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RESUMO

Neste trabalho, discutimos as simulagoes de n-corpos, uma importante ferramenta para
o estudo de uma das principais componentes do Universo: a matéria escura. A partir
da implementacao de algoritmos para a resolucao numérica dos problemas de dois e
trés corpos, descrevemos as suas caracteristicas e um codigo para a analise de sistemas
com um numero qualquer de corpos que interagem unicamente através da gravidade.
Apresentamos, também, um exemplo de simulacdo com condigbes iniciais que descrevem
a colisao de duas galaxias espirais e realizamos uma comparacao da eficiéncia do nosso
programa com o codigo GADGET-2, utilizado para simulacoes cosmologicas de n-corpos.
Com isso, concluimos a ineficiéncia de nosso programa para tratar um nimero de corpos
maior que 103. Entretanto, a sua precisao se manteve apropriada, com erro relativo
para a energia mecanica estimado na ordem de 1073 quando testado com 60 mil corpos.
Complementarmente, utilizamos o poder computacional do supercluster Santos Dumont,

do LNCC, para complementar as analises de nossas simulacoes.

Palavras-chave: Problema de N-Corpos. Matéria Escura. Gadget-2. Simulacao Numérica.
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1 Introducao

Um resultado amplamente aceito na comunidade cientifica atualmente é de que o
principal constituinte da parte massiva de nosso Universo ¢ um componente desconhecido
chamado de Matéria Escura (DM, do inglés Dark Matter). A sua presenca corresponde
a 23% (1) de todo o cosmos e a origem do termo estd associada a auséncia de interagoes
eletromagnéticas da DM com o contetido luminoso do Universo, denominado matéria
barionica. Desde o século XX, diversas evidéncias da existéncia da DM foram acumuladas,
e sua presenca pode ser inferida a partir do comportamento das curvas de rotacao de

galaxias, efeitos de lentes gravitacionais e anisotropias na radiagao césmica de fundo.

As bases histéricas do paradigma da matéria escura remontam de meados da pri-
meira metade do século XX, quando os astronomos Ernst Opik e Jan Hendrik Oort (em
1922 e 1932, respectivamente (1)) relataram que o conteiido luminoso presente em algumas
galdxias nao era massivo o suficiente para explicar a sua dinamica de maneira satisfato-
ria. Em 1933 o conceito de matéria escura foi adotado, quando o astréonomo suico Fritz
Zwicky cunhou o termo apés estudar o aglomerado de galdxias Coma e inferiu, a partir
do teorema do Virial, que a massa do cluster deveria ser 400 vezes maior que a massa

luminosa observada para que o sistema estivesse em equilibrio dindmico (2).

Porém, somente em 1970 a hipdtese da DM foi consolidada, a partir do trabalho
dos astronomos Vera Cooper Rubin e William Kent Ford sobre curvas de rotagao de
galdxias espirais (1). A partir de medidas de velocidade mais precisas que as existentes
até entao, eles observaram que existia uma lacuna na massa esperada para as galaxias, de
modo que a quantidade de matéria luminosa nao era o suficiente para explicar a rotacgao
das estrelas distantes do centro. Tal resultado poderia ser explicado com uma alteracao

no perfil de densidade das galaxias, adicionando-se um halo de matéria nao visivel.

Dada a auséncia de interagoes eletromagnéticas, a gravidade ¢ a principal interacao
sofrida pela matéria escura. Em virtude disso, as simula¢des numéricas de n-corpos sao
uma importante ferramenta no estudo da distribuicao de DM em sistemas fisicos, uma
vez que podemos acompanhar a evolugao das posicoes e velocidades das particulas de DM
durante a evolucao do sistema sem precisar de muitas suposigoes acerca da composicao
delas. Os fisicos Navarro, Frenk e White contribuiram de maneira notéria para esse estudo.
A partir do trabalho sobre a estrutura de halos de matéria escura nao relativistica (3), eles
forneceram, com o uso de simulagoes de n-corpos, um modelo geral para a distribuicao
de DM em halos galacticos. Essa parametrizagdo, conhecida como perfil NFW, permitiu
estimar de maneira quantitativa a massa luminosa faltante nas galaxias somente a partir

dos dados observacionais de curvas de rotagao.

Nosso objetivo neste trabalho é estudar os conceitos fundamentais que estao asso-

ciados as simulacoes de n-corpos, implementando um cédigo em python que nos permite



acompanhar a evolucao de sistemas com um nimero qualquer de particulas que interagem
unicamente através da gravidade e comparando o desempenho de nosso programa com

um codigo ja existente na literatura da area, o GADGET-2.



2 Desenvolvimento

2.1 Problema de Dois Corpos

A teoria por tras das simulacoes de n-corpos baseia-se, principalmente, na reso-
lugdo do chamado problema de n-corpos. Dado um ntimero de particulas interagindo
entre si, o problema consiste em determinar as trajetorias em funcao do tempo para cada
corpo. O primeiro a explorar matematicamente esse problema foi Isaac Newton (4) em sua
obra Principios Matemdticos da Filosofia Natural, quando resolveu o problema de forma
analitica para dois corpos interagindo gravitacionalmente. Newton baseou a sua solugao
puramente em métodos geométricos, nesta secao, apresentamos uma outra abordagem,
utilizada em cursos de graduacao, para a solucao do problema de dois corpos: a partir do
calculo diferencial e integral. Com isso, temos o objetivo de introduzir o problema para,

em seguida, expandi-lo para um niimero maior de corpos.

Inicialmente, consideramos em um referencial inercial dois corpos pontuais de mas-
sas my e my com vetores posicao 77 e 73 com relagao a origem do sistema, tal qual mostrado

na Figura 1.

=~

o

~
v

Figura 1 — Posicoes de duas massas pontuais, m, e mo.
Fonte: Elaborada pelo autor.

Seja 7~ o vetor posicao que liga o corpo 1 ao corpo 2,
r=1ry—71, (1)

e 7 0 seu versor unitario,

: (2)

=>
I
=<3y

a forga F:g realizada pelo corpo 2 sobre o corpo 1 e a forca F;l realizada pelo corpo 1
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sobre o corpo 2 sao descritas pela lei da gravitagao universal,

Gm1m2 ~

F= 7, (3)

72

com F12 = _F21-

Pela segunda lei de Newton, escrevemos

e
myry = 7m§m2 7 (4)
T
¢ G
mary = —— 112 & (5)

3
que levam as equagoes de movimento do sistema:

- T
r = Gm2 3 (6)
T
(§
. 7
o = —Gm1 ﬁ (7)

Obtemos duas equagoes diferenciais ordinarias acopladas e temos como objetivo
determinar as posic¢oes de cada corpo em funcao do tempo. Inicialmente, vamos apresentar
uma analise da solugao analitica dessas equagoes. Em seguida, apresentamos uma solugao
numeérica de modo a introduzir os métodos computacionais a serem utilizados no decorrer
deste trabalho.

2.1.1 Solucdo Analitica

Introduzindo-se o vetor R que representa a posi¢ao do centro de massa do sistema,

S MyTT A+ Mary
B mn 22 (8)

mi + Mo

e utilizando a equagao (1), podemos escrever os vetores posi¢ao de ambos os corpos como

ma

f=R—- ——>—F 9
! my + Mo (9)
(&
M= Ry — (10)
mi1 + mo

Desse modo, a partir de (9) e (10) em (6) e (7), obtemos as equagoes

_'._ e 5 7

j?.i M1+m2r o Gm2r3 (11)
mi g T

R+ml+m2r—Gm1T3

que, quando somadas, nos trazem:



11

(m1 + ma)R =0 (12)

Essas equagoes nos apresentam duas consequéncias importantes: a primeira é que o centro
de massa é um referencial inercial, dada que a derivada segunda de seu vetor posicao é
zero. A segunda é que o problema de dois corpos se reduziu a uma equagao que representa
um corpo interagindo gravitacionalmente com o centro de massa do sistema e com sua

posicao dada pelo vetor 7.

Escrevendo o vetor aceleracao 7 em coordenadas polares,

P = (i — 10?)F + (276 + r0)0), (14)
e substituindo na equagao (13), com M = m; + my, obtemos

GM | . _— - A
= (7 — r0%)F + (270 + r0)0. (15)
A componente radial dessa equagao nos leva a conservacao do moédulo do momento
angular:

270 + 16 = 0 (16)

= 270+ 1%0 =0

.d(r2> 25
=0 i +7r°0=0

Como 0r? = ﬁ, onde p é a massa reduzida do sistema, temos que [ é constante, conse-
quentemente, o movimento dos corpos com relagao ao centro de massa é realizado em um

plano.

Além disso, a componente radial da equagao (15) nos leva a

2 GM
~ = (17)

Realizando-se uma mudanga de variavel (5), podemos escrever a equagao acima como

d? /1 1 GMp?
) (18)

r r 2

cuja solucao, em coordenadas polares, sera
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«

r(0) = 1 4 ecosb’

(19)

4 .. 2 , . , .
onde € é a excentricidade e a = MQIW é chamada de semi-latus rectum da orbita.

A equagao (19) é a equagdo polar de conicas e pode representar elipses, hipérboles
ou parabolas a depender do valor de . Para ¢ = 0, temos uma trajetoria circular; para
0 < € < 1 atrajetéria sera uma elipse com o centro de massa ocupando um dos focos; Para
e =1ee > 1 temos trajetorias parabodlicas e hiperbdlicas, respectivamente. Na Figura
2, temos a representacao qualitativa das diferentes se¢oes conicas obtidas com diferentes

valores de €.

1.5 — £=0,0
— £=0,5
1.0 — =10
’ £=15
0.5
3
s 0.0
==
_05_
—1.0
-1.5

T T T T T T T T
—2.5 —-2.0 —=1.5 -1.0 —0.5 0.0 0.5 1.0
X (u.d.)

Figura 2 — Diferentes tipos de d6rbitas para o problema de dois corpos. « foi selecionado
como sendo igual a 1 unidade de distancia, mesma unidade dos eixos.
Fonte: Elaborada pelo autor.

2.1.2  Solucdo Numérica

Para a resolugdo numérica do problema de dois corpos é conveniente resolver as
equagoes (6) e (7) para cada componente do vetor 7; separadamente. Desse modo, escre-

vemos

.. Tog — X1 .. Y2 — U1
71 = Gmy T , 1= Gmy ——

(20)

To — X1 .. Yo — ..
——, o= —Gmy T, H=—-Gmy

.12.2 = —Gm1 3
r

S e (21)

onde obtemos 6 equacgoes diferenciais ordinarias de segunda ordem acopladas. Para a
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resolucdo, precisaremos de 12 condigoes iniciais, no qual é mais conveniente utilizar as

componentes da posicao e velocidade iniciais de cada corpo.

Inicialmente, declaramos um valor para a constante gravitacional G' e definimos
as condicOes iniciais do sistema. Os valores de posicao e velocidade dos corpos em cada
instante de tempo da simulacao serao armazenados em uma estrutura chamada ‘vetor de

estado’, um array s na forma

(R I E T TS B S I |

T2 Vg Ty Y2 22 T2 Y2 22

a partir do qual utilizaremos para visualizar os dados de cada corpo no decorrer da

simulacao.

Acompanhado do vetor de estado, outra estrutra importante que utilizaremos sera

a sua derivada temporal, ou seja, o vetor s dado por

TLov| T Y1 A 21 &

Ty Uy To Yo 22 To Yo 22

S =

que nos auxiliara na resolugao numeérica de nosso problema.

Apos definidas as condigOes iniciais do sistema, armazenadas em um vetor de
estado sg, o primeiro passo de nosso algoritmo de resolucao é determinar as aceleragoes
de cada corpo, ou seja, as componentes v; e v3 do vetor § durante um certo incremento

de tempo, e isso ¢ feito a partir das equagdes (6) e (7).

Dadas as velocidades iniciais dos corpos e as aceleragoes obtidas, podemos cons-
truir a estrutura sy e integra-la numericamente com um passo de tempo At para obter as
proximas posicoes e velocidades. Realizando-se esse procedimento para um intervalo de
tempo desejado, obtemos a evolugdo temporal das trajetérias de cada corpo. O algoritmo
de integracao numérica utilizado para isso foi o método de Runge-Kutta de quarta ordem
(RK4). A escolha deste método dentre todos os outros abordados no campo do calculo
numérico é a sua simplicidade de implementagao, garantindo uma boa precisao e bom

custo computacional sem exigir muita complexidade na escrita do codigo.

Por fim, o ultimo complemento de nosso cédigo para a solugdo numeérica do pro-
blema de dois corpos é uma fun¢do que computa a energia mecanica total do sistema em
cada passo de integracao, armazenando esse valor para se ter como estatistica ao fim da

simulacao.

O co6digo foi implementado em python e pode ser encontrado na referéncia (6).

Como exemplo de execugao, utilizamos as condigoes iniciais descritas em (7),

mi =ms = 1,0 x 10%°kg
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0 0 0 10 20 40

So —

3000 0 0 0 40 0]’

com unidades de distdncia em [km], unidades de velocidade em [km/s] e um intervalo de

simulagao de 0 a 520s. O programa resultou nos graficos apresentados nas Figuras 3 e 4.

Referencial Inercial 'Externo’

e Corpol
e Corpo2

Z(%x10% km)

Referencial do Centro de Massa

® M
e Corpol
® Corpo?

1000

500

o
z (km)

1500

1000
_1500 1500

—1000

(b)

Figura 3 — Resultados da simulagdo numérica para o problema de dois corpos. (a) Visu-
alizagao da evolugao temporal do sistema em um referencial inercial qualquer.
(b) Evolugao temporal do sistema no referencial do centro de massa.

Fonte: Elaborada pelo autor.

I I
1 I
1.0 i ||
I | |
I || |
II |I [
0.5 - [\ [\
= S [\
-
BN / N __/
=
X 0.0
©
=y ~ —
2 \ ..."/ \\ f
W 0.5 A
| I
|| ||
[ |
(| ||
-1.0 1 | ||
| ||
| |
T T T
0 100 200

T T T
300 400 500

tempo (s)

Figura 4 — Analise da conservacao da energia mecanica do sistema, onde KE representa
a energia cinética, TE, a energia mecanica total e PE, a energia potencial.

Fonte: Elaborada pelo autor.
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Na Figura 3a temos a evolucao temporal das posi¢oes do sistema em um referencial
inercial qualquer. Na Figura 3b observamos uma das consequéncias da equagao (19): de
que a 6rbita dos corpos no referencial do centro de massa é realizada em se¢oes de conicas,
neste caso, em elipses. Além disso, na Figura 4 temos a analise da conservacao da energia

mecanica do sistema.

2.2 Problema de Trés Corpos

O problema de trés corpos surge como uma expansao natural do problema anterior,
visto que a maioria dos sistemas fisicos interagentes gravitacionalmente, como sistemas
planetarios, sdo compostos por um numero de corpos maior que dois. Contudo, apesar da
presenca mais significativa na natureza, tais sistemas ja nao apresentam solugao analitica
geral, mesmo para um numero de corpos n = 3, apenas em alguns casos especificos sob

suposigoes especiais a respeito do tipo de movimento e interagao (8).

A dificuldade em derivar uma solucao geral para este problema esta no fato de nao
existir, até onde sabemos, transformacgoes de coordenadas que simplificam o sistema (4),
como o que foi feito para o caso de dois corpos, ao tratarmos o problema no referencial do
centro de massa — onde tivemos o trabalho de resolver apenas uma equacao diferencial.
Em consequéncia dessa dificuldade, ao longo da histéria, a implementagao de diversos
métodos computacionais contribuiu para a resolucao do problema e, atualmente, sistemas

com n > 2 corpos sao analisados com grande precisao numericamente.

A formulacao do problema de trés corpos parte da lei da gravitacdo universal
de Isaac Newton, apresentada na secao anterior. Consideramos um sistema referencial
inercial cartesiano com trés corpos de massas mi, mg € ms com posicoes dadas pelos
vetores 71, 75 e T3, respectivamente, com relagdo a origem do sistema, como mostrado na

Figura 5.

A forga resultante que atua em cada corpo de massa m; é a soma vetorial das
forcas que cada corpo de massa m; faz sobre ele,
F=YF, (22)
J#i

Pela segunda lei de Newton, obtemos a equagao de movimento para cada um dos trés

COTpos:
N Gmimy Gmims
miry = ——5— T2+ —5— T3, (23)
712 713
o Gmamy Gmams
Mol = ————=—— T2+ ——5— T'23 (24)
T12 793
e
5 Gmgmy Gmgms
mgry = ——=5— T3 — —3 — T23. (25)

713 733
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Figura 5 — Posicoes de trés massas pontuais: my, mo € mg.
Fonte: Elaborada pelo autor.

Para este caso, vamos abordar apenas a solucdo numérica. Além disso, vamos
simplificar o problema resolvendo-o em um plano, ou seja, apenas as componentes x e y

de nosso sistema. Desse modo, o vetor de estado sera da forma

iU T1 Y1 T1 Y
§=|ry vyl = |T2 Y2 T2 Yol-
r3 U3 rs Y3 T3 Y3

Apés definidas as condigoes iniciais do problema, armazenando na estrutura s,
semelhante ao abordado na se¢ao anterior, o primeiro passo de nosso script é determinar as
aceleragoes de cada corpo a partir das equagoes (23), (24) e (25). Em seguida, realizamos
o procedimento ja descrito para determinar as trajetorias dos corpos para cada passo

temporal. A implementagao do script completo pode ser consultada na referéncia (6).

2.2.1 Problema de Trés Corpos Restrito

Assim como foi feito na se¢do anterior, apresentamos um teste de nosso codigo,
em um caso particular do problema de trés corpos cuja solucao é estavel e periddica. As
condigoes iniciais deste exemplo foram retiradas de (9) e o vetor de estado inicial é dado

por:

-1 0 0.3471128135672417 0.532726851767674
so=11 0 0.3471128135672417 0.532726851767674 : (26)
0 0 —2x0.3471128135672417 —2 x 0.532726851767674

As trajetérias correspondentes a solucao deste problema formam a figura ‘oo’ no

plano x-y, como mostrado na Figura 6. Para este sistema, a constante gravitacional foi
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definida como G = 1 e foram selecionadas as massas m;, mo € mg também com valor
unitario. Como o valor da constante G foi alterado, as unidades de massa (um), tempo

(ut) e distancia (ud) do sistema devem satisfazer

d? 1 3
= - i (27)
um - ut?  6,6743 x 10~ kg - s?

O intervalo de simulacao utilizado foi de 0 a 1,5ut. Alterando-se este parametro,
foi observado que os corpos retornam as suas posi¢oes iniciais e o movimento comeca a se

repetir ciclicamente apds um periodo T = 6, 325ut, como mostrado na Figura 6b.

0871 o Corpo1 081 e Corpol
e Corpo2 e Corpo2
061 @ Corpo3 061 @ Corpo3
- ——
0.4 \ 0.4
\
021 //,,r — | 0.2
—_ ~~ / —
= / S / 3
s 004 / ~ / S5 0.0
2 ~ 2
> S~ >
-0.2 e -0.2
-0.4 -0.4
-0.6 -0.6
-0.8 -0.8
—i.O —(‘)45 0‘0 015 1;0 —1‘1) —645 0:0 0:5 1.‘0
x (u.d.) x (u.d.)
(@ (b)

Figura 6 — Resultados da simulagao numérica para um problema particular de trés corpos.
(a) Visualizagao das trajetorias do sistema para um intervalo de t = Qut a t =
1,5ut. (b) Visualizacdo das trajetérias do sistema para um periodo completo,
t =0ut at=6,325ut.

Fonte: Elaborada pelo autor.

Na Figura 7, temos um grafico da variacdo das energias cinética e potencial do
sistema durante um periodo completo, onde podemos observar a conservacao da energia

mecanica total.

A partir deste exemplo, exploramos uma caracteristica de problemas de n-corpos
com n > 2: a dependéncia extremamente sensivel a mudancas nas condic¢oes iniciais. Para
isso, alteramos em 5% o valor da componente y da velocidade inicial do terceiro corpo.
Apenas com essa mudanca, as trajetérias passam a apresentar um movimento irregular
e sem periodicidade. O grafico das novas posi¢oes em funcao do tempo é apresentado
na Figura 8. Atribuimos esse comportamento ao fato de que qualquer sistema composto
por trés ou mais corpos interagindo sob a acao de forcas nao lineares, como a forca
gravitacional, ao ser submetido a modifica¢goes em seu estado em um determinado instante

de tempo, passa a apresentar um comportamento cadtico (4).
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1.5 4

1.0 A

0.5 1

0.0 1

— KE
— TE

_0.5 4

Energia

—1.0 4

-1.5 1
—-2.0 1

259 T e e

tempo (u.t.)

Figura 7 — Analise da conservacao da energia mecanica do sistema durante um intervalo
de t = Out a t = 6, 3250ut.
Fonte: Elaborada pelo autor.

0.75 A

0.50 A

0.25

0.00

—0.25

y (u.d.)

—0.50 1

—0.75

—1.00

—1.25

-1.0 —0.5 0.0 0.5 1.0
x (u.d.)

Figura 8 — Trajetérias do sistema composto por trés corpos descritos pelas condig¢oes ini-
ciais (26) sujeito a um acréscimo de 5% na componente y da velocidade do 3°
corpo. O intervalo de simulacao utilizado foi de ¢t = Out a t = 20ut.

Fonte: Elaborada pelo autor.

2.3 Simulacao de n-corpos

A partir dos codigos anteriores, vemos que algumas estruturas se repetem inde-
pendente do ntimero de corpos que trabalhamos: como um método para a determinar as
r m instante, uma funca r integracao numéri rago velo-
forcas em cada instante, a funcao para a integracao érica das aceleracoes e velo

cidades e uma rotina para o calculo da energia mecéanica do sistema. Com base nisso, e
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aproveitando-se do paradigma de orientacao a objetos da linguagem python, foi conveni-
ente armazenar essas estruturas em uma classe, denominada nBody, onde a partir dela
podemos criar um objeto que recebe como parametro de inicializagdo o nimero de corpos
e possui como métodos internos func¢odes que permitem realizar a simulacao. Nesta secao,
descrevemos a implementagao dessa classe, que generaliza os casos anteriores, realizando

uma simulac¢ao de n-corpos.

2.3.1 Arquitetura da Simulacdo Implementada

Execuc¢io da Simulagao
Saida do Cédigo

Entrada do Cédigo s N\
e 2
e Célculo das aceleragées; e \Vetores de estado em
e Condigdes iniciais; e Integrador numérico; cada instante temporal;
! . E— . -
e Massas dos corpos. e Calculo da energia e Energia mecanica do
mecanica. sistema.
§ J
\_ J
\ J N J N J
Y Y Y
Objeto Método Resposta

Figura 9 — Esquema de funcionamento do cédigo da simulagdo de n-corpos.
Fonte: Elaborada pelo autor.

A arquitetura do codigo desenvolvido é exemplificada no esquema da Figura 9. A
primeira parte do algoritmo é a criacdo do objeto de nossa simulacao, que recebe como
parametro um vetor de estado sy com as condigoes iniciais do sistema, um vetor com os
valores de massa de cada corpo e o intervalo de tempo, junto com o passo, utilizado. E

nessa etapa que o coédigo identifica o niimero de corpos que sera utilizado na simulacgao.

O segundo bloco do esquema apresenta a parte mais importante do cédigo: como
ele vai executar a simulacao em si. Neste trecho, temos uma rotina que possui duas partes
principais: um algoritmo que determina as forcas e, consequentemente, as aceleragoes de
cada corpo e um integrador numérico que determina as posigoes e velocidades do sistema
em cada instante de tempo. E nessa etapa que os cédigos de simulagdes de n-corpos se
diferenciam, pois existem diversos algoritmos para o célculo das aceleragoes e diversos
integradores numéricos. Neste trabalho, utilizamos o algoritmo de interacao “particula-

particula” (PP) e o integrador descrito anteriormente, RK4.

O algoritmo de interagdo PP utiliza a equagdo (22) para determinar a forga exer-

cida em cada corpo a partir da soma das forgas provocadas por todos os outros corpos do
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sistema, sem realizar qualquer tipo de simplificacdo ou aproximacio. E o método mais
simples e intuitivo de simulagées de n-corpos e retorna com precisao as aceleragoes de
cada particula. Consequentemente, possui um desempenho computacional que diminui
conforme se aumenta o niimero de corpos, uma vez que para atualizar cada particula é

necesséario conhecer as informagoes de todos as outras, acarretando em um custo O(N?).

No segundo bloco do cédigo, também determinamos as energias cinética, potencial
e mecanica total do sistema. Por fim, a tltima parte do esquema representa a saida do
algoritmo. Nessa etapa, o cédigo retorna um array tridimensional com as posicoes e
velocidade dos corpos em cada instante de simulacao, além de um array com as energias

do sistema.

2.3.2  Suavizacdo Gravitacional

As interagoes realizadas pela matéria escura em pequenas escalas ainda sdao um
problema em aberto na fisica. Apesar da existéncia de diversas hipdteses — como, por
exemplo, a aniquilagdo em raios gama —, ainda nao se sabe o comportamento destes
corpos conforme se aproximam. Além disso, um ‘problema’ presente nas simulagoes de
n-corpos é que quando a distancia entre dois corpos tende a zero, a forca gravitacional
apresenta uma singularidade, levando a uma divergéncia na energia cinética do sistema.
Tal comportamento nao acontece em problemas fisicos reais, em razao da atuacao de

forcas que contrapoem a gravitacional para pequenas distancias.

Com isso, as simulagoes gravitacionais de n-corpos para o estudo da DM, pre-
sentes na literatura da area, utilizam uma estratégia para escapar desses problemas.
Introduzindo-se um comprimento de amortecimento (10) na equagao geral da forga gra-
vitacional entre dois corpos,

F 72(;”“2”3 (73— 73), (28)
(rfy + €)Y

J
modificamos o seu valor para pequenas escalas. Para € << r;; essa equagao se aproxima

da forca gravitacional regular, para e >> r;; a forca se torna constante.

Desse modo, ¢ limita quao perto as estruturas podem se aproximar de modo a
serem tratadas numericamente. A escolha do valor de € varia de acordo com a precisao
desejada, além dos tipos de interac¢oes incluidos na simulacao realizada. Assim, introduzi
esta modificacao na classe nBody, generalizando o cddigo para tratar os corpos de maneira

acolisional.

2.4 O Cédigo GADGET-2

Para testar o desempenho de nosso codigo e avaliarmos outras métricas relevantes

na execucao de nossa simulagao, decidimos compara-lo com o programa em codigo aberto
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GADGET-2 (11), comumente utilizado na literatura para simulagdes cosmolégicas de n-
corpos. Com isso, além de avaliar nosso programa, estudamos um cédigo ja otimizado,
visto que a otimizacao de nosso algoritmo nao estéa dentro do escopo deste trabalho, uma
vez que ele foi implementado como meio de estudar os conceitos elementares associados

as simulagoes de n-corpos.

G Alazies with Dark matter and Gas intEracT (GADGET) é um codigo-fonte gra-
tuito utilizado para a realizacao de simulagdes cosmologicas e de formacgao de grandes
estruturas a partir de uma abordagem de n-corpos. O programa teve sua primeira ver-
sao publicada em 2001 (11) e permite também incluir interagoes de matéria bariénica em
suas simulagoes, a partir do método de hidrodinamica de particulas suavizadas. A escolha
deste cédigo para a utilizacao no trabalho se deve em razao da sua boa documentacao,
além de ser open-source, tendo sido escrito na linguagem C' e permitindo modifica¢oes de

acordo com os interesses de cada simulacao.

Ademais, uma grande vantagem de se trabalhar com o GADGET-2 é o seu desempe-
nho computacional, uma vez que o cédigo é muito bem otimizado por utilizar o recurso
de paralelizagdo e um algoritmo em &rvore — com custo temporal O(NlogN) — para

executar as simulagoes.

O algoritmo em arvore ¢ um aprimoramento do algoritmo PP. Nele, as particulas
distantes s@o agrupadas e as contribuigoes de cada uma para a forca total nao sao calcula-
das individualmente, mas sim, do grupo como um todo a partir de expansoes multipolares
em torno do centro de massa do conjunto. Desse modo, o algoritmo divide o espago em
uma arvore onde cada n6 corresponde a uma particula que pode representar um grupo
a depender de sua distancia. Como a forca gravitacional decresce com o quadrado da
distancia, essas aproximacoes sao fisicamente validas. O algoritmo controla os erros de
precisao através do angulo de abertura, um parametro que diz o quao pequeno e distante

o grupo ¢é para utilizar a aproximacao.

2.4.1 Exemplo de Execucdo: colisao de galaxias espirais

Como exemplo de execucao do GADGET-2, executamos uma simulacdo de dinamica
galactica, cujas condi¢oes iniciais descrevem duas galaxias espirais que interagem apenas
gravitacionalmente. A distribuicdo inicial do sistema pode ser encontrada no primeiro
quadro da Figura 10 e cada galdxia possui um disco estelar e um halo de matéria escura
compostos por 10 mil e 20 mil corpos, respectivamente. As condig¢oes iniciais desse sistema
foram obtidas juntas com o codigo e a sua evolucao temporal descreve a colisao dessas

galaxias.

Executando-se este arquivo de condicdes iniciais em um intervalo de 0 a 4x 10 anos

(um total de 4096 passos de integracao), obtivemos as distribui¢des mostradas na Figura
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10. O tempo total de execucao foi de apenas 5 minutos e 10 segundo, tendo o cédigo sido
executado em computador pessoal com 16GB de memoria RAM, um processador 11th
Gen Intel Core™ i7-1165G7 @ 2.80GHz x 8 e uma placa de video NVIDIA GeForce GTX

1050. O volume de simulacao foi distribuido entre 4 processadores.

t=0 t = 500 Myr t=1Gyr
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disco disco 150 disco
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Figura 10 — Evolugao da simulagao de colisao de duas galaxias espirais interagindo exclu-
sivamente através da gravidade. Na figura, temos um recorte no plano x-y,
uma vez que o sistema ¢ tridimensional. Executando-se a simulacao por um
intervalo de tempo maior, o sistema resultara em uma galaxia eliptica.
Fonte: Elaborada pelo autor.

Apos a execugao, recriamos a simulagao no cédigo de n-corpos escrito em python
descrito anteriormente. Em virtude da execucao deste exemplo ser lenta, e para extrair
mais informacoes, realizamos uma andlise do tempo que seria necessario para executar
a simulacao completa, visando avaliar o desempenho de nosso programa e estimar quais
os limites que devem ser atribuidos para as simulagdes de n-corpos com o algoritmo de
interagao particula-particula. Para isso, executamos a simulacao intimeras vezes variando,

em cada uma delas, o nimero de corpos e registrando os valores de tempo.

Como apresentado por Souza (5), uma métrica que pode ser utilizada para avaliar a
precisao de simulagoes gravitacionais de n-corpos é o erro relativo para a energia mecanica,

definido pela equacao
| En(t) — En(0)]

E p—
° En0)

(29)
onde E,,(t) e E,(0) sdo os valores da energia mecénica total em um instante ¢ e no
instante inicial para ¢ = 0. Assim, implementamos essa anélise em nosso trabalho.

Além disso, como complemento, avaliamos a dependéncia do erro relativo em fun-

¢ao do numero de corpos que utilizamos na simulacao. Para isso, semelhante ao descrito
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anteriormente, executamos o nosso coédigo variando o niimero de corpos. Para cada execu-
¢ao, calculamos o erro relativo entre a energia mecanica total nos instantes final e inicial

da simulagao.
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3 Resultados

Os resultados da anélise do tempo de execucao da simulagao descrita anteriormente
podem ser vistos no grafico da Figura 11. Através de um ajuste quadratico, uma vez que
a evolucio temporal segue uma curva O(N?), podemos estimar que o cédigo levaria 7,25

anos para ser executado com todos os 60 mil corpos durante os 4096 passos de simulacao.
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Figura 11 — Tempo de execucao em func¢ao do niimero de corpos. No gréfico, temos duas
curvas representando a mesma simulacao executada em um computador pes-
soal e no supercluster Santos Dumont. Para a curva azul, o ajuste quadratico
foi (0,00106 + 0,00007)x* + (0,011 + 0,008)x — (0,2 4 0,2) e para a curva
laranja (0,00059 £ 0,00002)z2 — (0,003 4 0.002)z + (0,05 + 0, 05).

Fonte: Elaborada pelo autor.

Além do resultado obtido em um computador pessoal, de configuragoes ja descri-
tas acima, a mesma analise foi realizada executando-se o c6digo no supercluster Santos
Dumont do Laboratério Nacional de Computagao Cientifica (LNCC), distribuindo a si-
mulacao entre 4 processadores. Apesar do poder computacional do cluster, a simulagao

ainda levaria 4,05 anos para ser executada.

Os valores de tempo de execucao levados pelo GADGET-2 para executar a mesma
simulacao nao estao descritos no grafico em razao da abrupta diferenca de escala entre os
resultados. A partir do grafico, concluimos que, apesar de mais preciso, o algoritmo PP é
muito ineficiente, devendo ser utilizado preferencialmente para o estudo de sistemas com

nimero de corpos inferior a 103.

Para a analise da precisao da simulagao, na Figura 12a mostramos a evolugao
temporal do erro relativo para um caso exemplo em que foram utilizados 100 corpos.

Vemos que inicialmente o erro relativo cresce até atingir um patamar em que esse valor
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estabiliza, apresentando algumas flutuacoes durante esse periodo. Tal comportamento se
repete nos outros casos em que foram simulados um ntimero diferente de corpos, no qual a

partir de um certo ponto o erro relativo se estabiliza em um valor até o final da simulacgao.
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tempo [Gyr] ntmero de corpos
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Figura 12 — (a) Erro relativo em func¢do do tempo de execugao para 100 corpos. (b) Erro

relativo em funcao do niimero de corpos simulados. Para a curva mostrada,
o ajuste linear foi (0,0094 4 0,0005)x + (0,03 4 0,03), com R? = 0, 95.
Fonte: Elaborada pelo autor.

Além disso, na Figura 12b temos a dependéncia do erro relativo de acordo com
o numero de corpos simulados. Vemos no grafico um comportamento crescente e, se
aproximarmos esses pontos para uma reta, obtemos um coeficiente de ajuste R? = 0, 95.
Utilizando essa curva aproximada, podemos estimar que para os 60 mil corpos utilizados
na simulacao de colisao de galaxias, apesar da baixa eficiéncia computacional na execugao

de nosso programa, o erro relativo ainda seria da ordem de 1073,
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4 Conclusao

Neste trabalho, abordamos o paradigma da matéria escura e a sua relacao com
as simulagdes de n-corpos. A partir da andlise do problema mecénico de dois corpos,
apresentamos as solugoes analitica e numérica, estendendo, em seguida, o procedimento
para sistemas com trés corpos. Além disso, descrevemos o desenvolvimento de uma si-
mulacao de n-corpos que utiliza como base um algoritmo de interacao particula-particula
para computar a forca gravitacional e o método de Runge-Kutta de quarta ordem para a
integracao numérica. Por fim, comparamos a eficiéncia de nossa simulagdo com o codigo

GADGET-2, disponivel na literatura para simulacoes cosmoldgicas.

Como resultado da comparacao, inferimos que o algoritmo utilizado para o calculo
da forca gravitacional deve ser limitado a sistemas com um ntmero de corpos inferior
a 103. A partir dessa ordem de grandeza, algoritmos em 4rvore sio recomendados por

possuirem uma maior eficiéncia.

No quesito precisao, avaliamos o erro relativo da energia mecanica total de nosso
sistema para um exemplo de condigoes iniciais que descrevem a colisao de duas galéxias
espirais. Variando o nimero de corpos utilizados na simulagdo, inferimos que o erro

relativo associado a essa simulacdo, com 60 mil corpos, seria da ordem de 1073,

Com isso, concluimos a nossa analise sobre as simulagdes gravitacionais de n-corpos
e a sua relacdo com a matéria escura. Cabe falar que um passo natural que pode ser dado
a este trabalho seria o estudo mais aprofundado do cédigo GADGET-2 e a sua utilizacao
para analisar outros aspectos relacionados a matéria escura: como a formacao de grandes
estruturas do Universo e a distribuicdo de matéria escura em galaxias, observando os
resultados praticos obtidos através de observagoes e os obtidos a partir de simulacoes de

N-COrpos.
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