
1

UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

DEPARTAMENTO DE ENGENHARIA ELÉTRICA E

COMPUTAÇÃO

TRABALHO DE CONCLUSÃO DE CURSO

“Implementação de sistema robótico autônomo movimentado

de acordo com informações visuais”

ANDRÉ FELIPE NUNES TROFINO

São Carlos

Outubro/2014

2

3

ANDRÉ FELIPE NUNES TROFINO

IMPLEMENTAÇÃO DE SISTEMA

ROBÓTICO AUTÔNOMO

MOVIMENTADO DE ACORDO COM

INFORMAÇÕES VISUAIS

Trabalho de Conclusão de Curso apresentado

à Escola de Engenharia de São Carlos, da

Universidade de São Paulo

Curso de Engenharia de Computação

Orientador: Evandro L. L. Rodrigues

São Carlos

Outubro/2014

4

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU
ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE
CITADA A FONTE.

Trofino, André Felipe

T843i Implementação de sistema robótico autônomo
movimentado de acordo com informações visuais / André
Felipe Trofino; orientador Evandro L. L. Rodrigues. São
Carlos, 2014.

Monografia (Graduação em Engenharia de

Computação)

-- Escola de Engenharia de São Carlos da Universidade
de São Paulo, 2014.

1. Raspberry Pi. 2. Sistemas Embarcados.
3. Processamento de Imagens. I. Título.

5

6

Dedicatória

 Dedico este trabalho aos meus pais, Julio e Cristina, que sempre me apoiaram,

sempre acreditaram em mim e me mostraram o caminho correto; à minha irmã, Carol,

minha companheira em todas as horas e minha melhor metade, sempre pronta a me

aturar, e à minha namorada Ana Carolina, por ser meu suporte, minha ajudante e minha

inspiração nesta etapa final.

7

Agradecimentos

 Agradeço a todos meus amigos, que sempre estiveram comigo para compartilhar

os momentos bons e os momentos ruins, e me sempre me deram uma razão pra sorrir e

meus pais por toda a força e apoio que me proveram durante todos os anos.

 Agradeço a minha primeira professora de programação, Simone Senger Souza, cuja

bondade e paciência me incentivaram a continuar nesse caminho, e que continuou a me

ajudar mesmo depois de não termos mais aulas.

 Agradeço também meu professor e orientador Evandro L. L. Rodrigues, que

sempre teve tempo para mim, e seus conselhos eu busco até hoje.

8

“A felicidade está antes na jornada que no destino”

- Stephen King, A Torre Negra

9

Resumo

 Os sistemas embarcados comerciais evoluíram muito nos últimos anos, abrindo as

possibilidades de aplicações embarcadas. Uma dessas possíveis aplicações é

processamento de imagens e visão computacional. Neste trabalho é proposto um sistema

de fetch; um robô autônomo que detecta a imagem de um círculo e se movimenta seguindo

essa imagem, utilizando uma câmera para obter imagens e processamento de imagens

para obter as informações necessárias. O objetivo deste trabalho é estudar o desempenho

de um sistema embarcado barato e limitado computacionalmente no contexto de

processamento de imagens. Foi obtida uma boa precisão em relação à detecção do círculo

e movimento do sistema, mostrando que o sistema embarcado em questão é capaz de

realizar aplicações de visão computacional, entretanto, a plataforma escolhida não é a

melhor escolha devido às suas limitações.

Palavras-Chave: Raspberry Pi, Sistemas Embarcados, Processamento de Imagens.

10

Abstract

 There has been a growth in embedded systems in last years, making them faster

and more robust, allowing new possibilities for embedded applications. One of these

possible applications is computer vision and image processing. This work proposes a fetch

system, an autonomous robot that detects an image of a circle and moves following that

image, utilizing a camera to obtain images and image processing to obtain the necessary

information. This work’s objective is to study a cheap and limited embedded system’s

performance when used for image processing. A good detection accuracy and movement

was obtained, proving that image processing applications are possible using embedded

systems, however, the chosen platform is not the best choice, due to its limitations.

Keywords: Raspberry Pi, Embedded Systems, Image Processing.

11

Sumário
Lista de Abreviaturas: ... 13

Lista de Figuras .. 14

Lista de tabelas ... 15

1. Introdução .. 16

1.1. Motivação ... 16

2. Objetivos.. 18

2.1. Objetivo Geral ... 18

2.2. Objetivos Específicos ... 18

3. Contextualização ... 19

4. Embasamento Teórico ... 20

4.1. Sistemas Operacionais ... 20

4.1.1. Kernel .. 20

4.1.2. Execução de Processos .. 21

4.1.3. Interrupções .. 21

4.1.4. Modos de Operação .. 22

4.1.5. Gestão de Memória ... 22

4.1.6. Memória Virtual ... 23

4.1.7. Multitarefa .. 23

4.1.8. Acesso ao Disco Rígido e Sistemas de Arquivos 24

4.1.9. Drivers de Dispositivos .. 24

4.1.10. Rede .. 25

4.1.11. Interface de Usuário ... 25

4.1.12. Tipos de Sistemas Operacionais .. 25

4.2. Processamento de Imagens ... 26

4.2.1. Classificação: .. 26

4.2.2. Extração de Características: ... 27

4.2.3. Reconhecimento de Padrões .. 27

4.3. Transformada Hough .. 27

4.3.1. Teoria .. 27

4.4. Filtro de Cor .. 30

4.5. Filtro de Gauss ... 30

4.6. Dilatação .. 31

4.7. Erosão .. 31

4.8. Filtro de Canny ... 31

4.9. Controle Digital ... 32

12

4.10. Ponte H ... 33

4.11. PWM ... 34

5. Desenvolvimento do Trabalho ... 36

5.1. Materiais ... 36

5.2. Planejamento .. 38

5.3. Escolha do método de detecção e símbolo detectado 39

5.4. Implementação ... 40

5.5. Refinamento ... 47

5.5.1. Filtro de Cor ... 47

5.5.2. Filtro Gaussiano .. 47

5.5.3. Detector de Borda de Canny ... 47

5.5.4. Transformada de Hough .. 48

5.6. Montagem da Plataforma .. 49

5.7. Cálculo da Distância e Ângulo e Movimento ... 51

5.8. Integração .. 54

6. Resultados e Discussões ... 55

7. Trabalhos Futuros .. 68

8. Bibliografia ... 69

13

Lista de Abreviaturas:

RAM = Random Access Memory

BIOS = Basic Input/Output System

RGB = Red Green Blue

HSV = Hue Saturation Value

USB = Universal Serial Bus

HD = High Definition

VGA = Video Graphics Array

HDMI = High-Definition Multimedia Interface

GPU = Graphics Processor Unit

GFLOPS = Giga Floating-point Operations Per Second

HDTV = High-Definition Television

SD = Secure Digital

MMC = Multimedia Card

SDIO = Secure Digital Input Output

PID = Proportional-integral-derivative

SDRAM = Synchronous Dynamic Random Access Memory

SSH = Secure Shell

14

Lista de Figuras

Figura 1: Sistema Proposto. .. 16

Figura 2: Visão superior do sistema. ... 17

Figura 3: Papel do Kernel [3]. ... 21

Figura 4: Representação da Transformada de Hough em duas linhas[6]. 29

Figura 5: Resultado do Filtro de Canny [11]. ... 32

Figura 6: Representação Gráfica da Ponte H [13]. .. 33

Figura 7: Circuito de uma ponte H [14].. 34

Figura 8: Raspberry Pi [16]. .. 37

Figura 9: Foto transformada em HSV. .. 42

Figura 10: Foto após aplicação do filtro de cor. ... 42

Figura 11: Foto após aplicação do filtro de Gauss. ... 43

Figura 12: Foto após o processo de Erosão. .. 44

Figura 13: Foto após o processo de Dilatação. ... 44

Figura 14: Foto após aplicação do filtro de Canny. ... 45

Figura 15: Círculo detectado pela transformada de Hough. .. 46

Figura 16: Processo de reconhecimento do círculo. ... 46

Figura 17: Plataforma automobilística [27]. ... 49

Figura 18: Procedimento de cálculo da distância real [29]. ... 52

Figura 197: Desvio padrão das medidas das câmeras. ... 53

Figura 20: Círculo “quebrado” devido a distorções nas cores. 54

Figura 21: Ciclo completo do sistema. .. 55

Figura 22: Integração dos dispositivos do sistema. ... 55

Figura 23: Interpolação dos dados de profundidade obtidos. 57

Figura 24: Resultado das medidas para profundidade de 62 cm. 58

Figura 25: Comparação entre a média dos cálculos e a profundidade real. 59

Figura 26: Diferença entre a média dos cálculos e a profundidade real. 60

Figura 27: Comparação entre a média dos cálculos e a profundidade real utilizando a

média de três detecções para o cálculo da profundidade ... 61

Figura 28: Diferença entre a média e a profundidade real utilizando a média de três

detecções para o cálculo da profundidade. ... 62

Figura 29: Resultado da interpolação para distância lateral. 63

Figura 30: Beaglebone [30] ... 66

15

Lista de tabelas

Tabela 1: Tabela de funcionamento da ponte H .. 34

Tabela 2: Resultado dos Cálculos de profundidade. ... 59

Tabela 3: Resultado dos cálculos de profundidade utilizando a média de três

detecções para o cálculo da profundidade .. 61

Tabela 4: Comparação dos resultados obtidos para distância lateral. 64

Tabela 5: Resultados das medições dos tempos de execução. 64

16

1. Introdução

1.1. Motivação

 O processamento de imagens e a visão computacional são duas áreas intimamente

ligadas que apresentam uma gama muito grande de aplicações; mas retirar informações de

dados visuais (fotos, vídeos) requer bastante poder computacional. Devido a esse

requerimento de poder computacional, aplicações de processamento de imagens em

sistemas embarcados eram muito limitadas, pois um sistema embarcado tem uma

capacidade de processamento muito reduzida se comparado a um computador

convencional. Mas com o crescimento dos hardwares embarcados, tornando-se mais

poderosos e robustos, o processamento de imagens se torna possível também em sistemas

embarcados.

 A motivação desse projeto é estudar o poder de um sistema embarcado em relação

a processamento de imagens, utilizando um sistema de detecção de imagens, e obter um

sistema que pode ser expandido e utilizado em vários contextos e aplicações.

 O sistema em questão é um sistema de “fetch” (busca), cujo objetivo é identificar

um objeto pré-definido e movimentar-se até sua posição. O sistema seria totalmente

autônomo, utilizando uma plataforma robótica móvel, um sistema embarcado em conjunto

com uma câmera para obter as imagens e controlar todo o processo. As figuras 1 e 2

abaixo representam o sistema proposto.

Figura 1: Sistema Proposto.

17

Figura 2: Visão superior do sistema.

 Como é possível observar nas imagens acima, o sistema consiste em uma câmera

na frente da plataforma móvel, responsável por alimentar o sistema embarcado com

imagens do ambiente, uma plataforma móvel responsável pelo movimento do sistema e o

sistema embarcado em si, responsável por comandar os outros elementos.

 A ideia de se movimentar seguindo um objeto de interesse pode ser usada em

várias situações nas quais não seria possível empregar uma pessoa, como por exemplo,

verificação de defeitos em tubulações, desativação de minas terrestres (a mina seria um

objeto de interesse, então bastaria reconhece-la para descobrir sua posição e realizar os

procedimentos necessários para desativação), e extrapolando a ideia, seria possível o

reconhecimento de pessoas em meio a multidões.

 O sistema embarcado entra com a função de controle múltiplo, administrando

todas as partes envolvidas no projeto e aplicando os métodos necessários para extrair as

informações das imagens recebidas e os movimentos necessários em cada situação. Cada

parte e processo do sistema serão explicados neste documento.

18

2. Objetivos

2.1. Objetivo Geral

 Estudar e propor uma arquitetura embarcada eficiente (composta por hardware e

software) para processamento de imagens e controle de periféricos eletrônicos sobre uma

plataforma limitada computacionalmente, utilizando um sistema operacional que não tem

suporte para aplicações em tempo real.

2.2. Objetivos Específicos

 Os seguintes objetivos específicos foram definidos a fim de atingir o objetivo

principal:

 - Estudar a precisão do método escolhido para detecção de círculos.

 - Analisar formas de melhorar o método escolhido para obter uma resposta

satisfatória.

 - Aplicar os resultados obtidos acima na plataforma embarcada e estudar o melhor

compromisso entre precisão e velocidade de execução em tempo real.

 - Discutir os resultados obtidos e propor melhorias futuras.

19

3. Contextualização

 O campo de visão computacional pode ser caracterizado como imaturo e diverso.

Apesar de existirem trabalhos já reconhecidos, somente após o final da década de 1970

que começaram estudos aprofundados, quando os computadores já podiam processar

grandes conjuntos de dados como imagens. Entretanto, tais estudos foram geralmente

originados de outros campos de pesquisa, e, consequentemente, não existe uma

formulação padrão para o problema de visão computacional, assim como não existe uma

formulação padrão de como os problemas de visão computacionais devem ser resolvidos.

O que existe atualmente são diversos métodos para resolver várias tarefas bem definidas,

no qual os métodos são bastante especializados e raramente podem ser generalizados

para várias aplicações. Na maioria das aplicações de visão computacional, os

computadores são pré-programados para resolver uma tarefa particular, mas métodos

baseados em aprendizagem estão se tornando cada vez mais comuns.

 Como uma imagem apresenta uma quantidade de dados muito grande, sua analise

demanda muito processamento também. Os computadores mais avançados já conseguem

resultados incríveis devido ao seu alto poder computacional, entretanto, eles possuem a

desvantagem da necessidade de permanecerem estacionários. Esse problema é resolvido

utilizando um sistema embarcado, que, apesar de apresentar um poder computacional

menor que um computador desktop, permite tornar o sistema móvel e dedicado.

 Um sistema embarcado é um sistema computacional dedicado a uma função

específica dentro de um sistema elétrico ou mecânico maior [1]. Ele é embarcado como de

um dispositivo, que geralmente inclui hardware e componentes mecânicos.

Diferentemente de computadores de propósito geral, como o computador pessoal, um

sistema embarcado realiza um conjunto de tarefas predefinidas, geralmente com

requisitos específicos. Sistemas embarcados existem hoje desde dispositivos móveis, como

relógios digitais e tocadores MP3, até sistemas fixos, como semáforos, controladores de

fábricas e sistemas complexos como veículos híbridos e aparelhos de ressonância

magnética [1].

http://pt.wikipedia.org/wiki/Computador_pessoal

20

4. Embasamento Teórico

 A seguir será descrita de forma sucinta os principais conceitos envolvidos neste

projeto.

4.1. Sistemas Operacionais

 Sistema operacional é um conjunto de programas que gerenciam os recursos do

sistema (definir qual programa recebe atenção do processador, gerenciar memória, criar

um sistema de arquivos, etc.), sendo a interface entre programas e recursos, e fornecem

uma interface entre o computador e o usuário [2].

 Um sistema operacional é composto por vários componentes, interligados para

que as diferentes partes de um computador trabalhem em conjunto. Todas as aplicações

devem passar pelo sistema operacional para que possa usar qualquer hardware do

sistema.

 Segue uma lista dos principais (mas não todos) componentes de um sistema

operacional.

4.1.1. Kernel

 O kernel provê o mais básico nível de controle sobre os dispositivos de hardware

do computador. Ele administra acesso de memória dos programas a, determina qual

programa têm acesso a qual recurso de hardware e organiza os dados para

armazenamento não volátil utilizando sistemas de arquivos em mídias de armazenamento

tais como fitas eletromagnéticas, disco rígidos, memórias flash, etc [2].

21

Figura 3: Papel do Kernel [3].

4.1.2. Execução de Processos

 O sistema operacional é a interface entre um programa sendo executado e o

hardware do computador, como já foi dito. Ele também dita regras e procedimentos para a

utilização segura dos recursos utilizados por cada programa. Executar um programa

envolve o sistema operacional criar um processo pelo seu kernel, o qual lhe atribui

memória e outros recursos, estabelece uma prioridade para o processo em sistemas

multitarefas, carrega o código binário do programa na memória do sistema e inicia a

execução do programa, que só então interage com o usuário e os dispositivos de hardware

[2].

4.1.3. Interrupções

 Interrupções são uma parte central de um sistema operacional, pois é por meio

delas que ele pode interagir com e reagir ao seu ambiente. Elas permitem que um

computador salve automaticamente seu estado atual para que um código ou um programa

específico seja executado em resposta a eventos, ou para que alguma operação de leitura

ou escrita seja feito, e depois, retornar para o estado salvo anterior à resposta do evento

[2]. Em sistemas operacionais modernos, as interrupções são controladas pelo kernel e

podem surgir do hardware do computador ou de um programa sendo executado.

22

 Quando um dispositivo de hardware aciona uma interrupção, o kernel decide como

lidar com esse evento, geralmente executando algum código em resposta. O

processamento de interrupções de hardware geralmente é delegado para um software

chamado de “driver”, que pode fazer parte do kernel, de outro programa, ou de ambos [2].

 Uma interrupção acionada por um programa geralmente indica que o programa

deseja acessar algum recurso de hardware. Por exemplo, se um programa necessita ler

dados do disco rígido, ele aciona uma interrupção para o kernel, o que causa o controle a

ser passado para o kernel, que então processa a requisição e executa os procedimentos

necessários para atender a requisição [2].

4.1.4. Modos de Operação

 Processadores modernos possuem vários modos de operação. Geralmente

utilizam-se dois modos: protegido e supervisor. O modo supervisor é utilizado pelo kernel

para tarefas de “baixo-nível” que necessitam acesso irrestrito ao hardware, como controle

de escrita em memória e comunicação com dispositivos como a placa de vídeo. Em

contraste, o modo protegido é utilizado para todo o resto. Programas são executados em

modo protegido, e só podem utilizar recursos do hardware se comunicando com o kernel,

que controla tudo em modo supervisor [2].

 Os primeiros programas a serem executados em um computador (como BIOS e

bootloader) e o sistema operacional têm acesso ilimitado ao hardware. Isso é necessário,

pois por definição, iniciar um ambiente protegido só é possível de fora de um ambiente

protegido [2]. Entretanto, quando o sistema operacional passa o controle para outro

programa, ele pode colocar o processador em modo protegido.

4.1.5. Gestão de Memória

 O kernel de um sistema operacional multitarefas precisa ser responsável por

gerenciar toda a memória do sistema que está em uso. Isso garante que um programa não

interfira com a memória sendo usado por outro programa. Cada programa deve ter acesso

independente à memória [2].

23

 A gestão da memória também envolve proteção de memória, que permite o kernel

limitar o acesso de um programa a memória. Existem vários métodos de proteção de

memória, incluindo segmentação (divisão da memória principal em seções) e paginação

(utilização da memória secundária como armazenamento para dados utilizados na

memória primária) [2]. Todos os métodos necessitam de certo nível de suporte do

hardware, o qual não existe em todos os computadores.

 Em ambos os métodos de proteção citados acima, o modo protegido específica

quais endereços de memória são permitidos a quais programas. Tentativas de acessar um

endereço de memória a outros endereços irão acionar uma interrupção, colocando o

kernel no comando. Isso é chamado de violação de segmentação, e geralmente o kernel

termina o processo do programa violador e reporta o erro ao sistema operacional [2].

4.1.6. Memória Virtual

 A utilização de endereçamento de memória virtual (como paginação e

segmentação) significa que o kernel pode escolher qual memoria cada programa poderá

usar em dado momento, permitindo o sistema operacional utilize a mesma memória, para

tarefas múltiplas.

 Em sistemas operacionais modernos, endereços de memória que não são

acessados frequentemente podem ser armazenados temporariamente em disco para

liberar espaço na memória primária para outros programas. Isso é chamado de swapping,

pois uma área de memória pode ser utilizada por vários programas, e seu conteúdo pode

ser trocado (“swapped”) por demanda. A memória virtual provê a percepção que há mais

memória RAM no computador do que existe fisicamente [2].

4.1.7. Multitarefa

 Multitarefa se refere a execução de múltiplos programas independentes no mesmo

computador, dando a impressão que ele está executando as tarefas ao mesmo tempo.

Como a maioria dos computadores consegue fazer no máximo duas tarefas ao mesmo

tempo, isso é feito geralmente através de “time-sharing”, que significa que cada programa

utiliza uma parte do tempo do computador para ser executado.

24

 O kernel contém um programa chamado de “escalonador”, que determina quanto

tempo um programa será executado e qual a ordem de execução dos programas. Sistemas

operacionais modernos estendem o conceito de preempção de programas para drivers e

códigos do kernel, para que o sistema operacional tenha controle preemptivo também

sobre os tempos de execução internos [2].

 A filosofia do sistema multitarefa preemptivo é garantir que todos os programas

recebam tempo regular no processador. Isso implica que todos os programas têm seu

tempo de processamento limitado. Para realizar isso, o kernel faz uso de interrupções

cronometradas.

4.1.8. Acesso ao Disco Rígido e Sistemas de Arquivos

 Computadores armazenam dados em discos rígidos utilizando arquivos, que são

estruturados de formas específicas para permitir acesso mais rápido, maior confiabilidade

e maximizar o uso do espaço livre do disco. A forma específica como os arquivos são

armazenados no disco é chamada de sistema de arquivos, e permite que arquivos tenham

nomes e atributos e sejam armazenados em uma hierarquia de diretórios e pastas

arranjados em uma árvore de diretórios [2].

 Um dispositivo de armazenagem conectado, como um disco rígido, é acessado

utilizando um driver. O driver entende a linguagem específica do disco e a traduz para

uma linguagem padrão usada pelo sistema operacional para acessar todos os dispositivos

de disco [2].

 O kernel acessa o conteúdo do disco em um formato binário, o qual pode conter um

ou mais sistemas de arquivos. Um driver de sistema de arquivo é utilizado para traduzir os

comandos usados para acessar cada sistema de arquivo específico em um conjunto de

comandos padrão que o sistema operacional pode usar para acessar todos os sistemas de

arquivo. Programas interagem com esses arquivos por meio de nome de arquivo e

diretórios e pastas.

4.1.9. Drivers de Dispositivos

 Um driver de dispositivo é um tipo específico de software desenvolvido para

permitir interação com dispositivos de hardware. Tipicamente constitui uma interface

para comunicação com o dispositivo, provendo comandos para e/ou recebendo dados do

dispositivo e interfaces para o sistema operacional e softwares. O driver é dependente do

hardware e é específico ao sistema operacional.

25

4.1.10. Rede

 Atualmente, a maioria dos sistemas operacionais suporta uma variedade de

protocolos de rede, hardware e aplicações. Isso significa que computadores utilizando

sistemas operacionais possam participar em uma rede comum para compartilhar recursos

como arquivos, impressoras e tempo de processamento. Redes permitem que o sistema

operacional de um computador possa acessar recursos de um computador remotamente

como se esses recursos estivessem conectados diretamente no computador local [2].

 Redes do tipo Cliente/Servidor permitem que o programa cliente se conecte ao

programa servidor, o qual oferece vários serviços, como processamento, armazenamento,

compartilhamento, entre outros.

4.1.11. Interface de Usuário

 Todo computador operado por um indivíduo necessita de uma interface. A

interface de usuário enxerga a estrutura de diretórios, requisita serviços do sistema

operacional que adquirirão dados dos dispositivos de hardware de entrada, como o

teclado e o mouse, e requisita serviços do sistema operacional para mostrar informações

em dispositivos de hardware de saída, como o monitor [2]. As duas interfaces de usuário

mais comuns são a interface de linha de comando, na qual aparecem apenas informações

textuais e o usuário interage com o sistema através de comandos enviados linha por linha,

e a interface gráfica de usuário, que apresenta um ambiente visual.

4.1.12. Tipos de Sistemas Operacionais

 Real-Time

 Um sistema operacional em tempo real visa executar aplicações em tempo real,

utilizando geralmente um escalonador especializado para que se obtenha um

comportamento determinístico. O principal objetivo do sistema operacional em tempo real

é responder eventos de forma rápida e previsível. Ele possui um sistema de multitarefas

focado em eventos (“event-driven”), isso significa que o escalonador alterna entre

processos baseados em suas prioridades ou eventos externos, em contraste a um sistema

de “time sharing”, que alterna entre processos baseado no tempo de execução de cada

processo.

26

Multiusuário

 Um sistema operacional multiusuário permite que vários usuários acessem um

computador ao mesmo tempo. Sistemas “Time Sharing” e servidores de internet são

exemplos de sistemas multiusuários, pois permitem o acesso a vários usuários dividindo o

tempo entre eles.

Distribuído

 Um sistema operacional distribuído administra um conjunto independente de

computadores e faz parecer ao usuário que são apenas um. Isso permite ao usuário utilizar

recursos de computadores diferentes, fazendo-os trabalhar em cooperação. É uma das

bases da programação distribuída.

Embarcados

 Sistemas operacionais embarcados são feitos para serem usados em sistemas

embarcados. Isso significa que eles são mais compactos e mais eficientes, podendo ser

executados com menos recursos, mas também apresentam menos recursos ao usuário, e

não atinge a velocidade de um sistema embarcado normal devido ao hardware.

4.2. Processamento de Imagens

 Processamento de imagens é uma forma de processamento de dados no qual a

entrada é uma imagem e a saída do processamento é uma imagem ou um conjunto de

parâmetros relacionados à imagem, diferente do tratamento de imagens, cuja preocupação

é a manipulação de figuras para sua representação final. A maioria das técnicas de

processamento de imagens envolve tratar a imagem como um sinal bidimensional, e

aplicar técnicas padrão de processamento de sinais [4].

 O processamento de imagens permite o uso de algoritmos complexos e é a forma

mais prática de realizar certas tarefas (mas não limitadas a estas), explicadas a seguir.

4.2.1. Classificação:

 Classificação é o problema de identificar a qual conjunto de categorias pertence

uma nova observação, levando em conta um conjunto de dados de treinamento contendo

observações e informação sobre qual categoria pertence cada observação. Um exemplo

seria classificar qual email é spam e qual não é.

27

4.2.2. Extração de Características:

 Extração de características é uma forma especial de redução de dimensão. Quando

se suspeita que um conjunto de dados seja muito redundante (como por exemplo, a

repetitividade de imagens representadas por pixels) então o conjunto será transformado

em um conjunto reduzido de características. Existe uma quantidade muito grande de

características que podem ser extraídas, cada uma pertinente a um tipo de aplicação [4].

 Dentro dessas características encontram-se as detecções de borda, canto, direção

da borda, de movimento e as detecções baseadas em formas, como a extração de linhas,

círculos, elipses e formas arbitrárias. Para esses três últimos, é utilizada uma transformada

a ser explicada neste capítulo.

4.2.3. Reconhecimento de Padrões

 Reconhecimento de Padrões é uma subcategoria de aprendizado de máquinas que

foca no reconhecimento de similaridades e regularidades em dados [4]. Sistemas de

reconhecimento de padrões geralmente utilizam um conjunto de dados classificados para

treinamento, são testados utilizando dados novos que não estavam no primeiro conjunto.

Esse método é chamado de aprendizado supervisionado. Mas existe também o chamado

aprendizado não-supervisionado, quando não está disponível um conjunto de dados

classificados e utiliza-se um algoritmo para a descoberta de padrões previamente

desconhecidos.

4.3. Transformada Hough

 A transformada Hough é uma técnica de extração de características usada em

processamento de imagens, originalmente focada em encontrar linhas na imagem, que

depois foi expandida para encontrar a posição de formas arbitrárias, principalmente

círculos e elipses [5].

4.3.1. Teoria

28

 O caso mais simples de uma transformada Hough é a transformada linear para

detecção de retas. Uma reta pode ser definida pela equação 𝑦 = 𝑚𝑥 + 𝑏, na qual m é a

inclinação da reta e b é a intersecção da reta com o eixo y. A ideia principal da

transformada de Hough é considerar as características da reta de acordo com a equação

que a define (ou seja, de acordo com m e b), e não como pontos discretos na imagem.

Geralmente, uma reta pode ser representada como um ponto (b, m) no espaço

paramétrico, entretanto, retas verticais apresentam um problema para essa

representação, já que elas são naturalmente descritas como 𝑥 = 𝑎, o que geraria valores

sem limites do parâmetro m. Para contornar isso, Duda e Hart propuseram o uso de

coordenadas polares para linhas na transformada de Hough.

 A coordenada polar é definida por r, a distância algébrica entre a reta e o ponto de

origem do plano (0,0); e por θ, o angulo do vetor ortogonal a reta em direção ao plano

superior direito. Usando essa parametrização, a equação da reta pode ser escrita como:

𝑦 = (−
𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)
) ∗ 𝑥 + (

𝑟

𝑠𝑖𝑛(𝜃)
)

 Que pode ser rearranjada para:

𝑟 = 𝑥 ∗ 𝑐𝑜𝑠(𝜃) + 𝑦 ∗ 𝑠𝑖𝑛(𝜃)

 Portanto, é possível associar cada reta da imagem a um par (r, θ) que é único se

𝜃 ∈ [0, 𝜋) e 𝑟 ∈ 𝑹 ou 𝜃 ∈ [0, 2𝜋) e 𝑟 ≥ 0. O plano das coordenadas polares (r, θ) é

chamado de Espaço de Hough para um conjunto de linhas retas em duas dimensões.

 Para um ponto arbitrário (𝑥0, 𝑦0) no espaço da imagem, as retas que passam por

esse ponto são os pares (r, θ) tal que:

𝑟(𝜃) = 𝑥0𝑐𝑜𝑠𝜃 + 𝑦0𝑠𝑖𝑛𝜃

 Onde r é determinado por 𝜃 𝜖 [0, 𝜋). Como r deve ser positivo, as retas que passam

pelo ponto (𝑥0, 𝑦0) são 𝑟(𝜃) = |𝑥0𝑐𝑜𝑠𝜃 + 𝑦0𝑠𝑖𝑛𝜃|.

 Essas representações correspondem a uma senóide no plano (r, θ), que é única

para o ponto (𝑥0, 𝑦0). Se as curvas correspondentes a dois pontos são sobrepostas, o lugar

onde elas se cruzam (no Espaço de Hough) corresponde a uma reta (no plano original da

imagem) que passa por ambos os pontos. De forma mais genérica, um conjunto de pontos

que formam uma reta produzirá senóides que se cruzam nos parâmetros dessa reta.

Portanto, o problema de encontrar pontos colineares se torna um problema de encontrar

curvas concorrentes.

29

Figura 4: Representação da Transformada de Hough em duas linhas[6].

 Utilizando essa base da transformada, é possível expandi-la para encontrar

qualquer forma que possa ser descrita como um conjunto de parâmetros. Um círculo, por

exemplo, pode ser descrito por três parâmetros, representando suas coordenadas do

centro e seu raio, por tanto o espaço de Hough se torna tridimensional.

 O processo de identificar objetos circulares no espaço de Hough é relativamente

simples. Primeiramente é criado um espaço acumulador, feito por uma célula para cada

pixel, com valor inicial de zero. Para cada ponto de borda na imagem (i, j), incrementam-se

todas as células que, de acordo com a equação de um círculo (𝑖 − 𝑎)² + (𝑗 − 𝑏)² = 𝑟²

poderiam ser o centro desse círculo, essas células são representadas pela letra ‘a’ na

equação. Para cada valor encontrado no passo anterior, encontram-se todos os possíveis

valores de ‘b’ que satisfazem a equação. Por último, procuram-se as células cujo valor é

maior que qualquer outra célula em sua vizinhança. Essas células possuem a maior

probabilidade de pertencerem ao circulo que estamos tentando encontrar. Como não é

conhecido o valor do raio de antemão, utiliza-se um acumulador de três dimensões para

tal.

30

 Entretanto, há limitações, a transformada de Hough só é eficiente se um número

alto de votos caírem na célula correta, de forma que ela possa ser detectada facilmente

entre o ruído da imagem. Quando o número de parâmetros é grande, o número médio de

votos em uma célula é muito baixo, e as células que correspondem a uma figura real na

imagem não necessariamente recebem mais votos que os vizinhos. A complexidade é

exponencial, 𝑂(𝐴𝑚−2), onde A é o tamanho do espaço da imagem e m é o número de

parâmetros. E finalmente, a eficiência da transformada depende da qualidade da imagem,

as bordas devem ser facilmente detectadas para que a transformada Hough seja eficiente.

Por isso geralmente a imagem passa por um pré-processamento para que a transformada

Hough seja aplicada [7], [8].

4.4. Filtro de Cor

 A aplicação de um filtro de cor elimina todas as cores da imagem, exceto a cor

desejada, transformando-as em preto. Esse filtro é muito útil quando o objeto desejado na

imagem tem uma cor fixa e conhecida. O primeiro passo para aplicação do filtro é a

conversão da imagem RGB em HSV. HSV é uma forma de representar a cor de um pixel da

imagem utilizando coordenadas cilíndricas. Neste caso, utiliza-se matiz (hue), saturação

(saturation) e valor (value). Matiz é a representação numérica do comprimento de onda do

espectro eletromagnético de cada cor, com valores entre 0 e 360. A saturação s, 𝑠 ∈ [0,1],

mede o distânciamento de um valor de matiz do branco ou cinza. O valor v, 𝑣 ∈ [0,1],

mede a distanciamento de um valor de matiz do preto, a cor com zero de energia [9].

4.5. Filtro de Gauss

 O filtro de Gauss aplica um embaçamento na imagem, usado tipicamente para

reduzir ruídos em imagens, reduzir detalhes e aprimorar as estruturas da imagem em

escalas diferentes. Matematicamente, o filtro aplica uma convolução da imagem com a

função Gaussiana. Como a transformada de Fourrier de uma função Gaussiana é outra

função Gaussiana, aplicar o filtro Gauss tem o efeito de reduzir os componentes de alta

frequência da imagem, portanto, é um filtro passa-baixa. Uma função Gaussiana é

definida como [9]:

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
∗ 𝑒

−
𝑥2+𝑦2

2𝜎2 .

 Na qual x é a distância da origem no eixo horizontal, y é a distância da origem no

eixo vertical, e delta é o desvio padrão da distribuição de Gauss.

31

4.6. Dilatação

 Dilatação é uma das duas operações básicas da morfologia matemática. Ela opera

utilizando um elemento estrutural para sondar e expandir as formas da imagem [10].

 Na morfologia, imagens são funções mapeando um espaço Euclidiano E sobre o

domínio real ℝ ∪ {−∞, +∞}. Denotando uma imagem como 𝑓(𝑥) e o elemento estrutural

por 𝑏(𝑥), a dilatação de f por b é dada por [10]:

(𝑓⨁𝑏)(𝑥) = 𝑠𝑢𝑝𝑦 ∈𝐸[𝑓(𝑦) + 𝑏(𝑥 − 𝑦)]

 “Sup” denota a função supremum, que calculo o menor limitante superior.

 É comum utilizar elementos estruturantes planos, na forma de:

𝑏(𝑥) = {
0,

−∞,
 𝑥 ∈ 𝐵

 Sendo que 𝐵 ⊆ 𝐸.

 Neste caso, a dilatação é simplificada e dada por:

(𝑓⨁𝑏)(𝑥) = 𝑠𝑢𝑝𝑦 ∈𝐸[𝑓(𝑦) + 𝑏(𝑥 − 𝑦)] = 𝑠𝑢𝑝𝑧 ∈𝐸[𝑓(𝑥 − 𝑧) + 𝑏(𝑧)] = 𝑠𝑢𝑝𝑧 ∈𝐵[𝑓(𝑥 − 𝑧)]

4.7. Erosão

 Erosão é a segunda operação básica da morfologia matemática. Em contraste a

dilatação, essa função contrai as estruturas da imagem.

 Da mesma forma que foi definida a Dilatação, a Erosão é definida como [10]:

(𝑓 ⊖ 𝑏)(𝑥) = 𝑖𝑛𝑓[𝑓(𝑥 + 𝑦) − 𝑏(𝑦)]

 Na qual “inf” denota a função infimum, que calcula o maior limitante inferior.

4.8. Filtro de Canny

 O Filtro de Canny é um algoritmo detector de bordas multiestágio. Os passos do

filtro são os seguintes:

 Aplicação de um filtro Gaussiano para limpar a imagem de ruídos;

 Aplicação do Operador Gradiente para obter a intensidade e direção do gradiente;

32

 Aplicação de uma Supressão Não-Máxima para determinar se um pixel é melhor

candidato para uma borda do que seu vizinho;

 Limiar de histerese para encontrar onde a borda começa e termina.

 Limiar de Histerese

 Gradientes de intensidade grandes são mais propensos a corresponder a bordas do

que gradientes pequenos, e na maioria dos casos é impossível especificar um limiar em

que um dado gradiente de intensidade deixa de corresponder a uma borda. Por isso o filtro

de Canny utiliza limiar com histerese.

 O limiar com histerese necessita de dois valores, um alto e um baixo. Assumindo

que bordas importantes se encontram ao longo de uma curva é possível seguir seções

apagas de uma linha e descartar pixels ruidosos que não constituem uma linha, mas que

produzem grandes gradientes. Portanto o filtro começa aplicando o limiar alto, marcando

as bordas que são possíveis determinar como verdadeiras. A partir dessas bordas,

utilizam-se as informações de direção obtidas anteriormente para traçar as linhas ao longo

da imagem. Durante esse processo, aplica-se o limiar baixo, permitindo traçar linhas

apagas, desde que se encontre um ponto de partida.

Figura 5: Resultado do Filtro de Canny [11].

4.9. Controle Digital

33

 Controle digital é um subconjunto da teoria de controle que utiliza computadores

digitais ou sistemas digitais para atuarem como controladores de sistemas. Dependendo

dos requerimentos necessários, um sistema de controle digital pode ser um

microcontrolador, um circuito integrado até ou um computador convencional [12]. Como

um computador digital é um sistema discreto, a transformada de Laplace, comumente

utilizada em teoria de controle, é substituída por sua representação discreta, a

transformada Z. Como o computador tem uma precisão limitada, é necessário um cuidado

especial com aproximações.

4.10. Ponte H

 Uma ponte H é um circuito eletrônico que permite aplicar tensão em uma carga

(geralmente um motor elétrico) em ambas as direções. O termo ponte H é derivado da sua

representação gráfica típica, encontrada abaixo:

Figura 6: Representação Gráfica da Ponte H [13].

 A ponte H é construída com quatro chaves, quando as chaves S1 e S4 estão

fechadas (e S2 e S3 estão abertas) uma tensão positiva é aplicada no motor, quando as

chaves S1 e S4 são abertas e S2 e S3 são fechadas, a tensão aplicada é reversa, permitindo

a operação reversa do motor. Observa-se que os pares de chaves S1, S2 e S3, S4 nunca

devem ser fechadas ao mesmo tempo, pois essa condição pode ocasionar curto-circuito. É

possível também “brecar” os motores, fechando S1 e S3 ou S2 e S4, ou deixá-lo rodando

livre, deixando todas as chaves abertas. A tabela abaixo resume as informações acima:

S1 S2 S3 S4 Resultado

1 0 0 1 O motor move-se para a direita

0 1 1 0 O motor move-se para a esquerda

34

0 0 0 0 O motor se movimenta livremente

0 1 0 1 O motor para

1 0 1 0 O motor para

0 0 1 1 Curto-Circuito

1 1 0 0 Curto-Circuito

1 1 1 1 Curto-Circuito

Tabela 1: Tabela de funcionamento da ponte H

 Controlar o movimento do motor se torna uma simples questão de aplicar tensão

nos pinos corretos para gerar o movimento desejado.

Figura 7: Circuito de uma ponte H [14].

4.11. PWM

 PWM (Pulse-Width Modulation) é uma técnica de modulação que controla a largura

do pulso de uma onda constante. Seu propósito principal é controlar a potência fornecida a

uma carga. A proporção que a onda está em “alto” para o tempo que ela está em “baixo”, ou

seja, a quantidade de trabalho realizada pela onda, chama-se duty cycle, ou seja, um PWM

de 50% significa que a onda fica metade do tempo em “alto” e metade do tempo em

“baixo”.

 O princípio do PWM é a utilização de uma onda quadrada, cuja largura do pulso é

modulada, resultando em uma variação do valor médio da forma de onda. Considerando

uma forma de onda de pulso 𝑓(𝑡), com período T, valor mínimo ymin, valor máximo ymax

e um duty cycle D, o valor médio da forma de onda é dado por [15]:

35

𝑦̅ =
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

𝑇

0

 Como 𝑓(𝑡) é uma onda quadrada, seu valor atinge 𝑦𝑚𝑎𝑥 quando 0 < 𝑡 < 𝐷 e seu

valor mínimo quando 𝐷 ∗ 𝑇 < 𝑡 < 𝑇. Então, expressão acima pode ser escrita como:

𝑦̅ =
1

𝑇
(∫ 𝑦

𝑚𝑎𝑥
𝑑𝑡

𝐷𝑇

0

+ ∫ 𝑦
𝑚𝑖𝑛

𝑑𝑡
𝑇

𝐷𝑇

)

=
𝐷 ∙ 𝑇 ∙ 𝑦𝑚𝑎𝑥 + 𝑇(1 − 𝐷)𝑦𝑚𝑖𝑛

𝑇

= 𝐷 ∙ 𝑦𝑚𝑎𝑥 + (1 − 𝐷)𝑦𝑚𝑖𝑛

 Essa equação pode ser simplificada muitas vezes quando 𝑦𝑚𝑖𝑛 = 0 e 𝑦𝑚𝑎𝑥 = 𝐷 ∙

𝑦𝑚𝑎𝑥. Deduz-se facilmente que o valor médio da onda depende no duty cycle.

 Como a velocidade de rotação do motor é diretamente proporcional à tensão

aplicada, é possível controlar essa velocidade definindo um duty cycle. Um duty cycle de

50% produzirá uma tensão média igual a metade da tensão aplicada, e por tanto, metade

da velocidade máxima para aquela tensão.

36

5. Desenvolvimento do Trabalho

 A seguir será descrito os materiais utilizados deste trabalho e todo o

desenvolvimento feito pelo aluno.

5.1. Materiais

 Foram utilizadas duas câmeras USB para obter as imagens do ambiente para que

seja possível realizar o processamento desejado. Uma das câmeras utilizadas é uma

câmera genérica de 2.0 Megapixels, a outra é uma câmera HD com resolução de 720p, que

possui maior nível de detalhe que a câmera genérica. Foi necessário fixar uma resolução

de 640x320 pixels, pois esse é o máximo que a câmera genérica consegue atingir. Foi

constatado também que uma resolução maior acarreta um maior tempo de processamento

devido a maior quantidade, por tanto uma resolução menor é vantajoso para o projeto.

 O sistema embarcado escolhido foi a Raspberry Pi Modelo B. A Raspberry pode ser

chamada de “um computador do tamanho de um cartão de crédito”, pois ela apresenta

todas as funções de um computador: estradas de comunicação padrão (USB, Ethernet),

saídas de Áudio e Vídeo (VGA e HDMI) e apresenta um sistema operacional Linux

customizado, sendo mais leve para ser executado de forma eficiente sobre a plataforma,

além de também apresentar 24 pinos de General Purpose Input/Ouput, além de ser

necessário apenas 5V para alimentar todo o sistema.

37

Figura 8: Raspberry Pi [16].

 A escolha dessa plataforma se deve principalmente devido a sua simplicidade,

preço e características. Por rodar um sistema operacional completo, não é necessário se

preocupar com o gerenciamento de fatores não envolvidos nesse projeto (como por

exemplo, drives para USB e Ethernet, etc.), facilitando o uso da webcam com um simples

plug-and-play. Por se tratar de um computador completo, capaz de executar um sistema

operacional, seu preço de $35,00 [17] é muito baixo, tornando-a muito atrativa. Como foi

dito acima, ela também possui 24 pinos GPIO, o que permite que o controle de dispositivos

elétricos (como motores de corrente contínua) e eletrônicos (como circuitos integrados).

Com essas características, a Raspberry é um misto de microcontrolador e computador,

sendo perfeito para este projeto [18].

 As especificações de hardware da Raspberry são as seguintes :

 Processador arquitetura ARM1176JZF-S em um System-on-Chip Broadcom

BCM2835, clock de 700 MHz, capaz de executar 0.041 GFLOPS e 128 kb de

memória cache [19];

 512 Mb de Memória RAM;

http://en.wikipedia.org/wiki/Broadcom
http://en.wikipedia.org/wiki/Broadcom
http://en.wikipedia.org/wiki/ARM11

38

 GPU Broadcom VideoCore IV com clock de 250 MHz, utilizando OpenGL ES 2.0,

capaz de executar 24 GFLOPS (equivalente a 1 GPixel/s) [19];

 Vídeo com resolução de 1920x1080, HDTV de 1080p;

 Armazenamento persistente utilizando um cartão de memória SD/MMC/SDIO;

 Potência de 700 mA e 3.5 W, alimentada através de uma entrada MicroUSB de

5V.

 Apesar das vantagens apresentadas pela Raspberry, ela possui algumas

desvantagens. Seu poder de processamento é pequeno se comparado a computadores

modernos, se tornando assim o limitante da aplicação. Como o reconhecimento de

imagens demanda muita carga computacional da Raspberry, algumas melhorias foram

feitas no algoritmo de reconhecimento, bem como algumas concessões em relação à

precisão e qualidade.

 INSERIR IMAGEM

 Como pode ser observado, a plataforma é composta por um chassi robótico com 3

rodas, duas na parte traseira ligadas a motores que podem ser controlados, e uma roda na

parte dianteira que gira em todas as direções, uma Raspberry PI Model B, uma ponte H

utilizando o CI L298N e uma webcam USB genérica.

 O controle do movimento da plataforma será feito pelo sistema, mas a execução do

movimento será feita por uma Ponte H ligada a Raspberry (da qual receberá ordens de

movimento) e a dois motores (que irão movimentar efetivamente a plataforma). A ponte H

em questão é uma placa baseada no circuito integrado L293D [20], um circuito robusto

capaz controlar dois motores ao mesmo tempo e sustentar correntes de até 600 mA e

tensões até 36 V.

5.2. Planejamento

 O projeto envolve diversas partes diferentes e interligadas, por tanto foi feito uma

divisão e uma ordem de prioridade para cada parte a ser feita. As principais tarefas

definidas para o desenvolvimento do projeto foram:

 Escolha do método de detecção e símbolo detectado;

 Implementação e estudo da eficiência do método;

 Refinamento;

39

 Montagem da plataforma e clculo das distâncias;

 Integração do sistema de visão com o sistema de movimento.

 Cada tarefa principal envolve diversas tarefas menores, que serão descritas a

seguir.

5.3. Escolha do método de detecção e símbolo detectado

 Primeiramente, a ideia seria detectar um símbolo de acordo com sua forma, por

exemplo, uma cruz. Entretanto, os métodos para tal detecção são geralmente baseados em

extração de características e aprendizado [21], [22]. Característica é qualquer informação

relevante para resolver o problema computacional em questão, podendo ser estruturas

específicas na imagem, como pontos, bordas ou objetos; ou o resultado de uma operação

na vizinhança, como a média da vizinha de um pixel escolhido. Aprendizado refere-se aos

sistemas que alteram seu comportamento de acordo com dados apresentados. O sistema

irá extrair características da imagem e multiplicará seus valores por pesos pré-

estabelecidos. O resultado é comparado ao limiar do sistema, se for maior que o limiar, a

imagem apresenta o símbolo desejado, caso contrário, a imagem não apresenta o símbolo.

Os pesos das características e o limiar são ajustados apresentando ao sistema um conjunto

de imagens contendo o símbolo e um conjunto de imagens que não o contém. O sistema

aplica seu processo a cada imagem, e quando ele erra a detecção (resultando em um falso

positivo ou falso negativo) seus pesos e limiar são ajustados seguindo uma equação de

correção.

 Esse método necessita de muito poder de processamento, pois a extração das

características é muito custosa. Uma detecção com erro baixo demanda um número

grande de características, além da necessidade de ajuste manual de vários parâmetros

envolvidos na fase de aprendizado.

 Por esses motivos foi escolhido um método que não necessita de muito poder

computacional e já foi bastante estudado e desenvolvido; a transformada de Hough para

detecção de círculos. Cogitou-se a utilização “Blob Detection”, um método que detecta

regiões contínuas que diferem da imagem em alguma propriedade, como brilho ou cor, e

modifica-lo para que detecte círculos. Entretanto, testes iniciais demostraram que esse

método é muito dispendioso, levando mais tempo que a transformada de Hough para

executar a detecção, obtendo resultados parecidos.

40

 A transformada de Hough é precisa e permite extrair da imagem exatamente as

informações necessárias do símbolo detectado, posição e raio. A transformada é um filtro

adaptativo, ou seja, é necessário ajustar uma série de parâmetros para que a transformada

se adapte a uma aplicação específica e obter resultados mais precisos, o que é muito útil

neste projeto e será mais discutido abaixo.

5.4. Implementação

 O desenvolvimento foi feito em um notebook comum e embarcado na Raspberry Pi

utilizando acesso remoto (via SSH). Isso é possível, pois o código em Python é executado

sobre uma máquina virtual Python, ou seja, não é necessária uma compilação do código

para cada tipo de plataforma e sistema operacional, basta que exista uma máquina virtual

Python instalada.

 Para a implementação do método escolheu-se a biblioteca gráfica OpenCV, uma

biblioteca open source que possui diversas ferramentas para visão computacional,

concebida com foco em eficiência computacional e escrita em C/C++ otimizado, possui

interface para Python, o que definitivamente é um ponto positivo, já que pode-se

aproveitar da facilidade de desenvolvimento do Python e da velocidade e eficiência do

C/C++. Também se garante que os algoritmos usados sejam os mais eficientes, para que se

possa analisar o sistema como um todo, e não a implementação do algoritmo.

 Um pré-processamento da imagem antes de aplicar a transformada de Hough gera

resultados melhores e mais apurados [8], [23]. A aplicação de um detector de bordas antes

da transformada aumenta a precisão da detecção. Como existem vários métodos de

detecção de borda, foi feito uma análise das vantagens e desvantagens de cada um.

 Os métodos considerados foram: o filtro de Sobel, filtro de Prewitt e filtro de

Canny. O filtro de Prewitt é apenas uma variante do filtro de Sobel [24], apresentando

apenas uma mudança nos valores usados nos kernels de convolução de cada método, então

foi feita uma comparação entre o filtro de Canny e o filtro de Sobel.

41

 Sobel é um filtro simples, capaz de detectar bordas e suas orientações, entretanto,

muitas vezes ele é impreciso e muito sensível a ruídos, não sendo um método muito

robusto [24]. O filtro de Canny tem a desvantagem de consumir mais tempo, por ser mais

complexo, e depender fortemente de seus parâmetros; mas é um método robusto, não

sensível a ruídos e apresenta uma precisão muito boa. As vantagens do filtro de Canny se

alinham mais com o foco deste trabalho, já que é preciso obter uma detecção mais precisa,

mesmo perdendo um pouco da eficiência. É provado também que o filtro de Canny tem um

desempenho melhor na maioria dos possíveis cenários [24], [25], o que novamente

encaixa com o objetivo do projeto, pois o cenário da detecção não é controlado (por

exemplo, exigir que o fundo seja branco). Por essas razões, foi escolhido o filtro de Canny.

 A ideia inicial do projeto era que o sistema detectasse qualquer círculo na imagem

e priorizasse o maior encontrado. Essa ideia se mostrou não ser boa, pois apresentava

muita instabilidade na detecção (grande variação da posição e raio do círculo detectado);

como o cálculo do movimento depende dessas informações, alta instabilidade na detecção

reflete baixa confiança no calculo da distância. Isso significa que a chance do sistema

calcular a distância real com a precisão desejada não é satisfatória. Havia também o

problema do algoritmo detectar mais de um círculo, ou existir mais de um circulo e o

algoritmo não detectar o circulo desejado. Por essas razões definiu-se que era necessário

existir alguma característica única que possa ser extraída e o diferencie do fundo e/ou

outros círculos na imagem.

 A característica escolhida foi a cor. Um filtro de cores é facilmente implementado e

apresenta pouco impacto na eficiência do método. Uma cor incomum facilita a extração do

fundo e a remoção de ruídos. A cor escolhida foi a amarela, pois não é uma cor facilmente

encontrada. Para aplicar o filtro de cor, transforma-se a imagem em HSV, dessa forma é

possível comparar o valor de um pixel com um intervalo de valores representando a cor

amarela, algo que não é possível fazer utilizando RGB. O próximo passo é filtrar a imagem

pela cor amarela, de forma que todos os pixels dentro de um intervalo pré-definido se

tornam brancos e o resto se torna preto. Obtém-se então uma imagem binária, contendo

apenas o objeto de interesse. O intervalo definido para o tom de amarelo foi de [20, 70, 70]

até [70, 255, 255] dentro do espaço HSV, encontrado empiricamente.

 Aplicado o filtro, obtém-se uma imagem na qual idealmente há apenas o objeto de

interesse em branco e o fundo em preto. Isso reduz a possibilidade de falsas detecções e

ruídos provenientes do fundo da imagem. As imagens 5 e 6 representam uma foto

capturada transformada para HSV e depois aplicada o filtro de cor, respectivamente.

42

Figura 9: Foto transformada em HSV.

Figura 10: Foto após aplicação do filtro de cor.

43

 O próximo passo é o filtro de Gauss, que suaviza a imagem e limpa os ruídos

restantes. A princípio ele pode parecer redundante dado que antes é executado o filtro de

cor, mas série de testes foi executada, analisando quantas vezes o método detectava o

círculo corretamente, para verificar se o filtro de Gauss era mesmo necessário. Foi

constatado que quando o filtro de Gauss é aplicado à detecção é mais constante e na

maioria das vezes, mais precisa. Optou-se então por utilizar o filtro de Gauss no pré-

processamento. A imagem 9 representa a foto acima depois da aplicação do filtro de Gauss.

Figura 11: Foto após aplicação do filtro de Gauss.

 Além do filtro de Gauss, usa-se outra medida é tomada para redução de ruídos, a

chamada abertura da imagem. Abertura remove pequenos objetos no fundo da imagem,

como os chamados ruídos “sal e pimenta”, pequenos pixels corrompidos, causados por

erro na transmissão de dados (da câmera para o sistema). A abertura da imagem consiste

em uma operação de erosão, que efetivamente remove o ruído sal e pimenta, pois

qualquer objeto que não tenha uma espessura expressiva. O problema com essa operação

é que ela afeta a imagem inteira, corroendo também as bordas dos objetos de interesse,

por isso realiza-se em seguida uma operação de dilatação, para que os objetos de interesse

tenham suas bordas aumentadas, idealmente para o tamanho original. Essas operações

também fazem um “polimento” do objeto, eliminando pixels da borda e tornando-a mais

suave. As imagens 10 e 11 abaixo representam respectivamente o processo de erosão e o

processo de dilatação.

44

Figura 12: Foto após o processo de Erosão.

Figura 13: Foto após o processo de Dilatação.

45

 Por último, aplica-se o filtro de Canny, que gera uma imagem apenas com as

bordas detectadas (sem o preenchimento). Da mesma forma que o filtro acima, a execução

de uma série de testes revelou que o filtro aumenta a precisão da transformada de Hough,

melhorando o método de detecção. Esse filtro gera certo aumento no tempo de detecção,

mas a melhora no método compensa em muito esse tempo aumentado, visto algumas

vezes o método sem o filtro de Canny falhava e era necessário executá-lo mais de uma vez

para extrair as informações do círculo. A imagem 12 abaixo mostra a aplicação do filtro de

Canny e a imagem 13 mostra o círculo enfim detectado.

Figura 14: Foto após aplicação do filtro de Canny.

46

Figura 15: Círculo detectado pela transformada de Hough.

 A imagem a seguir ilustra todo o processo de reconhecimento do círculo.

Figura 16: Processo de reconhecimento do círculo.

 Foram feitas várias medidas do tempo de execução de cada etapa e do processo

todo para identificar melhorias. Constatou-se que o tempo de execução melhorava

consideravelmente se as imagens obtidas não forem mostradas. Como essa informação

não é necessária para o sistema, essa parte retirada, deixando o sistema apenas com o

essencial.

47

 Depois disso, foi feita uma análise dos processos sendo executados no sistema

operacional, para verificar se havia processos que poderiam ser parados para liberar

processamento para o sistema. Uma das cargas do processador da Raspberry é o

gerenciador de janelas, que não é otimizado para utilizar a unidade de processamento

gráfico, todo o trabalho é feito pelo processador ARM [26]. Verificou-se que esse processo

consumia grande parte do tempo de processamento. Como o acesso ao sistema embarcado

sem a utilização de interface gráfica (utilizando SSH), esse processo não é necessário e,

portanto foi terminado. Verificou-se também que é possível ajustar a prioridade do

processo, para que ele seja executado acima dos outros processos, entretanto, o processo

do sistema já é executado com prioridade máxima, portanto essa mudança não surtiu

efeito.

5.5. Refinamento

 Cada filtro apresenta uma série de parâmetros que precisam ser ajustados para

que o funcionamento do filtro se adeque a esta aplicação. Abaixo há uma descrição dos

parâmetros de cada filtro:

5.5.1. Filtro de Cor

 Variação do tom de Amarelo: é necessário definir um valor mínimo e um valor

máximo, de forma que qualquer valor de um pixel compreendido entre o máximo e

o mínimo é considerado como amarelo.

5.5.2. Filtro Gaussiano

 Tamanho do Kernel: Tamanho da região ao redor do pixel escolhido (ex: 7x7) no

qual será aplicada a equação do filtro.

5.5.3. Detector de Borda de Canny

 Limiar alto de Histerese: Define quais bordas com certeza são genuínas. Aplica-se

um limiar alto a imagem para marcas essas bordas. Começando com essas e

usando as informações direcionais extraídas pelo filtro, as bordas podem ser

traçadas.

 Limiar baixo de Histerese: Define quais bordas não são genuínas. Quando se está

traçando uma borda, o limiar baixo permite encontrar seções mais fracas das

bordas, desde que se encontre um ponto de começo.

48

5.5.4. Transformada de Hough

 Resolução do Acumulador: Relação entre o tamanho do acumulador utilizado na

transformada e o tamanho da imagem

 Distância Mínima: A distância mínima entre o centro de dois círculos para que

ambos sejam detectados

 Limiar Alto: O limiar alto passado para o filtro de Canny, que também define o

limiar baixo, sendo que o limiar menor é duas vezes menor o que parâmetro

passado.

 Limiar do Acumulador: Parâmetro utilizado na etapa de detecção para os centros

dos círculos. Quanto menor esse valor, mais círculos falsos podem ser detectados.

 Raio Mínimo: Raio mínimo de um círculo que pode ser detectado

 Raio Máximo: Raio máximo de um círculo que pode ser detectado

 Esses valores são escolhidos empiricamente, a partir de valores obtidos da

literatura estudada, e então variados até que a detecção esteja perto do desejado.

 Os primeiros valores definidos foram os limites do tom de amarelo. Em meio aos

testes, foi descoberto que a câmera USB realiza um ajuste de histograma automático para

melhorar o contraste da imagem. Isso pode parecer bom, mas distorce as cores em certos

cenários (por exemplo, quando o círculo é muito grande). A biblioteca gráfica utilizada

permite que esse ajuste automático seja configurado, entretanto a câmera não suporta

esse ajuste. Para contornar esse problema, foi necessário ampliar o intervalo de valores

considerados como amarelo. Foi implementada nos testes uma função que permitia

observar os valores dos pixels da imagem, assim foi possível verificar quais valores dos

pixels eram obtidos e ajustar o intervalo para obter a maior variação sem comprometer a

detecção.

49

5.6. Montagem da Plataforma

 A escolha da plataforma robótica representou uma parte importante do projeto.

Era necessária uma plataforma capaz de acomodar a Raspberry, a câmera USB e a ponte H,

além de ser possível controlar sua direção. Foi considerado uma plataforma

automobilística, com 4 rodas e dois eixos, sendo que o eixo traseiro permanece imóvel e é

conectado ao motor, e o eixo frontal controla a direção do chassi. Essa plataforma foi

desconsiderada, pois apresentaria problemas com o controle do movimento. Para

controlar a direção, seria necessário girar as rodas do eixo frontal para a posição desejada

e movimentar a plataforma para frente até que todo o chassi estivesse virado para a

direção desejada. Assim seria necessário controlar também o quanto a plataforma

precisaria se movimentar para frente antes das rodas serem endireitadas e a distância

percorrida nesse movimento, para que seja subtraída da distancia total calculada.

Qualquer controle fora do principio do projeto (que é controlar apenas direção e

distância) se torna desnecessário e apenas adiciona tempo computacional.

Figura 17: Plataforma automobilística [27].

 A plataforma escolhida apresenta apenas duas rodas, cada uma conectada a um

motor e girando independentes entre si, e uma “roda de apoio”, que não pode ser

controlada e gira em todas as direções. Essa configuração elimina o problema citado

acima, já que para controlar sua direção, basta girar as rodas em sentidos opostos e a

plataforma gira em seu centro, sem se deslocar.

50

 A montagem do resto da parte física foi relativamente simples, bastou definir quais

pinos da Raspberry seriam usados. A ponte H necessita de três pinos para o controle de

cada motor, mais um pino para alimentação e outro para referência (pino que geralmente

possui zero de tensão, comumente chamada de terra). Um dos três pinos de controle de

motor tem a função de ligar ou desligar o motor. Os outros dois tem a função de controlar

o sentido de rotação do motor, como foi explicado na sessão (por sessão). O pino de

alimentação foi conectado a um conjunto de baterias de 6 volts separado da alimentação

da Raspberry, por causa da quantidade de corrente envolvida na alimentação dos motores.

O pino de terra é conectado ao conjunto de baterias e também a Raspberry, para fechar o

circuito.

51

5.7. Cálculo da Distância e Ângulo e Movimento

 O cálculo da distância e ângulo é o segundo desafio deste projeto, sendo o primeiro

a detecção de objetos. Primeiramente considerou-se uma implementação envolvendo

controladores PID. O sistema consegue extrair o raio do círculo e sua distância do centro.

Essas informações seriam alimentadas para dois controladores PID separados, um que

controlasse a distância e outro que controlasse o ângulo. Assim, seria necessário apenas

ajustar os valores dos controladores, definir o erro do controlador de distância como

sendo a diferença entre o valor do raio detectado e um valor de raio pré-definido e o erro

do controlador de ângulo como sendo a distância lateral a partir do centro, e esperar o

processo convergir para o erro próximo de zero. Assim seria possível implementar um

sistema “online”, que consegue seguir um circulo em movimento constante, uma vez que o

controlador PID esteja configurado basta obter as informações necessárias e ele se

encarrega de todo o trabalho.

 Entretanto, esse método é muito custoso e necessita alimentação constante de

informações, caso contrário, o erro não irá convergir, e o processo será executado

indefinidamente. Constatou-se que a plataforma se locomove a uma velocidade de 40 cm/s

(utilizando baterias com carga completa). Então, para que o erro seja menor que 4 cm, é

necessário que o controlador seja alimentado com novas informações a cada 0.1 segundo,

caso contrário, não será possível corrigir o movimento a tempo. Uma solução seria

diminuir a velocidade da plataforma para que a utilização do controle PID fosse possível,

mas uma velocidade pequena não é interessante para o projeto.

 Por essas razões, preferiu-se um método mais simples que também gera

resultados muito bons. É possível encontrar uma relação entre o raio em pixels detectado

e a distância real do objeto. Seguindo [29], uma observação geral é que um objeto que se

distância da câmera tem um tamanho menor na imagem. Conforme o objeto se aproxima

da câmera seu tamanho aumenta. Essa observação aponta para fato que a profundidade do

objeto tem uma relação direta com seu tamanho na imagem. Essa relação é encontrada

obtendo-se várias medidas dos raios detectados a várias distâncias e interpolando esses

resultados. Assim é possível obter uma distância bem próxima da distância real com um

impacto computacional muito pequeno.

52

 O ângulo do objeto em relação ao centro da imagem é calculado de forma

semelhante. A relação entre distância lateral em pixels e a distância lateral real mantém-se

constante para certa distância. Logo, calculou-se a relação entre as distâncias laterais a

várias profundidades, e interpolaram-se os resultados. Dado uma profundidade, é possível

calcular a relação entre as distâncias laterais e, portanto, a distância lateral real. A partir

dessa informação, basta utilizar a relação trigonométrica da tangente no triângulo

retângulo (cateto oposto dividido pelo cateto adjacente) e assim obter o ângulo a ser

corrigido. A imagem abaixo ilustra o procedimento.

Figura 18: Procedimento de cálculo da distância real [29].

 Abaixo se encontra o desvio padrão calculado para cada distância para ambas as

câmeras.

53

Figura 197: Desvio padrão das medidas das câmeras.

 Observando o gráfico acima, é possível verificar que a câmera de alta resolução

possui um desvio padrão menor que a câmera genérica na maioria das vezes. Um desvio

padrão menor implica uma precisão maior, por tanto, resolveu-se utilizar a câmera de alta

resolução no restante das medidas.

 Como já foi citado, há um problema com a câmera utilizada no qual ela aplica uma

equalização de histograma automaticamente, distorcendo as cores da imagem. Essa

distorção ocorre quando o objeto a ser detectado se aproxima muito da câmera, em torno

de 7 cm. Além disso, a distâncias menores que 10 cm a detecção começa a variar muito

devido a essa distorção nas cores, o filtro de Canny começa a “quebrar” o círculo,

dividindo-o em várias partes e confundindo a transformada de Hough, como pode ser visto

na figura abaixo. Isso aumenta a variância da detecção e diminui sua estabilidade.

54

Figura 20: Círculo “quebrado” devido a distorções nas cores.

 Uma pequena redução da velocidade de movimento da plataforma aumenta a

precisão do movimento, possibilitando um melhor controle da distância percorrida. O

único jeito de controlar a velocidade de um motor de corrente contínua é diminuindo a

corrente que passa por ele. Isso é feito diminuindo a tensão aplicada. Entretanto, não é

possível controlar a tensão de saída dos pinos da Raspberry, por tanto foi utilizado PWM

com duty cicle de 80% nos pinos Enable da ponte H, obtendo uma tensão média de 4 V. A

velocidade da plataforma dessa maneira foi em torno de 20 cm/s.

5.8. Integração

 Por último, foi feita a integração das plataformas. Para tal, foi implementado um

controlador geral que comanda ambos os sistemas, o Controle Mestre. Ele calcula e

controla o movimento de acordo com as informações retiradas das imagens recebidas. A

imagem abaixo mostra o funcionamento do sistema como um todo.

55

Figura 21: Ciclo completo do sistema.

 De maneira simples, o Sistema de Visão captura uma imagem e extrai suas

informações relevantes. O Controle Mestre recebe essas informações e calcula a distância a

ser percorrida pelo sistema, e o angulo a ser corrigido. Ele então manda os comandos para

o Sistema de Movimento, que corrige o angulo de acordo com o calculado e movimenta-se

pela distância informada pelo Controle Mestre. Após o movimento, o ciclo se repete.

Figura 22: Integração dos dispositivos do sistema.

6. Resultados e Discussões

 Os parâmetros do filtro de Gauss foram ajustados observando os resultados finais.

Variou-se o valor do kernel até que os resultados fossem satisfatórios. Um kernel de

tamanho pequeno não surte muito efeito na imagem, enquanto que um kernel de tamanho

grande pode distorcê-la.

56

 Os limiares do filtro de Canny foram ajustados observando o resultado obtido do

filtro. Foi observado se as bordas detectadas condiziam com o círculo da imagem,

ajustando os limiares. No caso desse filtro, levou-se em conta uma heurística que

aconselha a usar um limiar alto três vezes maior que o limiar baixo [11].

 Por fim, temos o método mais importante, a transformada de Hough. A resolução

do acumulador influencia no raio mínimo detectado. Seu valor foi ajustado de acordo com

a revisão bibliográfica e levando em conta o tempo de execução, já que uma resolução

maior implica mais dados a serem processados. Manteve-se o tamanho do acumulador

igual ao tamanho da imagem, pois um valor maior adicionaria mais tempo ao método.

 Como deve ser detectado apenas um círculo na imagem, a distância mínima foi

ajustada para ser o tamanho da imagem, assim garante-se que apenas um círculo será

detectado por vez.

 O valor do limiar passado ao filtro de Canny também foi ajustado com informações

da revisão bibliográfica. O limiar do acumulador foi ajustado empiricamente, observando

seu efeito nos resultados obtidos e encontrando o valor que produzisse uma detecção mais

próxima do real.

 Por fim, os valores do raio mínimo e máximo. O raio máximo foi definido de forma

a não restringir o método, ajustando seu valor para um valor muito acima do que de fato

seria possível detectar. O mesmo foi feito com o raio mínimo.

 Para a interpolação da profundidade, a câmera foi fixada em um ponto a certa

distância do círculo, e a distância foi aumentada a cada detecção. Foram feitas 50

detecções para cada distância. A maior profundidade foi definida como 75 cm, uma

profundidade maior e o método não consegue mais detectar o círculo. A menor

profundidade foi definida como 10 cm, pois uma profundidade menor causa um aumento

da variância da detecção (uma diferença de 25 pixels entre duas detecções). O intervalo

entre as distâncias foi de 5 cm. Esse processo foi feito para cada câmera, calculando-se a

média e o desvio padrão. O resultado da interpolação está representado na figura abaixo.

57

Figura 23: Interpolação dos dados de profundidade obtidos.

 Observando os pontos obtidos escolheu-se interpolá-los utilizando três

polinômios:

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑦 = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒

𝑦 =
𝑎

𝑥𝑏
+ 𝑐

 A interpolação encontra as constantes numéricas dos polinômios. Observando a

imagem acima, é fácil perceber que o polinômio de quarto grau e o polinômio inverso

apresentam resultados bem parecidos até 𝑥 = 40, após esse valor, o polinômio inverso

apresenta um erro menor e uma interpolação mais precisa. Esse polinômio foi utilizado no

sistema para o calculo das distâncias.

 A equação obtida foi a seguinte:

𝑦 =
831.62

𝑥0.913
− 2.556

58

 Os resultados do cálculo da distância foram obtidos utilizando distâncias que não

foram usadas para a interpolação (distâncias múltiplas de 5). Foram feitas 50 medidas e

calculados a média e o desvio padrão de cada distância. A imagem abaixo ilustra o

procedimento.

Figura 24: Resultado das medidas para profundidade de 62 cm.

 O valor da média foi encontrado foi de 61,571 cm, com desvio padrão de 0,808.

Abaixo se encontra o resultado para cada distância, em comparação com a distância real.

Pode-se observar que apenas dois valores se distanciam da média. Abaixo se encontram os

resultados para cada profundidade testada.

Distância Média Desvio Padrão Diferença

13 13,49453188 0,887012529 -0,494531876

18 19,11083847 0,929734233 -1,11083847

22 23,46164263 1,418684932 -1,461642628

27 27,92465566 0,796496892 -0,924655664

33 32,9089354 0,911744933 0,091064597

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Profundidade

Número da amostra

Resultado para Profundidade = 62 cm

Profundidade

Média

59

38 37,23142046 1,248917101 0,76857954

42 41,43247953 1,030335953 0,567520468

47 47,00659117 2,317462392 -0,00659117

53 53,31217314 2,207595858 -0,31217314

58 58,06096776 1,67921114 -0,060967764

62 61,57138906 0,799481195 0,428610938

67 66,29145251 0,651249179 0,708547489

72 72,06994102 0,436145403 -0,069941024

Tabela 2: Resultado dos Cálculos de profundidade.

Figura 25: Comparação entre a média dos cálculos e a profundidade real.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Profundidade

Número do Cálculo

Comparação Média x Profundidade Real

Profundidade

Média

60

Figura 26: Diferença entre a média dos cálculos e a profundidade real.

 Observando a figura 20, pode-se ver que o cálculo da profundidade está bem

próximo da profundidade real. A figura 21 mostra a diferença entre esses dois valores, e

pode-se ver que a maior diferença é -1,46. Entretanto, o desvio padrão de alguns cálculos

ainda é grande, como por exemplo, para 47 cm de profundidade, obteve-se 2,2076. Com o

objetivo de melhorar esses resultados, alterou-se o método de cálculo. Ao invés de fazer

apenas uma detecção e utilizar as informações obtidas para realizar o cálculo, fizeram-se

três detecções e utilizou-se a média das informações obtidas para realizar o cálculo. Dessa

forma, se existir uma variação muito grande em uma das amostras, esse valor é

balanceado na média com as outras amostras. Abaixo encontra-se os resultados obtidos

dessa forma.

Profundidade Média Desvio Padrão Diferença

13 13,504196 0,501200866 -0,504196001

18 19,16219591 0,512227847 -1,162195907

22 23,37774901 0,793824088 -1,377749009

27 27,77156975 0,257155579 -0,771569748

33 32,91569531 0,621757235 0,084304689

38 37,27201855 0,768392999 0,727981451

42 40,97086975 0,695311504 1,029130248

-2

-1,5

-1

-0,5

0

0,5

1

13 18 22 27 33 38 42 47 53 58 62 67 72
Diferença

Profundidade

Diferença entre a Média e a Profundidade
Real

Diferença

61

47 46,93949206 1,481547788 0,06050794

53 53,4675585 0,320578072 -0,467558499

58 58,37130093 0,948089761 -0,371300933

62 61,55406365 0,508445185 0,445936355

67 66,69297482 0,424181701 0,307025181

72 71,76284345 0,233504967 0,237156552

Tabela 3: Resultado dos cálculos de profundidade utilizando a média de três detecções para o

cálculo da profundidade

Figura 27: Comparação entre a média dos cálculos e a profundidade real utilizando a média

de três detecções para o cálculo da profundidade

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Profundidade

Número do Cálculo

Comparação Média x Profundidade Real

Profundidade

Média

62

Figura 28: Diferença entre a média e a profundidade real utilizando a média de três

detecções para o cálculo da profundidade.

 Comparando os dados obtidos, vê-se que houve melhora nos cálculos da

profundidade. O desvio padrão atinge um máximo de 1,4815, e os valores do desvio

padrão são menores utilizando esse método. A diferença entre a profundidade real e a

medida também diminuiu, atingindo um máximo de 1,029 cm. Portanto esse método gera

resultados mais precisos. Essa melhoria tem um custo. Como são utilizadas três detecções

para o cálculo da profundidade, o tempo necessário para obter um cálculo da

profundidade triplica. Resolveu-se utilizar o método mais preciso, é uma decisão de

projeto priorizar precisão a tempo.

 Os resultados para o cálculo do ângulo foram obtidos da mesma forma que foram

obtidos os resultados para o cálculo da profundidade. A câmera foi fixada a uma

profundidade do círculo e a partir do centro, o círculo foi deslocado lateralmente, e feita

uma detecção para o cálculo da distância lateral em pixels. Isso foi feito três vezes para

cada profundidade, obtendo um razão entre deslocamento lateral real e em pixels. Esse

processo foi feito 50 vezes para cada detecção, e feita a média. Abaixo encontram-se os

pontos encontrados e a interpolação para distância lateral.

 Esses resultados encontram-se abaixo.

-1,5

-1

-0,5

0

0,5

1

1,5

13 18 22 27 33 38 42 47 53 58 62 67 72

Diferença

Profundidade

Diferença entre a Média e a Profundidade
Real

Diferença

63

O resultado da interpolação para distância lateral encontra-se abaixo:

Figura 29: Resultado da interpolação para distância lateral.

 A equação obtida foi a seguinte:

𝑦 =
451.2049

𝑥0.8331
− 2.1606

 Com ambos os polinômios calculados, é possível calcular a profundidade e a

distância lateral de círculos em posições arbitrárias em relação à câmera. Sendo assim,

para confirmar a precisão do método, foram escolhidas alguns pontos aleatórios para que

seja feito o cálculo e comparar o resultado com o valor real.

 A tabela a seguir mostra o resultado de alguns cálculos feitos para testar o método

utilizado.

Profundidade Real Profundidade
Calculada

Distância Lateral
Real

Distância Lateral
Calculada

36 cm 35.68 cm 7 cm 6.84 cm

53 cm 52.65 cm 12 cm 12.32 cm

64

46 cm 44.9 cm 17 cm 16.3 cm

62 cm 61.38 cm 20 cm 19.31 cm

Tabela 4: Comparação dos resultados obtidos para distância lateral.

 Para a obtenção de tempo de execução, foram feitas 50 medidas detectando um

círculo a média distância (54 cm), a pouca distância (10 cm), sem detectar um círculo e

sem a execução do gerenciador de janelas. A tabela abaixo resume os resultados obtidos.

Detecção Média Desvio Padrão

Distância Média 0,602669573 s 0,152076521

Pouca Distância 0,614744344 s 0,102052241

Sem detecção 0,593784766 s 0,080612066

Sem "X" 0,597067962 s 0,135473583

Tabela 5: Resultados das medições dos tempos de execução.

 Como pode ser observado, há pouca variação no tempo. Apesar de pequena,

parando o processo do gerenciador de janelas obteve-se uma melhora no tempo de

execução. Observa-se que há uma variação de aproximadamente 0,01 segundo dependo se

o círculo está perto ou longe, ou se ele está presente.

 Em relação ao tempo de execução, os resultados obtidos não foram suficientes

para uma aplicação de tempo real. O tempo de 0,6 segundo para cada detecção é suficiente

para a plataforma se movimentar em torno de 12 cm, o que pode levar a erros de detecção

quando o círculo se movimenta e sai do campo de visão do sistema antes que ele possa

detectá-lo. Entretanto, a proposta do projeto foi sucedida, o sistema se locomove seguindo

um círculo detectado de forma precisa.

 Conclui-se que é possível utilizar a Raspberry para processamento de imagens e

visão computacional atingindo o objetivo proposto, entretanto, essa plataforma para não é

a melhor escolha, considerando que há plataformas melhores com valores de mercado

similares a Raspberry.

65

 Como há um sistema operacional sendo executado sobre a Raspberry, muito poder

de processamento é perdido atendendo a requisições irrelevantes ao processo. Conclui-se

também que a câmera desempenha um papel fundamental nesse tipo de aplicação

(processamento de imagem), visto que ruídos oriundos do hardware da câmera

necessitam de filtragem e, portanto, perda de tempo computacional em relação a uma

câmera que não apresenta esses ruídos.

 O método utilizado para medir distâncias reais utilizando apenas informações

visuais se provou bem preciso, obtendo um desvio máximo do valor real de apenas 1 cm,

sendo ideal para aplicações em sistemas embarcados, devido a sua simplicidade e

velocidade, basta apenas obter dados do sistema, e cálculos futuros são feitos com apenas

um cálculo matemático.

 Analisando o projeto durante o seu desenvolvimento, foi possível identificar várias

possíveis melhoras. A primeira dela seria trocar o sistema embarcado. A Raspberry foi

escolhida principalmente por seu baixo preço, mas a tecnologia avança tão rápido que já é

possível encontrar sistemas melhores pelo mesmo preço, se não mais baratos, como por

exemplo, a BeagleBone, que atualmente custa $55,00 [30]. Suas especificações para

comparação seguem a baixo [31]:

 Processador Sitara AM33858BZCZ100, com clock de 1GHz, capaz de executar 2000

MIPS;

 GPU SGX530 3D, capaz de gerar 20M de polígonos por segundo;

 Memória SDRAM de 512 Mb DDR3L 606MHz;

 Memória Flash onboard de 4 Gb;

 Resolução de vídeo máxima de 1280x1024 HDMI.

 Comparando as especificações de ambas, pode-se ver claramente que a

BeagleBone é superior a Raspberry em todos os aspectos, exceto no saída de vídeo. Como a

saída de vídeo não é relevante para este projeto, a BeagleBone seria uma escolha melhor

de sistema embarcado.

66

Figura 30: Beaglebone [30]

 Desconsiderando o fator preço, é fácil encontrar sistemas embarcados com muito

mais poder computacional que ambas as placas citadas acima. Um exemplo é o ODROID-

XU3, um sistema embarcado capaz de executar os sistemas operacionais Android 4.4 e

XUbuntu 14.04. Atualmente custa US$179,00 [32]. Suas especificações seguem abaixo.

 Octa Core utilizando um processador Samsung Exynos5422 Cortex™-A15 2.0Ghz

quad core e um processador Cortex™-A7 quad core CPUs;

 GPU Mali-T628 MP6 (OpenGL ES 3.0/2.0/1.1 e OpenCL 1.1 Full profile);

 Memória RAM de 2 Gbyte LPDDR3 RAM a 933MHz (14.9GB/s de banda de

memória);

 Armazenamento de memória Flash utilizando soquete eMMC5.0 HS400;

 USB 3.0 Host x 1, USB 3.0 OTG x 1, USB 2.0 Host x 4;

 Facilmente se observa que a ODROID-XU3 possui especificações melhores em

todos os aspectos relevantes (processador, GPU, memória RAM, display).

 Também é possível melhorar o desempenho utilizando um sistema operacional de

tempo real. Dessa forma, as requisições do processo principal do projeto sempre serão

atendidas com prioridade, cortando o tempo que o sistema operacional passa executando

outros processos e disponibiliza todo o tempo para o processo principal.

67

 Outra forma de melhorar o desempenho seria utilizar um sistema dedicado. Não

são necessários todos os módulos oferecidos pelo sistema operacional, então um sistema

operacional reduzido apenas ao essencial aloca todo o processador apenas para o projeto,

aumentando significativamente a eficiência.

 Em relação à precisão do movimento, seria possível substituir a plataforma

utilizada por outra que possuísse os equipamentos necessários para controle de

velocidade, e possivelmente uma câmera com uma resolução maior e mais liberdade para

sua configuração (por exemplo, alterar o tempo de exposição, a abertura, etc) diminuiria a

variação na detecção e, portanto, aumentaria a precisão do movimento.

68

7. Trabalhos Futuros

 A ideia desse projeto pode ser ampliada e aplicada a vários problemas existentes.

Aumentando o poder de processamento do sistema (com as melhorias sugeridas na sessão

acima) seria possível implementar um sistema que detecta e reage às informações obtidas

em tempo real. Essa aplicação poderia ser usada para encontrar e neutralizar minas em

antigos campos minados, lugar onde o acesso de pessoas é perigoso. Basta fornecer a

imagem de uma mina a ser reconhecida e ajustar o procedimento de ao ser detectada uma

mina.

 Esse sistema pode ser usado também para identificação de defeitos em tubulações.

Pensando em tubulações industriais (como por exemplo, de petrolíferas), onde uma

pessoa não tem acesso, é possível localizar defeitos dentro dessas tubulações, de forma

análoga a aplicação descrita acima.

 Seguindo essa lógica, é possível trocar a plataforma terrestre do sistema por uma

plataforma aérea e expandir ainda mais suas aplicações. Algumas ideias seriam busca de

buracos e objetos perigosos em rodovias, busca em plantações por plantas danificadas, e

até busca por pessoas em áreas pré-determinadas, utilizando reconhecimento de face.

 Apesar das aplicações citadas acima necessitarem de hardwares melhores e

métodos mais precisos, todas compartilham a ideia deste trabalho, um sistema autônomo

que se movimenta de acordo com informações obtidas através de processamento gráfico

em tempo real.

69

8. Bibliografia

[1] S. Heath, Embedded Systems Design. 2003.

[2] W. Stallings, Operating Systems, Internals and Design PrinciplesNo Title. Prentice Hall
PTR Upper Saddle River, NJ, USA ©2005, 2005, p. 820.

[3] Microsoft, “User mode and kernel mode,” 2014. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff554836%28v=vs.85%29.aspx. [Accessed: 26-Oct-
2014].

[4] T. Solomon, ChrisBreckon, Fundamentals of Digital Image Processing: A Practical
Approach with Examples in Matlab. 2011.

[5] G. Stockman and Linda G. Shapiro, Computer Vision. Prentice Hall PTR Upper Saddle
River, NJ, USA ©2001, 201AD, p. 608.

[6] R. O. Duda and P. E. Hart, “Use of the Hough Transformation to Detect Lines and
Curves in Pictures,” Communications of the ACM, 1972.

[7] MathWorks, “Hough transform - MATLAB hough,” 2014. [Online]. Available:
http://www.mathworks.com/help/images/ref/hough.html. [Accessed: 10-Oct-
2014].

[8] OpenCV, “Hough Line Transform — OpenCV-Python Tutorials 1 documentation,”
2013. [Online]. Available: http://opencv-python-
tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_houghlines/py_ho
ughlines.html. [Accessed: 10-Oct-2014].

[9] M. K. Agoston, Computer Graphics and Geometric Modeling: Implementation and
Algorithms. 2005, p. 306.

[10] E. R. Dougherty, An Introduction to Morphological Image Processing. 1992, p. 161.

[11] OpenCV, “Canny Edge Detection,” 2013. [Online]. Available:
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_d
etector.html. [Accessed: 12-Oct-2014].

[12] P. Katz, Digital control using microprocessor. 1981.

[13] A. Williams, Microcontroller Projects Using the Basic Stamp. Taylor & Francis, 2002.

[14] L. Kneip, “H Bridge Circuit Schematic,” 2010. [Online]. Available:
http://www.laurentkneip.de/H_bridges.html. [Accessed: 12-Oct-2014].

[15] J. R. B. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing. 2009,
p. 1120.

[16] M. Murray, “Raspberry Pi Review,” 2012. [Online]. Available:
http://www.pcmag.com/article2/0,2817,2407058,00.asp. [Accessed: 26-Oct-
2014].

70

[17] Newark, “Newark Store Raspberry Pi,” 2013. [Online]. Available:
http://www.newark.com/raspberry-pi/raspberry-modb-512m/raspberry-pi-
model-b-board/dp/68X0155. [Accessed: 22-Oct-2014].

[18] Broadcom Corporation, “BCM2835 ARM Peripherals,” 2012.

[19] Raspberrypi.org, “RPi Performance,” 2013. .

[20] T. Instruments, “L293, l293d quadruple half-h drivers,” 2004.

[21] S. Escalera, A. Fornés, O. Pujol, P. Radeva, G. Sánchez, and J. Lladós, “Blurred Shape
Model for binary and grey-level symbol recognition,” Pattern Recognit. Lett., vol. 30,
no. 15, pp. 1424–1433, Nov. 2009.

[22] Y. Freund, R. E. Schapire, and P. Avenue, “A Short Introduction to Boosting,” vol. 14,
no. 5, pp. 771–780, 1999.

[23] P. Shetty, “Circle Detection In Images,” 2011.

[24] R. Maini and H. Aggarwal, “Study and Comparison of Various Image Edge Detection
Techniques,” Int. J. Image Process., vol. 3, no. 1, pp. 1–12, 2010.

[25] Z. Othman, M. Rafiq, and A. Kadir, “Comparison of Canny and Sobel Edge Detection
in MRI Images,” pp. 133–136.

[26] E. Upton, “Wayland Preview: optimizing X using Raspberry Pi GPU,” 2013. [Online].
Available: http://www.raspberrypi.org/wayland-preview/. [Accessed: 21-Oct-
2014].

[27] “Automodelismo de Competição.” [Online]. Available:
http://automodelocba.esporteblog.com.br/. [Accessed: 26-Oct-2014].

[28] “Labaratório de Garagem,” 2014. [Online]. Available: www.labdegaragem.org/.
[Accessed: 24-Oct-2014].

[29] A. Rahman, A. Salam, M. Islam, and P. Sarker, “An Image Based Approach to
Compute Object Distance,” Int. J. Comput. Intell. Syst., vol. 1, no. 4, pp. 304–312,
2008.

[30] Adafruit, “Adafruit Beaglebone,” 2014. [Online]. Available:
https://www.adafruit.com/products/1876. [Accessed: 22-Oct-2014].

[31] G. Coley, “BeagleBone Black System Reference Manual,” 2013.

[32] Odroid, “Odroid-XU3 Store,” 2013. [Online]. Available:
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G1404482671
27. [Accessed: 22-Oct-2014].

71

Apêndica A – Código Fonte

A seguir é apresentado todo o código fonte do sistema, divido em módulos pertinentes.

“VideoModule.py”

__author__ = 'Andre'

import cv2

import numpy as np

import time

import math

class VideoModule:

 def __init__(self, opencamera=0):

 #Variaveis dos metodos de processamento de imagens

 self.gauss = 7

 self.lowThresCanny = 40

 self.cannyRatio = 3

 self.circDist = 1000

 self.upperThres = 300

 self.lowerThres = 80

 self.minRadius = 5

 self.maxRadius = 250

 #Cores

 self.min_yellow = np.array([20, 70, 70], np.uint8)

 self.max_yellow = np.array([70, 255, 255], np.uint8)

 #Outras variaveis

 self.nframes = 5

 self.detection = 0

 self.fps = 0

 self.circles = None

 self.center = (320, 240)

 self.opencamera = opencamera

 self.isOpen = False

 self.camera = None

 self.video = None

 def openCamera(self):

 self.isOpen = True

 self.camera = cv2.VideoCapture(self.opencamera)

 self.camera.set(3, 640)

 self.camera.set(4, 480)

 self.camera.set(14, 0.0)

 def warmUp(self, n=10):

 if self.isOpen:

 for i in range(n):

 self.camera.read()

 def cleanUp(self):

 self.circles = None

 cv2.destroyAllWindows()

 self.camera.release()

 self.isOpen = False

72

 def takeashot(self):

 if self.camera.isOpened():

 _, frame = self.camera.read()

 frame = cv2.flip(frame, 1)

 imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 yellow = cv2.inRange(imgHSV, self.min_yellow,

self.max_yellow)

 gauss = cv2.GaussianBlur(yellow, (self.gauss, self.gauss),

0)

 element = cv2.getStructuringElement(cv2.MORPH_RECT, (7,

7))

 erode = cv2.erode(gauss, element)

 dilate = cv2.dilate(erode, element)

 canny = cv2.Canny(dilate, 100, 300)

 circles = cv2.HoughCircles(canny,

cv2.cv.CV_HOUGH_GRADIENT, 3, 600,

 param1=240, param2=80,

minRadius=10, maxRadius=300)

 return circles

 def toogleDetection(self):

 if self.detection == 1:

 self.detection = 0

 self.circles = None

 print 'Deteccao Desliada'

 else:

 self.detection = 1

 print 'Deteccao Ligada'

 def toogleFPS(self):

 if self.fps == 1:

 self.fps = 0

 print 'FPS Desligado'

 else:

 self.fps = 1

 print 'FPS Ligado'

 #circle[0] = x

 #circle[1] = y

 #circle[2] = raio

 def drawCircles(self, frame):

 if self.circles is not None:

 for circle in self.circles[0, :]:

 radius = np.round(circle[2])

 cv2.circle(frame, (circle[0], circle[1]), 3, (0, 255,

0), -1, 8, 0)

 cv2.circle(frame, (circle[0], circle[1]), radius, (0,

0, 255), 3, 8, 0)

 cv2.line(frame, self.center, (circle[0], circle[1]),

(0, 0, 0), 2)

 def detectCircles(self, frame):

73

 start = time.time()

 #HSV

 imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 yellow = cv2.inRange(imgHSV, self.min_yellow, self.max_yellow)

 #Filtro da media?

 gauss = cv2.GaussianBlur(yellow, (self.gauss, self.gauss), 0)

 element = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))

 erode = cv2.erode(gauss, element)

 dilate = cv2.dilate(erode, element)

 #remover?

 canny = cv2.Canny(dilate, 100, 300)

 circles = cv2.HoughCircles(canny, cv2.cv.CV_HOUGH_GRADIENT, 2,

600,

 param1=240, param2=80,

minRadius=10, maxRadius=300)

 print time.time() - start

 return circles

 def nDetect(self, n=10):

 if (not self.isOpen):

 self.openCamera()

 shots = 0

 fname = "ndetect" + str(n) + ".txt"

 file = open(fname, "w")

 circles = []

 times = []

 x = []

 y = []

 r = []

 file.write(str(n) + '\n')

 print 'Starting'

 while shots < n:

 start = time.time()

 circle = self.takeashot()

 if circle is not None:

 shots +=1

 x.append(circle[0][0][0])

 y.append(circle[0][0][1])

 r.append(circle[0][0][2])

 times.append(time.time() - start)

 print time.time() - start

 print str(circle)

 time.sleep(0.1)

 xmean = 0

 ymean = 0

 rmean = 0

 print "Starting analytics: Mean"

 for i in range(len(x)):

 file.write(str(x[i]) + ' ')

 xmean += x[i]

 file.write(str(y[i]) + ' ')

 ymean += y[i]

 file.write(str(r[i]) + ' ')

74

 rmean += r[i]

 file.write(str(times[i]) + '\n')

 xmean = xmean/n

 ymean = ymean/n

 rmean = rmean/n

 xvar = 0

 yvar = 0

 rvar = 0

 print 'Starting analytics: Variance'

 for i in range(len(x)):

 xvar += (x[i] - xmean)*(x[i] - xmean)

 yvar += (y[i] - ymean)*(y[i] - ymean)

 rvar += (r[i] - rmean)*(r[i] - rmean)

 xvar = xvar/n

 yvar = yvar/n

 rvar = rvar/n

 xdev = math.sqrt(xvar)

 ydev = math.sqrt(yvar)

 rdev = math.sqrt(rvar)

 file.write('\n')

 file.write('Mean Deviation Variance\n')

 file.write('x: ' + str(xmean) + ' ' + str(xdev) + ' ' +

str(xvar) + '\n')

 file.write('y: ' + str(ymean) + ' ' + str(ydev) + ' ' +

str(yvar) + '\n')

 file.write('r: ' + str(rmean) + ' ' + str(rdev) + ' ' +

str(rvar) + '\n')

 self.cleanUp()

 file.close()

 print 'Finished'

 def lockAndDetect(self, n=10):

 print 'Abrindo a camera...'

 self.openCamera()

 print 'Pronto!'

 while self.camera.isOpened():

 _, frame = self.camera.read()

 frame = cv2.flip(frame, 1)

cv2.circle(frame,(self.center[0],self.center[1]),1,(0,0,255),2)

 cv2.imshow('WebCam', frame)

 #print time.time() - start

 key = cv2.waitKey(1)

 if key == 113:

 self.nDetect(n)

 elif key == 27:

 break

 def screenshot(self, name, frame):

 cv2.imwrite(name, frame)

 def calibrate(self, nframes=0):

75

 def getHSV(event,x,y,flags,param):

 if event == cv2.EVENT_LBUTTONDBLCLK:

 print "BGR" + str(frame[y,x])

 print "HSV" +

str(cv2.cvtColor(np.uint8([[frame[y,x]]]), cv2.COLOR_BGR2HSV))

 cv2.namedWindow('WebCam')

 cv2.setMouseCallback('WebCam', getHSV)

 show_mask = 0

 show_gauss = 0

 show_edges = 0

 show_erode = 0

 show_H = 0

 text = None

 n = 0

 avg = 0

 circles = None

 print 'Abrindo a camera...'

 self.camera = cv2.VideoCapture(self.opencamera)

 self.camera.set(15, 0.0)

 #HSV

 #Yellow 20, 100, 100

 #Yellow 70, 255, 255

 #Black 0, 0, 0

 #Black 0, 0, 75

 min_yellow = np.array([20, 70, 70], np.uint8)

 max_yellow = np.array([70, 255, 255], np.uint8)

 print 'Pronto!'

 while self.camera.isOpened():

 _, frame = self.camera.read()

 frame = cv2.flip(frame, 1)

 if nframes == 0:

 start = time.time()

 #HSV

 imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 yellow = cv2.inRange(imgHSV, self.min_yellow,

self.max_yellow)

 gauss = cv2.GaussianBlur(yellow, (self.gauss,

self.gauss), 0)

 element = cv2.getStructuringElement(cv2.MORPH_RECT,

(7, 7))

 erode = cv2.erode(gauss, element)

 dilate = cv2.dilate(erode, element)

 canny = cv2.Canny(dilate, 100, 300)

 #print "Canny: " + str(time.time() - start)

 circles = cv2.HoughCircles(canny,

cv2.cv.CV_HOUGH_GRADIENT, 3, 600,

76

 param1=240, param2=80,

minRadius=10, maxRadius=300)

 #print time.time() - start

 if circles is not None:

 circles = np.uint16(np.around(circles))

 for i in circles[0,:]:

 print i

 # draw the outer circle

 cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)

 # draw the center of the circle

 cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)

 elif n%nframes == 0:

 start = time.time()

 #HSV

 imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 yellow = cv2.inRange(imgHSV, self.min_yellow,

self.max_yellow)

 gauss = cv2.GaussianBlur(yellow, (self.gauss,

self.gauss), 0)

 element = cv2.getStructuringElement(cv2.MORPH_RECT,

(7, 7))

 erode = cv2.erode(gauss, element)

 dilate = cv2.dilate(erode, element)

 #remover?

 canny = cv2.Canny(dilate, 100, 300)

 #print "Canny: " + str(time.time() - start)

 circles = cv2.HoughCircles(dilate,

cv2.cv.CV_HOUGH_GRADIENT, 3, 600,

 param1=240, param2=80,

minRadius=10, maxRadius=300)

 print time.time() - start

 if circles is not None:

 circles = np.uint16(np.around(circles))

 for i in circles[0,:]:

 print i

 # draw the outer circle

 cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)

 # draw the center of the circle

 cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)

 n += 1

 end = time.time()

 #Media de fps

 #avg = ((n-1)*avg + (end-start))/n

 #if self.fps == 1:

 #text = 'FPS: {0:.3f}'.format(1/avg)

 #cv2.putText(frame, text, (500, 460),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 2)

 if show_gauss == 1:

 cv2.imshow('WebCam', yellow)

 elif show_mask == 1:

 cv2.imshow('WebCam', imgHSV)

77

 elif show_edges == 1:

 cv2.imshow('WebCam', canny)

 elif show_erode == 1:

 cv2.imshow('WebCam', erode)

 elif show_H == 1:

 cv2.imshow('WebCam', dilate)

 else:

 cv2.imshow('WebCam', frame)

 #Alterar esta parte para a rasp

 key = cv2.waitKey(1)

 #Sair

 if key == 27: #27 ASCII = 'ESC'

 break

 #Ativar/Desativar FPS

 elif key == 102: #102 ASCII = 'f'

 n = 0

 self.screenshot(frame)

 print frame

 #self.toogleFPS()

 elif key == 113: #111 ASCII = 'q'

 show_gauss = not show_gauss

 show_mask = 0

 show_edges = 0

 show_erode = 0

 show_H = 0

 elif key == 119: #77 ASCII = 'w'

 show_mask = not show_mask

 show_edges = 0

 show_gauss = 0

 show_erode = 0

 show_H = 0

 elif key == 101: #101 ASCII = 'e'

 show_edges = not show_edges

 show_mask = 0

 show_gauss = 0

 show_erode = 0

 show_H = 0

 elif key == 114: #114 ASCII = 'r'

 show_erode = not show_erode

 show_gauss = 0

 show_mask = 0

 show_edges = 0

 show_H = 0

 elif key == 104: #104 ASCII = 'h'

 show_H = not show_H

 show_edges = 0

 show_gauss = 0

 show_erode = 0

 show_mask = 0

 elif key == 115: #'s'

 self.saveImages(frame)

 print 'Finalizando'

 self.circles = None

 cv2.destroyAllWindows()

 self.camera.release()

 def saveImages(self, frame):

78

 imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 self.screenshot("HSV.png", imgHSV)

 yellow = cv2.inRange(imgHSV, self.min_yellow, self.max_yellow)

 self.screenshot("YellowThreshold.png", yellow)

 gauss = cv2.GaussianBlur(yellow, (self.gauss, self.gauss), 0)

 self.screenshot("Gauss.png", gauss)

 element = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))

 erode = cv2.erode(gauss, element)

 self.screenshot("Erode.png", erode)

 dilate = cv2.dilate(erode, element)

 self.screenshot("Dilate.png", dilate)

 canny = cv2.Canny(dilate, 100, 300)

 self.screenshot("Canny.png", canny)

 circles = cv2.HoughCircles(dilate, cv2.cv.CV_HOUGH_GRADIENT,

3, 600,

 param1=240, param2=80,

minRadius=10, maxRadius=300)

 if circles is not None:

 circles = np.uint16(np.around(circles))

 for i in circles[0,:]:

 print i

 # draw the outer circle

 cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)

 # draw the center of the circle

 cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)

 self.screenshot("Circle.png", frame)

 def nAllTimes(self, n=10):

 print 'Starting'

 self.openCamera()

 self.warmUp(30)

 shots = 0

 capture = []

 HSV = []

 color = []

 gaussfilter = []

 erodefilter = []

 dilatefilter = []

 cannyfilter = []

 hough = []

 total = []

 while shots < n:

 init = time.time()

 _, frame = self.camera.read()

 frame = cv2.flip(frame, 1)

 captureTime = time.time() - init

 start = time.time()

 imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 hsvTime = time.time() - start

79

 start = time.time()

 yellow = cv2.inRange(imgHSV, self.min_yellow,

self.max_yellow)

 yellowTime = time.time() - start

 start = time.time()

 gauss = cv2.GaussianBlur(yellow, (self.gauss, self.gauss),

0)

 gaussTime = time.time() - start

 element = cv2.getStructuringElement(cv2.MORPH_RECT, (7,

7))

 start = time.time()

 erode = cv2.erode(gauss, element)

 erodeTime = time.time() - start

 start = time.time()

 dilate = cv2.dilate(erode, element)

 dilateTime = time.time() - start

 start = time.time()

 canny = cv2.Canny(dilate, 100, 300)

 cannyTime = time.time() - start

 start = time.time()

 circles = cv2.HoughCircles(canny,

cv2.cv.CV_HOUGH_GRADIENT, 3, 600,

 param1=240, param2=80,

minRadius=10, maxRadius=300)

 houghTime = time.time() - start

 totaltime = time.time() - init

 print totaltime

 if circles is not None:

 print circles

 shots += 1

 capture.append(captureTime)

 HSV.append(hsvTime)

 color.append(yellowTime)

 gaussfilter.append(gaussTime)

 erodefilter.append(erodeTime)

 dilatefilter.append(dilateTime)

 cannyfilter.append(cannyTime)

 hough.append(houghTime)

 total.append(totaltime)

 #Capture

 fname = "capture" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(capture[i]) + '\n')

 mean += capture[i]

 mean = mean/n

80

 var = 0

 for i in range(n):

 var += (capture[i] - mean)*(capture[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 #HSV

 fname = "HSV" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(HSV[i]) + '\n')

 mean += HSV[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (HSV[i] - mean)*(HSV[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 #Color

 fname = "color" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(color[i]) + '\n')

 mean += color[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (color[i] - mean)*(color[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 #Gauss

 fname = "gauss" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(gaussfilter[i]) + '\n')

 mean += gaussfilter[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (gaussfilter[i] - mean)*(gaussfilter[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

81

 file.close()

 #Erode

 fname = "erode" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(erodefilter[i]) + '\n')

 mean += erodefilter[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (erodefilter[i] - mean)*(erodefilter[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 #Dilate

 fname = "dilate" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(dilatefilter[i]) + '\n')

 mean += dilatefilter[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (dilatefilter[i] - mean)*(dilatefilter[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 #Canny

 fname = "canny" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(cannyfilter[i]) + '\n')

 mean =+ cannyfilter[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (cannyfilter[i] - mean)*(cannyfilter[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 #Hough

 fname = "hough" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

82

 file.write(str(hough[i]) + '\n')

 mean += hough[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (hough[i] - mean)*(hough[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 #Total

 fname = "total" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(total[i]) + '\n')

 mean += total[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (total[i] - mean)*(total[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 def nTotalTime(self, n=10):

 c = raw_input()

 print 'Starting'

 self.openCamera()

 self.warmUp(30)

 shots = 0

 total = []

 while shots < n:

 init = time.time()

 _, frame = self.camera.read()

 frame = cv2.flip(frame, 1)

 imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 yellow = cv2.inRange(imgHSV, self.min_yellow,

self.max_yellow)

 gauss = cv2.GaussianBlur(yellow, (self.gauss, self.gauss),

0)

 element = cv2.getStructuringElement(cv2.MORPH_RECT, (7,

7))

 erode = cv2.erode(gauss, element)

83

 dilate = cv2.dilate(erode, element)

 canny = cv2.Canny(dilate, 100, 300)

 circles = cv2.HoughCircles(canny,

cv2.cv.CV_HOUGH_GRADIENT, 3, 600,

 param1=240, param2=80,

minRadius=10, maxRadius=300)

 totaltime = time.time() - init

 print totaltime

 if circles is not None:

 print circles

 shots += 1

 total.append(totaltime)

 #Total

 fname = "totalTime" + str(n) + ".txt"

 file = open(fname, "w")

 mean = 0

 for i in range(n):

 file.write(str(total[i]) + '\n')

 mean += total[i]

 mean = mean/n

 var = 0

 for i in range(n):

 var += (total[i] - mean)*(total[i] - mean)

 dev = math.sqrt(var)

 file.write(str(mean) + ' ' + str(dev) + ' ' + str(var) + '\n')

 file.close()

 def nDetectLateral(self, n=10):

 if (not self.isOpen):

 self.openCamera()

 shots = 0

 circles = []

 times = []

 x = []

 r = []

 print 'Starting'

 while shots < n:

 start = time.time()

 circle = self.takeashot()

 if circle is not None:

 shots +=1

 x.append(circle[0][0][0])

 r.append(circle[0][0][2])

 times.append(time.time() - start)

 print time.time() - start

 print str(circle)

 time.sleep(0.1)

84

 xmean = 0

 rmean = 0

 print "Starting analytics: Mean"

 for i in range(len(x)):

 xmean += x[i]

 rmean += r[i]

 xmean = xmean/n

 rmean = rmean/n

 xvar = 0

 rvar = 0

 for i in range(len(x)):

 xvar += (x[i] - xmean)*(x[i] - xmean)

 rvar += (r[i] - rmean)*(r[i] - rmean)

 xvar = xvar/n

 rvar = rvar/n

 xdev = math.sqrt(xvar)

 rdev = math.sqrt(rvar)

 print 'x: ' + str(xmean) + ' ' + str(xdev)

 print 'r: ' + str(rmean) + ' ' + str(rdev)

 print 'Finished'

 return [x, r, xmean, rmean, xdev, rdev]

 def lockAndDetectLateral(self, n=10):

 print 'Abrindo a camera...'

 self.openCamera()

 print 'Pronto!'

 fname = "nDetectLateral" + str(n) + ".txt"

 file = open(fname, "a")

 while self.camera.isOpened():

 _, frame = self.camera.read()

 frame = cv2.flip(frame, 1)

cv2.circle(frame,(self.center[0],self.center[1]),1,(0,0,255),2)

 cv2.imshow('WebCam', frame)

 #print time.time() - start

 key = cv2.waitKey(1)

 if key == 113:

 [x, r, xmean, rmean, xdev, rdev] =

self.nDetectLateral(n)

 print 'Distance: ' + str(xmean - self.center[0])

 file.write('Radius: ' + str(rmean) + ' ' +str(rdev) +

'\n')

 file.write('X: ' + str(xmean) + ' ' +str(xdev) + '\n')

 file.write('Distance: ' + str(xmean - self.center[0])

+ '\n\n')

85

 elif key == 27:

 break

 self.cleanUp()

 file.close()

“MotorControl.py”

__author__ = 'Andre'

from RPIO import PWM

import RPi.GPIO as gpio

import time

#Utilizar RPi.GPIO

#Frequencia para Motor DC 10kHz

#Exemplo no teste

#mc = MotorControl()

#print 'PWM:'

#duty = raw_input()

#mc.test(7, 5000, duty)

#0.5 seg = 90

#GND = 25

class MotorControl():

 def __init__(self, duty=80):

 self.frequency = 1000

 self.duty = duty

 self.motorREn = 22

 self.motorRF = 16

 self.motorRB = 18

 self.motorLEn = 7

 self.motorLF = 13

 self.motorLB = 11

 gpio.setmode(gpio.BOARD)

 gpio.setup(self.motorLEn, gpio.OUT)

 gpio.setup(self.motorLF, gpio.OUT)

 gpio.setup(self.motorLB, gpio.OUT)

 self.pwmL = gpio.PWM(self.motorLEn, self.frequency)

 gpio.setup(self.motorREn, gpio.OUT)

 gpio.setup(self.motorRF, gpio.OUT)

 gpio.setup(self.motorRB, gpio.OUT)

 self.pwmR = gpio.PWM(self.motorREn, self.frequency)

 def test(self, pin, freq, duty):

 gpio.setup(pin, gpio.OUT)

 p = gpio.PWM(pin, freq)

 p.start(float(duty))

86

 print 'Press any key to stop'

 value = raw_input()

 p.stop()

 gpio.cleanup()

 def start(self):

 self.startL()

 self.startR()

 def changeFreq(self, freq):

 self.frequency = freq

 self.pwmL.ChangeFrequency(freq)

 self.pwmR.ChangeFrequency(freq)

 def startL(self):

 self.pwmL.start(float(self.duty))

 def stopL(self):

 gpio.output(self.motorLF, False)

 gpio.output(self.motorLB, False)

 def setPWML(self, pwm):

 self.pwmL.ChangeDutyCycle(pwm)

 def forwardL(self):

 gpio.output(self.motorLB, False)

 gpio.output(self.motorLF, True)

 def backwardL(self):

 gpio.output(self.motorLF, False)

 gpio.output(self.motorLB, True)

 def startR(self):

 self.pwmR.start(float(self.duty))

 def stopR(self):

 gpio.output(self.motorRF, False)

 gpio.output(self.motorRB, False)

 def setPWMR(self, pwm):

 self.pwmR.ChangeDutyCycle(pwm)

 def forwardR(self):

 gpio.output(self.motorRB, False)

 gpio.output(self.motorRF, True)

 def backwardR(self):

 gpio.output(self.motorRF, False)

 gpio.output(self.motorRB, True)

 def clean(self):

 gpio.cleanup()

 def turnRight(self, delay=0):

 self.start()

 self.backwardL()

 self.forwardR()

 if delay != 0:

87

 time.sleep(delay)

 self.stopL()

 self.stopR()

 self.pwmL.stop()

 self.pwmR.stop()

 def turnLeft(self, delay=0):

 self.start()

 self.forwardL()

 self.backwardR()

 if delay != 0:

 time.sleep(delay)

 self.stopL()

 self.stopR()

 self.pwmL.stop()

 self.pwmR.stop()

 def goForward(self, delay=0):

 self.start()

 self.forwardL()

 time.sleep(0.1)

 self.forwardR()

 if delay != 0:

 time.sleep(delay)

 self.stopR()

 self.stopL()

 self.pwmL.stop()

 self.pwmR.stop()

 def goBackward(self, delay=0):

 self.start()

 self.backwardR()

 self.backwardL()

 if delay != 0:

 time.sleep(delay)

 self.stopR()

 self.stopL()

 self.pwmL.stop()

 self.pwmR.stop()

“MasterControl.py”

__author__ = 'Andre'

from VideoModule import *

from MotorControl import *

class MasterControl:

 def __init__(self, opencamera=0):

 self.depthinvpol = [831.6204780016491, 0.913031178353066, -

2.559894453263738]

 self.lateralinvpol = [451.2049, 0.8331, -2.1606]

88

 self.lateralDistRatio = 0

 self.pwm = 80

 self.velocity = 23 #23 cm por segundo

 self.turn = 180 #graus por seg

 self.vm = VideoModule(opencamera);

 self.mc = MotorControl();

 #y = c[0]/(x^c[1]) + c[2]

 def inverseval(self, coef, x):

 return coef[0]/(x**coef[1]) + coef[2]

 def polyval(self, poly, x):

 y = 0

 for i in range(len(poly)):

 value = poly[i]*pow(x, i)

 y += value

 return y

 def depth(self, radius):

 return self.inverseval(self.depthinvpol, radius)

 def lateralDist(self, lateralPixelDist, radius):

 dep = self.depth(radius)

 ratio = self.inverseval(self.lateralinvpol, dep)

 print "Ratio: " + str(ratio)

 return lateralPixelDist/ratio

 def start(self):

 print 'Starting:'

 self.vm.openCamera()

 while self.vm.camera.isOpened():

 _, frame = self.vm.camera.read()

 frame = cv2.flip(frame, 1)

cv2.circle(frame,(self.vm.center[0],self.vm.center[1]),1,(0,0,255),2)

 cv2.imshow('WebCam', frame)

 #print time.time() - start

 key = cv2.waitKey(1)

 if key == 113: #'q'

 circle = None

 while circle is None:

 circle = self.vm.takeashot()

 x = circle[0][0][0]

 r = circle[0][0][2]

 center = self.vm.center[0]

 leftOrRight = 0 #left

 lateralPixel = 0

 if x > center:

 leftOrRight = 1

 lateralPixel = x - center

 distance = self.depth(r)

89

 #lateralDistance = self.lateralDist(lateralPixel,

distance)

 print distance

 #print lateralDistance

 elif key == 27:

 break

 print 'Finalizando'

 cv2.destroyAllWindows()

 self.vm.camera.release()

 def startN(self, n=3):

 print 'Warming Up'

 self.vm.warmUp(20)

 print 'Starting:'

 self.vm.openCamera()

 while self.vm.camera.isOpened():

 #_, frame = self.vm.camera.read()

 #frame = cv2.flip(frame, 1)

#cv2.circle(frame,(self.vm.center[0],self.vm.center[1]),1,(0,0,255),2)

 #cv2.imshow('WebCam', frame)

 #print time.time() - start

 key = raw_input()

 if key == 'q': #'q'

 circle = None

 x = 0

 r = 0

 shots = 0

 while shots < n:

 circle = self.vm.takeashot()

 if circle is not None:

 shots += 1

 x += circle[0][0][0]

 r += circle[0][0][2]

 print circle[0][0][0], circle[0][0][2]

 x = x/n;

 r = r/n;

 print x, r

 center = self.vm.center[0]

 Left = 1

 lateralPixel = 0

 lateralPixel = x - center

 if lateralPixel < 0:

 Left = 0

 lateralPixel *= -1

 distance = self.depth(r)

 print "Distance: " + str(distance)

 print "Pixel Distance: " + str(lateralPixel)

 lateralDistance = self.lateralDist(lateralPixel, r)

 print "Lateral Distance: " + str(lateralDistance)

90

 angle =

math.atan(lateralDistance/distance)*180/math.pi

 print "Angle: " + str(angle)

 distance *= 0.8

 tempo = distance/self.velocity

 print "Tempo: " + str(tempo)

 self.mc.goForward(tempo)

 elif key == 'c':

 break

 print 'Finalizando'

 cv2.destroyAllWindows()

 self.vm.camera.release()

 def startandmove(self):

 #self.mc.start(self.pwm)

 print 'Starting:'

 self.vm.openCamera()

 print 'Esquentando'

 for i in range(20):

 _, frame = self.vm.camera.read()

 print 'Pronto!'

 key = raw_input()

 if key == 'd':

 circle = None

 while circle is None:

 circle = self.vm.takeashot()

 x = circle[0][0][0]

 r = circle[0][0][2]

 print 'Raio: ' + str(r)

 center = self.vm.center[0]

 leftOrRight = 0 #left

 lateralPixel = x - center

 distance = self.depth(r)

 lateralDistance = self.lateralDist(lateralPixel, distance)

 print 'Distance: ' + str(distance)

 print 'Lateral Distance:' + str(lateralDistance)

 angle = atan(lateralDistance/distance)

 angle = angle*180/math.pi

 #time = distance/self.moveratio

 #print 'Time: ' + str(time)

 #self.mc.goForward(time)

 #print lateralDistance

 elif key == 'q':

 print 'Finalizando'

 cv2.destroyAllWindows()

 self.vm.camera.release()

91

 def nDistance(self, n=10):

 if (not self.vm.isOpen):

 self.openCamera()

 r = []

 dist = []

 shots = 0

 self.vm.openCamera()

 #self.vm.warmUp(20)

 print 'Starting'

 while shots < n:

 circle = self.vm.takeashot()

 if circle is not None:

 shots +=1

 print str(circle)

 r = circle[0][0][2]

 print self.depth(r)

 #time.sleep(0.1)

 print 'Finalizando'

 cv2.destroyAllWindows()

 self.vm.camera.release()

 def nDistanceMean(self, n=10, mean=1):

 if (not self.vm.isOpen):

 self.vm.openCamera()

 self.vm.warmUp(50)

 shots = 0

 fname = "ndistance" + str(n) + "Mean" + str(mean) + ".txt"

 file = open(fname, "w")

 distance = []

 times = []

 x = []

 r = []

 file.write(str(n) + '\n')

 print 'Starting'

 while shots < n:

 start = time.time()

 tmpx = 0

 tmpr = 0

 tmpmean = 0

 while tmpmean < mean:

 circle = self.vm.takeashot()

 if circle is not None:

 tmpmean += 1

 tmpx += circle[0][0][0]

 tmpr += circle[0][0][2]

 shots +=1

 tmpx = tmpx/mean

 tmpr = tmpr/mean

 x.append(tmpx)

92

 r.append(tmpr)

 d = self.depth(tmpr)

 distance.append(d)

 times.append(time.time() - start)

 #print time.time() - start

 print tmpx, tmpr, d

 time.sleep(0.1)

 xmean = 0

 rmean = 0

 dmean = 0

 print "Starting analytics: Mean"

 for i in range(len(x)):

 file.write(str(x[i]) + ' ')

 xmean += x[i]

 file.write(str(r[i]) + ' ')

 rmean += r[i]

 file.write(str(distance[i]) + ' ')

 dmean += distance[i]

 file.write(str(times[i]) + '\n')

 xmean = xmean/n

 rmean = rmean/n

 dmean = dmean/n

 xvar = 0

 rvar = 0

 dvar = 0

 print 'Starting analytics: Variance'

 for i in range(len(x)):

 xvar += (x[i] - xmean)*(x[i] - xmean)

 rvar += (r[i] - rmean)*(r[i] - rmean)

 dvar += (distance[i] - dmean)*(distance[i] - dmean)

 xvar = xvar/n

 rvar = rvar/n

 dvar = dvar/n

 xdev = math.sqrt(xvar)

 rdev = math.sqrt(rvar)

 ddev = math.sqrt(dvar)

 file.write('\n')

 file.write('Mean Deviation Variance\n')

 file.write('x: ' + str(xmean) + ' ' + str(xdev) + ' ' +

str(xvar) + '\n')

 file.write('r: ' + str(rmean) + ' ' + str(rdev) + ' ' +

str(rvar) + '\n')

 file.write('d: ' + str(dmean) + ' ' + str(ddev) + ' ' +

str(dvar) + '\n')

 self.vm.cleanUp()

 file.close()

 print 'Finished'

 def lockAndDistance(self, n=10):

 print 'Abrindo a camera...'

 self.vm.openCamera()

93

 print 'Pronto!'

 while self.vm.camera.isOpened():

 _, frame = self.vm.camera.read()

 frame = cv2.flip(frame, 1)

cv2.circle(frame,(self.vm.center[0],self.vm.center[1]),1,(0,0,255),2)

 cv2.imshow('WebCam', frame)

 #print time.time() - start

 key = cv2.waitKey(1)

 if key == 113:

 self.nDistance(n)

 elif key == 27:

 break

 def nLateralDistanceMean(self, n=10, mean=1):

 if (not self.vm.isOpen):

 self.vm.openCamera()

 self.vm.warmUp(50)

 shots = 0

 fname = "ndistance" + str(n) + "Mean" + str(mean) + ".txt"

 file = open(fname, "w")

 distance = []

 dep = []

 times = []

 x = []

 r = []

 file.write(str(n) + '\n')

 print 'Starting'

 while shots < n:

 start = time.time()

 tmpx = 0

 tmpr = 0

 tmpmean = 0

 while tmpmean < mean:

 circle = self.vm.takeashot()

 if circle is not None:

 tmpmean += 1

 tmpx += circle[0][0][0]

 tmpr += circle[0][0][2]

 shots +=1

 tmpx = tmpx/mean

 tmpr = tmpr/mean

 x.append(tmpx)

 r.append(tmpr)

 offset = tmpx - 320

 if offset < 0:

 offset = offset*-1

 d = self.lateralDist(offset, tmpr)

 distance.append(d)

 dep.append(self.depth(tmpr))

 times.append(time.time() - start)

 #print time.time() - start

94

 print tmpx, tmpr, d

 time.sleep(0.1)

 xmean = 0

 rmean = 0

 dmean = 0

 depmean = 0

 print "Starting analytics: Mean"

 for i in range(len(x)):

 file.write(str(x[i]) + ' ')

 xmean += x[i]

 file.write(str(r[i]) + ' ')

 rmean += r[i]

 file.write(str(distance[i]) + ' ')

 dmean += distance[i]

 file.write(str(times[i]) + '\n')

 depmean += dep[i]

 xmean = xmean/n

 rmean = rmean/n

 dmean = dmean/n

 depmean = depmean/n

 xvar = 0

 rvar = 0

 dvar = 0

 depvar = 0

 print 'Starting analytics: Variance'

 for i in range(len(x)):

 xvar += (x[i] - xmean)*(x[i] - xmean)

 rvar += (r[i] - rmean)*(r[i] - rmean)

 dvar += (distance[i] - dmean)*(distance[i] - dmean)

 depvar += (dep[i] - depmean)*(dep[i] - depmean)

 xvar = xvar/n

 rvar = rvar/n

 dvar = dvar/n

 depvar = depvar/n

 xdev = math.sqrt(xvar)

 rdev = math.sqrt(rvar)

 ddev = math.sqrt(dvar)

 depdev = math.sqrt(depvar)

 file.write('\n')

 file.write('Mean Deviation Variance\n')

 file.write('x: ' + str(xmean) + ' ' + str(xdev) + ' ' +

str(xvar) + '\n')

 file.write('r: ' + str(rmean) + ' ' + str(rdev) + ' ' +

str(rvar) + '\n')

 file.write('depth: ' + str(depmean) + ' ' + str(depdev) + ' '

+ str(depvar) + '\n')

 file.write('dl: ' + str(dmean) + ' ' + str(ddev) + ' ' +

str(dvar) + '\n')

 self.vm.cleanUp()

 file.close()

 print 'Finished'

95

“Run.py”

__author__ = 'Andre'

from MasterControl import *

mc = MasterControl(0)

mc.startN()

