PEDRO DA COSTA MELO VIEIRA

Aplicando técnicas de Domain-Driven Design para Reduzir Acoplamento e

Aumentar a Coesdo em uma Arquitetura de Microsservicos

Sdo Paulo

2025

PEDRO DA COSTA MELO VIEIRA

Aplicando técnicas de Domain-Driven Design para Reduzir Acoplamento e

Aumentar a Coesdo em uma Arquitetura de Microsservicos

Versao Original

Monografia apresentada ao PECE — Programa de
Educagdo Continuada em Engenharia da Escola
Politécnica da Universidade de Sao Paulo como
parte dos requisitos para a conclusdo do curso de

MBA em Tecnologia de Software.

Area de Concentragio: Tecnologia de Software

Orientador: Prof. Dr. Paulo Sérgio Muniz Silva

Sdo Paulo

2025

Autorizo a reprodugdo e divulgacdo total ou parcial deste trabalho, por qualquer meio

convencional ou eletronico, para fins de estudo e pesquisa, desde que citada a fonte.

FICHA CATALOGRAFICA

VIEIRA, Pedro da Costa Melo

Aplicando técnicas de Domain-Driven Design para Reduzir Acoplamento e
Aumentar a Coesao em uma Arquitetura de Microsservicos / P. C. M. VIEIRA -
Sao Paulo, 2025.

69 p.

Monografia (MBA em Tecnologia de Software) - Escola Politécnica da
Universidade de Sao Paulo. PECE — Programa de Educagao Continuada em
Engenharia.

1.Domain-Driven Design 2.Arquitetura de Software 3.Microsservigos
I.Universidade de Sdo Paulo. Escola Politécnica. PECE — Programa de
Educagao Continuada em Engenharia II.t.

Nome: VIEIRA, Pedro da Costa Melo.

Titulo: Aplicando técnicas de Domain-Driven Design para Reduzir Acoplamento e Aumentar

a Coesdo em uma Arquitetura de Microsservigos

Monografia apresentada ao PECE — Programa de Educacdo Continuada em Engenharia da

Escola Politécnica da Universidade de Sao Paulo como parte dos requisitos para a conclusao

do curso de MBA em Tecnologia de Software.

Aprovado em: /]

Banca Examinadora

Prof(a). Dr(a).

Instituigao:

Julgamento:

Prof(a). Dr(a).

Instituicao:

Julgamento:

Prof(a). Dr(a).

Instituicao:

Julgamento:

DEDICATORIA

A minha esposa, Luisa, e meus gatos, Fiona e Bento!

Venceremos, sempre.

AGRADECIMENTOS

Agradeco a Escola Politécnica da Universidade de Sao Paulo — EPUSP e a todo corpo docente
do curso de Engenharia de Software, por todo o conhecimento compartilhado, o qual agrega

muito em minha carreira.

Ao meu orientador Prof. Dr. Paulo Sérgio Muniz Silva, onde desde as aulas ministradas ao
longo do curso até todos os momentos em que fui seu orientando, se mostrou absolutamente
especialista nos assuntos que tangem a monografia, contribuindo muito com a evolugao do

meu conhecimento sobre o tema.

Aos meus amigos e colegas de trabalho que me incentivaram a ingressar no curso € que juntos
conseguimos concluir essa jornada, além de contribuirem diretamente em minha evolucdo

profissional: Arthur Machado, Fernando Godoy, Luan Sales ¢ Renan Ferreira.

Por fim, a minha esposa Luisa, a qual me apoiou e apoia incondicionalmente em todas as

novas etapas que surgem em minha vida.

RESUMO

VIEIRA, Pedro da Costa Melo. Aplicando técnicas de Domain-Driven Design para Reduzir
Acoplamento ¢ Aumentar a Coesdo em uma Arquitetura de Microsservigos. 2025. 69.
Monografia (MBA em Tecnologia de Software). Programa de Educacdo Continuada em

Engenharia da Escola Politécnica da Universidade de Sdo Paulo. Sao Paulo. 2025.

Este trabalho apresenta uma solucdo de projeto (design) utilizando técnicas do Projeto
Dirigido pelo Dominio — Domain-Driven Design (DDD) — para refatorar um produto de
software existente, implementado com arquitetura de microsservigos. Tal solugdo visa
aumentar a coesdao dos microsservigos e reduzir o acoplamento entre eles, alinhando seus
modelos de dominio de forma mais acurada as capacidades do negocio (business
capabilities). A pesquisa foi motivada por problemas identificados em um mau projeto de
modularizagdo, que resultaram em ambiguidades conceituais, baixa coesdo e alto
acoplamento. Foram utilizadas as técnicas de design estratégico e tatico do DDD, com énfase
na identificacdo de subdominios de negdcio, mapeamento de contextos delimitados e
realinhamento de seus modelos de dominio. Os artefatos resultantes das solucdes sdo
constituidos por modelos expressos na linguagem UML e apoiados por justificativas
fundamentadas que mostram como a adequagdo da solucao de projeto (design) utilizando as
técnicas do DDD pode ajudar a melhorar a expressividade, organizagao dos modelos de
dominio e a modularizagdo de software. Por fim, conclui-se que a aplicagdo de DDD ajuda
ndo apenas a mitigar problemas técnicos, mas também facilita a comunicacao entre equipes e
promove maior alinhamento semaintico e estrutural dos elementos de software e as

capacidades do negocio.

Palavras-chave: Domain-Driven Design; Microsservicos; Acoplamento, Coesdo.

ABSTRACT

VIEIRA, Pedro da Costa Melo. Aplicando técnicas de Domain-Driven Design para Reduzir
Acoplamento e Aumentar a Coesdo em uma Arquitetura de Microsservigos. 2025. 69.
Monografia (MBA em Tecnologia de Software). Programa de Educacdo Continuada em

Engenharia da Escola Politécnica da Universidade de Sdo Paulo. Sao Paulo. 2025.

This work presents a design solution using Domain-Driven Design (DDD) techniques
to refactor an existing software product implemented with a microservices architecture. The
proposed solution aims to increase microservices cohesion and reduce coupling, aligning their
domain models more accurately with business capabilities. The research was motivated by
issues identified in a poorly modularized design, which resulted in conceptual ambiguities,
low cohesion, and high coupling. Strategic and tactical DDD techniques were applied,
focusing on the identification of business subdomains, mapping bounded contexts, and
realigning their domain models. The resulting artifacts are composed of UML models
supported by well-founded justifications, demonstrating how the proposed design solution
using DDD techniques can improve the expressiveness, organization of domain models, and
modularization of the software. Finally, it is concluded that applying DDD not only mitigates
technical problems but also facilitates communication between teams, promoting greater

semantic and structural alignment between software elements and business capabilities.

Keywords: Domain-driven Design; Microservices; Coupling, Cohesion.

LISTA DE ILUSTRACOES

Pag.
Figura 1 - Visdo resumida dos tipos de acoplamento............eccueerueerieeniienieeniienieeieeeee e 25
Figura 2 — Representagdo de subdominios em uma empresa de comércio eletronico.............. 30
Figura 3 — Dominio de negocio abstrato dividido em subdominios...........ccceeceeeeveenveenieennnnne. 31
Figura 4 - Representagdo Geral dos Microsservigos do Mddulo de Gerenciamento de
Operacdes € suas Principais INteragOes.eeuuieeiuiieeiieeeiieeeiee ettt et e e e e e e e 39
Figura 5 — Modelo das classes do servico Gerenciamento de Ordens (GO)..........c.ccccveeenneennn. 41
Figura 6 — Diagrama de estado do ciclo de vida de uma Ordem...........c.cccoveeeeieeriieenineeennnenn. 45
Figura 7 - Contextos Delimitados da InvestmentCorp.........cceecuveeeviieeeiiieeniie e 52
Figura 8 - Mapeamento dos Contextos Delimitados no Cenario Proposto.........c.ccceevveeeeveennee. 54
Figura 9 — Modelo de dominio de Ordem...........ccueeeiiiieriiieiiie e e 57

Figura 10 - Modelos de dominio de Clientelnvestidor, FundoInvestimento e Patrimonio....... 58

LISTA DE TABELAS

Pag.
Tabela 1 — As trés respostas a lei de Conway, segundo FOWIer...........cccevvvierieniiiiiiinieenenne, 16
Tabela 2 — Descrig¢ao dos estados de uma Ordem.............c..coeeviiiiiiieiiieeiie e 43
Tabela 3 — Compilagdo dos problemas do design atual.............cccoeviieiiieniiniiiinieeiieieee e 47

Tabela 4 — Eventos de DOmiInio €M GOeeeeeeeeeeeeeee e eeeeeeenenene 63

[DDD
[UML
[SRP
[CD
[CDs
[GO
[PO
[GF
[GP

LISTA DE ABREVIATURAS E SIGLAS

Domain-Driven Design]
Unified Modeling Language]
Single Responsibility Principle]
Contexto Delimitado]
Contextos Delimitados]
Gerenciador de Ordens]
Processador de Ordens]
Gerenciamento de Fundos]

Gestao Patrimonial]

SUMARIO

Pag.
L. INTRODUGAO . c...cucuncininninnisscsscsses 15
L1 IMIOTIVAGOES. ...eeuvveeeereeetiee ettt e ettt e et e e ettt e e et e e eaeeetaeeetaeeeasaeesasseessseeesssesenaseeesseeensaeennnes 15
1.2 ODJEIVO. .. utieiieeiieeiie ettt ettt ettt e et e et e e s tae et e e stteesseessbeenseesaseenseessaesnseenseeenseannnas 17
1.3 JUSHTICALIVAS. c..eeitiieeieeee ettt ettt ettt st e bt et eae e b et e 17
1.4 CONIIIDUIGAO. .. .eieeviieeiieeeiee ettt ettt e et e et e e et e e e taeeeaaae e aaeeeaseeesseeensseesnseeennseens 19
1.5 MEtOdO de PEeSQUISA.....cc.uievieiiiieiieeiietie ettt ettt ettt tee e et e st e eaeesnbeesaeenneas 19
1.6 Estrutura do Trabalho...........c.cecuiiiiiiiiiiiiieiieeeeeee et 20
2. REVISAO BIBLIOGRAFIC A......ocucuerrererenrerssessesesssssssessesssessessssessessssesssessessssssesssseses 21
2.1 Arquitetura de SOTIWATE.........cooiieiiiiiiieiieeie ettt 21
2.2 Arquitetura de MICIOSSEIVICOS. ...ccvieruireiieriieeiieniieeteestieeseesseeeseesnseenseesssesseesnseenseennns 22
2.2.1 DEEINIGOECS. ..ecuviieeetieieieeeeiee ettt eett e et e e et e e et e e e aeeesveeetseeeetaeeeaseessseeeseeeenreeenns 22
2.2.2 Caracteristicas de MICTOSSEIVICOS.cccuuierureeerieeeiieeereeeereeeereeesareeestreeeesseeenneas 22
2.2.3 Tipos de ACOPIAMENTO.eeeuiiiiieiieeiieiiecie ettt ettt e et saaeebee e 25
2.3 Projeto Dirigido pelo Dominio (Domain-Driven Design).........cccceceveeneiiienieneneennnn. 26
2.3.2 Representagao do DOMINIO......c.eeeuieriiieiieiiieeiieiieeee et 28
2.3.3 Design EStrate@iCO. ... cccuuiiiiieiiieiieeiieeiieeiie ettt ettt et sae b e siaeenseesnnaens 30
2.3.3.1 SUBAOMINIO....cuveiiiiiiieiiiiierieeeeteete ettt 31
2.3.3.2 Contextos Delimitados e Linguagem Ubiqua..........ccceecuveviiniiienieniiiennns 32
2.3.3.3 Mapeamento de CONtEXLOS.eeuieruireiiieriieeiieniieeieesiee e e siteereeseeeeeeesaaeens 33
2.3.4 DESIZN TALICO...ccuvieiieeiieiieeieeeite ettt ettt et ettt et e bt et e e b e essaesnseeeseeenseenees 34
2.3.4. 1 ENtIdade....ccueieiieiiieiieee ettt et 34
2.3.4.2 Objeto de ValOr.......cooiiiiiieeiieiieceeeeee et 34
2.3.4.3 AGIEZAUO....cciieiiieiiee e e ettt 35
2.3.4.4 Evento de DOMINIO.cceeriieriieniieiieeie ettt ettt et e e e 35
2.3.4.5 Servigo de DOMINIO........ccccvviiieeiiiie et eeeetee e eeeee e e e et e eeans 35
ARG S IRST=1 V] oo Je [N o] [o= Tor= Lo TR PP 36
3. ALGUNS PROBLEMAS NO DESIGN DE UMA ARQUITETURA DE
MICROSSERVICOS.....uuiiiiiinnuinsnissensissanssesssnsssisssssssssssssssssssssssssssssssasssssssssssssssssssssasssssssssss 37
3.1 ConteXto dO NEZOCIO....cccuviieiiieeiiieeitee ettt e erteeetteeetteeeteeesbeeesaeeessseeessaeeessseeensseeenses 37
3.2 Ciclo de Vida de uma Ordem............cccouiiieiiiieeiieeeiie ettt e e seaeeenaee e 42
3.3 Descrigao do Problema............c..ooooiiiiiiiioiiiiecce e 46
4. APLICACAO DAS TECNICAS DE DDD NO DESIGN ATUAL....ccevuerreereerennessesenees 49
4.1 Visao geral das SOIUGOES PIrOPOSLAS......ccccvrreriiiieeiiieeeiieerrieeiteeerireeeereeereeesreeeseseeenaneas 49
4.1 Design Estratégico com Subdominios ¢ Contextos Delimitados............cceeeevveerereenneee. 50
4.1.1 Identificacao e Classificacdo dos Subdominios...........c.cceevveieeeciieeieiiieeeeeiieee. 50
4.1.2 Definicao dos Contextos Delimitados............ocoeeuieeieiiiiiiieiiiieecccieee e 52
4.2 Design Estratégico com Mapeamento de COnteXto.......cccuvervuvreeiureeniveeerveeerreeesereeennes 53
4.3 Design Tatico cOm AZregados.......cocuieeiuiieeiiieeeiieeeiieeeieeeereeesreeesreeesreeessreeeseseeesneas 55

4.4 Design Tatico com Servigos de DOminio..........cceueeeviieeiieeiiieeeiie e e 59

4.4.1 Responsabilidades do Servigo de Dominio.........cc.eeeeveeeeveeieiieeniieeeiee e 60

4.4.2 Beneficios ESPerados........cccuiieiiiieiiiieiie ettt 62

4.5 Design Tatico com Eventos de DOminio.........cceeccuiieiiieeiiieeiie e 62

5. CONSIDERACOES FINAIS......c.oceererererersrrereresessssasasesssessssasessssssssssessssssssssssessssssssssassseses 64
R 1033167 L 1Y 1SS 64
5.2 Contribuigdes do Trabalho............cccoviiiiiiiiiii e 65

5.3 Trabalhos FULUTOS.cccuviiiiieeciie ettt e e e e e enaeeenes 65

REFERENCIAS 67

15

1. INTRODUCAO

1.1 Motivacoes

Adotada por gigantes da tecnologia, como Netflix e Amazon (NEWMAN, 2021), uma
abordagem de arquitetura que se tornou um padrao de mercado na ultima década ¢ o estilo
arquitetonico de microsservigos. De acordo com Fowler (2014), arquitetura de microsservigos
¢ uma abordagem que permite o desenvolvimento de uma aplicagdo como um conjunto de
pequenos servigos, cada um executando em seu proprio processo € se comunicando por
mecanismos leves, como APIs HTTP. Esses servi¢os sao construidos em torno de capacidades
de negdcio, sendo independentes em termos de implantagdo e gerenciamento, com o minimo

de centralizagao.

(NEWMAN, 2021) complementa essa definicdo afirmando que a arquitetura de
microsservigos ¢ um tipo de arquitetura orientada a servicos, que possui uma defini¢do clara a
respeito das fronteiras a serem tragadas de modo a permitir implanta¢des independentes. Tal
arquitetura tem como grande vantagem ser independente de tecnologias, podendo ser

desenvolvida com diferentes linguagens de programacao, por exemplo.

Um dos grandes desafios ao construir uma arquitetura de microsservigos ¢ decompor
adequadamente o sistema em servic¢os distribuidos com baixo acoplamento entre eles. Isto &,
conseguir construir os servigos individualizados de forma que reflitam as necessidades
especificas de negoécio que cada um deve realizar. Ao ndo atingir esse objetivo, esta
decomposi¢do resultard em servicos com responsabilidades mal definidas (ou até mesmo
conflitantes entre eles), dificultando sua manutencdo e evolu¢dao. Pontos como esses podem,
inclusive, levar empresas a migrar produtos de volta para arquiteturas monoliticas, como foi o

caso da Amazon em 2023 (SU, LI e TAIBI, 2024).

Conhecida no mundo do desenvolvimento de software como Lei de Conway, ela diz que
“organizagoes que projetam sistemas irdo produzir designs que sdo copias de sua estrutura
de comunica¢do” (CONWAY, 1968 - tradugao livre). Esse principio sugere que a estrutura de
um sistema ou software ¢ um reflexo da estrutura organizacional da comunica¢do da equipe

que o desenvolve, impactando o modo como os softwares serdo desenvolvidos e como,

16

considerando um ecossistema onde ha multiplos servigos, tais servigos se comunicardo.

Segundo (FOWLER, 2022), ha trés respostas possiveis a lei de Conway, descritas na Tabela 1.

Tabela 1 — As trés respostas a lei de Conway, segundo Fowler.

Acao Descricao

Ignorar Nao levar em conta por ndo saber de sua existéncia ou nao

considera-la relevante.

Aceitar Reconhecer seu impacto e garantir que sua arquitetura nao entre

em conflito com os padrdes de comunicagao dos times.

Manobra de Inversao Alterar os padrdes de comunicagdo para encorajar a arquitetura

de Conway de software desejada.

Fonte: (FOWLER, 2022), adaptado pelo autor.

Fowler (2022) observa que, apesar de ser uma ferramenta util, a lei de Conway ndo ¢ uma
solucdo que ird resolver instantaneamente os problemas enfrentados no desenvolvimento de
software da organizagdo. Para cenarios onde ja existe uma estrutura de comunicacao definida,

¢ necessario mudar tanto a base de codigo como a propria organizagao.

A terceira resposta a lei de Conway é uma abordagem interessante para se construir uma
arquitetura de microsservicos, a qual busca modificar intencionalmente a forma de

comunicagdo entre times, quebrando os silos que atrapalham uma comunicagao eficiente entre

eles (LEROY J., SIMONS M., 2010).

Introduzida por Eric Evans (EVANS, 2003), a abordagem de projeto (design) de software
dirigido pelo dominio (Domain-Driven Design - DDD) visa construir sistemas adotando
intencionalmente as estruturas organizacionais de comunicagdo da empresa, de forma a

construir seus sistemas separando suas responsabilidades e limitando suas fronteiras de

17

maneira bem definida, refletindo explicitamente suas competéncias centrais do negocio

(VERNON, 2016).

1.2 Objetivo

Esta monografia apresenta uma solug¢ao de projeto (design) utilizando técnicas do
Projeto Dirigido pelo Dominio — Domain Driven Design (DDD) — para refatorar um produto
de software existente implementado com arquitetura de microsservigos, visando alinhé-lo
mais acuradamente as capacidades do negdcio (business capabilities), de modo a permitir o

aumento da coesao dos microsservigos ¢ a redugdo do acoplamento entre eles.

Refatora-se aqui parte de um produto de software complexo e estratégico existente,
espelhado de modo anonimizado de uma empresa real, implementado com uma arquitetura de
microsservigos. A refatoragdo ocorre em dois niveis: tanto no plano estratégico, realinhando o
projeto (design) do software, com determinadas capacidades do negdcio, como no plano
tatico, minimizando efeitos colaterais negativos, como baixa coesdo e alto acoplamento,

decorrentes de mau projeto de modularizagao.

Aqui, as solugdes de refatoracdo restringem-se somente a solugdes de design. Os
artefatos resultantes das solu¢des sdo constituidos por modelos expressos na linguagem UML
apoiados por justificativas explicativas. Assume-se, portanto, duas limitagdes importantes que
restringem o escopo do presente trabalho: tanto a falta de discussdo de alternativas de
implementa¢do das solu¢des de design propostas como a falta de uma andlise de

compensagoes (trade-off) dos custos envolvidos nas solugdes.

1.3 Justificativas

A revisdo bibliografica do capitulo 2 evidencia que o tema de modelagem de
microsservigos, visando uma decomposicao que utiliza técnicas como o DDD para tratar

problemas de coesdo e de acoplamento ¢ um assunto relevante hoje em dia.

A decisdo para uma decomposi¢do arquitetonica de um produto de software, que mantenha

especialmente sua evolucdo alinhada a evolucdo do negdcio ao qual da suporte, implica

18

projeta-la de modo a obter o minimo de acoplamento possivel entre seus componentes, 0 que
implica o aumento da coesdo de cada um deles. Comparativamente a uma arquitetura nao
distribuida, a natureza distribuida um produto de software implementado em microsservigos
requer cuidados adicionais para sua decomposi¢do. Por exemplo, (SU, LI E TAIBI, 2024)
discorrem sobre o movimento da decisdo do retorno para uma arquitetura monolitica a partir
de uma arquitetura de microsservicos. Neste estudo sdo abordados cinco principais motivos
pelos quais uma empresa opta por fazer esse retorno. Dois deles sao mais aderentes a esta

monografia:

° Complexidade: Ter diferentes times trabalhando em servicos que, muitas vezes,
possuem, inclusive, linguagens de programacgdo diferentes, traz uma complexidade de
controle maior do que ¢ desenvolvido. Além disso, € necessario que um engenheiro precise ter
o entendimento de diversos contextos diferentes para ter o conhecimento do produto como um

todo.

° Organizacdo: A dificuldade no gerenciamento de times pode ter um grande impacto
no design e manutencao de uma arquitetura de microsservigos. Em determinado caso descrito
por (SU, LI E TAIBI, 2024), ha um cenario de uma equipe que ndo apresenta um tamanho
apropriado para lidar com as diversas responsabilidades de diferentes microsservigos,
linguagens de programacgao, etc., levando de volta o produto de software para uma arquitetura

monolitica.

No contexto pratico, ¢ possivel perceber, a partir dos motivos acima, que empresas enfrentam
dificuldades ao realizarem a transicdo de uma arquitetura monolitica para uma arquitetura de
microsservicos, muitas vezes por falta de uma metodologia clara que guie a modelagem
adequada de seus dominios de negdcio. A aplicagdo de técnicas de DDD, como Mapas de
Contexto, Linguagem Ubiqua, Design Estratégico e Design Tatico, surge como uma solugao
promissora para melhorar a coesdo dos subdominios do negécio e dos servigos dos produtos
de software que lhes dao suporte, minimizando o acoplamento entre estes ultimos ao

possibilitar um alinhamento consistente entre subdominios e servicos.

De acordo com Vernon (2016), as ferramentas do design estratégico do DDD podem ajudar as
equipes de software a fazerem melhores escolhas para a decomposicdo do software e a

tomarem decisdes coerentes de integra¢do entre seus componentes. Dessa forma, os modelos

19

de design do produto de software refletirdo explicitamente os potenciais de capacidade do

negocio (business capabilities).

1.4 Contribui¢ao

O presente estudo oferece uma contribuigdo em dois planos: pratico e conceitual. No
plano pratico, aplicam-se técnicas de DDD em um contexto de uma empresa anonimizada
onde ja existe uma arquitetura de microsservigos implantada. Identificam-se pontos de
melhoria na decomposi¢do do software tanto no nivel de modelagem de design quanto na sua

aderéncia ao contexto de negocio.

A pesquisa também tem potencial para oferecer beneficios praticos a empresas que enfrentam
problemas semelhantes, ao mostrar como o uso de DDD pode ser empregado para corrigir

uma migra¢ao mal estruturada.

1.5 Meétodo de Pesquisa

Para realizar a confeccdo deste projeto, foi utilizado um método de pesquisa de
Literatura Multivocal (GAROUSI, FELDERER ¢ MANTYLA, 2019), que consiste em uma
forma de Pesquisa Sistematica (PS) que, juntamente com uma revisao da literatura académica
(artigos cientificos e materiais formais), utiliza uma pesquisa de publicagdes da denominada
“literatura cinzenta”, isto €, em postagens virtuais e videos, por exemplo, de autores que

reconhecidamente contribuiram e contribuem para o progresso da engenharia de software.

Na revisdo da literatura académica, foram utilizadas as fontes de busca: ResearchGate, IEEE,
Google Scholar, MDPI e Science Direct, para a pesquisa de artigos relevantes para o tema
deste trabalho. Termos como “microservices”, “ddd’, “software architecture” foram
utilizados, juntamente com combinagdes como “‘microservices decomposition” €

“microservices ddd’ para resultados mais focalizados para responder a questao de pesquisa.

Para a considerada literatura cinzenta, foram utilizados como fontes de busca sites de autores
que estabeleceram as bases conceituais e praticas para o DDD, como Martin Fowler e Vaughn

Vernon, dentre outros.

20

Finalmente, destaca-se que foram utilizadas publicagdes em formato de livro especificamente
focalizadas no tema deste trabalho, como: (EVANS, 2003), (VERNON, 2016), (VERNON,
2016) e NEWMAN, 2022).

1.6 Estrutura do Trabalho

O trabalho € composto por 5 capitulos.

O capitulo INTRODUCAO apresenta as motivacdes, objetivo, justificativas, contribui¢des

oferecidas e 0 método de pesquisa utilizado para a confec¢do da monografia.

No capitulo REVISAO BIBLIOGRAFICA sdo abordadas as referéncias tedricas utilizadas,
onde sdo destacados conceitos importantes a respeito de Arquitetura de Software,
Microsservigos € Domain-Driven Design, 0s quais sao a base para a solugdo dos problemas

destacados nos capitulos subsequentes.

O capitulo ALGUNS PROBLEMAS NO DESIGN DE UMA ARQUITETURA DE
MICROSSERVICOS destaca alguns problemas dentro do contexto de negdcio de uma

empresa ficticia, que utiliza como base implementacdes reais de forma anonimizada.

O capitulo APLICACAO DAS TECNICAS DE DDD NO DESIGN ATUAL apresenta a
aplicacdo das técnicas do DDD para resolver os problemas destacados no capitulo anterior. As
solugdes de design propostas sdo apresentadas por meio de diagramas UML com explicagdes

fundamentadas.

Por fim, no capitulo CONSIDERACOES FINAIS apresenta a conclusdo do trabalho,
consolidando os beneficios obtidos pela aplicagdo da solugdo proposta, suas contribui¢des e

as algumas sugestoes de trabalhos futuros.

21

2. REVISAO BIBLIOGRAFICA

O presente capitulo apresenta de forma detalhada os fundamentos teodricos utilizados

como base para o desenvolvimento do trabalho apresentado nos capitulos subsequentes.
2.1 Arquitetura de Software

Sendo uma disciplina extremamente importante no mundo de desenvolvimento de
software, (BASS, CLEMENTS E KAZMAN, 2021) descrevem a arquitetura de software
como a estrutura ou estruturas de um sistema, composta por elementos de software, suas
relagdes, e as propriedades de ambos. Esta definicdo inclui ndo apenas a organizagao
estrutural do sistema, mas também as decisdes de design que afetam diretamente os atributos

de qualidade.

(BASS, CLEMENTS E KAZMAN, 2021) destacam, também, a importancia de uma estrutura
de arquitetura e como ela pode prover esclarecimentos dado o poder analitico que carrega
consigo. A partir desse ponto de vista, ¢ possivel compreender que quando uma arquitetura ¢
construida de forma apropriada em relagao ao problema que o software estd se propondo a

resolver, ela também torna explicitos os atributos de qualidade inerentes a estrutura utilizada.

Além de aspectos de qualidade por si s6, a arquitetura de software também possibilita
enxergar trade-offs que podem ajudar nas decisdes arquitetonicas a serem tomadas para
determinado produto. Como descrito por (FOWLER, 2019 - tradugdo livre), “uma arquitetura
mal realizada resulta no crescimento de “sujeiras” - elementos no software que impedem um

claro entendimento pelos desenvolvedores de software”.

E levando em conta o aspecto de que, segundo (BASS, CLEMENTS E KAZMAN, 2021), nao
ha existe algo como uma arquitetura inerentemente boa ou ruim, mas que deve ser construida
para se adequar a um proposito, € possivel enxergar a relagdo com a citacdo de Fowler (2019),
pensando que uma arquitetura que produz “sujeiras” provavelmente ndo ¢ uma arquitetura

ideal para determinada solucao.

22

2.2 Arquitetura de Microsservicos

2.2.1 Definicoes

(NEWMAN, 2022) descreve microsservigos como servicos que podem ser
implantados de forma independente, sendo modelados com base em um dominio de negdcio.
Tais servigos podem apresentar funcionalidades diversas e independentes, encapsulando a

complexidade de cada uma delas e disponibilizando-as por pontos de entradas especificos.

Microsservigos aderem ao conceito de ocultacao de informagdes. Segundo (PARNAS, 1972),
tal conceito visa ocultar o maximo possivel de informag¢des dentro de um componente e expor

o minimo de informagdes por meio de uma interface externa.

Diferente de uma arquitetura orientada a servicos (Service-Oriented Architecture - SOA), que
busca utilizar uma abordagem com diversos servigos em colaboracdo em busca de oferecer
um conjunto final de recursos (NEWMAN, 2022), conceitualmente 0s microsservigos
favorecem um fraco acoplamento entre si por meio de fronteiras bem definidas de

responsabilidades, possibilitando uma alta coesao de suas responsabilidades.

Esse mesmo autor sintetiza os conceitos de coesdo e acoplamento, e sua relagdo reciproca, da
perspectiva de microsservicos. Uma coesdo forte ¢ alcangada quando os comportamentos
relacionados estdo centralizados em um unico moédulo ou servigo, minimizando a
comunicagdo entre fronteiras. Em sistemas baseados em microsservigos, isso significa que
cada servico deve encapsular totalmente suas responsabilidades de negodcio, reduzindo
interdependéncias entre servigos e evitando a fragmentacdo de funcionalidades relacionadas.
Por outro lado, ha uma forte relagdo entre coesdo e acoplamento, conceitos que, embora
distintos, se complementam. Enquanto a coesdo descreve o grau de relacionamento entre os

elementos dentro de uma mesma fronteira, o acoplamento focaliza o relacionamento entre

elementos que atravessam essas fronteiras, conectando diferentes modulos ou servigos.

2.2.2 Caracteristicas de Microsservicos

23

Microsservigos trazem uma série de caracteristicas consigo, que devem ser levadas em
conta ao se construir uma arquitetura baseada em microsservigos. Segundo (BASS,
CLEMENTS E KAZMAN, 2021), uma arquitetura ndo pode ser considerada inerentemente
boa ou ruim, e os aspectos especificos de microsservicos sdo ferramentas importantes de
analise para determinar se sua utilizagdo ¢ adequada ou ndo. Em outras palavras, uma
arquitetura de microsservigos nao deve ser levada como uma bala de prata, e suas

caracteristicas devem ser cuidadosamente avaliadas.

(NEWMAN, 2022) descreve alguns conceitos essenciais dos microsservigos:

° Implantacées independentes
A ideia de implanta¢des independentes ¢ garantir que, ao realizar uma alteragdo em
um microsservigo, implantd-lo e disponibilizar a alteragdo para os usudrios que o
consomem ndo implica a implantacdo de outro microsservico. Para garantir esse

objetivo, € necessario garantir que os microsservigos possuam baixo acoplamento.

° Responsaveis pelo proprio estado
Os microsservicos devem conter todas as responsabilidades pelo acesso de seus dados
por consumidores externos, por exemplo, possuindo bancos de dados especificos para
cada um. Para isso, devem trabalhar com o conceito de ocultagdo de seu estado
interno. A vantagem desta caracteristica ¢ a reducdo do acoplamento do microsservigo

€ o consequente aumento de sua coesao.

° Tamanho
O autor descreve que esse ¢ um aspecto muito contextual, e que ndo deve ser medido
de forma quantitativa, como o nimero de linhas de codigo, por exemplo. Seu tamanho
e complexidade varia também de acordo com o conhecimento do programador em
relagdo ao sistema. (RICHARDSON, 2018) sugere que um microsservico deve ser
grande o suficiente para encapsular uma unidade de negocio significativa, e pequeno o

suficiente para ser desenvolvido e gerenciado por uma pequena equipe autobnoma.

° Flexibilidade
Pensando na ideia de se precaver de problemas que possam surgir no futuro, a

flexibilidade ¢ uma importante caracteristica de uma arquitetura de microsservigos,

24

considerada em diferentes eixos de flexibilidade, como organizacional (no incentivo a
descentralizagdo de equipes de desenvolvimento, alinhadas aos dominios de
negdcios), técnico (na possibilidade de escolher tecnologias que se adequem com as
necessidades de cada servigo), escala e robustez (na possibilidade de escalar apenas

servicos de acordo com suas necessidades).

° Modelagem com base em um dominio de negocio
Microsservigos podem ser modelados utilizando os conhecimentos e necessidades
especificas de cada contexto do negdcio. Dessa forma, as equipes de desenvolvimento
responsaveis por seus microsservigos possuem conhecimentos especificos sobre o

dominio de negdcio em que estao atuando.

(FOWLER e LEWIS, 2014) complementam as caracteristicas acima com principios para a

construgao de microsservigos:

° Componentizacao via Servigos
A componentizagdo via servicos busca estruturar sistemas como um conjunto de
componentes independentes. Para os autores, um componente consiste em uma
unidade de software que pode ser atualizada ou substituida de forma independente.
Sendo assim, uma de suas principais vantagens ¢ a de implantagdes independentes,
como afirma Newman (2022), assim permitindo que mudangas nos servigos, de forma
geral, ndo exijam a reimplanta¢do de todo o sistema. Isso reduz o acoplamento e
facilita a evolugdo do software, desde que os contratos de servigo sejam bem definidos

e as fronteiras sejam coesas.

° Organizados por Capacidades de Negdcio
A fim de evitar silos organizacionais, como ocorre quando times se organizam por
meio de camadas tecnologias, organizar times por meio de suas responsabilidades (ou,
capacidades de negdcio) tem papel fundamental em wuma arquitetura de
microsservigos. Desta forma, os microsservigos passam a possuir fronteiras mais
claras em relagdo ao negdcio, promovendo times multifuncionais e independéncia

operacional.

° Servicos Inteligentes, conexdes simples

25

Este conceito reforga a ideia de que microsservi¢os devem concentrar suas respectivas
logicas de negocio e processamento de dominio, sendo o mais desacoplados e coesos
possivel. Portanto, suas conexdes devem ser feitas de forma leve e simples. Os
protocolos mais utilizados para isso sao o HTTP e mensageria, utilizando ferramentas
basicas como RabbitMQ ou ZeroM(Q, que funcionam como roteadores assincronos.

Os servigos agem como filtros que processam requisi¢des, aplicam logica e produzem
respostas. Este processo auxilia no desacoplamento e na coesdo dos servigos, evitando

que comunicagdes excessivamente complexas sejam realizadas.

Design Evolutivo

No design evolutivo, a decomposi¢do de servigos possui um papel importante para
permitir que os desenvolvedores controlem as mudangas em suas aplicacdes sem
desacelerar o ritmo de desenvolvimento, permitindo que tais mudangas sejam
realizadas de forma frequente, rapida e controlada. Um exemplo em que este principio
pode ser usado ¢ em aplicagdes financeiras, em que novos servicos sao criados para

oportunidades de mercado de curta duragdo.

2.2.3 Tipos de Acoplamento

Levando em conta que o acoplamento ¢ uma caracteristica esperada em uma

arquitetura de microsservigos, ¢ crucial entender os diferentes tipos de acoplamento para

mitigar os riscos associados. (NEWMAN, 2022) descreve quatro tipos de acoplamento,

organizados do nivel mais baixo (desejavel) para o mais alto (indesejavel), como mostrado na

Figura

1.

Figura 1 - Visdo resumida dos tipos de acoplamento

Dominio Passagem Dados em Comum Conteudo

d
h

»
»
Acoplamento baixo/fraco Acoplamento alto/forte

Fonte: Newman (2021), adaptado pelo autor.

26

No nivel mais fraco, o Acoplamento de Dominio ocorre quando um microsservigo depende
das funcionalidades de outro para realizar suas operagdes, o que € quase inevitavel, pois os

microsservigos colaboram entre si.

O Acoplamento de Passagem, no segundo nivel, surge quando um servigo envia dados para
outro apenas porque esses dados serdo usados por um terceiro servigo subsequente. Esse tipo
de acoplamento cria dependéncias desnecessarias, exigindo que o servigo original

compreenda detalhes da l6gica de servigos subsequentes.

O terceiro nivel de Acoplamento de Dados em Comum se dd quando dois ou mais
microsservicos fazem uso de dados em comum, por exemplo, utilizando um banco de dados

compartilhado.

Por fim, o Acoplamento de Conteudo, o mais indesejavel, ocorre quando um servigo acessa
diretamente o estado interno de outro, violando o principio de encapsulamento. Isso pode

levar a falhas imprevisiveis e a um alto grau de dependéncia.

2.3 Projeto Dirigido pelo Dominio (Domain-Driven Design)

Uma caracteristica importante para a constru¢ao de microsservicos € a identificagdo de
suas fronteiras, € uma maneira de obter isso ¢ organiza-los por suas capacidades de negdcio,
como descrito na se¢do 2.2.2. (NEWMAN, 2022) complementa essa visdo ao utilizar como
principal método de identificagdo de fronteiras o uso do proprio dominio como base, fazendo

uso do DDD.

(FOWLER, 2020) descreve DDD como uma abordagem de desenvolvimento de software que
foca na criagdo de um modelo de dominio que possua um entendimento profundo dos

processos e regras do dominio ao qual o sistema esta relacionado.

O termo foi inicialmente criado por Eric Evans (2003), o qual apresenta um conjunto de
abordagens e técnicas que auxiliam a tarefa de tomar decisdes de design. De acordo com o

autor, quando a complexidade foge do controle, os desenvolvedores ndo podem compreender

27

claramente o sistema para alterad-lo de maneira facil e segura. Para ele, a maior complexidade
se d& no proprio dominio de negdcio. Com isso, 0 DDD apresenta um conjunto de praticas,
técnicas e principios de design, para obter uma aceleragdo de projetos de software que

possuem dominios complexos.

(VERNON, 2013) descreve as diversas vantagens ao se utilizar as técnicas de DDD:
e A empresa ganha modelos uteis de seu dominio
Aplicar o DDD visa focalizar o aspecto mais importante da empresa, seu dominio
nuclear (core), essencial. Apesar de outros dominios importantes existirem, eles
servem para apoiar o dominio nuclear, o qual gera valor e diferencial de mercado para
a empresa. Sendo assim, por meio do DDD, é possivel construir modelos que

realmente representem as capacidades de negdcio da empresa.

e O modelo de negdcio é entendido de uma forma refinada e precisa
Ao se usar a Linguagem Ubiqua no dominio nuclear da empresa, ¢ possivel nio
apenas melhorar o desenvolvimento de software, mas refinar a definicdo e o
entendimento da propria organiza¢do sobre seu negocio e missio. A medida que o
modelo de dominio ¢ refinado, surge um entendimento mais profundo do negdcio, que

pode ser utilizado como uma ferramenta analitica estratégica e tatica.

A colaboragdo entre os especialistas de dominio e times técnicos auxilia na analise de

valor das dire¢des presentes e futuras da empresa.

e Especialistas de dominio contribuem para o desenvolvimento de software
Os chamados especialistas de dominio podem discordar sobre terminologias, dado
suas diversas experiéncias sobre o negocio. Porém, o uso do DDD permite que eles

ganhem um consenso sobre os conceitos, o que fortalece a empresa como um todo.

Os desenvolvedores também passam a possuir um conhecimento de negdcio em
comum com os especialistas de dominio com quem trabalham. Dessa forma,
consegue-se extrair diversos beneficios, como a reducdo de casos nos quais apenas

algumas pessoas conhecem profundamente sobre determinado dominio.

28

Ao final, especialistas de dominios e desenvolvedores (antigos e novos) compartilham
um conhecimento em comum, tendo como objetivo adotar uma linguagem

compartilhada com qualquer pessoa da organizagao.

e Fronteiras bem definidas sao alocadas ao redor de modelos especificos
Os times técnicos sdao desencorajados a tomar decisdes baseados em decisoes
puramente técnicas, visando direcionar o foco para a eficacia da solucao, concentrando
os esforcos onde eles sdo mais relevantes do ponto de vista do negécio. Esse proposito
esta ligado a compreensao do Contexto Delimitado do projeto, de forma a garantir que

o desenvolvimento permaneca alinhado com os objetivos estratégicos da empresa.

e A arquitetura empresarial ¢ melhor organizada
Quando os Contextos Delimitados sao bem desenhados e entendidos, todos os times
interessados sabem onde e o porqué cada integracdo ¢ necessaria. Suas fronteiras e
relacionamentos entre si sdo bem definidos. Times que implementam modulos
compartilhados realizam Mapeamento de Contextos para definir estratégias formais de
integragdo entre eles. Ao fim, pode ser possivel ter uma compreensao geral de toda a

estrutura organizacional de comunica¢do da empresa.

e Novas ferramentas, estratégicas e taticas, sdo adotadas
Os Contextos Delimitados estabelecem limites claros ao se modelar solugdes dentro
de um dominio de negdcio. Dentro deste contexto, uma equipe desenvolve uma
Linguagem Ubiqua, que serd usada na comunicacdo e no modelo do software. Para
formalizar o estilo de comunicagao entre os Contextos Delimitados, diferentes equipes
criam Mapeamentos de Contexto, segregando estrategicamente os contextos. Ao final,
ferramentas de modelagem tética sdo aplicadas dentro de cada Contexto Delimitado,

como Agregados, Entidades, Objetos de Valor e Eventos de Dominio.

2.3.2 Representacio do Dominio

Para (VERNON, 2013), o dominio pode ser definido como “o que” uma empresa faz e

em qual contexto ela estd inserida, onde cada empresa possui seu conhecimento associado e

sua forma de fazer as coisas. Para (EVANS, 2003), a representagdo do dominio ¢ central para

29

o desenvolvimento de software alinhado aos objetivos do negdcio. Ele defende que o dominio
deve ser representado por um modelo claro e coeso, que reflete a realidade do negocio. Para
isso, ele apresenta a ideia da utilizacdo de modelos. Para ele, um modelo de dominio nao se
trata de um diagrama especifico ou o conhecimento de um especialista de dominio, mas uma
abstra¢do rigorosamente organizada e seletiva daquele conhecimento, fazendo com que as

suas informagdes possuam um sentido.

No entanto, o termo “modelo de dominio” pode ser confuso dado a palavra “dominio”,
podendo se referir tanto ao dominio principal do negdcio, quanto a apenas uma darea de
atuacdo dentro dessa empresa. (VERNON, 2013) utiliza termos como subdominio, dominio
principal, entre outros, para se referir a areas de negocio especificas. Segundo cele,
praticamente todos os dominios possuem subdominios associados. A Figura 3 ¢ uma
representacdo dos subdominios de uma empresa de comércio eletronico, destacando as
divisdes especificas que cada subdominio representa. A linha continua externa, com maior
espessura, indica o dominio principal de atuacdo da empresa; as linhas continuas internas
demarcam seus contextos delimitados; as linhas pontilhadas representam seus subdominios; e
as linhas continuas entre os subdominios e contextos delimitados indicam a integracdo de

relacionamento entre eles.

30

Figura 2 — Representacdo de subdominios em uma empresa de comércio eletrdnico

r)

Sistema de Vendas Online

4
’ A S
1 M ,' N
. . 1 \
" Subdominio de Catalogo ,\‘: i
I Subdominio de Ordens
\
’ 1
N N, .=~
. ,] l\ - ~a .
S oo - - 1 N R ’ , ~ .
- Y
PR /\ \\
R S\—" Seeao- Subdominio de Faturamento |

’ 1
! \
1 Subdominio de 1

1 toti 1

' Logistica '

\\)
A} 7

S [

4 S PR

~~~~~

~ <
_______

—— Sistema de Integracoes

Sistema de Inventario
\ ) L Externas

_ 7

Fonte: Vernon (2013), adaptado pelo autor.

2.3.3 Design Estratégico

Segundo (VERNON, 2016), esse tipo de design destaca o que ¢ estrategicamente
importante para o negdcio, apresentando forma de dividir o trabalho por importancia e como
integrar melhor de acordo com a necessidade do negécio. Ele ainda destaca que o design

estratégico ¢ utilizado como uma forma de visdo ampla, antes de entrar nos detalhes da

implementagao.

(KHONONOV, 2022) complementa essa visdo destacando que a visdo estratégica do DDD se
preocupa em responder as questdes sobre qual software estd sendo construido e o por que esta

sendo construido.



31

2.3.3.1 Subdominio

Subdominios podem ser considerados como partes menores do dominio principal de
atuacdo de uma empresa que, em conjunto, sdo utilizados para atingir os objetivos e metas de
seu dominio de negdcio principal (KHONONOV, 2022). De acordo com (VERNON, 2016),
os subdominios podem ser utilizados para dividir todo o dominio de negdcio de uma maneira
logica, facilitando o entendimento do espago do problema em um projeto grande e complexo,
por exemplo. A Figura 5 demonstra a divisdo de um dominio de negdcio abstrato em quatro
subdominios, seus respectivos contextos delimitados € o mapeamento de suas integracdes

pelas linhas continuas entre eles.

Figura 3 — Dominio de negdcio abstrato dividido em subdominios

Dominio

Subdominio de Suporte\
(A)

/ Subdominio

;
.
;
nuclear '
.

h

;

h

Contexto Delimitado

Contexto Delimitado

Contexto Delimitado

Contexto Delimitado

.

Contexto Delimitado

Subdominio de Suporte
(B)

N J

Fonte: VERNON (2016), adaptado pelo autor.

(externo)

Quanto aos tipos possiveis de subdominio, eles caracterizados no DDD de acordo com sua

importancia e relevancia de negdcio, sendo:

e Subdominio Nuclear (core)



32

Representa a principal atividade da empresa, a qual gera o seu diferencial de mercado
e valor de negocio. Nele, acontecem os principais investimentos em profissionais e

recursos tecnoldgicos, de forma mais cuidadosa e estratégica.

e Subdominio de Suporte
Como o nome sugere, sao subdominios que oferecem suporte aos subdominios
principais da empresa, mas que ndo geram um diferencial de negdcio ou vantagem
competitiva. (KHONONOV, 2022) complementa este conceito destacando que uma
caracteristica singular de subdominios de suporte se ddo por sua logica de negdcio

que, no geral, devem ser simples.

e Subdominio Genérico
O subdominio genérico, por sua vez, representa um tipo de subdominio que, além de
ndo gerar um diferencial competitivo para o negocio, também consiste em atividades
comerciais amplamente conhecidas e utilizadas. Esse tipo de subdominio pode ser
terceirizado, ou até mesmo construido internamente, mas sem um grande

investimento, como ¢ feito em um subdominio principal, por exemplo.

2.3.3.2 Contextos Delimitados e Linguagem Ubiqua

De acordo com (VERNON, 2016), um CD - Contexto Delimitado (Bounded Context)
¢ definido por um limite conceitual semantico, onde cada componente interno ¢
semanticamente motivado e possui um significado claro, alinhado com as necessidades de

negocio.

O modelo criado nas discussdes de design deve refletir a linguagem falada pelo time que
trabalha no Contexto Delimitado, a qual ¢ chamada de Linguagem Ubiqua (Ubiquitous
Language), ¢ deve ser essa a linguagem usada na implementagdo do modelo do software.
(VERNON, 2016) reforca que tal linguagem deve ser estrita, exata, rigorosa e rigida.
(KHONONOV, 2022) complementa dizendo que a linguagem ndo deve ser ubiqua no sentido
de ser utilizada de maneira universal em toda a organizacdo mas, sim, apenas dentro dos

limites de seu CD.



33

2.3.3.3 Mapeamento de Contextos

Considerando que diferentes Contextos Delimitados de uma empresa precisarao se
comunicar de alguma forma, hd também a técnica de Mapeamento de Contextos, os quais sao
representacdes visuais dos Contextos Delimitados de um sistema e a integracao entre eles

(KHONONOV, 2022).

(VERNON, 2021) destaca também que, acima de tudo, o Mapeamento de Contextos expressa
qual tipo de relacionamento entre equipes e de integragdo entre contextos ¢ representado pela
linha entre os contextos. Ele ainda complementa que uma defini¢do clara de suas fronteiras e

contratos ajudam a criar mudancas controladas com o passar do tempo.

Ha alguns estilos na representacdo dos mapeamentos, tanto de equipes como de contratos de
comunicagdo entre CDs (mapeamento técnico), alguns deles representando ambos. Segue suas

descrigdes resumidas (VERNON, 2021) e (KHONONOYV, 2022):

e Parceria: Quando duas equipes trabalham em sincronia tendo um objetivo em comum
entre os dois. Com essa integracdo, nenhuma das duas dita as regras de defini¢do de
contrato. Normalmente, uma parceria ndo dura por um longo prazo, mas apenas

enquanto fornece vantagens para o negécio, podendo ser remapeada posteriormente.

e C(liente-Fornecedor: O estilo Cliente-Fornecedor, ao contrario da Parceria, descreve
um padrao onde ambas as equipes podem possuir sucesso de forma independente um
do outro, porém ha uma relacdo de influéncia entre ambos. Isso € representado pela
letra D (Downstream — a jusante) para o cliente e U (Upstream — a montante) para o
fornecedor, denotando que o cliente planeja com o fornecedor para atender suas

expectativas, mas o fornecedor decidird o como e o que o cliente ira receber.

e Conformista (CF): Quando hd um desequilibrio de poder entre as equipes, de forma
que a equipe ascendente ndo possui motivagdo para atender as necessidades da equipe
descendente. Caso a equipe descendente deseje se adequar as informacoes recebidas

pela equipe ascendente, essa ¢ uma relagdo de conformidade.



34

e Camada de Anticorrup¢ao (ACL): Continuando com a relagdo de desequilibrio de
poder decisorio sobre os modelos de dominio, ha casos em que a equipe descendente
ndo deseja se adequar a equipe ascendente, seja pelo modelo ascendente ser ineficaz
para as necessidades do descendente, ou pelo descendente desejar proteger seu
conhecimento de dominio e/ou linguagem ubiqua. Nestes casos, 0 modelo descendente
constroi um modelo que traduz os contextos externos por meio de uma camada de

anticorrupg¢ao.

e Servico de Host Aberto (OHS): O Servico de Host Aberto visa disponibilizar para os
CDs descendentes uma interface aberta, a qual expde um protocolo conveniente bem

documentado para seus clientes.

2.3.4 Design Tatico

Em continuidade ao projeto estratégico, que traz uma visdo em alto nivel, o projeto
tatico visa aplicar os conceitos obtidos em solugdes de software, de forma a criar um modelo
de design que seja fiel ao dominio, coeso e facil de manter (EVANS, 2014), utilizando
ferramentas como modelagem de Entidades, Objetos de Valor, Agregados, Repositdrios,

Servigos de Aplicacdo, Servigos de Dominio e Eventos de Dominio.

2.3.4.1 Entidade

Entidades sdo caracterizadas por modelos que representam um conceito do dominio
que, mesmo sofrendo alteragdes de estado ao longo do tempo, mantém sua identidade, sendo
este seu principal ponto de distincdo de outras ferramentas de modelagem — sua

individualidade (VERNON, 2021).

(EVANS, 2004) complementa essa visao afirmando que uma entidade deve refletir apenas os

comportamentos do conceito e os atributos necessarios para dar suporte a eles.

2.3.4.2 Objeto de Valor

Um Objeto de Valor ¢ um elemento que modela uma totalidade conceitual imutavel.

Essa ferramenta de modelagem ndo possui uma identidade Unica, e sua equivaléncia ¢



35

determinada apenas ao comparar os atributos encapsulados nela pelo seu tipo. Objetos de
Valor sdo comumente utilizados para descrever, quantificar ou mensurar uma Entidade

(VERNON, 2021).
2.3.4.3 Agregado

Agregados sdo ferramentas fundamentais na modelagem tatica de um dominio que
buscam encapsular toda a complexidade da criacdo de modelos por meio de Entidades e
Objetos de Valor, estabelecendo um limite claro ao seu redor (EVANS, 2015). Cada agregado
deve possuir uma entidade raiz (chamada de raiz do agregado), a qual deve ser o inico ponto
de acesso ao modelo criado. Essa estrutura garante que a raiz do agregado mantenha as
propriedades e invariantes do agregado como um todo, simplificando o controle de

consisténcia dos objetos relacionados.

(VERNON, 2021) descreve quatro ideias que servem como orientacdo ao se modelar
agregados:

1. Proteger invariantes de negdcios dentro dos limites do agregado;

2. Projetar agregados pequenos;

3. Referenciar outros agregados apenas pela identidade;

4

Atualizar outros agregados utilizando a consisténcia eventual.
2.3.4.4 Evento de Dominio

Eventos de dominio sdo objetos completos no modelo do dominio que funcionam
como uma representagdo de uma agdo que ja ocorreu, e que € de interesse dos especialistas de
dominio. Especialmente em sistemas distribuidos, em que o ciclo de vida de uma entidade
pode ser alterado de formas assincronas, esses eventos sdo uteis para tornar explicita a

intencdo de mudanga de uma entidade, ajudando a compreender como o estado do sistema
evoluiu (EVANS, 2015).

2.3.4.5 Servico de Dominio

(EVANS, 2015) define que, quando um processo significante ou uma alteragdo no

modelo de dominio ndo ¢ uma responsabilidade natural de uma entidade ou objeto de valor,



36

uma operacao deve ser criada para o modelo por meio de uma interface isolada declarada
como um servico. (VERNON, 2015) complementa essa visdo, indicando que os servigos de
dominio devem ser usados apenas quando realmente necessarios, quando a logica a ser
encapsulada ndo se encaixa em outros componentes. Ele ainda sugere que os servigos sejam
coesos e centralizem processos complexos ou calculos que envolvam multiplas entidades ou

agregados.

2.3.4.6 Servico de Aplicacao

Servigos de Aplicagdo sdo comumente encontrados em projetos de software que
possuem uma arquitetura dividida em camadas, as quais podem representar tanto separagdes
fisicas como logicas. (EVANS, 2003) atribui a camada de aplicacdo a fungdo de isolar as
responsabilidades 16gicas e de dominio. Para ele, os servigos de dominio sdo classes que agem
como coordenadoras das requisi¢des feitas pelo usuario. (FOWLER, 2009) destaca que a
camada de servigo — a qual ¢ um sinonimo da camada de aplicacdo — define o limite de uma
aplicagdo com uma camada de servigos que estabelece um conjunto de operagdes disponiveis

e coordena a resposta da aplicacdo em cada operacao.



37

3. ALGUNS PROBLEMAS NO DESIGN DE UMA
ARQUITETURA DE MICROSSERVICOS

Este capitulo apresenta certos problemas que podem ser encontrados na
implementag¢do de uma arquitetura de microsservigos, em um cenario onde a modelagem de
suas das interagcdes ndo foi realizada de maneira adequada, do ponto de vista de defini¢ao de
fronteiras e responsabilidades claras de cada servico, detalhando alguns dos problemas
decorrentes de seu design. O capitulo também apresenta pontualmente as técnicas de DDD
utilizadas como base para propor uma solu¢do que busque minimizar os problemas

encontrados.

3.1 Contexto do Negocio

Como descrito na se¢do 2.2.2, a arquitetura distribuida de microsservigos traz diversas
vantagens para o ambiente de software corporativo, como maior escalabilidade e flexibilidade
no desenvolvimento e manutengdo de suas aplicagdes. No entanto, quando essa arquitetura
ocorre sem uma modelagem cuidadosa, surgem problemas como baixo nivel de coesdo e alto

grau de acoplamento entre os servigos, anulando muitos dos beneficios esperados.

Estudos como os de (OUMOUSSA e SAIDI, 2024) destacam que a complexidade na
decomposi¢cdo de sistemas monoliticos para uma arquitetura de microsservigos ¢ um dos
maiores desafios nessa transicdo. Mesmo com técnicas conhecidas para identificar
microsservigos, faltam métricas amplamente aceitas para avaliar a qualidade das definigdes de
servigo, o que limita a capacidade das equipes de medir e otimizar a arquitetura. (ZHONG et
al., 2024) complementam, demonstrando que a definicdo de contextos delimitados, conceito
central no DDD, ¢ sujeita a interpretagdes diferentes, o que resulta em inconsisténcias no

design.

Esses desafios comprometem ndo apenas a evolucao e a manutencao do sistema, mas também

a capacidade de atender de maneira eficiente as necessidades do negocio (VERNON, 2013).

Considerando os fatores abordados anteriormente, descreve-se um cendrio de uma empresa

ficticia, chamada InvestmentCorp, calcado em um exemplo real que anonimiza e abstrai



38

algumas caracteristicas de negocio, que opera como gestora de fundos de investimento. Sua
principal meta de negdcio € possibilitar que clientes consigam realizar compras e vendas de
cotas em fundos de investimento por meio de um aplicativo mével ou portal web. Para tanto, a
InvestmentCorp possui capacidades de negdcio que ddo suporte a sua estratégia de operagao
principal, como administragdo dos fundos de investimento disponiveis, gerenciamento do
patrimonio de seus clientes, realizagdo de integragdes com sistemas terceirizados, entre

outras.

A fim de disponibilizar um ecossistema tecnoldgico que permitisse a construgdo de produtos
resilientes e escaldveis, além de utilizar a colaboracdo de diferentes times especialistas em
cada produto, a InvestmentCorp construiu sua arquitetura utilizando microsservigos. Por meio
deles, a InvestmentCorp busca garantir que as transagdes financeiras realizadas pelos clientes
sejam recebidas, processadas e integradas, tanto as suas carteiras quanto a organizagdes
externas interessadas, como entidades governamentais ¢ bancos, por exemplo. Representados
pelas figuras hexagonais, a Figura 3.2 apresenta os principais microsservigos responsaveis por

atender as capacidades de negocio da InvestmentCorp, bem como suas interagdes.



39

Figura 4 - Representagdo Geral dos Microsservigos do Mddulo de Gerenciamento de

Operagdes e suas Principais Interagoes

Servigo de
Calculo de
Impostos
Consultar Impostos
sobre a Operagéo
Financeira

Servigo de

Enviar Notificagdo de icol
Notificagbes

| ____—— Ordem Realizada

. Enviar Notificagéo de
Gerenciador de Ordem Processada

Ordens (GO)

———— Validar Risco Consultar Dados do Cliente

da Operagdo

Consultar / Atualizar
Ordens

Servigo de
Perfil de Cliente

Processador de
Consultar Carteira Ordens (PO)

\ \

\ C Itar Dados do Clientt
Atualizar Carteira \ onsultar Lados do tliente

\
Consultar Disponibilidade
de Fundos
\

Enviar Dados da
Servico de Ordem
Gestédo
Patrimonial

(GP)

Servigo de
Compliance e Risco

\ Consultar Regras
\‘\ do Fundo

Servigo de
Integrag@o com Bancos e

Servico de
Gerenciamento de
Fundos (GF)

Parceiros

Fonte: o Autor.

Na figura, as setas representam as interagdes entre 0s microsservicos e seus nomes denotam a
natureza das colaboracdes entre eles. Estdo representadas as colaboragdes que pretendem

garantir que as necessidades de negdcio sejam atendidas.

O servico Gerenciador de Ordens (GO) tem um papel fundamental no fluxo operacional da
InvestmentCorp. Ele serve como porta de entrada para as transagdes financeiras realizadas
pelos clientes, além de disponibilizar as funcionalidades de entrada e consulta de ordens em
diferentes canais da companhia. O GO interpreta o conceito de Ordem como uma entidade
que representa uma operagdo de compra ou venda de cotas em um fundo de investimento pelo

cliente.

Para possibilitar a criagdo de ordens, o GO se comunica com outros servi¢os, como o Servi¢o
de Gestao Patrimonial (GP) e Compliance e Risco, a fim de realizar todas as validacdes

necessarias que garantem sua consisténcia. Além disso, ele também consome dados do



40

Servigco de Célculo de Impostos para obter a informacgdo sobre a dedu¢do de impostos no
valor da operacao financeira. Suas responsabilidades consistem em disponibilizar a consulta
das ordens realizadas por meio de interfaces publicas (4APIs) e atualizacdo de status,
funcionalidades essas que serdo utilizadas posteriormente por servigos como o Processador de

Ordens (PO).

O GO ¢ responsavel pela parte inicial do ciclo de vida de uma Ordem. Ela ¢ de fato criada
apenas quando a solicitagdo realizada por um cliente for validada com sucesso a partir de
diversas etapas que compdem o fluxo de validagdo de uma Ordem, como a validagdo de risco
da operagdo, status do Fundo de Investimento, posi¢ao disponivel do cliente no momento da
solicitagdo, entre outras. A Figura 3.3 representa, em alto nivel de abstragdo, o modelo das

principais entidades de dominio contidas no servico GO.



41

Figura 5 — Modelo das classes do servico Gerenciamento de Ordens (GO)

GerenciadorDeOrdens.Domain.Entities I

Ordem ‘ PatrimonioCliente Clientelnvestidor
+ |d: integer + IdCliente: integer + IdCliente: integer
+ TipoOperacao: TipoOperacaoEnum + IdFundo: integer + Perfillnvestimento: PerfillnvestimentoEnum
+ |[dFundo: integer + Posicao: decimal

+ PodeOperar: bool

+ IdCliente: integer

+ QtdeCotas: integer <<enumeration>>

+ Valor: decimal PerfillnvestimentoEnum
+ ValorDesconto: decimal Comum
+ DataOrdem: DateTime Profissional
+ Status: StatusOrdemEnum
l_l 1 <<enumeration>> Fundo
R TipoOperacaoEnum +1d: integer
OrdemHistorico Compra + Nome: string
+ Id: integer Venda + HoraLimiteOperacao: Timestamp

+ 1dOrdem: integer + Perfillnvestimento: PerfillnvestimentoEnum

+ DataOcorrencia: DateTime

+ Status: StatusFundoEnum

<<enumeration>>
StatusOrdemEnum
+ Descricao: string Criada

+ Status: StatusOrdemEnum

<<enumeration>>

+ Solicitante: string Integrada StatusFundoEnum

Ativo
PendenteDeCotizagdo

Inativo

PendenteDeliquidagéo

Concluida

Cancelada

Fonte: o Autor.

Observa-se que a relacao entre Ordem e OrdemHistorico reflete um aspecto importante do
dominio: o rastreamento do ciclo de vida de uma ordem. Ao conectar diretamente uma Ordem
ao seu historico, eventos relevantes e mudancas de status podem ser registrados,

possibilitando a rastreabilidade de seu estado.

O pacote GerenciadorDeOrdem.Ordem, que representa as principais responsabilidades do
servigo no que tange o conceito de Ordem visto anteriormente, terd suas entidades, em sua

maioria, serdo instanciadas por meio do fluxo de entrada de Ordens.

O Processamento de Ordens (PO), por sua vez, € responsavel por processar e integrar as novas
ordens disponibilizadas por GO, tanto nas carteiras dos clientes quanto naquelas de
interessados externos, como bancos, drgdos reguladores, etc. Diferente de GO, PO interpreta

uma “Ordem” dentro de seu contexto especifico como uma operagao efetivada, representada



42

por uma transa¢do financeira j& integrada, que pode estar passando pelo fluxo de
processamento, ou que ja foi devidamente processada e integrada aos parceiros externos
interessados (como Orgaos regulamentadores e governamentais, por exemplo) como na

posicao patrimonial dos clientes.

PO tem um papel ativo, tanto para consultar as ordens realizadas em GO quanto para enviar
os detalhes dessas ordens adiante no fluxo de operagdo, como nas integragdes com servicos

externos e carteiras dos clientes, por exemplo.

O servigo Gestao Patrimonial (GP) realiza o gerenciamento patrimonial dos clientes,
controlando sua carteira de investimentos, saldos, € sua evolucao patrimonial, com base nas
configuracdes e regulamentagdes dos fundos aplicados. O GP disponibiliza a visdo
patrimonial para os clientes da InvestmentCorp por meio de diferentes canais, como aplicativo
moével e portal web. Nota-se também que GP atua de forma passiva em relagdo aos demais

servicos interessados, porém possuindo suas proprias regras de negdcio internas.

O Gerenciamento de Fundos (GF) também se destaca por atender um contexto muito
importante da InvestmentCorp. Além de ser responsavel por gerenciar as informacdes dos
fundos de investimento, incluindo caracteristicas como horarios de operagdo, limites minimos
e maximos de aplicagdo e resgate, e regras de negdcio especificas de cada fundo, também
disponibiliza as informag¢des de forma estruturada para outros servigos, como GO, e para os

diferentes canais da companbhia.

3.2 Ciclo de Vida de uma Ordem

Nos contextos de negocio abordados anteriormente, “Ordem” representa um dos
conceitos mais importantes pois, consolidando as defini¢des tanto em GO quanto PO, pode-se
dizer aqui que Ordem ¢ a entidade que representa uma transac¢ao financeira de compra ou
venda de cotas em fundos de investimento, realizada por um cliente. Uma Ordem possui
diversos estagios ao longo de seu ciclo de vida, os quais permitem que diferentes a¢des ou
eventos sejam realizados. Por exemplo, uma Ordem de compra SOLICITADA pode ser
CANCELADA, porém se estiver no estado PENDENTE DE COTIZACAO isso ja nio ¢é

possivel.



43

De forma a descrever as mudancas de estado de uma Ordem e suas agdes possiveis, utiliza-se

o diagrama de Maquina de Estado da UML, apresentado na Figura 8. A Tabela 3 descreve

com detalhes cada estado e cada a¢do possivel em cada estado.

Tabela 2 — Descri¢ao dos estados de uma Ordem.

Estado Descrigdo Agoes
SOLICITADA Estado inicial de uma ordem, atribuido assim Permite: Consultar saldo
que a solicitacdo realizada pelo cliente ¢ do Cliente, Consultar
validada e a ordem ¢ criada. O estado se dados do Fundo e
mantém assim até que a proxima janela de Cancelar.
processamento se inicie e seu estado mude Bloqueia: Finalizar.
para AGUARDANDO COTIZACAO ou
AGUARDANDO SALDO (caso a conta do
cliente esteja sem saldo), ou que haja um
cancelamento e seu estado mude para
CANCELADA.
AGUARDANDO Este estado ¢é atribuido assim que ocorra uma Permite: Consultar saldo
COTIZACAO janela de processamento e¢ a ordem seja do Cliente e Consultar
processada. Esse estado se mantém assim até dados do Fundo.
que o prazo para cotizagdo do regulamento do Bloqueia: Finalizar,
fundo seja finalizado. Caso seja uma ordem de  Cancelar.
compra, seu estado muda para FINALIZADA.
Se for de venda, muda para AGUARDANDO
LIQUIDACAO
AGUARDANDO Apos o prazo para liquidagao de cotas previsto Permite: Consultar saldo
LIQUIDACAO no regulamento do fundo finalizar, quando do Cliente e Consultar

AGUARDANDO SALDO

houver uma nova janela de processamento o

estado da ordem sera alterado

FINALIZADA.

para

Esse estado sera atribuido durante uma janela

dados do Fundo.

Bloqueia: Cancelar.

Permite: Consultar saldo



FINALIZADA

CANCELADA

de processamento caso o cliente ndo possua
saldo em conta para realizar a transagdo. Isso
pode ocorrer apenas em casos de ordens de
compra onde a ordem possui uma data de
agendamento. E possivel alterar o estado da

ordem para CANCELADA também.

Estado atribuido assim que todos os estados
anteriores forem devidamente finalizados € a

ordem seja concluida.

Estado atribuido caso o cliente deseje cancelar

a ordem.

44

do Cliente, Consultar
dados do Fundo e
Cancelar.

Bloqueia: Finalizar.

Bloqueia: Qualquer agdo.

Bloqueia: Qualquer agao.

Fonte: o Autor.



45

Figura 6 — Diagrama de estado do ciclo de vida de uma Ordem

SolicitagéoRealizada
CancelamentoSolicitado
ﬁ CANCELADA }

( SOLICITADA )

OrdemProcessada

CancelamentoSolicitado

[ClienteN&oPossuiSaldo] ‘/AGUARDANDO
7& SALDO

ClientePossuiSald
[ClientePossuiSaldo] [ClientePossuiSaldo]

(AG UARDANDO \

COTIZAGAO j

CotizagdoConfirmada
AGUARDANDO N7\
( LIQUIDAGAO ) Q
LiquidagaoConfirmada

( FINALIZADA )

Fonte: o Autor.



46

3.3 Descri¢ido do Problema

Apesar de atenderem as necessidades de negocio da InvestmentCorp, € possivel
observar alguns pontos de atengdo em relagdo a interagdo entre oS microsservigos no esquema
arquitetonico apresentado nas figuras acima. Ao observar a relagdo entre GO e PO, por
exemplo, observa-se que ambos utilizam o conceito de “Ordem”. No entanto, este conceito
possui significados diferentes em cada servico, apesar de ambos terem a ver com o ciclo de
vida de uma Ordem, aqui entendida de forma geral como uma operacao financeira realizada
por um cliente. Sem uma definicao precisa desse conceito, essa variagdo na defini¢do indica
uma coesdo fraca, como apresentado na secao 2.2.3, podendo gerar ambiguidades no
entendimento do dominio, prejudicar a evolugdo do sistema como um todo e, principalmente,

deteriorar a comunicacao entre as equipes.

Além disso, ¢ observa-se que a interacao entre GO e PO gera um acoplamento similar ao
acoplamento de dominio, descrito no capitulo 2.2.5, pois PO precisa realizar consultas
recorrentes em GO, para verificar se novas Ordens foram realizadas. Apesar de ser um tipo de
acoplamento baixo, a analise deve considerar problemas de disponibilidade (caso GO esteja
em falha operacional por algum motivo, PO apresentara erros no momento de consultar GO),
de manutenibilidade (pois mudancas feitas em GO poderdo afetar diretamente PO) e de

escalabilidade, por exemplo.

Além dos problemas observados em relacdo a comunicagdo entre os servicos, pode-se
observar problemas de design nos proprios servigos. Conforme observado no diagrama da
Figura 7, os modelos em GO sao agrupados por pacotes que representam os conhecimentos de
dominio de cada classe. Com base nas convengdes do padrao UML, nota-se que as
apresentadas possuem acesso “publico” as suas propriedades (representado pelo simbolo “+”
que precede o nome das propriedades). Isso significa que nao ha o conceito de modularizagao,
pois todas as classes podem ser acessadas por classes externas, o que implica problemas de

manipulagdo indesejada no estado de tais entidades.

Entidades como Fundolnvestimento ¢ Clientelnvestidor, representadas em pacotes separados,
ndo possuem um acoplamento direto com Ordem. Isso reflete o papel dessas entidades no

contexto do GO, as quais sdo utilizadas apenas em consultas ou valida¢des especificas, por



47

meio de integracdes com servigos externos. Contudo, esse tipo de integragdo pode criar
problemas de coesdo, pois o GO acaba “conhecendo” indiretamente conceitos especificos de

servigos externos, como os representados por Fundolnvestimento e PatrimonioCliente.

Um exemplo disso é observado com a entidade PatrimonioCliente, no que diz respeito ao
conceito de Posicdo. Dentro do servigo GO, Posi¢do representa ndo apenas a posicao
financeira atual do cliente em um fundo, mas também incorpora o impacto de ordens
pendentes de processamento, por exemplo. Essa defini¢do, no entanto, diverge do conceito de

Posi¢ao mantido pelo servigo externo GP, resultando em um problema de baixa coesao.

No geral, destacam-se diversos problemas que vao desde baixa coesao e alto acoplamento, até
decisdes de design consideradas inadequadas. A Tabela 4 consolida os principais problemas
que surgem a partir da interagdo entre GO e os demais servigos, bem como os impactos
encontrados no design atual deste servigo. Além do identificador do problema, ha também sua

descricdo e tipo de impacto, os quais serao referenciados no capitulo 4 com suas respectivas

solugoes.
Tabela 3 — Compilacdo dos problemas do design atual.

Identificador Descricao Tipo de impacto

GO-01 O conceito de “Ordem” esta distribuido em GO e PO, Baixa coesio
causando ambiguidade em seu entendimento.

GO-02 O conceito de “Posi¢do” em GO ¢ diferente do conceito Baixa coesdo
de “Posicao” em GF, causando ambiguidade em seu
entendimento.

GO-03 Os pacotes GerenciadorDeOrdem.Fundolnvestimento e Baixa coesdo
GerenciadorDeOrdem.Cliente nao isolam adequadamente
os conceitos internos de GO em relag¢do aos conceitos dos
servicos externos.

GO-04 GO e PO possuem comunicagdo direta com diferentes Fronteira semantica mal

microsservicos externos e, por compartilhar o conceito de definida



GO-05

GO-06

GO-07

ordem, suas fronteiras ndo sdo suficientemente claras.

Apesar de possuir um acoplamento de dominio
(conceitualmente baixo), GO ¢ passivo em relagdo a PO,
possibilitando, por exemplo, que falhas operacionais em
PO provoquem efeitos colaterais indesejados no ciclo de

vida de Ordem.

As propriedades de todas as entidades em GO possuem
acesso publico, possibilitando altera¢des indesejadas em
seus estados, além de trazerem mais complexidade ao

controle de seu estado.

GO possui um servico de aplicagdo para realizar a
coordenacdo de chamadas a servigos externos além de
centralizar validagdes de dominio, prejudicando a

manutencao e reduzindo a coesao.

48

Acoplamento inadequado

Modularizagdo inexistente

Baixa coesdo

Fonte: o Autor.



49

4. APLICACAO DAS TECNICAS DE DDD NO DESIGN
ATUAL

Este capitulo discute as propostas de solugdo para os problemas destacados no capitulo

3 da perspectiva do DDD.

4.1 Visao geral das solucoes propostas

Considerando o cendrio atual da arquitetura de microsservigos da InvestmentCorp,
analisado na sec¢do anterior, constata-se que diversos problemas emergem a partir do design
adotado. Embora a arquitetura atenda aos requisitos de negocio, ela apresenta problemas
significativos, como alto acoplamento entre os servicos € baixa coesdo dos microsservicos.
Esses problemas impactam negativamente na evolucdo e manutengdo do software,
comprometendo inclusive principios fundamentais para a adocdo de microsservigos,

discutidos na se¢ao 2.2.2.

As solugdes propostas visam reestruturar parte do design com base nos conceitos e técnicas
do DDD, detalhados na se¢ao 2.3. O objetivo principal € criar uma arquitetura cujos
elementos apresentam alta coesdo funcional, com fronteiras e responsabilidades bem
definidas, alinhadas com as delimitacdes dos subdominios. Procura-se aqui abordar os

problemas identificados de duas formas:

e Diretamente, por meio da aplicagdo de praticas de DDD no design atual sob uma
perspectiva estratégica, destacando os principais subdominios, seus respectivos tipos
(nuclear suporte, genérico), os contextos delimitados, as fronteiras entre os
microsservigos € os tipos de comunicacao de suas interagdes. Além disso, avalia-se da
perspectiva tatica os principais méodulos causadores de problemas, propondo sugestdes
de melhoria.

e Indiretamente, por meio de propostas de mudangas arquitetonicas fundamentadas nos
problemas evidenciados ao aplicar os conceitos do DDD, como a redistribuicdo de

responsabilidades dos servicos e a introducao de mecanismos de mensageria.

Para revisar aspectos do design arquitetonico, sob um ponto de vista, principalmente, da

comunicagdo entre 0s microsservigos, aplicam-se as diretivas do Design Estratégico. Quanto



50

ao Design Tético, discute-se exclusivamente neste trabalho o subdominio Plataforma de
Fundos de Investimento, por concentrar a maior parte dos problemas identificados

anteriormente

4.1 Design Estratégico com Subdominios e Contextos Delimitados

Na andlise a seguir, sdo identificados os Subdominios da empresa e definidos seus
respectivos Contextos Delimitados (CD), mantendo uma correspondéncia de um para um
(1:1) entre subdominios e CDs. Além disso, explora-se como os microsservi¢os estao
associados a esses Contextos Delimitados, destacando as responsabilidades e limites de cada

um dentro da arquitetura da InvestmentCorp.

4.1.1 Identificacao e Classificacio dos Subdominios

A primeira etapa na identificacdo dos subdominios consiste em tracar suas fronteiras
logicas segundo as capacidades potenciais do negdcio, como ponto de partida para alinhar a

arquitetura as necessidades do negocio.

Como mencionado na se¢do 3.1, a principal linha de atuagdo da InvestmentCorp € possibilitar
que clientes consigam realizar compras e vendas de cotas em fundos de investimento por
meio de um aplicativo movel ou portal web. Considerando essa meta de negdcio e as
responsabilidades atribuidas ao microsservigco GO, € possivel identificar um subdominio que
circunscreve essas responsabilidades. Tal subdominio representa de maneira geral uma
plataforma para negociacdo de fundos de investimento, assumindo aqui que o termo
“plataforma” refere-se a um sentido atual empregado corriqueiramente em boa parte das
empresas: areas do negocio e de seus sistemas que oferecem uma gama expansivel de
servigos. Esse subdominio ¢ nomeado aqui de Plataforma de Fundos de Investimento. Ele
desempenha um papel central no diferencial competitivo da empresa, garantindo o sucesso
das transacdes dos clientes e, consequentemente, a captagao de novos recursos. Sendo este um

subdominio nuclear, ele da suporte direto aos objetivos estratégicos da empresa.

Para sustentar o ciclo de vida de uma Ordem, o servico PO ¢ responsavel por integrar as

operacdes realizadas em GO aos demais sistemas necessarios até o momento de sua



51

finalizagdo. Considerando que esse € um processo que ocorre de maneira assincrona em
relagdo a entrada da ordem, o qual pode inclusive possuir intervengdes manuais, define-se
aqui o subdominio de suporte Backoffice, cujo papel sera proteger e especializar a linguagem
ubiqua ja conhecida em PO, isto &, isolar seus conceitos de dominio de conceitos externos a
ele, buscando garantir maior consisténcia conceitual, descrito com mais detalhes na proxima

secao.

Levando em conta o conhecimento do servico de Gerenciamento de Fundos de Investimento,
¢ proposto aqui o subdominio Fundos de Investimento, o qual controla informagdes
essenciais sobre os fundos geridos pela InvestmentCorp, como caracteristicas, regras
operacionais, disponibilidade, entre outros. Esses dados sdo fundamentais para sustentar as
transacOes realizadas pelos clientes, garantindo conformidade com as regras do mercado. Este
também pode ser considerado também um subdominio nuclear dentro da companhia, dado
que a disponibilizagdo de fundos estratégicos para o mercado representa diferenciais de

negocio

J4 o subdominio de suporte Patriménio do Cliente centraliza informacdes sobre a posi¢do
financeira dos clientes, incluindo saldos, extratos e evolucao patrimonial, responsabilidades ja
apresentadas anteriormente no microsservigo de GP. Embora desempenhe um papel
importante, ele ndo ¢ diretamente responsavel pelo diferencial competitivo da empresa,

funcionando como um apoio as operagdes financeiras.

O subdominio Compliance e Risco reune as validagdes regulatorias e de risco associadas aos
clientes e suas operagoes. Ele desempenha um papel essencial para garantir a conformidade
com normas internas e externas, protegendo a integridade das transa¢des, mas ndo apresenta

diferencial competitivo, sendo classificado como subdominio de suporte.

Por fim, ha subdominios que, embora sejam cruciais para garantir a experiéncia do cliente e o
bom funcionamento do sistema de software, ndo representam diferenciais competitivos e,
sobretudo, podem ter o suporte de produtos de prateleira configuraveis. Tais subdominios sdo
classificados como genéricos, como foi visto no capitulo 2. Tem-se aqui dois subdominios
desse tipo: Perfil de Cliente, que agrega e disponibiliza dados essenciais sobre o cliente,

como informacgdes de contato e perfil de investimento, ¢ Comunicacdo com Cliente, que



52

centraliza as comunicag¢des com os clientes, tanto em canais externos, como e-mail e telefone,

quanto no envio de notificagdes nos canais internos, como aplicativo e portal web.

4.1.2 Defini¢ao dos Contextos Delimitados

Como definido acima, a relag@o entre subdominios e CDs ¢ de 1 para 1. Com base nos

subdominios identificados, a Figura 4.1 apresenta os Contextos Delimitados mapeados.

Figura 7 - Contextos Delimitados da InvestmentCorp

<<suporte>> <<suporte>>
Backoffice Patriménio do Cliente
<<nuclear>>
Plataforma de Fundos de

Investimento

<<nuclear>> <<suporte>>
Fundos de Investimento Compliance e Risco
<<genérico>> <<genérico>>
Comunicagdo com Cliente Perfil de Cliente

Fonte: o Autor

Os CDs estabelecem limites claros em relagdo as responsabilidades de cada funcionalidade,
ao eliminar a ambiguidade de termos e promover maior coesdo dentro dos subdominios.
Termos de mesmo nome (falsos cognatos), que antes estavam distribuidos entre diferentes
servigos, agora sdo devidamente atribuidos a CDs que correspondem aos subdominios que os

definem univocamente nas suas respectivas linguagens ubiquas.

Por exemplo, o termo “Ordem”, anteriormente presente nos servigos GO e PO, torna-se um
conceito especifico dentro do CD Plataforma de Fundos de Investimento. Enquanto isso, no
CD Backoffice (detalhado posteriormente na se¢do sobre o Design Téatico), o modelo central
passa a ser denominado “Operacao Financeira”, com suas proprias caracteristicas. Embora
possa derivar caracteristicas oriundas de "Ordem" (como o valor, tipo de operacao, etc), a
Operagao Financeira ¢ tratada como um conceito Unico dentro da linguagem ubiqua deste CD,

sendo protegida e compreendida exclusivamente pelas equipes que trabalham neste contexto.



53

Outro exemplo ¢ o termo “Posicao”, que possui agora definigdes melhor alinhadas com as
linguagens ubiquas de seus respectivos CDs. Em Plataforma de Fundos de Investimento, o
conceito ¢ representado como “Posi¢ao Disponivel”, que reflete a posi¢do financeira total de
um cliente em determinado fundo deduzindo o valor referente as suas Ordens ainda ndo
finalizadas. Por outro lado, no CD Patriménio do Cliente, o conceito de Posi¢do permanece
protegido e representa exclusivamente o entendimento do que essa entidade significa dentro

deste contexto.

Por fim, a identificagdo dos Subdominios e Contextos Delimitados traz vantagens que ajudam
a mitigar conceitualmente os problemas GO-01 ¢ GO-02, apresentados na Tabela 3, secao
3.2. Tais problemas ainda serdo revisitados no nivel de design tatico posteriormente na se¢ao

4.3.

4.2 Design Estratégico com Mapeamento de Contexto

Visando estilos de comunicagdo entre CDs que busquem ndo apenas evoluir a
qualidade de comunicagao entre as equipes envolvidas, por meio de definicdo de interfaces e
contratos mais precisamente definidos, mas também diminuir de alguma forma o acoplamento
entre certos CDs, a Figura 4.2 apresenta o mapeamento dos contextos delimitados propostos

na se¢ao anterior.



54

Figura 8 - Mapeamento dos Contextos Delimitados no Cenario Proposto

U » D v <<genérico>>

OHS/PL | Comunicagéo com I Perfil de Cliente

Cliente

<<contexto externo>> m
Bancos e Parceiros V]
OHS /PL
OHS /PL D u D
S u D <<nuclear>> D D
ACL I:“E ACL | Plataforma de Fundos de ACL
D ‘ Backofice Investimento p ACL

TAC L

<<suporte>>
Patriménio do Cliente

ACL <<suporte>>
Compliance e Risco

<<nuclear>>
Fundos de Investimento

Fonte: Autor

Por se tratarem de representagdes de microsservigos, como visto na se¢ao 3.1, a comunicagao
entre 0s CDs mantém o estilo de comunicagdo previamente utilizado entre os microsservicos.
Sob o ponto de vista do DDD, utiliza-se o estilo de comunicacdo Servico de Host Aberto
(Open Hosted Service), representado pela sigla OHS. Como apresentado no capitulo 2, tal
estilo de comunicagdo da acesso ao seu Contexto Delimitado por meio uma interface aberta,
com contrato claramente especificado, para que os interessados em seus dados consigam
integrar com facilidade. Esse padrdo ¢ amplamente utilizado em varias relagdes no mapa,

especialmente entre os CDs nucleares e de suporte.

O mapa destaca também os casos em que um contexto “a jusante” (downstream) —
identificado pela letra D — consome informagdes de um contexto “a montante” (upstream) —
identificado pela letra U —, traduzindo os modelos de integragdo para evitar impacto em seus
modelos internos. Conforme descrito no capitulo 2, esse tipo de mapeamento se caracteriza
por definir uma Camada de Anticorrupgdo (Anti-Corruption Layer) no CD a jusante,
destacada no mapa como ACL. Os contextos principais apresentados no mapa utilizam esse
tipo de mapeamento para se comunicar com os CDs de suporte, visando fazer com que os
modelos de integragdo sejam adequados as suas necessidades, protegendo seus conceitos

internos. Isso também ocorre na relagdo com o contexto externo Bancos e Parceiros.



55

E importante destacar que, sempre que possivel, recomenda-se a introdu¢do de uma ACL
nesses casos para ajustar os modelos de integracao as necessidades especificas do contexto a

jusante (VERNON, 2016).

Nota-se que o mapa sugere uma mudanga na comunicagdo entre equipes para tornar o modelo
de negdcio mais resiliente. Destacado pelo problema GO-05 (Tabela 3, se¢do 3.1), o servigo
GO era passivo em relacido a PO. Em outras palavras, a equipe que gerenciava GO, um
servigo essencial para a empresa, dependia diretamente do consumo de suas informagdes por
outra equipe para dar andamento no ciclo de vida de Ordem. Agora, o CD Plataforma de
Fundos de Investimento passa a ser uma pega ativa no ciclo de Ordem, tendo um controle de
quando essa entidade deve seguir para as proximas etapas, informando o CD Backoffice
quando isso acontecer. Essa mudanca de comunicagdo visa resolver o problema GO-05,
tornando ambos os CDs mais resilientes entre si. Além disso, isso abre margem para uma
modelagem tatica na criagao de Eventos de Dominio, que ¢ abordada posteriormente na se¢ao

4.5.

Por fim, sdo evidenciados cenarios onde um contexto a montante ndo tem motivagao para
atender as demandas especificas de um contexto a jusante. Nesses casos, o contexto assume
uma postura conformista, representada no mapa pela sigla CF, em relagdo ao modelo a
montante. Considera-se aqui que a [nvestimentCorp nao possui o controle sobre o

desenvolvimento dos projetos de software contidos no CD Comunicacdo com Cliente e

o~

Bancos e Parceiros (contexto externo). Por tanto, os relacionamentos para com estes CDs

conformista (CF).

4.3 Design Tatico com Agregados

A secdo 3.1 descreve como o design dos principais servicos nucleares foi modelado, e
como cada um deles se comunica interna e externamente. A fim de promover uma melhor
consisténcia transacional nas operacdes realizadas dentro do CD Plataforma de Fundos de
Investimento, a Figura 11 apresenta o novo modelo de dominio da entidade Ordem em alto
nivel de abstragdo. Tal modelo agora leva em considerag@o a raiz do agregado Ordem, a qual
serve como unico ponto de acesso para sua logica de negocio. Objetos de Valor especificos

agora sdo criados, como ValorOrdem por exemplo, que contém as informagdes completas



56

referentes ao valor financeiro de uma Ordem, como o valor solicitado pelo cliente e os valores
deduzidos da operagdo (quanto houverem), obtidos a partir da integragdo com o Servigo de

Calculo de Impostos, resultando no Valor Total da operagao.



Figura 9 — Modelo de dominio de Ordem

*.GerenciadorDeOrdens.Domain.Ordem

57

<<interface>>
H IAggregateRoot
<<objeto de valor>> 6‘[_‘ <<raiz do agregado>> <<objeto de valor>>
IdOrdem Ordem ValorOrdem
- - + ValorSolicitado: decimal
Value: int - TipoOperacao: TipoOperacaoEnum alorsolicitado: decima I
+ N i !
_ Status: StatusOrdemEnum ValorDeDesconto: decimal
- DataOrdem: DateTime - ValorTotal: decimal A interface
<<enum>> AggregateRoot esta
TipoOperacaoEnum + Valor: ValorOrdem presente no pacote
_ Vo *.Domain.SeedWork.
Compra + QtdeCotas: integer calcularValorTotal() : void
Venda + dCliente: IdCliente
+ IdFundolnvestimento: I[dFundolnvestimento
<<enum>> . . . .
" .
StatusOrdemEnum | *+ Historico: HistoricoOrdem(] Métodos estaticos como
] CriarOrdemVenda, por
Criada exemplo, criam uma
. instancia de Ordem com
Integrada + CriarOrdemCompra(valor, qtdeCotas, as caracteristicas
idCliente, idFundo): Ordem especificas que
PendenteDeCotizagao compdem uma
*+ Cr_iarOrd.emVenda(vanr, qtdeCotas, operagéo de venda.
P Lo idCliente, idFundo): Ordem
endenteDelLiquidagao
- criarOrdem(tipoOperacao, valor, gtdeCotas,
Concluida idCliente, idFundo): Ordem
Cancelada
+ atualizarOrdem(StatusOrdemEnum): Ordem
v A
<<entidade>> .

<<interface>>
IRepositorioOrdem

HistoricoOrdem

+ Status: StatusOrdemEnum

+ Descricao: string

+ Solicitante: string + consultarOrdens(): Ordem[]

+ DataOcorrencia: DateTime + consultarOrdensEmAndamento(ldCliente): Ordem[]

+ consultarOrdem(ldOrdem): Ordem

+ cadastrarOrdem(Ordem): Ordem

+ adicionarRegistro(Ordem): void

+ atualizarOrdem(Ordem): Ordem

Fonte: o Autor.

Nota-se, assim como o objeto de valor OrdemValor, que a entidade HistoricoOrdem nao pode
mais existir sem que seja a partir da entidade Ordem. Em termos de design, isso garante maior
consisténcia transacional. E do ponto de vista de negocio, tal entidade € util, pois possibilita o

controle completo do ciclo de vida de uma Ordem.

Servindo como um pequeno subconjunto de classes, o pacote SeedWork' contém, a principio,
apenas a interface lAggregateRoot (raiz do agregado), a qual ¢ implementada por todas as
consideradas

entidades como raiz do agregado. Novas classes serdo adicionadas

posteriormente na se¢ao 4.5.

' Termo introduzido por Michael Feathers (2003), popularizado posteriormente por Martin Fowler
(2003). Esse pacote também ¢ conhecido por nomes como Common, SharedKernel, etc.



58

Assim como Ordem, os modelos de dominio Clientelnvestidor, Fundolnvestimento e
Patrimonio compdem um papel importante para a criagdo de uma Ordem. Cada um deles
possui seu proprio agregado, os quais podem ser acessados por meio de sua raiz de agregado e
referenciados com a utilizagdo de seus identificadores. A Figura 12 descreve com mais

detalhes o modelo de dominio das trés entidades.

Figura 10 - Modelos de dominio de Clientelnvestidor, Fundolnvestimento e Patrimonio

*.Ger iadorDeOrdens.Domain.Cli id i
N <<interface>>
IAggregateRoot
<<raiz do agregado>>
Clientelnvestidor <<objeto de valor>>
. § . IdCliente A
+ Perfillnvestimento: PerfillnvestimentoEnum !
1 i - Value: int <<enumeration>> '
+ : . 5
SituacaoCadastral : SituacaoCadastral - PerfillnvestimentoEnum
Comum
+ PodeOperar() : bool Profissional
A
<<interface>> <<objeto de valor>>
IComplianceRepositorio SituacaoCadastral
- CadastroValido: bool
+ buscarDadosCompliance(idCliente) : - Motivo: int
*.GerenciadorDeOrdens.Domain.Fundolnvestimento
1 <<enumeration>> <<objeto de valor>>
*.GerenciadorDeOrdens.Domain.Patrimonio | StatustundoEnum Fundo
H Ativo - Value: int
<<raiz do agregado>> H Inativo
Patrimonio [
+ IdCliente: int
<<raiz do agregado>>
+ IdFundo: int Fundolnvestimento
+ PosicaoTotal: decimal + Nome: string
- PosicaoDisponivel: decimal ~ |._____ Conceito de posigao + Descrigao: string
7 disponivel aderente ao
conhecimento de negécio + Status: StatusFundoEnum
do Contexto Delimitado + Per i \dicado: Perfillr i m
+ setPosicaoDisponivel(valorOrdensAndamento) : void + HoraLimiteOperacao: Timestamp
N
1 + ValorMinimoMovimentacao: decimal
: <<interface>> + ValorMinimoPermanencia: decimal ASEEEE
o IPatrimonioRepositorio :
+ consultarPatrimonio(ldCliente) : Patrimonio[]
<<interface>>
IF i P io
+ consultaF i ):F
+ consultaF i IdFundolr i : Fundolnvestimento

Fonte: o Autor



59

Pelos diagramas acima, ¢ possivel observar que a classe Patrimonio atua praticamente como
um intermediador, que cruza as informacdes de identificagdo do Fundo de Investimento e
Cliente, relacionando a posi¢do total de um cliente em um determinado fundo de
investimento. Para aderir a linguagem ubiqua presente no CD Plataforma de Fundos de
Investimento, a entidade Patrimonio agora expde uma nova propriedade, a PosicaoDisponivel.
A nova propriedade abriga o valor calculado da posi¢do total do cliente deduzindo o valor

financeiro das ordens ainda nao finalizadas que este cliente possui.

A entidade Clientelnvestidor abriga as principais propriedades relacionadas ao cliente no que
diz respeito a sua condi¢do de realizar operagdes financeiras, a qual se baseia em diferentes
combinagdes de propriedades, como sua situacdo cadastral, perfil de investimento, etc. Ao
expor o método PodeOperar (boleano), ¢ possivel utilizar seu resultado nas diferentes

validacdes realizadas pelo Contexto Delimitado.

Por fim, a entidade Fundolnvestimento, que abriga informagdes importantes sobre o Fundo de
Investimento em questdo. Tal como ocorre em Clientelnvestidor, esta entidade possui um
objeto de valor que representa seu identificador (IdFundolnvestimento), o qual pode ser

utilizado nas demais implementagdes quando necessario.

4.4 Design Tatico com Servicos de Dominio

Como descrito no capitulo 3, atualmente a validagdo de uma Ordem no servico
Gerenciador de Ordens ¢ feita por um Servico de Aplicacdo. Tal servigco é responsavel por
coordenar as chamadas aos servigos externos necessarios, aplicar as regras de negocio de
validacdo de Ordem e, por fim, criar a entidade Ordem, caso as validagdes sejam concluidas

com Sucesso.

Embora essa abordagem atenda as necessidades de negdcio, ela apresenta limitagdes quanto a
organizacao e clareza do dominio. Como identificado no Capitulo 3 por meio do problema
GO-07, a centralizagdo da logica de validacdo de Ordens no servico de aplicacdo pode
dificultar a manuten¢do, reduzir a coesao do modelo de dominio, além de poder gerar

inconsisténcias na logica de negocio.



60

Portanto, propde-se nesta secdo a refatoracdo deste comportamento a partir da adogdo de um
Servico de Dominio, sendo este o componente fundamental para coordenar as chamadas a de
agregados de outros contextos delimitados e centralizar as principais validagdes responsaveis
pela criacio de uma Ordem. A mudanca visa deslocar tais validagdes para o escopo do
modelo de dominio, uma vez que as regras de negécio pertencem a este modelo. Assim, o

servigo de aplicagdo atua apenas como um orquestrador.

4.4.1 Responsabilidades do Servico de Dominio

Como apresentado no capitulo 2, servigos de dominio sdo componentes responsaveis
por realizar invocagdes envolvendo multiplos agregados ou que ndo podem ser atribuidas
estritamente a uma unica entidade. No caso da transa¢ao de criagdo de uma ordem, as

seguintes validagdes devem ser realizadas previamente:

Coordenaciao de Modelos de Dominio: Consultar servigos externos para recuperar os dados
necessarios para a validag¢do, como perfil do cliente, posicao disponivel e regras operacionais

dos fundos.

Verificacdo de Regras de Negdcio: Avaliar as informacdes obtidas para garantir que a

solicitagao cumpra todas as condigdes necessarias. Por exemplo:

e Garantir que o cliente tenha posi¢ao suficiente em um fundo para realizar uma venda.
e Verificar se o fundo esté ativo e dentro do horario de operagao.

e Validar se o perfil do cliente esta alinhado com as caracteristicas do fundo.

Retorno: Apos realizar as validagdes, o servico de dominio retornara um resultado
indicando o sucesso ou a falha das validagdes, detalhando quais regras foram violadas,

caso aplicavel.

Essa separagdo entre o Servico de Aplicagdo e o Servigo de Dominio permite que o primeiro
se concentre na orquestracao das transagdes necessarias, como receber a requisi¢cao do cliente,
chamar o servico de dominio para validagdes e persistir a entidade de ordem em caso de

sucesso. Ja o servico de dominio focaliza exclusivamente na aplicagdo das regras de negocio,



61

promovendo maior coesdo no modelo de dominio. A Figura 13 ilustra como ocorre a

N/

;

_c__s_me%zc_%_i Tn_qmu_._m__asei T._qs_._we_ﬁm)_.__m%_._:i Tn_q_m__._es_zm%mmé” 0UILIOJODIAIBSWAPIQ HQL _%qeu_.éms%_o &L TEEO ap _n_i Tﬂ_._ms_ﬂm%_.__%m%_._::u BLwI0jeleld ”_i

| ,05533N5 LI0J BPELY WBPIQ, Winjal |

I

|
anpumal |
|

i i i i (wapiojwapigiensepe) | i i i
i i i i | (nduwapiojwapig mau | i i i
e >

(Jwapagu

(JlopnsanuEualy Mau |
]

(aauainp1)adueldwo)sopeqedsng |

(JojuaLsaAujopung mau * |

(03UaLINSBAUIOPUN 4p[)0IUBLIASAAUIOPUNEINSUC) |

i i | (0JuBWEpUYSUBPI0J0jeA)[aAlLOdSIJORIISO 4IRS OmowLed | i i i i

(Joruowed mau ~

| | | | (B3I PIOIOWIEIENSUO) | ! !

-«
(andujwapiojwapiQiepiien ! | ! !

[P i i

i (IndujwapiojwapiQIeseped ! ! !

! -—
| wapio/ide/ [150d] |

i i 3P0 BP S0P 50 3LUAALd |

\ /

6

_c_._s_m%mm:_%._i __n_qmu_._m__aEeu; Tn_qs_._mc__ﬁmz.__m%_._:“_; Tn_q_m__.a:__zmn_._mmwo” 0lUILIOQODIAIBSWRPIQ ”n_i _anqs_ammsm?o &L TEEO ap _n_i _.z_._m____mw)_.__%m%_.__zmn ewiojejeld "_i

Figura 13 - Diagrama de Sequéncia do Servigo de Dominio (resumida)

interacao entre esses dois tipos de servigo.

)
aalp:

aalp:

Fonte: o Autor



62

4.4.2 Beneficios Esperados

Esta mudanca visa conquistar beneficios em termos de design de software e

alinhamento ao dominio da InvestmentCorp, como:

e Maior Clareza e Organizacdo do Modelo: Distribuicdo das responsabilidades de
cada componente, isolando as valida¢des de uma Ordem em um servigo especifico.

e Evolucdo do software: As regras atribuidas ao servico de dominio podem ser
reutilizadas em cenarios futuros, se necessario.

e Protecio do Modelo de Dominio: Centralizar as regras de negdcio no Servico de
Dominio evita que a légica essencial se espalhe por diferentes partes do codigo,

reduzindo o risco de efeitos colaterais adversos e inconsisténcias.

4.5 Design Tatico com Eventos de Dominio

Retomando o problema apresentado em GO-05 (Tabela 3, se¢do 3.1), os servicos GO e
PO possuiam uma forma de comunicagdo direta, na qual a continuidade do estado de uma
Ordem em GO dependia direta e imediatamente da acao de consulta de PO. Como visto na
secdo 4.2, foi apresentada uma proposta de mudanga na comunicagdo entre os CDs
responsaveis por GO e PO (Plataforma de Fundos de Investimento e Backoffice,
respectivamente), de forma que GO ¢ o principal responsavel por controlar as agcdes a serem

feitas a uma Ordem durante o inicio de seu ciclo de vida.

Visando tornar o ciclo de vida de uma Ordem mais coeso dentro dos contextos delimitados em
que esse conceito aparece, sdo introduzidos no modelo de dominio do CD Plataforma de
Fundos de Investimento os chamados Eventos de Dominio. Como discutido no capitulo 2, os
Eventos de Dominio expressam uma agao ja realizada a partir de um agregado (por exemplo:
Ordem Criada, Ordem Processada, Ordem Finalizada, etc.). A Tabela 4 detalha os possiveis
eventos que ocorrem tanto no CD Plataforma de Fundos de Investimento, durante o inicio do
ciclo de vida de uma Ordem, quanto no CD Backoffice, durante as fases de processamento da

Ordem.



63

Tabela 4 — Eventos de Dominio em GO.

Evento CD Descricao

OrdemSolicitada Plataforma de Fundos Quando uma Ordem foi solicitada com sucesso
de Investimento (inicio do ciclo de vida).

OrdemCancelada Plataforma de Fundos Quando uma Ordem foi cancelada com sucesso
de Investimento (fim do ciclo de vida).

OrdemCotizada Backoffice Quando uma Ordem foi cotizada com sucesso.

OrdemLiquidada Backoffice Quando uma Ordem foi liquidada com sucesso.

OrdemFinalizada Plataforma de Fundos Quando uma Ordem foi finalizada com sucesso

de Investimento

(fim do ciclo de vida).

Fonte: o Autor.

Com a inclusdo dos eventos de dominio, espera-se atingir um maior grau de coesdo dos

modelos de dominio dos CDs em que sdo utilizados, de forma a expressar por meio de tais

eventos as acoes realizadas pelos agregados de forma mais clara.



64

5. CONSIDERACOES FINAIS

5.1 Conclusoes

Este trabalho teve como objetivo analisar e propor solucdes de design para alguns
problemas de modelagem identificados em produtos de software implementados em
microsservigos, utilizando os conceitos de Domain-Driven Design (DDD). Para ser possivel
exemplificar tanto os problemas quanto a aplicacdo de técnicas de DDD, foi utilizada uma
solucdo de arquitetura de software de uma empresa ficticia, a InvestmentCorp, espelhada
anonimamente em um caso real. Ao longo do estudo, foi possivel observar como um design
inadequado pode impactar negativamente na coesdo e no acoplamento dos servigos, além de

dificultar a manutengao e evolugdo do sistema.

A andlise do design do software existente, que implementa uma capacidade de negocio
nuclear da empresa, destacou problemas como a ambiguidade de conceitos-chave,
exemplificada pelas diferentes interpretagdes do termo "Ordem" entre os servigos, a baixa
coesao entre os servigos, como evidenciado no uso do conceito de "Posi¢ao", além dos varios
pontos com alto acoplamento entre elementos arquitetonicos. Um exemplo deste ultimo, € a
introducdo de camadas anticorrup¢do, como decisdo estratégica derivada do mapeamento de

contextos.

Esses problemas foram abordados por meio da aplicacdo de técnicas de design estratégico,
como a identificagdo de subdominios e a criagdo de contextos delimitados, e de design tatico,
como a introducdo de agregados, objetos de valor e servicos de dominio. O resultado, como
mostrado com detalhes no capitulo 4, permitiu o aumento da coesdo nos contextos
delimitados examinados, assim como a diminui¢do do acoplamento entre elementos desses
contextos e entre os proprios contextos, com a reformulagdo, no caso do Gerenciador de

Ordens (GO).

Os resultados obtidos também mostram que a aplicacdo de DDD nado apenas mitiga os
problemas técnicos, mas também melhora a clareza e a expressividade do modelo, facilitando
a comunicagdo entre equipes e alinhando o design técnico aos objetivos de negdcio. Enfim,

pode-se concluir que o presente trabalho evidencia aspectos do potencial do uso do DDD



65

como direcionador do design em ambientes de microsservigos, promovendo maior

alinhamento semantico e estrutural dos elementos de software e as capacidades do negocio.

5.2 Contribuicoes do Trabalho

As principais contribui¢des deste trabalho podem ser sintetizadas em trés pontos:

Diagnostico detalhado de uma implementacao existente de microsservigos. Foi realizada uma
analise aprofundada do design atual, identificando problemas estruturais e organizacionais

que impactam diretamente a coesdo e o acoplamento dos servicos.

Aplicagdo pratica de técnicas de design do DDD. O trabalho apresentou uma aplicacao
sistematica de conceitos de DDD, incluindo design estratégico e tatico, com foco em resolver
os problemas de modelagem das abstracdes de software e fortalecer o alinhamento entre os

servigos ¢ o dominio de negocio.

Propostas de solugdes potencialmente generalizaveis. As solugdes propostas, como o uso de
servigos de dominio e camadas anticorrup¢do, podem ser adaptadas para outros cenarios de
implementagdo semelhantes, podendo ser utilizadas como um guia para equipes que

enfrentam desafios similares em arquiteturas de microsservigos.

5.3 Trabalhos Futuros

Embora o trabalho tenha abordado com detalhe os problemas de design identificados,

algumas areas ainda podem ser exploradas em estudos futuros:

e Realizar a implementacdo das solugdes aqui propostas em um ambiente real, avaliando
o impacto em métricas como tempo de desenvolvimento, clareza da base de codigo e

reducdo da taxa de falhas, por exemplo.



66

e Realizar andlise de custos comparativos entre o custo de uma implementagao atual e
de sua evolugdo com a aplicacdo do DDD, com a sele¢do de métricas que permitam
decisdes de projeto (project) baseadas em andlise de compensacao (trade-off) entre
alternativas de solugao.

e Realizar analise comparativa dos testes (de unidade e integragdo) entre o cenario
atual e o cenario proposto apds a aplicac¢do das técnicas de DDD.

e Investigar como a aplicagdo de DDD influencia a dinamica das equipes de
desenvolvimento, especialmente no que diz respeito a comunicagdo e alinhamento

de expectativas.



67

REFERENCIAS

BASS, Len; CLEMENTS, Paul; KAZMAN, Rick. Software Architecture in Practice:
Software Architect Practice c3. [s.l.]: Addison-Wesley, 2012.

PARNAS, David. Information Distribution Aspects of Design Methodology. IFIPS
Congress. 71. 339-344, 1971.

EVANS, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software.
[s.1.]: Addison-Wesley, 2003.

EVANS, Eric. Domain-Driven Design Reference: Definitions and Pattern Summaries.
[s.L.]: Dog Ear Publishing, 2014.

FOWLER, Martin. Conway’s Law. Martinfowler.com. Disponivel em:
<https://martinfowler.com/bliki/ConwaysLaw.htmI>. Acesso em: 9 Dec. 2024.

FOWLER, Martin. Domain Driven Design. Martinfowler.com. Disponivel em:

<https://martinfowler.com/bliki/DomainDrivenDesign.html>. Acesso em: 9 Dec. 2024.

FOWLER, Martin. Software Architecture Guide. Martinfowler.com. Disponivel em:

<https://martinfowler.com/architecture/>. Acesso em: 9 Dec. 2024.

FOWLER, Martin; LEWIS, James. Microservices. martinfowler.com. Disponivel em:

<https://martinfowler.com/articles/microservices.html>. Acesso em: 9 Dec. 2024.

FOWLER, M. Reducing coupling. IEEE Software, v. 18, n. 4, p. 102-104, 2001.
KHONONOY, Vlad. Learning Domain-Driven Design. [s.1.]: “O’Reilly Media, Inc.,” 2021.
NEWMAN, Sam. Criando Microsservicos — 2a Edigdo: Projetando sistemas com

componentes menores € mais especializados. [s.l.]: Novatec Editora, 2022.

OUMOUSSA, Idris; SAIDI, Rajaa. Evolution of Microservices Identification in Monolith



68

Decomposition: A Systematic Review. IEEE Access, v. 12, p. 23389-23405, 2024.

SU, Ruoyu; LI, Xiaozhou; TAIBI, Davide. From Microservice to Monolith: A Multivocal
Literature Review. Electronics, v. 13, n. §, p. 1452, 2024.

VERNON, Vaughn. Domain-Driven Design Distilled. [s.l.]: Addison-Wesley Professional,
2016.

VERNON, Vaughn. Implementing Domain-Driven Design. [s.l.]: Addison-Wesley, 2013.

ZHONG, Chenxing; LI, Shanshan; HUANG, Huang; et a/. Domain-Driven Design for
Microservices: An Evidence-Based Investigation. IEEE Transactions on Software

Engineering, v. 50, n. 6, p. 1425-1449, 2024.

RICHARDSON, Chris. Microservices Patterns: With examples in Java. [s.].]: Simon and
Schuster, 2018.

MARTIN, Robert C. Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. [s.1.]: Prentice Hall, 2017.

PARNAS, D. L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, v. 15, n. 12, p. 1053—-1058, 1972.

FOWLER, Martin. Seedwork. Martinfowler.com. Disponivel em:
<https://martinfowler.com/bliki/Seedwork.htmI>. Acesso em: 14 Jan. 2025.

FOWLER, Martin. Padroes de Arquitetura de Aplicagoes Corporativas. 1. ed. [s.l.]:
Bookman, 2009.

FEATHER, Michael. Stunting a Framework. Weblogs Forum. Disponivel em:
<https://www.artima.com/forums/flat.jsp?forum=106&thread=8826>. Acesso em: 14 Jan.

2025.



69

GAROUSI, Vahid; FELDERER, Michael; MANTYLA, Mika V. Guidelines for including
grey literature and conducting multivocal literature reviews in software engineering.

Information and Software Technology, v. 106, p. 101-121, 2019.



	1.​INTRODUÇÃO 
	1.1​Motivações 
	Tabela 1 – As três respostas à lei de Conway, segundo Fowler. 

	1.2​Objetivo 
	1.3​Justificativas 
	1.4​Contribuição 
	1.5​Método de Pesquisa 
	1.6​Estrutura do Trabalho 

	2. REVISÃO BIBLIOGRÁFICA 
	2.1 Arquitetura de Software 
	2.2 Arquitetura de Microsserviços 
	2.2.1 Definições 
	2.2.2 Características de Microsserviços 
	2.2.3 Tipos de Acoplamento 
	Figura 1 - Visão resumida dos tipos de acoplamento 


	2.3 Projeto Dirigido pelo Domínio (Domain-Driven Design) 
	2.3.2 Representação do Domínio 
	Figura 2 – Representação de subdomínios em uma empresa de comércio eletrônico 

	2.3.3 Design Estratégico 
	2.3.3.1 Subdomínio 
	Figura 3 – Domínio de negócio abstrato dividido em subdomínios 

	2.3.3.2 Contextos Delimitados e Linguagem Ubíqua 
	2.3.3.3 Mapeamento de Contextos 

	2.3.4 Design Tático 
	2.3.4.1 Entidade 
	2.3.4.2 Objeto de Valor 
	2.3.4.3 Agregado 
	2.3.4.4 Evento de Domínio 
	2.3.4.5 Serviço de Domínio 
	2.3.4.6 Serviço de Aplicação 



	3.  ALGUNS PROBLEMAS NO DESIGN DE UMA ARQUITETURA DE MICROSSERVIÇOS 
	3.1 Contexto do Negócio 
	Figura 4 - Representação Geral dos Microsserviços do Módulo de Gerenciamento de Operações e suas Principais Interações 
	Figura 5 – Modelo das classes do serviço Gerenciamento de Ordens (GO) 

	 
	3.2 Ciclo de Vida de uma Ordem 
	Tabela 2 – Descrição dos estados de uma Ordem. 
	Figura 6 – Diagrama de estado do ciclo de vida de uma Ordem 

	 
	3.3 Descrição do Problema 
	Tabela 3 – Compilação dos problemas do design atual. 


	 
	4.  APLICAÇÃO DAS TÉCNICAS DE DDD NO DESIGN ATUAL 
	 
	4.1 Visão geral das soluções propostas 
	4.1 Design Estratégico com Subdomínios e Contextos Delimitados 
	4.1.1 Identificação e Classificação dos Subdomínios 
	 
	4.1.2 Definição dos Contextos Delimitados 
	Figura 7 - Contextos Delimitados da InvestmentCorp 


	4.2 Design Estratégico com Mapeamento de Contexto 
	Figura 8 - Mapeamento dos Contextos Delimitados no Cenário Proposto 

	4.3 Design Tático com Agregados 
	Figura 9 – Modelo de domínio de Ordem 
	Figura 10 - Modelos de domínio de ClienteInvestidor, FundoInvestimento e Patrimonio 

	 
	4.4 Design Tático com Serviços de Domínio 
	4.4.1 Responsabilidades do Serviço de Domínio 
	4.4.2 Benefícios Esperados 

	4.5 Design Tático com Eventos de Domínio 
	 
	Tabela 4 – Eventos de Domínio em GO. 


	5. CONSIDERAÇÕES FINAIS 
	5.1 Conclusões  
	5.2 Contribuições do Trabalho  
	5.3 Trabalhos Futuros 

	REFERÊNCIAS 

