=)

4

UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS
DEPARTAMENTO DE ENGENHARIA ELETRICA E
COMPUTACAO

TRABALHO DE CONCLUSAO DE CURSO

“Implementacao de sistema robotico autbnomo movimentado

de acordo com informacgdes visuais”

ANDRE FELIPE NUNES TROFINO

Sao Carlos

Outubro/2014






ANDRE FELIPE NUNES TROFINO

IMPLEMENTACAO DE SISTEMA
ROBOTICO AUTONOMO
MOVIMENTADO DE ACORDO COM
INFORMACOES VISUAIS

Trabalho de Conclusao de Curso apresentado
a Escola de Engenharia de Sao Carlos, da
Universidade de Sao Paulo

Curso de Engenharia de Computacao

Orientador: Evandro L. L. Rodrigues

Sao Carlos

Outubro/2014



AUTORIZO A REPRODUCAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL ou
ELETRONICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE
CITADA A FONTE.

Trofino, André Felipe

T8431i Implementagdo de sistema robdético autdnomo
movimentado de acordo com informacdes visuais / André
Felipe Trofino; orientador Evandro L. L. Rodrigues. S&o
Carlos, 2014.

Monografia (Graduagdo em Engenharia de
Computacgéo)

-- Escola de Engenharia de S&o Carlos da Universidade
de Sdo Paulo, 2014.

1. Raspberry Pi. 2. Sistemas Embarcados.
3. Processamento de Imagens. I. Titulo.




FOLHA DE APROVACAOQO

Nome: André Felipe Nunes Trofino

Titulo: “Implementagdo de sistema robético autdnomo movimentado de acordo
com informag¢Ges visuais”

Trabalho de Concluséio de Curso defendido em | g 1 d [ e O/ g,

Comissao Julgadora: Resultado:

Prof. Associado Evandro Luis Linhari Rodrigues : :
(Orientador) - SEL/EESC/USP 74, %zz Va&o.

Profa. Associada Simone do Rocio Senger de Souza A Yaovad o

SSC/ICMC/USP

Prof. Dr. Marcelo Andrade da Costa Vieira ,-Aﬁ?o VADO

SEL/EESC/USP

Coordenador do Curso Interunidades - Engenharia de Computacdo:

Prof. Associado Evandro Luis Linhari Rodrigues



Dedicatoria

Dedico este trabalho aos meus pais, Julio e Cristina, que sempre me apoiaram,
sempre acreditaram em mim e me mostraram o caminho correto; a minha irma, Carol,
minha companheira em todas as horas e minha melhor metade, sempre pronta a me

aturar, e a minha namorada Ana Carolina, por ser meu suporte, minha ajudante e minha
inspiracdo nesta etapa final.



Agradecimentos

Agradeco a todos meus amigos, que sempre estiveram comigo para compartilhar
0os momentos bons e os momentos ruins, e me sempre me deram uma razio pra Sorrir e
meus pais por toda a forca e apoio que me proveram durante todos os anos.

Agradeco a minha primeira professora de programacao, Simone Senger Souza, cuja
bondade e paciéncia me incentivaram a continuar nesse caminho, e que continuou a me
ajudar mesmo depois de ndo termos mais aulas.

Agradeco também meu professor e orientador Evandro L. L. Rodrigues, que

sempre teve tempo para mim, e seus conselhos eu busco até hoje.



“A felicidade esta antes na jornada que no destino”

- Stephen King, A Torre Negra



Resumo

Os sistemas embarcados comerciais evoluiram muito nos altimos anos, abrindo as
possibilidades de aplicagdes embarcadas. Uma dessas possiveis aplicacdoes ¢é
processamento de imagens e visdo computacional. Neste trabalho é proposto um sistema
de fetch; um robd auténomo que detecta a imagem de um circulo e se movimenta seguindo
essa imagem, utilizando uma camera para obter imagens e processamento de imagens
para obter as informacg6es necessarias. O objetivo deste trabalho é estudar o desempenho
de um sistema embarcado barato e limitado computacionalmente no contexto de
processamento de imagens. Foi obtida uma boa precisdo em relacio a deteccdo do circulo
e movimento do sistema, mostrando que o sistema embarcado em questdo é capaz de
realizar aplicagbes de visdo computacional, entretanto, a plataforma escolhida nao é a

melhor escolha devido as suas limitagdes.

Palavras-Chave: Raspberry Pi, Sistemas Embarcados, Processamento de Imagens.



Abstract

There has been a growth in embedded systems in last years, making them faster
and more robust, allowing new possibilities for embedded applications. One of these
possible applications is computer vision and image processing. This work proposes a fetch
system, an autonomous robot that detects an image of a circle and moves following that
image, utilizing a camera to obtain images and image processing to obtain the necessary
information. This work’s objective is to study a cheap and limited embedded system’s
performance when used for image processing. A good detection accuracy and movement
was obtained, proving that image processing applications are possible using embedded

systems, however, the chosen platform is not the best choice, due to its limitations.

Keywords: Raspberry Pi, Embedded Systems, Image Processing.

10



Sumario

Lista de ADreViaturas: ........coooeieeeeeeeeeeee e 13
(IS = o [T o [ = T USRS 14
LiSta de tADEIAS. .....cci i 15
Lo INETOTUGAD. ... 16
O T |V o (1Y Vo= Lo TSP 16
2. ODJELIVOS. ..o 18
2.1, ODJEUVO GEIAL....cii i e e 18
2.2.  ODbjetivOS ESPECITICOS .....uueeiiiiiieiiiiiiiiii e 18

I T O] o1 (=) (U= [ 2= ox= Lo IR PP 19
4. EMDASAMENTO TEOMCO .. ..uuueiiiiieeeiiiiiitee et e e e e ettt e e e e e et e e e e e e e s s aabeaereeeaeens 20
4.1,  SiStemas OPEraCIONAIS ........ccciivuiriiiiiieeeeeeeeetiiae e e e e e e e et e e e e e e arrar e aaaaas 20
4110 KEIMEL ... 20
4.1.2. EXECUGAO € PrOCESSOS .....cevviiiiiiiiiiiiiiiiiiiiiiiie ettt 21
4.1.3. INTEITUPGOES ..ottt ettt ettt e e e e e e eet s e e e e e eeenenes 21
4.1.4. MOUOS U€ OPEIAGAD ...evvvviiiiiiiiieiiiiieeeeeeeee ettt ettt et e ettt et e e e e e e e e e eeeees 22
4.1.5.  GeStA0 08 MEMOIIA ....vvviiiiiiiiiiiiiiei ettt 22
4.1.6.  MemOKia VIrtUAI ........uueeiiiiiiiiiiiieeeee et 23
417, MURIEBIETA. ...ciii i 23
4.1.8. Acesso ao Disco Rigido e Sistemas de Arquivos...........cceeeeveeeeiiiinennne. 24
4.1.9. Drivers de DiSPOSITIVOS ....uuueiiiieeiiiiiiiiies et a e aannes 24
4.1.10. RO .. 25
4.1.11. INterface de USUANO ........cuiiiiiiiiiiiiieee et 25
4.1.12. Tipos de Sistemas OPEracioNAiS.......cccceeveeviuiiiiiieieeeeeeeeeiieee e e e e e eeanans 25

4.2, Processamento de IMAGENS .........uuuuuummummmniiiiiiiiiiiiiiiieiiiieieeeeeebeeeeeeeaeeennee 26
N N O - 11 T o3= To> T P 26
4.2.2.  EXtracao de CaracteriStiCas: .......cooiiiuuriiiiiiiee ettt e e e e e 27
4.2.3. Reconhecimento de PadrOes ............cccuuumummmmmimiiiiiiiiiiiiiiiiniieeeeeennnes 27
4.3.  Transformada HOUGN ............uuiiiiiiiii e 27
T N =T - PRSP PPPPPPPPP 27

4.4, FIlrO 08 COr ... it 30
4.5, FIltrO 08 GAUSS .....uuuiuiiiiiiiiiiiiiiiii bbb nnnnne 30
T 11 = - Yoz U LSS 31
A7, EFOSE0 c.ciiiiiiiiiiite ettt e e e e e e 31
4.8, FIltro de Canny .........uuuuuiiiiiiiiiiiii e 31
4.9.  Controle DIgital ........ccuvuuiiii e e 32



6.
7.
8.

4.10. PONE H ..o e 33
4.11. PV M et a e 34
Desenvolvimento do TrabalnNo ...............uuuiiiiiiiiiiiiiiiii e 36
5.1, MAEEIIAIS ...ttt 36
5.2, Plan€JamMENTO. ... ..uuiiiiiiiiiiiiiiiiiiiiiiieb bbb 38
5.3. Escolha do método de deteccdo e simbolo detectado..........cccceeeeevrivivinnnnnn. 39
5.4, IMPIEMENTAGED ... .evviiiiiiiiiiiiiitieiieeeebeb bbb bbb s e nnne 40
5.5, REFINAMENTO ....oeiiiiiiiiiiiiie e 47
551, FIlro de COr..cccoiiiiiiiiiiiie 47
5.5.2.  Filtro GauSSIAN0 ......ccceviiiiiiiiiiiiii 47
5.5.3. Detector de Borda de Canny ..........ccuuieiiiieiiiiiiiiiiiie e e 47
5.5.4. Transformada de HOUgN..........ccccoiiiiiiiiiii 48
5.6. Montagem da Plataforma............ccoooviiiiiii i 49
5.7. Cdlculo da Distancia e Angulo € MOVIMENO ...........ceevevvevereieeeeeeeeieeeveenas 51
TS T [ 011 To | = Tok= To LSS UPPPPPPPPT 54
RESUItAAOS € DISCUSSOES. ... .uuuuuuiiiiiiiiiiiiiiiiiiieiiii bbb eennnees 55
TrabalN0OS FULUIOS. .....oiiiiiiiie e 68
BibliOgrafia......c.oooiiiiiiii e 69

12



Lista de Abreviaturas:

RAM = Random Access Memory

BIOS = Basic Input/Output System

RGB = Red Green Blue

HSV = Hue Saturation Value

USB = Universal Serial Bus

HD = High Definition

VGA = Video Graphics Array

HDMI = High-Definition Multimedia Interface

GPU = Graphics Processor Unit

GFLOPS = Giga Floating-point Operations Per Second
HDTV = High-Definition Television

SD = Secure Digital

MMC = Multimedia Card

SDIO = Secure Digital Input Output

PID = Proportional-integral-derivative

SDRAM = Synchronous Dynamic Random Access Memory
SSH = Secure Shell

13



Lista de Figuras

Figura 1: SiStemMa PrOPOSIO......cii i i ettt e e e e e e e et e e e e e e e eeannes 16
Figura 2: ViS80 SUPEFiOr dO SISTEMA. ....uuuuiii i i e e e et e e e e e eaeees 17
Figura 3: Papel do Kernel [3]. ..o 21
Figura 4: Representacdo da Transformada de Hough em duas linhas[6].................... 29
Figura 5: Resultado do Filtro de Canny [11]......ccoooeeeeieieieeeeeeeeee e 32
Figura 6: Representagéo Grafica da Ponte H [13]........ccooiiiiiiiiiiiiiieeiiiiiiieeee e 33
Figura 7: Circuito de uma ponte H [L14].... oo e e eaeens 34
Figura 8: RASPDEITY Pi[16]. ..cccooeeeeeeeeeeeeeeeeeee e 37
Figura 9: Foto transformada em HSV. ... 42
Figura 10: Foto apds aplicac@o do filtro de COr..........eeviiiiiiiiiiiiiiiieie e 42
Figura 11: Foto apds aplicac@o do filtro de GauSs. ........ccooiiviiiiiiiiiieieiiiiiieeee e 43
Figura 12: Foto apOs 0 processo de Er0S80. ........uuuceeiiieiiiiiiiiiiiee e eeeeeeevtiee s e e e eeaanns 44
Figura 13: Foto apds 0 processo de Dilatagao. ..........ccceeeiiiiuiiiiiiiiieeeeiiiiiiiieeee e 44
Figura 14: Foto ap0s aplicacdo do filtro de Canny. ........ccoeeeeieiiiieeeeeeeeeeeeee, 45
Figura 15: Circulo detectado pela transformada de Hough. .............cccvviiieiiniiniinnn, 46
Figura 16: Processo de reconhecimento do CirCUlO. ...........cccuvvviiiiiiiiniiiiiiiiiiceee e 46
Figura 17: Plataforma automobilistica [27]. .......ooevviiiiiiieecee e 49
Figura 18: Procedimento de calculo da distancia real [29]. .........cccceiiiiiiiiiiiiiiieeenne 52
Figura 197: Desvio padrao das medidas das CAMEras.........ccccceeeeveeeriiiiiiiiiiiieeeeeeeennnns 53
Figura 20: Circulo “quebrado” devido a distorgdes nas COres. .........covvvvvvieeieeeeeeeennnn, 54
Figura 21: Ciclo completo dO SIStEMA. .....ccoeeeeeeeeeeeee e 55
Figura 22: Integragéo dos dispositivos do SiStema. .........ccceeeeeeeeiiiiiieieeeeeeeeeeeeeeeee, 55
Figura 23: Interpolagdo dos dados de profundidade obtidos. ............ccooeeeeeeiiiieeeeeeeeen. 57
Figura 24: Resultado das medidas para profundidade de 62 cm. ...........cccoeeeeeeeeeennn. 58
Figura 25: Comparacao entre a média dos célculos e a profundidade real. ................ 59
Figura 26: Diferenca entre a média dos célculos e a profundidade real. ..................... 60
Figura 27: Comparacao entre a média dos célculos e a profundidade real utilizando a
média de trés deteccdes para o calculo da profundidade ...............cooeeeeeeeeeieiieeeee, 61
Figura 28: Diferenca entre a média e a profundidade real utilizando a média de trés
detecgOes para o célculo da profundidade. .............oovvvviiiiiiiiiiiiiiiiiiiiieeee 62
Figura 29: Resultado da interpolag&o para distancia lateral. ..............ccccoeeeeieeeeeeneeen, 63
Figura 30: Beaglebone [B0]......ccoo oo 66

14



Lista de tabelas

Tabela 1: Tabela de funcionamento da ponte H............cccoooiiiiiiiiiiiii e, 34
Tabela 2: Resultado dos Calculos de profundidade. ... 59
Tabela 3: Resultado dos calculos de profundidade utilizando a média de trés

deteccbes para o célculo da profundidade..............cccevvviiiiiiiiii 61
Tabela 4: Comparacao dos resultados obtidos para distancia lateral.......................... 64
Tabela 5: Resultados das medicBes dos tempos de eXECUGAD. .......ceeveeeerieevriinieeennnn. 64

15



1. Introducao

1.1. Motivacao

0 processamento de imagens e a visdo computacional sdo duas areas intimamente
ligadas que apresentam uma gama muito grande de aplica¢des; mas retirar informacgdes de
dados visuais (fotos, videos) requer bastante poder computacional. Devido a esse
requerimento de poder computacional, aplicacdes de processamento de imagens em
sistemas embarcados eram muito limitadas, pois um sistema embarcado tem uma
capacidade de processamento muito reduzida se comparado a um computador
convencional. Mas com o crescimento dos hardwares embarcados, tornando-se mais
poderosos e robustos, o processamento de imagens se torna possivel também em sistemas

embarcados.

A motivacdo desse projeto é estudar o poder de um sistema embarcado em relagao
a processamento de imagens, utilizando um sistema de detec¢do de imagens, e obter um

sistema que pode ser expandido e utilizado em varios contextos e aplicacoes.

0 sistema em questdo é um sistema de “fetch” (busca), cujo objetivo é identificar
um objeto pré-definido e movimentar-se até sua posicdo. O sistema seria totalmente
autonomo, utilizando uma plataforma robética mével, um sistema embarcado em conjunto
com uma camera para obter as imagens e controlar todo o processo. As figuras 1 e 2

abaixo representam o sistema proposto.

Figura 1: Sistema Proposto.

16



Figura 2: Visdo superior do sistema.

Como ¢ possivel observar nas imagens acima, o sistema consiste em uma camera
na frente da plataforma mdvel, responsavel por alimentar o sistema embarcado com
imagens do ambiente, uma plataforma mével responsavel pelo movimento do sistema e o

sistema embarcado em si, responsavel por comandar os outros elementos.

A ideia de se movimentar seguindo um objeto de interesse pode ser usada em
varias situa¢des nas quais ndo seria possivel empregar uma pessoa, como por exemplo,
verificacdo de defeitos em tubulagdes, desativacdo de minas terrestres (a mina seria um
objeto de interesse, entdo bastaria reconhece-la para descobrir sua posicdo e realizar os
procedimentos necessarios para desativacdo), e extrapolando a ideia, seria possivel o

reconhecimento de pessoas em meio a multidoes.

O sistema embarcado entra com a funcdo de controle miultiplo, administrando
todas as partes envolvidas no projeto e aplicando os métodos necessarios para extrair as
informagdes das imagens recebidas e os movimentos necessarios em cada situagao. Cada

parte e processo do sistema serao explicados neste documento.

17



2. Objetivos

2.1. Objetivo Geral

Estudar e propor uma arquitetura embarcada eficiente (composta por hardware e
software) para processamento de imagens e controle de periféricos eletrénicos sobre uma
plataforma limitada computacionalmente, utilizando um sistema operacional que nao tem

suporte para aplicagdes em tempo real.
2.2. Objetivos Especificos

Os seguintes objetivos especificos foram definidos a fim de atingir o objetivo

principal:
- Estudar a precisdo do método escolhido para deteccio de circulos.

- Analisar formas de melhorar o método escolhido para obter uma resposta

satisfatoria.

- Aplicar os resultados obtidos acima na plataforma embarcada e estudar o melhor

compromisso entre precisdo e velocidade de execu¢do em tempo real.

- Discutir os resultados obtidos e propor melhorias futuras.

18



3. Contextualizacao

0 campo de visdo computacional pode ser caracterizado como imaturo e diverso.
Apesar de existirem trabalhos ja reconhecidos, somente apds o final da década de 1970
que comecaram estudos aprofundados, quando os computadores ja podiam processar
grandes conjuntos de dados como imagens. Entretanto, tais estudos foram geralmente
originados de outros campos de pesquisa, e, consequentemente, nio existe uma
formulacao padrdo para o problema de visdo computacional, assim como ndo existe uma
formulacao padrdo de como os problemas de visdo computacionais devem ser resolvidos.
0 que existe atualmente sdo diversos métodos para resolver varias tarefas bem definidas,
no qual os métodos sdo bastante especializados e raramente podem ser generalizados
para varias aplicagdes. Na maioria das aplicacbes de visdo computacional, os
computadores sdo pré-programados para resolver uma tarefa particular, mas métodos

baseados em aprendizagem estdo se tornando cada vez mais comuns.

Como uma imagem apresenta uma quantidade de dados muito grande, sua analise
demanda muito processamento também. Os computadores mais avangados ja conseguem
resultados incriveis devido ao seu alto poder computacional, entretanto, eles possuem a
desvantagem da necessidade de permanecerem estaciondrios. Esse problema é resolvido
utilizando um sistema embarcado, que, apesar de apresentar um poder computacional

menor que um computador desktop, permite tornar o sistema moével e dedicado.

Um sistema embarcado é um sistema computacional dedicado a uma fungao
especifica dentro de um sistema elétrico ou mecanico maior [1]. Ele é embarcado como de
um dispositivo, que geralmente inclui hardware e componentes mecanicos.
Diferentemente de computadores de propoésito geral, como o computador pessoal, um
sistema embarcado realiza um conjunto de tarefas predefinidas, geralmente com
requisitos especificos. Sistemas embarcados existem hoje desde dispositivos méveis, como
reldgios digitais e tocadores MP3, até sistemas fixos, como semaforos, controladores de
fabricas e sistemas complexos como veiculos hibridos e aparelhos de ressonancia

magnética [1].

19


http://pt.wikipedia.org/wiki/Computador_pessoal

4. Embasamento Teorico

A seguir serd descrita de forma sucinta os principais conceitos envolvidos neste
projeto.

4.1. Sistemas Operacionais

Sistema operacional é um conjunto de programas que gerenciam os recursos do
sistema (definir qual programa recebe aten¢do do processador, gerenciar memoria, criar
um sistema de arquivos, etc.), sendo a interface entre programas e recursos, e fornecem

uma interface entre o computador e o usuario [2].

Um sistema operacional é composto por varios componentes, interligados para
que as diferentes partes de um computador trabalhem em conjunto. Todas as aplica¢des
devem passar pelo sistema operacional para que possa usar qualquer hardware do

sistema.

Segue uma lista dos principais (mas ndo todos) componentes de um sistema

operacional.

4.1.1.Kernel

0 kernel prové o mais basico nivel de controle sobre os dispositivos de hardware
do computador. Ele administra acesso de memodria dos programas a, determina qual
programa tém acesso a qual recurso de hardware e organiza os dados para
armazenamento ndo volatil utilizando sistemas de arquivos em midias de armazenamento

tais como fitas eletromagnéticas, disco rigidos, memorias flash, etc [2].

20



Applications

User-Mode | o Windows
User . * o
Mode Drivers API

Kernel “4 v ¢
Maode Exported Driver
Othe Support Routines :
Kernel—Mrade +—> +—p File System
Drivers Operating Drivers
System Kernel
A

I !

Hardware Abstraction Layer

!

Hardware

Figura 3: Papel do Kernel [3].
4.1.2.Execucao de Processos

O sistema operacional é a interface entre um programa sendo executado e o
hardware do computador, como ja foi dito. Ele também dita regras e procedimentos para a
utilizacdo segura dos recursos utilizados por cada programa. Executar um programa
envolve o sistema operacional criar um processo pelo seu kernel, o qual lhe atribui
memoria e outros recursos, estabelece uma prioridade para o processo em sistemas
multitarefas, carrega o c6digo binario do programa na memoria do sistema e inicia a

execucdo do programa, que sé entdo interage com o usuario e os dispositivos de hardware

[2].
4.1.3.Interrupcodes

Interrupgdes sdo uma parte central de um sistema operacional, pois é por meio
delas que ele pode interagir com e reagir ao seu ambiente. Elas permitem que um
computador salve automaticamente seu estado atual para que um c6digo ou um programa
especifico seja executado em resposta a eventos, ou para que alguma operacio de leitura
ou escrita seja feito, e depois, retornar para o estado salvo anterior a resposta do evento
[2]. Em sistemas operacionais modernos, as interrup¢des sdo controladas pelo kernel e

podem surgir do hardware do computador ou de um programa sendo executado.

21



Quando um dispositivo de hardware aciona uma interrupcao, o kernel decide como
lidar com esse evento, geralmente executando algum co6digo em resposta. O
processamento de interrupg¢des de hardware geralmente é delegado para um software

chamado de “driver”, que pode fazer parte do kernel, de outro programa, ou de ambos [2].

Uma interrupg¢do acionada por um programa geralmente indica que o programa
deseja acessar algum recurso de hardware. Por exemplo, se um programa necessita ler
dados do disco rigido, ele aciona uma interrupg¢do para o kernel, o que causa o controle a
ser passado para o kernel, que entdo processa a requisicdo e executa os procedimentos

necessdarios para atender a requisigdo [2].
4.1.4. Modos de Operacao

Processadores modernos possuem varios modos de operacdo. Geralmente
utilizam-se dois modos: protegido e supervisor. O modo supervisor é utilizado pelo kernel
para tarefas de “baixo-nivel” que necessitam acesso irrestrito ao hardware, como controle
de escrita em memoria e comunicagdo com dispositivos como a placa de video. Em
contraste, o modo protegido é utilizado para todo o resto. Programas sdo executados em
modo protegido, e sé podem utilizar recursos do hardware se comunicando com o kernel,

que controla tudo em modo supervisor [2].

Os primeiros programas a serem executados em um computador (como BIOS e
bootloader) e o sistema operacional tém acesso ilimitado ao hardware. Isso é necessario,
pois por definicdo, iniciar um ambiente protegido s6 é possivel de fora de um ambiente
protegido [2]. Entretanto, quando o sistema operacional passa o controle para outro

programa, ele pode colocar o processador em modo protegido.
4.1.5. Gestao de Memoria

O kernel de um sistema operacional multitarefas precisa ser responsavel por
gerenciar toda a memoria do sistema que esta em uso. Isso garante que um programa nao
interfira com a memdria sendo usado por outro programa. Cada programa deve ter acesso

independente a memoria [2].

22



A gestdo da memoria também envolve protecio de memoria, que permite o kernel
limitar o acesso de um programa a memoria. Existem varios métodos de protecdo de
memoria, incluindo segmentac¢do (divisdo da memoéria principal em seg¢des) e paginacdo
(utilizagdo da memoria secundaria como armazenamento para dados utilizados na
memoria primaria) [2]. Todos os métodos necessitam de certo nivel de suporte do

hardware, o qual ndo existe em todos os computadores.

Em ambos os métodos de protecdo citados acima, o modo protegido especifica
quais enderecos de memoria sdo permitidos a quais programas. Tentativas de acessar um
endereco de memoria a outros enderecos irdo acionar uma interrupg¢ao, colocando o
kernel no comando. Isso é chamado de violagdo de segmentacdo, e geralmente o kernel

termina o processo do programa violador e reporta o erro ao sistema operacional [2].

4.1.6. Memoria Virtual

A utilizacdo de endere¢camento de memodria virtual (como paginacio e
segmentacdo) significa que o kernel pode escolher qual memoria cada programa podera
usar em dado momento, permitindo o sistema operacional utilize a mesma meméria, para

tarefas multiplas.

Em sistemas operacionais modernos, enderecos de memdria que ndo sio
acessados frequentemente podem ser armazenados temporariamente em disco para
liberar espago na memoria primdria para outros programas. Isso é chamado de swapping,
pois uma area de memoria pode ser utilizada por varios programas, e seu contetido pode
ser trocado (“swapped”) por demanda. A memoria virtual prové a percepcdo que ha mais

memdria RAM no computador do que existe fisicamente [2].

4.1.7. Multitarefa

Multitarefa se refere a execugdo de multiplos programas independentes no mesmo
computador, dando a impressdo que ele esta executando as tarefas ao mesmo tempo.
Como a maioria dos computadores consegue fazer no maximo duas tarefas ao mesmo
tempo, isso é feito geralmente através de “time-sharing”, que significa que cada programa

utiliza uma parte do tempo do computador para ser executado.

23



O kernel contém um programa chamado de “escalonador”, que determina quanto
tempo um programa sera executado e qual a ordem de execucdo dos programas. Sistemas
operacionais modernos estendem o conceito de preempcao de programas para drivers e
cédigos do kernel, para que o sistema operacional tenha controle preemptivo também

sobre os tempos de execucdo internos [2].

A filosofia do sistema multitarefa preemptivo é garantir que todos os programas
recebam tempo regular no processador. Isso implica que todos os programas tém seu
tempo de processamento limitado. Para realizar isso, o kernel faz uso de interrupgoes

cronometradas.
4.1.8. Acesso ao Disco Rigido e Sistemas de Arquivos

Computadores armazenam dados em discos rigidos utilizando arquivos, que sdo
estruturados de formas especificas para permitir acesso mais rapido, maior confiabilidade
e maximizar o uso do espaco livre do disco. A forma especifica como os arquivos sdo
armazenados no disco é chamada de sistema de arquivos, e permite que arquivos tenham
nomes e atributos e sejam armazenados em uma hierarquia de diretérios e pastas

arranjados em uma arvore de diretérios [2].

Um dispositivo de armazenagem conectado, como um disco rigido, é acessado
utilizando um driver. O driver entende a linguagem especifica do disco e a traduz para
uma linguagem padrdo usada pelo sistema operacional para acessar todos os dispositivos

de disco [2].

0 kernel acessa o conteudo do disco em um formato binario, o qual pode conter um
ou mais sistemas de arquivos. Um driver de sistema de arquivo é utilizado para traduzir os
comandos usados para acessar cada sistema de arquivo especifico em um conjunto de
comandos padrdo que o sistema operacional pode usar para acessar todos os sistemas de
arquivo. Programas interagem com esses arquivos por meio de nome de arquivo e

diretorios e pastas.

4.1.9.Drivers de Dispositivos

7

Um driver de dispositivo é um tipo especifico de software desenvolvido para
permitir interacdo com dispositivos de hardware. Tipicamente constitui uma interface
para comunicacdo com o dispositivo, provendo comandos para e/ou recebendo dados do
dispositivo e interfaces para o sistema operacional e softwares. O driver é dependente do

hardware e é especifico ao sistema operacional.

24



4.1.10. Rede

Atualmente, a maioria dos sistemas operacionais suporta uma variedade de
protocolos de rede, hardware e aplicagbes. Isso significa que computadores utilizando
sistemas operacionais possam participar em uma rede comum para compartilhar recursos
como arquivos, impressoras e tempo de processamento. Redes permitem que o sistema
operacional de um computador possa acessar recursos de um computador remotamente

como se esses recursos estivessem conectados diretamente no computador local [2].

Redes do tipo Cliente/Servidor permitem que o programa cliente se conecte ao
programa servidor, o qual oferece varios servicos, como processamento, armazenamento,

compartilhamento, entre outros.
4.1.11. Interface de Usuario

Todo computador operado por um individuo necessita de uma interface. A
interface de usuario enxerga a estrutura de diretdrios, requisita servigos do sistema
operacional que adquirirdo dados dos dispositivos de hardware de entrada, como o
teclado e o mouse, e requisita servicos do sistema operacional para mostrar informagdes
em dispositivos de hardware de saida, como o monitor [2]. As duas interfaces de usuario
mais comuns sdo a interface de linha de comando, na qual aparecem apenas informagdes
textuais e o usudrio interage com o sistema através de comandos enviados linha por linha,

e a interface grafica de usuario, que apresenta um ambiente visual.
4.1.12. Tipos de Sistemas Operacionais
Real-Time

Um sistema operacional em tempo real visa executar aplicacdes em tempo real,
utilizando geralmente um escalonador especializado para que se obtenha um
comportamento deterministico. O principal objetivo do sistema operacional em tempo real
é responder eventos de forma rapida e previsivel. Ele possui um sistema de multitarefas
focado em eventos (“event-driven”), isso significa que o escalonador alterna entre
processos baseados em suas prioridades ou eventos externos, em contraste a um sistema
de “time sharing”, que alterna entre processos baseado no tempo de execucdo de cada

processo.

25



Multiusudrio

Um sistema operacional multiusuario permite que varios usuarios acessem um
computador ao mesmo tempo. Sistemas “Time Sharing” e servidores de internet sdo
exemplos de sistemas multiusuarios, pois permitem o acesso a varios usuarios dividindo o

tempo entre eles.
Distribuido

Um sistema operacional distribuido administra um conjunto independente de
computadores e faz parecer ao usuario que sdo apenas um. Isso permite ao usudrio utilizar
recursos de computadores diferentes, fazendo-os trabalhar em cooperacdo. E uma das

bases da programacio distribuida.
Embarcados

Sistemas operacionais embarcados sdo feitos para serem usados em sistemas
embarcados. Isso significa que eles sdo mais compactos e mais eficientes, podendo ser
executados com menos recursos, mas também apresentam menos recursos ao usudrio, e

nao atinge a velocidade de um sistema embarcado normal devido ao hardware.

4.2. Processamento de Imagens

Processamento de imagens é uma forma de processamento de dados no qual a
entrada é uma imagem e a saida do processamento é uma imagem ou um conjunto de
parametros relacionados a imagem, diferente do tratamento de imagens, cuja preocupacgao
¢ a manipulacdo de figuras para sua representacdo final. A maioria das técnicas de
processamento de imagens envolve tratar a imagem como um sinal bidimensional, e

aplicar técnicas padrao de processamento de sinais [4].

O processamento de imagens permite o uso de algoritmos complexos e é a forma

mais pratica de realizar certas tarefas (mas ndo limitadas a estas), explicadas a seguir.
4.2.1. Classificagao:

Classificacdo é o problema de identificar a qual conjunto de categorias pertence
uma nova observacao, levando em conta um conjunto de dados de treinamento contendo
observacdes e informacdo sobre qual categoria pertence cada observagdo. Um exemplo

seria classificar qual email é spam e qual ndo é.

26



4.2.2. Extracdo de Caracteristicas:

Extracdo de caracteristicas é uma forma especial de reducdo de dimensdo. Quando
se suspeita que um conjunto de dados seja muito redundante (como por exemplo, a
repetitividade de imagens representadas por pixels) entdo o conjunto sera transformado
em um conjunto reduzido de caracteristicas. Existe uma quantidade muito grande de

caracteristicas que podem ser extraidas, cada uma pertinente a um tipo de aplicacao [4].

Dentro dessas caracteristicas encontram-se as detec¢des de borda, canto, direcdo
da borda, de movimento e as detec¢des baseadas em formas, como a extragdo de linhas,
circulos, elipses e formas arbitrarias. Para esses trés ultimos, é utilizada uma transformada

a ser explicada neste capitulo.

4.2.3. Reconhecimento de Padroes

Reconhecimento de Padrdes é uma subcategoria de aprendizado de maquinas que
foca no reconhecimento de similaridades e regularidades em dados [4]. Sistemas de
reconhecimento de padrdes geralmente utilizam um conjunto de dados classificados para
treinamento, sdo testados utilizando dados novos que nao estavam no primeiro conjunto.
Esse método é chamado de aprendizado supervisionado. Mas existe também o chamado
aprendizado nao-supervisionado, quando ndo estd disponivel um conjunto de dados
classificados e utiliza-se um algoritmo para a descoberta de padrdes previamente

desconhecidos.

4.3. Transformada Hough

A transformada Hough é uma técnica de extracdo de caracteristicas usada em
processamento de imagens, originalmente focada em encontrar linhas na imagem, que
depois foi expandida para encontrar a posicdo de formas arbitrarias, principalmente

circulos e elipses [5].

4.3.1.Teoria

27



O caso mais simples de uma transformada Hough é a transformada linear para
deteccdo de retas. Uma reta pode ser definida pela equacdo y = mx + b,naqual m é a
inclinacdo da reta e b é a interseccdo da reta com o eixo y. A ideia principal da
transformada de Hough é considerar as caracteristicas da reta de acordo com a equacgado
que a define (ou seja, de acordo com m e b), e ndo como pontos discretos na imagem.
Geralmente, uma reta pode ser representada como um ponto (b, m) no espago
paramétrico, entretanto, retas verticais apresentam um problema para essa
representacdo, ja que elas sdo naturalmente descritas como x = a, o que geraria valores
sem limites do parametro m. Para contornar isso, Duda e Hart propuseram o uso de

coordenadas polares para linhas na transformada de Hough.

A coordenada polar é definida por r, a distancia algébrica entre a reta e o ponto de
origem do plano (0,0); e por 8, o angulo do vetor ortogonal a reta em dire¢do ao plano

superior direito. Usando essa parametrizacdo, a equacao da reta pode ser escrita como:

)*xx + ( )

sin(6) sin(6)

Que pode ser rearranjada para:

r = x *cos(8) + y *sin(0)

Portanto, é possivel associar cada reta da imagem a um par (r, 8) que é tnico se
0 e[0,r) er ERou 6 €[0,2r) e r=0. O plano das coordenadas polares (r, 6) é

chamado de Espaco de Hough para um conjunto de linhas retas em duas dimensdes.

Para um ponto arbitrario (x,,y,) no espaco da imagem, as retas que passam por

esse ponto sao os pares (1, 0) tal que:

r(0) = x¢cos6 + y,sind
Onde r é determinado por 8 € [0, ). Como r deve ser positivo, as retas que passam

pelo ponto (xq,yo) sdor(8) = |xqcos0 + yysind)|.

Essas representacdes correspondem a uma sendide no plano (r, 6), que é tnica
para o ponto (xg,¥,)- Se as curvas correspondentes a dois pontos sdo sobrepostas, o lugar
onde elas se cruzam (no Espaco de Hough) corresponde a uma reta (no plano original da
imagem) que passa por ambos os pontos. De forma mais genérica, um conjunto de pontos
que formam uma reta produzird sendides que se cruzam nos parametros dessa reta.
Portanto, o problema de encontrar pontos colineares se torna um problema de encontrar

curvas concorrentes.

28



Distance from Centre

Figura 4: Representagdo da Transformada de Hough em duas linhas[6].

Utilizando essa base da transformada, é possivel expandi-la para encontrar
qualquer forma que possa ser descrita como um conjunto de pardmetros. Um circulo, por
exemplo, pode ser descrito por trés parametros, representando suas coordenadas do

centro e seu raio, por tanto o espaco de Hough se torna tridimensional.

0 processo de identificar objetos circulares no espaco de Hough é relativamente
simples. Primeiramente é criado um espago acumulador, feito por uma célula para cada
pixel, com valor inicial de zero. Para cada ponto de borda na imagem (i, ), incrementam-se
todas as células que, de acordo com a equagdo de um circulo (i —a)* + (j —b)* = r?
poderiam ser o centro desse circulo, essas células sdo representadas pela letra ‘a’ na
equacgdo. Para cada valor encontrado no passo anterior, encontram-se todos os possiveis
valores de ‘b’ que satisfazem a equagdo. Por ultimo, procuram-se as células cujo valor é
maior que qualquer outra célula em sua vizinhanca. Essas células possuem a maior
probabilidade de pertencerem ao circulo que estamos tentando encontrar. Como nao é

conhecido o valor do raio de antemao, utiliza-se um acumulador de trés dimensdes para

tal.

29



Entretanto, ha limitag¢des, a transformada de Hough s6 é eficiente se um niimero
alto de votos cairem na célula correta, de forma que ela possa ser detectada facilmente
entre o ruido da imagem. Quando o ndmero de parametros é grande, o nimero médio de
votos em uma célula é muito baixo, e as células que correspondem a uma figura real na
imagem ndo necessariamente recebem mais votos que os vizinhos. A complexidade é
exponencial, 0(A™2), onde A é o tamanho do espaco da imagem e m é o nimero de
parametros. E finalmente, a eficiéncia da transformada depende da qualidade da imagem,
as bordas devem ser facilmente detectadas para que a transformada Hough seja eficiente.
Por isso geralmente a imagem passa por um pré-processamento para que a transformada

Hough seja aplicada [7], [8].
4.4. Filtro de Cor

A aplicacdo de um filtro de cor elimina todas as cores da imagem, exceto a cor
desejada, transformando-as em preto. Esse filtro é muito ttil quando o objeto desejado na
imagem tem uma cor fixa e conhecida. O primeiro passo para aplicacdo do filtro é a
conversdo da imagem RGB em HSV. HSV é uma forma de representar a cor de um pixel da
imagem utilizando coordenadas cilindricas. Neste caso, utiliza-se matiz (hue), saturacao
(saturation) e valor (value). Matiz é a representacdo numérica do comprimento de onda do
espectro eletromagnético de cada cor, com valores entre 0 e 360. A saturagdo s, s € [0,1],
mede o distdnciamento de um valor de matiz do branco ou cinza. O valor v, v € [0,1],

mede a distanciamento de um valor de matiz do preto, a cor com zero de energia [9].

4.5. Filtro de Gauss

O filtro de Gauss aplica um embagamento na imagem, usado tipicamente para
reduzir ruidos em imagens, reduzir detalhes e aprimorar as estruturas da imagem em
escalas diferentes. Matematicamente, o filtro aplica uma convolug¢do da imagem com a
funcdo Gaussiana. Como a transformada de Fourrier de uma fun¢do Gaussiana é outra
funcdo Gaussiana, aplicar o filtro Gauss tem o efeito de reduzir os componentes de alta
frequéncia da imagem, portanto, é um filtro passa-baixa. Uma funcdo Gaussiana é
definida como [9]:

_x2+y?
* e 202

1

G(X, y) - 2mo?

Na qual x é a distancia da origem no eixo horizontal, y é a distincia da origem no

eixo vertical, e delta é o desvio padrio da distribuicdo de Gauss.

30



4.6. Dilatagao

Dilatacdo é uma das duas operagdes basicas da morfologia matematica. Ela opera

utilizando um elemento estrutural para sondar e expandir as formas da imagem [10].

Na morfologia, imagens sdo fungdes mapeando um espaco Euclidiano E sobre o
dominio real R U {—o0, +o}. Denotando uma imagem como f(x) e o elemento estrutural

por b(x), a dilatacao de f por b é dada por [10]:
(f®Db)(x) = supy ee[f(¥) + b(x — )]
“Sup” denota a fungdo supremum, que calculo o menor limitante superior.

E comum utilizar elementos estruturantes planos, na forma de:

b(x) = {_‘1’0 X€E€B
Sendoque B C E.
Neste caso, a dilatacio é simplificada e dada por:

(f®b)(x) = supy eplf (¥) + b(x = y)] = sup, eg[f(x = 2) + b(2)] = sup, eplf (x — 2)]

4.7. Erosao

Erosdo é a segunda operacdo basica da morfologia matematica. Em contraste a

dilatacdo, essa fun¢do contrai as estruturas da imagem.
Da mesma forma que foi definida a Dilatacdo, a Erosao é definida como [10]:
(f ©b)(x) =inf[f(x+y) —b(y)]

Na qual “inf’ denota a fungio infimum, que calcula o maior limitante inferior.
4.8. Filtro de Canny

O Filtro de Canny é um algoritmo detector de bordas multiestagio. Os passos do

filtro sdo os seguintes:
e Aplicacdo de um filtro Gaussiano para limpar a imagem de ruidos;

e Aplicacdo do Operador Gradiente para obter a intensidade e direcdo do gradiente;

31



e Aplicacdo de uma Supressdo Ndo-Maxima para determinar se um pixel é melhor

candidato para uma borda do que seu vizinho;
e Limiar de histerese para encontrar onde a borda comeca e termina.
Limiar de Histerese

Gradientes de intensidade grandes sdo mais propensos a corresponder a bordas do
que gradientes pequenos, e na maioria dos casos é impossivel especificar um limiar em
que um dado gradiente de intensidade deixa de corresponder a uma borda. Por isso o filtro

de Canny utiliza limiar com histerese.

O limiar com histerese necessita de dois valores, um alto e um baixo. Assumindo
que bordas importantes se encontram ao longo de uma curva é possivel seguir se¢des
apagas de uma linha e descartar pixels ruidosos que nao constituem uma linha, mas que
produzem grandes gradientes. Portanto o filtro comeca aplicando o limiar alto, marcando
as bordas que sdo possiveis determinar como verdadeiras. A partir dessas bordas,
utilizam-se as informacdes de direcdo obtidas anteriormente para tragar as linhas ao longo
da imagem. Durante esse processo, aplica-se o limiar baixo, permitindo tracar linhas

apagas, desde que se encontre um ponto de partida.

| *"wm‘
'gggnmm ..

Figura 5: Resultado do Filtro de Canny [11].

4.9. Controle Digital

32



Controle digital é um subconjunto da teoria de controle que utiliza computadores
digitais ou sistemas digitais para atuarem como controladores de sistemas. Dependendo
dos requerimentos necessarios, um sistema de controle digital pode ser um
microcontrolador, um circuito integrado até ou um computador convencional [12]. Como
um computador digital é um sistema discreto, a transformada de Laplace, comumente
utilizada em teoria de controle, é substituida por sua representacdo discreta, a
transformada Z. Como o computador tem uma precisao limitada, é necessario um cuidado

especial com aproximacoes.

4.10. Ponte H

Uma ponte H é um circuito eletrénico que permite aplicar tensdo em uma carga
(geralmente um motor elétrico) em ambas as direcdes. O termo ponte H é derivado da sua

representacdo grafica tipica, encontrada abaixo:

S1 S3

52 54

Figura 6: Representagdo Grdfica da Ponte H [13].

A ponte H é construida com quatro chaves, quando as chaves S1 e S4 estdo
fechadas (e S2 e S3 estdo abertas) uma tensdo positiva é aplicada no motor, quando as
chaves S1 e S4 sdo abertas e S2 e S3 sdo fechadas, a tensao aplicada é reversa, permitindo
a operacdo reversa do motor. Observa-se que os pares de chaves S1, S2 e S3, S4 nunca
devem ser fechadas ao mesmo tempo, pois essa condigdo pode ocasionar curto-circuito. E
possivel também “brecar” os motores, fechando S1 e S3 ou S2 e S4, ou deixa-lo rodando

livre, deixando todas as chaves abertas. A tabela abaixo resume as informacdes acima:

S1|S2|S3 | S4 | Resultado

1 |0 |0 |1 |Omotormove-se para a direita

0 |1 |1 |0 | Omotormove-se paraa esquerda

33



0 0 0 0 0 motor se movimenta livremente

0 |1 |0 |1 | Omotorpara

1 |0 |1 |0 | Omotorpara

0 0 1 1 Curto-Circuito

1 1 0 0 Curto-Circuito

1 1 1 1 Curto-Circuito

Tabela 1: Tabela de funcionamento da ponte H

Controlar o movimento do motor se torna uma simples questdo de aplicar tensao
nos pinos corretos para gerar o movimento desejado.

Figura 7: Circuito de uma ponte H [14].

4.11. PWM

PWM (Pulse-Width Modulation) é uma técnica de modulagcdo que controla a largura
do pulso de uma onda constante. Seu propésito principal é controlar a poténcia fornecida a
uma carga. A proporg¢io que a onda esta em “alto” para o tempo que ela estd em “baixo”, ou
seja, a quantidade de trabalho realizada pela onda, chama-se duty cycle, ou seja, um PWM
de 50% significa que a onda fica metade do tempo em “alto” e metade do tempo em

“baixo”.

O principio do PWM ¢é a utilizacdo de uma onda quadrada, cuja largura do pulso é
modulada, resultando em uma variagdo do valor médio da forma de onda. Considerando
uma forma de onda de pulso f(t), com periodo T, valor minimo ymin, valor maximo ymax

e um duty cycle D, o valor médio da forma de onda é dado por [15]:

34



_ 1T
Y—Tfof(t)dt

Como f(t) é uma onda quadrada, seu valor atinge y,,,,, quando 0 < t < D e seu

valor minimo quando D * T < t < T.Entdo, expressdo acima pode ser escrita como:

1 DT T
3_] - (j ymaxdt + f ymindt )
T 0 DT

D-T- Ymax T T(l - D)ymin
T

=D " Ymax + (1 = D)Ymin

Essa equacdo pode ser simplificada muitas vezes quando y,pin, = 0 € Vipgx = D -

Ymax- Deduz-se facilmente que o valor médio da onda depende no duty cycle.

Como a velocidade de rotacdo do motor é diretamente proporcional a tensado
aplicada, é possivel controlar essa velocidade definindo um duty cycle. Um duty cycle de
50% produzira uma tensdo média igual a metade da tensdo aplicada, e por tanto, metade

da velocidade maxima para aquela tensao.

35



5. Desenvolvimento do Trabalho

A seguir serd descrito os materiais utilizados deste trabalho e todo o

desenvolvimento feito pelo aluno.

5.1. Materiais

Foram utilizadas duas cameras USB para obter as imagens do ambiente para que
seja possivel realizar o processamento desejado. Uma das cameras utilizadas é uma
camera genérica de 2.0 Megapixels, a outra é uma cimera HD com resolucdo de 720p, que
possui maior nivel de detalhe que a cdmera genérica. Foi necessario fixar uma resolucdo
de 640x320 pixels, pois esse é 0 maximo que a camera genérica consegue atingir. Foi
constatado também que uma resolucdo maior acarreta um maior tempo de processamento

devido a maior quantidade, por tanto uma resolucdo menor é vantajoso para o projeto.

0 sistema embarcado escolhido foi a Raspberry Pi Modelo B. A Raspberry pode ser
chamada de “um computador do tamanho de um cartdo de crédito”, pois ela apresenta
todas as fun¢des de um computador: estradas de comunicagdo padrao (USB, Ethernet),
saidas de Audio e Video (VGA e HDMI) e apresenta um sistema operacional Linux
customizado, sendo mais leve para ser executado de forma eficiente sobre a plataforma,
além de também apresentar 24 pinos de General Purpose Input/Ouput, além de ser

necessario apenas 5V para alimentar todo o sistema.

36



GPIO HEADERS RCA VIDEO OUT
HE{I?)?RS AUDIO OUT

DSI DISPLAY
CONNECTOR

SD CARD SLOT
(BACK OF BOARD)
MICRO USB POWER BROADCOM CSI CONNECTOR
(5v 1A DC) BCM2835 CAMERA
ARMITT 700MHZ
ETHERNET OUT
HDMI OUT ONLY ON 256M8 MODELS

Figura 8: Raspberry Pi [16].

A escolha dessa plataforma se deve principalmente devido a sua simplicidade,

preco e caracteristicas. Por rodar um sistema operacional completo, ndo é necessario se

preocupar com o gerenciamento de fatores nao envolvidos nesse projeto (como por

exemplo, drives para USB e Ethernet, etc.), facilitando o uso da webcam com um simples

plug-and-play. Por se tratar de um computador completo, capaz de executar um sistema

operacional, seu prego de $35,00 [17] é muito baixo, tornando-a muito atrativa. Como foi

dito acima, ela também possui 24 pinos GPIO, o que permite que o controle de dispositivos

elétricos (como motores de corrente continua) e eletrénicos (como circuitos integrados).

Com

essas caracteristicas, a Raspberry é um misto de microcontrolador e computador,

sendo perfeito para este projeto [18].

As especificacdes de hardware da Raspberry sdo as seguintes :

Processador arquitetura ARM1176]ZF-S em um System-on-Chip Broadcom
BCM2835, clock de 700 MHz, capaz de executar 0.041 GFLOPS e 128 kb de
memoria cache [19];

512 Mb de Memoria RAM;

37


http://en.wikipedia.org/wiki/Broadcom
http://en.wikipedia.org/wiki/Broadcom
http://en.wikipedia.org/wiki/ARM11

e GPU Broadcom VideoCore IV com clock de 250 MHz, utilizando OpenGL ES 2.0,
capaz de executar 24 GFLOPS (equivalente a 1 GPixel/s) [19];

e Video com resolugdo de 1920x1080, HDTV de 1080p;
e Armazenamento persistente utilizando um cartao de memoria SD/MMC/SDIO;

e Poténciade 700 mA e 3.5 W, alimentada através de uma entrada MicroUSB de
5V.

Apesar das vantagens apresentadas pela Raspberry, ela possui algumas
desvantagens. Seu poder de processamento é pequeno se comparado a computadores
modernos, se tornando assim o limitante da aplicagdo. Como o reconhecimento de
imagens demanda muita carga computacional da Raspberry, algumas melhorias foram
feitas no algoritmo de reconhecimento, bem como algumas concessdes em relacdo a

precisao e qualidade.

INSERIR IMAGEM

Como pode ser observado, a plataforma é composta por um chassi robético com 3
rodas, duas na parte traseira ligadas a motores que podem ser controlados, e uma roda na
parte dianteira que gira em todas as dire¢des, uma Raspberry PI Model B, uma ponte H

utilizando o CI L298N e uma webcam USB genérica.

0 controle do movimento da plataforma sera feito pelo sistema, mas a execu¢do do
movimento sera feita por uma Ponte H ligada a Raspberry (da qual recebera ordens de
movimento) e a dois motores (que irdo movimentar efetivamente a plataforma). A ponte H
em questdo é uma placa baseada no circuito integrado L293D [20], um circuito robusto
capaz controlar dois motores ao mesmo tempo e sustentar correntes de até 600 mA e

tensoes até 36 V.

5.2. Planejamento

O projeto envolve diversas partes diferentes e interligadas, por tanto foi feito uma
divisdo e uma ordem de prioridade para cada parte a ser feita. As principais tarefas

definidas para o desenvolvimento do projeto foram:
e Escolha do método de detecgdo e simbolo detectado;
e Implementacdo e estudo da eficiéncia do método;

e Refinamento;

38



e Montagem da plataforma e clculo das distancias;
e Integracdo do sistema de visdo com o sistema de movimento.

Cada tarefa principal envolve diversas tarefas menores, que serdo descritas a

seguir.
5.3. Escolha do método de deteccao e simbolo detectado

Primeiramente, a ideia seria detectar um simbolo de acordo com sua forma, por
exemplo, uma cruz. Entretanto, os métodos para tal deteccdo sdo geralmente baseados em
extracdo de caracteristicas e aprendizado [21], [22]. Caracteristica é qualquer informacdo
relevante para resolver o problema computacional em questao, podendo ser estruturas
especificas na imagem, como pontos, bordas ou objetos; ou o resultado de uma operagao
na vizinhanga, como a média da vizinha de um pixel escolhido. Aprendizado refere-se aos
sistemas que alteram seu comportamento de acordo com dados apresentados. O sistema
ird extrair caracteristicas da imagem e multiplicard seus valores por pesos pré-
estabelecidos. O resultado é comparado ao limiar do sistema, se for maior que o limiar, a
imagem apresenta o simbolo desejado, caso contrario, a imagem nao apresenta o simbolo.
Os pesos das caracteristicas e o limiar sdo ajustados apresentando ao sistema um conjunto
de imagens contendo o simbolo e um conjunto de imagens que ndo o contém. O sistema
aplica seu processo a cada imagem, e quando ele erra a deteccdo (resultando em um falso
positivo ou falso negativo) seus pesos e limiar sdo ajustados seguindo uma equagio de

corre¢ao.

Esse método necessita de muito poder de processamento, pois a extracdo das
caracteristicas é muito custosa. Uma deteccdo com erro baixo demanda um numero
grande de caracteristicas, além da necessidade de ajuste manual de varios parametros

envolvidos na fase de aprendizado.

Por esses motivos foi escolhido um método que nio necessita de muito poder
computacional e ja foi bastante estudado e desenvolvido; a transformada de Hough para
deteccdo de circulos. Cogitou-se a utilizacdo “Blob Detection”, um método que detecta
regides continuas que diferem da imagem em alguma propriedade, como brilho ou cor, e
modifica-lo para que detecte circulos. Entretanto, testes iniciais demostraram que esse

método é muito dispendioso, levando mais tempo que a transformada de Hough para

executar a deteccdo, obtendo resultados parecidos.

39



A transformada de Hough é precisa e permite extrair da imagem exatamente as
informacdes necessarias do simbolo detectado, posi¢ao e raio. A transformada é um filtro
adaptativo, ou seja, é necessario ajustar uma série de parametros para que a transformada
se adapte a uma aplicacdo especifica e obter resultados mais precisos, o que é muito ttil

neste projeto e serd mais discutido abaixo.
5.4. Implementacao

0 desenvolvimento foi feito em um notebook comum e embarcado na Raspberry Pi
utilizando acesso remoto (via SSH). Isso é possivel, pois o cédigo em Python é executado
sobre uma maquina virtual Python, ou seja, ndo é necessaria uma compilacido do codigo
para cada tipo de plataforma e sistema operacional, basta que exista uma maquina virtual

Python instalada.

Para a implementagcdo do método escolheu-se a biblioteca grafica OpenCV, uma
biblioteca open source que possui diversas ferramentas para visio computacional,
concebida com foco em eficiéncia computacional e escrita em C/C++ otimizado, possui
interface para Python, o que definitivamente é um ponto positivo, ja4 que pode-se
aproveitar da facilidade de desenvolvimento do Python e da velocidade e eficiéncia do
C/C++. Também se garante que os algoritmos usados sejam os mais eficientes, para que se

possa analisar o sistema como um todo, e ndo a implementagao do algoritmo.

Um pré-processamento da imagem antes de aplicar a transformada de Hough gera
resultados melhores e mais apurados [8], [23]. A aplicacdo de um detector de bordas antes
da transformada aumenta a precisio da deteccdo. Como existem varios métodos de

deteccdo de borda, foi feito uma analise das vantagens e desvantagens de cada um.

Os métodos considerados foram: o filtro de Sobel, filtro de Prewitt e filtro de
Canny. O filtro de Prewitt é apenas uma variante do filtro de Sobel [24], apresentando
apenas uma mudanga nos valores usados nos kernels de convolucdo de cada método, entdo

foi feita uma comparacdo entre o filtro de Canny e o filtro de Sobel.

40



Sobel é um filtro simples, capaz de detectar bordas e suas orientacdes, entretanto,
muitas vezes ele é impreciso e muito sensivel a ruidos, ndo sendo um método muito
robusto [24]. O filtro de Canny tem a desvantagem de consumir mais tempo, por ser mais
complexo, e depender fortemente de seus parametros; mas é um método robusto, ndo
sensivel a ruidos e apresenta uma precisdo muito boa. As vantagens do filtro de Canny se
alinham mais com o foco deste trabalho, ja que é preciso obter uma deteccdo mais precisa,
mesmo perdendo um pouco da eficiéncia. E provado também que o filtro de Canny tem um
desempenho melhor na maioria dos possiveis cenarios [24], [25], 0 que novamente

encaixa com o objetivo do projeto, pois o cenario da deteccdo ndo é controlado (por

exemplo, exigir que o fundo seja branco). Por essas razdes, foi escolhido o filtro de Canny.

A ideia inicial do projeto era que o sistema detectasse qualquer circulo na imagem
e priorizasse o maior encontrado. Essa ideia se mostrou ndo ser boa, pois apresentava
muita instabilidade na detec¢do (grande variacdo da posicao e raio do circulo detectado);
como o calculo do movimento depende dessas informagdes, alta instabilidade na deteccdo
reflete baixa confianca no calculo da distancia. Isso significa que a chance do sistema
calcular a distancia real com a precisio desejada ndo é satisfatéria. Havia também o
problema do algoritmo detectar mais de um circulo, ou existir mais de um circulo e o
algoritmo nao detectar o circulo desejado. Por essas razoes definiu-se que era necessario
existir alguma caracteristica Unica que possa ser extraida e o diferencie do fundo e/ou

outros circulos na imagem.

A caracteristica escolhida foi a cor. Um filtro de cores é facilmente implementado e
apresenta pouco impacto na eficiéncia do método. Uma cor incomum facilita a extragido do
fundo e a remocao de ruidos. A cor escolhida foi a amarela, pois ndo é uma cor facilmente
encontrada. Para aplicar o filtro de cor, transforma-se a imagem em HSV, dessa forma é
possivel comparar o valor de um pixel com um intervalo de valores representando a cor
amarela, algo que nio é possivel fazer utilizando RGB. O préximo passo é filtrar a imagem
pela cor amarela, de forma que todos os pixels dentro de um intervalo pré-definido se
tornam brancos e o resto se torna preto. Obtém-se entdo uma imagem binaria, contendo
apenas o objeto de interesse. O intervalo definido para o tom de amarelo foi de [20, 70, 70]

até [70, 255, 255] dentro do espaco HSV, encontrado empiricamente.

Aplicado o filtro, obtém-se uma imagem na qual idealmente ha apenas o objeto de
interesse em branco e o fundo em preto. Isso reduz a possibilidade de falsas deteccdes e
ruidos provenientes do fundo da imagem. As imagens 5 e 6 representam uma foto

capturada transformada para HSV e depois aplicada o filtro de cor, respectivamente.

41



Figura 9: Foto transformada em HSV.

Figura 10: Foto apds aplicagdo do filtro de cor.

42



O proximo passo é o filtro de Gauss, que suaviza a imagem e limpa os ruidos
restantes. A principio ele pode parecer redundante dado que antes é executado o filtro de
cor, mas série de testes foi executada, analisando quantas vezes o método detectava o
circulo corretamente, para verificar se o filtro de Gauss era mesmo necessario. Foi
constatado que quando o filtro de Gauss é aplicado a deteccdo é mais constante e na
maioria das vezes, mais precisa. Optou-se entdo por utilizar o filtro de Gauss no pré-

processamento. A imagem 9 representa a foto acima depois da aplicacao do filtro de Gauss.

Figura 11: Foto apds aplicagdo do filtro de Gauss.

Além do filtro de Gauss, usa-se outra medida é tomada para redugdo de ruidos, a
chamada abertura da imagem. Abertura remove pequenos objetos no fundo da imagem,
como os chamados ruidos “sal e pimenta”, pequenos pixels corrompidos, causados por
erro na transmissao de dados (da cAmera para o sistema). A abertura da imagem consiste
em uma operacdo de erosdo, que efetivamente remove o ruido sal e pimenta, pois
qualquer objeto que nao tenha uma espessura expressiva. O problema com essa operagdo
é que ela afeta a imagem inteira, corroendo também as bordas dos objetos de interesse,
por isso realiza-se em seguida uma operacao de dilatacdo, para que os objetos de interesse
tenham suas bordas aumentadas, idealmente para o tamanho original. Essas operacoes
também fazem um “polimento” do objeto, eliminando pixels da borda e tornando-a mais
suave. As imagens 10 e 11 abaixo representam respectivamente o processo de erosio e o

processo de dilatagdo.

43



Figura 12: Foto apds o processo de Erosdo.

Figura 13: Foto apds o processo de Dilatagdo.

44



Por ultimo, aplica-se o filtro de Canny, que gera uma imagem apenas com as
bordas detectadas (sem o preenchimento). Da mesma forma que o filtro acima, a execucio
de uma série de testes revelou que o filtro aumenta a precisao da transformada de Hough,
melhorando o método de detecc¢do. Esse filtro gera certo aumento no tempo de detecgio,
mas a melhora no método compensa em muito esse tempo aumentado, visto algumas
vezes 0 método sem o filtro de Canny falhava e era necessario executa-lo mais de uma vez
para extrair as informagdes do circulo. A imagem 12 abaixo mostra a aplicacdo do filtro de

Canny e a imagem 13 mostra o circulo enfim detectado.

Figura 14: Foto apds aplicagdo do filtro de Canny.

45



Figura 15: Circulo detectado pela transformada de Hough.

A imagem a seguir ilustra todo o processo de reconhecimento do circulo.

Filtro de

Filtro de Cor == Chanes

Erosdoe
Dilatacao

Filtro de
Canny

Transformada
de Hough

Figura 16: Processo de reconhecimento do circulo.

Foram feitas varias medidas do tempo de execucdo de cada etapa e do processo

todo para identificar melhorias. Constatou-se que o tempo de execu¢do melhorava

consideravelmente se as imagens obtidas ndo forem mostradas. Como essa informagao

ndo é necessaria para o sistema, essa parte retirada, deixando o sistema apenas com o

essencial.

46




Depois disso, foi feita uma analise dos processos sendo executados no sistema
operacional, para verificar se havia processos que poderiam ser parados para liberar
processamento para o sistema. Uma das cargas do processador da Raspberry é o
gerenciador de janelas, que nio é otimizado para utilizar a unidade de processamento
grafico, todo o trabalho é feito pelo processador ARM [26]. Verificou-se que esse processo
consumia grande parte do tempo de processamento. Como o acesso ao sistema embarcado
sem a utilizacdo de interface grafica (utilizando SSH), esse processo nao é necessario e,
portanto foi terminado. Verificou-se também que é possivel ajustar a prioridade do
processo, para que ele seja executado acima dos outros processos, entretanto, o processo
do sistema ja é executado com prioridade maxima, portanto essa mudang¢a nido surtiu

efeito.
5.5. Refinamento

Cada filtro apresenta uma série de pardmetros que precisam ser ajustados para
que o funcionamento do filtro se adeque a esta aplicacdo. Abaixo ha uma descricdo dos

parametros de cada filtro:

5.5.1.Filtro de Cor

e Variacdo do tom de Amarelo: é necessario definir um valor minimo e um valor
maximo, de forma que qualquer valor de um pixel compreendido entre o maximo e

o minimo é considerado como amarelo.

5.5.2. Filtro Gaussiano

e Tamanho do Kernel: Tamanho da regido ao redor do pixel escolhido (ex: 7x7) no

qual sera aplicada a equacao do filtro.
5.5.3. Detector de Borda de Canny

e Limiar alto de Histerese: Define quais bordas com certeza sdo genuinas. Aplica-se
um limiar alto a imagem para marcas essas bordas. Comegando com essas e
usando as informagdes direcionais extraidas pelo filtro, as bordas podem ser

tracadas.

e Limiar baixo de Histerese: Define quais bordas ndo sdo genuinas. Quando se esta
tragando uma borda, o limiar baixo permite encontrar se¢cdes mais fracas das

bordas, desde que se encontre um ponto de comeco.

47



5.5.4. Transformada de Hough

o Resolucdo do Acumulador: Relacdo entre o tamanho do acumulador utilizado na

transformada e o tamanho da imagem

e Distadncia Minima: A distdncia minima entre o centro de dois circulos para que

ambos sejam detectados

e Limiar Alto: O limiar alto passado para o filtro de Canny, que também define o
limiar baixo, sendo que o limiar menor é duas vezes menor o que parametro

passado.

e Limiar do Acumulador: Parametro utilizado na etapa de detec¢do para os centros

dos circulos. Quanto menor esse valor, mais circulos falsos podem ser detectados.
e Raio Minimo: Raio minimo de um circulo que pode ser detectado
e Raio Maximo: Raio maximo de um circulo que pode ser detectado

Esses valores sdo escolhidos empiricamente, a partir de valores obtidos da

literatura estudada, e entdo variados até que a deteccio esteja perto do desejado.

Os primeiros valores definidos foram os limites do tom de amarelo. Em meio aos
testes, foi descoberto que a camera USB realiza um ajuste de histograma automatico para
melhorar o contraste da imagem. Isso pode parecer bom, mas distorce as cores em certos
cenarios (por exemplo, quando o circulo é muito grande). A biblioteca grafica utilizada
permite que esse ajuste automatico seja configurado, entretanto a camera ndo suporta
esse ajuste. Para contornar esse problema, foi necessario ampliar o intervalo de valores
considerados como amarelo. Foi implementada nos testes uma funcdo que permitia
observar os valores dos pixels da imagem, assim foi possivel verificar quais valores dos
pixels eram obtidos e ajustar o intervalo para obter a maior variagdo sem comprometer a

deteccao.

48



5.6. Montagem da Plataforma

A escolha da plataforma robdtica representou uma parte importante do projeto.
Era necessaria uma plataforma capaz de acomodar a Raspberry, a cimera USB e a ponte H,
além de ser possivel controlar sua direcdo. Foi considerado uma plataforma
automobilistica, com 4 rodas e dois eixos, sendo que o eixo traseiro permanece imdvel e é
conectado ao motor, e o eixo frontal controla a direcdo do chassi. Essa plataforma foi
desconsiderada, pois apresentaria problemas com o controle do movimento. Para
controlar a direc¢do, seria necessario girar as rodas do eixo frontal para a posi¢do desejada
e movimentar a plataforma para frente até que todo o chassi estivesse virado para a
direcdo desejada. Assim seria necessario controlar também o quanto a plataforma
precisaria se movimentar para frente antes das rodas serem endireitadas e a distancia
percorrida nesse movimento, para que seja subtraida da distancia total calculada.
Qualquer controle fora do principio do projeto (que é controlar apenas direcdo e

distancia) se torna desnecessario e apenas adiciona tempo computacional.

Figura 17: Plataforma automobilistica [27].

A plataforma escolhida apresenta apenas duas rodas, cada uma conectada a um
motor e girando independentes entre si, e uma “roda de apoio”, que ndo pode ser
controlada e gira em todas as direcdes. Essa configuracdo elimina o problema citado
acima, jd que para controlar sua direcdo, basta girar as rodas em sentidos opostos e a

plataforma gira em seu centro, sem se deslocar.

49



A montagem do resto da parte fisica foi relativamente simples, bastou definir quais
pinos da Raspberry seriam usados. A ponte H necessita de trés pinos para o controle de
cada motor, mais um pino para alimentacao e outro para referéncia (pino que geralmente
possui zero de tensdo, comumente chamada de terra). Um dos trés pinos de controle de
motor tem a funcdo de ligar ou desligar o motor. Os outros dois tem a fun¢do de controlar
o sentido de rotacdo do motor, como foi explicado na sessdo (por sessdo). O pino de
alimentacao foi conectado a um conjunto de baterias de 6 volts separado da alimentac¢io
da Raspberry, por causa da quantidade de corrente envolvida na alimentacdo dos motores.
0 pino de terra é conectado ao conjunto de baterias e também a Raspberry, para fechar o

circuito.

50



5.7. Calculo da Distancia e Angulo e Movimento

0 calculo da distancia e angulo é o segundo desafio deste projeto, sendo o primeiro
a deteccdo de objetos. Primeiramente considerou-se uma implementacio envolvendo
controladores PID. O sistema consegue extrair o raio do circulo e sua distancia do centro.
Essas informagdes seriam alimentadas para dois controladores PID separados, um que
controlasse a distancia e outro que controlasse o angulo. Assim, seria necessario apenas
ajustar os valores dos controladores, definir o erro do controlador de distdncia como
sendo a diferenca entre o valor do raio detectado e um valor de raio pré-definido e o erro
do controlador de dngulo como sendo a distancia lateral a partir do centro, e esperar o
processo convergir para o erro proximo de zero. Assim seria possivel implementar um
sistema “online”, que consegue seguir um circulo em movimento constante, uma vez que o
controlador PID esteja configurado basta obter as informag¢des necessarias e ele se

encarrega de todo o trabalho.

Entretanto, esse método é muito custoso e necessita alimentacdo constante de
informacdes, caso contrario, o erro ndo ird convergir, e o processo sera executado
indefinidamente. Constatou-se que a plataforma se locomove a uma velocidade de 40 cm/s
(utilizando baterias com carga completa). Entdo, para que o erro seja menor que 4 cm, é
necessario que o controlador seja alimentado com novas informagoes a cada 0.1 segundo,
caso contrario, ndo serd possivel corrigir o movimento a tempo. Uma solugido seria
diminuir a velocidade da plataforma para que a utilizagcdo do controle PID fosse possivel,

mas uma velocidade pequena nio é interessante para o projeto.

Por essas razoes, preferiu-se um método mais simples que também gera
resultados muito bons. E possivel encontrar uma relagio entre o raio em pixels detectado
e a distancia real do objeto. Seguindo [29], uma observacdo geral é que um objeto que se
distancia da cimera tem um tamanho menor na imagem. Conforme o objeto se aproxima
da camera seu tamanho aumenta. Essa observacao aponta para fato que a profundidade do
objeto tem uma relacdo direta com seu tamanho na imagem. Essa relacdo é encontrada
obtendo-se varias medidas dos raios detectados a varias distancias e interpolando esses
resultados. Assim é possivel obter uma distancia bem proxima da distancia real com um

impacto computacional muito pequeno.

51



O angulo do objeto em relacio ao centro da imagem é calculado de forma
semelhante. A relacio entre distancia lateral em pixels e a distancia lateral real mantém-se
constante para certa distdncia. Logo, calculou-se a relagdo entre as distdncias laterais a
varias profundidades, e interpolaram-se os resultados. Dado uma profundidade, é possivel
calcular a relacdo entre as distancias laterais e, portanto, a distancia lateral real. A partir
dessa informacdo, basta utilizar a relacdo trigonométrica da tangente no triangulo
retangulo (cateto oposto dividido pelo cateto adjacente) e assim obter o angulo a ser

corrigido. A imagem abaixo ilustra o procedimento.

Lateral distance
> ™7 Object

Depth Actual distance

Camera

Figura 18: Procedimento de cdlculo da distdncia real [29].

Abaixo se encontra o desvio padrao calculado para cada distancia para ambas as
cameras.

52



Comparagdo do Desvio Padrdo das Medidas

8 B
-Cémera Generica
7k — Cémera de Alta Resolugéo
sl
5 L
o [~
‘o )
g_‘:u 4+ \.\'\
2|\

2t N
YA
il \a;;.rf_”'" o P
] . 1 . ¥ .\w-?*'\..-y_“ -
10 20 30 40 50 B0 70 80

Desvio Padrao

Figura 197: Desvio padrdo das medidas das c@meras.

Observando o grafico acima, é possivel verificar que a camera de alta resolucao
possui um desvio padrdao menor que a camera genérica na maioria das vezes. Um desvio
padrido menor implica uma precisdo maior, por tanto, resolveu-se utilizar a cimera de alta

resolucdo no restante das medidas.

Como ja foi citado, ha um problema com a camera utilizada no qual ela aplica uma
equalizacdo de histograma automaticamente, distorcendo as cores da imagem. Essa
distor¢do ocorre quando o objeto a ser detectado se aproxima muito da camera, em torno
de 7 cm. Além disso, a distdncias menores que 10 cm a detec¢do comega a variar muito
devido a essa distor¢do nas cores, o filtro de Canny comeg¢a a “quebrar” o circulo,
dividindo-o em vdrias partes e confundindo a transformada de Hough, como pode ser visto

na figura abaixo. Isso aumenta a variancia da detec¢do e diminui sua estabilidade.

53



Figura 20: Circulo “quebrado” devido a distorgdes nas cores.

Uma pequena reducao da velocidade de movimento da plataforma aumenta a
precisdo do movimento, possibilitando um melhor controle da distancia percorrida. O
Unico jeito de controlar a velocidade de um motor de corrente continua é diminuindo a
corrente que passa por ele. Isso é feito diminuindo a tensdo aplicada. Entretanto, ndo é
possivel controlar a tensido de saida dos pinos da Raspberry, por tanto foi utilizado PWM
com duty cicle de 80% nos pinos Enable da ponte H, obtendo uma tensao média de 4 V. A

velocidade da plataforma dessa maneira foi em torno de 20 cm/s.

5.8. Integracao
Por ultimo, foi feita a integracdo das plataformas. Para tal, foi implementado um
controlador geral que comanda ambos os sistemas, o Controle Mestre. Ele calcula e

controla o movimento de acordo com as informacoes retiradas das imagens recebidas. A

imagem abaixo mostra o funcionamento do sistema como um todo.

54



Captura da 4| Deteccdo do | Calculoda

> = »| Distanciae >
Imagem Circulo Angulo

Correcao do . . -
Angulo »| Movimentacao

! J

Figura 21: Ciclo completo do sistema.

De maneira simples, o Sistema de Visdo captura uma imagem e extrai suas
informacdes relevantes. O Controle Mestre recebe essas informacoes e calcula a distancia a
ser percorrida pelo sistema, e o angulo a ser corrigido. Ele entdo manda os comandos para
o Sistema de Movimento, que corrige o angulo de acordo com o calculado e movimenta-se

pela distancia informada pelo Controle Mestre. Ap6s o movimento, o ciclo se repete.

Motor
Esquerdo

T

Raspberry Pi  f=———p| Ponte H

'

Motor Direito

v

Camera <€

Figura 22: Integragdo dos dispositivos do sistema.
6. Resultados e Discussoes

Os parametros do filtro de Gauss foram ajustados observando os resultados finais.
Variou-se o valor do kernel até que os resultados fossem satisfatérios. Um kernel de
tamanho pequeno nao surte muito efeito na imagem, enquanto que um kernel de tamanho

grande pode distorcé-la.

55



Os limiares do filtro de Canny foram ajustados observando o resultado obtido do
filtro. Foi observado se as bordas detectadas condiziam com o circulo da imagem,
ajustando os limiares. No caso desse filtro, levou-se em conta uma heuristica que

aconselha a usar um limiar alto trés vezes maior que o limiar baixo [11].

Por fim, temos o método mais importante, a transformada de Hough. A resolucdo
do acumulador influencia no raio minimo detectado. Seu valor foi ajustado de acordo com
a revisao bibliografica e levando em conta o tempo de execucdo, j4 que uma resolucgio
maior implica mais dados a serem processados. Manteve-se o tamanho do acumulador

igual ao tamanho da imagem, pois um valor maior adicionaria mais tempo ao método.

Como deve ser detectado apenas um circulo na imagem, a distancia minima foi
ajustada para ser o tamanho da imagem, assim garante-se que apenas um circulo sera

detectado por vez.

0 valor do limiar passado ao filtro de Canny também foi ajustado com informacoes
da revisdo bibliografica. O limiar do acumulador foi ajustado empiricamente, observando
seu efeito nos resultados obtidos e encontrando o valor que produzisse uma deteccdo mais

préxima do real.

Por fim, os valores do raio minimo e maximo. O raio maximo foi definido de forma
a ndo restringir o método, ajustando seu valor para um valor muito acima do que de fato

seria possivel detectar. O mesmo foi feito com o raio minimo.

Para a interpolacdo da profundidade, a camera foi fixada em um ponto a certa
distancia do circulo, e a distancia foi aumentada a cada deteccdo. Foram feitas 50
deteccdes para cada distdncia. A maior profundidade foi definida como 75 cm, uma
profundidade maior e o método nio consegue mais detectar o circulo. A menor
profundidade foi definida como 10 cm, pois uma profundidade menor causa um aumento
da variancia da deteccdo (uma diferenga de 25 pixels entre duas detecgdes). O intervalo
entre as distancias foi de 5 cm. Esse processo foi feito para cada cimera, calculando-se a

média e o desvio padrdo. O resultado da interpolagao esta representado na figura abaixo.

56



Interpolagdo para Profundidade

100
¥  Pontos
90 F Polindmio de 2° Grau
— Palindmio de 4° Grau
80r Polindmio inverso

Profundidade

U 1 1 1 1 1 1 1 1 1 ]
10 20 30 40 a0 B0 70 80 90 100 110
Raio

Figura 23: Interpolagdo dos dados de profundidade obtidos.

Observando os pontos obtidos escolheu-se interpola-los utilizando trés
polinémios:
y=ax?+ bx+c
y=ax*+bx3+cx?+dx+e

"
= —+c
Y =0

A interpolacdo encontra as constantes numéricas dos polindmios. Observando a
imagem acima, é facil perceber que o polindmio de quarto grau e o polindmio inverso
apresentam resultados bem parecidos até x = 40, ap6s esse valor, o polinémio inverso
apresenta um erro menor e uma interpolagcdo mais precisa. Esse polinémio foi utilizado no

sistema para o calculo das distancias.

A equacdo obtida foi a seguinte:

_831.62

y = 0913 2.556

57



Os resultados do calculo da distancia foram obtidos utilizando distancias que nio

foram usadas para a interpolagdo (distancias multiplas de 5). Foram feitas 50 medidas e

calculados a média e o desvio padrao de cada distdncia. A imagem abaixo ilustra o

procedimento.

Resultado para Profundidade = 62 cm

70

60

50

40

Profundidade
30

20

10

O TrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrTTTTTTITITA

1 35 7 91113151719212325272931333537394143454749
Numero da amostra

mm Profundidade

—— Média

Figura 24: Resultado das medidas para profundidade de 62 cm.

0 valor da média foi encontrado foi de 61,571 cm, com desvio padrao de 0,808.

Abaixo se encontra o resultado para cada distancia, em comparacdo com a distancia real.

Pode-se observar que apenas dois valores se distanciam da média. Abaixo se encontram os

resultados para cada profundidade testada.

Distancia Média Desvio Padrdao | Diferenca

13 13,49453188 0,887012529 -0,494531876
18 19,11083847 0,929734233 -1,11083847

22 23,46164263 1,418684932 -1,461642628
27 27,92465566 0,796496892 -0,924655664
33 32,9089354 0,911744933 0,091064597

58




38 37,23142046 1,248917101 0,76857954
42 41,43247953 1,030335953 0,567520468
47 47,00659117 2,317462392 -0,00659117
53 53,31217314 2,207595858 -0,31217314
58 58,06096776 1,67921114 -0,060967764
62 61,57138906 0,799481195 0,428610938
67 66,29145251 0,651249179 0,708547489
72 72,06994102 0,436145403 -0,069941024

Tabela 2: Resultado dos Cdlculos de profundidade.

Profundidade 40

Comparac¢ao Média x Profundidade Real

80

70 /’
60 /
50

= Profundidade

30
e V] édlia
20

10

OIIIIIIIIIIIII
1 2 3 4 5 6 7 8 9 10 11 12 13

Numero do Calculo

Figura 25: Comparagdo entre a média dos cdlculos e a profundidade real.

59



Diferen¢a entre a Média e a Profundidade
Real

1

0,5 //\\ //\\

0 T T T T T T T T T T T LI ) 1
13 18 22 27ﬁ3 38 42 47\9/58 62 67 72

Diferenga -0,5 \ /

1 \/

-1,5

-2

= Diferenca

Profundidade

Figura 26: Diferenca entre a média dos cdlculos e a profundidade real.

Observando a figura 20, pode-se ver que o cdlculo da profundidade esta bem
préximo da profundidade real. A figura 21 mostra a diferenca entre esses dois valores, e
pode-se ver que a maior diferenga é -1,46. Entretanto, o desvio padrio de alguns calculos
ainda é grande, como por exemplo, para 47 cm de profundidade, obteve-se 2,2076. Com o
objetivo de melhorar esses resultados, alterou-se o método de calculo. Ao invés de fazer
apenas uma detecg¢do e utilizar as informacgdes obtidas para realizar o calculo, fizeram-se
trés detecgoes e utilizou-se a média das informacoes obtidas para realizar o calculo. Dessa
forma, se existir uma variacdo muito grande em uma das amostras, esse valor é
balanceado na média com as outras amostras. Abaixo encontra-se os resultados obtidos

dessa forma.

Profundidade Média Desvio Padrao Diferenca

13 13,504196 0,501200866 -0,504196001
18 19,16219591 0,512227847 -1,162195907
22 23,37774901 0,793824088 -1,377749009
27 27,77156975 0,257155579 -0,771569748
33 32,91569531 0,621757235 0,084304689

38 37,27201855 0,768392999 0,727981451

42 40,97086975 0,695311504 1,029130248

60



47 46,93949206 1,481547788 0,06050794

53 53,4675585 0,320578072 -0,467558499
58 58,37130093 0,948089761 -0,371300933
62 61,55406365 0,508445185 0,445936355
67 66,69297482 0,424181701 0,307025181
72 71,76284345 0,233504967 0,237156552

Tabela 3: Resultado dos cdlculos de profundidade utilizando a média de trés detecgbes para o
cdlculo da profundidade

Comparacao Média x Profundidade Real

80

60 /
50

Profundidade 40

30
20 /

10

Profundidade

= Védia

OIIIIIIIIIIIII
1 2 3 4 5 6 7 8 9 10 11 12 13

Numero do Calculo

Figura 27: Comparagdo entre a média dos cdlculos e a profundidade real utilizando a média

de trés detecgbes para o cdlculo da profundidade

61




Diferen¢a entre a Média e a Profundidade
Real

1,5
1 A
7\
Diferenga O T T T /. T .\. T /\ )

13 18 22 27/33 38 42 47 \53 5 62 67 72
N \ /
1 \/

-1,5

= Diferenga

Profundidade

Figura 28: Diferenca entre a média e a profundidade real utilizando a média de trés

detecgbes para o cdlculo da profundidade.

Comparando os dados obtidos, vé-se que houve melhora nos calculos da
profundidade. O desvio padrdo atinge um maximo de 1,4815, e os valores do desvio
padrdo sdo menores utilizando esse método. A diferenca entre a profundidade real e a
medida também diminuiu, atingindo um maximo de 1,029 cm. Portanto esse método gera
resultados mais precisos. Essa melhoria tem um custo. Como sao utilizadas trés detecgdes
para o calculo da profundidade, o tempo necessario para obter um cdalculo da
profundidade triplica. Resolveu-se utilizar o método mais preciso, é uma decisdo de

projeto priorizar precisdo a tempo.

Os resultados para o célculo do angulo foram obtidos da mesma forma que foram
obtidos os resultados para o cilculo da profundidade. A ciamera foi fixada a uma
profundidade do circulo e a partir do centro, o circulo foi deslocado lateralmente, e feita
uma detecgdo para o calculo da distdncia lateral em pixels. Isso foi feito trés vezes para
cada profundidade, obtendo um razdo entre deslocamento lateral real e em pixels. Esse
processo foi feito 50 vezes para cada deteccdo, e feita a média. Abaixo encontram-se os

pontos encontrados e a interpolacdo para distancia lateral.

Esses resultados encontram-se abaixo.

62



0 resultado da interpolagao para distancia lateral encontra-se abaixo:

Interpolagdo para Distancia Lateral
70

1

*  Pontos
Polindmio inverso

60

Razao

D 1 1 1

10 20 30 40 a0 B0 70 80 90
Profundidade

Figura 29: Resultado da interpolacdo para distdncia lateral.

A equacio obtida foi a seguinte:

_ 451.2049

Com ambos os polinémios calculados, é possivel calcular a profundidade e a

distancia lateral de circulos em posi¢des arbitrarias em relagdo a camera. Sendo assim,

para confirmar a precisdo do método, foram escolhidas alguns pontos aleatérios para que

seja feito o calculo e comparar o resultado com o valor real.

A tabela a seguir mostra o resultado de alguns calculos feitos para testar o método

utilizado.
Profundidade Real Profundidade Distancia Lateral Distancia Lateral
Calculada Real Calculada
36 cm 35.68 cm 7 cm 6.84 cm
53 cm 52.65 cm 12 cm 12.32 cm

63




46 cm 44.9 cm 17 cm 16.3 cm

62 cm 61.38 cm 20 cm 19.31 cm

Tabela 4: Comparagdo dos resultados obtidos para distancia lateral.

Para a obtencdo de tempo de execucdo, foram feitas 50 medidas detectando um
circulo a média distancia (54 cm), a pouca distancia (10 cm), sem detectar um circulo e

sem a execucdo do gerenciador de janelas. A tabela abaixo resume os resultados obtidos.

Detecgdo Média Desvio Padrado

Distancia Média | 0,602669573 s 0,152076521

Pouca Distancia |0,614744344 s 0,102052241

Sem deteccao 0,593784766 s 0,080612066

Sem "X" 0,597067962 s 0,135473583

Tabela 5: Resultados das medigées dos tempos de execugdo.

Como pode ser observado, ha pouca variacdo no tempo. Apesar de pequena,
parando o processo do gerenciador de janelas obteve-se uma melhora no tempo de
execucdo. Observa-se que ha uma variacao de aproximadamente 0,01 segundo dependo se

o circulo esta perto ou longe, ou se ele estad presente.

Em relacdo ao tempo de execucdo, os resultados obtidos ndo foram suficientes
para uma aplicacdo de tempo real. O tempo de 0,6 segundo para cada detecgdo é suficiente
para a plataforma se movimentar em torno de 12 cm, o que pode levar a erros de deteccdo
quando o circulo se movimenta e sai do campo de visdo do sistema antes que ele possa
detecta-lo. Entretanto, a proposta do projeto foi sucedida, o sistema se locomove seguindo

um circulo detectado de forma precisa.

Conclui-se que é possivel utilizar a Raspberry para processamento de imagens e
visdo computacional atingindo o objetivo proposto, entretanto, essa plataforma para nao é
a melhor escolha, considerando que ha plataformas melhores com valores de mercado

similares a Raspberry.

64




Como ha um sistema operacional sendo executado sobre a Raspberry, muito poder
de processamento é perdido atendendo a requisi¢des irrelevantes ao processo. Conclui-se
também que a camera desempenha um papel fundamental nesse tipo de aplicacdo
(processamento de imagem), visto que ruidos oriundos do hardware da camera
necessitam de filtragem e, portanto, perda de tempo computacional em relagdo a uma

camera que ndo apresenta esses ruidos.

0 método utilizado para medir distancias reais utilizando apenas informacoes
visuais se provou bem preciso, obtendo um desvio maximo do valor real de apenas 1 cm,
sendo ideal para aplicacbes em sistemas embarcados, devido a sua simplicidade e
velocidade, basta apenas obter dados do sistema, e calculos futuros sio feitos com apenas

um calculo matematico.

Analisando o projeto durante o seu desenvolvimento, foi possivel identificar varias
possiveis melhoras. A primeira dela seria trocar o sistema embarcado. A Raspberry foi
escolhida principalmente por seu baixo preco, mas a tecnologia avanca tdo rapido que ja é
possivel encontrar sistemas melhores pelo mesmo preco, se ndo mais baratos, como por
exemplo, a BeagleBone, que atualmente custa $55,00 [30]. Suas especificacdes para

comparacdo seguem a baixo [31]:

e Processador Sitara AM33858BZCZ100, com clock de 1GHz, capaz de executar 2000
MIPS;

e GPU SGX530 3D, capaz de gerar 20M de poligonos por segundo;
e Memoria SDRAM de 512 Mb DDR3L 606MHz;

e Memoria Flash onboard de 4 Gb;

e Resolucdo de video maxima de 1280x1024 HDMI.

Comparando as especificacbes de ambas, pode-se ver claramente que a
BeagleBone é superior a Raspberry em todos os aspectos, exceto no saida de video. Como a
saida de video nao é relevante para este projeto, a BeagleBone seria uma escolha melhor

de sistema embarcado.

65



Figura 30: Beaglebone [30]

Desconsiderando o fator preco, é facil encontrar sistemas embarcados com muito
mais poder computacional que ambas as placas citadas acima. Um exemplo é o ODROID-
XU3, um sistema embarcado capaz de executar os sistemas operacionais Android 4.4 e

XUbuntu 14.04. Atualmente custa US$179,00 [32]. Suas especificagdes seguem abaixo.

e Octa Core utilizando um processador Samsung Exynos5422 Cortex™-A15 2.0Ghz

quad core e um processador Cortex™-A7 quad core CPUs;

e GPU Mali-T628 MP6 (OpenGL ES 3.0/2.0/1.1 e OpenCL 1.1 Full profile);

e Memoéria RAM de 2 Gbyte LPDDR3 RAM a 933MHz (14.9GB/s de banda de

memoria);

e Armazenamento de memoria Flash utilizando soquete eMMC5.0 HS400;

e USB3.0Hostx1,USB3.00TGx1,USB 2.0 Hostx 4;

Facilmente se observa que a ODROID-XU3 possui especificacdes melhores em

todos os aspectos relevantes (processador, GPU, memoria RAM, display).

Também é possivel melhorar o desempenho utilizando um sistema operacional de
tempo real. Dessa forma, as requisi¢cdes do processo principal do projeto sempre serdo
atendidas com prioridade, cortando o tempo que o sistema operacional passa executando

outros processos e disponibiliza todo o tempo para o processo principal.

66



Outra forma de melhorar o desempenho seria utilizar um sistema dedicado. Nao
sdo necessarios todos os médulos oferecidos pelo sistema operacional, entdo um sistema
operacional reduzido apenas ao essencial aloca todo o processador apenas para o projeto,

aumentando significativamente a eficiéncia.

Em relacdo a precisio do movimento, seria possivel substituir a plataforma
utilizada por outra que possuisse os equipamentos necessarios para controle de
velocidade, e possivelmente uma cimera com uma resolugao maior e mais liberdade para
sua configuracdo (por exemplo, alterar o tempo de exposi¢do, a abertura, etc) diminuiria a

variacdo na detecc¢do e, portanto, aumentaria a precisdo do movimento.

67



7. Trabalhos Futuros

A ideia desse projeto pode ser ampliada e aplicada a varios problemas existentes.
Aumentando o poder de processamento do sistema (com as melhorias sugeridas na sessao
acima) seria possivel implementar um sistema que detecta e reage as informagdes obtidas
em tempo real. Essa aplicagcdo poderia ser usada para encontrar e neutralizar minas em
antigos campos minados, lugar onde o acesso de pessoas é perigoso. Basta fornecer a
imagem de uma mina a ser reconhecida e ajustar o procedimento de ao ser detectada uma

mina.

Esse sistema pode ser usado também para identificacdo de defeitos em tubulagdes.
Pensando em tubulagdes industriais (como por exemplo, de petroliferas), onde uma
pessoa nio tem acesso, é possivel localizar defeitos dentro dessas tubulacées, de forma

andloga a aplicacdo descrita acima.

Seguindo essa l6gica, é possivel trocar a plataforma terrestre do sistema por uma
plataforma aérea e expandir ainda mais suas aplicacdes. Algumas ideias seriam busca de
buracos e objetos perigosos em rodovias, busca em plantagdes por plantas danificadas, e

até busca por pessoas em areas pré-determinadas, utilizando reconhecimento de face.

Apesar das aplicagdes citadas acima necessitarem de hardwares melhores e
métodos mais precisos, todas compartilham a ideia deste trabalho, um sistema autonomo
que se movimenta de acordo com informacdes obtidas através de processamento grafico

em tempo real.

68



8. Bibliografia

S. Heath, Embedded Systems Design. 2003.

W. Stallings, Operating Systems, Internals and Design PrinciplesNo Title. Prentice Hall
PTR Upper Saddle River, NJ, USA ©2005, 2005, p. 820.

Microsoft, “User mode and kernel mode,” 2014. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff554836%28v=vs.85%29.aspx. [Accessed: 26-Oct-
2014].

T. Solomon, ChrisBreckon, Fundamentals of Digital Image Processing: A Practical
Approach with Examples in Matlab. 2011.

G. Stockman and Linda G. Shapiro, Computer Vision. Prentice Hall PTR Upper Saddle
River, NJ, USA ©2001, 201AD, p. 608.

R. 0. Duda and P. E. Hart, “Use of the Hough Transformation to Detect Lines and
Curves in Pictures,” Communications of the ACM, 1972.

MathWorks, “Hough transform - MATLAB hough,” 2014. [Online]. Available:
http://www.mathworks.com/help/images/ref/hough.html. [Accessed: 10-Oct-
2014].

OpenCV, “Hough Line Transform — OpenCV-Python Tutorials 1 documentation,”
2013. [Online]. Available: http://opencv-python-
tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_houghlines/py_ho
ughlines.html. [Accessed: 10-Oct-2014].

M. K. Agoston, Computer Graphics and Geometric Modeling: Implementation and
Algorithms. 2005, p. 306.

E. R. Dougherty, An Introduction to Morphological Image Processing. 1992, p. 161.

OpenCV, “Canny Edge Detection,” 2013. [Online]. Available:
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_d
etector.html. [Accessed: 12-Oct-2014].

P. Katz, Digital control using microprocessor. 1981.
A. Williams, Microcontroller Projects Using the Basic Stamp. Taylor & Francis, 2002.

L. Kneip, “H Bridge Circuit Schematic,” 2010. [Online]. Available:
http://www.laurentkneip.de/H_bridges.html. [Accessed: 12-Oct-2014].

J. R. B. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing. 2009,
p.- 1120.

M. Murray, “Raspberry Pi Review,” 2012. [Online]. Available:
http://www.pcmag.com/article2/0,2817,2407058,00.asp. [Accessed: 26-Oct-
2014].

69



Newark, “Newark Store Raspberry Pi,” 2013. [Online]. Available:
http://www.newark.com/raspberry-pi/raspberry-modb-512m/raspberry-pi-
model-b-board/dp/68X0155. [Accessed: 22-Oct-2014].

Broadcom Corporation, “BCM2835 ARM Peripherals,” 2012.

Raspberrypi.org, “RPi Performance,” 2013. .

T. Instruments, “L.293,1293d quadruple half-h drivers,” 2004.

S. Escalera, A. Fornés, 0. Pujol, P. Radeva, G. Sanchez, and J. Lladés, “Blurred Shape
Model for binary and grey-level symbol recognition,” Pattern Recognit. Lett., vol. 30,

no. 15, pp. 1424-1433, Nov. 2009.

Y. Freund, R. E. Schapire, and P. Avenue, “A Short Introduction to Boosting,” vol. 14,
no. 5, pp. 771-780, 1999.

P. Shetty, “Circle Detection In Images,” 2011.

R. Maini and H. Aggarwal, “Study and Comparison of Various Image Edge Detection
Techniques,” Int. J. Image Process., vol. 3, no. 1, pp. 1-12, 2010.

Z. Othman, M. Rafiq, and A. Kadir, “Comparison of Canny and Sobel Edge Detection
in MRI Images,” pp. 133-136.

E. Upton, “Wayland Preview: optimizing X using Raspberry Pi GPU,” 2013. [Online].
Available: http://www.raspberrypi.org/wayland-preview/. [Accessed: 21-Oct-
2014].

“Automodelismo de Competi¢do.” [Online]. Available:
http://automodelocba.esporteblog.com.br/. [Accessed: 26-Oct-2014].

“Labaratorio de Garagem,” 2014. [Online]. Available: www.labdegaragem.org/.
[Accessed: 24-0Oct-2014].

A. Rahman, A. Salam, M. Islam, and P. Sarker, “An Image Based Approach to
Compute Object Distance,” Int. J. Comput. Intell. Syst., vol. 1, no. 4, pp. 304-312,
2008.

Adafruit, “Adafruit Beaglebone,” 2014. [Online]. Available:
https://www.adafruit.com/products/1876. [Accessed: 22-Oct-2014].

G. Coley, “BeagleBone Black System Reference Manual,” 2013.
Odroid, “Odroid-XU3 Store,” 2013. [Online]. Available:

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G1404482671
27. [Accessed: 22-Oct-2014].

70



Apéndica A - Codigo Fonte

A seguir é apresentado todo o cédigo fonte do sistema, divido em mdédulos pertinentes.

“VideoModule.py”

__author = 'Andre'

import cv2

import numpy as np
import time

import math

class VideoModule:
def init (self, opencamera=0):

#Variaveis dos metodos de processamento de imagens
self.gauss = 7
self.lowThresCanny = 40
self.cannyRatio = 3
self.circDist = 1000
self.upperThres = 300
self.lowerThres = 80
self.minRadius = 5
self.maxRadius = 250

#Cores
self.min yellow np.array([20, 70, 70], np.uint8)
self.max yellow = np.array([70, 255, 255], np.uint8)

#Outras variaveis
self.nframes = 5
self.detection = 0
self.fps = 0
self.circles = None

self.center = (320, 240)
self.opencamera = opencamera
self.isOpen = False

self.camera = None
self.video = None

def openCamera (self):
self.isOpen = True
self.camera = cv2.VideoCapture (self.opencamera)
self.camera.set (3, 640)
self.camera.set (4, 480)
self.camera.set (14, 0.0)

def warmUp (self, n=10):
if self.isOpen:
for i in range(n):
self.camera.read()

def cleanUp(self):
self.circles = None
cv2.destroyAllWindows ()
self.camera.release()
self.isOpen = False




def takeashot (self):
if self.camera.isOpened() :

_, frame = self.camera.read()
frame = cv2.flip(frame, 1)

imgHSV = cv2.cvtColor (frame,
yellow = cv2.inRange (imgHSV,

self.max yellow)

cv2.COLOR_BGRZHSV)
self.min yellow,

gauss = cv2.GaussianBlur (yellow, (self.gauss, self.gauss)
0)
element = cv2.getStructuringElement (cv2.MORPH RECT, (7,
7))
erode = cv2.erode (gauss, element)
dilate = cv2.dilate(erode, element)
canny = cv2.Canny(dilate, 100, 300)
circles = cv2.HoughCircles (canny,
cv2.cv.CV_HOUGH GRADIENT, 3, 600,
paraml=240, param2=80,
minRadius=10, maxRadius=300)
return circles
def toogleDetection(self):
if self.detection ==
self.detection = 0
self.circles = None
print 'Deteccao Desliada'
else:
self.detection =1
print 'Deteccao Ligada'
def toogleFPS(self):
if self.fps == 1:
self.fps = 0
print 'FPS Desligado'
else:
self.fps =1
print 'FPS Ligado'
#circle[0] = x
#circle[1] =y
#circle[2] = raio
def drawCircles(self, frame):
if self.circles is not None:
for circle in self.circles[0, :]:
radius = np.round(circle[2])
cv2.circle(frame, (circle[0O], circle[l1l]), 3, (0, 255,
0), -1, 8, 0)
cv2.circle(frame, (circle([0], circle[l]), radius, (O,
0, 255), 3, 8, 0)
cv2.line (frame, self.center, (circle[0], circle[l]),
(0, 0, 0), 2)

def detectCircles(self, frame):

14

72




600,

start = time.time ()

#HSV

imgHSV = cv2.cvtColor (frame, cv2.COLOR BGR2HSV)

yellow cv2.inRange (imgHSV, self.min yellow, self.max yellow)

#Filtro da media?
gauss = cv2.GaussianBlur(yellow, (self.gauss, self.gauss), 0)

element = cv2.getStructuringElement (cv2.MORPH RECT, (7, 7))
erode = cv2.erode (gauss, element)

dilate = cv2.dilate(erode, element)

#remover?
canny = cv2.Canny(dilate, 100, 300)

circles = cv2.HoughCircles (canny, cv2.cv.CV_HOUGH GRADIENT, 2,

paraml=240, param2=80,

minRadius=10, maxRadius=300)

print time.time () - start
return circles

def nDetect (self, n=10):

if (not self.isOpen):
self.openCamera ()

shots = 0

fname = "ndetect" + str(n) + ".txt"
file = open(fname, "w")

circles = []

times = []

x = []

y = []

r =[]

file.write(str(n) + '\n')
print 'Starting'
while shots < n:
start = time.time ()
circle = self.takeashot ()
if circle is not None:
shots +=1
x.append(circle[0] [0] [
y.append(circle[0][0] [
r.append(circle[0][0] [
times.append (time.time
print time.time () - st
print str(circle)
time.sleep(0.1)

01)
1])
21)
() - start)
art

xmean = 0
ymean = 0
rmean = 0

print "Starting analytics: Mean"
for i in range(len(x)):

file.write(str(x[i]) + ' ")
xmean += x[1i]
file.write(str(y[i]) + " ")
ymean += y[i]
file.write(str(r[i]) + " ")

73




rmean += r[i]

file.write(str(times[i]) + '\n'")
Xmean = xXmean/n
ymean = ymean/n
rmean = rmean/n
xvar = 0
yvar = 0
rvar = 0

print 'Starting analytics: Variance'

for i in rang
xvar += (
yvar += (
rvar += (

B X O

Xxvar = xvar/n
yvar = yvar/n
rvar = rvar/n

xdev = math.sqgrt (xvar)
ydev = math.sqgrt (yvar)
rdev = math.sqgrt (rvar)

file.write('\n")
file.write ('Mean Deviation Variance\n')

file.write('x: ' + str(xmean) + ' ' 4+ str(xdev) + ' ' +
str(xvar) + '\n')

file.write('y: ' + str(ymean) + ' ' + str(ydev) + ' ' +
str(yvar) + '\n'")

file.write('r: ' + str(rmean) + ' ' + str(rdev) + ' ' +

str(rvar) + '\n')
self.cleanUp ()
file.close()
print 'Finished'

def lockAndDetect (self, n=10):
print 'Abrindo a camera...'
self.openCamera ()
print 'Pronto!’
while self.camera.isOpened() :
_, frame = self.camera.read()
frame = cv2.flip(frame, 1)

cv2.circle(frame, (self.center[0],self.center[1]),1, (0,0,255),2)
cv2.imshow ('WebCam', frame)
#print time.time () - start
key = cv2.waitKey (1)

if key == 113:
self.nDetect (n)

elif key == 27:
break

def screenshot (self, name, frame):
cv2.imwrite (name, frame)

def calibrate(self, nframes=0):




str(cv2.

def getHSV (event,x,y,flags,param) :
if event == cv2.EVENT_LBUTTONDBLCLK:
print "BGR" + str (framely,x])
print "HSV" +
cvtColor (np.uint8 ([ [framely,x]]]), cv2.COLOR BGR2HSV))

cv2.namedWindow ( 'WebCam')

cv2.setMouseCallback ('WebCam', getHSV)
show mask = 0
show gauss = 0
show _edges = 0
show erode = 0

show H = 0

text =
n =20

None

avg = 0
circles = None

'Abrindo a camera...'
cv2.VideoCapture (self.opencamera)

print
self.camera =

self.camera.set (15, 0.0)

#HSV

#Yellow 20, 100, 100

#Yellow 70, 255, 255

#Black 0, 0, 0

#Black 0, 0, 75

min yellow = np.array([20, 70, 70], np.uint8)
max_yellow = np.array([70, 255, 255], np.uint8)

print 'Pronto!’
while self.camera.isOpened() :

_, frame = self.camera.read()
frame = cv2.flip(frame, 1)
if nframes == 0:
start = time.time ()
#HSV
imgHSV = cv2.cvtColor (frame, cv2.COLOR _BGR2HSV)
yellow = cv2.inRange (imgHSV, self.min yellow,
self.max yellow)
gauss = cv2.GaussianBlur(yellow, (self.gauss,
self.gauss), 0)
element = cv2.getStructuringElement (cv2.MORPH RECT,
(7, 7))
erode = cv2.erode(gauss, element)
dilate = cv2.dilate(erode, element)
canny = cv2.Canny(dilate, 100, 300)
#print "Canny: " + str(time.time() - start)
circles = cv2.HoughCircles (canny,

cv2.cv.CV_HOUGH GRADIENT,

3, 600,

75




paraml=240, param2=80,
minRadius=10, maxRadius=300)

#print time.time () - start
if circles is not None:
circles = np.uintl6 (np.around(circles))
for i in circles[0, :]:
print 1
# draw the outer circle
cv2.circle(frame, (1[0],1[11),4i[21, (0,255,0),2)
# draw the center of the circle
cv2.circle(frame, (i[0],i[1]),2, (0,0,255),3)

elif n%nframes ==
start = time.time ()
#HSV
imgHSV = cv2.cvtColor (frame, cv2.COLOR BGR2ZHSV)
yellow cvZ.inRange (imgHSV, self.min yellow,

self.max yellow)

gauss = cv2.GaussianBlur (yellow, (self.gauss,
self.gauss), 0)

element = cv2.getStructuringElement (cv2.MORPH RECT,
(7, 7))

erode = cv2.erode (gauss, element)

dilate = cv2.dilate(erode, element)

#remover?
canny = cv2.Canny(dilate, 100, 300)
#print "Canny: " + str(time.time() - start)
circles = cv2.HoughCircles(dilate,
cv2.cv.CV_HOUGH GRADIENT, 3, 600,
paraml=240, param2=80,
minRadius=10, maxRadius=300)
print time.time () - start
if circles is not None:
circles = np.uintlé6 (np.around(circles))
for i in circles[0,:]:
print i
# draw the outer circle
cv2.circle(frame, (i[0],4i[11),41[2]1, (0,255,0),2)
# draw the center of the circle
cv2.circle(frame, (1[0],1i[11),2, (0,0,255),3)

n +=1

end = time.time ()

#Media de fps

#avg = ((n-1)*avg + (end-start))/n

#if self.fps == 1:
#text = '"FPS: {0:.3f}'".format (1/avg)

#cv2.putText (frame, text, (500, 460),
cv2.FONT HERSHEY SIMPLEX, 0.5, (0,0,0), 2)

if show gauss ==

cv2.imshow ('WebCam', yellow)
elif show mask ==

cv2.imshow ('WebCam', imgHSV)

76



elif show edges ==
cv2.imshow ('WebCam',
elif show erode ==
cv2.imshow ('WebCam',
elif show H ==
cv2.imshow ('WebCam',
else:
cv2.imshow ('WebCam',

canny)
erode)
dilate)

frame)

#Alterar esta parte para a rasp

key = cv2.waitKey (1)

#Sair

if key == 27: #27 ASCII = 'ESC'
break

#Ativar/Desativar FPS

elif key == 102: #102 ASCII = 'f'
n =20

self.screenshot (frame)

print frame
#self.toogleFPS ()

elif key == 113: #111 ASCII = 'q'
show gauss = not show gauss
show mask = 0
show _edges = 0
show_erode = 0
show H = 0
elif key == 119: #77 ASCII = 'w'
show mask = not show mask
show _edges = 0
show _gauss = 0
show_erode = 0
show H = 0
elif key == 101: #101 ASCII = 'e'
show edges = not show edges
show mask = 0
show _gauss = 0
show_erode = 0
show H = 0
elif key == 114: #114 ASCII = 'r'
show erode = not show erode
show _gauss = 0
show mask = 0
show edges = 0
show H = 0
elif key == 104: #104 ASCII = 'h'

show H = not show H

show edges =
show gauss =

show erode
show mask
elif key == 11

0
0
=0
=0
5: #'s'

self.savelmages (frame)

print 'Finalizando'

self.circles = Non

e

cv2.destroyAllWindows ()

self.camera.releas

def saveImages (self, f

e ()

rame) :

77




3, 600,

imgHSV = cv2.cvtColor (frame, cv2.COLOR BGR2HSV)
self.screenshot ("HSV.png", imgHSV)

yellow = cv2.inRange (imgHSV, self.min yellow, self.max yellow)
self.screenshot ("YellowThreshold.png", yellow)

gauss = cv2.GaussianBlur (yellow, (self.gauss, self.gauss), 0)
self.screenshot ("Gauss.png", gauss)

element = cv2.getStructuringElement (cv2.MORPH RECT, (7, 7))
erode = cv2.erode (gauss, element)

self.screenshot ("Erode.png", erode)

dilate = cv2.dilate(erode, element)
self.screenshot ("Dilate.png", dilate)

canny = cv2.Canny(dilate, 100, 300)
self.screenshot ("Canny.png", canny)

circles = cv2.HoughCircles(dilate, cv2.cv.CV_HOUGH GRADIENT,

paraml=240, param2=80,

minRadius=10, maxRadius=300)

def

if circles is not None:

circles = np.uintl6 (np.around(circles))

for i in circles[0, :]:
print i
# draw the outer circle
cv2.circle(frame, (i[0],4i[211),41[2]1, (0,255,0),2)
# draw the center of the circle
cv2.circle(frame, (i [(0],1i[1]),2, (0,0,255),3)

self.screenshot ("Circle.png", frame)

nAllTimes (self, n=10):
print 'Starting'
self.openCamera ()
self.warmUp (30)

shots = 0

capture = []
HSV = []

color = []
gaussfilter = [
erodefilter = [
dilatefilter =
cannyfilter = [
hough = []
total = []

]
]
[]
]

while shots < n:

init = time.time ()

_, frame = self.camera.read()

frame = cv2.flip(frame, 1)

captureTime = time.time() - init

start = time.time ()

imgHSV = cv2.cvtColor (frame, cv2.COLOR BGR2HSV)
hsvTime = time.time() - start

78




start = time.time ()

yellow = cv2.inRange (imgHSV, self.min yellow,

self.max yellow)

yellowTime = time.time() - start

start = time.time ()

gauss = cv2.GaussianBlur (yellow, (self.gauss,
0)

gaussTime = time.time() - start

element = cv2.getStructuringElement (cv2.MORPH RECT,
7))

start = time.time ()

erode = cv2.erode (gauss, element)

erodeTime = time.time () - start

start = time.time ()

dilate = cv2.dilate(erode, element)

dilateTime = time.time () - start

start = time.time ()

canny = cv2.Canny(dilate, 100, 300)

cannyTime = time.time() - start

start = time.time ()

circles = cv2.HoughCircles (canny,

cv2.cv.CV_HOUGH GRADIENT, 3, 600,
paraml=240,
minRadius=10, maxRadius=300)
houghTime = time.time () - start

totaltime = time.time () - init
print totaltime

if circles is not None:
print circles

shots += 1

capture.append (captureTime)
HSV.append (hsvTime)
color.append (yellowTime)
gaussfilter.append (gaussTime)
erodefilter.append (erodeTime)
dilatefilter.append(dilateTime)
cannyfilter.append (cannyTime)
hough.append (houghTime)
total.append (totaltime)

#Capture

fname = "capture" + str(n) + ".txt"

file = open(fname, "w")

mean = 0

for i in range(n):
file.write (str (capture[i]) + '\n'")

mean += capture[i]

mean = mean/n

param2=80,

(7,

self.gauss),

79




var = 0

for i in range(n):
var += (capture[i] - mean) * (capture[i] - mean)

dev = math.sgrt (var)
file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n'")
file.close()

#HSV

fname = "HSV" + str(n) + ".txt"
file = open(fname, "w")

mean = 0

for i in range(n):
file.write(str (HSV[i]) + '\n'")
mean += HSV[1i]

mean = mean/n
var = 0

for i in range(n):
var += (HSV[i] - mean)* (HSV[i] - mean)

dev = math.sqgrt (var)
file.write(str(mean) + ' ' 4+ str(dev) + ' ' + str(var) + '\n'")
file.close()

#Color

fname = "color" + str(n) + ".txt"

file = open(fname, "w")

mean = 0

for i in range(n):
file.write(str(color[i]) + '\n'")

mean += color[i]

mean = mean/n
var = 0

for i in range (n):
var += (color[i] - mean) * (color[i] - mean)

dev = math.sqgrt (var)
file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')
file.close()

#Gauss

fname = "gauss" + str(n) + ".txt"

file = open(fname, "w")

mean = 0

for i in range(n):
file.write (str (gaussfilter[i]) + '\n'")

mean += gaussfilter[i]

mean = mean/n
var = 0

for i in range(n):
var += (gaussfilter[i] - mean) * (gaussfilter[i] - mean)

dev = math.sqgrt (var)
file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n'")

80




file.close()

#Erode

fname = "erode" + str(n) + ".txt"

file = open(fname, "w")

mean = 0

for i in range(n):
file.write(str(erodefilter[i]) + '\n'")

mean += erodefilter[i]

mean = mean/n
var = 0

for i in range(n):
var += (erodefilter[i] - mean) * (erodefilter[i] - mean)

dev = math.sqgrt (var)
file.write(str(mean) + ' ' 4+ str(dev) + ' ' + str(var) + '\n
file.close()

#Dilate

fname = "dilate" + str(n) + ".txt"
file = open(fname, "w")

mean = 0

for i in range(n):
file.write(str(dilatefilter([i]) + '\n')
mean += dilatefilter([i]

mean = mean/n
var = 0

for i in range(n):
var += (dilatefilter[i] - mean)* (dilatefilter[i] - mean)

dev = math.sqgrt (var)

file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n'

file.close()

#Canny

fname = "canny" + str(n) + ".txt"

file = open(fname, "w")

mean = 0

for i in range(n):
file.write(str(cannyfilter[i]) + '\n'")

mean =+ cannyfilter[i]

mean = mean/n
var = 0

for i in range(n):
var += (cannyfilter[i] - mean) * (cannyfilter[i] - mean)

dev = math.sqrt (var)

file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n'

file.close()

#Hough

fname = "hough" + str(n) + ".txt"
file = open(fname, "w")

mean = 0

for i in range(n):

")

)

)

81




file.write (str (hough[i]) + '\n')
mean += hough[i]

mean = mean/n
var = 0

for i in range(n):
var += (hough[i] - mean) * (hough[i] - mean)

dev = math.sqgrt (var)
file.write(str(mean) + ' ' + str(dev) + ' ' + str(var)
file.close()

#Total

fname = "total" + str(n) + ".txt"

file = open(fname, "w")

mean = 0

for i in range(n):
file.write(str(total[i]) + '\n'")
mean += total[i]

mean = mean/n
var = 0

for i in range(n):
var += (total[i] - mean)* (total[i] - mean)

dev = math.sqgrt (var)
file.write(str(mean) + ' ' + str(dev) + ' ' + str(var)
file.close()
def nTotalTime (self, n=10):
c = raw_input ()
print 'Starting'
self.openCamera ()
self.warmUp (30)
shots = 0
total = []
while shots < n:
init = time.time ()
_, frame = self.camera.read()
frame = cv2.flip(frame, 1)

imgHSV = cv2.cvtColor (frame, cv2.COLOR BGRZHSV)

yellow = cv2.inRange (imgHSV, self.min yellow,
self.max yellow)

+

+

v\nv)

v\nv)

gauss = cv2.GaussianBlur (yellow, (self.gauss, self.gauss),

0)

element = cv2.getStructuringElement (cv2.MORPH RECT,

erode = cv2.erode (gauss, element)

(7,

82




dilate = cv2.dilate (erode, element)
canny = cv2.Canny(dilate, 100, 300)
circles = cv2.HoughCircles (canny,
cvZ2.cv.CV_HOUGH GRADIENT, 3, 600,
paraml=240, param2=80,

minRadius=10, maxRadius=300)

totaltime = time.time() - init
print totaltime

if circles is not None:
print circles

shots += 1

total.append(totaltime)

#Total

fname = "totalTime" + str(n) + ".txt"

file = open(fname, "w")

mean = 0

for i in range(n):
file.write(str(total[i]) + '\n'")

mean += total[i]

mean = mean/n
var = 0

for i in range(n):
var += (total[i] - mean)* (total[i] - mean)

dev = math.sqgrt (var)
file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')
file.close()

def nDetectlateral (self, n=10):
if (not self.isOpen):
self.openCamera ()

shots = 0

circles = []
times = []

x = []

r =[]

print 'Starting'
while shots < n:
start = time.time ()
circle = self.takeashot ()
if circle is not None:
shots +=1
x.append (circle[0][0][0])
r.append(circle[0][0][2])
times.append (time.time () - start)
print time.time() - start
print str(circle)
time.sleep(0.1)

83



xmean = 0
rmean

Il
O

print "Starting analytics: Mean"
for i in range(len(x)):

xmean += x[1]

rmean += r[i]

Xmean = xXmean/n
rmean = rmean/n
xvar = 0
rvar = 0

for i in range(len(x)):

xvar += (x[1] - xmean)* (x[i] - xmean)
rvar += (r[i] - rmean)*(r[i] - rmean)
Xxvar = xvar/n
rvar = rvar/n

xdev = math.sqgrt (xvar)
rdev = math.sqgrt (rvar)

print 'x: ' + str(xmean)
print 'r: ' + str(rmean)

"'+ str(xdev)
' ' + str(rdev)

+
+
print 'Finished'
return [x, r, xXmean, rmean, xdev, rdev]
def lockAndDetectLateral (self, n=10):
print 'Abrindo a camera...'
self.openCamera ()

print 'Pronto!’

fname = "nDetectLateral" + str(n) + ".txt"
file = open(fname, "a")

while self.camera.isOpened() :

_, frame = self.camera.read()
frame = cv2.flip(frame, 1)
cv2.circle(frame, (self.center[0],self.center[1]),1, (0,0,255),2)
cv2.imshow ('WebCam', frame)
#print time.time () - start
key = cv2.waitKey (1)
if key == 113:
[x, r, xmean, rmean, xXdev, rdev] =
self.nDetectLateral (n)
print 'Distance: ' + str(xmean - self.center[0])
file.write('Radius: ' + str(rmean) + ' ' +str(rdev) +
'\nl)
file.write('X: ' + str(xmean) + ' ' +str(xdev) + '\n'
file.write('Distance: ' + str(xmean - self.center[0])
+ '\n\n")

)

84




elif key == 27:
break

self.cleanUp ()
file.close()

“MotorControl.py”

__author = 'Andre'

from RPIO import PWM
import RPi.GPIO as gpio
import time

#Utilizar RP1.GPIO

#Frequencia para Motor DC 10kHz
#Exemplo no teste

#mc = MotorControl ()

#print 'PWM:'

#duty = raw_input ()

#mc.test (7, 5000, duty)

#0.5 seg = 90
#GND = 25

class MotorControl () :
def init (self, duty=80):

self.frequency = 1000
self.duty = duty

self.motorREn = 22
self.motorRF = 16
self.motorRB = 18

self.motorLEn = 7
self.motorlLF = 13
self.motorLB 11

gpio.setmode (gpio.BOARD)

gpio.setup(self.motorLEn, gpio.OUT)
gpio.setup(self.motorlF, gpio.OQOUT)
gpio.setup (self.motorLB, gpio.OUT)
self.pwmL = gpio.PWM(self.motorLEn, self.frequency)

gpio.setup(self.motorREn, gpio.OUT)
gpio.setup(self.motorRF, gpio.OQOUT)
gpio.setup (self.motorRB, gpio.OUT)
self.pwmR = gpio.PWM(self.motorREn, self.frequency)

def test(self, pin, freq, duty):
gpio.setup(pin, gpio.OUT)
P = gpio.PWM(pin, freq)
p.start (float (duty))

85




def

def

def

def

def

def

def

def

def

def

def

def

def

def

print 'Press any key to stop'
value = raw_input ()

p.stop ()
gpio.cleanup ()

start (self) :
self.startL ()
self.startR()

changeFreq(self, freq):
self.frequency = freq
self.pwmL.ChangeFrequency (freq)
self.pwmR.ChangeFrequency (freq)

startL (self) :
self.pwmL.start (float (self.duty))

stopL(self) :
gpio.output (self.motorLF, False)
gpio.output (self.motorlB, False)

setPWML (self, pwm):
self.pwmL.ChangeDutyCycle (pwm)

forwardL (self) :
gpio.output (self.motorlB, False)
gpio.output (self.motorLF, True)

backwardL (self) :
gpio.output (self.motorLF, False)
gpio.output (self.motorlB, True)

startR(self) :
self.pwmR.start (float (self.duty))

stopR(self):
gpio.output (self.motorRF, False)
gpio.output (self.motorRB, False)

setPWMR (self, pwm) :
self.pwmR.ChangeDutyCycle (pwm)

forwardR (self) :
gpio.output (self.motorRB, False)
gpio.output (self.motorRF, True)

backwardR (self) :
gpio.output (self.motorRF, False)
gpio.output (self.motorRB, True)

clean (self):
gpio.cleanup ()

turnRight (self, delay=0):
self.start ()
self.backwardL ()
self.forwardR ()

if delay != 0:

86




time.sleep (delay)
self.stopL ()
self.stopR()

self.pwmL.stop ()
self.pwmR.stop ()
def turnLeft (self,
self.start ()
self.forwardL ()
self.backwardR ()
if delay != 0:
time.sleep (delay)
self.stopL()
self.stopR()

delay=0) :

self.pwmL.stop ()

self.pwmR.stop ()
def goForward(self,
self.start ()

delay=0) :

self.forwardL ()
time.sleep (0.1)
self.forwardR ()

= 0:
time.sleep (delay)
self.stopR()
self.stopL()

if delay

self.pwmL.stop ()

self.pwmR.stop ()
def goBackward (self,
self.start ()
self.backwardR ()
self.backwardL()

delay=0) :

'= 0:

sleep (delay)
stopR ()
stopL ()

if delay
time.
self.
self.

self.pwmL.stop ()
self.pwmR.stop ()

“MasterControl.py”

__author = 'Andre'
from VideoModule import *
from MotorControl import *

class MasterControl:

def init (self,

self.depthinvpol =
2.559894453263738]

self.lateralinvpol =

opencamera=0) :

[451.2049,

[831.6204780016491,

0.8331,

0.913031178353066,

-2.1606]

87




self.lateralDistRatio = 0

self.pwm = 80
self.velocity = 23 #23 cm por segundo
self.turn = 180 #graus por seg

self.vm
self.mc

VideoModule (opencamera) ;
MotorControl () ;

#ty = c[0]/(x"c[1]) + c[2]
def inverseval (self, coef, x):
return coef[0]/ (x**coef[1l]) + coef[2]

def polyval (self, poly, x):
y =0
for i in range(len(poly)):
value = poly[i]*pow(x, 1)
y += value

return y

def depth(self, radius):
return self.inverseval (self.depthinvpol, radius)

def lateralDist(self, lateralPixelDist, radius):
dep = self.depth(radius)
ratio = self.inverseval (self.lateralinvpol, dep)
print "Ratio: " + str(ratio)

return lateralPixelDist/ratio

def start(self):
print 'Starting:'
self.vm.openCamera ()
while self.vm.camera.isOpened() :
_, frame = self.vm.camera.read()
frame = cv2.flip(frame, 1)

cv2.circle(frame, (self.vm.center[0],self.vm.center[1]),1, (0,0,255),2)
cv2.imshow ('WebCam', frame)
#print time.time () - start
key = cv2.waitKey (1)
if key == 113: #'q’
circle = None
while circle is None:

circle = self.vm.takeashot ()
x = circle[0][0][0]
r = circle[0][0][2]
center = self.vm.center[0]

leftOrRight = 0 #left
lateralPixel = 0
if x > center:
leftOrRight =1
lateralPixel = x - center

distance = self.depth(r)

88




#lateralDistance = self.lateralDist (lateralPixel,

distance)

def

print distance
#print lateralDistance

elif key == 27:
break
print 'Finalizando'
cv2.destroyAllWindows ()
self.vm.camera.release ()

startN(self, n=3):

print 'Warming Up'
self.vm.warmUp (20)

print 'Starting:'
self.vm.openCamera ()

while self.vm.camera.isOpened() :

# , frame = self.vm.camera.read/()
#frame = cv2.flip(frame, 1)

#cv2.circle (frame, (self.vm.center[0] ,self.vm.center(1]),1,(0,0,255),2)

#cv2.imshow ('WebCam', frame)
#print time.time () - start
key = raw_input ()
if key == 'q': #'q’
circle = None
x =0
r =0
shots = 0
while shots < n:
circle = self.vm.takeashot ()
if circle is not None:
shots += 1
X += circle[0] [0
r += circle[0] [0
print circle[0][

110]
102]
01[0], circle[0][0][2]
X = x/n;
r r/n;

print x, r

center = self.vm.center[0]
Left = 1
lateralPixel = 0
lateralPixel = x - center
if lateralPixel < O0:

Left = 0

lateralPixel *= -1

distance = self.depth(r)

print "Distance: " + str(distance)

print "Pixel Distance: " + str(lateralPixel)
lateralDistance = self.lateralDist (lateralPixel,
print "Lateral Distance: " + str(lateralDistance)

r)

89




angle =
math.atan (lateralDistance/distance) *180/math.pi

print "Angle: " + str(angle)
distance *= 0.8

tempo = distance/self.velocity
print "Tempo: " + str (tempo)
self.mc.goForward (tempo)

elif key == 'c¢':
break

print 'Finalizando'
cv2.destroyAllWindows ()
self.vm.camera.release ()

def startandmove (self):
#self.mc.start (self.pwm)
print 'Starting:'
self.vm.openCamera ()

print 'Esquentando'
for i in range (20):
_, frame = self.vm.camera.read()
print 'Pronto!’
key = raw_input ()

if key == 'd':
circle = None
while circle is None:
circle = self.vm.takeashot ()
X = circle[0][0][0]
r = circle[0][0][2]
print 'Raio: ' + str(r)
center = self.vm.center[0]

leftOrRight = 0 #left
lateralPixel = x - center

distance = self.depth(r)

lateralDistance = self.lateralDist (lateralPixel,
print 'Distance: ' + str(distance)

print 'Lateral Distance:' + str(lateralDistance)
angle = atan(lateralDistance/distance)

angle = angle*180/math.pi

#time = distance/self.moveratio
#print 'Time: ' + str(time)
#self.mc.goForward (time)

#print lateralDistance

elif key == 'q':
print 'Finalizando'
cv2.destroyAllWindows ()
self.vm.camera.release ()

distance)

90




def nDistance(self, n=10):

def

if (not self.vm.isOpen) :
self.openCamera ()

r = []
dist = []

shots = 0
self.vm.openCamera ()
#self.vm.warmUp (20)

print 'Starting'
while shots < n:
circle = self.vm.takeashot ()
if circle is not None:
shots +=1
print str(circle)
r = circle[0][0][2]
print self.depth(r)
#time.sleep (0.1)

print 'Finalizando'
cv2.destroyAllWindows ()
self.vm.camera.release ()

nDistanceMean (self, n=10, mean=1l):

if (not self.vm.isOpen) :
self.vm.openCamera ()
self.vm.warmUp (50)

shots = 0
fname "ndistance" + str(n) + "Mean" + str (mean) + ".txt"
file = open(fname, "w")

distance = []
times = []
x = []

r = []

file.write(str(n) + '\n'")
print 'Starting'
while shots < n:

start = time.time ()

tmpx = 0
tmpr = 0
tmpmean = 0
while tmpmean < mean:
circle = self.vm.takeashot ()
if circle is not None:
tmpmean += 1
tmpx += circle[0][0][0]
tmpr += circle[0][0][2]

shots +=1
tmpx = tmpx/mean
tmpr = tmpr/mean

X .append (tmpx)

91




r.append (tmpr)

d = self.depth(tmpr)
distance.append (d)

times.append (time.time () - start)
#print time.time() - start

print tmpx, tmpr, d
time.sleep(0.1)

xmean = 0
rmean = 0
dmean = 0

print "Starting analytics: Mean"

for i in range(len(x)):
file.write(str(x[i]) + " ")
xmean += x[1i]
file.write(str(r[i]) + " ")
rmean += r[i]
file.write(str(distance[i]) + " ")
dmean += distance([i]
file.write(str(times[i]) + '\n'")

Xmean = xXmean/n
rmean = rmean/n
dmean dmean/n

xvar = 0
rvar
dvar

([
O O

print 'Starting analytics: Variance'

for i in range(
xvar += (x|
rvar += (r[
dvar += (di

- xmean) * (x[1] - xmean)
] - rmean)*(r[i] - rmean)
tance[i] - dmean) * (distance[i]

Xxvar = xvar/n
rvar rvar/n
dvar = dvar/n

xdev = math.sqgrt (xvar)
rdev = math.sqgrt (rvar)
ddev = math.sqgrt (dvar)

file.write('\n")
file.write ('Mean Deviation Variance\n')
file.write('x: ' + str(xmean) + ' ' + str(xdev)

str(xvar) + '\n'")

file.write('r: ' + str(rmean) + ' ' 4+ str(rdev)

str(rvar) + '\n')

file.write('d: ' + str(dmean) + ' ' + str (ddev)

str (dvar) + '\n'")

def

self.vm.cleanUp ()
file.close()
print 'Finished'

lockAndDistance (self, n=10):
print 'Abrindo a camera...'
self.vm.openCamera ()

- dmean)
+ "'+
+ ' 4
+ "'+

92




print 'Pronto!'

while self.vm.camera.isOpened() :
_, frame = self.vm.camera.read()
frame = cv2.flip(frame, 1)

cv2.circle(frame, (self.vm.center[0],self.vm.center[1]),1, (0,0,255),2)
cv2.imshow ('WebCam', frame)
#print time.time () - start
key = cv2.waitKey (1)

if key == 113:
self.nDistance (n)

elif key == 27:
break

def nlateralDistanceMean (self, n=10, mean=1):
if (not self.vm.isOpen) :
self.vm.openCamera ()
self.vm.warmUp (50)

shots = 0
fname = "ndistance" + str(n) + "Mean" + str (mean) + ".txt"
file = open(fname, "w'")

distance = []
dep = []
times = []

x = []

file.write(str(n) + '\n'")
print 'Starting'
while shots < n:

start = time.time ()

tmpx = 0
tmpr = 0
tmpmean = 0
while tmpmean < mean:
circle = self.vm.takeashot ()
if circle is not None:
tmpmean += 1
tmpx += circle[0][0][0]
tmpr += circle[0][0][2]

shots +=1
tmpx = tmpx/mean
tmpr = tmpr/mean

X .append (tmpx)
r.append (tmpr)
offset = tmpx - 320
if offset < O:
offset = offset*-1

d = self.lateralDist (offset, tmpr)
distance.append (d)

dep.append (self.depth (tmpr))
times.append (time.time () - start)
#print time.time () - start

93




print tmpx, tmpr, d
time.sleep(0.1)

xmean =
rmean
dmean
depmean

Il
o oo

print "Starting analytics: Mean"
for i in range(len(x)):

file.write(str(x[i]) + " ")

xmean += x[i]

file.write(str(r[i]) + ' ")

rmean += r[i]
file.write(str(distance[i]) + ' ")
dmean += distance([i]
file.write(str (times[i]) + '\n'")

depmean += dep[i]

xmean = xmean/n
rmean = rmean/n
dmean = dmean/n

depmean = depmean/n

xvar =
rvar =
dvar =
depvar

o oo

print 'Starting analytics: Variance'

for i in range (len(x)):

xvar += (x[1] - xmean)* (x[1i] - xmean)
rvar += (r[i] - rmean)*(r[i] - rmean)
dvar += (distance[i] - dmean) * (distance[i] - dmean)
depvar += (dep[i] - depmean)* (dep[i] - depmean)
Xxvar = xvar/n
rvar = rvar/n
dvar = dvar/n

depvar = depvar/n

xdev = math.sqgrt (xvar)
rdev = math.sqgrt (rvar)
ddev = math.sqgrt (dvar)
depdev = math.sqgrt (depvar)

file.write('\n")
file.write ('Mean Deviation Variance\n')

file.write('x: ' + str(xmean) + ' ' + str(xdev) + " ' +
str(xvar) + '\n'")

file.write('r: ' + str(rmean) + ' ' + str(rdev) + ' ' +
str(rvar) + '\n'")

file.write('depth: ' + str(depmean) + ' ' + str(depdev) + ' '
+ str(depvar) + '\n'")

file.write('dl: ' 4+ str(dmean) + ' ' + str(ddev) + ' ' +

str(dvar) + '\n')
self.vm.cleanUp ()
file.close()
print 'Finished'




“Run.py"

__author = 'Andre'
from MasterControl import *

mc = MasterControl (0)
mc.startN ()

95




