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RESUMO

Neste trabalho, discutimos as simulações de n-corpos, uma importante ferramenta para
o estudo de uma das principais componentes do Universo: a matéria escura. A partir
da implementação de algoritmos para a resolução numérica dos problemas de dois e
três corpos, descrevemos as suas características e um código para a análise de sistemas
com um número qualquer de corpos que interagem unicamente através da gravidade.
Apresentamos, também, um exemplo de simulação com condições iniciais que descrevem
a colisão de duas galáxias espirais e realizamos uma comparação da eficiência do nosso
programa com o código GADGET-2, utilizado para simulações cosmológicas de n-corpos.
Com isso, concluímos a ineficiência de nosso programa para tratar um número de corpos
maior que 103. Entretanto, a sua precisão se manteve apropriada, com erro relativo
para a energia mecânica estimado na ordem de 10−3 quando testado com 60 mil corpos.
Complementarmente, utilizamos o poder computacional do supercluster Santos Dumont,
do LNCC, para complementar as análises de nossas simulações.

Palavras-chave: Problema de N-Corpos. Matéria Escura. Gadget-2. Simulação Numérica.
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1 Introdução

Um resultado amplamente aceito na comunidade científica atualmente é de que o
principal constituinte da parte massiva de nosso Universo é um componente desconhecido
chamado de Matéria Escura (DM, do inglês Dark Matter). A sua presença corresponde
a 23% (1) de todo o cosmos e a origem do termo está associada à ausência de interações
eletromagnéticas da DM com o conteúdo luminoso do Universo, denominado matéria
bariônica. Desde o século XX, diversas evidências da existência da DM foram acumuladas,
e sua presença pode ser inferida a partir do comportamento das curvas de rotação de
galáxias, efeitos de lentes gravitacionais e anisotropias na radiação cósmica de fundo.

As bases históricas do paradigma da matéria escura remontam de meados da pri-
meira metade do século XX, quando os astrônomos Ernst Öpik e Jan Hendrik Oort (em
1922 e 1932, respectivamente (1)) relataram que o conteúdo luminoso presente em algumas
galáxias não era massivo o suficiente para explicar a sua dinâmica de maneira satisfató-
ria. Em 1933 o conceito de matéria escura foi adotado, quando o astrônomo suiço Fritz
Zwicky cunhou o termo após estudar o aglomerado de galáxias Coma e inferiu, a partir
do teorema do Virial, que a massa do cluster deveria ser 400 vezes maior que a massa
luminosa observada para que o sistema estivesse em equilíbrio dinâmico (2).

Porém, somente em 1970 a hipótese da DM foi consolidada, a partir do trabalho
dos astrônomos Vera Cooper Rubin e William Kent Ford sobre curvas de rotação de
galáxias espirais (1). A partir de medidas de velocidade mais precisas que as existentes
até então, eles observaram que existia uma lacuna na massa esperada para as galáxias, de
modo que a quantidade de matéria luminosa não era o suficiente para explicar a rotação
das estrelas distantes do centro. Tal resultado poderia ser explicado com uma alteração
no perfil de densidade das galáxias, adicionando-se um halo de matéria não visível.

Dada a ausência de interações eletromagnéticas, a gravidade é a principal interação
sofrida pela matéria escura. Em virtude disso, as simulações numéricas de n-corpos são
uma importante ferramenta no estudo da distribuição de DM em sistemas físicos, uma
vez que podemos acompanhar a evolução das posições e velocidades das partículas de DM
durante a evolução do sistema sem precisar de muitas suposições acerca da composição
delas. Os físicos Navarro, Frenk e White contribuíram de maneira notória para esse estudo.
A partir do trabalho sobre a estrutura de halos de matéria escura não relativística (3), eles
forneceram, com o uso de simulações de n-corpos, um modelo geral para a distribuição
de DM em halos galácticos. Essa parametrização, conhecida como perfil NFW, permitiu
estimar de maneira quantitativa a massa luminosa faltante nas galáxias somente a partir
dos dados observacionais de curvas de rotação.

Nosso objetivo neste trabalho é estudar os conceitos fundamentais que estão asso-
ciados às simulações de n-corpos, implementando um código em python que nos permite
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acompanhar a evolução de sistemas com um número qualquer de partículas que interagem
unicamente através da gravidade e comparando o desempenho de nosso programa com
um código já existente na literatura da área, o GADGET-2.
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2 Desenvolvimento

2.1 Problema de Dois Corpos

A teoria por trás das simulações de n-corpos baseia-se, principalmente, na reso-
lução do chamado problema de n-corpos. Dado um número de partículas interagindo
entre si, o problema consiste em determinar as trajetórias em função do tempo para cada
corpo. O primeiro a explorar matematicamente esse problema foi Isaac Newton (4) em sua
obra Princípios Matemáticos da Filosofia Natural, quando resolveu o problema de forma
analítica para dois corpos interagindo gravitacionalmente. Newton baseou a sua solução
puramente em métodos geométricos, nesta seção, apresentamos uma outra abordagem,
utilizada em cursos de graduação, para a solução do problema de dois corpos: a partir do
cálculo diferencial e integral. Com isso, temos o objetivo de introduzir o problema para,
em seguida, expandi-lo para um número maior de corpos.

Inicialmente, consideramos em um referencial inercial dois corpos pontuais de mas-
sas m1 e m2 com vetores posição r⃗1 e r⃗2 com relação a origem do sistema, tal qual mostrado
na Figura 1.

Figura 1 – Posições de duas massas pontuais, m1 e m2.
Fonte: Elaborada pelo autor.

Seja r⃗ o vetor posição que liga o corpo 1 ao corpo 2,

r⃗ = r⃗2 − r⃗1, (1)

e r̂ o seu versor unitário,

r̂ = r⃗

r
, (2)

a força F⃗12 realizada pelo corpo 2 sobre o corpo 1 e a força F⃗21 realizada pelo corpo 1
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sobre o corpo 2 são descritas pela lei da gravitação universal,

F⃗ = Gm1m2

r2 r̂, (3)

com F⃗12 = −F⃗21.

Pela segunda lei de Newton, escrevemos

m1 ¨⃗r1 = Gm1m2

r3 r⃗ (4)

e
m2 ¨⃗r2 = −Gm1m2

r3 r⃗, (5)

que levam às equações de movimento do sistema:

¨⃗r1 = Gm2
r⃗

r3 (6)

e
¨⃗r2 = −Gm1

r⃗

r3 . (7)

Obtemos duas equações diferenciais ordinárias acopladas e temos como objetivo
determinar as posições de cada corpo em função do tempo. Inicialmente, vamos apresentar
uma análise da solução analítica dessas equações. Em seguida, apresentamos uma solução
numérica de modo a introduzir os métodos computacionais a serem utilizados no decorrer
deste trabalho.

2.1.1 Solução Analítica

Introduzindo-se o vetor R⃗ que representa a posição do centro de massa do sistema,

R⃗ = m1r⃗1 + m2r⃗2

m1 + m2
, (8)

e utilizando a equação (1), podemos escrever os vetores posição de ambos os corpos como

r⃗1 = R⃗ − m2

m1 + m2
r⃗ (9)

e
r⃗2 = R⃗ + m1

m1 + m2
r⃗. (10)

Desse modo, a partir de (9) e (10) em (6) e (7), obtemos as equações


¨⃗
R − m2

m1+m2
¨⃗r = Gm2

r⃗
r3

¨⃗
R + m1

m1+m2
¨⃗r = Gm1

r⃗
r3

(11)

que, quando somadas, nos trazem:
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(m1 + m2) ¨⃗
R = 0 (12)

e
¨⃗r = −(m1 + m2)G

r⃗

r3 . (13)

Essas equações nos apresentam duas consequências importantes: a primeira é que o centro
de massa é um referencial inercial, dada que a derivada segunda de seu vetor posição é
zero. A segunda é que o problema de dois corpos se reduziu a uma equação que representa
um corpo interagindo gravitacionalmente com o centro de massa do sistema e com sua
posição dada pelo vetor r⃗.

Escrevendo o vetor aceleração ¨⃗r em coordenadas polares,

¨⃗r = (r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂, (14)

e substituindo na equação (13), com M = m1 + m2, obtemos

−GM

r2 r̂ = (r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂. (15)

A componente radial dessa equação nos leva a conservação do módulo do momento
angular:

2ṙθ̇ + rθ̈ = 0 (16)

⇒ 2rṙθ̇ + r2θ̈ = 0

⇒ θ̇
d(r2)

dt
+ r2θ̈ = 0

⇒ d(θ̇r2)
dt

= 0.

Como θ̇r2 = l
µ
, onde µ é a massa reduzida do sistema, temos que l é constante, conse-

quentemente, o movimento dos corpos com relação ao centro de massa é realizado em um
plano.

Além disso, a componente radial da equação (15) nos leva a

r̈ − l2

µ2r3 = −GM

r2 . (17)

Realizando-se uma mudança de variável (5), podemos escrever a equação acima como

d2

dθ2

(1
r

)
+ 1

r
= GMµ2

l2 (18)

cuja solução, em coordenadas polares, será
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r(θ) = α

1 + εcosθ
, (19)

onde ε é a excentricidade e α ≡ l2

µ2GM
é chamada de semi-latus rectum da órbita.

A equação (19) é a equação polar de cônicas e pode representar elipses, hipérboles
ou parábolas a depender do valor de ε. Para ε = 0, temos uma trajetória circular; para
0 < ε < 1 a trajetória será uma elipse com o centro de massa ocupando um dos focos; Para
ε = 1 e ε > 1 temos trajetórias parabólicas e hiperbólicas, respectivamente. Na Figura
2, temos a representação qualitativa das diferentes seções cônicas obtidas com diferentes
valores de ε.

Figura 2 – Diferentes tipos de órbitas para o problema de dois corpos. α foi selecionado
como sendo igual a 1 unidade de distância, mesma unidade dos eixos.
Fonte: Elaborada pelo autor.

2.1.2 Solução Numérica

Para a resolução numérica do problema de dois corpos é conveniente resolver as
equações (6) e (7) para cada componente do vetor r⃗i separadamente. Desse modo, escre-
vemos

ẍ1 = Gm2
x2 − x1

r3 , ÿ1 = Gm2
y2 − y1

r3 , z̈1 = Gm2
z2 − z1

r3 (20)

e
ẍ2 = −Gm1

x2 − x1

r3 , ÿ2 = −Gm1
y2 − y1

r3 , z̈2 = −Gm1
z2 − z1

r3 , (21)

onde obtemos 6 equações diferenciais ordinárias de segunda ordem acopladas. Para a
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resolução, precisaremos de 12 condições iniciais, no qual é mais conveniente utilizar as
componentes da posição e velocidade iniciais de cada corpo.

Inicialmente, declaramos um valor para a constante gravitacional G e definimos
as condições iniciais do sistema. Os valores de posição e velocidade dos corpos em cada
instante de tempo da simulação serão armazenados em uma estrutura chamada ‘vetor de
estado’, um array s na forma

s =
r⃗1 v⃗1

r⃗2 v⃗2

 =
x1 y1 z1 ẋ1 ẏ1 ż1

x2 y2 z2 ẋ2 ẏ2 ż2


a partir do qual utilizaremos para visualizar os dados de cada corpo no decorrer da
simulação.

Acompanhado do vetor de estado, outra estrutra importante que utilizaremos será
a sua derivada temporal, ou seja, o vetor ṡ dado por

ṡ =
 ˙⃗r1 ˙⃗v1

˙⃗r2 ˙⃗v2

 =
ẋ1 ẏ1 ż1 ẍ1 ÿ1 z̈1

ẋ2 ẏ2 ż2 ẍ2 ÿ2 z̈2


que nos auxiliará na resolução numérica de nosso problema.

Após definidas as condições iniciais do sistema, armazenadas em um vetor de
estado s0, o primeiro passo de nosso algoritmo de resolução é determinar as acelerações
de cada corpo, ou seja, as componentes ˙⃗v1 e ˙⃗v2 do vetor ṡ durante um certo incremento
de tempo, e isso é feito a partir das equações (6) e (7).

Dadas as velocidades iniciais dos corpos e as acelerações obtidas, podemos cons-
truir a estrutura ṡ0 e integrá-la numericamente com um passo de tempo ∆t para obter as
próximas posições e velocidades. Realizando-se esse procedimento para um intervalo de
tempo desejado, obtemos a evolução temporal das trajetórias de cada corpo. O algoritmo
de integração numérica utilizado para isso foi o método de Runge-Kutta de quarta ordem
(RK4). A escolha deste método dentre todos os outros abordados no campo do cálculo
numérico é a sua simplicidade de implementação, garantindo uma boa precisão e bom
custo computacional sem exigir muita complexidade na escrita do código.

Por fim, o último complemento de nosso código para a solução numérica do pro-
blema de dois corpos é uma função que computa a energia mecânica total do sistema em
cada passo de integração, armazenando esse valor para se ter como estatística ao fim da
simulação.

O código foi implementado em python e pode ser encontrado na referência (6).
Como exemplo de execução, utilizamos as condições iniciais descritas em (7),

m1 = m2 = 1, 0 × 1026kg
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s0 =
 0 0 0 10 20 40
3000 0 0 0 40 0

 ,

com unidades de distância em [km], unidades de velocidade em [km/s] e um intervalo de
simulação de 0 a 520s. O programa resultou nos gráficos apresentados nas Figuras 3 e 4.

Figura 3 – Resultados da simulação numérica para o problema de dois corpos. (a) Visu-
alização da evolução temporal do sistema em um referencial inercial qualquer.
(b) Evolução temporal do sistema no referencial do centro de massa.
Fonte: Elaborada pelo autor.

Figura 4 – Análise da conservação da energia mecânica do sistema, onde KE representa
a energia cinética, TE, a energia mecânica total e PE, a energia potencial.
Fonte: Elaborada pelo autor.
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Na Figura 3a temos a evolução temporal das posições do sistema em um referencial
inercial qualquer. Na Figura 3b observamos uma das consequências da equação (19): de
que a órbita dos corpos no referencial do centro de massa é realizada em seções de cônicas,
neste caso, em elipses. Além disso, na Figura 4 temos a análise da conservação da energia
mecânica do sistema.

2.2 Problema de Três Corpos

O problema de três corpos surge como uma expansão natural do problema anterior,
visto que a maioria dos sistemas físicos interagentes gravitacionalmente, como sistemas
planetários, são compostos por um número de corpos maior que dois. Contudo, apesar da
presença mais significativa na natureza, tais sistemas já não apresentam solução analítica
geral, mesmo para um número de corpos n = 3, apenas em alguns casos específicos sob
suposições especiais a respeito do tipo de movimento e interação (8).

A dificuldade em derivar uma solução geral para este problema está no fato de não
existir, até onde sabemos, transformações de coordenadas que simplificam o sistema (4),
como o que foi feito para o caso de dois corpos, ao tratarmos o problema no referencial do
centro de massa — onde tivemos o trabalho de resolver apenas uma equação diferencial.
Em consequência dessa dificuldade, ao longo da história, a implementação de diversos
métodos computacionais contribuiu para a resolução do problema e, atualmente, sistemas
com n > 2 corpos são analisados com grande precisão numericamente.

A formulação do problema de três corpos parte da lei da gravitação universal
de Isaac Newton, apresentada na seção anterior. Consideramos um sistema referencial
inercial cartesiano com três corpos de massas m1, m2 e m3 com posições dadas pelos
vetores r⃗1, r⃗2 e r⃗3, respectivamente, com relação a origem do sistema, como mostrado na
Figura 5.

A força resultante que atua em cada corpo de massa mi é a soma vetorial das
forças que cada corpo de massa mj faz sobre ele,

F⃗i =
∑
j ̸=i

F⃗ij. (22)

Pela segunda lei de Newton, obtemos a equação de movimento para cada um dos três
corpos:

m1 ¨⃗r1 = Gm1m2

r3
12

r⃗12 + Gm1m3

r3
13

r⃗13, (23)

m2 ¨⃗r2 = −Gm2m1

r3
12

r⃗12 + Gm2m3

r3
23

r⃗23 (24)

e
m3 ¨⃗r3 = −Gm3m1

r3
13

r⃗13 − Gm3m2

r3
23

r⃗23. (25)
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Figura 5 – Posições de três massas pontuais: m1, m2 e m3.
Fonte: Elaborada pelo autor.

Para este caso, vamos abordar apenas a solução numérica. Além disso, vamos
simplificar o problema resolvendo-o em um plano, ou seja, apenas as componentes x e y

de nosso sistema. Desse modo, o vetor de estado será da forma

s =


r⃗1 v⃗1

r⃗2 v⃗2

r⃗3 v⃗3

 =


x1 y1 ẋ1 ẏ1

x2 y2 ẋ2 ẏ2

x3 y3 ẋ3 ẏ3

.

Após definidas as condições iniciais do problema, armazenando na estrutura s0,
semelhante ao abordado na seção anterior, o primeiro passo de nosso script é determinar as
acelerações de cada corpo a partir das equações (23), (24) e (25). Em seguida, realizamos
o procedimento já descrito para determinar as trajetórias dos corpos para cada passo
temporal. A implementação do script completo pode ser consultada na referência (6).

2.2.1 Problema de Três Corpos Restrito

Assim como foi feito na seção anterior, apresentamos um teste de nosso código,
em um caso particular do problema de três corpos cuja solução é estável e periódica. As
condições iniciais deste exemplo foram retiradas de (9) e o vetor de estado inicial é dado
por:

s0 =


−1 0 0.3471128135672417 0.532726851767674
1 0 0.3471128135672417 0.532726851767674
0 0 −2 × 0.3471128135672417 −2 × 0.532726851767674

 . (26)

As trajetórias correspondentes à solução deste problema formam a figura ‘∞’ no
plano x-y, como mostrado na Figura 6. Para este sistema, a constante gravitacional foi
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definida como G = 1 e foram selecionadas as massas m1, m2 e m3 também com valor
unitário. Como o valor da constante G foi alterado, as unidades de massa (um), tempo
(ut) e distância (ud) do sistema devem satisfazer

ud3

um · ut2 = 1
6, 6743 × 10−11

m3

kg · s2 . (27)

O intervalo de simulação utilizado foi de 0 a 1, 5ut. Alterando-se este parâmetro,
foi observado que os corpos retornam às suas posições iniciais e o movimento começa a se
repetir ciclicamente após um período T = 6, 325ut, como mostrado na Figura 6b.

Figura 6 – Resultados da simulação numérica para um problema particular de três corpos.
(a) Visualização das trajetórias do sistema para um intervalo de t = 0ut à t =
1, 5ut. (b) Visualização das trajetórias do sistema para um período completo,
t = 0ut à t = 6, 325ut.
Fonte: Elaborada pelo autor.

Na Figura 7, temos um gráfico da variação das energias cinética e potencial do
sistema durante um período completo, onde podemos observar a conservação da energia
mecânica total.

A partir deste exemplo, exploramos uma característica de problemas de n-corpos
com n > 2: a dependência extremamente sensível à mudanças nas condições iniciais. Para
isso, alteramos em 5% o valor da componente y da velocidade inicial do terceiro corpo.
Apenas com essa mudança, as trajetórias passam a apresentar um movimento irregular
e sem periodicidade. O gráfico das novas posições em função do tempo é apresentado
na Figura 8. Atribuímos esse comportamento ao fato de que qualquer sistema composto
por três ou mais corpos interagindo sob a ação de forças não lineares, como a força
gravitacional, ao ser submetido a modificações em seu estado em um determinado instante
de tempo, passa a apresentar um comportamento caótico (4).
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Figura 7 – Análise da conservação da energia mecânica do sistema durante um intervalo
de t = 0ut à t = 6, 3250ut.
Fonte: Elaborada pelo autor.

Figura 8 – Trajetórias do sistema composto por três corpos descritos pelas condições ini-
ciais (26) sujeito a um acréscimo de 5% na componente y da velocidade do 3º
corpo. O intervalo de simulação utilizado foi de t = 0ut à t = 20ut.
Fonte: Elaborada pelo autor.

2.3 Simulação de n-corpos

A partir dos códigos anteriores, vemos que algumas estruturas se repetem inde-
pendente do número de corpos que trabalhamos: como um método para a determinar as
forças em cada instante, uma função para a integração numérica das acelerações e velo-
cidades e uma rotina para o cálculo da energia mecânica do sistema. Com base nisso, e
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aproveitando-se do paradigma de orientação à objetos da linguagem python, foi conveni-
ente armazenar essas estruturas em uma classe, denominada nBody, onde a partir dela
podemos criar um objeto que recebe como parâmetro de inicialização o número de corpos
e possui como métodos internos funções que permitem realizar a simulação. Nesta seção,
descrevemos a implementação dessa classe, que generaliza os casos anteriores, realizando
uma simulação de n-corpos.

2.3.1 Arquitetura da Simulação Implementada

Figura 9 – Esquema de funcionamento do código da simulação de n-corpos.
Fonte: Elaborada pelo autor.

A arquitetura do código desenvolvido é exemplificada no esquema da Figura 9. A
primeira parte do algoritmo é a criação do objeto de nossa simulação, que recebe como
parâmetro um vetor de estado s0 com as condições iniciais do sistema, um vetor com os
valores de massa de cada corpo e o intervalo de tempo, junto com o passo, utilizado. É
nessa etapa que o código identifica o número de corpos que será utilizado na simulação.

O segundo bloco do esquema apresenta a parte mais importante do código: como
ele vai executar a simulação em si. Neste trecho, temos uma rotina que possui duas partes
principais: um algoritmo que determina as forças e, consequentemente, as acelerações de
cada corpo e um integrador numérico que determina as posições e velocidades do sistema
em cada instante de tempo. É nessa etapa que os códigos de simulações de n-corpos se
diferenciam, pois existem diversos algoritmos para o cálculo das acelerações e diversos
integradores numéricos. Neste trabalho, utilizamos o algoritmo de interação “partícula-
partícula” (PP) e o integrador descrito anteriormente, RK4.

O algoritmo de interação PP utiliza a equação (22) para determinar a força exer-
cida em cada corpo a partir da soma das forças provocadas por todos os outros corpos do



20

sistema, sem realizar qualquer tipo de simplificação ou aproximação. É o método mais
simples e intuitivo de simulações de n-corpos e retorna com precisão as acelerações de
cada partícula. Consequentemente, possui um desempenho computacional que diminui
conforme se aumenta o número de corpos, uma vez que para atualizar cada partícula é
necessário conhecer as informações de todos as outras, acarretando em um custo O(N2).

No segundo bloco do código, também determinamos as energias cinética, potencial
e mecânica total do sistema. Por fim, a última parte do esquema representa a saída do
algoritmo. Nessa etapa, o código retorna um array tridimensional com as posições e
velocidade dos corpos em cada instante de simulação, além de um array com as energias
do sistema.

2.3.2 Suavização Gravitacional

As interações realizadas pela matéria escura em pequenas escalas ainda são um
problema em aberto na física. Apesar da existência de diversas hipóteses — como, por
exemplo, a aniquilação em raios gama —, ainda não se sabe o comportamento destes
corpos conforme se aproximam. Além disso, um ‘problema’ presente nas simulações de
n-corpos é que quando a distância entre dois corpos tende a zero, a força gravitacional
apresenta uma singularidade, levando a uma divergência na energia cinética do sistema.
Tal comportamento não acontece em problemas físicos reais, em razão da atuação de
forças que contrapõem a gravitacional para pequenas distâncias.

Com isso, as simulações gravitacionais de n-corpos para o estudo da DM, pre-
sentes na literatura da área, utilizam uma estratégia para escapar desses problemas.
Introduzindo-se um comprimento de amortecimento (10) na equação geral da força gra-
vitacional entre dois corpos,

F⃗ = Gmimj

(r2
ij + ϵ2)3/2 (r⃗i − r⃗j), (28)

modificamos o seu valor para pequenas escalas. Para ϵ << rij essa equação se aproxima
da força gravitacional regular, para ϵ >> rij a força se torna constante.

Desse modo, ϵ limita quão perto as estruturas podem se aproximar de modo a
serem tratadas numericamente. A escolha do valor de ϵ varia de acordo com a precisão
desejada, além dos tipos de interações incluídos na simulação realizada. Assim, introduzi
esta modificação na classe nBody, generalizando o código para tratar os corpos de maneira
acolisional.

2.4 O Código GADGET-2

Para testar o desempenho de nosso código e avaliarmos outras métricas relevantes
na execução de nossa simulação, decidimos compará-lo com o programa em código aberto
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GADGET-2 (11), comumente utilizado na literatura para simulações cosmológicas de n-
corpos. Com isso, além de avaliar nosso programa, estudamos um código já otimizado,
visto que a otimização de nosso algoritmo não está dentro do escopo deste trabalho, uma
vez que ele foi implementado como meio de estudar os conceitos elementares associados
às simulações de n-corpos.

GAlaxies with Dark matter and Gas intEracT (GADGET) é um código-fonte gra-
tuito utilizado para a realização de simulações cosmológicas e de formação de grandes
estruturas a partir de uma abordagem de n-corpos. O programa teve sua primeira ver-
são publicada em 2001 (11) e permite também incluir interações de matéria bariônica em
suas simulações, a partir do método de hidrodinâmica de partículas suavizadas. A escolha
deste código para a utilização no trabalho se deve em razão da sua boa documentação,
além de ser open-source, tendo sido escrito na linguagem C e permitindo modificações de
acordo com os interesses de cada simulação.

Ademais, uma grande vantagem de se trabalhar com o GADGET-2 é o seu desempe-
nho computacional, uma vez que o código é muito bem otimizado por utilizar o recurso
de paralelização e um algoritmo em árvore — com custo temporal O(NlogN) — para
executar as simulações.

O algoritmo em árvore é um aprimoramento do algoritmo PP. Nele, as partículas
distantes são agrupadas e as contribuições de cada uma para a força total não são calcula-
das individualmente, mas sim, do grupo como um todo a partir de expansões multipolares
em torno do centro de massa do conjunto. Desse modo, o algoritmo divide o espaço em
uma árvore onde cada nó corresponde a uma partícula que pode representar um grupo
a depender de sua distância. Como a força gravitacional decresce com o quadrado da
distância, essas aproximações são fisicamente válidas. O algoritmo controla os erros de
precisão através do ângulo de abertura, um parâmetro que diz o quão pequeno e distante
o grupo é para utilizar a aproximação.

2.4.1 Exemplo de Execução: colisão de galáxias espirais

Como exemplo de execução do GADGET-2, executamos uma simulação de dinâmica
galáctica, cujas condições iniciais descrevem duas galáxias espirais que interagem apenas
gravitacionalmente. A distribuição inicial do sistema pode ser encontrada no primeiro
quadro da Figura 10 e cada galáxia possui um disco estelar e um halo de matéria escura
compostos por 10 mil e 20 mil corpos, respectivamente. As condições iniciais desse sistema
foram obtidas juntas com o código e a sua evolução temporal descreve a colisão dessas
galáxias.

Executando-se este arquivo de condições iniciais em um intervalo de 0 a 4×109 anos

(um total de 4096 passos de integração), obtivemos as distribuições mostradas na Figura
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10. O tempo total de execução foi de apenas 5 minutos e 10 segundo, tendo o código sido
executado em computador pessoal com 16GB de memória RAM, um processador 11th
Gen Intel Core™ i7-1165G7 @ 2.80GHz × 8 e uma placa de vídeo NVIDIA GeForce GTX
1050. O volume de simulação foi distribuído entre 4 processadores.

Figura 10 – Evolução da simulação de colisão de duas galáxias espirais interagindo exclu-
sivamente através da gravidade. Na figura, temos um recorte no plano x-y,
uma vez que o sistema é tridimensional. Executando-se a simulação por um
intervalo de tempo maior, o sistema resultará em uma galáxia elíptica.
Fonte: Elaborada pelo autor.

Após a execução, recriamos a simulação no código de n-corpos escrito em python
descrito anteriormente. Em virtude da execução deste exemplo ser lenta, e para extrair
mais informações, realizamos uma análise do tempo que seria necessário para executar
a simulação completa, visando avaliar o desempenho de nosso programa e estimar quais
os limites que devem ser atribuídos para as simulações de n-corpos com o algoritmo de
interação partícula-partícula. Para isso, executamos a simulação inúmeras vezes variando,
em cada uma delas, o número de corpos e registrando os valores de tempo.

Como apresentado por Souza (5), uma métrica que pode ser utilizada para avaliar a
precisão de simulações gravitacionais de n-corpos é o erro relativo para a energia mecânica,
definido pela equação

δE = |Em(t) − Em(0)|
Em(0) , (29)

onde Em(t) e Em(0) são os valores da energia mecânica total em um instante t e no
instante inicial para t = 0. Assim, implementamos essa análise em nosso trabalho.

Além disso, como complemento, avaliamos a dependência do erro relativo em fun-
ção do número de corpos que utilizamos na simulação. Para isso, semelhante ao descrito
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anteriormente, executamos o nosso código variando o número de corpos. Para cada execu-
ção, calculamos o erro relativo entre a energia mecânica total nos instantes final e inicial
da simulação.
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3 Resultados

Os resultados da análise do tempo de execução da simulação descrita anteriormente
podem ser vistos no gráfico da Figura 11. Através de um ajuste quadrático, uma vez que
a evolução temporal segue uma curva O(N2), podemos estimar que o código levaria 7,25
anos para ser executado com todos os 60 mil corpos durante os 4096 passos de simulação.

Figura 11 – Tempo de execução em função do número de corpos. No gráfico, temos duas
curvas representando a mesma simulação executada em um computador pes-
soal e no supercluster Santos Dumont. Para a curva azul, o ajuste quadrático
foi (0, 00106 ± 0, 00007)x2 + (0, 011 ± 0, 008)x − (0, 2 ± 0, 2) e para a curva
laranja (0, 00059 ± 0, 00002)x2 − (0, 003 ± 0.002)x + (0, 05 ± 0, 05).
Fonte: Elaborada pelo autor.

Além do resultado obtido em um computador pessoal, de configurações já descri-
tas acima, a mesma análise foi realizada executando-se o código no supercluster Santos
Dumont do Laboratório Nacional de Computação Científica (LNCC), distribuindo a si-
mulação entre 4 processadores. Apesar do poder computacional do cluster, a simulação
ainda levaria 4,05 anos para ser executada.

Os valores de tempo de execução levados pelo GADGET-2 para executar a mesma
simulação não estão descritos no gráfico em razão da abrupta diferença de escala entre os
resultados. A partir do gráfico, concluímos que, apesar de mais preciso, o algoritmo PP é
muito ineficiente, devendo ser utilizado preferencialmente para o estudo de sistemas com
número de corpos inferior a 103.

Para a análise da precisão da simulação, na Figura 12a mostramos a evolução
temporal do erro relativo para um caso exemplo em que foram utilizados 100 corpos.
Vemos que inicialmente o erro relativo cresce até atingir um patamar em que esse valor
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estabiliza, apresentando algumas flutuações durante esse período. Tal comportamento se
repete nos outros casos em que foram simulados um número diferente de corpos, no qual a
partir de um certo ponto o erro relativo se estabiliza em um valor até o final da simulação.

Figura 12 – (a) Erro relativo em função do tempo de execução para 100 corpos. (b) Erro
relativo em função do número de corpos simulados. Para a curva mostrada,
o ajuste linear foi (0, 0094 ± 0, 0005)x + (0, 03 ± 0, 03), com R2 = 0, 95.
Fonte: Elaborada pelo autor.

Além disso, na Figura 12b temos a dependência do erro relativo de acordo com
o número de corpos simulados. Vemos no gráfico um comportamento crescente e, se
aproximarmos esses pontos para uma reta, obtemos um coeficiente de ajuste R2 = 0, 95.
Utilizando essa curva aproximada, podemos estimar que para os 60 mil corpos utilizados
na simulação de colisão de galáxias, apesar da baixa eficiência computacional na execução
de nosso programa, o erro relativo ainda seria da ordem de 10−3.
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4 Conclusão

Neste trabalho, abordamos o paradigma da matéria escura e a sua relação com
as simulações de n-corpos. A partir da análise do problema mecânico de dois corpos,
apresentamos as soluções analítica e numérica, estendendo, em seguida, o procedimento
para sistemas com três corpos. Além disso, descrevemos o desenvolvimento de uma si-
mulação de n-corpos que utiliza como base um algoritmo de interação partícula-partícula
para computar a força gravitacional e o método de Runge-Kutta de quarta ordem para a
integração numérica. Por fim, comparamos a eficiência de nossa simulação com o código
GADGET-2, disponível na literatura para simulações cosmológicas.

Como resultado da comparação, inferimos que o algoritmo utilizado para o cálculo
da força gravitacional deve ser limitado a sistemas com um número de corpos inferior
a 103. A partir dessa ordem de grandeza, algoritmos em árvore são recomendados por
possuírem uma maior eficiência.

No quesito precisão, avaliamos o erro relativo da energia mecânica total de nosso
sistema para um exemplo de condições iniciais que descrevem a colisão de duas galáxias
espirais. Variando o número de corpos utilizados na simulação, inferimos que o erro
relativo associado a essa simulação, com 60 mil corpos, seria da ordem de 10−3.

Com isso, concluímos a nossa análise sobre as simulações gravitacionais de n-corpos
e a sua relação com a matéria escura. Cabe falar que um passo natural que pode ser dado
a este trabalho seria o estudo mais aprofundado do código GADGET-2 e a sua utilização
para analisar outros aspectos relacionados a matéria escura: como a formação de grandes
estruturas do Universo e a distribuição de matéria escura em galáxias, observando os
resultados práticos obtidos através de observações e os obtidos a partir de simulações de
n-corpos.
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