como sugestões para pesquisas futuras, a incorporação de veículos autônomos ao 

modelo de simulação poderia ser um passo importante, uma vez que a automação poderia 

contribuir para uma maior eficiência operacional e uma redução de custos. Além disso, a 

introdução de algoritmos de inteligência artificial para ajustes dinâmicos na alocação de 

veículos poderia melhorar ainda mais a eficiência do sistema, levando em consideração não 

apenas a quantidade de táxis mas também condições em tempo real, como congestionamento 

ou eventos inesperados. 

Outro ponto importante para o avanço deste estudo seria a expansão do modelo para 

diferentes contextos urbanos, permitindo a verificação de como o sistema pode ser adaptado 

para outras cidades ou grandes centros urbanos, considerando a variação na infraestrutura e nas 

necessidades de transporte. A pesquisa também poderia explorar a relação entre transporte 

público e privado, analisando como a integração entre esses modais pode otimizar a mobilidade 

urbana como um todo, especialmente em áreas densamente povoadas. 

Em suma, os resultados obtidos confirmam que a utilização de simulações 

computacionais para otimizar sistemas de transporte é uma abordagem promissora, mas que 

exige ajustes contínuos e a incorporação de novas tecnologias para garantir que o sistema seja 

sustentável e eficiente a longo prazo. A pesquisa contribui com insights valiosos para o campo 

da mobilidade urbana, apontando caminhos para melhorias futuras tanto em termos de 

tecnologia quanto de gestão de tráfego. 
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