
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Eliel Santos do Espírito Santo

Desenvolvimento de um sistema embarcado de baixo custo
para aquisição e transmissão de dados de sensores de força

São Carlos

2025

Eliel Santos do Espírito Santo

Desenvolvimento de um sistema embarcado de baixo custo
para aquisição e transmissão de dados de sensores de força

Monografia apresentada ao Curso de
Engenharia Elétrica com Ênfase em
Eletrônica, da Escola de Engenharia de São
Carlos da Universidade de São Paulo, como
parte dos requisitos para obtenção do título
de Engenheiro Eletricista.

Orientador: Prof. Dr. Alberto Cliquet Júnior

São Carlos
2025

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Santo, Eliel Santos do Espírito

 S237d Desenvolvimento de um sistema embarcado de baixo
custo para aquisição e transmissão de dados de sensores
de força / Eliel Santos do Espírito Santo; orientador
Alberto Cliquet Júnior. São Carlos, 2025.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2025.

1. Sistema Embarcado. 2. ESP32. 3. Sensor de

Força. 4. Tecnologia Assistiva. 5. Internet das Coisas.
I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

À minha família, pelo amor inabalável; aos meus amigos, pelo apoio constante; e aos
meus mestres, pelo conhecimento compartilhado. Dedico este trabalho a todos vocês, que

foram a inspiração e a força essenciais para transformar este projeto em realidade.

AGRADECIMENTOS

A Deus, minha mais profunda gratidão, por ser a força que me sustentou, pela
sabedoria que me guiou e pela oportunidade de transformar este desafio em realidade.

Aos meus amados pais e irmão, que foram meu alicerce. Agradeço por cada palavra
de incentivo, pelo sacrifício silencioso e por garantirem que eu tivesse a tranquilidade e as
condições para me dedicar a este sonho. Esta conquista é tão de vocês quanto minha.

Manifesto um agradecimento especial ao meu orientador, Prof. Dr. Alberto Cliquet
Júnior. Sua paciência, conhecimento e orientação segura foram fundamentais para superar
os desafios e dar forma a este projeto. Sou imensamente grato pela oportunidade e pela
confiança em meu trabalho.

Aos meus amigos, companheiros desta jornada, agradeço por cada momento com-
partilhado, pelas conversas que aliviaram a pressão, pelo auxílio nos estudos e por tornarem
a trajetória muito mais leve e significativa.

“A unidade de medida mais importante na engenharia é a monetária.”
Prof. Dr. Marlon Rodrigues Garcia

RESUMO

ESPÍRITO SANTO, E. Desenvolvimento de um sistema embarcado de baixo
custo para aquisição e transmissão de dados de sensores de força. 2025. 107 p.
Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2025.

A presente obra abrange sobre o desenvolvimento de um sistema embarcado de baixo custo
focando na obtenção, processamento e transmissão de dados de sensores resistivos de força
(FSR), visando aplicações de tecnologia assistiva, como luvas de sensoriamento (SGS).
Tendo como seu objetivo cerne a criação de recursos e ferramentas, tanto em hardware
quanto em software, funcionais, escaláveis e economicamente acessíveis para o público geral,
inspirando, por meio de uma estrutura didática, estudantes e pesquisadores a replicação
do conteúdo. A metodologia envolve a construção de um circuito eletrônico baseado no
microcontrolador ESP32, englobando diversos blocos de sua construção, buscando obter o
máximo de qualidade e retorno do dispositivo. Para contornar a não-linearidade intrínseca
do conversor analógico-digital (ADC) foi implementada uma correção via software baseada
em Lookup Table (LUT), melhorando mensuravelmente a precisão das medições. O sistema
transmite os dados calibrados simultaneamente por dois canais, via comunicação serial
para aplicações locais, e via protocolo MQTT para monitoramento remoto, permitindo
a sua associação em aplicações de Internet das Coisas (IoT) ou como dispositivo móvel.
Como resultado, obteve-se um protótipo funcional e de baixo custo que oferece uma solução
flexível não apenas para FSRs mas para diversos sensores resistivos, demonstrando grande
potencial para generalização em projetos de engenharia.

Palavras-chave: Sistema Embarcado. ESP32. Sensor de Força. Tecnologia Assistiva.
Internet das Coisas.

ABSTRACT

ESPÍRITO SANTO, E. Development of a low-cost embedded system for force
sensor data acquisition and transmission. 2025. 107 p. Monograph (Conclusion
Course Paper) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2025.

This work covers the development of a low-cost embedded system focusing on the acquisi-
tion, processing, and transmission of data from resistive force sensors (FSR), aiming for
assistive technology applications, such as sensing gloves (SGS). Its core objective is the
creation of resources and tools, both in hardware and software, that are functional, scalable,
and economically accessible to the general public, inspiring students and researchers to
replicate the content through a didactic structure. The methodology involves building
an electronic circuit based on the ESP32 microcontroller, encompassing various building
blocks to achieve maximum quality and performance from the device. To overcome the
intrinsic non-linearity of the analog-to-digital converter (ADC), a software-based correction
using a Lookup Table (LUT) was implemented, measurably improving the accuracy of
the measurements. The system transmits the calibrated data simultaneously through two
channels: via serial communication for local applications, and via the MQTT protocol
for remote monitoring, enabling its use in Internet of Things (IoT) applications or as a
mobile device. As a result, a functional and low-cost prototype was obtained, offering a
flexible solution not only for FSRs but also for various resistive sensors, demonstrating
great potential for generalization in engineering projects.

Keywords: Embedded System. ESP32. Force Sensor. Assistive Technology. Internet of
Things.

LISTA DE FIGURAS

Figura 1 – Visão dos encapsuamentos do LM7805 34
Figura 2 – Comparativo entre componentes SMD e THT 34
Figura 3 – Visualização de um resistor típico de 1/4W 35
Figura 4 – Construção interna de um resistor variável 36
Figura 5 – Curva típica de um FSR . 37
Figura 6 – Construção de um FSR do tipo shunt 38
Figura 7 – Exemplo de aplicação da leitura de um FSR utilizando um microcon-

trolador . 41
Figura 8 – Aplicação típica para leitura de Sensor FSR com Op-Amp 42
Figura 9 – Exemplo de um divisor de tensão . 42
Figura 10 – Exemplos de capacitores: (A) Eletrolítico; (B) Cerâmica; (C) Poliêster;

(D) SMD] . 43
Figura 11 – Imagem de um fusível típico . 44
Figura 12 – Aplicação de um diodo como flyback de um motor 44
Figura 13 – Imagem de um diodo zener típico . 46
Figura 14 – Aplicação de um Led . 47
Figura 15 – Visão de um transistor: (A) Encapsulamento; (B) Símbolo esquemático 48
Figura 16 – Exemplo de um conector jack: (A) Tipo macho; (B) Tipo fêmea 49
Figura 17 – Imagem de um conector borne . 51
Figura 18 – Imagem de um barramento de pinos eletrônicos 51
Figura 19 – Imagem de uma chave seletora de três estados 52
Figura 20 – Imagem de um motor de vibração, visualizando o peso desbalanceado . 54
Figura 21 – Recomendação de aplicação de um LM7805 56
Figura 22 – Diagrama de bloco interno da ESP32 57
Figura 23 – Diagrama de pinos do kit de desenvolvimento da ESP32 58
Figura 24 – Diagrama de blocos do circuito . 65
Figura 25 – Bloco de entrada de alimentação do circuito 66
Figura 26 – Bloco de entrada de alimentação e regulação do circuito 67
Figura 27 – Bloco de controle do circuito . 69
Figura 28 – Identificação da região linear do ADC 70
Figura 29 – Visão da curva não-linear em comparação com uma entrada linear . . . 70
Figura 30 – Comparativo entre o ADC e DAC com compensação 71
Figura 31 – Comparativo entre o ADC e DAC sem compensação 72
Figura 32 – Bloco de leitura dos sensores do circuito 72
Figura 33 – Bloco de saída do circuito . 74
Figura 34 – Visão tridimensional da placa do circuito 93

Figura 35 – Visão do PCB do circuito . 94
Figura 36 – Visão da imagem de saída do software 94

LISTA DE TABELAS

Tabela 1 – Listagem Completa dos Componentes 33

LISTA DE ABREVIATURAS E SIGLAS

ADC Conversor Analógico-Digital

BJT Transistor de Junção Bipolar

BLE Bluetooth de Baixa Energia

CI Circuito Integrado

DAC Conversor Digital-Analógico

EDA Automação de Design Eletrônico

EMF Campos Eletromagnéticos

EMI Interferência Eletromagnética

ESD Eletricidade Estática

FES Estimulação Elétrica Funcional

FSR Force Sensing Resistors (Sensor Resistivo de Força)

HMI Interfaces Homem-Máquina

IBGE Instituto Brasileiro de Geografia e Estatística

IDE Ambiente de Desenvolvimento Integrado

IoT Internet das Coisas

LED Light Emitting Diode (Diodo Emissor de Luz)

LER Lesão por Esforço Repetitivo

LWT Last Will and Testament

MCU Microcontrolador

MQTT Message Queuing Telemetry Transport

PCB Printed Circuit Board (Placa de Circuito Impresso)

PET Polietileno Tereftalato

PWM Pulse Width Modulation (Modulação por Largura de Pulso)

QoS Qualidade de Serviço

SBC Single Board Computers

SGS Sensoring Glove System (Sistema de Luvas Sensoriais)

SMD Surface-Mount Technology (Tecnologia de Montagem em Superfície)

SoC System-on-Chip

TCC Trabalho de Conclusão de Curso

THT Through Hole Technology (Tecnologia de Furo Passante)

UART Universal Asynchronous Receiver/Transmitter (Transmissor/Receptor
Assíncrono Universal)

USB Universal Serial Bus

USP Universidade de São Paulo

USPSC Campus USP de São Carlos

WLAN Rede Local Sem Fio

LISTA DE SÍMBOLOS

Ω Resistência elétrica

β Coeficiente Beta de um transistor

ρ Resistividade elétrica do material

SUMÁRIO

1 INTRODUÇÃO . 25
1.1 Objetivo . 25

2 REVISÃO BIBLIOGRÁFICA . 27
2.1 Engenharia Biomédica . 27
2.2 Engenharia de Reabilitação . 27
2.2.1 Visão do Cenário Brasileiro . 27
2.3 Tecnologia assistiva . 29
2.4 Aplicação . 30

3 MATERIAIS UTILIZADOS . 33
3.1 Hardware . 33
3.1.1 Listagem completa . 33
3.2 Encapsulamentos . 33
3.3 Resistores . 35
3.4 Resistor variável (Potenciômetro) . 35
3.5 Force Sensing Resistors (FSR) . 36
3.5.1 Construção e Princípio de Funcionamento 37
3.5.2 Considerações adicionais . 40
3.5.3 Circuitos de aplicação . 41
3.6 Capacitor . 42
3.7 Fusível . 43
3.8 Diodo . 44
3.9 Diodo Zenner . 45
3.10 LED - Light Emitting Diode . 46
3.11 Transistor de Junção Bipolar . 47
3.12 Conectores de Entrada/Saída . 48
3.12.1 Conector tipo Jack . 49
3.12.2 USB A . 49
3.12.3 Terminal Block . 50
3.12.4 barramento de pinos . 51
3.12.5 Chave de 3 estados . 52
3.12.6 Botão e Chaves . 52
3.13 motor de vibração . 53
3.14 Circuitos Integrados . 54
3.14.1 Regulador de tensão LM7805 . 54

3.14.2 microcontrolador ESP32 . 56
3.15 Software . 59
3.15.1 Linguagens e estruturas de programação 59
3.15.2 Ambientes de desenvolvimento . 59
3.15.3 Bibliotecas empregadas . 60
3.15.4 Protocolos de comunicação aplicados . 61

4 METODOLOGIAS EMPREGADAS 65
4.1 Hardware . 65
4.2 Alimentação . 65
4.3 Controle . 68
4.3.1 Conversor ADC . 69
4.3.2 Aplicação de Look-up Table . 70
4.4 Entrada de Sinal . 72
4.5 Saídas do Circuito . 74
4.6 Construção do Circuito . 75
4.7 Software . 76
4.7.1 Acquisição da Look-Up Table . 76
4.7.2 Firmware da ESP32 . 76
4.7.3 Software em Python . 84

5 RESULTADOS OBTIDOS . 93

6 CONCLUSÃO . 97

REFERÊNCIAS . 99

ANEXOS 101

ANEXO A – CÓDIGO PARA OBTENÇÃO DA LOOK-UP TABLE 103

25

1 INTRODUÇÃO

A Engenharia Biomédica é a representatividade da frente da aplicação de prin-
cípios de engenharia para solução de desafios complexos na área da saúde. Este campo
interdisciplinar tem se demonstrado fundamental no desenvolvimento de ferramentas que
vão além do auxílio no diagnóstico e tratamento de enfermidades, avançando também na
reabilitação e na melhoria da qualidade de vida de indivíduos com limitações funcionais,
estando esse grupo em crescimento nos últimos anos no Brasil. Dentre as diversas áreas de
atuação, a criação de tecnologias assistivas se destaca por seu impacto direto na autonomia
e reintegração social de pessoas com deficiência.

Sendo uma das condições mais debilitantes a perda ou diminuição da sensibilidade
motora ou tátil nas mãos, uma sequela comum de lesões nervosas, como LER, acidentes
vasculares cerebrais ou doenças neurodegenerativas. A capacidade de interação com o
ambiente, ou seja, de sentir pressão, textura e temperatura é essencial para a manipulação
segura de objetos e para a interação com o ambiente, sendo fundamental para qualidade
de vida de um indivíduo. A ausência desse feedback sensorial compromete a execução
de tarefas cotidianas, desde as mais simples, como segurar um copo ou um lápis, até
as mais complexas, como operação de maquinário, gerando dependência e impactando
negativamente a autoestima do indivíduo, assim como afetando as ações laborais.

Partindo desse contexto, o desenvolvimento de dispositivos que possam restaurar,
substituir ou auxiliar essa sensibilidade perdida é de extrema relevância para o desenvol-
vimento de novos projetos de engenharia. A evolução de sensores e sistemas eletrônicos
integrados abriu novas possibilidades para a criação de soluções que traduzem estímulos
físicos em sinais perceptíveis pelo usuário, funcionando como uma extensão do sistema
nervoso, com o avanço da cultura dos wearables pode-se também observar a recepção da
população a integração da tecnologia como uma forma de assistente diário. Este trabalho
se insere precisamente nesta área, propondo o desenvolvimento de um sistema de luva
sensorial que visa a reabilitação e o auxílio a pacientes com perda de sensibilidade tátil. O
projeto foi concebido não apenas como uma ferramenta funcional, mas também como um
recurso educacional, detalhando cada etapa de sua construção para fomentar o interesse e o
desenvolvimento de novos talentos na engenharia aplicada à saúde, mantendo-se constante
a conceitos simples e escaláveis a outros métodos de sensoriamento resistivo.

1.1 Objetivo

Esse projeto tem como objetivo principal o desenvolvimento de um circuito protótipo
de baixo custo de aplicável a sensores resistivos, com FSR, com foco em uso em luvas de
sensoriamento, com todo o documento sendo visado para ser uma ferramenta didática

26

e funcional. O desenvolvimento do dispositivo foca na simplicidade tanto quanto em
sua aplicação prática, focando também em sua construção, permitindo que estudantes e
iniciantes na área de eletrônica possam replicar e compreender seu funcionamento. Dessa
forma, todo o processo será detalhado de forma a guiar o leitor a compreender os conceitos
necessários assim como a motivação por trás das escolhas empregadas, desde a seleção dos
componentes até definição de código lógico associado.

Focando na viabilidade econômica da solução, o projeto prioriza o uso de compo-
nentes de baixo custo e facilmente acessíveis no mercado, buscando concentrar sempre
que possível a maioria das funções em um único componente, buscando a simplificação.
A arquitetura do sistema foi pensada para ser generalista, ou seja, aplicável a diferentes
cenários e necessidades, embora seu foco técnico esteja na utilização de FSRs, o desenvol-
vimento busca ser aberto para operação baseada em sensores eletrônicos transdutores que
operem com variação da resistência.

O projeto também possui um propósito adicional, servir como um recurso educaci-
onal que inspire e capacite novos interessados na área de engenharia eletrônica através de
projetos com visualização de resultados em tempo real, demonstrando como a tecnologia
pode gerar impacto social positivo, assim como, apresentar uma solução que seja útil à
população, oferecendo um caminho para a criação de tecnologias assistivas mais acessíveis
e que possam efetivamente melhorar a vida de pessoas com comprometimento sensorial.

27

2 REVISÃO BIBLIOGRÁFICA

A aplicação de conceitos eletrônicos e mecânicos para auxilio de indivíduos é uma
das áreas de aplicação da Engenharia Biomédica, porém ainda assim não engloba por
completo todos os seus ramos, abrangendo cenários de conceituação assim como aplicações
práticas de soluções teóricas, dessa forma, é extremamente versátil em sua definição.

Há porém de se apurar mais profundamente as suas ramificações, visto que há sobre-
posição de definições e conceitos que seriam mais organizados se abordados individualmente,
dessa forma, o conteúdo a seguir é a exposição parcial de seus conceitos.

2.1 Engenharia Biomédica

A Engenharia Biomédica é a aplicação dos princípios e conceitos de engenharia
para compreensão e controle de sistemas biológicos, sendo relacionado a diversas áreas,
como aplicação de sistemas biomecânicos, com aplicação em fisioterapias e ergonomia,
até biosensoriamento, visando a aplicação de sensores para monitoramento e acionamento
variável a atividades de um indivíduo (Bronzino, 2005). Dessa forma, fornecendo auxílio as
dificuldades enfrentadas em quaisquer fases da vida, com abordagens médicas preventivas
e serviços de auxílios gerais.

2.2 Engenharia de Reabilitação

Aprofundando no conteúdo de Engenharia Biomédica, aborda-se a área relacionada
a Engenharia de Reabilitação, tendo sido descrito por James Reswick como (Reswick,
1980) a aplicação de conhecimentos científicos e tecnológicos para assistir indivíduos com
deficiências. Partindo dessa definição, vemos então que este campo tem como produto as
tecnologias com intuito de auxílio físico e/ou mental, sendo desenvolvidas com o propósito
de aumentar ou melhorar as capacidades funcionais de indivíduos com alguma condição
incapacitante vigente, seja ela permanente ou não. Dentro dessas tecnologias há uma
diversidade de produtos, como as órteses, que aumentam a função de uma extremidade, e
as próteses, que substituem uma parte do corpo.

2.2.1 Visão do Cenário Brasileiro

Abordando o cenário da engenharia de reabilitação no Brasil, verifica-se que tem
apresentado uma visível expansão, motivada principalmente pela crescente demanda
por tecnologias assistivas e pelo crescimento da necessidade de maior inclusão social e
profissional de pessoas com deficiência, como o programa Viver Sem Limite (MDHC,
2023) e o Estatuto da Pessoa com Deficiência. As Instituições de ensino superior e centros

28

de pesquisa estão cada vez mais focados na formação de especialistas para esta área,
fornecendo cursos de formação ou certificados especiais como forma de motivação ao
ingresso na área, possuindo a EESC uma área focada em engenharia biomédica.

Há também de se considerar o rápido envelhecimento da população brasileira como
um dos principais motores dessa expansão, visível na pirâmide etária. De acordo com o
Instituto Brasileiro de Geografia e Estatística (IBGE), a proporção de idosos (60 anos ou
mais) saltou de 11,3% em 2010 para 15,8% em 2022. Esse fenômeno demográfico influencia
o índice de doenças crônicas e condições que afetam a mobilidade e a funcionalidade
na população geral, como artrite e derrames, ampliando a necessidade de soluções de
reabilitação.

Paralelamente, nas outras faixas etárias, notam-se elevadas taxas de acidentes de
trânsito e de trabalho no país gerando um número significativo de lesões e deficiências,
como lesões por estresse repetitivo. O Ministério da Saúde aponta os acidentes de trânsito
como uma das causas primárias de amputações e lesões medulares, que demandam o uso
de próteses e órteses.

Além disso, o aumento da conscientização sobre os direitos das pessoas com
deficiência, fortalecido por movimentos sociais e pelo avanço da legislação brasileira, tem
se demonstrado como fundamental. A Lei Brasileira de Inclusão da Pessoa com Deficiência
(Lei 13.146/2015) representa um marco, promovendo a acessibilidade e incentivando a
criação de novas tecnologias assistivas.

Dados do IBGE do censo de 2022 revelam que cerca de 14,4 milhões de brasilei-
ros (7,3% da população) vivem atualmente com alguma deficiência, essa proporção sobe
fortemente quando se limita as pessoas com 70 anos ou mais, onde 27,5% da população
sofre com algum tipo de deficiência. As limitações que afetam as mãos são particular-
mente extenuantes, pois impactam diretamente a autonomia em atividades essenciais
como alimentação, higiene, laborais e lúdicas. Em resposta, o Brasil tem avançado no
desenvolvimento de tecnologias de diversas áreas da engenharia biomédica, como próteses
mioelétricas, órteses, dispositivos de estimulação elétrica funcional (FES) e interfaces
homem-máquina (HMI), que permitem o controle de aparelhos por meio de métodos menos
fisicamente exaustivos.

Apesar desses avanços, o setor enfrenta obstáculos consideráveis. A falta de financi-
amento consistente para pesquisa e desenvolvimento, muitas vezes dependente de verbas
governamentais limitadas e variáveis de acordo com a política pública vigente, podem
atrasar a inovação e a produção em larga escala de soluções ready-to-market. Outro grande
desafio é a acessibilidade, principalmente econômica, já que a distribuição de dispositivos
e serviços de reabilitação é desigual, concentrando-se nos centros urbanos afluentes e
dificultando o acesso para populações de baixa renda ou de áreas rurais.

29

Soma-se a isso a carência de profissionais qualificados no cenário laboral brasileiro.
A formação de engenheiros de reabilitação com currículos especializados ainda é incipiente
e não acompanha o ritmo do avanço tecnológico e da demanda crescente. A adaptação do
usuário final às novas tecnologias também representa uma barreira, pois muitos dispositivos
exigem uma curva de aprendizado e suporte contínuo para evitar o abandono, sendo
essa uma dificuldade particularmente complexa quando visto nos grupos mais idosos da
sociedade.

Ainda assim, a perspectiva futura demonstra potencial, o crescente interesse aca-
dêmico e profissional é impulsionado por avanços em áreas como inteligência artificial,
robótica e impressão 3D, que viabilizam soluções personalizadas e mais eficientes, além de
democratizar o desenvolvimento com seu custo reduzido. O fortalecimento de políticas
públicas e o crescimento do mercado de tecnologias assistivas, estão contribuindo para a
criação de produtos mais eficazes e acessíveis. Em conjunto, com o novo desenvolvimento
da cultura de open-source novas ferramentas estão sendo constantemente desenvolvidas,
com uma barreira de entrada reduzida e simplificada, permitindo que a disseminação da
aplicação seja mais abrangente e generalizada.

2.3 Tecnologia assistiva

O desenvolvimento de toda solução tecnológica exige a aplicação sequencial de
de conceitos para construção de um cenário lógico que leve a resolução da problemática
(Lundborg; Rosén, 2007), e esse desenvolvimento se demonstra ainda mais fundamental
quando se trata de aplicação para um ser vivo. Visando a criação de um dispositivo
assistivo há a necessidade de avaliação de todo o arcabouço prático para compreensão
de sua segurança e aplicação, desde analisar o indivíduo atuante até o cenário que será
abordado. Dessa forma, o processo de criação dessas tecnologias tende a seguir etapas
específicas para assegurar um resultado eficaz.

1. Análise: A fase inicial consiste em uma investigação aprofundada para compreender
por completo a necessidade a ser atendida, envolvendo determinar as características
da tarefa, as restrições do ambiente e as particularidades do usuário da solução,
geralmente se enquadrando em físicas, cognitivas e/ou psicossociais. Possuindo como
resultado desta etapa uma lista detalhada de especificações de desempenho que a
solução final deverá possuir.

2. Síntese: Esta é a etapa criativa do processo, onde, com base em princípios de enge-
nharia, são concebidas diversas soluções potenciais, onde cada conceito é processado
através de esboços e justificativas embasadas em análises técnicas que detalham seu
funcionamento.

30

3. Avaliação: Essa é uma etapa decisória do processo, nela as propostas mais promis-
soras da fase de síntese são submetidas a uma avaliação individual e comparativa,
sendo comum nesse momento incluir o desenvolvimento de protótipos ou simulações
computacionais. Sendo importante a participação de distintas partes do problema,
tanto do usuário quanto do criador além outras partes investidas na resolução, como
instituições de ensino.

4. Decisão: Com base nos resultados da avaliação, uma solução deve ser selecionada.
Nessa etapa é fundamental a consideração das aplicações práticas da solução e das
consequências, como investimento necessário para construção assim como preferências
do perfil de usuário considerado durante as etapas anteriores.

5. Implementação: Uma vez decidida a solução, inicia-se a fabricação e montagem do
protótipo funcional. Em seguida, são realizados testes de validação para verificar o
conceito na prática, permitindo que ajustes finos sejam feitos para chegar ao projeto
definitivo.

É importante notar que a aplicação de uma tecnologia assistiva nem sempre
precisa ser diretamente aplicada no indivíduo. A solução pode ser desenvolvida para uso
em dispositivos vestíveis (wearables), como uma luva sensorial (Mendes, 2010), ou em
equipamentos de auxílio externo, como uma muleta instrumentada, que interage com o
usuário para melhorar sua funcionalidade.

2.4 Aplicação

A mão humana é fundamental para interação com o ambiente, e é exatamente no
estudo da biomecânica que os movimentos são estudados, aplicando conceitos de mecânica
associada a cenários biológicos. Um exemplo de tecnologia assistiva aplicada à mão é o
Sensoring Glove System (SGS - Sistema de Luvas Sensoriais), desenvolvido inicialmente
em um estudo (Lundborg; Rosén; Lindberg, 1999) focando no auxílio de indivíduos com a
identificação de objetos independente de possuírem uma visão debilitada, foi-se expandindo
até a perspectiva que existe nos dias atuais, com diversos projetos utilizando os conceitos
aprendidos no século passado para prover assistência via as mãos dos pacientes.

Baseado no princípio da substituição sensorial, o sistema foi desenvolvido para
auxiliar pessoas que perderam a sensibilidade tátil, com seu objetivo do a utilização de
métodos de identificação de superfícies mesmo possuindo uma redução tátil nas mãos,
partindo do uso de microfones localizados nas extremidades dos dedos pode-se então
gerar sinais de áudio para relacionar a audição com a sensação tátil que o objeto pudesse
fornecer.

31

Pequenos Microfones foram posicionados nos dedos para captar e amplificar o som
em decorrência da fricção produzida pelo toque em diferentes superfícies, nesse caso sendo
o microfone e o objeto em análise. Verificou-se que a movimentação sobre texturas distintas
gera estímulos acústicos distintos, de forma que o usuário possa realizar a identificação
sem o tato ou visão, realizando a compensação por meio da audição. Dessa forma, a
pesquisa demonstrou a aplicação prática que as SGS possuem assim como a resiliência e
adaptabilidade humana.

33

3 MATERIAIS UTILIZADOS

3.1 Hardware

3.1.1 Listagem completa

Considerando a manufatura do projeto podem-se dividir os componentes utilizados
em algumas categorias: Resistor, Resistor variável (Trimmer), Diodo, Diodo Zenner, LED
(Light Emitting Diode), Capacitor, Fusível & Socket correspondente, Conector fêmea tipo
Jack, USB A fêmea, Transistor, Chave de 3 estados, Botão/Chave, Regulador de Tensão,
Terminal Block de 2 e 4 pinos, barramento de pinos, um motor de vibração, FSR’s e por
fim um microcontrolador ESP32.

Tabela 1 – Listagem Completa dos Componentes
Componente Descrição Parte Código Quantidade Por PCB

1 Unpolarized capacitor C 100n 1
2 Unpolarized capacitor C 330n 2
3 50V 1A General Purpose Rectifier Diode; DO-41 1N4001 1N4001 2
4 1300mW Silicon planar power Zener diodes; DO-41 1N4735A 1N4735A 1
5 Light emitting diode LED LED_Low_Batt 1
6 Light emitting diode LED LED_On 1
7 Fuse Fuse Fuse 1
8 DC Barrel Jack Jack-DC Jack-DC 1
9 Terminal Block 2 pin Screw_Terminal_01x02 Micro_USB_ESP32_Power 8
10 USB Type A connector USB_A USB_A 1
11 0.8A Ic; 45V Vce; NPN Transistor; TO-92 BC337 BC337 2
12 Resistor R 47 1
13 Resistor R 330 2
14 Resistor R 470 1
15 Resistor R 1k 1
16 Resistor R 2k 1
17 Resistor R 10k 1
18 Resistor R 33k 1
19 Resistor R 70k 5
20 Trim-potentiometer R_Potentiometer_Trim 50k 5
21 3 Position Switch SW_DP3T SW_DP3T 1
22 Push button switch; generic; two pins SW_Push SW_Push 1
23 Microcontroller ESP32-DEVKIT-V1 ESP32-DEVKIT-V1 1
24 Linear Regulator; 5V; TO-220 LM7805_TO220 LM7805_TO220 1
25 Terminal Block 4 pin Screw_Terminal_01x04 Switch Terminal Block 1
26 Barramento de Pinos p/ ESP32 Barramento 1x15 Barramento 1x15 1
27 Motor de vibração Motor De Vibração Cod. 1027; 3V; 10 x 3.2mm 1
28 Force Sensing Resistors (FSR) FSR Máx XXk Cód. xxxx 5

Fonte: Autoria própria

3.2 Encapsulamentos

É comum na eletrônica um mesmo componente possuir distintas formas físicas,
ou seja, distintos encapsulamentos, enquanto que o seu funcionamento se mantêm quase
indistinguível, portanto é importante se atentar a definição do encapsulamento de um
determinado material. Um exemplo pode ser visto no componente LM7805 onde no próprio
documento de dados do componente (Datasheet) é possível observar que na primeira
página já se fornece os encapsulamentos fornecidos pela empresa.

34

Figura 1 – Visão dos encapsuamentos do LM7805

Fonte: Adaptado pelo autor |
https://www.sparkfun.com/datasheets/Components/LM7805.pdf

Além de variar o encapsulamento para os componentes integrados (C.I.), como no
LM7805, é essencial distinguir se o componente a ser utilizado será do tipo de montagem
Through Hole Technology (THT) ou Surface-mount technology (SMD). A definição dessas
características está fortemente relacionada com a manufatura do circuito. Componentes
SMD são menores, ocupando menos espaço na placa e portanto reduzindo o tamanho, e
mais baratos, reduzindo assim o custo por placa, porém esse mesmo estilo de montagem
fornece também adversidades. Devido ao seu tamanho reduzido é necessária experiência,
equipamento especializado ou diversas tentativas e erros. Há também problemática da
obtenção do componente, sendo menos comum encontrar uma grande variedade de valores
em lojas pequenas. Em suma, deve-se atentar as escolhas durante o processo de produção.

Figura 2 – Comparativo entre componentes SMD e THT

Fonte: Autoria própria

Mesmo para o mesmo tipo de encapsulamentos ainda é comum variar suas dimensões
até mesmo para outros componentes mais simples, por exemplo, os encapsulamentos para
resistores tipo THT é comum variar com base na potência dissipada pelo componente.
Resistores de 1/4W possuem usualmente a mesma dimensão, porém resistores com outras

https://www.sparkfun.com/datasheets/Components/LM7805.pdf

35

potências dissipadas irão provavelmente ser distintos, sendo comumente maiores quanto
maior a dissipação.

3.3 Resistores

O resistor é o componente mais simples observado na eletrônica, tendo o seu valor
denominado na unidade de medida (Ω) e é bastante versátil. Possuindo um relacionamento
linear entre a tensão e corrente ele permite diversas funcionalidades, tal qual como divisor
de tensão, limitador de corrente elétrica em um circuito, ajuste de ganho de sinal, dissipador
de calor e outros.

Figura 3 – Visualização de um resistor típico de 1/4W

Fonte: Autoria própria

A equação que explicita a relação linear entre resistência e tensão ou corrente pode
ser vista abaixo.

R = V

I

R - Representa a resistência em Ohms (Ω).

V - Representa a tensão em Volts (V).

I - Representa a corrente em Amperes (I).

3.4 Resistor variável (Potenciômetro)

Tendo já elucidado a respeito do resistor comum pode-se então abordar um conceito
tangencial, porém importante, sendo que resistores com resistência variável existem e são
fortemente utilizados. Um potenciômetro (também conhecido como Trimmer ou Trimpot)
é um elemento resistivo ajustável, usualmente manualmente, que permite que, ao contrário
dos resistores fixos, varie-se a resistência (Ω) do componente.

Devido à propriedade da variação da resistência os potenciômetros permitem que
o seu valor seja modificado conforme necessário durante o processo de montagem, dessa
forma permitindo a calibração ou ajuste de uma parte do circuito. Assim como o resistor
fixo, o potenciômetro também possui um relacionamento linear da resistência entre a

36

tensão e corrente e, portanto, também pode ser empregado nas mesmas funcionalidades,
para controle da tensão e da corrente.

Figura 4 – Construção interna de um resistor variável

Fonte: Autoria própria

Os potenciômetros geralmente possuem três terminais onde medindo nos extremos
obtém-se o maior valor possível de resistência e medindo entre o terminal central e qualquer
um dos terminais laterais pode-se então obter uma resistência variável. Assim como os
resistores fixos os potenciômetros possuem diversos tipos de encapsulamentos.

A resistência de um material pode ser equacionado de forma a considerar as
propriedades do material, como visto na equação abaixo:

R = ρ · l

A
(3.1)

Onde, ρ representa o coeficiente de resistência do material em Ω/m, l representa o
comprimento do material em m e A a área da secção transversal do material em m2. Dada
a equação e a construção interna do potenciômetro então pode-se notar que a variação da
resistência ocorre pela variação do comprimento l do material.

3.5 Force Sensing Resistors (FSR)

Construindo com base no que foi detalhado previamente, temos então uma aplicação
prática dos conceitos previamente dispostos. Com base na equação de resistência (3.1),
podemos notar a relação entre a resistência de um material e o seu comprimento ou
área, expandindo nesse conceito, podemos então controlar a resistência de um material
controlando o seu comprimento ou área, visto que o seu coeficiente de resistência do
material (ρ) se manteria constante dadas condições normais de temperatura e pressão
(CNTP) na maioria dos cenários.

Desenvolvendo nessa análise temos então a aplicação de sensores com resistência
variável com base no efeito piezoresistivo intrínseco da sua construção, como os Force

37

Sensing Resistors (FSR). Esse sensor passívo possui uma resistência variável com base
na força perpendicular à sua superfície, de forma que possuem sua resistência máxima
quando em repouso. Este comportamento piezoresistivo o torna um transdutor eficaz para
converter uma grandeza mecânica (força) em um sinal elétrico, daí o seu nome de resistor
sensível a força (FSR).

Figura 5 – Curva típica de um FSR

Fonte: Adaptado pelo autor |
https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf

3.5.1 Construção e Princípio de Funcionamento

É fundamental elucidar que o comportamento de um FSR é uma consequência
direta de sua construção. O dispositivo é fabricado a partir de um polímero robusto,
usualmente denominado de "Membrana"e construído com material plástico Polietileno
Tereftalato, comumente conhecido como PET, que garante durabilidade e flexibilidade
similar a garrafas comuns de mercado. Existem diversos tipos de sensores FSR, porém a
sua estrutura tende a seguir o mesmo padrão:

• Camada Semicondutora: Uma camada de substrato flexível (PET) revestida com
um material semicondutor.

• Espaçador Adesivo: Uma camada intermediária, com expessura típica de 50-125
microns, com um recorte que define a área ativa e cria um espaço vazio entre camadas.

• Camada Condutiva: Uma segunda camada de substrato (PET) com traços condu-
tivos impressos, tipicamente em um padrão de eletrodos intercalados.

• Adesivo Traseiro: Permite a fixação e proteção do do sensor.

https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf

38

Figura 6 – Construção de um FSR do tipo shunt

Fonte: Adaptado pelo autor |
https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf

O seu método de construção está fortemente conectado a sua aplicação desejada,
sendo que tipicamente os FSRs podem ser catalogados em quatro tipos:

1. Ponto Único (Single-point)
Com formas e tamanhos variados, desde pequenos círculos até longas tiras, um sensor
de ponto único reportará a força aplicada apenas no eixo Z. Sensores de ponto único
podem ser individuais ou múltiplos sensores podem ser fabricados em um único
conjunto para criar matrizes (arrays) e outros arranjos de sensores personalizados.

2. Potenciômetro Linear (Linear Potentiometer)
Tipicamente em configuração de tira ou roda de rolagem (scroll-wheel), um potenci-
ômetro linear reportará simultaneamente a posição (X ou Y) e a força aplicada (Z)
para um único ponto de toque.

3. Toque Único 3D (3D Single-touch)
Um trackpad que pode reportar a posição em duas dimensões, ou seja, X e Y, além
da força aplicada Z, simultaneamente para um único ponto de toque.

4. Multitoque 3D (3D Multi-touch)
Um trackpad que reporta simultaneamente X, Y e Z para múltiplos pontos de toque.

https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf

39

Pode-se catalogar os FSRs também com base na sua construção, sendo eles o
Shunt Mode e Thru Mode, não divergindo muito do já elucidado, porém com a principal
diferença que o Thru Mode tem a sua camada FSR impressa sobre uma área condutiva
único, ocorrendo tanto na camada superior quanto na inferior, dessa forma, o condutor
em cada camada possui somente um único terminal, dessa forma a corrente transfere de
uma camada para a outra.

Devido a essa mínima diferença de construção, os sensores FSR do tipo Shunt Mode
possuem uma maior faixa de força mensurável, tipicamente chegando até 5kg. Curva de
variação da resistência com relação a força mais suave, proporcionando melhor controle,
especialmente em forças mais elevadas. Sendo porém a sua característica mais atrativa
para esse projeto o fato de que necessita de menos camadas de impressão e menos tinta de
prata são necessárias, portanto o custo é normalmente muito menor que o dos sensores do
tipo Thru Mode.

Para o FSR em foco, ou seja, o Shunt Mode, o princípio de funcionamento baseia-se
no efeito de curto-circuito resistivo (shunting effect). Em repouso, o espaçador mantém as
camadas separadas, resultando em um circuito aberto com uma resistência de repouso
(stand-off resistance) extremamente elevada, usualmente superior a 1 MΩ. Ao aplicar
uma força, a camada semicondutora é pressionada contra os eletrodos. O contato entre as
camadas cria múltiplos caminhos paralelos para a corrente. Com o aumento da força, a área
de contato se expande, "curto-circuitando"mais eletrodos e, consequentemente, diminuindo
a resistência total do dispositivo.

Além da sua construção e aplicação, também pode-se segmentar os FSRs de acordo
com a sua geometria, sendo tipicamente dividida em quatro tipos:

• FSRs Circulares: Disponíveis em diversos diâmetros, são projetados para detectar
força em um ponto localizado. São ideais para a criação de botões sensíveis à pressão
em interfaces homem-máquina ou como pontos de contato em garras robóticas.

• FSRs Quadrados e Retangulares: Possuem uma área de detecção mais ampla,
sendo adequados para detectar a presença ou a distribuição de pressão de um objeto
maior. Suas aplicações incluem o monitoramento de pacientes em leitos hospitalares
e a detecção de ocupantes em assentos automotivos.

• FSRs em Tira (Strip): Sensores longos e finos, projetados para detectar a pressão
ao longo de uma linha. Permitem não apenas detectar a presença, mas também a
posição de um toque ao longo de seu comprimento, sendo úteis em interfaces de
controle e análise de distribuição de peso.

40

3.5.2 Considerações adicionais

Embora os FSRs estejam relacionados a um dos componentes mais simples da
eletrônica (resistores), eles porém possuem conceitos relacionados a sua aplicação prática
fundamentais, tanto para escolha quanto para a operacionalidade. A fim de aplicar
corretamente um FSR, o designer do circuito deve considerar suas características elétricas
e mecânicas intrínsecas, tendo algumas das mais fundamentais estando listadas abaixo:

Curva da relação entre Força aplicada e resistência mensurada: A resposta do
sensor é altamente não linear, seguindo uma curva tipicamente inversa da logarítmica, ou
seja, a resistência diminui drasticamente com forças iniciais e de forma mais suave com
forças elevadas. Dessa forma tornando a sua faixa de aplicação, que embora seja ampla
(até 5Kg), limitada ao range esperado da aplicação. Uma boa prática é identificar qual a
faixa de medição esperada para o projeto, e com base nesse espaço de valores, encontrar
com base em datasheets aqueles sensores FSR que possuam maior comportamento linear
nessa faixa. Portanto reduzindo a variação brusca de valores e consequentemente podendo
também reduzir faixas de erros e medições em outras áreas do projeto, como com relação
ao conversor de tensão utilizado ou conversor Analógico para Digital.

Histerese: A curva de resposta para o carregamento (aumento da força) é diferente
da curva para o descarregamento (diminuição da força). Isso significa que, em um mesmo
ciclo, o valor de resistência pode variar dependendo da direção da mudança de força, ou seja,
a medição ao aplicar a força e ao remover tal força não seria exatamente igual, geralmente
variando com base na faixa de valor definido no datasheet do componente. Há também a
variação da medição do componente com diferenças medições porém inputs equivalentes,
ou seja, para uma mesma força a medição pode varia levemente entre momentos, isso
pois há a deformação do material com o tempo, variações de temperatura, interferência, e
outros fatores que podem estar relacionados.

Deriva (Drift): Sob uma carga estática constante, a resistência do FSR tende a
diminuir lentamente ao longo do tempo. Este efeito é conhecido como deriva e deve ser
considerado em aplicações de medição de longa duração. Esse é um efeito comum para
todos os tipos de sensores com construção baseada em polímeros, uma boa prática é a
limitação da magnitude da carga, ou seja, da faixa de valores de medição e tempo de
duração da aplicação da carga.

Tempo de Resposta: O FSR possui uma resposta mecânica muito rápida, tipicamente
entre 1 a 2 milissegundos, permitindo sua utilização em aplicações dinâmicas. Porém é
importante considerar que a sua construção é baseada em um polímero, tipicamente PET,
portanto é importante evitar deformações inelásticas no material, a fim de conservar a sua
aplicação a longo prazo, assim como considerar um arcabouço eletrônico necessário para
acompanhar a sua velocidade de resposta a fim de evitar gargalos no processo.

41

Vida Útil: Devido a sua construção simples e robusta, principalmente devido a
sua utilização de polímero PET, sendo amplamente famoso e difundido na indústria, a
sua operação contínua permite uma longa vida útil, geralmente superior a 1 milhão de
atuações sob condições normais de operação desde que respeitando as informações de uso
previamente dispostas.

Força de Atuação (Actuation Force): Refere-se à força mínima necessária para que
o sensor comece a exibir uma mudança significativa em sua resistência. Este valor depende
do sensor específico, porém geralmente encontra-se no datasheet fornecido pelo fabricante.

3.5.3 Circuitos de aplicação

Os FSRs, em resumo, são sensores com variação de resistência, portanto, os métodos
típicos de aplicação para mensuração de sensores dessa modalidade também podem ser
aplicados, porém é importante compreender que cada sensor resistivo, embora façam
parte da mesma classe, possui a sua forma ideal de aplicação, alguns podem requerer
compensação, como os termistores (sensores de temperatura) que tipicamente utilizam
uma construção sistêmica para reduzir erros, porém podem ser utilizados de maneira geral,
embora com redução de resolução, de forma análoga aos FSRs.

É prático o uso de microcontroladores (MCU) integrados a conversores de tensão
de analógico para Digital visando a leitura, tratamento e envio imediato dos dados em
conjunto com programação baseado em lógicas pré-definidas.

Figura 7 – Exemplo de aplicação da leitura de um FSR utilizando um microcontrolador

Fonte: Adaptado pelo autor |
https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf

Um método clássico da leitura dos sensores resistivos é com a aplicação de amplifi-
cadores operacionais (Op-Amp).

https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf

42

Figura 8 – Aplicação típica para leitura de Sensor FSR com Op-Amp

Fonte: Adaptado pelo autor |
https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf

Independente do método de leitura, o arcabouço eletrônico associado para a leitura
do sensor resistivo se mantém, em seu cerne, igual. A aplicação de sensores resistivos em
divisores de tensão é o método mais comum de aplicações em diferentes cenários.

Figura 9 – Exemplo de um divisor de tensão

Fonte: Autoria própria

3.6 Capacitor

Um capacitor é um componente eletrônico passivo que consiste em dois condutores
na forma de uma placa separados por um isolante, denominado dielétrico, com capacidade
de armazenar energia na forma de um campo elétrico e então a liberar em um circuito.

Ao aplicar tensão entre os terminais do capacitor há então o acumulo de cargas
elétricas nas placas condutoras, criando um campo elétrico entre elas. A unidade de
medida associada com os capacitores é Farads (F), estando diretamente relacionado com o
acúmulo de cargas no componente e, portanto, com a capacidade de carregar e descarregar

https://www.mouser.com/pdfdocs/Ohmite-FSR-Integration-Guide-V1-0_11-01-18.pdf

43

do mesmo, porém, é fundamental se atentar a polarização, visto que alguns tipos de
capacitores são dependentes de polaridade apropriada.

Figura 10 – Exemplos de capacitores: (A) Eletrolítico; (B) Cerâmica; (C) Poliêster; (D)
SMD]

Fonte: Autoria própria

Além de se atentar a polarização do capacitor, é importante observar a tensão
máxima permitida assim como para a capacitância (F). Capacitores podem ter diversas
utilizações como acoplamento de sinais, filtragem de ruído, armazenamento de energia,
temporização e redução da variação da tensão, comumente denominado re ripple, na saída
de reguladores de tensão.

3.7 Fusível

Tendo já abordado os componentes que possuíam uma alteração significativa no
circuito, ou seja, alterando de alguma forma a corrente ou a tensão, como os resistores
e capacitores, pode-se então abordar um elemento cuja finalidade principal é a proteção
passiva do circuito, cuja finalidade é estar invisível nas operações normais do circuito, salvo
em casos de necessidade, sendo ele o fusível. Este é um dispositivo de segurança projetado
para interromper o fluxo de corrente elétrica quando esta excede um valor predeterminado,
sacrificando-se, ou seja "queimando-se", para proteger componentes mais complexos e de
maior importância. Dessa forma o fusível tem a função de ’elo mais fraco’ do circuito.

O fundamental para de definição do fusível o dimensionamento de corrente do
circuito, portanto ele é tipicamente escolhido por último, porém em cenários onde a
corrente não é calculada, pode-se medir a corrente durante a operação do circuito e então
realizar a decisão de aplicação do fusível. Com relação aos seu posicionamento do circuito,
tipicamente é posicionado em série com a alimentação de entrada.

O fusível consiste em um filamento ou lâmina metálica, fabricado com um material
de baixo ponto de fusão, encapsulado em um invólucro, tipicamente de vidro, e nas suas
extremidades estão as conexões metálicas. Quando a corrente que atravessa o filamento
ultrapassa sua corrente nominal, a temperatura é suficiente para fundir o metal, dessa

44

forma abrindo fisicamente o circuito e cessando o fluxo de elétrons, portanto evitando
dano aos demais componentes. É importante notar que a sua ação, embora imediata, não
é instantânea, ou seja, é possível que haja dano a demais componentes antes da ativação
do fusível.

Figura 11 – Imagem de um fusível típico

Fonte: Autoria própria

Devido à sua função crítica, a escolha de um fusível deve considerar não apenas a
corrente nominal, mas também a tensão de operação do circuito e sua característica de
atuação, que pode ser de ação rápida (fast-acting), como os tipicamente utilizados em
aplicações de eletrônica, ou com retardo (slow-blow), para acomodar picos de corrente
temporários, como os que ocorrem na partida de motores.

3.8 Diodo

Distintamente dos resistores, que apresentam uma relação linear entre tensão e
corrente, o diodo é um componente semicondutor que exibe um comportamento não linear,
possuindo como característica fundamental permitir a passagem de corrente elétrica em um
único sentido, assim como possuir uma queda de tensão fixa, geralmente sendo utilizado
para evitar uma inversão do fluxo de corrente.

Figura 12 – Aplicação de um diodo como flyback de um motor

Fonte: Autoria própria

45

Sua construção é baseada em uma junção PN, a união de um material semicondutor
tipo P (com excesso de "lacunas"ou portadores de carga positiva) e um tipo N (com excesso
de elétrons). Este arranjo cria uma barreira de potencial que dita o comportamento do
diodo, tipicamente possui dois métodos de polarização a depender da sua aplicação.

Na polarização direta, há a aplicação de tensão ao terminal anodo (lado P) e
aterramento ao catodo (lado N), dessa forma a barreira de potencial é superada, permitindo
a passagem de corrente com uma queda de tensão pequena e relativamente constante
(threshold voltage). Na polarização reversa, ao inverter a polaridade da tensão, a barreira
de potencial se alarga, bloqueando quase que completamente o fluxo de corrente.

Devido a essa propriedade unidirecional, os diodos são essenciais em aplicações
como a retificação de sinais, ou seja, na conversão de corrente alternada para contínua,
proteção de circuitos contra inversão de polaridade e em circuitos de chaveamento.

3.9 Diodo Zenner

Elaborando com base no conceito tangencial ao do diodo comum apresentado no
capítulo anterior, o diodo Zener é um tipo especial de diodo projetado não para retificar a
corrente, mas para atuar como um regulador de tensão de precisão. Enquanto um diodo
convencional é danificado se a tensão reversa exceder seu limite, o diodo Zener é fabricado
para operar de forma confiável exatamente nesta condição.

Seu princípio de funcionamento baseia-se no "Efeito Zener", ou seja, quando polari-
zado reversamente, ele bloqueia a corrente até que a tensão atinja um valor definido em
seu datasheet, denominado Tensão Zener (VZ). Nesse ponto, o diodo entra em seu modo
de operação típico (breakdown) e passa a conduzir corrente, mantendo a tensão entre seus
terminais praticamente constante e igual a tensão pré-determinada (VZ), mesmo que a
corrente reversa varie.

Essa capacidade de manter uma tensão estável o torna um componente prático
para uso em circuitos de regulação e estabilização de tensão, atuando como uma referência
de tensão ou protegendo outros componentes eletrônicos contra sobretensões.

46

Figura 13 – Imagem de um diodo zener típico

Fonte: Autoria própria

3.10 LED - Light Emitting Diode

O Diodo Emissor de Luz, ou LED (Light Emitting Diode), é uma derivação da
tecnologia do diodo semicondutor, porém, diferente do diodo comum o seu foco não é o
controle de corrente, mas sim a conversão de energia elétrica em luz. Porém, assim como
um diodo padrão, o seu sentido de corrente é unidirecional, ou seja, ele permite a passagem
de corrente em um único sentido.

Com seu funcionamento baseando-se no fenômeno da eletroluminescência, quando
o LED é polarizado diretamente, os elétrons da camada N se recombinam com as lacunas
da camada P na junção. Durante este processo de recombinação, a energia excedente dos
elétrons é liberada na forma de fótons, que são as partículas elementares da luz. A cor da
luz emitida é determinada pela composição química do material semicondutor utilizado na
junção.

Uma consideração fundamental na aplicação de LEDs é a necessidade de um resistor
limitador de corrente conectado em série, geralmente denominados de RLED. Sem este
resistor, o LED tenderia a conduzir uma corrente excessiva, o que levaria à sua queima
imediata, porém, como já visto no decorrer desse documento, os resistores possuem a
capacidade de limitação de corrente.

Devido à sua alta eficiência energética, longa vida útil e robustez, os LEDs suplan-
taram outras tecnologias de iluminação e são amplamente utilizados como indicadores
visuais em painéis, em displays de informação e em sistemas de iluminação geral. Podendo
também variar o seu encapsulamento, podendo ser SMDs (Surface Mounted Device) ou
estarem embutidos em outro dispositivo, como displays de 7 segmentos. A configuração
comum de aplicação de um LED pode ser vista abaixo.

47

Figura 14 – Aplicação de um Led

Fonte: Autoria própria

3.11 Transistor de Junção Bipolar

Tendo já abordado os componentes semicondutores de dois terminais, como os
diodos, pode-se então avançar para o elemento fundamental para toda a eletrônica moderna:
o transistor. Este é um dispositivo semicondutor de três terminais cuja função principal é
amplificar sinais elétricos ou atuar como uma chave controlada eletronicamente, através
da atuação na saturação ou corte. Sua invenção representou uma revolução, permitindo a
miniaturização e a complexidade dos circuitos que conhecemos hoje.

O princípio do funcionamento de um transistor é baseado no controle do fluxo
de corrente entre dois de seus terminais (o coletor e o emissor, em um transistor BJT)
através da aplicação de uma pequena corrente ou tensão em um terceiro terminal (a
base). Uma pequena variação no sinal de controle pode gerar uma variação muito maior
no sinal de saída, caracterizando a amplificação. Quando operado nos extremos (corte
ou saturação), ele funciona como uma chave, permitindo ou bloqueando completamente
o fluxo de corrente, sendo este o princípio fundamental da lógica digital utilizada em
microcontroladores e computadores. A sua construção se assemelha bastante a junção de
três diodos, tendo esse sido o começo do seu desenvolvimento.

Existem diversos tipos de transistores, sendo os mais comuns o Transistor de Junção
Bipolar (BJT) e o Transistor de Efeito de Campo de Óxido Metálico (MOSFET). A escolha
entre eles depende da aplicação, considerando fatores como a potência, a velocidade de
chaveamento e a impedância de entrada. Devido à sua versatilidade, são encontrados em
praticamente todos os dispositivos eletrônicos, desde simples amplificadores de áudio até
os processadores mais avançados. Para efeitos desse documento há somente a aplicação do
transistor do tipo BJT.

48

Figura 15 – Visão de um transistor: (A) Encapsulamento; (B) Símbolo esquemático

Fonte: Autoria própria

Torna-se fundamental na escolha de um transistor se atentar algumas características
principais, como a polarização, geralmente denominada como PNP ou NPN. O seu Beta,
denominado pela letra β, assim como os seus limites de operação e faixa recomendada,
todos esses podendo ser acessados no datasheet do fabricante.

3.12 Conectores de Entrada/Saída

Para a integração de um circuito funcional a outros equipamentos ou etapas de
processos é necessário realizar uma conexão, podendo ser em formato de software, com
envio via bluetooth, internet ou outros vínculos sem fio OtA(over the air), ou em formato
de hardware, com ligações físicas, como cabeamento, soldagem ou outros canais rígidos.
Portanto realizar a escolha ideal da conexão adequada é fundamental.

Devido a necessidade da interoperabilidade de dispositivos, é crucial que os sistemas
eletrônicos possam operar em conjunto entre si, visando então esse cenário, as interfaces
de conexão de entrada e saída se tornam o ponto inicial da análise, necessitando que os
componentes eletromecânicos possuam uma forte aceitação de conexão pelo público-alvo,
assim como possuam uma forte robustez e características desejadas por outros designers.
As conexões podem variar de método, podendo ser soldadas, de forma a ser fortemente
robustas porém dificilmente alteráveis, ou então modulares, permitindo maior flexibilidade
porém com susceptividade ao ruído.

A escolha de quais conectores específicos utilizar é uma escolha estratégica realizada
pelo designer do circuito, porém geralmente é realizada seguindo padrões pré-estabelecidos
da industria, como optando por conectores universais como USB ou conector Jack para
conexões externas soldadas, permitindo a associação com ecossistemas bem definidos, porém
internamente pode-se escolher opções como barramentos de pinos e outros conectores
modulares, visando a flexibilidade de possibilidade de consertos ou alterações futuras,

49

sendo fundamentais para a depuração de código e a fácil substituição de módulos.

3.12.1 Conector tipo Jack

Visando a alimentação DC de um circuito, a utilização do componente eletromecâ-
nico denominado de conector tipo Jack é uma padronização comum e robusta altamente
aplicada na interconexão de dispositivos, sendo principalmente aplicado em cenários de
alimentação contínua. Sendo um conjunto segmentado em dois modos, o plugue (macho)
e o soquete (fêmea), a sua construção mais comum é realizada de forma que o conector
seja de formato cilíndrico, com dois contatos isolados entre si, com o pino central servindo
como entrada de tensão (+Vcc) e a armadura (shield) que está ao redor como sendo o
negativo ou ground (GND).

No contexto deste projeto, o conector Jack é uma solução robusta e padronizada
para fornecer alimentação externa ao circuito, oferecendo uma conexão mais segura e
confiável do que pinos ou fios expostos. Portanto, visando a sua aplicação prática, o soquete
é tipicamente posicionado diretamente na placa de circuito impresso (PCB) o visando a
utilização conveniente, geralmente com sua saída localizada nas extremidades da placa.

Quando utilizando o conector Jack é importante a verificação da polaridade, já
que o padrão de de polaridade pode variar de acordo com o fabricante, de forma que
uma inversão pode causar danos irreparáveis ao circuito. Além da polaridade também
é fundamental a observação ao valor máximo de corrente aceito pelo conector, assim
evitando um derretimento devido a excesso de temperatura.

Figura 16 – Exemplo de um conector jack: (A) Tipo macho; (B) Tipo fêmea

Fonte: Autoria própria

3.12.2 USB A

Em quase todos os dispositivos eletrônicos atualmente irá ser identificada a uti-
lização de uma conexão USB, sendo ela altamente disseminada e também regida por
protocolos bem definidos e resguardados internacionalmente, sendo o USB tipo A a sua
construção clássica e mais típica de se encontrar, dessa forma, se tornando a opção mais
clara para aplicações de dispositivos caso se busque a generalização da solução.

50

Passível do fornecimento tanto de comunicação de dados na forma serial quanto de
energia, a sua construção interna permite o uso eficiente para aplicações práticas. Com
quatro canais, sendo dois dedicados a alimentação DC (VCC e GND) e dois que formam
um par diferencial para transmissão de dados (D+ e D-), a aplicação em cenários variados
faz com que o USB seja a escolha ideal em todos os meios.

Nesse projeto, embora abranja comunicação serial, não irá utilizar os canais de
dados do USB, utilizando-o exclusivamente como porta de alimentação de energia, essa
decisão provêm da praticidade e conveniência para o usuário final que esse conector gera,
possibilitando que o dispositivo final seja alimentado por fontes comuns, como carregadores
de telefoes ou computadores, até a cenários visando a mobilidade, com utilização de bancos
de bateria (power banks), tornando o uso do equipamento mais flexível e acessível em
diferentes cenários.

Durante a utilização do conector USB é importante que o shield seja apropria-
damente aterrado, garantindo visando uma apropriada blindagem contra interferência
eletromagnética (EMI), e evitando também possíveis danos relacionados a descarga de
eletricidade estática (ESD), sendo fundamentais as proteções para cenários de aplicação
de dispositivos em seções de testes com voluntários.

3.12.3 Terminal Block

Considerando a inclusão de sensores e dispositivos com alta necessidade de ma-
nutenção, é comum a utilização de terminal blocks. Sendo uma conexão extremamente
robusta, com foco para fixação de fios e cabos de forma semi-permanente através de
parafusos gerando força suficiente para evitar deslizes e solturas. Sendo bastante análogo as
dispositivos empregados em eletrotécnica, como tomadas e disjuntores, ele opera da mesma
maneira porém em um cenário de eletrônica, sendo reduzido e com limites de corrente e
tensão geralmente reduzidos, permitindo a conexão a uma fiação externa qualquer.

Sendo especialmente indicado para usos onde as conexões requerem uma maior
capacidade de corrente, ou com conexões cujos terminais fogem dos conectores padrões,
como entradas de alimentação de alta potência ou entradas de motores, nesse projeto
ele é utilizado para conexões com sensores que necessitam de manutenção e calibração
constante, como é o caso dos FSRs, que também necessitam estar empregados distante da
placa, dessa forma utilizando cabos para extensão.

É importante considerar no momento de projetar o circuito a seleção de modelos
de terminal blocks que sejam suficientes para aplicação, ou seja, verificando os parâmetros
de distancia entre fios, bitola do fio utilizada e capacidade de corrente para a aplicação.
Porém, é ainda mais fundamental considerar que o método de conexão utilizada por esse
conector é passível de ruídos, principalmente em cenários de corrosão do fio/cabo ou caso
não haja pressão suficiente para evitar sua movimentação.

51

Figura 17 – Imagem de um conector borne

Fonte: Autoria própria

3.12.4 barramento de pinos

Análogo a um protoboard, o barramento de pinos opera de forma os dispositivos
eletrônicos possuam uma conexão simples e versáteis ao circuito, sendo utilizado principal-
mente pelo seu custo extremamente reduzido mas permitindo ainda uma forte flexibilidade
para remoção dos dispositivos, geralmente para debugging, podendo remover um MCU ou
circuito integrado (CI)..

Justamente devido a sua simples construção, sendo padronizada pelo espaçamento
entre terminais (ex. 2,54 mm), é muito comum encontrar a sua aplicação associada
a dispositivos progamáveis, geralmente sendo necessário para futuras atualizações ou
manutenções do sistema, habilitando que um sistema seja facilmente reconfigurado ou
atualizado sem a necessidade de soldagem e dessoldagem. Porém, assim como os terminal
blocks, o uso dos barramentos de pinos torna o sistema vulnerável a ruídos.

Figura 18 – Imagem de um barramento de pinos eletrônicos

Fonte: Autoria própria

52

3.12.5 Chave de 3 estados

Considerando a alteração de estados, a aplicação de chaves é o método mais
fundamental, seja aplicando um BJT como chave ou até um interruptor comum, nesse
cenário, há também a aplicação de chaves de 3 estados, fornecendo um controle com três
posições operacionais possíveis, ou seja, ele permite o direcionamento de um polo comum
até três posições físicas distintas, no cenário do projeto, do sinal de entrada do circuito
para três fontes possíveis.

A aplicação de uma chave de três estados é fundamental para a seleção dos modos
de operação de um circuito, gerando possíveis cenários independentes entre si, com uma
isolação física estrita entre os estados. Sendo o seu uso preferível em cenários de conexão a
fontes de energia, onde cada modo se associa a alimentações distintas, porém sendo ainda
necessário se atentar que deve-se aplicar para baixos valores de tensão insuficientes para
gerar um arco elétrico entre os terminais da chave.

É importante considerar que ao utilizar esse componente o efeito do contato entre
terminais ao realizar a mudança de estado irá gerar ruídos ou picos de tensão no momento
da comutação, portanto a aplicação de capacitores em paralelo é recomendado. Também é
crucial verificar no datasheet do componente se suas especificações de corrente e tensão
são adequadas para a carga que ele irá comutar.

Figura 19 – Imagem de uma chave seletora de três estados

Fonte: Autoria própria

3.12.6 Botão e Chaves

Na eletrônica, é bastante comum que a terminologia de componentes eletromecânicos
simples como botões e chaves de um estado, que compartilham a função simples de abrir ou
fechar um contato elétrico, sejam utilizados alternadamente, porém para fins de dinstinção
é importante olhar para o seu modo de atuação, os botões (push-button) são dispositivos
de ação curta e breve, ou seja, ele estabelece uma conexão somente quando pressionado, e
quando deixado de interagir, retorna a sua posição padrão. Já a chave (switch) opera de

53

forma mais permanente, ou seja, mantém o seu estado mesmo após o fim da interação.

A aplicação desses componentes no circuito não poderia ser mais simples, eles são
inseridos em série com alguma carga ou seção do circuito que se deseje controlar, por
exemplo, uma chave é aplicada em série com a entrada de alimentação de um circuito, e
quando desativada serve como shut-off. Já o botão tem o padrão comum de ser utilizado
como forma de reset em um sistema, fornecendo um sinal de curta duração a um pino
específico de um sistema, geralmente um microcontrolador, atuando dessa forma como
gatilho para outra ação futura.

Portanto, análogo aos outros conectores discutidos, o ruído perdura como um male
associado ao seu uso, porém sendo menos comum. Para cenários de aplicação de chaves é
importante observar e se precaver contra arcos elétricos que inutilizem a aplicação da chave,
já em botões é importante evitar que o seu valor fique em um estado "flutuante"quando
associado a um microcontrolador, geralmente necessitando adicionar resistores de pull-up
ou pull-down, que irão forçar a entrada a um nível lógico definido.

3.13 motor de vibração

O motor de vibração é um atuador eletromecânico cuja finalidade principal, como
disposto em seu nome, é realizar vibração tátil e perceptível com base na utilização de
um motor. Transformando assim esse transdutor em um dispositivo de feedback háptico,
provendo uma resposta física ao usuário por meio do sentido do tato. A construção consiste
em um motor, geralmente sendo de corrente contínua, de pequeno porte onde no eixo é
acoplada uma massa excêntrica, ou seja, um peso desbalanceado geralmente de forma
cilíndrica com um chanfrado, dessa forma quando operando com uma rotação em alta
velocidade esse peso desbalanceado gera uma força centrífuga irregular, se manifestando
como a vibração sentida em todo o corpo do motor e então transferida ao usuário.

A aplicação de vibradores é extremamente presente no dia a dia, escondido em
um aparelho cotidiano, sendo fortemente associados a alertas silenciosos, estando princi-
palmente aplicados nos dispositivos móveis, como telefones celulares, associados a função
vibracall. A sua forte difusão demonstra claramente a sua eficácia, com atuação análogo a
qualquer outro motor DC, ele é tratado como uma carga de saída associada a uma lógica
de controle.

Expandindo o seu uso para microcontroladores, é comum que o MCU não seja
capaz de fornecer a corrente necessária para acionamento do motor, sendo nesse caso a
interface de conexão sendo realizada através de um transistor BJT atuando como chave, ou
seja, oscilando entre o corte ou saturação. Partindo então dessa conexão, pode-se utilizar o
controle via software para traduzir em uma resposta física e tangível para o usuário, como
um alerta ou a confirmação de um comando.

54

É porém fundamental considerar que o motor de vibração é ainda um motor DC
típico, ou seja, é importante considerar a sua propriedade indutiva, portanto, assim como
os demais, o motor de vibração irá armazenar energia em seu campo magnético enquanto
em operação, porém quando desligado a energia irá ser liberada de forma como um pico de
tensão reversa, podendo então danificar os demais componentes associados, principalmente
os relacionados ao controle. Dessa forma, para resguardar contra os efeitos das cargas
indutivas, é típico a adição de um diodo de flyback, sendo conectado em paralelo com
o motor, embora em polaridade reversa. Portanto irá então prover um caminho seguro
para a corrente induzida, servindo de proteção para o restante do circuito. Sendo também
prudente a isolação dos demais componentes dos motores, de forma a evitar o ruido elétrico
gerado pela sua operação.

Figura 20 – Imagem de um motor de vibração, visualizando o peso desbalanceado

Fonte: Autoria própria

3.14 Circuitos Integrados

Um Circuito Integrado (CI), é um circuito eletrônico completo, miniaturizado em
uma única e minúscula pastilha de material semicondutor, geralmente silício, envolucro
em uma estrutura plástica e usualmente seguindo algum dos padrões pré-definidos de
encapsulamento. A sua maior vantagem é com relação a simplificação de funções, economia
de espaço, custo, velocidade e confiabilidade em comparação com circuitos montados com
peças individuais, visto que em estrutura através das técnicas avançadas de manufatura é
possível manipular algumas características dos componentes discutidos previamente, como
transistores, resistores e capacitores.

3.14.1 Regulador de tensão LM7805

O LM7805 é um circuito integrado operando como regulador de tensão positiva
que se estabeleceu como uma solução fundamental, robusta e altamente difundida no
âmbito de fontes de alimentação para circuitos eletrônicos. Sua função principal opera de
forma crítica para o funcionamento apropriado dos circuitos, sendo como encargo receber

55

uma tensão de entrada mais elevada, geralmente instável ou ruidosa, e fornecer em sua
saída uma tensão contínua, estável e precisa de +5 volts. Dessa forma o LM7805 é um
sistema de regulação completo, oferecendo uma solução sólida e de fácil implementação
para criar o ambiente de alimentação estável que a grande maioria dos circuitos digitais e
microcontrolados exige para operar de forma confiável.

Tendo como seu encapsulamento o TO-220, esse componente opera com somente
três terminais: entrada (Input), terra (Ground) e saída (Output). Utilizando esses três
pontos de conexão o LM7805 consegue operar como um intermediário que garante uma
alimentação limpa e constante, sendo fortemente associado a uma fonte de energia instável,
como uma bateria cuja tensão cai com o uso, evitando um comportamento errático nos
componentes sensíveis.

É fundamental o uso um capacitor na entrada (tipicamente 0,22µF ou 0,33µF) e
outro na saída (tipicamente 0,1µF), tendo o capacitor de entrada a função principal a de
filtrar ruídos da fonte, enquanto o capacitor de saída é essencial para suavizar a tensão
entregue à carga, evitando picos, servindo geralmente como capacitor de desacoplamento.

Os Reguladores da familia do LM78xx dissipam a energia excedente na forma de
calor, e a quantidade de calor gerado é proporcional à diferença entre a tensão de entrada
e saída, dessa forma tornando a gestão térmica um conceito importante durante o design
dos protótipos. Portanto é importante o dimensionamento da tensão de entrada e saída,
aplicando quando necessário o uso de um dissipador de calor (heatsink) acoplado à aba
metálica do componente.

Em cenários em que a tensão de entrada decair mais rapidamente que a tensão de
saída do LM7805 é possível que a junção do componente seja danificado, dessa forma é
aplciado um diodo em reverso (reverse-bias) para proteção.

Adicionalmente, para todo regulador de tensão deve-se atentar ao fenômeno do
ripple, que é a ondulação residual presente em uma tensão DC obtida a partir da retificação
de uma fonte AC. O LM7805 atua ativamente para filtrar essa variação, entregando uma
tensão de saída muito mais limpa e contínua do que a que recebe. No entanto, para que
ele funcione corretamente, a tensão de entrada, mesmo no ponto mais baixo da ondulação,
deve ser sempre superior à tensão de saída somada à tensão de dropout (aproximadamente
2V). Portanto é fundamental que o componente opere dentro da sua faixa normal, podendo
ser consultado do datasheet, ignorar essas condições pode fazer com que o regulador perca
sua capacidade de regulação nos vales da ondulação, comprometendo a estabilidade da
alimentação.

56

Figura 21 – Recomendação de aplicação de um LM7805

Fonte: Adaptado pelo autor | https://cdn.sparkfun.com/assets/1/7/7/3/2/LM7805.pdf

3.14.2 microcontrolador ESP32

Entrando no conceito de processamento lógico, é preciso primeiro compreender
alguns conceitos básico. Um Microcontrolador (MCU) é um dispositivo que une um centro
de processamento com armazenamento de memória, também possuindo muitas vezes outras
funções visando aplicações em eletrônica, como periféricos de entrada e saída, visando ser
uma solução completa de pronto uso.

Aprofundando no cenário de MCUs, o kit de desenvolvimento baseado no ESP32
surge como uma solução bastante popular e de alto desempenho, com o seu forte diferencial
sendo a sua integração nativa com conectividades Wi-Fi e Bluetooth a um custo de aquisição
extremamente baixo quando comparado com seus similares de mercado

Nos projetos, ele é frequentemente disponibilizado em uma placa de desenvolvimento
(devkit) que permite acesso aos seus pinos através de um barramento, facilitando a
prototipagem e a conexão modular ao restante do circuito, usualmente associado a utilização
de um pino de barramentos, já discutido previamente no decorrer desse texto.

https://cdn.sparkfun.com/assets/1/7/7/3/2/LM7805.pdf

57

Figura 22 – Diagrama de bloco interno da ESP32

Fonte: Adaptado pelo autor |
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

A arquitetura do ESP32 utiliza o conceito de System-on-Chip (SoC), onde o seu
poder de processamento está contido em seu núcleo com um ou dois processadores de 32
bits. Atuando como unidade central de controle, esse núcleo é responsável por executar a
lógica de programação criada pelo programador e gerenciar todos os periféricos integrados,
utilizando então os seus outros módulos como suporte para exercer a lógica criada. Devido
a essa capacidade de processamento robusta o ESP32 consegue executar desde tarefas
simples de controle, como operação de transistores como chaves, até algoritmos mais
complexos, como o processamento de sinais ou a execução de um servidor web local.

Para integração com circuitos, o ESP32 depende de um conjunto diversificado de
periféricos integrados ao kit de desenvolvimento, podendo ler sensores analógicos através
de seus múltiplos Conversores Analógico-Digital (ADC) de 12 bits e gerar sinais de tensão
analógica por meio de seus Conversores Digital-Analógico (DAC) de 8 bits. A comunicação
com outros circuitos integrados, sensores e módulos é realizada diferentes interfaces de
comunicação serial, que incluem múltiplas portas UART, SPI e I2C, possibilitando a
aplicação de diferentes procolos de comunicação, além de métodos de comunicação sem fio,
como Wi-Fi e Bluetooth.

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

58

Figura 23 – Diagrama de pinos do kit de desenvolvimento da ESP32

Fonte: Adaptado pelo autor | https://docs.espressif.com/projects/esp-dev-kits/en/latest/
esp32/esp-dev-kits-en-master-esp32.pdf

O grande diferencial da ESP32 com relação aos seus similares na mesma faixa de
preço é sua capacidade de comunicação sem fio. O dispositivo integra um rádio de 2.4 GHz
que suporta tanto Wi-Fi (padrão 802.11 b/g/n) quanto Bluetooth (Clássico e de Baixa
Energia - BLE). Essa característica realiza um upgrade, transformando em um dispositivo
de capacitado para operar com Internet das Coisas (IoT) nativamente. Através do Wi-Fi,
ele pode se conectar a redes locais (WLAN) e à internet para enviar dados para servidores
na nuvem, como por Message Queuing Telemetry Transport (MQTT), receber comandos
remotamente ou interagir com APIs. O Bluetooth, por sua vez, permite a comunicação
direta com smartphones, e outros periféricos próximos transformando o circuito associado
a ESP32 em um gadget.

Para realizar ações e reações com o kit de desenvolvimento é necessário primeiro
realizar a programação lógica associada, realizada em um Ambiente de Desenvolvimento
Integrado (IDE), sendo o Arduino IDE uma das plataformas mais populares para este
fim, devido a sua forte integração e difusão no meio de desenvolvedores. Do ponto de
vista da aplicação, a viabilidade de um projeto depende também de uma alimentação de
energia apropriada, tendo o ESP32 a necessidade de uma tensão de entrada regulada e
estável, tipicamente de 5V pelo pino Vin ou via sua conexão USB. Contanto com uma de
suas características mais importantes para projetos modernos sendo seu baixo consumo
de corrente, com capacidade ainda para otimização por meio de modos de economia de
energia, como o Deep Sleep. Essa eficiência energética permite que o ESP32 opere por
longos períodos a partir de uma bateria externa, tornando-o a escolha ideal para a criação
de dispositivos móveis, portáteis e autônomos.

https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32/esp-dev-kits-en-master-esp32.pdf
https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32/esp-dev-kits-en-master-esp32.pdf

59

3.15 Software

Seguindo a mesma metodologia já empregada, nesta seção será exploradas as
necessidades para a realização e funcionamento apropriado do código lógico requerido
para operar o sistema. Nesse momento será falado o "O que é utilizado?", e em seções
posteriores será explorado o "Como é utilizado?".

3.15.1 Linguagens e estruturas de programação

A aplicação de diversas linguagens de programação em um único projeto se tornou
uma prática comum no mercado atual, portanto, esse projeto não será exceção. Cada
linguagem é selecionada com base em suas aplicações para a tarefa necessária, seja para o
controle de baixo nível do microcontrolador, via uma linguagem mais simples e rápida,
ou para a flexibilidade na manipulação de dados e criação de interfaces no computador.
Podendo então dividir as aplicações realizadas via distintas linguagens como software e
firmware.

Para programação na ESP32 foi utilizada a linguagem C++, utilizando como base
o Framework do Arduino. Utilizada para o desenvolvimento do firmware, responsável pelo
controle do microcontrolador ESP32. A escolha se mostra ideal pois a linguagem combina
alto desempenho e velocidade de execução, essenciais para o processamento de dados em
tempo real, com uma implementação simplificada graças ao seu uso em sala de aula.

Para a programação do software foi utilizado o Python. Fundamental na aplicação
do lado do computador, ela foi escolhida por ser uma linguagem bastante abrangente e
difundida, permitindo a integração de tarefas de diversas áreas com um único script, ainda
mais pela sua simplicidade e praticidade de busca por fóruns ou locais de pesquisa.

Embora não seja uma linguagem de programação, o JSON (JavaScript Object
Notation) desempenha um papel fundamental como o formato de transmissão de dados
que unifica a comunicação entre os dois sistemas. Possuindo uma padronização mundial,
ele atua como uma "linguagem"comum entre dispositivos, o firmware em C++ no ESP32
estrutura os dados dos sensores e os codifica em uma string de texto JSON. Em seguida
essa string é então transmitida e, ao ser recebida pela aplicação em Python, é decodificada
de volta para uma estrutura de dados nativa (um dicionário), permitindo então uma
interoperabilidade entre sistemas distintos.

3.15.2 Ambientes de desenvolvimento

Para escrita dos códigos foram utilizados Ambientes de Desenvolvimento Integrados
(IDEs), sendo eles responsáveis por gerenciar e visualizar o código assim como compilar e
depurar. Para um projeto com componentes distintos como este, é comum utilizar IDEs
diferentes, cada uma especializada em otimizar o fluxo de trabalho para a linguagem e a

60

plataforma em questão, seja ela o firmware do dispositivo embarcado ou a aplicação no
computador, porém geralmente estão associadas com a experiência que o usuário possui
com cada uma delas.

Para o C++ foi utilizado o Arduino IDE, servindo como o ambiente de desenvolvi-
mento integrado para escrever, compilar e carregar o firmware no ESP32. Sua simplicidade,
gerenciamento integrado de placas e bibliotecas, e o monitor serial embutido a tornam
uma ferramenta eficiente para o desenvolvimento e depuração rápida do sistema embar-
cado. Assim como o seu fórum dedicado, tornando a busca e resolução de dúvidas mais
direcionada.

Considerando a linguagem Python, foi decidido utilizar o PyCharm. É uma IDE
profissional e gratuita que oferece ferramentas avançadas de depuração, análise de código
e gerenciamento de projetos, assim como de customização visual.

3.15.3 Bibliotecas empregadas

Visando o desenvolvimento de aplicações é sempre comum a associação a conjuntos
de bibliotecas para a sua construção, trabalhando como um conjunto lógico pré-escrito
altamente eficiente para realização de tarefas, por vezes simples, de maneira dinâmica,
permitindo ao programador focar no que importa. Evitar "reinventar a roda"possui o efeito
importante de reduzir o tempo e complexidade necessária para a aplicação da solução,
viabilizando o go-to-market da solução. Segmentando em duas partes, tem-se as bibliotecas
empregadas para cada IDE no decorrer dessa seção, iniciando com o firmware do ESP32
(C++):

• ArduinoJson: Sendo necessária para criar e serializar dados no formato JSON
dentro do ESP32, o uso dessa biblioteca foi motivado pela sua alta praticidade
e baixo consumo de memória, sendo fundamental para a operação limpa porém
organizada do processamento de dados, assim como também sendo referência para
aplicações envolvendo JSON. Garantindo que os dados sejam enviados em um formato
padronizado, compatível com diversos dispositivos distintos e facilmente analisável,
ela permite a integração com outros sistemas, como aplicativos móveis ou softwares
de terceiros.

• WiFi: Sendo a biblioteca padrão do ESP32 para gerenciar a conectividade com
redes Wi-Fi, seu uso é essencial, pois estabelece a camada de rede necessária para
que o protocolo MQTT possa se comunicar com a internet. Sem a aplicação dessa
biblioteca não teria a possibilidade de aplicação do módulo de Wi-Fi do kit de
desenvolvimento.

• PubSubClient: Empregada para implementar a comunicação via protocolo MQTT.
Esta biblioteca se utiliza da base fornecida pela biblioteca WiFi e oferece um cliente

61

MQTT leve e funcional, permitindo que o ESP32 publique mensagens em um broker
de forma simples e confiável, sendo a peça-chave para a funcionalidade IoT do projeto,
sendo também extremamente famosa, com diversos exemplos possíveis de estudo nos
fóruns e em seu repositório.

Partindo para a análise da parte do desenvolvimento relativo a linguagem Python,
tem-se então a aplicação das seguintes bibliotecas:

• serial (pyserial): Sendo aplicado para estabelecer a comunicação com dispositivos
pela porta USB/Serial, essa biblioteca pode ser utilizada para abrir, configurar e ler
o fluxo de dados enviado por um dispositivo. Necessitando porém da definição de
algumas variáveis de início, como o baudrate e porta associada, como a ’COM3’.

• json: Empregada como a contraparte da ArduinoJson, sendo ela utilizada como
receptora. Sua função foi decodificar (parse) a string de texto JSON recebida,
convertendo-a em um dicionário Python para que os dados de cada sensor pudessem
ser facilmente acessados e processados.

• OpenCV (cv2): Biblioteca central para o processamento de imagem e visualização
do Python. Foi utilizada para carregar uma imagem de fundo, nesse caso foi utilizado
a visualização de uma mão, criar uma janela de exibição e, principalmente, para
modificar dinamicamente os pixels dessa imagem de acordo com o nível do sensor,
representando graficamente os dados de força em tempo real.

• NumPy: Utilizada como a base para as operações do OpenCV, necessitando para
trabalhar em conjunto. As imagens no OpenCV são representadas como arrays
NumPy, e esta biblioteca forneceu as ferramentas para as manipulações matemáticas
necessárias para alterar a imagem a nível de pixel.

• threading: Empregada para gerenciar a execução de tarefas concorrentes via mul-
tithreading do processador do computador. No código, foi utilizada para iniciar a
plotagem dos gráficos de cada sensor em uma thread separada. O objetivo dessa
abordagem é melhorar a responsividade da aplicação, evitando que o fluxo principal
do programa, principalmente da leitura dos dados enviados pela comunicação serial,
seja bloqueado por operações que possam ser demoradas.

3.15.4 Protocolos de comunicação aplicados

É fundamental que ambos os lados da comunicação, o responsável por enviar e o
responsável por receber, estejam com seus parâmetros de configuração alinhados entre si
para que a troca de informações em qualquer protocolo de comunicação seja bem-sucedida.
Sem essa definição prévia sobre os parâmetros da comunicação, os dados podem ser

62

perdidos ou interpretados de forma incorreta, geralmente ocorrendo por meio de leitura
parcial.

A Comunicação Serial, via hardware UART (Universal asynchronous receiver/
transmitter), é um dos métodos mais fundamentais de comunicação digital, geralmente
disponível em quase qualquer placa de desenvolvimento. Operando sobre um par de fios,
TX para transmissão e RX para recepção, de forma que o compartilhamento de informação
é realizado de forma assíncrona, com o tempo é sincronizado pelo baudrate, sendo esse um
parâmetro que define a velocidade da transmissão de bits por segundo.

No projeto, a Serial é a atua servindo a múltiplos propósitos, primeiro serve por
método de upload de código, porém é também o meio pelo qual mensagens de status
são enviadas para realização de depuração. Por fim, é também o canal pelo qual o fluxo
contínuo de dados JSON é enviado para a aplicação local em Python. Tendo também o
como forte vantagem a realização de comunicação de forma offline, o serial é um método
bastante útil para comunicação adicional.

O MQTT (Message Queuing Telemetry Transport) é um protocolo de mensa-
gens projetado especificamente para aplicação na Internet das Coisas, operando com
base na conexão com internet, ele utiliza uma arquitetura de Publicação/Assinatura
(Publish/Subscribe) para envio e recepção dos dados.

O seu grande diferencial do modelo cliente-servidor tradicional, é a definição de
uma entidade central, denominada broker responsável por gerenciar as comunicações entre
dispositivos de forma a operar como um "canal"para os dispositivos. Aqueles dispositivos
atuando como Publishers, similar ao ESP32 nesse projeto, enviam mensagens para "tópi-
cos"específicos no broker, sem definição de quem as receberá. Por outro lado, os dispositivos
atuando como Subscribers podem se inscrever nesses mesmos tópicos para receber as
mensagens de interesse. Dessa forma, tem-se o broker operando como uma central de
distribuição, desacoplando completamente os produtores de informação dos consumidores.

A aplicação do MQTT combina perfeitamente com o IoT, devido a sua leveza e
praticidade de aplicação, assim como economia de banda e energia, crucial para dispositivos
embarcados, e por fim devido a sua forte difusão no meio de comunicação atual. Há
também de se considerar que o desacoplamento entre o Publisher e Subscriber permite
uma escalabilidade imensa, ou seja, múltiplos dispositivos, como ESP32, podem publicar
dados e inúmeros clientes, como aplicativos móveis e servidores, podem se inscrever para
recebê-los, sob anonimidade.

O protocolo também define mecanismos avançados como Qualidade de Serviço
(QoS), que garante diferentes níveis de entrega de mensagem, e o Last Will and Testament
(LWT), que permite ao broker notificar outros clientes caso um dispositivo se desconecte
abruptamente, definindo também, em alguns casos, a persistência de uma última mensagem.

63

No projeto, o MQTT é o que transforma o sistema de um dispositivo local para uma
verdadeira plataforma IoT, permitindo o monitoramento remoto e a integração com um
ecossistema global de aplicações.

65

4 METODOLOGIAS EMPREGADAS

Nessa seção, tendo já discorrido sobre os materiais que compõe o projeto, será agora
abordado os métodos em que tais materiais foram utilizados, ou seja, se na etapa anterior
foi mencionado o "O que?", agora será abordada a sua aplicação, ou seja, o "Como?".

4.1 Hardware

O circuito pode ser considerado como possuindo 4 partes distintas, porém que
operam em conjunto. Cada bloco possui sua interação direta ou indiretamente com os
demais, porém todos contribuem para que seja realizado o processo final de medição de
sinal.

Figura 24 – Diagrama de blocos do circuito

Fonte: Autoria própria

4.2 Alimentação

A alimentação é a base da construção do circuito, com o restante do circuito
contando com a sua estabilidade e capacidade, portanto, o circuito proposto nesse projeto
não é diferente. Contanto com quatro formas distintas de possibilidade de alimentação, a
sua construção foi focada com base na versatilidade e usabilidade em diferentes cenários,
tendo todos os seus componentes já discutidos em capítulos anteriores. Sendo importante
salientar que uma das conexões, a utilizando o terminal block (J1) foi utilizada como forma
de debugging, focado em conexão direta com uma fonte externa durante momentos de
prototipagem.

66

Figura 25 – Bloco de entrada de alimentação do circuito

Fonte: Autoria própria

Começando pela chave seletora de três estados (SW1A), ela serve como elemento
decisório para o método de alimentação do circuito, cada um com uma entrada individual.
Sendo porém importante salientar que embora haja alteração na fonte, os terras são
conectados, podendo ser alterado por uma outra chave seletora, se o leitor acreditar
ser mais apropriado, portanto é recomendado a utilização de somente uma forma de
alimentação por vez, por isso a chave seletora foi adicionada.

As conexões diretas do tipo USB tipo A e o conector tipo Jack servem principalmente
para conexão de fontes de alimentação externas, tal qual fontes de outros dispositivos que
o leitor possa possuir, desde que atendendo as especificações de tensão (5V) e corrente
suficiente (≥ 1A). Para o USB tipo A também foi considerada a utilização de bancos de
bateria externos, tais quais os comumente vendidos como acessórios para celulares, dessa
forma tornando a placa para um dispositivo móvel, capaz de ser atrelado a indivíduos ou
outros aparelhos.

O botão (SW2) em série com a chave seletora tem como função a remoção completa
de tensão ou corrente do circuito, abrindo-o de forma a cessar a passagem de energia,
ou seja, operando como um botão de ligar/desligar. Em paralelo com a saída do circuito
tem-se um capacitor (C3) de 330nF, operando como filtro de ruído, servindo também para
estabilizar a tensão, suavizando quaisquer variações mínimas, e garantir a longevidade dos
seus componentes devido a maior qualidade do sinal, sendo sempre presentes em aplicações
de fontes de tensão ou similares.

Em paralelo ao capacitor (C3) há então um led (D4) responsável pela indicação
visual de operação do circuito, estando somente aceso em cenários em que há tensão sendo
aplicado sobre ele. Como discutido previamente, o led necessita de um resistor (R16) em

67

série para a limitação da corrente, dessa forma evitando uma deterioração do componente.
O valor do resistor foi escolhido com base na equação abaixo:

RLed = Vcc − VLed

ILed

Tendo o valor de Vcc equivalente a 5V e os valores de VLed e ILed tendo sido
consultados previamente em datasheet respectivo ao led, para esse cenário, decidiu-se
reduzir a corrente de led para metade do seu valor máximo e considerou-se uma faixa de
variação da tensão de led, portanto os valores foram ILed = 10mA e 1, 8V ≥ VLed ≥ 2, 0V ,
por fim, aproximou-se o valor do resistor para aquele perto de um valor comercial.

Figura 26 – Bloco de entrada de alimentação e regulação do circuito

Fonte: Autoria própria

Partindo então para o segundo bloco do circuito de alimentação, esse opera então
com base em alimentação por meio de uma fonte externa conectada ao terminal block (J8),
foi considerado e calculado o uso de uma bateria de 9V, trabalhando em conjunto com um
regulador de tensão LM7805.

O Led (D2) opera em conjunto com o resistor (R13), estando ele operando como
limitador da corrente, para indicação do nível de tensão restante da bateria, ou seja,
informando em cenário em que a tensão da bateria caia para níveis insuficientes para
a operação do regulador LM7805, tendo sido configurado de forma que o led (D2) irá
gradualmente aumentar a luminosidade até o ponto máximo, de forma que indicará que a
bateria está com de acordo com o requerido (Vbat ≥ 7,5V).

O diodo zener (D3) opera de forma a aplicar uma tensão fixa de 6,8V sobre si, então
seguindo com base nesse pressuposto, e considerando a tensão de bateria como Vbat teremos
então que a queda de tensão sobre o resistor R15 será equivalente a VR15 = Vbat − Vz.

68

Para um transistor operar em corte algumas condições devem ser satisfeitas, uma
delas é ter o VBE < 0, 7V . Em um cenário no qual a tensão da bateria (Vbat) vá decaindo,
porém ainda superior a tensão necessária para o zener (D3), então haverá um cenário onde a
tensão do resistor R15 (VR15) será inferior a 0,7V, dessa forma garantindo que VBE < 0, 7V .
Sendo que esse cenário ocorre quando: 0, 7V < Vbat − Vz, e supondo Vz = 6, 8V como fixo,
então VBE < 0, 7V quando Vbat < 7, 5V .

Quando o transistor estiver em corte, então também haverá uma redução da
luminosidade do led (D2), dessa forma o apagando. Portanto, quanto mais próximo do
corte o transistor for se tornando, menos luminoso o led (D2) estará até o momento que
ele se apague, dessa forma, indicando que a bateria deve ser recarregada ou substituída.

Os capacitores C1 e C3 servem para garantir a operação do LM7805 e são reco-
mendados em seu datasheet, para operação como regulador de tensão fixa. Já o diodo (D1)
posicionado no modo reverse-bias opera para garantir a segurança do LM7805 em casos
de queda de tensão na entrada superior a saída.

É importante mencionar que a alimentação ao kit de desenvolvimento da ESP32
não está inclusa na alimentação das fontes, isso devido a alta variação de metodologias de
alimentação externas nos kits vendidos atualmente no mercado, é recomendado que para a
alimentação seja utilizada uma fonte externa ou conectado diretamente ao USB do devkit
da ESP32.

4.3 Controle

Visando a seção de controle do circuito é então aplicado o kit de desenvolvimento
(devkit) baseado na ESP32 para definição de um controle lógico e tratamento dos sinais e
dados. Ela opera utilizando tanto os seus Conversores Analógico-Digital (ADC) quanto os
seus Conversores Digital-Analógico (DAC), ambos com o intuito de simplificar a operação
em um só dispositivo assim como reduzir o custo de entrada para replicação desse projeto.

69

Figura 27 – Bloco de controle do circuito

Fonte: Autoria própria

4.3.1 Conversor ADC

Para leitura do sinal é utilizado o conversor Analógico-Digital da placa, porém a sua
curva de leitura não é linear ou facilmente aproximável por meio de equações matemáticas
de forma que possa realizar a compensação em tempo real de sua leitura incorreta com
erro mínimo. A sua curva de leitura varia de acordo com cada dispositivo, sendo única
para cada, porém todas tendem a seguir o mesmo padrão.

Possuindo dois ADCs distintos em sua construção, ambos com 12 bits de leitura
do sinal, portanto possuindo 4096 posições para resposta da leitura digital, e estando
também limitado a leituras de sinais de 0V a 3,3V pode-se então calcular que o degrau
(step) teórico de leitura do ADCs é de 0,879mV, porém isso seria somente em um cenário
ideal, considerando a leitura em todo o range, linearidade para toda leitura e valor de
referência do ADC (Vref).

70

Figura 28 – Identificação da região linear do ADC

Fonte: Adaptado pelo autor | https://arduinokitproject.com/esp32-basics-adc/

Com base na imagem acima, nota-se então que é recomendado que o ADC esteja
posicionado fora da região de insensibilidade, porém também fora da região não-linear.
Portanto é importante o posicionamento adequado do sinal a ser medido. Porém há também
de se considerar o ruido e erros de leitura associado a variações de construção do ADC.

4.3.2 Aplicação de Look-up Table

Mesmo com a aplicação da medição do sinal em local apropriado na curva do ADC
da ESP32 ainda há problemas a serem mitigados, sendo um dos principais problemas o
fato de que mesmo a faixa linear do ADC não é apropriadamente linear, podendo portanto
haver ainda variações de leitura do sinal.

Figura 29 – Visão da curva não-linear em comparação com uma entrada linear

Fonte: Autoria própria

https://arduinokitproject.com/esp32-basics-adc/

71

Com o intuito de reduzir o erro de leitura, pode-se então realizar uma correção
que é individual para o kit de desenvolvimento do usuário, sendo a aplicação de uma
correção via software para a leitura do ADC via calibração do mesmo. Tendo a calibração
necessariamente devendo ocorrer antes da inserção do ESP32 ao circuito, como um passo
preparatório a sua aplicação.

Para calibração do ADC foram estudados dois métodos, o primeiro é utilizar a
função "calculate _voltage _linear()"e "read _efuse _vref()", sendo que a partir da primeira
semana de 2018, todos os chips da ESP32 produzidos pela espressif já foram medidos
individualmente e possuem o valor de Vref no chip, dessa forma, pode-se então utilizar
uma formula polinomial para aproximação. Podendo ambas as formulas serem obtidas a
partir da biblioteca "esp _adc _calc.c"disponibilizada pela fabricante em seu github.

O segundo método de cálculo é a partir da calibração do ADC via tabela de
consulta, ou em inglês Look-up Table (LUT), onde realiza-se uma associação entre os
valores medidos e os valores reais, dessa forma compensando de forma mais rápida e precisa
com relação aos erros de leitura, porém considerando que haverá uma maior necessidade
de armazenamento.

Para a criação de uma LUT é recomendado que, por praticidade, utilize o DAC
do próprio kit de desenvolvimento, dessa forma estaria alimentando a saída do DAC,
localizada no GPIO 25, com o canal de entrada 1 do ADC, localizado no GPIO 35 (ADC7).
Com a conexão via cabo (jumper) pode-se então realizar a calibração com o código e obter
a tabela LUT.

Figura 30 – Comparativo entre o ADC e DAC com compensação

Fonte: Adaptado pelo autor | https://github.com/e-tinkers/esp32-adc-calibrate

Com a calibração pode-se notar que a qualidade de leitura do sinal se torna muito
mais elevada, sendo que há uma redução tangível do erro porém sem a elevação de custo,

https://github.com/e-tinkers/esp32-adc-calibrate

72

tendo sido realizado via software de forma a também ser aplicável a qualquer dispositivo
baseado em ESP32.

Figura 31 – Comparativo entre o ADC e DAC sem compensação

Fonte: Adaptado pelo autor | https://github.com/e-tinkers/esp32-adc-calibrate

Comparativamente pode-se também observar a divergência de leituras sem a
aplicação da calibração, demonstrando então a importância da sua aplicação para um
projeto de sensoriamento.

4.4 Entrada de Sinal

Com base no que já foi descrito, partindo do fato do circuito ser alimentado com
uma tensão contínua regulada, pode-se então abordar a leitura de dados dos sensores, ou
seja, entrada de dados no circuito.

Figura 32 – Bloco de leitura dos sensores do circuito

Fonte: Autoria própria

https://github.com/e-tinkers/esp32-adc-calibrate

73

O fusível (F1) serve como dispositivo de proteção a uma das partes mais frágeis
do circuito, sendo que o kit de desenvolvimento da ESP32 já possui métodos próprios de
proteção intrínsecos a si.

Relembrando dos limites de tensão dos ADCs da ESP32, torna-se necessário a
redução da tensão aplicada aos sensores a fim de evitar possíveis cenários de dados
permanente. Portanto, os resistores R1 e R2 operam como um divisor de tensão, reduzindo
a tensão de entrada de 5V para uma tensão inferior (3,3V), de forma ser trabalhada pelos
sensores.

VR2 = Vcc

(
R2

R1 + R2

)

Com base no mesmo efeito de divisor de tensão, as medições dos ADCs são realizadas
a partir da aplicação de um resistor de pull-up e em seguida com base em um resistor
variável a fins de melhor posicionar a leitura do sinal em uma área linear de leitura dos
ADCs da ESP32.

VF SR1 = VR2

(
R3

R3 + RF SR1 + RV 1

)

A equação acima é importante para a definição do valor do sensor, visto que o
resistor variável (RV1) serve como método para melhor posicionar a medição do FSR na
região linear de leitura do ADC, da mesma forma, o resistor R3 serve para realizar o cálculo
de divisor de tensão, assim como também para reduzir a tensão aplicada sobre o FSR,
dessa forma reduzindo levemente a tensão aplicada sobre ele. Portanto, sabendo o valor
do resistor variável (RV1) e do resistor fixo (R3) pode-se então saber qual a resistência do
sensor FSR, visto que a sua tensão será medida pelo ESP32 na variável VF SR1 .

RF SR1 =
(

VR2

VF SR1

)
.R3 − (R3 + RV 1)

A partir da equação acima pode-se notar que a partir da medição infere-se o valor
da resistência do sensor, e portanto, pode-se então consultar a relação de força e resistência
do FSR com base em uma equação polinomial ou via lookup-table definida em código
armazenado na ESP32.

Para uma própria determinação do valor do resistor variável é importante identificar
qual a faixa de força esperada para medição e portanto planejar de acordo, de forma a
posicionar a leitura média da tensão no meio da região linear do ADC. Para os demais
divisores de tensão do circuito a aplicação é direta, realizando os mesmos passos já descritos
previamente.

74

Para inclusão dos sensores FSR ao circuito são utilizados os terminal blocks J2 a
J6, soldando um fio a cada um dos terminais do FSR e então fixando eles aos conectores
com força apropriada.

A leitura via "READ_INPUT _1"serve somente como checagem em caso de
necessidade da operacionalidade do circuito, garantindo que, caso necessário, possa ser
realizada a leitura da tensão aplicada aos sensores.

4.5 Saídas do Circuito

Para que um sistema eletrônico seja verdadeiramente interativo, ele precisa não
apenas receber informações, mas também comunicar suas respostas e estados ao usuário.
Essas respostas são manifestadas através de atuadores, que funcionam como as "saídas"do
circuito, traduzindo sinais elétricos em ações físicas.

Figura 33 – Bloco de saída do circuito

Fonte: Autoria própria

Para essa aplicação específica foi escolhido a utilização de um motor vibrador, dado
ao seu preço reduzido, fácil capacidade de compreensão do sinal sem necessidade de prestar
atenção e também pelo fato de que pode ser encontrado em qualquer dispositivo celular,
seja antigo ou novo, portanto pode-se obter de uma pilha de itens eletrônicos descartados.

O pequeno motor está sendo alimentado pelo Vcc, possuindo o diodo (D5) como
diodo de flyback, dessa forma protegendo contra o efeito indutivo do motor. O transistor

75

(Q2) está atuando como chave nesse circuito, ou seja, está variando entre o corte e a
saturação de forma a ligar/desligar o motor. Já o controle do sinal de base é realizado pela
ESP32.Por fim, os resistores R17 e R18 servem como limitadores de corrente, evitando
cenários de excesso de corrente que podem levar a danos em qualquer componentes do
circuito, sendo o resistor R18 possui como principal propósito a limitação da corrente
requerida pela fonte (I = Vcc/R18 ≈ 106mA), já que visando o uso de motores de vibração,
como os de celulares, se torna opcional visto que o motor é uma carga resistiva e indutiva
e portanto não necessita de um resistor limitador de corrente, pois só consumirá a corrente
de que necessita. Por fim, para conexão do motor de vibração é utilizado o terminal block
J7 para conexão.

4.6 Construção do Circuito

Esta plataforma serve como a fundação do projeto, provendo não apenas o suporte
mecânico para todos os componentes, mas também constituindo o sistema de interconexões
elétricas através de um conjunto de trilhas de cobre. A elaboração da PCB deste projeto foi
um processo deliberado, realizado com o auxílio de ferramentas de software de Automação
de Design Eletrônico (EDA), onde o layout foi cuidadosamente planejado para otimizar
tanto o desempenho elétrico quanto a usabilidade do dispositivo final.

Um dos aspectos mais críticos no design de uma PCB robusta é o tratamento da
malha de terra. Evitando rotear o terra como uma trilha fina e singular, optou-se por
uma abordagem mais eficaz: a utilização de uma malha de terra (ground plane), visando
empregar esta técnica para preencher as áreas vazias da placa com cobre e conectá-las ao
potencial de terra do circuito. A partir da implementação de uma malha de terra pode-se
oferecer um caminho de baixa impedância para o retorno da corrente de todos os sinais, o
que é fundamental para a estabilidade do sistema. Além disso, essa extensa área de cobre
atua como uma blindagem, oferecendo proteção contra campos eletromagnéticos (EMF)
e interferências (EMI), absorvendo ruídos externos e contendo as emissões do próprio
circuito, garantindo a integridade dos sinais mais sensíveis.

Também foi considerada a dimensão das trilhas condutoras durante o design. A
largura de cada trilha não foi definida de forma arbitrária, mas sim dimensionada com
base nas recomendações do próprio software, de forma a trilha suporte a corrente elétrica
destinada a ela sem superaquecer e também a geometria das trilhas foi otimizada para
reduzir o efeito antena que pode ocorrer a frequência elevadas.

Por fim, a organização dos componentes na placa foi planejada com o objetivo de
facilitar a montagem, o teste e a conexão pelo usuário final. Os conectores de entrada e
saída, como a porta USB, o conector Jack e os blocos de terminais para os sensores, foram
posicionados nas bordas da placa para garantir um acesso desobstruído. Internamente, os
componentes de sub-circuitos específicos, como o regulador de tensão e seus capacitores

76

de filtro, foram mantidos fisicamente próximos para tornar a manutenção futura mais
fácil, assim como os resistores variáveis foram posicionados ao lado um dos outros. Esse
layout criterioso resulta em um dispositivo que não é apenas eletricamente funcional, mas
também prático e ergonômico em seu uso.

4.7 Software

O desenvolvimento de lógica da programação do circuito ocorre em duas etapas,
sendo a primeira relacionada ao desenvolvimento de um firmware para o microcontrolador
e a segunda sendo o desenvolvimento de um software para um computador.

Abordando a primeira etapa, o dispositivo realiza a leitura das portas pré-definidas
do seu ADC para identificar qual a queda de tensão, em seguida, a partir de uma lógica
da programação baseada na utilização de uma look-up table identifica-se o valor mais
apropriado da leitura, e por fim, realiza-se o envio da leitura via MQTT ou comunicação
serial.

Na segunda etapa, ocorre principalmente o recebimento dos dados enviados, podendo
ser processados novamente, porém nesse momento está sendo focado na interface humano-
máquina, ou seja, na leitura e interpretação dos dados.

4.7.1 Acquisição da Look-Up Table

Para o desenvolvimento e aquisição da look-up table foi utilizada a metodologia
criada pelo e-tinker(Cheung; Kalitin; Weber, 2019), um dos maiores sites de projetos
open-source para dispositivos eletrônicos.

4.7.2 Firmware da ESP32

Como todo software, geralmente inicia-se pela definição das bibliotecas a serem
requisitadas pelo código, portanto, aquelas bibliotecas explicadas previamente serão requi-
sitadas nesse trecho.

1 // --- BIBLIOTECAS ---
2 #include <ArduinoJson.h>
3 #include <WiFi.h>
4 #include <PubSubClient.h>
5

6 // --- OBJETOS GLOBAIS ---
7 WiFiClient espClient;
8 PubSubClient client(espClient);
9

77

Em conjunto com as biblioteca também são definidos os objetos globais necessários
para o uso das bibliotecas, onde o objeto WiFiClient é criado para gerenciar a conexão de
rede de baixo nível (TCP/IP). Logo em sequência, este objeto é repassado ao PubSubClient
para realização da comunicação MQTT. Isso é necessário pois o MQTT depende de uma
camada de transporte de dados confiável para funcionar, e o WiFiClient fornece exatamente
essa funcionalidade.

Para armazenamento e manipulação dos dados é necessário a definição de variáveis
previamente ao uso, isso sendo uma necessidade da linguagem de programação utilizada
(C++), em oposição a outras, como o Python, onde pode-se criar a variável em conjunto
com a sua aplicação. Por escolha, nesse início as variáveis são definidas como constantes,
visto que são valores fixos que não devem se alterar, servindo principalmente para fins de
configuração, e também por aumentar a otimização do código. Começando pela definição
da variável da tabela de referência do ADC, tendo sido suprimida nesse texto para prover
uma leitura mais organizada.

1 // --- DEFINIÇÃO DA LOOKUP TABLE (LUT) ---
2 const float SENSOR_LUT[4096] = {
3 0.0000, 7.3621, 16.8967, 18.7303, 20.6698, 22.9096,
4 24.6291, 26.8393, 28.5342, 30.2974, 31.9839, 33.7291,
5 34.6141, 36.3150, 37.1009, 38.2713,
6 // ... (restante da tabela com 4096 valores) ...
7 4006.3198, 4008.2036, 4010.2319, 4012.2471, 4014.8879,
8 4017.3755, 4019.4678, 4021.5791, 4032.5591
9 };

10

Em seguida, são declaradas as variáveis necessárias para as conexões, sendo elas
as definições de WiFi, como Service Set Identifier (SSID) que é o nome da rede WiFi
a ser conectada, assim como a senha dessa mesma rede. Logo abaixo são definidas as
informações necessárias para a conexão com um servidor MQTT, nesse caso foi utilizado
um broker gratuito e de uso difundido, com capacidade para aplicações de MQTT 5.0,
3.1.1, e 3.1.

1

2 // --- CONFIGURAÇÕES WiFi ---
3 const char *ssid = "VIVOFIBRA-C451"; // <-- Altere para o nome da

sua rede↪→

4 const char *password = "H55x3CbGm8"; // <-- Altere para a senha da sua
rede↪→

78

5

6 // --- CONFIGURAÇÕES MQTT ---
7 const char *mqtt_broker = "broker.emqx.io";
8 const int mqtt_port = 1883;
9 const char *mqtt_username = "emqx";

10 const char *mqtt_password = "public";
11 const char *MQTT_TOPIC_PUB = "esp32/sensor_data"; // Tópico para

PUBLICAR os dados↪→

12

Como é um broker aberto há a possibilidade dos dados serem acessados por qualquer
indivíduo, porém seria necessário conhecimento do tópico associado a aplicação, tornando
então a probabilidade reduzida. Embora, caso haja a necessidade de aplicação em cenários
mais sigilosos, pode-se utilizar o IBM Watson para aplicação, sendo gratuito até um certo
limite de dados e mensagens diárias, permitindo também a definição de senhas. Para esse
projeto foi utilizado um broker gratuito e aberto que não há a necessidade de definição de
senha ou criação de tópicos, sendo hábil para pronto uso. É válido mencionar que não há
a necessidade da abertura de porta no roteador.

1

2 // --- CONFIGURAÇÕES DOS SENSORES E MOTOR ---
3 const int NUM_SENSORES = 5;
4 int sensorPins[NUM_SENSORES] = {32, 33, 34, 35, 36};
5 const int VALOR_MAXIMO_ADC = 4095;
6 const int MOTOR_PIN = 16;
7 const int PINO_SENSOR_GATILHO = 32;
8 const int PWM_FREQ = 5000;
9 const int PWM_CHANNEL = 0;

10 const int PWM_RESOLUTION = 8;
11 const int SENSOR_DEADZONE = 50; // Leituras do ADC abaixo deste valor

serão ignoradas (consideradas 0)↪→

12

13

As definições das constantes para sensores e motor são dependentes do circuito e
sensores aplicados, portanto irão variar de acordo com o equipamento utilizado. Nesse
cenário são definidos as quantidades de sensores inclusos no circuito, assim como quais os
pinos do ADC que estão conectados aos sensores e motor. Como um PWM é aplicado ao
motor, também é definidas as configurações associadas a sua configuração.

79

Nesse cenário, a vibração do motor varia de acordo com a força aplicada ao sensor
conectado ao pino 32. Uma zona morta foi definida de forma a que define um limiar mínimo
para a leitura do sensor. A sua definição foi necessária pois sensores analógicos podem ter
pequenas flutuações, geralmente devido a ruído, mesmo quando em repouso. Esta "zona
morta"evita que o motor reaja a esses ruídos, garantindo que ele só seja acionado por uma
pressão intencional e evitando variação constante do PWM e do motor, aumentando a
vida útil.

É sempre recomendado em um código a aplicação de funções auxiliares a fins
de melhoria de leitura do código, dessa forma o código fica mais fácil de compreender
inicialmente assim como evita repetições, mantendo a lógica principal limpa.

1

2 // --- FUNÇÃO PARA CONECTAR AO WIFI ---
3 void setup_wifi() {
4 delay(10);
5 Serial.println();
6 Serial.print("Conectando-se a ");
7 Serial.println(ssid);
8 WiFi.begin(ssid, password);
9 while (WiFi.status() != WL_CONNECTED) {

10 delay(500);
11 Serial.print(".");
12 }
13 Serial.println("");
14 Serial.println("WiFi conectado!");
15 Serial.print("Endereço IP: ");
16 Serial.println(WiFi.localIP());
17 }
18

A função auxiliar setup_wifi() tem como intuito a definição da conexão a rede
WiFi, utilizando a função interna da biblioteca WiFi.begin() para realizar a conexão e
a função WiFi.status() para verificar se a conexão obteve sucesso. Em caso de falha a
função continuará se repetindo até obter sucesso, isso é aplicado devido ao fato de ser
necessário para o envio de dados via MQTT. A função WiFi.localIP() tem como dever
somente demonstrar o endereço do dispositivo na rede para casos de diagnóstico de erro.

1

2 // --- FUNÇÃO DE CALLBACK PARA MENSAGENS MQTT RECEBIDAS ---

80

3 void callback(char *topic, byte *payload, unsigned int length) {
4 Serial.print("Mensagem recebida no tópico: ");
5 Serial.println(topic);
6 Serial.print("Mensagem: ");
7 for (int i = 0; i < length; i++) {
8 Serial.print((char)payload[i]);
9 }

10 Serial.println();
11 Serial.println("-----------------------");
12 }
13

A função callback() tem como intuito a conexão ao tópico MQTT como subscriber
e em seguida publicar na porta serial, dessa forma pode-se utilizar como método de
diagnóstico.

1

2 // --- FUNÇÃO PARA RECONECTAR AO MQTT ---
3 void reconnect_mqtt() {
4 while (!client.connected()) {
5 Serial.print("Tentando conectar ao broker MQTT...");
6 String client_id = "esp32-client-";
7 client_id += String(WiFi.macAddress());
8 if (client.connect(client_id.c_str(), mqtt_username, mqtt_password))

{↪→

9 Serial.println("conectado!");
10

11 // Após conexão, increve-se no tópico para receber de volta o que
enviamos.↪→

12 client.subscribe(MQTT_TOPIC_PUB);
13 Serial.print("Inscrito no tópico: ");
14 Serial.println(MQTT_TOPIC_PUB);
15

16 } else {
17 Serial.print("falhou, rc=");
18 Serial.print(client.state());
19 Serial.println(" tentando novamente em 2 segundos");
20 delay(2000);
21 }

81

22 }
23 }
24

25

É comum a queda da conexão com o broker do MQTT, dessa forma é importante
realizar uma verificação contínua antes da tentativa de envio e esperar a conexão ser refeita
de forma a continuar com o código. Em caso de falha, é então exposto na porta serial a
informação de erro necessária para realizar o diagnóstico.

1

2 // --- FUNÇÃO DE SETUP PRINCIPAL ---
3 void setup() {
4 Serial.begin(115200);
5 setup_wifi();
6 client.setServer(mqtt_broker, mqtt_port);
7 client.setCallback(callback);
8 analogSetAttenuation(ADC_11db);
9 ledcSetup(PWM_CHANNEL, PWM_FREQ, PWM_RESOLUTION);

10 ledcAttachPin(MOTOR_PIN, PWM_CHANNEL);
11 }
12

13

Na função setup() são realizadas as inicializações importantes para a continuação
do código, porém ela só ocorre uma vez, toda vez que a ESP32 é iniciada. Nessa função é
realizada a conexão com o serial e WiFi, chamando cada um a sua função representante.
Em seguida se configura o cliente MQTT com client.setServer() e registra a função callback.
Por fim, configura os periféricos de hardware: o ADC com analogSetAttenuation() para
leituras precisas na faixa completa de 0-4095, e o sistema de PWM com ledcSetup() e
ledcAttachPin() para preparar o controle do motor.

1

2 // --- FUNÇÃO DE LOOP PRINCIPAL ---
3 void loop() {
4 if (!client.connected()) {
5 reconnect_mqtt();
6 }

82

7 client.loop();
8

9 StaticJsonDocument<512> doc;
10 doc["qtd_sensores_utilizados"] = NUM_SENSORES;
11 JsonObject sensores = doc.createNestedObject("sensores");
12

13 int raw_adc_gatilho = 0;
14

15 for (int i = 0; i < NUM_SENSORES; i++) {
16 int raw_adc = analogRead(sensorPins[i]);
17 float forca_calibrada = 0;
18 if (raw_adc < 4096) {
19 forca_calibrada = SENSOR_LUT[raw_adc];
20 }
21

22 if (sensorPins[i] == PINO_SENSOR_GATILHO) {
23 raw_adc_gatilho = raw_adc;
24 }
25

26 char sensorKey[12];
27 sprintf(sensorKey, "sensor_0%d", i);
28 JsonObject sensorData = sensores.createNestedObject(sensorKey);
29 sensorData["forca"] = forca_calibrada;
30 }
31

32 int pwm_duty_cycle = 0;
33 if (raw_adc_gatilho > SENSOR_DEADZONE) {
34 pwm_duty_cycle = map(raw_adc_gatilho, SENSOR_DEADZONE,
35 VALOR_MAXIMO_ADC, 0, 255);
36 }
37 pwm_duty_cycle = constrain(pwm_duty_cycle, 0, 255);
38 ledcWrite(PWM_CHANNEL, pwm_duty_cycle);
39

40

41 char json_buffer[512];
42 serializeJson(doc, json_buffer);
43 client.publish(MQTT_TOPIC_PUB, json_buffer);
44 serializeJson(doc, Serial);
45 Serial.println();

83

46

47 delay(200);
48 }
49

A função loop() implementada no código representa a parte fundamental para
operação do dispositivo. A cada iteração, ela executa uma sequência precisa de tarefas
que transformam os dados de acordo com a lógica programada. O ciclo começa com uma
etapa de auto-verificação e manutenção, onde o dispositivo garante que sua conexão com
o broker MQTT está ativa, reconectando-se automaticamente se necessário utilizando a
função reconnect_mqtt() previamente discutida.

Em seguida é definida um espaço na memória para um objeto JSON que será
populado. Onda a biblioteca ArduinoJson gerencia essa memória. Logo depois entra-se
na fase de aquisição de dados. Metodicamente será lido o valor analógico de cada um dos
cinco pinos do ADC, porém esse dado será transformado, executando uma etapa crítica
de calibração, usando a leitura bruta como um índice para consultar a tabela de referência
(SENSOR _LUT para obter um valor de força preciso e significativo. Simultaneamente,
também é identificado e armazenado a leitura do sensor específico que controla o motor.

Com os dados em obtidos, o sistema passa para a fase de ação, nela a lógica de
acionamento do motor é acionada. Nessa etapa o motor tem a sua velocidade ajustada de
forma análoga à pressão aplicada no sensor. Utilizando a função map(), é transformada a
intensidade da força medida em um nível de potência PWM correspondente, garantindo
uma resposta suave e controlada.

Por fim, na fase de comunicação, é consolidado todos os dados calibrados dos
sensores em uma estrutura JSON padronizada para envio. Este estado do sistema é então
transmitido simultaneamente por dois canais, primeiramente é publicada via MQTT para
o broker, permitindo o monitoramento remoto, e em seguida enviada pela porta Serial.
O loop() se encerra com um delay() de 200ms, sendo feito para definir uma taxa de
amostragem (aproximadamente 5 vezes por segundo) e, crucialmente, para evitar o envio
excessivo de dados pela rede, o que poderia sobrecarregar o broker MQTT e causar uma
desconexão devido a excesso de dados.

Por fim, abaixo é possível visualizar um exemplo da estrutura do JSON criado
para envio via terminal e MQTT.

1

2 {
3 "qtd_sensores_utilizados": 5,
4 "sensores": {

84

5 "sensor_00": {
6 "valor_maximo": 1023,
7 "valor_minimo": 0,
8 "forca": 450
9 },

10 "sensor_01": {
11 "valor_maximo": 1023,
12 "valor_minimo": 0,
13 "forca": 512
14 },
15 "sensor_02": {
16 "valor_maximo": 1023,
17 "valor_minimo": 0,
18 "forca": 320
19 },
20 "sensor_03": {
21 "valor_maximo": 1023,
22 "valor_minimo": 0,
23 "forca": 680
24 },
25 "sensor_04": {
26 "valor_maximo": 1023,
27 "valor_minimo": 0,
28 "forca": 150
29 }
30 }
31 }
32

33

4.7.3 Software em Python

Com o código do firmware realizado e propriamente diagnosticado, pode-se então
partir para a execução do software responsável por receber os dados.

1

2 import serial
3 import numpy as np
4 import cv2 as cv
5 import json

85

6 import threading
7

8

9 # # Cria graph como uma variavel global; Armazena então o plot nessa
variavel↪→

10 # graph=1
11 qtd_graficos = 5
12 graph = list(range(qtd_graficos))
13

Iniciando-se pela declaração das bibliotecas, sendo necessárias para a realização e uso
de funções para realização de tarefas generalistas. Em seguida são declaradas as importação
de funções, sendo necessárias para aplicação do código de maneira mais organizada.
Também são definidas variáveis globais para uso em todos os cenários, principalmente
para as funções auxiliares.

1

2 def square_overleay(imagem, pixel_central_quadrado, lateral, valor_max,
valor_min, valor_atual):↪→

3 pixel_inicial_quadrado = [pixel_central_quadrado[0] - lateral,
pixel_central_quadrado[1] - lateral]↪→

4 pixel_final_quadrado = [pixel_central_quadrado[0] + lateral,
pixel_central_quadrado[1] + lateral]↪→

5

6 valor_atual = max(valor_atual, valor_min)
7 valor_atual = min(valor_atual, valor_max)
8

9 imagem[pixel_inicial_quadrado[0]:pixel_final_quadrado[0],
10 pixel_inicial_quadrado[1]:pixel_final_quadrado[1], 2] = 0 +

(valor_atual / valor_max) * 255↪→

11 imagem[pixel_inicial_quadrado[0]:pixel_final_quadrado[0],
12 pixel_inicial_quadrado[1]:pixel_final_quadrado[1], 1] = 255 -

(valor_atual / valor_max) * 255↪→

13 imagem[pixel_inicial_quadrado[0]:pixel_final_quadrado[0],
14 pixel_inicial_quadrado[1]:pixel_final_quadrado[1], 0] = 0
15

16 return imagem
17

18

86

19 def circle_overleay(imagem, pixel_central_circulo, raio, valor_max,
valor_min, valor_atual):↪→

20 pixel_inicial_quadrado = [pixel_central_circulo[1] - raio,
pixel_central_circulo[0] - raio] # X Y↪→

21 pixel_final_quadrado = [pixel_central_circulo[1] + raio,
pixel_central_circulo[0] + raio] # X Y↪→

22

23 # cv.rectangle(imagem, pixel_inicial_quadrado,
pixel_final_quadrado, (0, 0, 0), 10)↪→

24

25 valor_atual = max(valor_atual, valor_min)
26 valor_atual = min(valor_atual, valor_max)
27

28 # print("valor x_inicial: {}. valor x_final:
{}".format(pixel_inicial_quadrado[1], pixel_final_quadrado[1]))↪→

29 # print(imagem.shape)
30 for m in range(pixel_inicial_quadrado[0], pixel_final_quadrado[0]):
31 for n in range(pixel_inicial_quadrado[1],

pixel_final_quadrado[1]):↪→

32 modulo = np.sqrt((abs(m - pixel_central_circulo[1])) ** 2 +
(abs(n - pixel_central_circulo[0])) ** 2)↪→

33

34 if (modulo <= raio):
35 imagem[n, m, 2] = 0 + (valor_atual / valor_max) * 255
36 imagem[n, m, 1] = 255 - (valor_atual / valor_max) * 255
37 imagem[n, m, 0] = 0
38

39 # for i in range(1,raio):
40 # cv.circle(imagem,

(pixel_central_circulo[1],pixel_central_circulo[0]), i, (0 +
(valor_atual / valor_max) * 255,255 - (valor_atual / valor_max) *
255,0), 10)

↪→

↪→

↪→

41

42 return imagem
43

44

As funções de circle _overlay() e square _overlay() são funções auxiliares que
recebem uma imagem, nesse caso sendo uma imagem de uma mão, as coordenadas de um

87

ponto central (dedos da mão) e um valor de sensor. Com base nesse valor, ela desenha um
círculo colorido sobre a imagem, onde a cor do círculo varia de verde (baixa intensidade)
até vermelho (alta intensidade), criando um mapa de calor visual da força aplicada similar
a um semáforo. Somente a função do círculo é utilizada, representando um FSR circular,
porém em cenários onde o sensor possui uma forma quadrada pode ser aplicada a função
para desenhar um quadrado.

1

2 # https://medium.com/@vinay.dec26/
real-time-plotting-tool-in-opencv-1d1263b7fc99↪→

3 # https://github.com/2vin/opencv-plot
4 # Plot values in opencv program
5 class Plotter:
6

7 def __init__(self, plot_width, plot_height):
8 self.width = plot_width
9 self.height = plot_height

10 self.color = (255, 0, 0)
11 self.val = []
12 self.plot_canvas = np.ones((self.height, self.width, 3)) * 255
13

14 # Update new values in plot
15 def plot(self, val, sensor_numero, step_numeros, label="plot"):
16 #

self.val=collections.deque(maxlen=len(self.plot_canvas[0])-1)↪→

17 self.val.append(int(val))
18

19 # if (len(self.plot_canvas[0])> len(self.val)+step_numeros):
20 # self.val.append(int(val))
21 # else:
22 # shift(self.val, step_numeros)
23 # self.val[len(self.val)-1]=int(val)
24

25 while len(self.val) > self.width:
26 self.val.pop(0)
27 # print("Dentro do Plot: val = {}".format(self.val))
28 self.show_plot(label, sensor_numero, step_numeros)
29

88

30 ############## - UTILIZAR ESSE PLOT PARA NUMEROS SOMENTE POSITIVOS
- ####################↪→

31 # Show plot using opencv imshow
32 def show_plot(self, label, sensor_numero, step_numeros):
33 global graph
34

35 self.plot_canvas = np.ones((self.height, self.width, 3)) * 255
36 cv.line(self.plot_canvas, (0, int(self.height - 10)),

(self.width, int(self.height - 10)), (0, 255, 0), 1)↪→

37 offset_X_line = 10
38

39 # if (len(self.plot_canvas[0]) <=
len(self.val)+step_numeros+20):↪→

40 #
41 # shift(self.val, step_numeros+20)
42 # self.val[(len(self.val)- 1 - step_numeros +

20):(len(self.val)- 1)] = 0↪→

43

44 # print("len plot_canvas: {}. len val:
{}".format(len(self.plot_canvas[0]), len(self.val)))↪→

45 cv.line(self.plot_canvas, (offset_X_line, 10), (offset_X_line,
int(self.height)), (0, 255, 0), 1)↪→

46 for k in range(sensor_numero, len(self.val) - 1, step_numeros):
47 # print("valor k= {}".format(k))
48 cv.line(self.plot_canvas, (k + offset_X_line - (step_numeros

- 1), int(self.height - 10) - self.val[k]), (↪→

49 k + 1 + offset_X_line - (step_numeros - 1) *0,
int(self.height - 10) - self.val[k + step_numeros]),↪→

50 self.color, 1)
51 graph[sensor_numero] = self.plot_canvas
52 # cv.imshow(label, self.plot_canvas)
53 # cv.waitKey(10)
54

55

56

É criada a classe "Plotter", sendo ela uma classe customizada, criada para gerar os
gráficos de linha em tempo real. O método plot() recebe um novo valor, o adiciona a uma
lista histórica e chama o show _plot(), portanto ele efetivamente desenha o gráfico (eixos

89

e linhas) sobre um "canvas"(uma imagem em branco criada com NumPy) e armazena o
resultado em uma variável global para uso futuro.

1

2 # Carregando imagem a ser demonstrada
3 img_hand = cv.imread("hand_resized.png", cv.IMREAD_UNCHANGED)
4 # converte de BGR para RGB
5 img_hand_RGB = cv.cvtColor(img_hand, 4)
6

7 # Parâmetros para os sensores
8

9

10 pixel_central = [[143, 51], [73, 117], [50, 162], [89, 212], [250,
280]] # Y X↪→

11

12 N = [15, 15, 15, 15, 17] # Define o tamanho do quadrado
13

14 # Tamanhos pro resize da imagem img_hand_RGB
15

16

17 resize_X = 320
18 resize_Y = 640
19

20 min_pixel = 0 / qtd_graficos
21 max_pixel = resize_Y / qtd_graficos
22

23 dim = (resize_X, resize_Y)
24

25 # Create a plotter class object
26 p = Plotter(int(resize_X), int(max_pixel)) # X Y
27

28 # make sure the 'COM#' is set according the Windows Device Manager
29 ser = serial.Serial('COM3', 115200, timeout=1)
30 ser.reset_input_buffer()
31

32 qtd_points = 150
33 for i in range(qtd_points):
34 line = ser.readline().decode("utf-8") # read a byte string
35

90

36 try:
37 dict_json = json.loads(line)
38

39 qtd_graficos = dict_json.get("qtd_sensores_utilizados") #
Equivalente a quantidade de sensores↪→

40 valor_maximo =
list(range(dict_json.get("qtd_sensores_utilizados")))↪→

41 valor_minimo =
list(range(dict_json.get("qtd_sensores_utilizados")))↪→

42 valor = list(range(dict_json.get("qtd_sensores_utilizados")))
43 threads_grafico =

list(range(dict_json.get("qtd_sensores_utilizados")))↪→

44 # value =
list(range(dict_json.get("qtd_sensores_utilizados")))↪→

45

46 for i in range(qtd_graficos):
47 string_sensores_key = "sensor_00"
48 string_list = list(string_sensores_key)
49 string_list[len(string_sensores_key) - 1] = str(i)
50 string_sensores = ''.join(string_list)
51

52 valor_maximo[i] =
(dict_json.get("sensores").get(string_sensores).get("valor_maximo"))↪→

53 valor_minimo[i] =
(dict_json.get("sensores").get(string_sensores).get("valor_minimo"))↪→

54 valor[i] =
dict_json.get("sensores").get(string_sensores).get("forca")↪→

55

56 # print('iteração: {}. valor_maximo: {}. valor: {}. sensor:
{}'.format(i,valor_maximo[i],valor[i],string_sensores))↪→

57

58 # for i in range(qtd_graficos):
59 value = ((valor[i] - valor_minimo[i]) / (valor_maximo[i] -

valor_minimo[i])) * max_pixel↪→

60

61 # print('iteração: {}. VALOR: {}. value: {}. sensor:
{}'.format(i, valor[i], value, string_sensores))↪→

62

63 # threads_grafico[i]= threading.Thread(target=Plotter)

91

64 threads_grafico[i] = threading.Thread(p.plot(value, i,
qtd_graficos))↪→

65 threads_grafico[i].start()
66 img_hand_RGB = circle_overleay(img_hand_RGB,

pixel_central[i], N[i], valor_maximo[i], valor_minimo[i],↪→

67 valor[i])
68

69 # Multithreading: https://www.geeksforgeeks.org/
multithreading-python-set-1/↪→

70 for j in range(qtd_graficos):
71 threads_grafico[j].join()
72 if j < 1:
73 graph_final = graph[j]
74 else:
75 graph_final = np.vstack((graph_final, graph[j]))
76

77 # graph_final = np.array([graph[0], graph[1], graph[2],
graph[3], graph[4]]) # https://stackoverflow.com/
questions/44517809/ concatenate-multiple-numpy-arrays-in-one-array

↪→

↪→

78 # print(graph_final.shape)
79 # print(img_hand_RGB.shape)
80 both = np.hstack((img_hand_RGB, graph_final))
81

82 cv.namedWindow("canvas")
83 cv.imshow("canvas", both)
84 cv.waitKey(10)
85 # cv.destroyAllWindows()
86

87 # winsound.Beep(440+round(3*int(valor[0])), 200)
88

89

90 except json.JSONDecodeError as e:
91 print("JSON:", e)
92

93 ser.close()
94

O código começa com o carregamento da imagem, sendo ela denominada "hand
_resized.png"e carregada na memória, tendo como função servir de fundo para a visualização

92

dos círculos coloridos. Em seguida são definidos os parâmetros para coordenada dos círculos
e para a conexão serial, sendo conectado na porta COM, e é importante que o baudrate
seja igual para ambos o firmware e software.

Em seguida parte-se para a parte de construção lógica do programa, onde ele lê
continuamente os dados, processa as informações e atualiza a tela. O código pode ser
segmentado em quatro etapas:

1. Leitura e Decodificação: A função ser.readline() lê uma linha de texto da porta
serial, sendo que espera-se que essa linha seja uma string no formato JSON. O
bloco try/except garante que, caso a string estiver malformada, o programa não irá
travar, apenas imprimirá uma mensagem erro utilizada em diagnóstico. A função
json.loads() converte então a string em um dicionário Python.

2. Extração e Visualização: Um loop utilizando um for() percorre os dados de cada
sensor extraídos do dicionário, onde para cada sensor, irá chamar a função circle
_overleay() para desenhar ou atualizar o círculo colorido na imagem da mão. Em
sequência chama o método p.plot() para adicionar o novo ponto de dados ao gráfico
correspondente e redesenhá-lo.

3. Composição da Tela: Após processar todos os sensores, o script utiliza as funções
np.vstack() e np.hstack() do NumPy para juntar todas as imagens geradas, a imagem
de fundo da mão e os 5 gráficos, em uma única imagem final.

4. Exibição: O comando cv.imshow() exibe essa imagem composta em uma janela na
tela. A função cv.waitKey(10) faz uma pequena pausa, essencial para que o OpenCV
consiga processar os eventos da janela e redesenhá-la.

93

5 RESULTADOS OBTIDOS

Conforme proposto no decorrer desse documento, a criação de um dispositivo
de reabilitação de baixo custo, apoiado tanto por hardware e quanto suplementado via
software, foi o foco do desenvolvimento. Culminando em um circuito com preço aproximado
de mercado de R$ 70,00, representando 4,6% do salário mínimo brasileiro mensal (c. 2025),
tendo seu custo majoritariamente composto pelo dispositivo ESP32 e sensores FSR,
podendo o seu custo ser ainda reduzido caso o leitor possua um microcontrolador similar
a sua disposição.

Figura 34 – Visão tridimensional da placa do circuito

Fonte: Autoria própria

A placa do circuito impresso, também denominado de PCB (Printed Circuit
Board), foi construído de forma a minimizar o espaço assim como tornar a usabilidade
e o diagnóstico o mais simples possível. Contanto também com mounting holes, ou seja,
espaço para parafusos com configuração M3 diretamente na malha de terra, permiti-se
então a montagem a qualquer superfície e integração ao terra já existente.

94

Figura 35 – Visão do PCB do circuito

Fonte: Autoria própria

Associando o circuito a sua aplicação foi desenvolvido também códigos para aplica-
ção tanto no microcontrolador assim como em dispositivos de controles externos, como
computadores ou SBCs (Single Board Computers) como Raspberrys. Dessa forma pode-se
implementar o controle do dispositivo de formas distintas, aumentando a diversidade de
aplicações.

Figura 36 – Visão da imagem de saída do software

Fonte: Autoria própria

95

Com base nas otimizações e integrações foi desenvolvido um dispositivo que obteve
sucesso na criação de um sistema de alta performance para a mensuração em tempo real.
Um avanço fundamental foi a notável melhoria do sinal obtida através da aplicação de uma
Lookup Table (LUT), que converteu as leituras analógicas brutas e não-lineares do ADC
em dados calibrados e com maior precisão, eliminando ruídos e imprecisões. A capacidade
de envio de dados em dois canais permite uma operação diversificada, com capacidade para
envio via cabo e a distância. É de se destacar que toda esta funcionalidade foi alcançada
mantendo um custo total extremamente baixo, viabilizado pela utilização de componentes
eletrônicos básicos e da plataforma de baixo custo ESP32.

Para além da performance imediata, a arquitetura do sistema demonstra escalabi-
lidade e potencial de generalização, visto que a aplicação de protocolos de comunicação
como MQTT permite que o sistema seja facilmente expandido. Adicionalmente, a generali-
zação do circuito e do código-base foi projetado com uma estrutura de forma modular,
permitindo que os sensores de força (FSRs) sejam substituídos por qualquer outro tipo de
sensor analógico baseados na variação da resistência, como sensores de temperatura, luz
ou umidade, com alterações mínimas. Da mesma forma, o controle do atuador pode ser
adaptado para outros dispositivos, como servomotores ou relés, tornando este projeto não
apenas uma solução para um problema específico, mas uma plataforma flexível e adaptável
para uma vasta gama de futuras aplicações em automação e Internet das Coisas.

97

6 CONCLUSÃO

A conclusão deste trabalho culminou no desenvolvimento de uma solução prática,
escalável e de simples execução, alcançando com sucesso os objetivos propostos. Através
da integração de componentes de baixo custo e softwares de código aberto, foi possível
construir um sistema robusto para a aquisição, transmissão e visualização de dados de
sensores em tempo real. Possuindo uma arquitetura que emprega uma comunicação dupla,
tanto Serial quanto MQTT, e uma calibração precisa via Lookup Table, demonstrou ser
não apenas funcional, mas também flexível e pronta para expansão, validando a viabilidade
da abordagem escolhida.

O resultado final materializa-se em um protótipo funcional de um dispositivo para
controle e sensoriamento, onde embora sejam empregados componentes simples eles são
impulsionados por lógicas de software para aumentar a sua eficiência, integrando de forma
coesa múltiplos conceitos da engenharia biomédica. O projeto abrangeu todo o espectro do
desenvolvimento, partindo da seleção e montagem do hardware (microcontrolador, sensores
e circuito de acionamento), passando pelo desenvolvimento do firmware embarcado para
processamento e controle, até a criação do software de visualização que traduz dados
brutos em informação visualmente intuitiva. Essa jornada completa, do físico ao digital,
exemplifica a interdisciplinaridade inerente à área da engenharia eletrônica.

Torna-se também fundamental ressaltar que a prototipagem foi concebida não como
um fim em si mesma, mas como uma plataforma robusta para validação e iteração futura.
O sistema foi desenvolvido com uma clara orientação para a aplicação prática, visando
uma futura avaliação de desempenho em ensaios clínicos e a utilização em cenários reais,
seguindo sempre as normativas associadas a segurança do indivíduo. A precisão obtida
com a calibração, aliada à capacidade de monitoramento remoto, estabelece uma base
sólida para que este protótipo evolua para um dispositivo clinicamente e didaticamente
relevante, capaz de coletar dados para diagnóstico, seja em reabilitação ou pesquisa.

Este projeto, portanto, serve como um evidência da missão crucial que a engenharia
biomédica desempenha na criação de soluções inovadoras visando o auxílio geral à sociedade.
Ao conectar conhecimentos de diversas áreas, como eletrônica, programação e fisiologia, é
possível desenvolver tecnologias acessíveis e eficazes que respondem a necessidades humanas
concretas.

99

REFERÊNCIAS

BRONZINO, J. 1 - biomedical engineering: A historical perspective. In: ENDERLE,
J. D.; BLANCHARD, S. M.; BRONZINO, J. D. (ed.). Introduction to Biomedical
Engineering. Second. Boston: Academic Press, 2005, (Biomedical Engineering). p. 1–29.
ISBN 978-0-12-238662-6. Disponível em: https://www.sciencedirect.com/science/article/
pii/B9780122386626500033.

CHEUNG, H.; KALITIN, C.; WEBER, H. ESP32 ADC Calibrate: Source code
for esp32 adc calibration. GitHub, 2019. Repositório de código-fonte. Disponível em:
https://github.com/e-tinkers/esp32-adc-calibrate/blob/master/src/main.cpp. Acesso em:
30 nov. 2025.

LUNDBORG, G.; ROSéN, B. The sensor glove in preoperative conditioning and
postoperative rehabilitation. In: Hand Transplantation. Milano: Springer, 2007.

LUNDBORG, G.; ROSéN, B.; LINDBERG, S. Hearing as substitution for sensation:
A new principle for artificial sensibility. The Journal of Hand Surgery, SBC, p.
219–2024, 1999.

MDHC, M. dos Direitos Humanos e da C. Plano Novo Viver sem Limite. 2023. Dispo-
nível em: https://www.gov.br/mdh/pt-br/navegue-por-temas/pessoa-com-deficiencia/
acoes-e-programas/plano-novo-viver-sem-limite. Acesso em: 30 nov. 2025.

MENDES, R. M. Desenvolvimeno e aplicação de um modelo de luva sensorial.
2010. Dissertação (Dissertação de Mestrado) — Universidade de São Paulo - Faculdade de
Medicina de São Paulo, 2010.

RESWICK, J. Rehabilitation engineering. Annual review of rehabilitation, v. 1, p.
55–79, 1980.

https://www.sciencedirect.com/science/article/pii/B9780122386626500033
https://www.sciencedirect.com/science/article/pii/B9780122386626500033
https://github.com/e-tinkers/esp32-adc-calibrate/blob/master/src/main.cpp
https://www.gov.br/mdh/pt-br/navegue-por-temas/pessoa-com-deficiencia/acoes-e-programas/plano-novo-viver-sem-limite
https://www.gov.br/mdh/pt-br/navegue-por-temas/pessoa-com-deficiencia/acoes-e-programas/plano-novo-viver-sem-limite

ANEXOS

103

ANEXO A – CÓDIGO PARA OBTENÇÃO DA LOOK-UP TABLE

1

2 #include <Arduino.h>
3 #include <driver/dac.h>
4

5 // https://github.com/e-tinkers/esp32-adc-calibrate/
blob/master/src/main.cpp↪→

6 // Based on original work from Helmut Weber
(https://github.com/MacLeod-D/ESP32-ADC)↪→

7 // that he described at
https://esp32.com/viewtopic.php?f=19&t=2881&start=30#p47663↪→

8 // Modified with bug-fixed by Henry Cheung
9 //

10 // Build a ESP32 ADC Lookup table to correct ESP32 ADC linearity issue
11 // Run this sketch to build your own LUT for each of your ESP32, copy

and paste the↪→

12 // generated LUT to your sketch for using it, see example sketch on how
to use it↪→

13 //
14 // Version 2.0 - switch to use analogRead() instead of esp-idf function

adcStart()↪→

15 // Version 1.0 - original adoptation and bug fix based on Helmut Weber
code↪→

16

17 // #define GRAPH // uncomment this for print on Serial Plotter
18 #define FLOAT_LUT // uncomment this if you need float LUT
19 #define ADC_PIN 35 // GPIO 35 = A7, uses any valid Ax pin as you

wish↪→

20

21 float Results[4097];
22 float Res2[4096*5];
23

24 void dumpResults() {
25 for (int i=0; i<4096; i++) {
26 if (i % 16 == 0) {
27 Serial.println();
28 Serial.print(i); Serial.print(" - ");

104

29 }
30 Serial.print(Results[i], 2); Serial.print(", ");
31 }
32 Serial.println();
33 }
34

35 void dumpRes2() {
36 Serial.println(F("Dump Res2 data..."));
37 for (int i=0; i<(5*4096); i++) {
38 if (i % 16 == 0) {
39 Serial.println(); Serial.print(i); Serial.print(" - ");
40 }
41 Serial.print(Res2[i],3); Serial.print(", ");
42 }
43 Serial.println();
44 }
45

46 void setup() {
47 dac_output_enable(DAC_CHANNEL_1); // pin 25
48 dac_output_voltage(DAC_CHANNEL_1, 0);
49 analogReadResolution(12);
50 Serial.begin(500000);
51 delay(1000);
52 }
53

54 void loop() {
55

56 Serial.print(F("Test Linearity "));
57 for (int j=0; j<500; j++) {
58 if (j % 100 == 0) Serial.print(".");
59 for (int i=0;i<256;i++) {
60 dac_output_voltage(DAC_CHANNEL_1, (i & 0xff));
61 delayMicroseconds(100);
62 Results[i*16]=0.9*Results[i*16] + 0.1*analogRead(ADC_PIN);
63 }
64 }
65 Serial.println();
66 // dumpResults();
67

105

68 Serial.println(F("Calculate interpolated values .."));
69 Results[4096] = 4095.0;
70 for (int i=0; i<256; i++) {
71 for (int j=1; j<16; j++) {
72 Results[i*16+j] = Results[i*16] + (Results[(i+1)*16] -

Results[(i)*16])*(float)j / (float)16.0;↪→

73 }
74 }
75 // dumpResults();
76

77 Serial.println(F("Generating LUT .."));
78 for (int i=0; i<4096; i++) {
79 Results[i]=0.5 + Results[i];
80 }
81 // dumpResults();
82

83 Results[4096]=4095.5000;
84 for (int i=0; i<4096; i++) {
85 for (int j=0; j<5; j++) {
86 Res2[i*5+j] = Results[i] + (Results[(i+1)] - Results[i]) *

(float)j / (float)10.0;↪→

87 }
88 }
89 // dumpRes2();
90

91 for (int i=1; i<4096; i++) {
92 int index;
93 float minDiff=99999.0;
94 for (int j=0; j<(5*4096); j++) {
95 float diff=fabs((float)(i) - Res2[j]);
96 if(diff<minDiff) {
97 minDiff=diff;
98 index=j;
99 }

100 }
101 Results[i]=(float)index;
102 }
103 // dumpResults();
104

106

105 for (int i=0; i<(4096); i++) {
106 Results[i]/=5;
107 }
108

109 #ifdef GRAPH
110

111 while(1) {
112 for (int i=2; i<256; i++) {
113 dac_output_voltage(DAC_CHANNEL_1, (i & 0xff));
114 delayMicroseconds(100);
115 float r = Results[analogRead(ADC_PIN)];
116 Serial.print(i*16); Serial.print(" "); Serial.println(r);
117 }
118 }
119

120 #else
121

122 Serial.println();
123

124 #ifdef FLOAT_LUT
125 Serial.println("const float ADC_LUT[4096] = { 0,");
126 for (int i=1; i<4095; i++) {
127 Serial.print(Results[i],4); Serial.print(",");
128 if ((i%15)==0) Serial.println();
129 }
130 Serial.println(Results[4095]);
131 Serial.println("};");
132 #else
133 Serial.println("const int ADC_LUT[4096] = { 0,");
134 for (int i=1; i<4095; i++) {
135 Serial.print((int)Results[i]); Serial.print(",");
136 if ((i%15)==0) Serial.println();
137 }
138 Serial.println((int)Results[4095]);
139 Serial.println("};");
140 #endif
141 while(1);
142 #endif
143

107

144 }
145

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Objetivo

	Revisão Bibliográfica
	Engenharia Biomédica
	Engenharia de Reabilitação
	Visão do Cenário Brasileiro

	Tecnologia assistiva
	Aplicação

	Materiais utilizados
	Hardware
	Listagem completa

	Encapsulamentos
	Resistores
	Resistor variável (Potenciômetro)
	Force Sensing Resistors (FSR)
	Construção e Princípio de Funcionamento
	Considerações adicionais
	Circuitos de aplicação

	Capacitor
	Fusível
	Diodo
	Diodo Zenner
	LED - Light Emitting Diode
	Transistor de Junção Bipolar
	Conectores de Entrada/Saída
	Conector tipo Jack
	USB A
	Terminal Block
	barramento de pinos
	Chave de 3 estados
	Botão e Chaves

	motor de vibração
	Circuitos Integrados
	Regulador de tensão LM7805
	microcontrolador ESP32

	Software
	Linguagens e estruturas de programação
	Ambientes de desenvolvimento
	Bibliotecas empregadas
	Protocolos de comunicação aplicados

	Metodologias empregadas
	Hardware
	Alimentação
	Controle
	Conversor ADC
	Aplicação de Look-up Table

	Entrada de Sinal
	Saídas do Circuito
	Construção do Circuito
	Software
	Acquisição da Look-Up Table
	Firmware da ESP32
	Software em Python

	Resultados Obtidos
	Conclusão
	Referências
	ANEXOS
	Código para obtenção da Look-up Table

