

PEDRO DA COSTA MELO VIEIRA

Aplicando técnicas de Domain-Driven Design para Reduzir Acoplamento e

Aumentar a Coesão em uma Arquitetura de Microsserviços

São Paulo

2025

PEDRO DA COSTA MELO VIEIRA

Aplicando técnicas de Domain-Driven Design para Reduzir Acoplamento e

Aumentar a Coesão em uma Arquitetura de Microsserviços

Versão Original

Monografia apresentada ao PECE – Programa de

Educação Continuada em Engenharia da Escola

Politécnica da Universidade de São Paulo como

parte dos requisitos para a conclusão do curso de

MBA em Tecnologia de Software.

Área de Concentração: Tecnologia de Software

Orientador: Prof. Dr. Paulo Sérgio Muniz Silva

São Paulo

2025

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio

convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

FICHA CATALOGRÁFICA

VIEIRA, Pedro da Costa Melo
Aplicando técnicas de Domain-Driven Design para Reduzir Acoplamento e

Aumentar a Coesão em uma Arquitetura de Microsserviços / P. C. M. VIEIRA -
São Paulo, 2025.

 69 p.

 Monografia (MBA em Tecnologia de Software) - Escola Politécnica da
Universidade de São Paulo. PECE – Programa de Educação Continuada em
Engenharia.

 1.Domain-Driven Design 2.Arquitetura de Software 3.Microsserviços
I.Universidade de São Paulo. Escola Politécnica. PECE – Programa de
Educação Continuada em Engenharia II.t.

Nome: VIEIRA, Pedro da Costa Melo.

Título: Aplicando técnicas de Domain-Driven Design para Reduzir Acoplamento e Aumentar

a Coesão em uma Arquitetura de Microsserviços

Monografia apresentada ao PECE – Programa de Educação Continuada em Engenharia da

Escola Politécnica da Universidade de São Paulo como parte dos requisitos para a conclusão

do curso de MBA em Tecnologia de Software.

Aprovado em: / /

Banca Examinadora

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

DEDICATÓRIA

À minha esposa, Luisa, e meus gatos, Fiona e Bento!

Venceremos, sempre.

AGRADECIMENTOS

Agradeço a Escola Politécnica da Universidade de São Paulo – EPUSP e a todo corpo docente

do curso de Engenharia de Software, por todo o conhecimento compartilhado, o qual agrega

muito em minha carreira.

Ao meu orientador Prof. Dr. Paulo Sérgio Muniz Silva, onde desde as aulas ministradas ao

longo do curso até todos os momentos em que fui seu orientando, se mostrou absolutamente

especialista nos assuntos que tangem a monografia, contribuindo muito com a evolução do

meu conhecimento sobre o tema.

Aos meus amigos e colegas de trabalho que me incentivaram a ingressar no curso e que juntos

conseguimos concluir essa jornada, além de contribuírem diretamente em minha evolução

profissional: Arthur Machado, Fernando Godoy, Luan Sales e Renan Ferreira.

Por fim, à minha esposa Luisa, a qual me apoiou e apoia incondicionalmente em todas as

novas etapas que surgem em minha vida.

RESUMO

VIEIRA, Pedro da Costa Melo. Aplicando técnicas de Domain-Driven Design para Reduzir

Acoplamento e Aumentar a Coesão em uma Arquitetura de Microsserviços. 2025. 69.

Monografia (MBA em Tecnologia de Software). Programa de Educação Continuada em

Engenharia da Escola Politécnica da Universidade de São Paulo. São Paulo. 2025.

Este trabalho apresenta uma solução de projeto (design) utilizando técnicas do Projeto

Dirigido pelo Domínio – Domain-Driven Design (DDD) – para refatorar um produto de

software existente, implementado com arquitetura de microsserviços. Tal solução visa

aumentar a coesão dos microsserviços e reduzir o acoplamento entre eles, alinhando seus

modelos de domínio de forma mais acurada às capacidades do negócio (business

capabilities). A pesquisa foi motivada por problemas identificados em um mau projeto de

modularização, que resultaram em ambiguidades conceituais, baixa coesão e alto

acoplamento. Foram utilizadas as técnicas de design estratégico e tático do DDD, com ênfase

na identificação de subdomínios de negócio, mapeamento de contextos delimitados e

realinhamento de seus modelos de domínio. Os artefatos resultantes das soluções são

constituídos por modelos expressos na linguagem UML e apoiados por justificativas

fundamentadas que mostram como a adequação da solução de projeto (design) utilizando as

técnicas do DDD pode ajudar a melhorar a expressividade, organização dos modelos de

domínio e a modularização de software. Por fim, conclui-se que a aplicação de DDD ajuda

não apenas a mitigar problemas técnicos, mas também facilita a comunicação entre equipes e

promove maior alinhamento semântico e estrutural dos elementos de software e as

capacidades do negócio.

Palavras-chave: Domain-Driven Design; Microsserviços; Acoplamento; Coesão.

ABSTRACT

VIEIRA, Pedro da Costa Melo. Aplicando técnicas de Domain-Driven Design para Reduzir

Acoplamento e Aumentar a Coesão em uma Arquitetura de Microsserviços. 2025. 69.

Monografia (MBA em Tecnologia de Software). Programa de Educação Continuada em

Engenharia da Escola Politécnica da Universidade de São Paulo. São Paulo. 2025.

This work presents a design solution using Domain-Driven Design (DDD) techniques

to refactor an existing software product implemented with a microservices architecture. The

proposed solution aims to increase microservices cohesion and reduce coupling, aligning their

domain models more accurately with business capabilities. The research was motivated by

issues identified in a poorly modularized design, which resulted in conceptual ambiguities,

low cohesion, and high coupling. Strategic and tactical DDD techniques were applied,

focusing on the identification of business subdomains, mapping bounded contexts, and

realigning their domain models. The resulting artifacts are composed of UML models

supported by well-founded justifications, demonstrating how the proposed design solution

using DDD techniques can improve the expressiveness, organization of domain models, and

modularization of the software. Finally, it is concluded that applying DDD not only mitigates

technical problems but also facilitates communication between teams, promoting greater

semantic and structural alignment between software elements and business capabilities.

Keywords: Domain-driven Design; Microservices; Coupling; Cohesion.

LISTA DE ILUSTRAÇÕES

Pág.

Figura 1 - Visão resumida dos tipos de acoplamento..25
Figura 2 – Representação de subdomínios em uma empresa de comércio eletrônico..............30
Figura 3 – Domínio de negócio abstrato dividido em subdomínios... 31
Figura 4 - Representação Geral dos Microsserviços do Módulo de Gerenciamento de
Operações e suas Principais Interações...39
Figura 5 – Modelo das classes do serviço Gerenciamento de Ordens (GO).............................41
Figura 6 – Diagrama de estado do ciclo de vida de uma Ordem.. 45
Figura 7 - Contextos Delimitados da InvestmentCorp..52
Figura 8 - Mapeamento dos Contextos Delimitados no Cenário Proposto...............................54
Figura 9 – Modelo de domínio de Ordem...57
Figura 10 - Modelos de domínio de ClienteInvestidor, FundoInvestimento e Patrimonio.......58

LISTA DE TABELAS

Pág.

Tabela 1 – As três respostas à lei de Conway, segundo Fowler.. 16
Tabela 2 – Descrição dos estados de uma Ordem... 43
Tabela 3 – Compilação dos problemas do design atual.. 47
Tabela 4 – Eventos de Domínio em GO..63

LISTA DE ABREVIATURAS E SIGLAS

[DDD​ ​ ​ Domain-Driven Design]

[UML​ ​ ​ Unified Modeling Language]

[SRP ​ ​ ​ Single Responsibility Principle]

[CD​ ​ ​ Contexto Delimitado]

[CDs​ ​ ​ Contextos Delimitados]

[GO​ ​ ​ Gerenciador de Ordens]

[PO​ ​ ​ Processador de Ordens]

[GF​ ​ ​ Gerenciamento de Fundos]

[GP​ ​ ​ Gestão Patrimonial]

SUMÁRIO
Pág.

1. INTRODUÇÃO...15
1.1 Motivações.. 15
1.2 Objetivo...17
1.3 Justificativas..17
1.4 Contribuição..19
1.5 Método de Pesquisa.. 19
1.6 Estrutura do Trabalho..20

2. REVISÃO BIBLIOGRÁFICA...21
2.1 Arquitetura de Software.. 21
2.2 Arquitetura de Microsserviços.. 22

2.2.1 Definições.. 22
2.2.2 Características de Microsserviços..22
2.2.3 Tipos de Acoplamento... 25

2.3 Projeto Dirigido pelo Domínio (Domain-Driven Design).. 26
2.3.2 Representação do Domínio.. 28
2.3.3 Design Estratégico... 30

2.3.3.1 Subdomínio... 31
2.3.3.2 Contextos Delimitados e Linguagem Ubíqua... 32
2.3.3.3 Mapeamento de Contextos..33

2.3.4 Design Tático... 34
2.3.4.1 Entidade.. 34
2.3.4.2 Objeto de Valor... 34
2.3.4.3 Agregado...35
2.3.4.4 Evento de Domínio... 35
2.3.4.5 Serviço de Domínio.. 35
2.3.4.6 Serviço de Aplicação...36

3. ALGUNS PROBLEMAS NO DESIGN DE UMA ARQUITETURA DE
MICROSSERVIÇOS..37

3.1 Contexto do Negócio.. 37
3.2 Ciclo de Vida de uma Ordem..42
3.3 Descrição do Problema... 46

4. APLICAÇÃO DAS TÉCNICAS DE DDD NO DESIGN ATUAL.................................49
4.1 Visão geral das soluções propostas... 49
4.1 Design Estratégico com Subdomínios e Contextos Delimitados..................................50

4.1.1 Identificação e Classificação dos Subdomínios... 50
4.1.2 Definição dos Contextos Delimitados..52

4.2 Design Estratégico com Mapeamento de Contexto.. 53
4.3 Design Tático com Agregados..55
4.4 Design Tático com Serviços de Domínio... 59

4.4.1 Responsabilidades do Serviço de Domínio..60
4.4.2 Benefícios Esperados... 62

4.5 Design Tático com Eventos de Domínio.. 62
5. CONSIDERAÇÕES FINAIS... 64

5.1 Conclusões.. 64
5.2 Contribuições do Trabalho..65
5.3 Trabalhos Futuros..65

REFERÊNCIAS.. 67

15

1.​ INTRODUÇÃO

1.1​ Motivações

Adotada por gigantes da tecnologia, como Netflix e Amazon (NEWMAN, 2021), uma

abordagem de arquitetura que se tornou um padrão de mercado na última década é o estilo

arquitetônico de microsserviços. De acordo com Fowler (2014), arquitetura de microsserviços

é uma abordagem que permite o desenvolvimento de uma aplicação como um conjunto de

pequenos serviços, cada um executando em seu próprio processo e se comunicando por

mecanismos leves, como APIs HTTP. Esses serviços são construídos em torno de capacidades

de negócio, sendo independentes em termos de implantação e gerenciamento, com o mínimo

de centralização.

(NEWMAN, 2021) complementa essa definição afirmando que a arquitetura de

microsserviços é um tipo de arquitetura orientada a serviços, que possui uma definição clara a

respeito das fronteiras a serem traçadas de modo a permitir implantações independentes. Tal

arquitetura tem como grande vantagem ser independente de tecnologias, podendo ser

desenvolvida com diferentes linguagens de programação, por exemplo.

Um dos grandes desafios ao construir uma arquitetura de microsserviços é decompor

adequadamente o sistema em serviços distribuídos com baixo acoplamento entre eles. Isto é,

conseguir construir os serviços individualizados de forma que reflitam as necessidades

específicas de negócio que cada um deve realizar. Ao não atingir esse objetivo, esta

decomposição resultará em serviços com responsabilidades mal definidas (ou até mesmo

conflitantes entre eles), dificultando sua manutenção e evolução. Pontos como esses podem,

inclusive, levar empresas a migrar produtos de volta para arquiteturas monolíticas, como foi o

caso da Amazon em 2023 (SU, LI e TAIBI, 2024).

Conhecida no mundo do desenvolvimento de software como Lei de Conway, ela diz que

“organizações que projetam sistemas irão produzir designs que são cópias de sua estrutura

de comunicação” (CONWAY, 1968 - tradução livre). Esse princípio sugere que a estrutura de

um sistema ou software é um reflexo da estrutura organizacional da comunicação da equipe

que o desenvolve, impactando o modo como os softwares serão desenvolvidos e como,

16

considerando um ecossistema onde há múltiplos serviços, tais serviços se comunicarão.

Segundo (FOWLER, 2022), há três respostas possíveis à lei de Conway, descritas na Tabela 1.

Tabela 1 – As três respostas à lei de Conway, segundo Fowler.

Ação Descrição

Ignorar Não levar em conta por não saber de sua existência ou não

considerá-la relevante.

Aceitar Reconhecer seu impacto e garantir que sua arquitetura não entre

em conflito com os padrões de comunicação dos times.

Manobra de Inversão

de Conway

Alterar os padrões de comunicação para encorajar a arquitetura

de software desejada.

Fonte: (FOWLER, 2022), adaptado pelo autor.

Fowler (2022) observa que, apesar de ser uma ferramenta útil, a lei de Conway não é uma

solução que irá resolver instantaneamente os problemas enfrentados no desenvolvimento de

software da organização. Para cenários onde já existe uma estrutura de comunicação definida,

é necessário mudar tanto a base de código como a própria organização.

A terceira resposta à lei de Conway é uma abordagem interessante para se construir uma

arquitetura de microsserviços, a qual busca modificar intencionalmente a forma de

comunicação entre times, quebrando os silos que atrapalham uma comunicação eficiente entre

eles (LEROY J., SIMONS M., 2010).

Introduzida por Eric Evans (EVANS, 2003), a abordagem de projeto (design) de software

dirigido pelo domínio (Domain-Driven Design - DDD) visa construir sistemas adotando

intencionalmente as estruturas organizacionais de comunicação da empresa, de forma a

construir seus sistemas separando suas responsabilidades e limitando suas fronteiras de

17

maneira bem definida, refletindo explicitamente suas competências centrais do negócio

(VERNON, 2016).

1.2​ Objetivo

Esta monografia apresenta uma solução de projeto (design) utilizando técnicas do

Projeto Dirigido pelo Domínio – Domain Driven Design (DDD) – para refatorar um produto

de software existente implementado com arquitetura de microsserviços, visando alinhá-lo

mais acuradamente às capacidades do negócio (business capabilities), de modo a permitir o

aumento da coesão dos microsserviços e a redução do acoplamento entre eles.

Refatora-se aqui parte de um produto de software complexo e estratégico existente,

espelhado de modo anonimizado de uma empresa real, implementado com uma arquitetura de

microsserviços. A refatoração ocorre em dois níveis: tanto no plano estratégico, realinhando o

projeto (design) do software, com determinadas capacidades do negócio, como no plano

tático, minimizando efeitos colaterais negativos, como baixa coesão e alto acoplamento,

decorrentes de mau projeto de modularização.

Aqui, as soluções de refatoração restringem-se somente a soluções de design. Os

artefatos resultantes das soluções são constituídos por modelos expressos na linguagem UML

apoiados por justificativas explicativas. Assume-se, portanto, duas limitações importantes que

restringem o escopo do presente trabalho: tanto a falta de discussão de alternativas de

implementação das soluções de design propostas como a falta de uma análise de

compensações (trade-off) dos custos envolvidos nas soluções.

1.3​ Justificativas

A revisão bibliográfica do capítulo 2 evidencia que o tema de modelagem de

microsserviços, visando uma decomposição que utiliza técnicas como o DDD para tratar

problemas de coesão e de acoplamento é um assunto relevante hoje em dia.

A decisão para uma decomposição arquitetônica de um produto de software, que mantenha

especialmente sua evolução alinhada à evolução do negócio ao qual dá suporte, implica

18

projetá-la de modo a obter o mínimo de acoplamento possível entre seus componentes, o que

implica o aumento da coesão de cada um deles. Comparativamente a uma arquitetura não

distribuída, a natureza distribuída um produto de software implementado em microsserviços

requer cuidados adicionais para sua decomposição. Por exemplo, (SU, LI E TAIBI, 2024)

discorrem sobre o movimento da decisão do retorno para uma arquitetura monolítica a partir

de uma arquitetura de microsserviços. Neste estudo são abordados cinco principais motivos

pelos quais uma empresa opta por fazer esse retorno. Dois deles são mais aderentes à esta

monografia:

●​ Complexidade: Ter diferentes times trabalhando em serviços que, muitas vezes,

possuem, inclusive, linguagens de programação diferentes, traz uma complexidade de

controle maior do que é desenvolvido. Além disso, é necessário que um engenheiro precise ter

o entendimento de diversos contextos diferentes para ter o conhecimento do produto como um

todo.

●​ Organização: A dificuldade no gerenciamento de times pode ter um grande impacto

no design e manutenção de uma arquitetura de microsserviços. Em determinado caso descrito

por (SU, LI E TAIBI, 2024), há um cenário de uma equipe que não apresenta um tamanho

apropriado para lidar com as diversas responsabilidades de diferentes microsserviços,

linguagens de programação, etc., levando de volta o produto de software para uma arquitetura

monolítica.

No contexto prático, é possível perceber, a partir dos motivos acima, que empresas enfrentam

dificuldades ao realizarem a transição de uma arquitetura monolítica para uma arquitetura de

microsserviços, muitas vezes por falta de uma metodologia clara que guie a modelagem

adequada de seus domínios de negócio. A aplicação de técnicas de DDD, como Mapas de

Contexto, Linguagem Ubíqua, Design Estratégico e Design Tático, surge como uma solução

promissora para melhorar a coesão dos subdomínios do negócio e dos serviços dos produtos

de software que lhes dão suporte, minimizando o acoplamento entre estes últimos ao

possibilitar um alinhamento consistente entre subdomínios e serviços.

De acordo com Vernon (2016), as ferramentas do design estratégico do DDD podem ajudar as

equipes de software a fazerem melhores escolhas para a decomposição do software e a

tomarem decisões coerentes de integração entre seus componentes. Dessa forma, os modelos

19

de design do produto de software refletirão explicitamente os potenciais de capacidade do

negócio (business capabilities).

1.4​ Contribuição

O presente estudo oferece uma contribuição em dois planos: prático e conceitual. No

plano prático, aplicam-se técnicas de DDD em um contexto de uma empresa anonimizada

onde já existe uma arquitetura de microsserviços implantada. Identificam-se pontos de

melhoria na decomposição do software tanto no nível de modelagem de design quanto na sua

aderência ao contexto de negócio.

A pesquisa também tem potencial para oferecer benefícios práticos a empresas que enfrentam

problemas semelhantes, ao mostrar como o uso de DDD pode ser empregado para corrigir

uma migração mal estruturada.

1.5​ Método de Pesquisa

Para realizar a confecção deste projeto, foi utilizado um método de pesquisa de

Literatura Multivocal (GAROUSI, FELDERER e MÄNTYLÄ, 2019), que consiste em uma

forma de Pesquisa Sistemática (PS) que, juntamente com uma revisão da literatura acadêmica

(artigos científicos e materiais formais), utiliza uma pesquisa de publicações da denominada

“literatura cinzenta”, isto é, em postagens virtuais e vídeos, por exemplo, de autores que

reconhecidamente contribuíram e contribuem para o progresso da engenharia de software.

Na revisão da literatura acadêmica, foram utilizadas as fontes de busca: ResearchGate, IEEE,

Google Scholar, MDPI e Science Direct, para a pesquisa de artigos relevantes para o tema

deste trabalho. Termos como “microservices”, “ddd”, “software architecture” foram

utilizados, juntamente com combinações como “microservices decomposition” e

“microservices ddd” para resultados mais focalizados para responder à questão de pesquisa.

Para a considerada literatura cinzenta, foram utilizados como fontes de busca sites de autores

que estabeleceram as bases conceituais e práticas para o DDD, como Martin Fowler e Vaughn

Vernon, dentre outros.

20

Finalmente, destaca-se que foram utilizadas publicações em formato de livro especificamente

focalizadas no tema deste trabalho, como: (EVANS, 2003), (VERNON, 2016), (VERNON,

2016) e (NEWMAN, 2022).

1.6​ Estrutura do Trabalho

O trabalho é composto por 5 capítulos.

O capítulo INTRODUÇÃO apresenta as motivações, objetivo, justificativas, contribuições

oferecidas e o método de pesquisa utilizado para a confecção da monografia.

No capítulo REVISÃO BIBLIOGRÁFICA são abordadas as referências teóricas utilizadas,

onde são destacados conceitos importantes a respeito de Arquitetura de Software,

Microsserviços e Domain-Driven Design, os quais são a base para a solução dos problemas

destacados nos capítulos subsequentes.

O capítulo ALGUNS PROBLEMAS NO DESIGN DE UMA ARQUITETURA DE

MICROSSERVIÇOS destaca alguns problemas dentro do contexto de negócio de uma

empresa fictícia, que utiliza como base implementações reais de forma anonimizada.

O capítulo APLICAÇÃO DAS TÉCNICAS DE DDD NO DESIGN ATUAL apresenta a

aplicação das técnicas do DDD para resolver os problemas destacados no capítulo anterior. As

soluções de design propostas são apresentadas por meio de diagramas UML com explicações

fundamentadas.

Por fim, no capítulo CONSIDERAÇÕES FINAIS apresenta a conclusão do trabalho,

consolidando os benefícios obtidos pela aplicação da solução proposta, suas contribuições e

as algumas sugestões de trabalhos futuros.

21

2. REVISÃO BIBLIOGRÁFICA

O presente capítulo apresenta de forma detalhada os fundamentos teóricos utilizados

como base para o desenvolvimento do trabalho apresentado nos capítulos subsequentes.

2.1 Arquitetura de Software

Sendo uma disciplina extremamente importante no mundo de desenvolvimento de

software, (BASS, CLEMENTS E KAZMAN, 2021) descrevem a arquitetura de software

como a estrutura ou estruturas de um sistema, composta por elementos de software, suas

relações, e as propriedades de ambos. Esta definição inclui não apenas a organização

estrutural do sistema, mas também as decisões de design que afetam diretamente os atributos

de qualidade.

(BASS, CLEMENTS E KAZMAN, 2021) destacam, também, a importância de uma estrutura

de arquitetura e como ela pode prover esclarecimentos dado o poder analítico que carrega

consigo. A partir desse ponto de vista, é possível compreender que quando uma arquitetura é

construída de forma apropriada em relação ao problema que o software está se propondo a

resolver, ela também torna explícitos os atributos de qualidade inerentes à estrutura utilizada.

Além de aspectos de qualidade por si só, a arquitetura de software também possibilita

enxergar trade-offs que podem ajudar nas decisões arquitetônicas a serem tomadas para

determinado produto. Como descrito por (FOWLER, 2019 - tradução livre), “uma arquitetura

mal realizada resulta no crescimento de “sujeiras” - elementos no software que impedem um

claro entendimento pelos desenvolvedores de software”.

E levando em conta o aspecto de que, segundo (BASS, CLEMENTS E KAZMAN, 2021), não

há existe algo como uma arquitetura inerentemente boa ou ruim, mas que deve ser construída

para se adequar a um propósito, é possível enxergar a relação com a citação de Fowler (2019),

pensando que uma arquitetura que produz “sujeiras” provavelmente não é uma arquitetura

ideal para determinada solução.

22

2.2 Arquitetura de Microsserviços

2.2.1 Definições

(NEWMAN, 2022) descreve microsserviços como serviços que podem ser

implantados de forma independente, sendo modelados com base em um domínio de negócio.

Tais serviços podem apresentar funcionalidades diversas e independentes, encapsulando a

complexidade de cada uma delas e disponibilizando-as por pontos de entradas específicos.

Microsserviços aderem ao conceito de ocultação de informações. Segundo (PARNAS, 1972),

tal conceito visa ocultar o máximo possível de informações dentro de um componente e expor

o mínimo de informações por meio de uma interface externa.

Diferente de uma arquitetura orientada a serviços (Service-Oriented Architecture - SOA), que

busca utilizar uma abordagem com diversos serviços em colaboração em busca de oferecer

um conjunto final de recursos (NEWMAN, 2022), conceitualmente os microsserviços

favorecem um fraco acoplamento entre si por meio de fronteiras bem definidas de

responsabilidades, possibilitando uma alta coesão de suas responsabilidades.

Esse mesmo autor sintetiza os conceitos de coesão e acoplamento, e sua relação recíproca, da

perspectiva de microsserviços. Uma coesão forte é alcançada quando os comportamentos

relacionados estão centralizados em um único módulo ou serviço, minimizando a

comunicação entre fronteiras. Em sistemas baseados em microsserviços, isso significa que

cada serviço deve encapsular totalmente suas responsabilidades de negócio, reduzindo

interdependências entre serviços e evitando a fragmentação de funcionalidades relacionadas.

Por outro lado, há uma forte relação entre coesão e acoplamento, conceitos que, embora

distintos, se complementam. Enquanto a coesão descreve o grau de relacionamento entre os

elementos dentro de uma mesma fronteira, o acoplamento focaliza o relacionamento entre

elementos que atravessam essas fronteiras, conectando diferentes módulos ou serviços.

2.2.2 Características de Microsserviços

23

Microsserviços trazem uma série de características consigo, que devem ser levadas em

conta ao se construir uma arquitetura baseada em microsserviços. Segundo (BASS,

CLEMENTS E KAZMAN, 2021), uma arquitetura não pode ser considerada inerentemente

boa ou ruim, e os aspectos específicos de microsserviços são ferramentas importantes de

análise para determinar se sua utilização é adequada ou não. Em outras palavras, uma

arquitetura de microsserviços não deve ser levada como uma bala de prata, e suas

características devem ser cuidadosamente avaliadas.

(NEWMAN, 2022) descreve alguns conceitos essenciais dos microsserviços:

●​ Implantações independentes

A ideia de implantações independentes é garantir que, ao realizar uma alteração em

um microsserviço, implantá-lo e disponibilizar a alteração para os usuários que o

consomem não implica a implantação de outro microsserviço. Para garantir esse

objetivo, é necessário garantir que os microsserviços possuam baixo acoplamento.

●​ Responsáveis pelo próprio estado

Os microsserviços devem conter todas as responsabilidades pelo acesso de seus dados

por consumidores externos, por exemplo, possuindo bancos de dados específicos para

cada um. Para isso, devem trabalhar com o conceito de ocultação de seu estado

interno. A vantagem desta característica é a redução do acoplamento do microsserviço

e o consequente aumento de sua coesão.

●​ Tamanho

O autor descreve que esse é um aspecto muito contextual, e que não deve ser medido

de forma quantitativa, como o número de linhas de código, por exemplo. Seu tamanho

e complexidade varia também de acordo com o conhecimento do programador em

relação ao sistema. (RICHARDSON, 2018) sugere que um microsserviço deve ser

grande o suficiente para encapsular uma unidade de negócio significativa, e pequeno o

suficiente para ser desenvolvido e gerenciado por uma pequena equipe autônoma.

●​ Flexibilidade

Pensando na ideia de se precaver de problemas que possam surgir no futuro, a

flexibilidade é uma importante característica de uma arquitetura de microsserviços,

24

considerada em diferentes eixos de flexibilidade, como organizacional (no incentivo à

descentralização de equipes de desenvolvimento, alinhadas aos domínios de

negócios), técnico (na possibilidade de escolher tecnologias que se adequem com as

necessidades de cada serviço), escala e robustez (na possibilidade de escalar apenas

serviços de acordo com suas necessidades).

●​ Modelagem com base em um domínio de negócio

Microsserviços podem ser modelados utilizando os conhecimentos e necessidades

específicas de cada contexto do negócio. Dessa forma, as equipes de desenvolvimento

responsáveis por seus microsserviços possuem conhecimentos específicos sobre o

domínio de negócio em que estão atuando.

(FOWLER e LEWIS, 2014) complementam as características acima com princípios para a

construção de microsserviços:

●​ Componentização via Serviços

A componentização via serviços busca estruturar sistemas como um conjunto de

componentes independentes. Para os autores, um componente consiste em uma

unidade de software que pode ser atualizada ou substituída de forma independente.

Sendo assim, uma de suas principais vantagens é a de implantações independentes,

como afirma Newman (2022), assim permitindo que mudanças nos serviços, de forma

geral, não exijam a reimplantação de todo o sistema. Isso reduz o acoplamento e

facilita a evolução do software, desde que os contratos de serviço sejam bem definidos

e as fronteiras sejam coesas.

●​ Organizados por Capacidades de Negócio

A fim de evitar silos organizacionais, como ocorre quando times se organizam por

meio de camadas tecnologias, organizar times por meio de suas responsabilidades (ou,

capacidades de negócio) tem papel fundamental em uma arquitetura de

microsserviços. Desta forma, os microsserviços passam a possuir fronteiras mais

claras em relação ao negócio, promovendo times multifuncionais e independência

operacional.

●​ Serviços Inteligentes, conexões simples

25

Este conceito reforça a ideia de que microsserviços devem concentrar suas respectivas

lógicas de negócio e processamento de domínio, sendo o mais desacoplados e coesos

possível. Portanto, suas conexões devem ser feitas de forma leve e simples. Os

protocolos mais utilizados para isso são o HTTP e mensageria, utilizando ferramentas

básicas como RabbitMQ ou ZeroMQ, que funcionam como roteadores assíncronos.

Os serviços agem como filtros que processam requisições, aplicam lógica e produzem

respostas. Este processo auxilia no desacoplamento e na coesão dos serviços, evitando

que comunicações excessivamente complexas sejam realizadas.

●​ Design Evolutivo

No design evolutivo, a decomposição de serviços possui um papel importante para

permitir que os desenvolvedores controlem as mudanças em suas aplicações sem

desacelerar o ritmo de desenvolvimento, permitindo que tais mudanças sejam

realizadas de forma frequente, rápida e controlada. Um exemplo em que este princípio

pode ser usado é em aplicações financeiras, em que novos serviços são criados para

oportunidades de mercado de curta duração.

2.2.3 Tipos de Acoplamento

Levando em conta que o acoplamento é uma característica esperada em uma

arquitetura de microsserviços, é crucial entender os diferentes tipos de acoplamento para

mitigar os riscos associados. (NEWMAN, 2022) descreve quatro tipos de acoplamento,

organizados do nível mais baixo (desejável) para o mais alto (indesejável), como mostrado na

Figura 1.

Figura 1 - Visão resumida dos tipos de acoplamento

Fonte: Newman (2021), adaptado pelo autor.

26

No nível mais fraco, o Acoplamento de Domínio ocorre quando um microsserviço depende

das funcionalidades de outro para realizar suas operações, o que é quase inevitável, pois os

microsserviços colaboram entre si.

O Acoplamento de Passagem, no segundo nível, surge quando um serviço envia dados para

outro apenas porque esses dados serão usados por um terceiro serviço subsequente. Esse tipo

de acoplamento cria dependências desnecessárias, exigindo que o serviço original

compreenda detalhes da lógica de serviços subsequentes.

O terceiro nível de Acoplamento de Dados em Comum se dá quando dois ou mais

microsserviços fazem uso de dados em comum, por exemplo, utilizando um banco de dados

compartilhado.

Por fim, o Acoplamento de Conteúdo, o mais indesejável, ocorre quando um serviço acessa

diretamente o estado interno de outro, violando o princípio de encapsulamento. Isso pode

levar a falhas imprevisíveis e a um alto grau de dependência.

2.3 Projeto Dirigido pelo Domínio (Domain-Driven Design)

Uma característica importante para a construção de microsserviços é a identificação de

suas fronteiras, e uma maneira de obter isso é organizá-los por suas capacidades de negócio,

como descrito na seção 2.2.2. (NEWMAN, 2022) complementa essa visão ao utilizar como

principal método de identificação de fronteiras o uso do próprio domínio como base, fazendo

uso do DDD.

(FOWLER, 2020) descreve DDD como uma abordagem de desenvolvimento de software que

foca na criação de um modelo de domínio que possua um entendimento profundo dos

processos e regras do domínio ao qual o sistema está relacionado.

O termo foi inicialmente criado por Eric Evans (2003), o qual apresenta um conjunto de

abordagens e técnicas que auxiliam a tarefa de tomar decisões de design. De acordo com o

autor, quando a complexidade foge do controle, os desenvolvedores não podem compreender

27

claramente o sistema para alterá-lo de maneira fácil e segura. Para ele, a maior complexidade

se dá no próprio domínio de negócio. Com isso, o DDD apresenta um conjunto de práticas,

técnicas e princípios de design, para obter uma aceleração de projetos de software que

possuem domínios complexos.

(VERNON, 2013) descreve as diversas vantagens ao se utilizar as técnicas de DDD:

●​ A empresa ganha modelos úteis de seu domínio

Aplicar o DDD visa focalizar o aspecto mais importante da empresa, seu domínio

nuclear (core), essencial. Apesar de outros domínios importantes existirem, eles

servem para apoiar o domínio nuclear, o qual gera valor e diferencial de mercado para

a empresa. Sendo assim, por meio do DDD, é possível construir modelos que

realmente representem as capacidades de negócio da empresa.

●​ O modelo de negócio é entendido de uma forma refinada e precisa

Ao se usar a Linguagem Ubíqua no domínio nuclear da empresa, é possível não

apenas melhorar o desenvolvimento de software, mas refinar a definição e o

entendimento da própria organização sobre seu negócio e missão. À medida que o

modelo de domínio é refinado, surge um entendimento mais profundo do negócio, que

pode ser utilizado como uma ferramenta analítica estratégica e tática.

A colaboração entre os especialistas de domínio e times técnicos auxilia na análise de

valor das direções presentes e futuras da empresa.

●​ Especialistas de domínio contribuem para o desenvolvimento de software

Os chamados especialistas de domínio podem discordar sobre terminologias, dado

suas diversas experiências sobre o negócio. Porém, o uso do DDD permite que eles

ganhem um consenso sobre os conceitos, o que fortalece a empresa como um todo.

Os desenvolvedores também passam a possuir um conhecimento de negócio em

comum com os especialistas de domínio com quem trabalham. Dessa forma,

consegue-se extrair diversos benefícios, como a redução de casos nos quais apenas

algumas pessoas conhecem profundamente sobre determinado domínio.

28

Ao final, especialistas de domínios e desenvolvedores (antigos e novos) compartilham

um conhecimento em comum, tendo como objetivo adotar uma linguagem

compartilhada com qualquer pessoa da organização.

●​ Fronteiras bem definidas são alocadas ao redor de modelos específicos

Os times técnicos são desencorajados a tomar decisões baseados em decisões

puramente técnicas, visando direcionar o foco para a eficácia da solução, concentrando

os esforços onde eles são mais relevantes do ponto de vista do negócio. Esse propósito

está ligado à compreensão do Contexto Delimitado do projeto, de forma a garantir que

o desenvolvimento permaneça alinhado com os objetivos estratégicos da empresa.

●​ A arquitetura empresarial é melhor organizada

Quando os Contextos Delimitados são bem desenhados e entendidos, todos os times

interessados sabem onde e o porquê cada integração é necessária. Suas fronteiras e

relacionamentos entre si são bem definidos. Times que implementam módulos

compartilhados realizam Mapeamento de Contextos para definir estratégias formais de

integração entre eles. Ao fim, pode ser possível ter uma compreensão geral de toda a

estrutura organizacional de comunicação da empresa.

●​ Novas ferramentas, estratégicas e táticas, são adotadas

Os Contextos Delimitados estabelecem limites claros ao se modelar soluções dentro

de um domínio de negócio. Dentro deste contexto, uma equipe desenvolve uma

Linguagem Ubíqua, que será usada na comunicação e no modelo do software. Para

formalizar o estilo de comunicação entre os Contextos Delimitados, diferentes equipes

criam Mapeamentos de Contexto, segregando estrategicamente os contextos. Ao final,

ferramentas de modelagem tática são aplicadas dentro de cada Contexto Delimitado,

como Agregados, Entidades, Objetos de Valor e Eventos de Domínio.

2.3.2 Representação do Domínio

Para (VERNON, 2013), o domínio pode ser definido como “o que” uma empresa faz e

em qual contexto ela está inserida, onde cada empresa possui seu conhecimento associado e

sua forma de fazer as coisas. Para (EVANS, 2003), a representação do domínio é central para

29

o desenvolvimento de software alinhado aos objetivos do negócio. Ele defende que o domínio

deve ser representado por um modelo claro e coeso, que reflete a realidade do negócio. Para

isso, ele apresenta a ideia da utilização de modelos. Para ele, um modelo de domínio não se

trata de um diagrama específico ou o conhecimento de um especialista de domínio, mas uma

abstração rigorosamente organizada e seletiva daquele conhecimento, fazendo com que as

suas informações possuam um sentido.

No entanto, o termo “modelo de domínio” pode ser confuso dado a palavra “domínio”,

podendo se referir tanto ao domínio principal do negócio, quanto à apenas uma área de

atuação dentro dessa empresa. (VERNON, 2013) utiliza termos como subdomínio, domínio

principal, entre outros, para se referir a áreas de negócio específicas. Segundo ele,

praticamente todos os domínios possuem subdomínios associados. A Figura 3 é uma

representação dos subdomínios de uma empresa de comércio eletrônico, destacando as

divisões específicas que cada subdomínio representa. A linha contínua externa, com maior

espessura, indica o domínio principal de atuação da empresa; as linhas contínuas internas

demarcam seus contextos delimitados; as linhas pontilhadas representam seus subdomínios; e

as linhas contínuas entre os subdomínios e contextos delimitados indicam a integração de

relacionamento entre eles.

30

Figura 2 – Representação de subdomínios em uma empresa de comércio eletrônico

Fonte: Vernon (2013), adaptado pelo autor.

2.3.3 Design Estratégico

Segundo (VERNON, 2016), esse tipo de design destaca o que é estrategicamente

importante para o negócio, apresentando forma de dividir o trabalho por importância e como

integrar melhor de acordo com a necessidade do negócio. Ele ainda destaca que o design

estratégico é utilizado como uma forma de visão ampla, antes de entrar nos detalhes da

implementação.

(KHONONOV, 2022) complementa essa visão destacando que a visão estratégica do DDD se

preocupa em responder às questões sobre qual software está sendo construído e o por que está

sendo construído.

31

2.3.3.1 Subdomínio

Subdomínios podem ser considerados como partes menores do domínio principal de

atuação de uma empresa que, em conjunto, são utilizados para atingir os objetivos e metas de

seu domínio de negócio principal (KHONONOV, 2022). De acordo com (VERNON, 2016),

os subdomínios podem ser utilizados para dividir todo o domínio de negócio de uma maneira

lógica, facilitando o entendimento do espaço do problema em um projeto grande e complexo,

por exemplo. A Figura 5 demonstra a divisão de um domínio de negócio abstrato em quatro

subdomínios, seus respectivos contextos delimitados e o mapeamento de suas integrações

pelas linhas contínuas entre eles.

Figura 3 – Domínio de negócio abstrato dividido em subdomínios

Fonte: VERNON (2016), adaptado pelo autor.

Quanto aos tipos possíveis de subdomínio, eles caracterizados no DDD de acordo com sua

importância e relevância de negócio, sendo:

●​ Subdomínio Nuclear (core)

32

Representa a principal atividade da empresa, a qual gera o seu diferencial de mercado

e valor de negócio. Nele, acontecem os principais investimentos em profissionais e

recursos tecnológicos, de forma mais cuidadosa e estratégica.

●​ Subdomínio de Suporte

Como o nome sugere, são subdomínios que oferecem suporte aos subdomínios

principais da empresa, mas que não geram um diferencial de negócio ou vantagem

competitiva. (KHONONOV, 2022) complementa este conceito destacando que uma

característica singular de subdomínios de suporte se dão por sua lógica de negócio

que, no geral, devem ser simples.

●​ Subdomínio Genérico

O subdomínio genérico, por sua vez, representa um tipo de subdomínio que, além de

não gerar um diferencial competitivo para o negócio, também consiste em atividades

comerciais amplamente conhecidas e utilizadas. Esse tipo de subdomínio pode ser

terceirizado, ou até mesmo construído internamente, mas sem um grande

investimento, como é feito em um subdomínio principal, por exemplo.

2.3.3.2 Contextos Delimitados e Linguagem Ubíqua

De acordo com (VERNON, 2016), um CD - Contexto Delimitado (Bounded Context)

é definido por um limite conceitual semântico, onde cada componente interno é

semanticamente motivado e possui um significado claro, alinhado com as necessidades de

negócio.

O modelo criado nas discussões de design deve refletir a linguagem falada pelo time que

trabalha no Contexto Delimitado, a qual é chamada de Linguagem Ubíqua (Ubiquitous

Language), e deve ser essa a linguagem usada na implementação do modelo do software.

(VERNON, 2016) reforça que tal linguagem deve ser estrita, exata, rigorosa e rígida.

(KHONONOV, 2022) complementa dizendo que a linguagem não deve ser ubíqua no sentido

de ser utilizada de maneira universal em toda a organização mas, sim, apenas dentro dos

limites de seu CD.

33

2.3.3.3 Mapeamento de Contextos

Considerando que diferentes Contextos Delimitados de uma empresa precisarão se

comunicar de alguma forma, há também a técnica de Mapeamento de Contextos, os quais são

representações visuais dos Contextos Delimitados de um sistema e a integração entre eles

(KHONONOV, 2022).

(VERNON, 2021) destaca também que, acima de tudo, o Mapeamento de Contextos expressa

qual tipo de relacionamento entre equipes e de integração entre contextos é representado pela

linha entre os contextos. Ele ainda complementa que uma definição clara de suas fronteiras e

contratos ajudam a criar mudanças controladas com o passar do tempo.

Há alguns estilos na representação dos mapeamentos, tanto de equipes como de contratos de

comunicação entre CDs (mapeamento técnico), alguns deles representando ambos. Segue suas

descrições resumidas (VERNON, 2021) e (KHONONOV, 2022):

●​ Parceria: Quando duas equipes trabalham em sincronia tendo um objetivo em comum

entre os dois. Com essa integração, nenhuma das duas dita as regras de definição de

contrato. Normalmente, uma parceria não dura por um longo prazo, mas apenas

enquanto fornece vantagens para o negócio, podendo ser remapeada posteriormente.

●​ Cliente-Fornecedor: O estilo Cliente-Fornecedor, ao contrário da Parceria, descreve

um padrão onde ambas as equipes podem possuir sucesso de forma independente um

do outro, porém há uma relação de influência entre ambos. Isso é representado pela

letra D (Downstream – a jusante) para o cliente e U (Upstream – a montante) para o

fornecedor, denotando que o cliente planeja com o fornecedor para atender suas

expectativas, mas o fornecedor decidirá o como e o que o cliente irá receber.

●​ Conformista (CF): Quando há um desequilíbrio de poder entre as equipes, de forma

que a equipe ascendente não possui motivação para atender as necessidades da equipe

descendente. Caso a equipe descendente deseje se adequar às informações recebidas

pela equipe ascendente, essa é uma relação de conformidade.

34

●​ Camada de Anticorrupção (ACL): Continuando com a relação de desequilíbrio de

poder decisório sobre os modelos de domínio, há casos em que a equipe descendente

não deseja se adequar à equipe ascendente, seja pelo modelo ascendente ser ineficaz

para as necessidades do descendente, ou pelo descendente desejar proteger seu

conhecimento de domínio e/ou linguagem ubíqua. Nestes casos, o modelo descendente

constroi um modelo que traduz os contextos externos por meio de uma camada de

anticorrupção.

●​ Serviço de Host Aberto (OHS): O Serviço de Host Aberto visa disponibilizar para os

CDs descendentes uma interface aberta, a qual expõe um protocolo conveniente bem

documentado para seus clientes.

2.3.4 Design Tático

​ Em continuidade ao projeto estratégico, que traz uma visão em alto nível, o projeto

tático visa aplicar os conceitos obtidos em soluções de software, de forma a criar um modelo

de design que seja fiel ao domínio, coeso e fácil de manter (EVANS, 2014), utilizando

ferramentas como modelagem de Entidades, Objetos de Valor, Agregados, Repositórios,

Serviços de Aplicação, Serviços de Domínio e Eventos de Domínio.

2.3.4.1 Entidade

​

Entidades são caracterizadas por modelos que representam um conceito do domínio

que, mesmo sofrendo alterações de estado ao longo do tempo, mantêm sua identidade, sendo

este seu principal ponto de distinção de outras ferramentas de modelagem – sua

individualidade (VERNON, 2021).

(EVANS, 2004) complementa essa visão afirmando que uma entidade deve refletir apenas os

comportamentos do conceito e os atributos necessários para dar suporte a eles.

2.3.4.2 Objeto de Valor

Um Objeto de Valor é um elemento que modela uma totalidade conceitual imutável.

Essa ferramenta de modelagem não possui uma identidade única, e sua equivalência é

35

determinada apenas ao comparar os atributos encapsulados nela pelo seu tipo. Objetos de

Valor são comumente utilizados para descrever, quantificar ou mensurar uma Entidade

(VERNON, 2021).

2.3.4.3 Agregado

​ Agregados são ferramentas fundamentais na modelagem tática de um domínio que

buscam encapsular toda a complexidade da criação de modelos por meio de Entidades e

Objetos de Valor, estabelecendo um limite claro ao seu redor (EVANS, 2015). Cada agregado

deve possuir uma entidade raiz (chamada de raiz do agregado), a qual deve ser o único ponto

de acesso ao modelo criado. Essa estrutura garante que a raiz do agregado mantenha as

propriedades e invariantes do agregado como um todo, simplificando o controle de

consistência dos objetos relacionados.

(VERNON, 2021) descreve quatro ideias que servem como orientação ao se modelar

agregados:

1.​ Proteger invariantes de negócios dentro dos limites do agregado;

2.​ Projetar agregados pequenos;

3.​ Referenciar outros agregados apenas pela identidade;

4.​ Atualizar outros agregados utilizando a consistência eventual.

2.3.4.4 Evento de Domínio

​

Eventos de domínio são objetos completos no modelo do domínio que funcionam

como uma representação de uma ação que já ocorreu, e que é de interesse dos especialistas de

domínio. Especialmente em sistemas distribuídos, em que o ciclo de vida de uma entidade

pode ser alterado de formas assíncronas, esses eventos são úteis para tornar explícita a

intenção de mudança de uma entidade, ajudando a compreender como o estado do sistema

evoluiu (EVANS, 2015).

2.3.4.5 Serviço de Domínio

​ (EVANS, 2015) define que, quando um processo significante ou uma alteração no

modelo de domínio não é uma responsabilidade natural de uma entidade ou objeto de valor,

36

uma operação deve ser criada para o modelo por meio de uma interface isolada declarada

como um serviço. (VERNON, 2015) complementa essa visão, indicando que os serviços de

domínio devem ser usados apenas quando realmente necessários, quando a lógica a ser

encapsulada não se encaixa em outros componentes. Ele ainda sugere que os serviços sejam

coesos e centralizem processos complexos ou cálculos que envolvam múltiplas entidades ou

agregados.

2.3.4.6 Serviço de Aplicação

Serviços de Aplicação são comumente encontrados em projetos de software que

possuem uma arquitetura dividida em camadas, as quais podem representar tanto separações

físicas como lógicas. (EVANS, 2003) atribui à camada de aplicação a função de isolar as

responsabilidades lógicas e de domínio. Para ele, os serviços de domínio são classes que agem

como coordenadoras das requisições feitas pelo usuário. (FOWLER, 2009) destaca que a

camada de serviço – a qual é um sinônimo da camada de aplicação – define o limite de uma

aplicação com uma camada de serviços que estabelece um conjunto de operações disponíveis

e coordena a resposta da aplicação em cada operação.

37

3. ALGUNS PROBLEMAS NO DESIGN DE UMA

ARQUITETURA DE MICROSSERVIÇOS

Este capítulo apresenta certos problemas que podem ser encontrados na

implementação de uma arquitetura de microsserviços, em um cenário onde a modelagem de

suas das interações não foi realizada de maneira adequada, do ponto de vista de definição de

fronteiras e responsabilidades claras de cada serviço, detalhando alguns dos problemas

decorrentes de seu design. O capítulo também apresenta pontualmente as técnicas de DDD

utilizadas como base para propor uma solução que busque minimizar os problemas

encontrados.

3.1 Contexto do Negócio

Como descrito na seção 2.2.2, a arquitetura distribuída de microsserviços traz diversas

vantagens para o ambiente de software corporativo, como maior escalabilidade e flexibilidade

no desenvolvimento e manutenção de suas aplicações. No entanto, quando essa arquitetura

ocorre sem uma modelagem cuidadosa, surgem problemas como baixo nível de coesão e alto

grau de acoplamento entre os serviços, anulando muitos dos benefícios esperados.

Estudos como os de (OUMOUSSA e SAIDI, 2024) destacam que a complexidade na

decomposição de sistemas monolíticos para uma arquitetura de microsserviços é um dos

maiores desafios nessa transição. Mesmo com técnicas conhecidas para identificar

microsserviços, faltam métricas amplamente aceitas para avaliar a qualidade das definições de

serviço, o que limita a capacidade das equipes de medir e otimizar a arquitetura. (ZHONG et

al., 2024) complementam, demonstrando que a definição de contextos delimitados, conceito

central no DDD, é sujeita a interpretações diferentes, o que resulta em inconsistências no

design.

Esses desafios comprometem não apenas a evolução e a manutenção do sistema, mas também

a capacidade de atender de maneira eficiente as necessidades do negócio (VERNON, 2013).

Considerando os fatores abordados anteriormente, descreve-se um cenário de uma empresa

fictícia, chamada InvestmentCorp, calcado em um exemplo real que anonimiza e abstrai

38

algumas características de negócio, que opera como gestora de fundos de investimento. Sua

principal meta de negócio é possibilitar que clientes consigam realizar compras e vendas de

cotas em fundos de investimento por meio de um aplicativo móvel ou portal web. Para tanto, a

InvestmentCorp possui capacidades de negócio que dão suporte à sua estratégia de operação

principal, como administração dos fundos de investimento disponíveis, gerenciamento do

patrimônio de seus clientes, realização de integrações com sistemas terceirizados, entre

outras.

A fim de disponibilizar um ecossistema tecnológico que permitisse a construção de produtos

resilientes e escaláveis, além de utilizar a colaboração de diferentes times especialistas em

cada produto, a InvestmentCorp construiu sua arquitetura utilizando microsserviços. Por meio

deles, a InvestmentCorp busca garantir que as transações financeiras realizadas pelos clientes

sejam recebidas, processadas e integradas, tanto às suas carteiras quanto a organizações

externas interessadas, como entidades governamentais e bancos, por exemplo. Representados

pelas figuras hexagonais, a Figura 3.2 apresenta os principais microsserviços responsáveis por

atender as capacidades de negócio da InvestmentCorp, bem como suas interações.

39

Figura 4 - Representação Geral dos Microsserviços do Módulo de Gerenciamento de

Operações e suas Principais Interações

Fonte: o Autor.

Na figura, as setas representam as interações entre os microsserviços e seus nomes denotam a

natureza das colaborações entre eles. Estão representadas as colaborações que pretendem

garantir que as necessidades de negócio sejam atendidas.

O serviço Gerenciador de Ordens (GO) tem um papel fundamental no fluxo operacional da

InvestmentCorp. Ele serve como porta de entrada para as transações financeiras realizadas

pelos clientes, além de disponibilizar as funcionalidades de entrada e consulta de ordens em

diferentes canais da companhia. O GO interpreta o conceito de Ordem como uma entidade

que representa uma operação de compra ou venda de cotas em um fundo de investimento pelo

cliente.

Para possibilitar a criação de ordens, o GO se comunica com outros serviços, como o Serviço

de Gestão Patrimonial (GP) e Compliance e Risco, a fim de realizar todas as validações

necessárias que garantem sua consistência. Além disso, ele também consome dados do

40

Serviço de Cálculo de Impostos para obter a informação sobre a dedução de impostos no

valor da operação financeira. Suas responsabilidades consistem em disponibilizar a consulta

das ordens realizadas por meio de interfaces públicas (APIs) e atualização de status,

funcionalidades essas que serão utilizadas posteriormente por serviços como o Processador de

Ordens (PO).

O GO é responsável pela parte inicial do ciclo de vida de uma Ordem. Ela é de fato criada

apenas quando a solicitação realizada por um cliente for validada com sucesso a partir de

diversas etapas que compõem o fluxo de validação de uma Ordem, como a validação de risco

da operação, status do Fundo de Investimento, posição disponível do cliente no momento da

solicitação, entre outras. A Figura 3.3 representa, em alto nível de abstração, o modelo das

principais entidades de domínio contidas no serviço GO.

41

Figura 5 – Modelo das classes do serviço Gerenciamento de Ordens (GO)

Fonte: o Autor.

Observa-se que a relação entre Ordem e OrdemHistórico reflete um aspecto importante do

domínio: o rastreamento do ciclo de vida de uma ordem. Ao conectar diretamente uma Ordem

ao seu histórico, eventos relevantes e mudanças de status podem ser registrados,

possibilitando a rastreabilidade de seu estado.

O pacote GerenciadorDeOrdem.Ordem, que representa as principais responsabilidades do

serviço no que tange o conceito de Ordem visto anteriormente, terá suas entidades, em sua

maioria, serão instanciadas por meio do fluxo de entrada de Ordens.

O Processamento de Ordens (PO), por sua vez, é responsável por processar e integrar as novas

ordens disponibilizadas por GO, tanto nas carteiras dos clientes quanto naquelas de

interessados externos, como bancos, órgãos reguladores, etc. Diferente de GO, PO interpreta

uma “Ordem” dentro de seu contexto específico como uma operação efetivada, representada

42

por uma transação financeira já integrada, que pode estar passando pelo fluxo de

processamento, ou que já foi devidamente processada e integrada aos parceiros externos

interessados (como órgãos regulamentadores e governamentais, por exemplo) como na

posição patrimonial dos clientes.

PO tem um papel ativo, tanto para consultar as ordens realizadas em GO quanto para enviar

os detalhes dessas ordens adiante no fluxo de operação, como nas integrações com serviços

externos e carteiras dos clientes, por exemplo.

O serviço Gestão Patrimonial (GP) realiza o gerenciamento patrimonial dos clientes,

controlando sua carteira de investimentos, saldos, e sua evolução patrimonial, com base nas

configurações e regulamentações dos fundos aplicados. O GP disponibiliza a visão

patrimonial para os clientes da InvestmentCorp por meio de diferentes canais, como aplicativo

móvel e portal web. Nota-se também que GP atua de forma passiva em relação aos demais

serviços interessados, porém possuindo suas próprias regras de negócio internas.

O Gerenciamento de Fundos (GF) também se destaca por atender um contexto muito

importante da InvestmentCorp. Além de ser responsável por gerenciar as informações dos

fundos de investimento, incluindo características como horários de operação, limites mínimos

e máximos de aplicação e resgate, e regras de negócio específicas de cada fundo, também

disponibiliza as informações de forma estruturada para outros serviços, como GO, e para os

diferentes canais da companhia.

3.2 Ciclo de Vida de uma Ordem

Nos contextos de negócio abordados anteriormente, “Ordem” representa um dos

conceitos mais importantes pois, consolidando as definições tanto em GO quanto PO, pode-se

dizer aqui que Ordem é a entidade que representa uma transação financeira de compra ou

venda de cotas em fundos de investimento, realizada por um cliente. Uma Ordem possui

diversos estágios ao longo de seu ciclo de vida, os quais permitem que diferentes ações ou

eventos sejam realizados. Por exemplo, uma Ordem de compra SOLICITADA pode ser

CANCELADA, porém se estiver no estado PENDENTE DE COTIZAÇÃO isso já não é

possível.

43

De forma a descrever as mudanças de estado de uma Ordem e suas ações possíveis, utiliza-se

o diagrama de Máquina de Estado da UML, apresentado na Figura 8. A Tabela 3 descreve

com detalhes cada estado e cada ação possível em cada estado.

Tabela 2 – Descrição dos estados de uma Ordem.

Estado Descrição Ações

SOLICITADA Estado inicial de uma ordem, atribuído assim

que a solicitação realizada pelo cliente é

validada e a ordem é criada. O estado se

mantém assim até que a próxima janela de

processamento se inicie e seu estado mude

para AGUARDANDO COTIZAÇÃO ou

AGUARDANDO SALDO (caso a conta do

cliente esteja sem saldo), ou que haja um

cancelamento e seu estado mude para

CANCELADA.

Permite: Consultar saldo

do Cliente, Consultar

dados do Fundo e

Cancelar.

Bloqueia: Finalizar.

AGUARDANDO

COTIZAÇÃO

Este estado é atribuído assim que ocorra uma

janela de processamento e a ordem seja

processada. Esse estado se mantém assim até

que o prazo para cotização do regulamento do

fundo seja finalizado. Caso seja uma ordem de

compra, seu estado muda para FINALIZADA.

Se for de venda, muda para AGUARDANDO

LIQUIDAÇÃO

Permite: Consultar saldo

do Cliente e Consultar

dados do Fundo.

Bloqueia: Finalizar,

Cancelar.

AGUARDANDO

LIQUIDAÇÃO

Após o prazo para liquidação de cotas previsto

no regulamento do fundo finalizar, quando

houver uma nova janela de processamento o

estado da ordem será alterado para

FINALIZADA.

Permite: Consultar saldo

do Cliente e Consultar

dados do Fundo.

Bloqueia: Cancelar.

AGUARDANDO SALDO Esse estado será atribuído durante uma janela Permite: Consultar saldo

44

de processamento caso o cliente não possua

saldo em conta para realizar a transação. Isso

pode ocorrer apenas em casos de ordens de

compra onde a ordem possui uma data de

agendamento. É possível alterar o estado da

ordem para CANCELADA também.

do Cliente, Consultar

dados do Fundo e

Cancelar.

Bloqueia: Finalizar.

FINALIZADA Estado atribuído assim que todos os estados

anteriores forem devidamente finalizados e a

ordem seja concluída.

Bloqueia: Qualquer ação.

CANCELADA Estado atribuído caso o cliente deseje cancelar

a ordem.

Bloqueia: Qualquer ação.

Fonte: o Autor.

45

Figura 6 – Diagrama de estado do ciclo de vida de uma Ordem

Fonte: o Autor.

46

3.3 Descrição do Problema

Apesar de atenderem as necessidades de negócio da InvestmentCorp, é possível

observar alguns pontos de atenção em relação à interação entre os microsserviços no esquema

arquitetônico apresentado nas figuras acima. Ao observar a relação entre GO e PO, por

exemplo, observa-se que ambos utilizam o conceito de “Ordem”. No entanto, este conceito

possui significados diferentes em cada serviço, apesar de ambos terem a ver com o ciclo de

vida de uma Ordem, aqui entendida de forma geral como uma operação financeira realizada

por um cliente. Sem uma definição precisa desse conceito, essa variação na definição indica

uma coesão fraca, como apresentado na seção 2.2.3, podendo gerar ambiguidades no

entendimento do domínio, prejudicar a evolução do sistema como um todo e, principalmente,

deteriorar a comunicação entre as equipes.

Além disso, é observa-se que a interação entre GO e PO gera um acoplamento similar ao

acoplamento de domínio, descrito no capítulo 2.2.5, pois PO precisa realizar consultas

recorrentes em GO, para verificar se novas Ordens foram realizadas. Apesar de ser um tipo de

acoplamento baixo, a análise deve considerar problemas de disponibilidade (caso GO esteja

em falha operacional por algum motivo, PO apresentará erros no momento de consultar GO),

de manutenibilidade (pois mudanças feitas em GO poderão afetar diretamente PO) e de

escalabilidade, por exemplo.

Além dos problemas observados em relação à comunicação entre os serviços, pode-se

observar problemas de design nos próprios serviços. Conforme observado no diagrama da

Figura 7, os modelos em GO são agrupados por pacotes que representam os conhecimentos de

domínio de cada classe. Com base nas convenções do padrão UML, nota-se que as

apresentadas possuem acesso “público” às suas propriedades (representado pelo símbolo “+”

que precede o nome das propriedades). Isso significa que não há o conceito de modularização,

pois todas as classes podem ser acessadas por classes externas, o que implica problemas de

manipulação indesejada no estado de tais entidades.

Entidades como FundoInvestimento e ClienteInvestidor, representadas em pacotes separados,

não possuem um acoplamento direto com Ordem. Isso reflete o papel dessas entidades no

contexto do GO, as quais são utilizadas apenas em consultas ou validações específicas, por

47

meio de integrações com serviços externos. Contudo, esse tipo de integração pode criar

problemas de coesão, pois o GO acaba “conhecendo” indiretamente conceitos específicos de

serviços externos, como os representados por FundoInvestimento e PatrimonioCliente.

Um exemplo disso é observado com a entidade PatrimonioCliente, no que diz respeito ao

conceito de Posição. Dentro do serviço GO, Posição representa não apenas a posição

financeira atual do cliente em um fundo, mas também incorpora o impacto de ordens

pendentes de processamento, por exemplo. Essa definição, no entanto, diverge do conceito de

Posição mantido pelo serviço externo GP, resultando em um problema de baixa coesão.

No geral, destacam-se diversos problemas que vão desde baixa coesão e alto acoplamento, até

decisões de design consideradas inadequadas. A Tabela 4 consolida os principais problemas

que surgem a partir da interação entre GO e os demais serviços, bem como os impactos

encontrados no design atual deste serviço. Além do identificador do problema, há também sua

descrição e tipo de impacto, os quais serão referenciados no capítulo 4 com suas respectivas

soluções.

Tabela 3 – Compilação dos problemas do design atual.

Identificador Descrição Tipo de impacto

GO-01 O conceito de “Ordem” está distribuído em GO e PO,

causando ambiguidade em seu entendimento.

Baixa coesão

GO-02 O conceito de “Posição” em GO é diferente do conceito

de “Posição” em GF, causando ambiguidade em seu

entendimento.

Baixa coesão

GO-03 Os pacotes GerenciadorDeOrdem.FundoInvestimento e

GerenciadorDeOrdem.Cliente não isolam adequadamente

os conceitos internos de GO em relação aos conceitos dos

serviços externos.

Baixa coesão

GO-04 GO e PO possuem comunicação direta com diferentes

microsserviços externos e, por compartilhar o conceito de

Fronteira semântica mal

definida

48

ordem, suas fronteiras não são suficientemente claras.

GO-05 Apesar de possuir um acoplamento de domínio

(conceitualmente baixo), GO é passivo em relação à PO,

possibilitando, por exemplo, que falhas operacionais em

PO provoquem efeitos colaterais indesejados no ciclo de

vida de Ordem.

Acoplamento inadequado

GO-06 As propriedades de todas as entidades em GO possuem

acesso público, possibilitando alterações indesejadas em

seus estados, além de trazerem mais complexidade ao

controle de seu estado.

Modularização inexistente

GO-07 GO possui um serviço de aplicação para realizar a

coordenação de chamadas à serviços externos além de

centralizar validações de domínio, prejudicando a

manutenção e reduzindo a coesão.

Baixa coesão

Fonte: o Autor.

49

4. APLICAÇÃO DAS TÉCNICAS DE DDD NO DESIGN

ATUAL
Este capítulo discute as propostas de solução para os problemas destacados no capítulo

3 da perspectiva do DDD.

4.1 Visão geral das soluções propostas

Considerando o cenário atual da arquitetura de microsserviços da InvestmentCorp,

analisado na seção anterior, constata-se que diversos problemas emergem a partir do design

adotado. Embora a arquitetura atenda aos requisitos de negócio, ela apresenta problemas

significativos, como alto acoplamento entre os serviços e baixa coesão dos microsserviços.

Esses problemas impactam negativamente na evolução e manutenção do software,

comprometendo inclusive princípios fundamentais para a adoção de microsserviços,

discutidos na seção 2.2.2.

As soluções propostas visam reestruturar parte do design com base nos conceitos e técnicas

do DDD, detalhados na seção 2.3. O objetivo principal é criar uma arquitetura cujos

elementos apresentam alta coesão funcional, com fronteiras e responsabilidades bem

definidas, alinhadas com as delimitações dos subdomínios. Procura-se aqui abordar os

problemas identificados de duas formas:

●​ Diretamente, por meio da aplicação de práticas de DDD no design atual sob uma

perspectiva estratégica, destacando os principais subdomínios, seus respectivos tipos

(nuclear suporte, genérico), os contextos delimitados, as fronteiras entre os

microsserviços e os tipos de comunicação de suas interações. Além disso, avalia-se da

perspectiva tática os principais módulos causadores de problemas, propondo sugestões

de melhoria.

●​ Indiretamente, por meio de propostas de mudanças arquitetônicas fundamentadas nos

problemas evidenciados ao aplicar os conceitos do DDD, como a redistribuição de

responsabilidades dos serviços e a introdução de mecanismos de mensageria.

Para revisar aspectos do design arquitetônico, sob um ponto de vista, principalmente, da

comunicação entre os microsserviços, aplicam-se as diretivas do Design Estratégico. Quanto

50

ao Design Tático, discute-se exclusivamente neste trabalho o subdomínio Plataforma de

Fundos de Investimento, por concentrar a maior parte dos problemas identificados

anteriormente

4.1 Design Estratégico com Subdomínios e Contextos Delimitados

Na análise a seguir, são identificados os Subdomínios da empresa e definidos seus

respectivos Contextos Delimitados (CD), mantendo uma correspondência de um para um

(1:1) entre subdomínios e CDs. Além disso, explora-se como os microsserviços estão

associados a esses Contextos Delimitados, destacando as responsabilidades e limites de cada

um dentro da arquitetura da InvestmentCorp.

4.1.1 Identificação e Classificação dos Subdomínios

A primeira etapa na identificação dos subdomínios consiste em traçar suas fronteiras

lógicas segundo as capacidades potenciais do negócio, como ponto de partida para alinhar a

arquitetura às necessidades do negócio.

Como mencionado na seção 3.1, a principal linha de atuação da InvestmentCorp é possibilitar

que clientes consigam realizar compras e vendas de cotas em fundos de investimento por

meio de um aplicativo móvel ou portal web. Considerando essa meta de negócio e as

responsabilidades atribuídas ao microsserviço GO, é possível identificar um subdomínio que

circunscreve essas responsabilidades. Tal subdomínio representa de maneira geral uma

plataforma para negociação de fundos de investimento, assumindo aqui que o termo

“plataforma” refere-se a um sentido atual empregado corriqueiramente em boa parte das

empresas: áreas do negócio e de seus sistemas que oferecem uma gama expansível de

serviços. Esse subdomínio é nomeado aqui de Plataforma de Fundos de Investimento. Ele

desempenha um papel central no diferencial competitivo da empresa, garantindo o sucesso

das transações dos clientes e, consequentemente, a captação de novos recursos. Sendo este um

subdomínio nuclear, ele dá suporte direto aos objetivos estratégicos da empresa.

Para sustentar o ciclo de vida de uma Ordem, o serviço PO é responsável por integrar as

operações realizadas em GO aos demais sistemas necessários até o momento de sua

51

finalização. Considerando que esse é um processo que ocorre de maneira assíncrona em

relação à entrada da ordem, o qual pode inclusive possuir intervenções manuais, define-se

aqui o subdomínio de suporte Backoffice, cujo papel será proteger e especializar a linguagem

ubíqua já conhecida em PO, isto é, isolar seus conceitos de domínio de conceitos externos à

ele, buscando garantir maior consistência conceitual, descrito com mais detalhes na próxima

seção.

Levando em conta o conhecimento do serviço de Gerenciamento de Fundos de Investimento,

é proposto aqui o subdomínio Fundos de Investimento, o qual controla informações

essenciais sobre os fundos geridos pela InvestmentCorp, como características, regras

operacionais, disponibilidade, entre outros. Esses dados são fundamentais para sustentar as

transações realizadas pelos clientes, garantindo conformidade com as regras do mercado. Este

também pode ser considerado também um subdomínio nuclear dentro da companhia, dado

que a disponibilização de fundos estratégicos para o mercado representa diferenciais de

negócio

Já o subdomínio de suporte Patrimônio do Cliente centraliza informações sobre a posição

financeira dos clientes, incluindo saldos, extratos e evolução patrimonial, responsabilidades já

apresentadas anteriormente no microsserviço de GP. Embora desempenhe um papel

importante, ele não é diretamente responsável pelo diferencial competitivo da empresa,

funcionando como um apoio às operações financeiras.

O subdomínio Compliance e Risco reúne as validações regulatórias e de risco associadas aos

clientes e suas operações. Ele desempenha um papel essencial para garantir a conformidade

com normas internas e externas, protegendo a integridade das transações, mas não apresenta

diferencial competitivo, sendo classificado como subdomínio de suporte.

Por fim, há subdomínios que, embora sejam cruciais para garantir a experiência do cliente e o

bom funcionamento do sistema de software, não representam diferenciais competitivos e,

sobretudo, podem ter o suporte de produtos de prateleira configuráveis. Tais subdomínios são

classificados como genéricos, como foi visto no capítulo 2. Tem-se aqui dois subdomínios

desse tipo: Perfil de Cliente, que agrega e disponibiliza dados essenciais sobre o cliente,

como informações de contato e perfil de investimento, e Comunicação com Cliente, que

52

centraliza as comunicações com os clientes, tanto em canais externos, como e-mail e telefone,

quanto no envio de notificações nos canais internos, como aplicativo e portal web.

4.1.2 Definição dos Contextos Delimitados

Como definido acima, a relação entre subdomínios e CDs é de 1 para 1. Com base nos

subdomínios identificados, a Figura 4.1 apresenta os Contextos Delimitados mapeados.

Figura 7 - Contextos Delimitados da InvestmentCorp

Fonte: o Autor

Os CDs estabelecem limites claros em relação às responsabilidades de cada funcionalidade,

ao eliminar a ambiguidade de termos e promover maior coesão dentro dos subdomínios.

Termos de mesmo nome (falsos cognatos), que antes estavam distribuídos entre diferentes

serviços, agora são devidamente atribuídos a CDs que correspondem aos subdomínios que os

definem univocamente nas suas respectivas linguagens ubíquas.

Por exemplo, o termo “Ordem”, anteriormente presente nos serviços GO e PO, torna-se um

conceito específico dentro do CD Plataforma de Fundos de Investimento. Enquanto isso, no

CD Backoffice (detalhado posteriormente na seção sobre o Design Tático), o modelo central

passa a ser denominado “Operação Financeira”, com suas próprias características. Embora

possa derivar características oriundas de "Ordem" (como o valor, tipo de operação, etc), a

Operação Financeira é tratada como um conceito único dentro da linguagem ubíqua deste CD,

sendo protegida e compreendida exclusivamente pelas equipes que trabalham neste contexto.

53

Outro exemplo é o termo “Posição”, que possui agora definições melhor alinhadas com as

linguagens ubíquas de seus respectivos CDs. Em Plataforma de Fundos de Investimento, o

conceito é representado como “Posição Disponível”, que reflete a posição financeira total de

um cliente em determinado fundo deduzindo o valor referente às suas Ordens ainda não

finalizadas. Por outro lado, no CD Patrimônio do Cliente, o conceito de Posição permanece

protegido e representa exclusivamente o entendimento do que essa entidade significa dentro

deste contexto.

Por fim, a identificação dos Subdomínios e Contextos Delimitados traz vantagens que ajudam

a mitigar conceitualmente os problemas GO-01 e GO-02, apresentados na Tabela 3, seção

3.2. Tais problemas ainda serão revisitados no nível de design tático posteriormente na seção

4.3.

4.2 Design Estratégico com Mapeamento de Contexto

Visando estilos de comunicação entre CDs que busquem não apenas evoluir a

qualidade de comunicação entre as equipes envolvidas, por meio de definição de interfaces e

contratos mais precisamente definidos, mas também diminuir de alguma forma o acoplamento

entre certos CDs, a Figura 4.2 apresenta o mapeamento dos contextos delimitados propostos

na seção anterior.

54

Figura 8 - Mapeamento dos Contextos Delimitados no Cenário Proposto

Fonte: Autor

Por se tratarem de representações de microsserviços, como visto na seção 3.1, a comunicação

entre os CDs mantém o estilo de comunicação previamente utilizado entre os microsserviços.

Sob o ponto de vista do DDD, utiliza-se o estilo de comunicação Serviço de Host Aberto

(Open Hosted Service), representado pela sigla OHS. Como apresentado no capítulo 2, tal

estilo de comunicação dá acesso ao seu Contexto Delimitado por meio uma interface aberta,

com contrato claramente especificado, para que os interessados em seus dados consigam

integrar com facilidade. Esse padrão é amplamente utilizado em várias relações no mapa,

especialmente entre os CDs nucleares e de suporte.

O mapa destaca também os casos em que um contexto “a jusante” (downstream) –

identificado pela letra D – consome informações de um contexto “a montante” (upstream) –

identificado pela letra U –, traduzindo os modelos de integração para evitar impacto em seus

modelos internos. Conforme descrito no capítulo 2, esse tipo de mapeamento se caracteriza

por definir uma Camada de Anticorrupção (Anti-Corruption Layer) no CD a jusante,

destacada no mapa como ACL. Os contextos principais apresentados no mapa utilizam esse

tipo de mapeamento para se comunicar com os CDs de suporte, visando fazer com que os

modelos de integração sejam adequados às suas necessidades, protegendo seus conceitos

internos. Isso também ocorre na relação com o contexto externo Bancos e Parceiros.

55

É importante destacar que, sempre que possível, recomenda-se a introdução de uma ACL

nesses casos para ajustar os modelos de integração às necessidades específicas do contexto a

jusante (VERNON, 2016).

Nota-se que o mapa sugere uma mudança na comunicação entre equipes para tornar o modelo

de negócio mais resiliente. Destacado pelo problema GO-05 (Tabela 3, seção 3.1), o serviço

GO era passivo em relação à PO. Em outras palavras, a equipe que gerenciava GO, um

serviço essencial para a empresa, dependia diretamente do consumo de suas informações por

outra equipe para dar andamento no ciclo de vida de Ordem. Agora, o CD Plataforma de

Fundos de Investimento passa a ser uma peça ativa no ciclo de Ordem, tendo um controle de

quando essa entidade deve seguir para as próximas etapas, informando o CD Backoffice

quando isso acontecer. Essa mudança de comunicação visa resolver o problema GO-05,

tornando ambos os CDs mais resilientes entre si. Além disso, isso abre margem para uma

modelagem tática na criação de Eventos de Domínio, que é abordada posteriormente na seção

4.5.

Por fim, são evidenciados cenários onde um contexto a montante não tem motivação para

atender às demandas específicas de um contexto a jusante. Nesses casos, o contexto assume

uma postura conformista, representada no mapa pela sigla CF, em relação ao modelo a

montante. Considera-se aqui que a InvestimentCorp não possui o controle sobre o

desenvolvimento dos projetos de software contidos no CD Comunicação com Cliente e

Bancos e Parceiros (contexto externo). Por tanto, os relacionamentos para com estes CDs é

conformista (CF).

4.3 Design Tático com Agregados

​ A seção 3.1 descreve como o design dos principais serviços nucleares foi modelado, e

como cada um deles se comunica interna e externamente. A fim de promover uma melhor

consistência transacional nas operações realizadas dentro do CD Plataforma de Fundos de

Investimento, a Figura 11 apresenta o novo modelo de domínio da entidade Ordem em alto

nível de abstração. Tal modelo agora leva em consideração a raiz do agregado Ordem, a qual

serve como único ponto de acesso para sua lógica de negócio. Objetos de Valor específicos

agora são criados, como ValorOrdem por exemplo, que contém as informações completas

56

referentes ao valor financeiro de uma Ordem, como o valor solicitado pelo cliente e os valores

deduzidos da operação (quanto houverem), obtidos a partir da integração com o Serviço de

Cálculo de Impostos, resultando no Valor Total da operação.

57

Figura 9 – Modelo de domínio de Ordem

Fonte: o Autor.

Nota-se, assim como o objeto de valor OrdemValor, que a entidade HistoricoOrdem não pode

mais existir sem que seja a partir da entidade Ordem. Em termos de design, isso garante maior

consistência transacional. E do ponto de vista de negócio, tal entidade é útil, pois possibilita o

controle completo do ciclo de vida de uma Ordem.

Servindo como um pequeno subconjunto de classes, o pacote SeedWork1 contém, a princípio,

apenas a interface IAggregateRoot (raíz do agregado), a qual é implementada por todas as

entidades consideradas como raiz do agregado. Novas classes serão adicionadas

posteriormente na seção 4.5.

1 Termo introduzido por Michael Feathers (2003), popularizado posteriormente por Martin Fowler
(2003). Esse pacote também é conhecido por nomes como Common, SharedKernel, etc.

58

Assim como Ordem, os modelos de domínio ClienteInvestidor, FundoInvestimento e

Patrimonio compõem um papel importante para a criação de uma Ordem. Cada um deles

possui seu próprio agregado, os quais podem ser acessados por meio de sua raiz de agregado e

referenciados com a utilização de seus identificadores. A Figura 12 descreve com mais

detalhes o modelo de domínio das três entidades.

Figura 10 - Modelos de domínio de ClienteInvestidor, FundoInvestimento e Patrimonio

Fonte: o Autor

59

Pelos diagramas acima, é possível observar que a classe Patrimônio atua praticamente como

um intermediador, que cruza as informações de identificação do Fundo de Investimento e

Cliente, relacionando a posição total de um cliente em um determinado fundo de

investimento. Para aderir à linguagem ubíqua presente no CD Plataforma de Fundos de

Investimento, a entidade Patrimonio agora expõe uma nova propriedade, a PosicaoDisponível.

A nova propriedade abriga o valor calculado da posição total do cliente deduzindo o valor

financeiro das ordens ainda não finalizadas que este cliente possui.

A entidade ClienteInvestidor abriga as principais propriedades relacionadas ao cliente no que

diz respeito à sua condição de realizar operações financeiras, a qual se baseia em diferentes

combinações de propriedades, como sua situação cadastral, perfil de investimento, etc. Ao

expor o método PodeOperar (boleano), é possível utilizar seu resultado nas diferentes

validações realizadas pelo Contexto Delimitado.

Por fim, a entidade FundoInvestimento, que abriga informações importantes sobre o Fundo de

Investimento em questão. Tal como ocorre em ClienteInvestidor, esta entidade possui um

objeto de valor que representa seu identificador (IdFundoInvestimento), o qual pode ser

utilizado nas demais implementações quando necessário.

4.4 Design Tático com Serviços de Domínio

Como descrito no capítulo 3, atualmente a validação de uma Ordem no serviço

Gerenciador de Ordens é feita por um Serviço de Aplicação. Tal serviço é responsável por

coordenar as chamadas aos serviços externos necessários, aplicar as regras de negócio de

validação de Ordem e, por fim, criar a entidade Ordem, caso as validações sejam concluídas

com sucesso.

Embora essa abordagem atenda às necessidades de negócio, ela apresenta limitações quanto à

organização e clareza do domínio. Como identificado no Capítulo 3 por meio do problema

GO-07, a centralização da lógica de validação de Ordens no serviço de aplicação pode

dificultar a manutenção, reduzir a coesão do modelo de domínio, além de poder gerar

inconsistências na lógica de negócio.

60

Portanto, propõe-se nesta seção a refatoração deste comportamento a partir da adoção de um

Serviço de Domínio, sendo este o componente fundamental para coordenar as chamadas a de

agregados de outros contextos delimitados e centralizar as principais validações responsáveis

pela criação de uma Ordem. A mudança visa deslocar tais validações para o escopo do

modelo de domínio, uma vez que as regras de negócio pertencem a este modelo. Assim, o

serviço de aplicação atua apenas como um orquestrador.

4.4.1 Responsabilidades do Serviço de Domínio

​ Como apresentado no capítulo 2, serviços de domínio são componentes responsáveis

por realizar invocações envolvendo múltiplos agregados ou que não podem ser atribuídas

estritamente a uma única entidade. No caso da transação de criação de uma ordem, as

seguintes validações devem ser realizadas previamente:

Coordenação de Modelos de Domínio: Consultar serviços externos para recuperar os dados

necessários para a validação, como perfil do cliente, posição disponível e regras operacionais

dos fundos.

Verificação de Regras de Negócio: Avaliar as informações obtidas para garantir que a

solicitação cumpra todas as condições necessárias. Por exemplo:

●​ Garantir que o cliente tenha posição suficiente em um fundo para realizar uma venda.

●​ Verificar se o fundo está ativo e dentro do horário de operação.

●​ Validar se o perfil do cliente está alinhado com as características do fundo.

Retorno: Após realizar as validações, o serviço de domínio retornará um resultado

indicando o sucesso ou a falha das validações, detalhando quais regras foram violadas,

caso aplicável.

Essa separação entre o Serviço de Aplicação e o Serviço de Domínio permite que o primeiro

se concentre na orquestração das transações necessárias, como receber a requisição do cliente,

chamar o serviço de domínio para validações e persistir a entidade de ordem em caso de

sucesso. Já o serviço de domínio focaliza exclusivamente na aplicação das regras de negócio,

61

promovendo maior coesão no modelo de domínio. A Figura 13 ilustra como ocorre a

interação entre esses dois tipos de serviço.

Figura 13 - Diagrama de Sequência do Serviço de Domínio (resumida)

Fonte: o Autor

62

4.4.2 Benefícios Esperados

​ Esta mudança visa conquistar benefícios em termos de design de software e

alinhamento ao domínio da InvestmentCorp, como:

●​ Maior Clareza e Organização do Modelo: Distribuição das responsabilidades de

cada componente, isolando as validações de uma Ordem em um serviço específico.

●​ Evolução do software: As regras atribuídas ao serviço de domínio podem ser

reutilizadas em cenários futuros, se necessário.

●​ Proteção do Modelo de Domínio: Centralizar as regras de negócio no Serviço de

Domínio evita que a lógica essencial se espalhe por diferentes partes do código,

reduzindo o risco de efeitos colaterais adversos e inconsistências.

4.5 Design Tático com Eventos de Domínio

Retomando o problema apresentado em GO-05 (Tabela 3, seção 3.1), os serviços GO e

PO possuíam uma forma de comunicação direta, na qual a continuidade do estado de uma

Ordem em GO dependia direta e imediatamente da ação de consulta de PO. Como visto na

seção 4.2, foi apresentada uma proposta de mudança na comunicação entre os CDs

responsáveis por GO e PO (Plataforma de Fundos de Investimento e Backoffice,

respectivamente), de forma que GO é o principal responsável por controlar as ações a serem

feitas a uma Ordem durante o início de seu ciclo de vida.

Visando tornar o ciclo de vida de uma Ordem mais coeso dentro dos contextos delimitados em

que esse conceito aparece, são introduzidos no modelo de domínio do CD Plataforma de

Fundos de Investimento os chamados Eventos de Domínio. Como discutido no capítulo 2, os

Eventos de Domínio expressam uma ação já realizada a partir de um agregado (por exemplo:

Ordem Criada, Ordem Processada, Ordem Finalizada, etc.). A Tabela 4 detalha os possíveis

eventos que ocorrem tanto no CD Plataforma de Fundos de Investimento, durante o início do

ciclo de vida de uma Ordem, quanto no CD Backoffice, durante as fases de processamento da

Ordem.

63

Tabela 4 – Eventos de Domínio em GO.

Evento CD Descrição

OrdemSolicitada Plataforma de Fundos

de Investimento

Quando uma Ordem foi solicitada com sucesso

(início do ciclo de vida).

OrdemCancelada Plataforma de Fundos

de Investimento

Quando uma Ordem foi cancelada com sucesso

(fim do ciclo de vida).

OrdemCotizada Backoffice Quando uma Ordem foi cotizada com sucesso.

OrdemLiquidada Backoffice Quando uma Ordem foi liquidada com sucesso.

OrdemFinalizada Plataforma de Fundos

de Investimento

Quando uma Ordem foi finalizada com sucesso

(fim do ciclo de vida).

Fonte: o Autor.

Com a inclusão dos eventos de domínio, espera-se atingir um maior grau de coesão dos

modelos de domínio dos CDs em que são utilizados, de forma a expressar por meio de tais

eventos as ações realizadas pelos agregados de forma mais clara.

64

5. CONSIDERAÇÕES FINAIS

5.1 Conclusões

Este trabalho teve como objetivo analisar e propor soluções de design para alguns

problemas de modelagem identificados em produtos de software implementados em

microsserviços, utilizando os conceitos de Domain-Driven Design (DDD). Para ser possível

exemplificar tanto os problemas quanto a aplicação de técnicas de DDD, foi utilizada uma

solução de arquitetura de software de uma empresa fictícia, a InvestmentCorp, espelhada

anonimamente em um caso real. Ao longo do estudo, foi possível observar como um design

inadequado pode impactar negativamente na coesão e no acoplamento dos serviços, além de

dificultar a manutenção e evolução do sistema.

A análise do design do software existente, que implementa uma capacidade de negócio

nuclear da empresa, destacou problemas como a ambiguidade de conceitos-chave,

exemplificada pelas diferentes interpretações do termo "Ordem" entre os serviços, a baixa

coesão entre os serviços, como evidenciado no uso do conceito de "Posição", além dos vários

pontos com alto acoplamento entre elementos arquitetônicos. Um exemplo deste último, é a

introdução de camadas anticorrupção, como decisão estratégica derivada do mapeamento de

contextos.

Esses problemas foram abordados por meio da aplicação de técnicas de design estratégico,

como a identificação de subdomínios e a criação de contextos delimitados, e de design tático,

como a introdução de agregados, objetos de valor e serviços de domínio. O resultado, como

mostrado com detalhes no capítulo 4, permitiu o aumento da coesão nos contextos

delimitados examinados, assim como a diminuição do acoplamento entre elementos desses

contextos e entre os próprios contextos, com a reformulação, no caso do Gerenciador de

Ordens (GO).

Os resultados obtidos também mostram que a aplicação de DDD não apenas mitiga os

problemas técnicos, mas também melhora a clareza e a expressividade do modelo, facilitando

a comunicação entre equipes e alinhando o design técnico aos objetivos de negócio. Enfim,

pode-se concluir que o presente trabalho evidencia aspectos do potencial do uso do DDD

65

como direcionador do design em ambientes de microsserviços, promovendo maior

alinhamento semântico e estrutural dos elementos de software e as capacidades do negócio.

5.2 Contribuições do Trabalho

As principais contribuições deste trabalho podem ser sintetizadas em três pontos:

Diagnóstico detalhado de uma implementação existente de microsserviços. Foi realizada uma

análise aprofundada do design atual, identificando problemas estruturais e organizacionais

que impactam diretamente a coesão e o acoplamento dos serviços.

Aplicação prática de técnicas de design do DDD. O trabalho apresentou uma aplicação

sistemática de conceitos de DDD, incluindo design estratégico e tático, com foco em resolver

os problemas de modelagem das abstrações de software e fortalecer o alinhamento entre os

serviços e o domínio de negócio.

Propostas de soluções potencialmente generalizáveis. As soluções propostas, como o uso de

serviços de domínio e camadas anticorrupção, podem ser adaptadas para outros cenários de

implementação semelhantes, podendo ser utilizadas como um guia para equipes que

enfrentam desafios similares em arquiteturas de microsserviços.

5.3 Trabalhos Futuros

Embora o trabalho tenha abordado com detalhe os problemas de design identificados,

algumas áreas ainda podem ser exploradas em estudos futuros:

●​ Realizar a implementação das soluções aqui propostas em um ambiente real, avaliando

o impacto em métricas como tempo de desenvolvimento, clareza da base de código e

redução da taxa de falhas, por exemplo.

66

●​ Realizar análise de custos comparativos entre o custo de uma implementação atual e

de sua evolução com a aplicação do DDD, com a seleção de métricas que permitam

decisões de projeto (project) baseadas em análise de compensação (trade-off) entre

alternativas de solução.

●​ Realizar análise comparativa dos testes (de unidade e integração) entre o cenário

atual e o cenário proposto após a aplicação das técnicas de DDD.

●​ Investigar como a aplicação de DDD influencia a dinâmica das equipes de

desenvolvimento, especialmente no que diz respeito à comunicação e alinhamento

de expectativas.

67

REFERÊNCIAS

BASS, Len; CLEMENTS, Paul; KAZMAN, Rick. Software Architecture in Practice:

Software Architect Practice_c3. [s.l.]: Addison-Wesley, 2012.

PARNAS, David. Information Distribution Aspects of Design Methodology. IFIPS

Congress. 71. 339-344, 1971.

EVANS, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software.

[s.l.]: Addison-Wesley, 2003.

EVANS, Eric. Domain-Driven Design Reference: Definitions and Pattern Summaries.

[s.l.]: Dog Ear Publishing, 2014.

FOWLER, Martin. Conway’s Law. Martinfowler.com. Disponível em:

<https://martinfowler.com/bliki/ConwaysLaw.html>. Acesso em: 9 Dec. 2024.

FOWLER, Martin. Domain Driven Design. Martinfowler.com. Disponível em:

<https://martinfowler.com/bliki/DomainDrivenDesign.html>. Acesso em: 9 Dec. 2024.

FOWLER, Martin. Software Architecture Guide. Martinfowler.com. Disponível em:

<https://martinfowler.com/architecture/>. Acesso em: 9 Dec. 2024.

FOWLER, Martin; LEWIS, James. Microservices. martinfowler.com. Disponível em:

<https://martinfowler.com/articles/microservices.html>. Acesso em: 9 Dec. 2024.

FOWLER, M. Reducing coupling. IEEE Software, v. 18, n. 4, p. 102–104, 2001.

KHONONOV, Vlad. Learning Domain-Driven Design. [s.l.]: “O’Reilly Media, Inc.,” 2021.

NEWMAN, Sam. Criando Microsserviços – 2a Edição: Projetando sistemas com

componentes menores e mais especializados. [s.l.]: Novatec Editora, 2022.

OUMOUSSA, Idris; SAIDI, Rajaa. Evolution of Microservices Identification in Monolith

68

Decomposition: A Systematic Review. IEEE Access, v. 12, p. 23389–23405, 2024.

SU, Ruoyu; LI, Xiaozhou; TAIBI, Davide. From Microservice to Monolith: A Multivocal

Literature Review. Electronics, v. 13, n. 8, p. 1452, 2024.

VERNON, Vaughn. Domain-Driven Design Distilled. [s.l.]: Addison-Wesley Professional,

2016.

VERNON, Vaughn. Implementing Domain-Driven Design. [s.l.]: Addison-Wesley, 2013.

ZHONG, Chenxing; LI, Shanshan; HUANG, Huang; et al. Domain-Driven Design for

Microservices: An Evidence-Based Investigation. IEEE Transactions on Software

Engineering, v. 50, n. 6, p. 1425–1449, 2024.

RICHARDSON, Chris. Microservices Patterns: With examples in Java. [s.l.]: Simon and

Schuster, 2018.

MARTIN, Robert C. Clean Architecture: A Craftsman’s Guide to Software Structure and

Design. [s.l.]: Prentice Hall, 2017.

PARNAS, D. L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, v. 15, n. 12, p. 1053–1058, 1972.

FOWLER, Martin. Seedwork. Martinfowler.com. Disponível em:

<https://martinfowler.com/bliki/Seedwork.html>. Acesso em: 14 Jan. 2025.

FOWLER, Martin. Padrões de Arquitetura de Aplicações Corporativas. 1. ed. [s.l.]:

Bookman, 2009.

FEATHER, Michael. Stunting a Framework. Weblogs Forum. Disponível em:

<https://www.artima.com/forums/flat.jsp?forum=106&thread=8826>. Acesso em: 14 Jan.

2025.

69

GAROUSI, Vahid; FELDERER, Michael; MÄNTYLÄ, Mika V. Guidelines for including

grey literature and conducting multivocal literature reviews in software engineering.

Information and Software Technology, v. 106, p. 101–121, 2019.

	1.​INTRODUÇÃO
	1.1​Motivações
	Tabela 1 – As três respostas à lei de Conway, segundo Fowler.

	1.2​Objetivo
	1.3​Justificativas
	1.4​Contribuição
	1.5​Método de Pesquisa
	1.6​Estrutura do Trabalho

	2. REVISÃO BIBLIOGRÁFICA
	2.1 Arquitetura de Software
	2.2 Arquitetura de Microsserviços
	2.2.1 Definições
	2.2.2 Características de Microsserviços
	2.2.3 Tipos de Acoplamento
	Figura 1 - Visão resumida dos tipos de acoplamento

	2.3 Projeto Dirigido pelo Domínio (Domain-Driven Design)
	2.3.2 Representação do Domínio
	Figura 2 – Representação de subdomínios em uma empresa de comércio eletrônico

	2.3.3 Design Estratégico
	2.3.3.1 Subdomínio
	Figura 3 – Domínio de negócio abstrato dividido em subdomínios

	2.3.3.2 Contextos Delimitados e Linguagem Ubíqua
	2.3.3.3 Mapeamento de Contextos

	2.3.4 Design Tático
	2.3.4.1 Entidade
	2.3.4.2 Objeto de Valor
	2.3.4.3 Agregado
	2.3.4.4 Evento de Domínio
	2.3.4.5 Serviço de Domínio
	2.3.4.6 Serviço de Aplicação

	3. ALGUNS PROBLEMAS NO DESIGN DE UMA ARQUITETURA DE MICROSSERVIÇOS
	3.1 Contexto do Negócio
	Figura 4 - Representação Geral dos Microsserviços do Módulo de Gerenciamento de Operações e suas Principais Interações
	Figura 5 – Modelo das classes do serviço Gerenciamento de Ordens (GO)

	
	3.2 Ciclo de Vida de uma Ordem
	Tabela 2 – Descrição dos estados de uma Ordem.
	Figura 6 – Diagrama de estado do ciclo de vida de uma Ordem

	
	3.3 Descrição do Problema
	Tabela 3 – Compilação dos problemas do design atual.

	
	4. APLICAÇÃO DAS TÉCNICAS DE DDD NO DESIGN ATUAL
	
	4.1 Visão geral das soluções propostas
	4.1 Design Estratégico com Subdomínios e Contextos Delimitados
	4.1.1 Identificação e Classificação dos Subdomínios
	
	4.1.2 Definição dos Contextos Delimitados
	Figura 7 - Contextos Delimitados da InvestmentCorp

	4.2 Design Estratégico com Mapeamento de Contexto
	Figura 8 - Mapeamento dos Contextos Delimitados no Cenário Proposto

	4.3 Design Tático com Agregados
	Figura 9 – Modelo de domínio de Ordem
	Figura 10 - Modelos de domínio de ClienteInvestidor, FundoInvestimento e Patrimonio

	
	4.4 Design Tático com Serviços de Domínio
	4.4.1 Responsabilidades do Serviço de Domínio
	4.4.2 Benefícios Esperados

	4.5 Design Tático com Eventos de Domínio
	
	Tabela 4 – Eventos de Domínio em GO.

	5. CONSIDERAÇÕES FINAIS
	5.1 Conclusões
	5.2 Contribuições do Trabalho
	5.3 Trabalhos Futuros

	REFERÊNCIAS

