UNIVERSIDADE DE SAO PAULO
EscoLA DE ENGENHARIA DE SAO CARLOS
DEPARTAMENTO DE ENGENHARIA ELETRICA

Luis FELIPE WOLF BATISTA

Implementacao, Controle e Monitoracao
de uma Plataforma Movel Utilizando

Linux Embarcado

Sao Carlos
2013

Luis FELIPE WOLF BATISTA

Implementacao, Controle e Monitoracao
de uma Plataforma Movel Utilizando

Linux Embarcado

Trabalho de Conclusao de Curso apresentado
a Escola de Engenharia de Sao Carlos como
parte dos requisitos para a obtencao do titulo

de Engenheiro de Computacao.

Area de concentragao: Sistemas Embarcados

ORIENTADOR: Prof. Dr. Evandro Luis L. Rodrigues

Sao Carlos
2013

AUTORIZO A REPRODUCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Batista, Luis Felipe Wolf

B333i Implementacdo, controle e monitoracdo de uma
plataforma mével utilizando Linux embarcado. / Luis
Felipe Wolf Batista; orientador Evandro Luis Linhari
Rodrigues. Sédo Carlos, 2013.

Monografia (Graduacdo em Engenharia de Computacéo)
-- Escola de Engenharia de S&o Carlos da Universidade
de Sdo Paulo, 2013.

1. Microcontroladores. 2. Sistemas Embarcados. 3.
Linux Embarcado. 4. BeagleBone. 5. Arduino. 6. Robd
Mével. 7. Rede sem fio. I. Titulo.

FOLHA DE APROVACAO

Nome: Luis Felipe Wolf Batista

Titulo: “Implementagdo, controle e monitoragdo de uma plataforma movel
utilizando Linux embarcado”

Trabalho de Conclusio de Curso defendido em %2 / 7 1/ % 0/ 5

Comissao Julgadora: Resultado:

Prof. Associado Evandro Luis Linhari Rodrigues

Orientador - SEL/EESC/USP A201A450).
Prof. Dr. Julio Cézar Estrella APROVATO -
SSC/ICMC/USP

Prof. Dr. Valdir Grassi Junior A ARS)) OA o)
SEL/EESC/USP

Coordenador pela EESC/USP do Curso de Engenharia de Computacio:

Prof. Associado Evandro Luis Linhari Rodrigues

Onde quer que vocé esteja, vocé sempre estard ld.

Desconhecido

A munha familia,
por todo apoto, confianca e in-

centivo

Agradecimentos

Aos meus pais, Edilson e Lucia, que sempre me incentivaram e apoiaram.

A minha irmé, Luciana, que sempre foi um exemplo a ser seguido.

A minha namorada, Carolina, pelo carinho, paciéncia e compreensao.

Ao Prof. Evandro, que me orientou, aconselhou e motivou ao longo do projeto.
Aos meus colegas, Juliano e André, pelo companheirismo e ajuda.

Aos amigos que fiz durante a graduacao, pelos momentos de alegria.

Aos professores, pelas ligoes ensinadas, mesmo que, por vezes, da maneira dificil.

Resumo

Com a rapida evolugao dos sistemas embarcados, as plataformas que utilizam Linux
embarcado tém ganhado bastante espago no mercado e tém se tornado cada vez mais
populares. A utilizacao de sistemas operacionais completos em ambientes embarcados
aumenta significativamente o poder de processamento e a gama de possibilidades que
podem ser exploradas. Nesse projeto é desenvolvida uma plataforma maével que pode ser
controlada remotamente por um computador e possui a capacidade de tomar algumas
decisoes de forma automaética e independente, como por exemplo frear evitando a colisao
com obstéaculos proximos. Com a utilizacao de um microcontrolador e uma plataforma
com Linux Embarcado, o monitoramento e controle da plataforma movel pode ser feito
de maneira relativamente simples. Para alcancar tais objetivos é utilizado um Arduino
em conjunto com uma BeagleBone. O computador remoto estabelece uma comunicagao
com a BeagleBone, a BeagleBone troca dados com o Arduino que, por sua vez, controla

os sensores e atuadores permitindo monitorar e controlar a plataforma maével.

Palavras-chave: Microcontroladores, Sistemas Embarcados, Linux Embarcado,

BeagleBone, Arduino, Rob6é Moével, Rede sem fio.

Abstract

With the rapid development of embedded systems, platforms that use Embedded Linux
has gained enough market space and have become increasingly popular. The use of com-
plete operating systems in embedded environments significantly increases the processing
power and the range of possibilities that can be explored. In this project is developed
a mobile platform that can be remotely controlled by a computer and has the ability to
make some decisions automatically and independently, such as avoiding collisions with
nearby obstacles. By using a microcontroller and Embedded Linux platform, the mon-
itoring and control of the mobile platform can be accomplished in a relatively simple
manner. To achieve these goals an Arduino is used in conjunction with a BeagleBone.
The remote computer establishes communication with the BeagleBone, the BeagleBone
exchanges data with Arduino, which controls the sensors and actuators making it possible

to monitor and control the mobile platform.

Keywords: Automation, Microcontrollers, Embedded Systems, Embedded

Linux, BeagleBone, Arduino, Robotics, Wireless Networks.

Lista de llustracoes

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

4.1

Arduino Leonardo. 31
BeagleBone Rev AG. 32
Diagrama de Blocos da BeagleBone extraido do datasheet[7]. 33
Conversor de Nivel Logico BOB-08745. 34
Adaptador Wireless USB Edimax EW-7811Un. 34
Carro de controle remoto (RadioShack 60-4208). 35
Servo HCAMO149. e 36
Controlador do Motor DRIO002. 36
Sensor de Corrente RB-Dfr-149. 37
Sensor Ultrassonico HCSRO4. 38
Fonte de alimentagao adaptada. 38
Diagrama de Blocos dos Componentes. 39
Diagrama das conexoes dos componentes. 40
Imagem do protétipo com os componentes temporariamente instalados. 41
Interface grafica para o controlador.o 46
Controle dos sensores e atuadores a partir do Arduino. 48
Fluxograma do cédigo do Arduino. 48
Funcionamento do sensor de distancia. 50
Etapas de comunicacao de acordo com o tipodedado 52
Comunicagao entre o computador e a BeagleBone. 53
Comunicagao entre a BeagleBone e o Arduino. 54
Conexoes para comunicagao serial entre o Arduino e a BeagleBone. b}

Numero de pacotes transmitidos pelo protocolo de comunicacao em fun¢ao do

tempo. e e e e e 58
Atraso gerado devido a sobrecarga darede. 59
Perda de pacotes devido a sobrecarga darede. 60

Lista de Tabelas

3.1
3.2
3.3
3.4
3.5
3.6

Caracteristicas do Arduino Leonardo 32
Caracteristicas da BeagleBone. 0oL 33
Especificacoes do Motor Servo. 35
Especificacoes do DRIO002. oo 37
Caracteristicas do Sensor de Corrente RB-Dfr-149. 37
Caracteristicas do Sensor Ultrassonico HC-SR04. 38

Lista de Abreviaturas

OS — Operating System

ARM — Advanced RISC Machines

USB — Universal Serial Bus

GPIO — General Pourpose Input Oputput
SSH — Secure Shell

UDP — User Datagram Protocol

TCP — Transfer Control Protocol
UART — Universal Asynchronous Receiver/Transmitter
PWM — Pulse-width Modulation

SD — Secure Digital

LCD — Liquid Crystal Display

12C — Inter-Integrated Circuit

CAM — Controller Area Network

HTTP — Hypertext Transfer Protocol
DNS — Domain Name System

USB — Unawversal Serial Bus

19

Sumario

1 Introducao

1.1 Introdugdo
1.2 Objetivos
1.3 Justificativao
1.4 Organizacao do trabalho L

2 Fundamentacgao Teoérica

2.1 BeagleBone
2.2 Arduino
2.3 User Datagram Protocol

3 Desenvolvimento

3.1 Materiais
3.2 Montagem
3.3 Configuracdo
3.4 Implementacao

4 Resultados

4.1 Consumo de Energia
4.2 Protocolo de Comunicagao
4.3 Sensor de Distancia
4.4 Sensor de Corrente

5 Conclusao
Referéncias Bibliograficas
Apéndices

A Codigo do Arduino

23
23
24
25
25

27
27
28
29

31
31
39
41
46

57
o7
o7
60
61

63

65

67

69

B Aplicagao servidora em Python

C Script de inicializagao para utilizagcao do UART2
D Cédigo em Python da interface de controle

E Coédigo em Python para monitorar a laténcia

F Cédigo em Python para monitorar os sensores

73

75

77

79

81

Capitulo 1

Introducao

1.1 Introducao

Antigamente, o software open source era visto com um certo ceticismo, mas com o
passar do tempo tornou-se evidente que esse modelo de desenvolvimento jé esta bastante
solidificado e tem se mostrado muito eficiente. Atualmente, o mesmo tem acontecido com
o hardware. H& mais de uma década, houve uma explosao de empresas que publicaram
parte do seu codigo fonte, permitindo assim o desenvolvimento de plataformas de hardware
open source|12].

Uma pesquisa sobre o impacto do Software Livre e de Codigo Aberto (SL/CA) na
Industria de Software do Brasil realizada pelo Observatorio Econémico da Sociedade Sof-
tex em parceria com o Departamento de Politica Cientifica e Tecnologica da Unicampl|1],
apontou que os canais de comunicacao proporcionados pela Internet levaram a emergéncia
de oportunidades de exploragao de economias para a industria de software.

Percebe-se que o mesmo esta acontecendo com a industria de hardware. Um 6timo
exemplo é o caso do Arduino[5], uma plataforma de prototipagem eletronica de hardware
livre que ganhou muita forca devido a sua caracteristica de codigo aberto e sua comunidade
online extremamente ativa e colaborativa.

O hardware open source nao esta limitado apenas ao escopo de microcontroladores.
Com o desenvolvimento da eletronica e a modernizagao dos sistemas embarcados, os
beneficios do hardware aberto tém conquistado um poderoso aliado: o Linux.

Muitos desenvolvedores de sistemas embarcados que historicamente tém baseado suas
aplicagoes em plataformas de microcontroladores estao descobrindo que a utilizacao de
sistemas com Linux abre portas para um conjunto muito rico e diversificado de modu-
los de software e plug-ins sem nenhum custo e prontos para serem utilizados|2]. Uma
vasta gama de interfaces e pilhas de comunica¢ao como TCP/IP, USB e muitos outros
estao disponiveis. Estas pilhas e drivers costumam ser amplamente utilizados e, como
resultado, sao bastante robustos. Na maioria dos casos, os problemas potenciais ja foram

encontrados por outros desenvolvedores que compartilharam as suas descobertas com o

24 1. INTRODUCAO

resto da comunidade.

Outra vantagem do desenvolvimento em Linux embarcado é que o Linux fornece uma
camada de abstracao subjacente acima do hardware|2]. Ao contrario do desenvolvimento
baseado na configuracao direta de registradores, onde a mudanca para uma nova familia
de microcontroladores significaria reescrever grande parte do software ja desenvolvido.
Uma mudanga para um processador diferente em sistemas com Linux nao exige redesen-
volvimento de firmware, em nivel de sistema ou aplicativo de software.

O rapido avango do software de coédigo aberto criou a necessidade de hardware open
source, que tem ajudado estudantes, desenvolvedores e entusiastas a criarem projetos
inovadores de grande impacto na sociedade de hoje. Em especial, grande parte desses
projetos envolvem o desenvolvimento de plataformas roboéticas.

A roboética é um ramo educacional e tecnologico que trata de sistemas compostos por
partes mecanicas controladas por circuitos eletronicos e por logicas de programacao. Dessa
forma os sistemas mecéanicos podem ser controlados manualmente ou automaticamente,
permitindo a interagao com o mundo fisico.

O ato de construir e programar um robd exige a combinagao de conhecimentos de
diversas areas, o que da a robodtica um carater multidisciplinar. Devido a essa carac-
teristica, a robotica é uma Otima ferramenta de auxilio ao ensino. Mesclando a teoria
com a pratica ela é capaz de estimular nos alunos conceitos como: capacidade de solucio-
nar problemas, senso critico, integracao de disciplinas, criatividade, trabalho em equipe,
autodesenvolvimento e etc.

Neste trabalho é abordado o desenvolvimento de uma plataforma movel utilizando
Linux Embarcado. Essa plataforma modvel pode ser controlada remotamente por um

computador.

1.2 Objetivos

Tendo em vista o cenério atual para desenvolvimento em plataformas embarcadas, o
principal objetivo deste trabalho é aprofundar o conhecimento necessério para a integracao
de software de alto nivel com sistemas eletrénicos de baixo nivel. Por isso é proposto o
desenvolvimento de uma plataforma maével, que possa ser explorada didaticamente e que

apresente as seguintes caracteristicas:

m Utilizacao de hardware open source;
m Utilizacao de Linux embarcado;
m Controlavel por um computador remoto, por meio de uma rede;

m Altamente personalizavel.

1.3. JUSTIFICATIVA 25

1.3 Justificativa

O desenvolvimento de uma plataforma movel baseada em hardware open source é
uma alternativa relativamente barata que permite aprofundar o conhecimento teorico e
pratico envolvido. O desenvolvimento completo da plataforma moével exige o estudo e
conhecimento do projeto como um todo. Isso envolve desde a utilizagao de componen-
tes eletronicos de baixo nivel até a programacao de interfaces gréaficas e protocolos de

comunicagao através da rede.

1.4 Organizacao do trabalho
Este trabalho esté estruturado em capitulos, sendo eles divididos da seguinte maneira:

m Fundamentagao Tedrica: apresentagao dos conceitos relevantes para o correto

entendimento do presente trabalho;

m Desenvolvimento: apresentacao dos materiais utilizados, de como foi feita a mon-
tagem da plataforma movel, da configuracao dos componentes e dos métodos utili-

zados no trabalho;
m Resultados: apresentagao e discussao dos resultados obtidos;

m Conclusao: validagao dos objetivos do trabalho e conclusoes finais.

Capitulo 2

Fundamentacao Tedrica

A elaboracao deste projeto envolve a utilizacao de diferentes componentes, cada um
com suas funcionalidades e particularidades. Nas se¢oes a seguir serd desenvolvido um
breve embasamento teérico de alguns dos componentes e tecnologias utilizados ao longo

do desenvolvimento do projeto.

2.1 BeagleBone

A BeagleBone|[6] ¢ uma plataforma aberta pronta para uso e prototipagem réapida
de hardware, desenvolvimento de software e firmware. Langada nos Estados Unidos em
2008, BeagleBoard.org é uma comunidade open-source que fornece aos desenvolvedores
e entusiastas os recursos de que precisam para desenvolver rapidamente novos produtos
para o mercado e, a0 mesmo tempo, reduzir seus riscos|6].

Seguindo o sucesso das ferramentas de desenvolvimento BeagleBoard e BeagleBoard-
XM, a BeagleBoard.org criou a BeagleBone, que pode facilitar para uma equipe de de-
senvolvimento a transigdo para o mundo open source|2|. Para aqueles que ja participam
da comunidade open source, a BeagleBone pode funcionar como uma plataforma de de-
senvolvimento estavel, totalmente disponivel e suportada pelo universo diversificado de
recursos de codigo aberto, bem como o sistema de suporte do site BeagleBoard.org.

A comunidade open source hospeda os mais recentes desenvolvimentos de software,
foruns e chats ao vivo e interativos que colaboram para um facil desenvolvimento de
solucoes na plataforma. A organizacao também criou varias plataformas de hardware
para ajudar a simplificar desenvolvimentos baseados em ARM][19].

Uma caracteristica interessante da BeagleBone é que ela pode ser ligada a uma Beagle-
Board ou qualquer computador Linux via USB ou Ethernet e operar como um modulo de
expansao para ele. Além disso a BeagleBone permite a expansao em modulos conhecidos
como capes. Esse conceito é bastante parecido com as shields do Arduino, permitindo

adicionar periféricos de maneira simples e altamente customizavel.

28 2. FUNDAMENTACAO TEORICA

Existem diversas plataformas de hardware opensource disponiveis no mercado, como
por exemplo a Raspberry Pi, que tem ganhado bastante visibilidade. Algumas das van-
tagens da Raspberry Pi incluem um alto poder de processamento de imagens e uma
comunidade extremamente ativa. Entretanto, existem algumas caracteristicas da Beagle-
Bone que justificam a sua escolha em detrimento da Raspberry Pi. Essas caracteristicas
envolvem a facilidade de expansao com a utilizagao das capes e a grande quantidade de
interfaces para comunicacao com sensores e outros dispotivos de baixo nivel.

Essas caracteristicas fazem da plataforma um sucesso em aplicagoes como por exem-
plo: rede de robds auténomos sem fio, kits de educacao eletronica, dispositivos de jogos,
automagao de residéncias entre outras. BeagleBone é uma plataforma de desenvolvimento
profissional adequada para engenheiros, designers e desenvolvedores, e também amadores.

O sistema operacional padrao que é distribuido junto com a BeagleBone é conhecido
como Angstrom|[3]. De acordo com o manual da distribuicao[14], o sistema operacional foi
iniciado por um pequeno grupo de pessoas que trabalharam nos projetos OpenEmbedded,
OpenZaurus e OpenSimpad com o intuito de unificar os esforgos e disponibilizar uma
distribuicao estavel e amigéavel para sistemas embarcados como handhelds, set-top boxes,
equipamentos de armazenamento conectados na rede e outros.

Além de executar o kernel Linux, muitos ambientes de desenvolvimento sao suportados
pela comunidade e desenvolvedores, tais como Android, OpenEmbedded, QNX, Ubuntu,
Symbian, Debian, Fedora, Gentoo, FreeBSD e outros.

2.2 Arduino

O Arduinol5] foi projetado com a finalidade de ser de facil entendimento, de facil pro-
gramagcao e de facil aplicacao, além de ser multi plataforma, podendo ser configurado em
ambientes Linux, Mac OS e Windows. Além disso, um grande diferencial deste dispositivo
é ser mantido por uma comunidade que trabalha na filosofia open source, desenvolvendo
e divulgando gratuitamente seus projetos|18|.

De acordo com o site oficial[5], o Arduino é uma plataforma de prototipagem eletro-
nica de hardware livre, com suporte de entrada e saida embutido e uma linguagem de
programagcao padrao. O objetivo desse projeto de hardware livre é criar ferramentas que
sao acessiveis, com baixo custo, flexiveis e de facil utilizacao por artistas e amadores.

O Arduino é utilizado em varios programas educacionais ao redor do mundo, particu-
larmente por designers e artistas que desejam desenvolver os projetos com facilidade sem
a necessidade de um entendimento mais profundo dos detalhes técnicos que estao por tras
das suas criagoes|16].

Arduino é melhor conhecido pelo seu hardware, mas também precisa de software para
programar esse hardware. Tanto o software como o hardware sao chamados de "Arduino".

A combinagao deles permite a cria¢do de projetos que interagem com o mundo fisico[16].

2.3. USER DATAGRAM PROTOCOL 29

2.3 User Datagram Protocol

O User Datagram Protocol (UDP) é um protocolo da camada de transporte. Ele é
descrito na RFC 768 e permite que a aplicagao escreva um datagrama encapsulado em
um pacote IPv4 ou IPv6, e envid-lo ao destino desejado. Entretanto, nao ha qualquer
tipo de garantia que o pacote sera entregue ao destinatario final.

O protocolo UDP tem a caracteristica de nao implementar a confiabilidade. Caso
garantias sejam necessarias, ¢ preciso implementar uma série de estruturas de controle,
que podem utilizar, por exemplo, timeouts, retransmissoes, acknowlegments, controle de
fluxo, e outras. Cada datagrama UDP tem um tamanho e pode ser considerado como
um registro indivisivel, diferentemente do TCP, que se trata de um protocolo orientado a
fluxos de bytesi sem inicio e sem fim[13].

Podemos dizer que o UDP é um servico nao orientado a conexao, pois nao ha necessi-
dade de manter um relacionamento longo entre cliente e servidor. Dessa forma, um cliente
UDP pode utilizar um socket para enviar um datagrama a um servidor e imediatamente
enviar outro datagrama a partir do mesmo socket para um servidor diferente. De forma
parecida, um servidor pode ler datagramas vindos de diversos clientes, usando um tnico
socket.

Comparando com o IP, o protocolo UDP inclui poucos servicos adicionais. Entre eles
podemos citar a verificagao de erros (Checksum), o suporte & multiplexagao e demultiple-
xacao e também o suporte a broadcast e multicast. Se o programador achar necessario,
outros servigos, como o controle de congestionamento e a entrega confiavel de dados,
podem ser implementados na camada de aplicacao.

Algumas das vantagens do protocolo UDP em relagao ao TCP sao:

Auséncia de estabelecimento de conexao: Para estabelecer a conexao, o TCP uti-
liza a apresentacao de trés vias antes de transferir dados. Ja o UDP simplesmente os
envia, sem preocupar-se com o estabelecimento da conexao, garantindo assim maior

velocidade.

Maior controle no nivel da aplicagao: No caso do protocolo TCP, ha mecanismos de
controle de congestionamento e entrega confiavel de dados que pode, por exemplo,
reenviar os segmentos até a recepcao ser reconhecida. J& no protocolo UDP isso
nao acontece pois o datagrama é apenas empacotado e repassado para a camada
de rede, permitindo que o programador tenha um melhor controle dos pacotes que

estao sendo enviados pela rede em nivel de aplicacao.

Sobrecarga de cabegalho inferior: Devido & auséncia de mecanismos de controle de
confiabilidade de transmissao, o protocolo UDP pode transmitir segmentos com
cabegalhos reduzidos. No caso do TCP o cabegalho possui um tamanho de 20 bytes,

enquanto o UDP possui apenas 8 bytes.

30 2. FUNDAMENTACAO TEORICA

Auséncia de estados de conexao: O TCP utiliza parametros de controle de congesti-
onamento, buffers de envio e recebimento, numeros de sequéncia e reconhecimento
para manter o estado da conexao. Como o UDP nao mantém estado, ele utiliza

menos recursos suportando mais clientes ativos.

Devido a essas caracteristicas o UDP é uma escolha adequada para fluxos de dados
em tempo real principalmente em aplicagoes sensiveis a atraso na rede. Como existe a
possibilidade do corrompimento de parte de seu contetudo, a verificagao de erros necessaria

fica por conta do programador.

Capitulo 3

Desenvolvimento

3.1 Materiais

Para a realizacao desse projeto foram utilizados diversos materiais. Nesta Segao é feita
uma breve descricao de cada um dos componentes utilizados bem como as suas especi-
ficacOes técnicas principais. Também é importante ressaltar que o Sistema Operacional
utilizado durante todo o desenvolvimento do projeto foi o Mac OS X Versao 10.7.5, por-
tanto, parte dos comandos descritos sao especificos do ambiente Unix. Obviamente isso
nao se aplica aos outros comandos que foram executados na BeagleBone com o sistema

operacional Angstrém instalado.

3.1.1 Arduino Leonardo

A versao do Arduino utilizada nesse projeto é conhecida como Arduino Leonardol[4],

que pode ser visto na Figura 3.1.

anmaRARR. AR MMA@Men)

DIGITAL (PWM~) &

.
[0
[

ARDUINO

LEONARDO

Figura 3.1: Arduino Leonardo.

O Arduino Leonardo é uma placa microcontroladora baseada no chip ATmega32u4. A
principal diferenca entre o Leonardo e suas versoes precedentes é que o ATmega32u4 possui
comunicagao USB embutida, eliminando a necessidade de um processador secundario|4].
Entretanto, essa caracteristica também possui outras implicagoes, como, por exemplo, a

maneira como deve ser programada a comunicagao serial.

32

3. DESENVOLVIMENTO

A Tabela 3.1 resume as especificagoes técnicas do Arduino Leonardo.

Tabela 3.1: Caracteristicas do Arduino Leonardo

Microcontrolador ATmega32ud

Tensao de operacgao oV

Tensao de entrada (recomendado) 5V

Tensao de entrada (limites) 7-12V

Pinos digitais de entrada e saida 20

Canais PWM 7

Canais de entrada analégica 12

Corrente DC por pino de entrada/saida | 40 mA

Corrente DC para o pino de 3.3V 50 mA

Memoria Flash 32 KB (ATmega32u4)
SRAM 2.5 KB (ATmega32u4)
EEPROM 1 KB (ATmega32u4)
Clock Speed 16 MHz

Esse modelo foi escolhido devido ao baixo preco e a disponibilidade no mercado. Qual-
quer um dos outros modelos poderiam ter sido utilizados, com uma necessidade apenas

de ajustar poucos detalhes da programacao.

3.1.2 BeagleBone

A solucao de hardware utilizada neste projeto para executar uma distribui¢ao de Linux

embarcado foi a BeagleBone Rev A6|7| que pode ser vista na Figura 3.2.

Figura 3.2: BeagleBone Rev A6.

3.1. MATERIAIS 33

A placa vem de fabrica configurada com uma distribuicdo de Linux conhecida com
Angstrém, descrita na Secio 2.1. Para a implementacéao da plataforma movel foi mantida
a mesma distribuicao, sendo feita apenas a atualizacao do kernel para a tltima versao
disponivel.

Para acomodar uma variedade de sensores, controles e outros tipos de interfaces,
ela possui dois conectores de 46 pinos para expansao, indicados no manual como P8 e
P9. Esses pinos possuem diversas utilidades. De maneira geral podemos citar: 66 pinos
de GPIO, sinais de LCD, um barramento de memoria paralela, dois barramentos 12C,
cinco UARTS, uma porta SPI, uma porta serial, 12S/ AC97-capable bus CAN, 6 PWMs,
temporizadores multiplos, além de 7 conversores analdgico/digitais.

Na Figura 3.3 é possivel verificar o diagrama de blocos da BeagleBone.

DDR2
1X16256MB

‘l;l SE.R LEDS

RSTBUTTON

10/100

RMIL B2 ETHERNET
AM3358 PHY

2 PORT usso

microSD

FT2232H

USBTO
SERIAL

Figura 3.3: Diagrama de Blocos da BeagleBone extraido do datasheet|7].

A Tabela 3.2 resume algumas caracteristicas da BeagleBone.

Tabela 3.2: Caracteristicas da BeagleBone.

Processador AM3359 500MHZ-USB 720MHZ-DC
Memoria 256MB DDR2 400MHZ
Alimentagao | USB 5V Conector Externo
Indicadores | Power | 4 Led Controlados pelo usuério
Peso 39.68 gramas

34 3. DESENVOLVIMENTO

3.1.3 Conversor de Nivel Logico

Para a troca de informacgoes entre o Arduino e a BeagleBone foi escolhida a comuni-
cagao serial. Devido ao fato do nivel logico do Arduino ser de 5 volts e da BeagleBone
ser de 3.3V nao é possivel conectar os pinos Rx e Tx diretamente entre as placas. Para
contornar esse problema foi utilizado um conversor de nivel 16gico entre elas, permitindo
assim, que fosse estabelecida a comunicagao.

O conversor logico utilizado nesse projeto foi o BOB-08745 projetado e disponibilizado

pela SparkFun. Este conversor pode ser visto na Figura 3.4.

Figura 3.4: Conversor de Nivel Logico BOB-08745.

3.1.4 Adaptador Wiereless

Para adicionar a capacidade de comunicagao sem fio na plataforma movel, foi utilizado
um Adaptador Wireless EW-7811Un|15|. Sua escolha foi devido ao chipset utilizado, que
j& possui drivers de facil instalacao no Linux, além de ter um tamanho extremamente

reduzido. O adaptador utilizado pode ser visto na Figura 3.5.

Figura 3.5: Adaptador Wireless USB Edimax EW-7811Un.

3.1. MATERIAIS 35

3.1.5 Plataforma de Locomocao

Para o desenvolvimento da plataforma movel foi utilizado um carro de controle remoto
produzido pela RadioShack (modelo 60-4208). Esse carrinho ¢ uma miniatura do Porsche

911 GT1 e pode ser visto na Figura 3.6.

Figura 3.6: Carro de controle remoto (RadioShack 60-4208).

Este carrinho foi desmontado e toda a parte eletronica foi removida, sobrando apenas
a estrutura mecanica e o motor de tragao traseiro. Dessa forma foi possivel aproveitar o
sistema de locomocao.

O sistema de locomogao é muito parecido com automoéveis de tragao traseira, sendo
baseado em rodas que seguem a disposi¢ao de um quadriciclo.

O par de rodas traseiro é fixo e responsavel pela tragao. A tragao é realizada por um
motor com o auxilio da caixa de redugao original do carrinho.

O par de rodas dianteiras é orientavel e centralizada sendo utilizado para permitir o

direcionamento. A direcao é controlada por um servo que foi acoplado a plataforma.

3.1.6 Servo

Para controlar a direcao da plataforma movel, foi utilizado um servo do modelo
HCAMO149 cujas especificagoes técnicas mais relevantes estao relacionadas na Tabela
3.3. O servo utilizado possui uma boa capacidade de torque para a aplicacao desenvol-

vida e pode ser visto na Figura 3.7.

Tabela 3.3: Especificagdoes do Motor Servo.

Tensao de operagao 48V 6.0 V
Velocidade (60 graus de rotagao) | 0.19 s 0.16 s
Torque 3.06 Kg-cm | 3.57 Kg-cm
Dimensoes 41x20x36 mm

36 3. DESENVOLVIMENTO

Figura 3.7: Servo HCAMO0149.

3.1.7 Motor

Para proporcionar a tragao necessaria para movimentar a plataforma movel, foi utili-
zado o motor original do carrinho.

O motor é do modelo FC-130RA 14150. Trata-se de um motor de corrente continua
com escovas que opera com valores de tensao de até 9 Volts.

O motor é acoplado proximo ao eixo traseiro. Com o auxilio da caixa de redugao é

possivel controlar o sentido e a velocidade da plataforma movel.

3.1.8 Controlador do Motor

O para controlar a velocidade e a dire¢cao dos motores, foi utilizado o circuito DRI0002,

que pode ser visto na Figura 3.8.

Figura 3.8: Controlador do Motor DRIO002.

Trata-se de um dispositivo baseado no componente L298N que permite o controle de
dois motores bidirecionais de corrente continua.

A Tabela 3.4 resume as especificagoes técnicas do componente.

3.1. MATERIAIS 37

Tabela 3.4: Especificagoes do DRIO002.

Tensao de operagao da parte légica 6-12V
Tensao de operagao da parte dos motores 4.8 -46V
Consumo de corrente da parte légica 36 mA
Corrente maxima de operagao da parte dos motores | 2 A
Dissipassao de poténcia maxima 25 W
Dimensoes 47x53mm

3.1.9 Sensor de Corrente

Para a realizagao desse projeto, foi utilizado um sensor de corrente com o intuito de
monitorar a utilizagao da bateria, permitindo gerenciar melhor a sua utilizagao.
O Sensor de corrente utilizado foi o RB-Dfr-149, baseado no componente ACS758 e

mostrado na Figura 3.9. A Tabela 3.5 mostra as especificagoes do sensor de corrente.

Figura 3.9: Sensor de Corrente RB-Dfr-149.

Tabela 3.5: Caracteristicas do Sensor de Corrente RB-Dfr-149.

Tensao de operacao 5V

Tensao de pico 3000V (AC), 500V(DC)
Faixa de corrente -50 até 50 A
Sensibilidade 40 mV /A
Temperatura de Operagao | -40 até 150 graus C
Dimensoes 34x34mm

3.1.10 Sensor de Distancia

Para ser possivel incluir a funcionalidade de frear os motores da plataforma moével
evitando colisdes com objetos, foi utilizado um sensor de distancia ultra sénico. O sensor
de distancia utilizado foi o HCSR04[10] que pode ser visto na Figura 3.10. A Tabela 3.6

mostra as caracteristicas principais do sensor ultra soénico.

38 3. DESENVOLVIMENTO

Figura 3.10: Sensor Ultrassonico HCSRO0A4.

Tabela 3.6: Caracteristicas do Sensor Ultrassonico HC-SR04.

Tensao de operagao DC5V
Corrente de operagao 15 mA
Frequéncia de operagao | 40 KHz
Alcance maximo 4 m
Alcance minimo 2 cm
Angulo de medida 15 graus
Dimensoes 45%20*15mm

3.1.11 Fonte de Alimentagao de Bancada

Para realizar os testes com a plataforma movel, foi adaptada uma fonte de alimentacao
a partir de um gabinete de computador antigo, com o objetivo de poder fornecer energia
para os componentes utilizados. Dessa forma, a fonte pode ser utilizada para gerar tensoes
de 5 e 12 Volts, que foram utilizadas em alguns momentos ao longo do desenvolvimento

do projeto. A Fonte desenvolvida pode ser vista na Figura 3.11.

#2048 9188 'z

Figura 3.11: Fonte de alimentacao adaptada.

3.2. MONTAGEM 39

3.2 Montagem

Para a realizagao desse projeto, foi utilizado um carrinho de controle remoto antigo,
retirando toda a eletronica original e deixando apenas os motores e a caixa de redugao.
Dessa forma, foi possivel aproveitar toda a estrutura mecénica e implementar a logica
de controle de maneira conveniente para o desenvolvimento da plataforma movel. A
Figura 3.12 mostra de forma simplificada a organizacao escolhida para os componentes
utilizados no projeto. As setas indicam o sentido de comunicacao entre cada componente.
O computador apresenta uma interface que permite que um usuario controle remotamente
a plataforma movel. Isso é feito com o intermédio da BeagleBone, que estabelece uma
comunicacao pela rede com o computador e repassa os dados para o Arduino. O Arduino,

por sua vez, é responsavel pela comunicacao direta com os sensores e os atuadores.

e ™

Atuadores

Computador

A /

BeagleBone . .
Sensores
Distancia

A vy

Figura 3.12: Diagrama de Blocos dos Componentes.

Essa abordagem, permite que funcionalidades que dependem de uma precisao de tempo
mais refinada possam ser implementados sem dificuldades diretamente no Arduino. Jé
as funcionalidades um pouco mais tolerantes em relacao ao tempo de resposta, podem
ser implementas na BeagleBone com toda a flexibilidade que um sistema operacional
completo oferece.

A Figura 3.13 ilustra com mais detalhes como os componentes foram conectados entre
si. E importante ressaltar que a tensdo de alimentacio de todos os componentes é de 5
Volts, enquanto o circuito controlador do motor e o proprio motor funcionam com uma

tensdo na faixa de 6 a 12 Volts.

40 3. DESENVOLVIMENTO

Battery @

Arduino @

1

Figura 3.13: Diagrama das conexdes dos componentes.

E possivel perceber também que o sensor de corrente monitora apenas o consumo dos
motores e do proprio circuito controlador dos motores, que estao sendo alimentados pela

bateria recarregavel.

Com todos os componentes eletronicos conectados e funcionando, foi necessario fazer
alguns ajustes para encaixa-los na plataforma maével. Para que isso fosse possivel, foram
montados suportes de madeira que permitiram fixar os componentes de maneira segura,

devido a caracteristica isolante do material.

Outra adaptacao realizada posteriormente foi o posicionamento do servo para controlar
a direcao da plataforma. O mesmo foi fixado na parte frontal do carrinho, aproveitando

o sistema mecanico ja existente para direcionar as rodas.

A Figura 3.14 mostra o prototipo real em sua fase de desenvolvimento. Nessa etapa

alguns dos componentes ainda estao temporariamente instalados apenas para a realizacao

3.3. CONFIGURACAO 41

de testes.

Figura 3.14: Imagem do protétipo com os componentes temporariamente instalados.

3.3 Configuracao

Grande parte dos componentes utilizados neste projeto nao necessitam de configura-
¢oes, como, por exemplo, é o caso do sensor de distancia, onde é necessério compreender
funcionamento do sinal e controle e interpretar o sinal de resposta. Entretanto isso nao
¢é valido para todos os componentes. Na secao seguinte sao descritas as principais eta-
pas para a configuracao da BeagleBone para que a mesma consiga desempenhar as suas

funcionalidades corretamente.

3.3.1 BeagleBone

Uma das tarefas mais trabalhosa ao longo do desenvolvimento do projeto foi a configu-
ragao da BeagleBone. Nesta secao descrevemos com detalhes todas as etapas necessarias

para a gravacao da imagem utilizada.

42 3. DESENVOLVIMENTO

Atualizagcao da imagem

O primeiro passo antes de configurar a BeagleBone foi atualizar a versao do Linux.
Para isso é necessario gravar a imagem no cartao micro SD que é utilizado pela BeagleBone

para inicializar o sistema operacional. Isso pode ser feito realizando os seguintes passos:

1. Instalar o brew.

O brew é uma ferramenta de gerenciamento de pacotes que neste caso é utilizado
para a instalagao do zz. O xz é a ferramenta utilizada para a descompactacao da

imagem que sera gravada no cartao SD.

2. Instalar o zz.

I|brew install xz

3. Fazer o download da imagem no formato .img.xz.

1| wget 'URL para download da imagem’

4. Ejetar o cartao de memoria para realizar a gravagao.

1| diskutil unmountDisk /Volumes/BEAGLE BONE

5. Descobrir o identificador do sistema para o cartao SD.

| diskutil list

6. Gravar a imagem no cartao SD

1 sudo xz —dkc Angstrom—Cloud9—IDE-GNOME-eglibc —ipk—v2012.12—
beaglebone —2013.06.20.img.xz > /dev/diskl

Depois desses passos, o cartao micro SD pode ser inserido novamente na BeagleBone.
Se tudo ocorreu como o esperado, a placa deve inicializar o sistema assim que for fornecida

a energia.

Login Remoto

Depois de finalizado o processo de gravacao da imagem ja é possivel realizar o login
remoto na BeagleBone através do comando ssh. Caso ja tenha sido realizado o login

remoto na BeagleBone a partir do seu computador, uma mensagem de erro ird aparecer:

2|@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! Q
3| @AAAAAAACAAACaAAaaaAaaaAaaaaaaaaaaaaaaaaaaaaaaaaaaQaaaaaaaQ
1| IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY'!

=

3.3. CONFIGURACAO 43

Someone could be eavesdropping on you right now (man—in—the—middle attack)!

i| It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is

d0:f2:9c:ad:65:11:ch:T7a:fc:ac:4d:a6:81:72:a7:4f.

Please contact your system administrator.

Add correct host key in /Users/luisfelipewb /.ssh/known hosts to get rid of
this message.

Offending key in /Users/luisfelipewb /.ssh/known hosts:30

RSA host key for 10.0.0.89 has changed and you have requested strict
checking.

Host key verification failed.

Isso ocorre pois fica gravado no arquivo ".ssh/known-hosts’ uma chave de autenticagao
gerada automaticamente pela BeagleBone. Quando o cartao de memoria é formatado e
um novo sistema operacional é instalado, essa chave muda sendo necessario apagé-la dos
registros do computador para poder realizar o login remoto novamente. Isso pode ser feito

com a utilizacao do seguinte comando:

ssh—keygen —R "hostname"

Para facilitar o processo de login é possivel gerar uma chave publica e copia-la para
a maquina remota para nao precisar mais digitar a senha toda vez que for fazer o login.

Isso pode ser feito com os seguintes comandos:

ssh—keygen
scp .ssh/id_ rsa.pub root@10.0.0.89:/home/root /.ssh/authorized keys

Configuragao do Python

Depois de estabelecer uma conexao com a BeagleBone é importante realizar uma
atualizagao da lista dos pacotes disponiveis utilizando o gerenciador de pacotes opkg.
Com a lista atualizada podemos instalar as bibliotecas necessarias para a execuc¢ao do

codigo em Python:

opkg update

opkg install python—pip python—setuptools python—smbus
pip install Adafruit BBIO

opkg install python—pyserial

opkg install python—pyserial

Uma das bibliotecas instaladas com os comandos acima é disponibilizada pela Adafruit:
Trata-se de uma biblioteca que visa simplificar a utilizagao das portas de entrada e saida
da BeagleBone oferecendo uma interface mais simplificada para o desenvolvimento de
aplicagoes utilizando a linguagem Python.

No site da Adafruit pode ser encontrado um tutorial com detalhes sobre a utilizacao
da interface UART2 na BeagleBone|§].

44 3. DESENVOLVIMENTO

E necessario também habilitar a multiplexacio correta dos pinos no sistema operaci-
onal para permitir a utilizacao do UART2 pelo programa mencionado. Isso é feito por

meio do seguinte comando:

echo BB-UART2 > /sys/devices/bone_ capemgr.7/slots

Para verificar se a multiplexacao foi feita adequadamente, podemos analisar o arquivo

’slots’ com o comando abaixo:

cat /sys/devices/bone capemgr.7/slots

Verificar as mensagens do sistema também permite acompanhar se a multiplexacao

ocorreu da forma esperada:

dmesg | grep UART

Um arquivo de scritp foi desenvolvido para automatizar essa funcionalidade e pode ser
visto no Apéndice C. Esse arquivo de script deve ser executado durante a inicializacao
do sistema de forma que toda vez que a BeagleBone for reiniciada ela ja estara pronta
pra iniciar a comunicagao através da interface UART2.

O codigo em Python desenvolvido para funcionar na BeagleBone encontra-se no Apén-
dice B.

Configuragao do adaptador wireless

Para esse projeto foi utilizado um adaptador de rede sem fio do modelo EW-7811Un|15].

Com o dispositivo conectado na porta USB podemos executar o comando lsusb:

root@beaglebone:"# lsushb

Bus 001 Device 002: ID 7392:7811 Edimax Technology Co., Ltd EW-7811Un
802.11n Wireless Adapter [Realtek RTL8188CUS]

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Para identificar os erros encontrados na utilizagao do médulo podemos verificar as

mensagens do sistema:

root@beaglebone: # dmesg | grep rtl
9.276164] rtl8192cu 1—1:1.0: usb_probe interface

[

[9.276202] rtl8192cu 1-1:1.0: usb_ probe interface — got id

[9.276439] rtl8192cu: Chip version 0x10

[9.372609]| rtl8192cu: MAC address: 80:1f:02:45:¢3:18

[9.372652] rtl8192cu: Board Type 0

[9.372809] rtlwifi: rx_ max_size 15360, rx_urb num 8, in_ep 1

[9.373049] rtl8192cu: Loading firmware rtlwifi/rtl8192cufw.bin

[9.376574] usbcore: registered new interface driver rtl8192cu

| 9.389741| rtlwifi: Firmware rtlwifi/rtl18192cufw.bin not available

w

3.3. CONFIGURACAO 45

Com esse comando é possivel verificar que o chipset utilizado pelo dispositivo é o RTL8188CUS

e que o firmware necessario nao encontra-se instalado. Para realizar a instalacao do mo-

dulo ¢é necessario executar os seguintes comandos:

root@beaglebone:"# opkg list ’linux—firmware—rtx’
root@beaglebone:"# opkg install linux—firmware—rtl8192cu
root@beaglebone:"# reboot

Depois de instalar e reiniciar o sistema, as mensagens do sistema podem ser verificadas

para conferir a inicializacao do modulo:

root@beaglebone: "# dmesg | grep rtl

7.785345] rtl8192cu 1-1:1.0: usb_probe interface

.785384] rtl8192cu 1—1:1.0: usb_probe interface — got id
.785683] rtl8192cu: Chip version 0x10

.874954] rtl8192cu: MAC address: 80:1{:02:45:¢3:{8

.875047] rtl8192cu: Board Type 0

.876083] rtlwifi: rx_ max size 15360, rx_urb_num 8, in_ep 1
.876327] rtl8192cu: Loading firmware rtlwifi/rtl18192cufw.bin
.879887] usbcore: registered new interface driver rtl8192cu
.071952] ieee80211 phyO: Selected rate control algorithm ’rtl rc”’
.078647] rtlwifi: wireless switch is on

.082761] rtl8192cu: MAC auto ON okay!

.182255] rtl8192cu: Tx queue select: 0x05

0 00 N~~~

w
o

[
[
[
[
[
[
[
[
[
[
[
[

w
o

Ao executar o comando ifconfig, é possivel encontrar a interface de rede sem fio wlan0:

root@beaglebone: # ifconfig wlan0

wlan(Link encap:Ethernet HWaddr 80:1F:02:45:C3:F8
UP BROADCAST MULTICAST MIU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Para obter mais informagoes sobre as redes disponiveis através do comando iwconfig

é necessario instalar o pacote que inclui essa ferramenta:

root@beaglebone: 7 opkg install wireless—tools

O proximo passo necessario é configurar o gerenciador de conexdes, no casso do Angs-
tron é o connman. Para configurar a rede sem fio é necessério criar o arquivo /var/lib/-
connman,/wifi.config com as configuragoes da sua rede sem fio. Abaixo é mostrado um
arquivo de exemplo. Vale a pena reforcar que o arquivo de configuracao precisa terminar

com uma quebra de linha para que ele funcione corretamente.

[service _home |
Type = wifi
Name = Dlink

46 3. DESENVOLVIMENTO

Security = wpa
Passphrase = mypassword

Para que as configuragoes tenham efeito, é necessario reiniciar o gerenciador de cone-

x0es:

root@beaglebone: "# systemctl restart connman.service

Apos a realizagao desses passos o adaptador deve estar funcionando e devidamente co-

nectado a rede.

3.4 Implementacao

Com todos os componentes do projeto instalados e devidamente configurados, a pro-
xima etapa é a implementacao da interface de controle, das logicas de controle dos atuado-
res, da monitoragao dos sensores e da comunicagao com a plataforma moével. Nas Segoes

a seguir esses topicos sao abordados com detalhes.

3.4.1 Interface de Controle

Para permitir o controle da plataforma moével de maneira intuitiva foi implementada
uma interface grafica. Essa interface permite enviar mensagens de controle do computador
para a BeagleBone para que os motores sejam acionados.

A interface grafica projetada pode ser vista na Figura 3.15. Ela pode ser acionada atra-
vés do mouse e também do teclado, uma vez que os botoes estao associados as respectivas

teclas do teclado.

e Controller

IP 10.0.0.89

Figura 3.15: Interface grafica para o controlador.

3.4. IMPLEMENTACAO 47

Para melhorar a usabilidade algumas informagoes foram incluidas na interface grafica.
Essas informacoes sao: o nimero de [P utilizado pela BeagleBone, a porta utilizada para

a comunicagao e também o dltimo comando de direcao que foi enviado.

E importante destacar que o campo ’Last Command’ ¢ atualizado apenas quando o
comando foi efetivamente recebido pela BeagleBone. Isso é feito utilizando uma mensagem

de reconhecimento respondida pela BeagleBone toda vez que algum comando é enviado.

A interface grafica foi desenvolvida para funcionar no sistema operacional Mac OS
X. Isso tornou necessério a utilizacao da linguagem Objective C para programacao do

aplicativo.

Para que fosse possivel desenvolver a aplicagao utilizando a linguagem Python e incluir

a interface grafica foi utilizado o PyObjC|17].

O projeto PyObjC tem como objetivo prover uma ponte de ligagao entre as linguagens
de programagao Python e Objective-C. Essa ponte tem a inten¢ao de permitir que pro-
gramas em Python possam utilizar o poder de desenvolvimento oferecido por ferramentas

de desenvolvimento baseadas em Objective-C.

Essa utilizagao do Objective-C em codigos escritos em Python pode ser vista no trecho

de codigo abaixo:

@objc.IBAction

def dirRight (self, sender):
send (’d’)
self.updateDisplay ()

Esse trecho de codigo corresponde a implementagao da logica do botao 'd’” da interface
grafica. Nele podemos ver a primeira linha escrita utilizando Objective-C e o resto do

c6digo em Python.

3.4.2 Sensores e Atuadores

O controle dos sensores e atuadores é implementado no microcontrolador Arduino,
apresentado na Secao 2.2. Isso é feito pelo microcontrolador devido a facilidade de progra-
macao de componentes que necessitam de uma precisao de tempo alta para funcionarem

adequadamente.

A Figura 3.16 mostra de maneira simplificada como os componentes estao conectados
com o Arduino e quais as ligagbes sao necessérias para realizar o controle de cada uma

delas.

48 3. DESENVOLVIMENTO

Trig

-|Distancia

Figura 3.16: Controle dos sensores e atuadores a partir do Arduino.

A programacao do Arduino é dividida em duas fungoes principais: setup e loop. A
implementagao dessas fungoes é obrigatéria para o funcionamento do programa.

A fungao setup serve para inicializar a placa e o programa. Ela é executada apenas
uma vez quando a placa é ligada ou reiniciada. Nessa fun¢ao sao inicializadas as varidveis
e também é descrito qual hardware seréa utilizado.

A funcao loop é executada indefinidamente. Ao terminar a execucao da tultima linha
desta func¢ao, o programa volta novamente para a primeira linha da funcao loop e continua
a executar até que a placa seja desligada ou o botao de reset seja pressionado.

Na Figura 3.17 é mostrado o fluxo de execugao do c6digo desenvolvido para o Arduino.

Este codigo pode ser encontrado no apéndice A.

setup()

Configuragao da comunicagdo serial
Configuragao dos pinos de 10

loop()

istem comandos?

Executa os comandos

Figura 3.17: Fluxograma do c6digo do Arduino.

Leitura da disténcia) Leitura da corrente)

Envia os dados da Envia os dados da
distancia corrente

Aguarda 100 ms

[\

w

3.4. IMPLEMENTACAO 49

Motor

O controle do motor ¢é feito com o auxilio do circuito DRIO002 descrito na Segao 3.1.8.
Esse circuito é baseado no componente L298N. Para controlar o motor, o Arduino utiliza
dois sinais: M1 e E1. O primeiro, denominado M1 é um sinal digital que indica o sentido
de rotacao do motor. Quando M1 é igual a 1 a plataforma vai para frente, quando é
igual a 0, para tras. Para controlar a velocidade é utilizado o segundo sinal de controle,
denominado E1. Este sinal é do tipo PWM e pode ser controlado com a variagao do
duty-cycle. Para variar o duty-cycle o Arduino utiliza uma variavel que pode assumir
valores de 0 até 255, sendo 255 correspondente & velocidade maxima do motor.

O trecho de c6digo abaixo mostra um exemplo das fung¢oes utilizadas para controlar

o carro para frente com velocidade méaxima.

digitalWrite (M1,1) ;
analogWrite (E1, 255);

O codigo completo de controle dos motores pode ser encontrado no Apéndice A.
A logica de controle implementada utiliza os caracteres 'w’ e ’s’ para aumentar e
diminuir a velocidade do motor. Além disso, pode ser utilizado o caractere x’ para fazer

com que o motor pare.

Servo

O servo é controlado com um sinal de PWM, que faz com que o motor rotacione até
a posicao desejada. O Arduino disponibiliza a biblioteca Servo.h que facilita a utilizagao,
sendo necessario apenas inicializar um servo especificando qual o pino esta conectado e
utilizar a funcao correta passando o angulo desejado como pardmetro para que o servo
rotacione. As trés linhas de c6édigo abaixo mostram um exemplo das func¢oes utilizadas

para declarar um servo e rotaciona-lo para a posigao de 90 graus.

Servo myservo;
myservo . attach (9);

myservo . write (pos) ;

A logica de controle implementada utiliza os caracteres ’a’ e ’d’ para girar para a
esquerda e para a direita, respectivamente. De maneira anéloga ao funcionamento dos
comandos de aceleracao, o caractere 'x’ também faz com que o servo retorne para a posi¢ao
central.

Embora o servo permita uma amplitude de rotacao de até 180 graus, o movimento
permitido pelo sistema mecanico do carrinho é menor. Para garantir o funcionamento
adequado foi necessario limitar o &ngulo méximo de rotagao do servo até atingir o ester-

¢amento maximo permitido pelo sistema mecanico.

ot

6

50 3. DESENVOLVIMENTO

Sensor de Distancia

De acordo com o datasheet do fabricante|10], o sonar funciona emitindo ondas em alta
frequéncia e verificando o tempo em que elas demoram para refletir de volta ao sensor.

Apos a emissao de um pulso de pelo menos 10 ps no pino trig, é emitido uma onda
sonora a uma frequéncia de 40 KHz de forma automatica pelo sonar. Um pulso digital
no pino echo indica o tempo que a onda demora para ser recebida de volta apos refletir
em algum objeto.

O funcionamento do sensor de distancia é ilustrado na Figura 3.18 retirada do datasheet

do componente[10].

e |

Trig input ﬂ /1 H

1/
Internal signal H ‘H HHH \ 1/
I/
40KHz ultrasonic pulses
Output //
i

S

Width represents
distance

Figura 3.18: Funcionamento do sensor de distancia.

Como a velocidade do som no ar é conhecida precisamos apenas resolver a equacao a
seguir para determinar a distancia do objeto. HLT é o tempo indicado pelo pulso no pino

echo e Vsom é a velocidade do som no ar.

HLT x Vsom
2

A seguir mostramos a fungao implementada para realizar a leitura do tempo de res-
posta do pino echo, da conversao da medida de tempo para distancia, da logica imple-
mentada para interromper a aceleragao do motor caso a distancia lida seja muito pequena

e, por fim, o envio da informacao de distancia para a BeagleBone.

void readDistance () {
/*Sequencia de leiturasx/
digitalWrite (trigPin , TOW);
delayMicroseconds (2) ;

digitalWrite (trigPin , HIGH) ;
delayMicroseconds (50) ;

3.4. IMPLEMENTACAO

51

digitalWrite (trigPin , LOW) ;
duration = pulseln (echoPin, HIGH,10000) ;

/*Calcula distancia baseado na velocidade do somsx*/
distance = duration /58.2;

/*Indicar erro de leiturax/

if (distance >= maximumRange || distance <= minimumRange) {
Serial.println ("—1");
digitalWrite (LEDPin, HIGH) ;

}

/*Para ao chegar perto de um objetox/

if (distance <= stopDistance){
Serial.println (distance);
direction=95;
speed =0;
digitalWrite (LEDPin, HIGH);
direcao . write(direction);
digitalWrite (M1,HIGH) ;
analogWrite (E1, speed);

}

/*Imprime distanciax*/

else {
Serial.print ("[cm]|: ");
Serial.println (distance);
digitalWrite (LEDPin, TOW) ;

}

Sensor de Corrente

componente ACS758 e descrito na Segao 3.1.9.

Para medir a corrente foi utilizado o Sensor de Corrente RB-Dfr-149, baseado no

De acordo com o manual do componente|9], o valor da corrente pode ser aferido

analisando o valor da tensao de saida, que foi conectada no pino analdgico A0 do Arduino.

No Arduino, o pino A0 é um conversor analogico digital de 10 bits de maneira que a

tensao lida ¢ mapeada em um intervalo de 0 até 1024 de acordo com a tensao de referéncia

fornecida.

a seguir:

O trecho do codigo utilizado responsavel por medir o consumo de corrente é mostrado

1| void readCurrent ()

214
3
4

total= total — readings[index];

readings[index]| = analogRead(currentSensor); //Raw data reading

ot

© 0w g O

52 3. DESENVOLVIMENTO

readings[index| = (readings[index]—520)%5/1024/0.04;
total= total + readings|[index];
index = index + 1;
if (index >= numReadings)
index = 0;
average = total/numReadings;

currentValue= average;

Serial.print ("Corrente: ");

Serial.println (currentValue);

Observando o c6digo podemos perceber que foi utilizado um algoritmo para suavizar
os resultados aferidos para minimizar a oscilagao devido a ruidos. Isso é realizado através
do célculo da média dos ultimos valores aferidos que sao armazenados em um vetor. O
valor utilizado para o nimero de leituras no calculo da média foi igual a cinco para que

a velocidade de resposta nao seja muito lenta.

3.4.3 Comunicacao

Para compreender como é feita a troca de informagoes entre cada um dos componentes,
primeiramente precisamos entender que héa basicamente dois tipos de informagoes que sao
trocadas: comandos de direcao e dados dos sensores.

Os comandos de diregao sao comandos assincronos que sao gerados pelo usuario a

partir da interface de controle toda vez que ele deseja modificar a dire¢ao ou a velocidade

Dados dos
Sensores

Comandos
de Direcao

Figura 3.19: Etapas de comunicacao de acordo com o tipo de dado

3.4. IMPLEMENTACAO 53

da plataforma movel.

Os dados dos sensores sao aferidos pelo Arduino e enviados ao computador de maneira
sincrona permitindo que o usuario monitore a plataforma moével em tempo real.

A Figura 3.19 mostra as etapas de comunicacao entre todos os componentes.

Apo6s compreender de maneira genérica as etapas de comunicacao envolvidas, as se¢oes
a seguir descrevem com mais detalhes o processo para estabelecer o controle e monitora-
mento da plataforma maével abordando primeiro a comunicagao entre o computador e a

BeagleBone e depois entre a BeagleBone e o Arduino.

Comunicagao entre o computador e a BeagleBone

Verificacao da
Laténcia
5003 5003
Computador(0" 21")BeagleBone
5001 5001
Comandos Dados dos
de Diregao Sensores

Figura 3.20: Comunicagao entre o computador e a BeagleBone.

Foi implementado um protocolo de comunicagao entre o computador e a BeagleBone
que utiliza o envio de datagramas utilizando trés portas de comunicacao separadas. Essas
portas foram escolhidas arbitrariamente, tomando o cuidado para nao utilizar portas
reservadas para outros protocolos ja existentes. A Figura 3.20 ilustra este protocolo.

A porta 5001 é utilizada para enviar dados referentes ao comando de direcao e velo-
cidade da plataforma movel. Ao clicar em algum botao da interface gréfica o respectivo
comando é gerado e enviado a BeagleBone. A BeagleBone, por sua vez, responde ao com-
putador uma mensagem com o mesmo caractere. Essa resposta ao computador caracteriza
um mecanismo de confirmar o recebimento da mensagem.

A porta 5002 apresenta um fluxo unidirecional de dados. E através dessa porta que a
BeagleBone envia periodicamente ao computador as informagoes registradas pelos senso-
res. Essas informacoes sao enviadas na forma strings contendo os respectivos valores.

A porta 5003 ¢é utilizada para a verificagao da laténcia da rede. Periodicamente, o
computador envia a BeagleBone um determinado ntimero de caracteres. A BeagleBone

possui uma rotina programada para responder imediatamente aos caracteres recebidos na

54 3. DESENVOLVIMENTO

porta 5003. Dessa maneira o cliente pode implementar uma logica para verificar se todos
os pacotes enviados estao sendo recebidos pela BeagleBone, calculando assim a perda de
pacotes e verificando o tempo que esses pacotes demoram para ser respondidos.

A implementagao desse protocolo de comunicacao pode ser vista nos Apéndices B, D,
EeF.

Comunicacgao entre a BeagleBone e o Arduino

Para realizar a comunicacao entre a BeagleBone e o Arduino foi utilizado o protocolo
serial RS232 com baudrate de 9600. Para estabelecer a comunicagao é necessario conectar

os terminais transmissores e receptores de maneira cruzada, como mostra a Figura 3.21.

Dados dos
Sensores

3.3V

Comandos
de Direcao

Figura 3.21: Comunicagao entre a BeagleBone e o Arduino.

Devido ao fato do Arduino possuir um nivel l6gico de 5V e a BeagleBone um nivel
logico de 3.3V, foi necessario a utilizagao do conversor de nivel loégico descrito na Secao
3.1.3. As conex0es necessarias para realizar a comunicagao utilizando o conversor de nivel
logico podem ser vistas na Figura 3.22.

O Arduino envia uma sequéncia periddica contendo as informacoes dos sensores e
recebe da BeagleBone mensagens de comando para modificar o estado dos atuadores.

)

Essas mensagens podem ser os caracteres 'w’, 'a’, ’s’, 'd’ ou 'x’.

3.4. IMPLEMENTACAO

95

7 z
¢ S gem- BB
Y IEFEE

www-arduino- cc
MADE IN ITALY

BeagleBone

Made with [Fritzing.org

Figura 3.22: Conexoes para comunicacao serial entre o Arduino e a BeagleBone.

Capitulo 4

Resultados

Apos a conclusao da montagem e configuracao da plataforma movel, foi observado o
comportamento e desempenho de algumas funcionalidades. Nas se¢oes abaixo sao mos-

trados e discutidos os resultados obtidos.

4.1 Consumo de Energia

A fonte de energia montada e utilizada durante os testes (Se¢ao 3.1.11) nao apresentou
um desempenho satisfatorio. A medida que mais componentes eram utilizados foi possivel
verificar que a tensao nao se mantinha em 5 Volts como era esperado. Quanto maior a
corrente consumida a tensao de saida diminuia.

Esse fator atrapalhou, em alguns momentos, os testes realizados, uma vez que quando
a tensao alcangava valores abaixo de 4,85 Volts os componentes mostravam instabilidade.
Principalmente a BeagleBone que era a primeira a parar de funcionar.

Para contornar essa dificuldade foram utilizadas , simultaneamente, fontes de alimen-
tagao alternativas, como a porta USB do computador e carregadores de celular para
alimentar a BeagleBone e o Arduino. Para que isso fosse possivel o principal cuidado foi
realizar as ligacoes de terra comum para garantir o funcionamento adequado da plata-

forma movel.

4.2 Protocolo de Comunicacao

O protocolo de comunicagao implementado permitiu o controle da plataforma robotica
e a monitoracao dos dados dos sensores. A funcao de verificacao da laténcia de rede
mostrou uma perda de pacotes muito baixa, (inferior a 1%) em condig¢bes normais.

E importante destacar que a verificacao da laténcia da rede depende de diversos pa-
rametros, e a implementagao realizada nesse projeto pode ser otimizada, diminuindo a

sobrecarga da rede e obtendo valores mais precisos.

58 4. RESULTADOS

20

e wele e elel emltm b lwlell .

3.0s 4.0s 5.0s 6.0s 7.0s 8.0s 9.0s 10.0s 11.0s 12.0s 13.0s 14.0s 15.0s

< € ;] TS

GCraphs K AXis

Graph 1 Color B Filter: ‘ip.src == 10.0.0.171 and udp.port == 5001 Style: Impulse | Tick interval: 0.1 sec hd

Graph 2 Color BFFilter: ‘ip.src == 10.0.0.89 and udp.port == 5001 Style: Dot w | | Pixels per tick: 10 |+

Graph 3 B Filter: ‘ip.src == 10.0.0.89 and udp.port == 5002 Style: Line v D Mi?W as time of day

Graph 4 Color B Filter: ‘ip.src == 10.0.0.171 and udp.port == 5003 Style: Line - L‘:\i‘s Packets/Tick |+

Graph 5 B Filter: ‘ip.src == 10.0.0.89 and udp.port == 5003 Style: Line A Scale: 207'
Smooth: No filter =

Figura 4.1: Numero de pacotes transmitidos pelo protocolo de comunicagao em funcao
do tempo.

Para observar o comportamento do protocolo de comunicagao entre o computador
remoto e a BeagleBone através da rede foi utilizada a ferramenta Wireshark|[11], que
permite a monitoracao e visualizagao dos pacotes que trafegam pela rede.

A Figura 4.1 mostra uma grafico com os pacotes transmitidos pelo protocolo de co-
municagao descrito na Secao 3.4.3 na pagina 52. O grafico apresentado mostra o nimero
de pacotes enviados em funcao do tempo.

Os pacotes utilizados para o envio de comandos a plataforma movel utilizaram a porta
5001. Eles estao representados pelas barras verticais em preto e os pontos em vermelho,
significando, respectivamente, o envio de comandos e a resposta de confirmacao.

Os pacotes com destino a porta 5002 sao mostrados em verde. Estes pacotes repre-
sentam o fluxo de dados dos sensores enviados da BeagleBone para o computador.

O fluxo de dados gerado para verificar a laténcia da rede (porta 5003) é representado
no grafico pelas curvas azul e rosa. A curva em azul mostra os pacotes periodicamente
enviados do computador para a BealgeBone. A resposta desses pacotes é mostrada em
rosa.

Devido ao fato da comunicagao entre o computador remoto e a BeagleBone basear-se
em uma rede sem fio, esta apresenta maior vulnerabilidade a falhas e lentidao, devido a
essa alta vulnerabilidade a laténcia da rede foi observada com maior cuidado também em
situagoes onde a rede encontra-se com um fluxo muito grande de pacotes.

Para verificar o comportamento do protocolo de comunicacao nessas situacoes foi

4.2. PROTOCOLO DE COMUNICAGCAO 59

20

24.40s 24.60s 24.80s 25.00s 25.20s 25.40s 25.60s 25.80s 26.00s 26.20s 26.40s 26.60s 26.80s
“ — r
Graphs X Axis
Graph 1 Color [Fliter: |ip.src == 10.0.0.171 and udp.port == 5001 Style: Impulse | || Tick interval: 0.01 sec |»
Graph 2 Color BEJFilter: |ip.src == 10.0.0.89 and udp.port == 5001 Style: Dot ¥ || Pixels per tick: 5 |»v
Graph 3| Filter: |ip.sr’c == 10.0.0.89 and udp.port == 5002 Style: Line v || O View as time of day
Y Axis
Graph 4 Color Filter: |ip.sr’c ==10.0.0}171 and udp.port == 5003 Style: Line v))
— W Unit: Packets/Tick |«
Graph 5 Filter:||ip. == 10.0.0.89 and udp.port == 5003 Style: Li T E——
rap E ilter |ID SrC and udp.por vle: Line v scale: 70 -
Smooth: No filter -

Figura 4.2: Atraso gerado devido a sobrecarga da rede.

gerado um trafego intenso de pacotes com o comando ping com a opc¢ao de inundacao.
Essa opcao envia novos pacotes mesmo antes de receber a resposta do pacote anterior
gerando um trafego bastante intenso na rede. O comando utilizado pode ser visto a

seguir:

sudo ping —f 10.0.0.89

Ao analisar o trafego da rede nessas condigoes, foi possivel constatar o atraso gerado
e a perda de pacotes. O atraso fica evidente na Figura 4.2, chegando a valores da ordem
de 0.2 segundos. Esse valor encontrado para os atrasos é limitado pelo tempo de timeout
utilizado na implementacao do protocolo.

A Figura 4.3 destaca a perda de pacotes, que pode ser verificada observando o intervalo
de tempo em que a rede estava sobrecarregada: Entre 60 e 90 segundos. O nitimero de
pacotes respondidos sofre uma queda significativa. Nesse intervalo a verificacao da laténcia

da rede implementada no protocolo de comunicacao mostrou uma perda de pacotes em

torno de 58%.

60 4. RESULTADOS

—200
—100
L L o e e L B o o e o A L o o e o ML B s o 0
10s 20s 30s 40s 50s 60s 70s 80s 90s 100s 110s 120s 130s
OE > G
GCraphs K AXis
Graph 1 Color B Filter: ‘ip.src == 10.0.0.171 and udp.port == 5001 Style: Impulse | Tick interval: 1 sec hd
Graph 2 Color B Filter: ‘ip.src == 10.0.0.89 and udp.port == 5001 Style: Dot ¥ || Pixels per tick: ’__1__0____'_'
Graph 3 B Filter: ‘ip.src == 10.0.0.89 and udp.port == 5002 Style: Line v ||| 2 Liew as time of day
S — (Y Axis
Graph 4 Color Filter: ||ip.src == 10.0.0.171 and udp.port == 5003 Style: Line v
L M — ‘p p-p ¥ —— 1 Unit: Packets/Tick |=
Graph 5 Filter:||ip. == 10.0.0.89 and udp.port == 5003 Style: Li
rap B4 Filter "D sre and udp.por vie Hne T scale: Auto ~
Smooth: No filter =

Figura 4.3: Perda de pacotes devido a sobrecarga da rede.

4.3 Sensor de Distancia

O sensor de distancia mostrou-se funcional e permite medir a distancia dos objetos
proximos com precisao de até 0,5 centimetros. Dessa forma foi possivel incluir a funcionali-
dade de parar os motores quando um objeto encontra-se muito perto. Essa funcionalidade
tem o objetivo de evitar colisoes frontais prevenindo danos a plataforma moével.

De acordo com as especificagbes encontradas no manual do fabricante[10], o sensor
apresenta um alcance minimo de 2 centimetros e maximo de 4 metros, com um angulo de
medida maximo de 15 graus. Essas informagoes estao ilustradas na imagem da esquerda

na Figura 4.4.

Area 2
Distancia ObJetO 2
Area | ?:
¥ 30° ii
Sensor de Sensorde|. ')
e I, - - Objeto |
Distancia Distancia

Figura 4.4: Problemas encontrados na utilizagao do sensor de distancia.

4.4. SENSOR DE CORRENTE 61

Este angulo, na medida realizada pelo dispositivo, acaba introduzindo erros quando o
objeto comeca a se distanciar do sonar. Isso ocorre devido ao fato que a area abrangida
pelo sonar comega a aumentar, fazendo com que a probabilidade da influéncia de demais
elementos presentes no ambiente seja maior. Para distancias inferiores a area é menor de
maneira que o erro introduzido na medida da distancia acaba sendo bastante pequeno.

Outro problema identificado na utilizagao desse tipo de sonar foi em situagoes onde
a onda sonora emitida reflete em mais de um objeto antes de retornar ao sensor. Esta
situacao ¢ ilustrada na imagem da direita na Figura 4.4. Nela podemos ver que a onda
emitida incide no Objeto 1 com um angulo de 45 graus, é redirecionada para o Objeto 2.
Nesta situacao a distancia informada pelo sensor é referente & soma da distancia entre o
sensor e o Objeto 1 com a distancia entre o Objeto 1 e o Objeto 2.

Devido a problemas como os discutidos nessa Sec¢ao é importante utilizar o sensor ultra
sonico com bastante cuidado, pois suas medidas podem sem influenciadas por diversos

fatores.

4.4 Sensor de Corrente

A utilizacao do sensor de corrente foi interessante por questoes didéticas, entretanto
suas caracteristicas de operagao tornou a utilizagao pouco precisa.

Se levarmos em consideragao que o conversor analogico do pino A0 do Arduino Leo-
nardo ¢é de 10 bits e que a tensao de referéncia é de 5 Volts podemos calcular a precisao
do conversor analdgico. O resultado encontrado é uma precisao de 4,88mV.

Como visto na Sec¢ao 3.1.9 o sensor de corrente pode ser utilizado para medir correntes
no intervalo de -50 até 50 amperes, com uma sensibilidade de 40mV /A. Sabendo dessas
informacgoes é possivel calcular a precisao do conversor analdgico em relacao a corrente
aferida pelo sensor. O valor encontrado é uma precisao de 0,122A.

Como o consumo de corrente do motor nao passa de 2,4 A, mesmo em situagoes
extremas é possivel perceber que a precisao do sensor é muito baixa para esse projeto.

Devido a essas caracteristicas, seria interessante a utilizacao de sensores mais apro-
priados para a faixa de consumo de corrente desse projeto. Permitindo assim alcangar

resultados mais satisfatorios.

Capitulo 5]

Conclusao

Acionar o funcionamento de um motor com apenas um clique em um botao na tela de
um computador parece uma funcionalidade bastante simples, mas dependendo de como
é feita a implementacao, pode ser bastante complexo. Para implementar essa funciona-
lidade, foi necessario projetar uma interface de controle, construir a plataforma movel e
implementar todas etapas de integracao dos componentes do sistema.

Durante o desenvolvimento do projeto foi possivel avaliar a eficiéncia de algumas das
escolhas feitas para realizar a implementacao de cada etapa necesséria para concluir o
projeto. Algumas dessas escolhas e suas implica¢oes sao apresentadas e discutidas a
seguir.

A utilizacao de sensores de disténcia ultra sénicos é uma alternativa bastante barata
e didatica. Porém, para projetos que necessitam de uma qualidade maior e que nao sao
tolerantes as limitagoes observadas ¢ indicado a utilizacao de sensores baseados em outras
tecnologias, como por exemplo sensores a laser. Essas alternativas podem encarecer muito
o custo do projeto mas, dependendo da aplicagao, sao mudancas necessarias.

O protocolo de comunicagao entre a BeagleBone e o computador remoto utilizando rede
sem fio mostrou-se possivel e bastante flexivel. A utilizacao de outras tecnologias como
uma alternativa para estabelecer a comunicacao poderia trazer vantagens relacionadas
com a distancia maxima de alcance e velocidade de comunicacao. Entretanto, foi dado
preferéncia pela utilizagao da rede sem fio devido & possibilidade de expandir o projeto
facilmente para que a plataforma moével seja controlada pela internet.

A utilizacao de plataformas de hardware e software open source mostrou-se bastante
produtiva devido a comunidade ativa que compartilha e disponibiliza solucoes para a
maioria dos problemas encontrados. O contato com a distribuigao do Linux utilizada
permitiu conhecer melhor algumas ferramentas diferentes bem como o funcionamento
bésico do kernel, comum a todas as distribuicoes.

O uso de Linux Embarcado é uma solugao apropriada por se tratar de uma alterna-
tiva altamente personalizavel e com e a facilidade para a expansao das funcionalidades

oferecidas pela plataforma moével. A utilizacao de uma interface web para monitoragao e

64 5. CONCLUSAO

telemetria da plataforma moével seria uma funcionalidade interessante. Com a utilizagao
de Linux Embarcado essa funcionalidade pode ser facilmente implementada.

Foi possivel perceber também que existe um grande ntamero de alternativas diferentes
para solucionar os mesmos problemas. Esse leque de possibilidades ressalta a importan-
cia de elaboragao de estudos comparativos entre as alternativas para descobrir quais as
vantagens e desvantagens de cada uma delas, permitindo tomar decisoes de projeto mais
coerentes com o objetivo de alcangar uma solugao com alta qualidade e eficiéncia.

Depois de realizar essas consideracoes pode-se afirmar que foi possivel alcangar o ob-
jetivo proposto, aprofundando os conhecimentos necessarios para a implementacao de um
sistema que depende da integracao entre o software e o hardware. Realizar essa integragao
de tecnologias diferentes e ajudar o desenvolvimento de novas e melhores tecnologias faz
parte do papel de um engenheiro de computagao. A realizacao de projetos como esse
caracteriza uma oOtima maneira de aprofundar-se nesse universo de conhecimento de uma

maneira pratica, funcional e didética.

Trabalhos Futuros

O projeto desenvolvido mostrou-se funcional e atingiu o objetivo proposto, mas ha

diversas melhorias que podem sem implementadas. A seguir sao citadas algumas delas:

m Analisar e comparar o atraso de comunicagao gerado pela comunicacao serial entre

a BeagleBone e o Arduino;
m Modificar a instalacao elétrica para que a plataforma funcione com o uso de baterias;

m Transferir o controle de todos os sensores e atuadores para a BeagleBone, eliminando

a necessidade da utilizacao do Arduino;

m Melhorar os protocolos de comunicagao, incluindo mais redundancias para garantir

o envio dos comandos de controle;

m Aprimorar a interface grafica para permitir um controle mais intuitivo da plata-

forma;

m Incluir a utilizacao de outros sensores para permitir a inclusao de mais funcionali-

dades autdénomas na plataforma movel;

m Desenvolvimento de uma interface grafica que permita uma maior portabilidade

para outras plataformas;
m Utilizacao de uma interface web para monitoracgao e telemetria da plataforma maovel;

m Modularizagao dos componentes da plataforma facilitando o a utilizacao da plata-

forma como um kit didatico para estudantes.

Referéncias Bibliograficas

1]

2l

3]

4]

5]

(6]

17l

8]

19]

O Impacto do Software Livre e de Codigo Aberto na Iduastria de Software do Brasil,
2005. Disponivel em: <http://www.mct.gov.br/upd-blob/0008,/8690.pdf> Acesso
em 24 Out. 2013.

Beaglebone: Placa de desenvolvimento de baixo custo, Junho 2012. Disponivel
em: <http://www.sabereletronica.com.br/pt-BR /artigos-2/2849-beaglebone-placa-

de-desenvolvimento-de-baixo-custo> Acesso em 24 Out. 2013.

angstrom-distribution.org. Site oficial, Junho 2007. Disponivel em:

<http://www.angstrom-distribution.org™> Acesso em 24 Out. 2013.

Arduino.org. Arduino leonardo, Junho 2007. Disponivel em:
<http://arduino.cc/en/Main/ArduinoBoardLeonardo> Acesso em 24 Out. 2013.

Arduino.org. Site oficial, 2012. Disponivel em: <http://www.arduino.cc> Acesso
em 24 Out. 2013.

BeagleBoard.org. Site oficial, Setembro 2013. Disponivel em:
<http://beagleboard.org/Products/BeagleBone> Acesso em 24 Out. 2013.

Gerald Coley. BeagleBone Rev A6 System Reference Manual, 2012.

Justin Cooper. Setting up IO Python Library on BeagleBone Black. Dispo-
nivel em: <http://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-
black /uart> Acesso em 12 Ser. 2013.

Datasheet. RB-Dfr-149. DFRobot.

[10] Datasheet. Ultrasonic Ranging Module HC - SR04. Elec Freaks.

[11] Wireshark Foundation. Péagina oficial, Setembro 2013. Disponivel em:

<http://www.wireshark.org> Acesso em 24 Out. 2013.

66 REFERENCIAS BIBLIOGRAFICAS

[12] Jonathan Feldman. O hardware open source é a proxima grande sacada da TI
corporativa?, 2012. Disponivel em: <http://informationweek.itweb.com.br/8292/o-
hardware-open-source-e-a-proxima-grande-sacada-da-ti-corporativa/> Acesso em 29
Out. 2013.

[13] James F Kurose and Keith W Ross. Computer Networking. Pearson Education,
2012.

[14] Merciadri Luca and Koén Kooi. Angstrém Manual, Junho 2012.

[15] Manual do Fabricante. 150 Mbps Wireless IEEE802.11b/g/n nano USB Adapter,
2012.

[16] Michael Margolis. Arduino Cookbook. O’Reilly Media, 2011.

[17] pythonhosted.org. Pagina oficial pyobjc, Setembro 2013. Disponivel em:
<http://pythonhosted.org/pyobjc/> Acesso em 24 Out. 2013.

[18] Roberto Brauer Di Renna, Rodrigo Duque Ramos Brasil, Thiago Elias Biten-
court Cunha, Mathyan Motta Beppu, and Erika Guimaraes Pereira da Fon-
seca. Introducao ao kit de desenvolvimento arduino, Junho 2013. Disponi-
vel em: <http://www.telecom.uff.br/pet/petws/downloads/tutoriais/arduino/Tut-
Arduino.pdf> Acesso em 24 Out. 2013.

[19] Andrew N. Sloss, Dominic Symes, and Chris Wright. ARM System Developer’s
Guide. Elsevier, San Francisco, CA, 2004.

Apéndices

Apéndice A

Cdédigo do Arduino

Codigo completo utilizado no Arduino Leonardo para realizar o controle dos atuadores,

monitorar os dados dos sensores e realizar a comunicagao serial com a BeagleBone.

#include <Servo.h>

#define E1 5 // Diregao Motorl
#define M1 4 // Velocidade Motorl
#define servo 9 // Servo
6|#define echoPin 7 // Echo Pin
7|#define trigPin 8 // Trigger Pin
8|#define LEDPin 13 // Onboard LED
#define currentSensor 0

Tt = W N =

// Current Sensor

11} int speed;

12| int direction = 95;

13| int maximumRange = 2000; // Maximum range needed

14| int minimumRange = 0; // Minimum range needed

15| long duration, distance; // Duration used to calculate distance
16

17| Servo direcao;
18| byte incomingByte;

20| const int numReadings =5;

21| float readings[numReadings]; the readings from the analog input

220 int index = 0; // the index of the current reading
23| float total = O0; // the running total
24| float average = O0; // the average

25| float currentValue = 0;

26

27| void setup ()

28(4

29 Serial .begin (9600) ;

30 Seriall . begin (9600) ;

31 delay (400) ;

32 pinMode (trigPin , OUTPUT) ;

33 pinMode (echoPin , INPUT) ;

34 pinMode (LEDPin, OUTPUT) ;

35 pinMode (M1, OUTPUT) ;

36 speed =0;

70 A. CODIGO DO ARDUINO

38 direcao.attach(servo); // attaches the servo on pin 9 to the servo object
39 direcao.write (95);

40 /xzera o vetor das medidas do sensor de correntex/

41 for (int thisReading = 0; thisReading < numReadings; thisReading++)

42 readings [thisReading]| = 0;

43| }

44

45| void loop ()
46| {
47| //Seriall le do pino 0 e 1
48 //serial le do USB

49 if (Seriall.available() > 0) {
50 comando (Seriall .read ());

51 }

52 //tambem faz a leitura pelo USB
53 if (Serial.available() > 0) {
54 comando (Serial .read ());

55 }

56

57 //leitura do sensor

58 readDistance () ;

59 //imprime na UART para a BB

60 Seriall . write(’d’);

61 Seriall . println (distance);

62

63 //leitura do sensor

64 readCurrent () ;

65 //imprime na UART para a BB

66 Seriall . write(’'c’);

67 Seriall .println (currentValue);
68

69 delay (100) ;

70{ }

71

72| void readDistance () {

73 /*Sequencia de leiturasx/

74 digitalWrite (trigPin , LOW);

75 delayMicroseconds (2) ;

76

77 digitalWrite (trigPin , HIGH) ;

78 delayMicroseconds (50) ;

79

80 digitalWrite (trigPin , LOW);

81 duration = pulseln (echoPin, HIGH,10000) ;
82

83 /xCalcula distancia baseado na velocidade do somsx*/
84 distance = duration /58.2;

85

86 /*Indicar erro de leiturasx/

87 if (distance >= maximumRange || distance <= minimumRange) {
88 Serial.println ("—1");

89 digitalWrite (LEDPin, HIGH) ;
90 }

91 /«xPara ao chegar perto de um objetox/
92 if (distance <= stopDistance){
93 Serial.println (distance);

94 direction=95;

A. CODIGO DO ARDUINO

71

}

speed =0;

digitalWrite (LEDPin, HIGH) ;
direcao . write(direction);
digitalWrite (M1,HIGH) ;
analogWrite (E1, speed);

/*Imprime distanciax/

else {

Serial.print ("[ecm]|: ");
Serial.println (distance);
digitalWrite (LEDPin, LOW) ;

void readCurrent ()

{

total= total — readings|[index];

readings [index| = analogRead(currentSensor); //Raw data reading
readings [index] = (readings|index|—520)*5/1024/0.04;

total= total + readings|[index];

index = index + 1;

if (index >= numReadings)

index = 0;

average = total /numReadings;

currentValue= average;

Serial.print ("Corrente: ");

Serial.println (currentValue);

void comando(byte incomingByte){

switch (incomingByte) {

if
if
if
if

(
(
(
(

case ’‘a’:
direction —=60;
break;

case ’'d’:
direction+=60;
break ;

case 'x’:
direction =95;
speed =0;
break ;

case ‘'w’:
speed+=60;
break ;

case ’'s’
speed —=60;
break ;

default :
break ;

speed >255) speed=255;

speed <—255) speed=—255;
direction >155) direction=155;
direction <35) direction=35;

72 A. CODIGO DO ARDUINO

152 direcao . write (direction);
153 if (speed>=0) {

154 digitalWrite (M1, HIGH) ;
155 analogWrite (E1, speed);
156 }

157 else {

158 digitalWrite (M1,LOW) ;
159 analogWrite (E1, —speed);
160 }

161 delay (1) ;

162] }

Tl = W N =

29
30
31

33
34
35

Apéndice B

Aplicacao servidora em Python

Codigo em Python utilizado pelo servidor para estabelecer a comunicacao entre a Bea-
gleBone e o computador remoto utilizando o protocolo UDP e também entre a BeagleBone

e 0 Arduino de forma serial.

import Adafruit BBIO .UART as UART
import serial

import os

import threading

import socket

#habilita a utilizacao da UART2

os.system ("echo BB-UART2 > /sys/devices/bone capemgr.7/slots")
UART. setup ("UART2")

ser = serial.Serial(port = "/dev/ttyO2", baudrate=9600)
ser.close ()

ser .open|()

#def configureSocket ():
UDP_IP = "10.0.0.171"
UDP_PORT = 5005

| sock = socket.socket (socket .AF INET, socket .SOCK DGRAM)

sock.bind (("0.0.0.0" ,UDP_PORT))
if ser.isOpen():
print "Serial is open!"

ser.write ("Hello World!")

def readSerial ():

while True:
byte = ser.read ()
if byte = "c¢" :
corrente = ""
byte = ser.read ()
while byte != ’"\n’ :
corrente = corrente + byte
byte = ser.read ()
resposta = ’Corrente: %s’ % corrente
print resposta # terminal

sock.sendto (resposta, (UDP_IP, UDP PORT)) # socket

74 B. APLICACAO SERVIDORA EM PYTHON

36 #ser . write (’C_B: %s\n’ % corrente) # arduino
37

38 if byte = "d"

39 distancia = ""

40 byte = ser.read ()

41 while byte != "\n’

42 distancia = distancia + byte

43 byte = ser.read ()

44 resposta = ’Distancia: %s’ % distancia

45 print resposta # terminal

46 sock .sendto(resposta, (UDP_IP, UDP_PORT)) # socket
47 #ser . write ('D_B: %s\n’ % distancia) # arduino
48

49

50| def recieveCommand () :

51 while True:

52 #command = raw _input (" Enter a command ")

53 data, addr = sock.recvfrom (1024) # buffer size is 1024 bytes
54 print "received message:", data

55 ser . write (data);

56

57

58

59| t serial = threading.Thread(target=readSerial)

60| t _serial.daemon = True

61|t _serial.start ()

62

63| recieveCommand () ;

T = W N =

\ e

o0

Apéndice C

Script de inicializacao para utilizacao
do UART?2

O trecho de cédigo abaixo ¢ utilizado para inicializar o médulo de comunicagao UART?2

da BeagleBone

cat /sys/devices/bone capemgr.7/slots

echo "Habilitando BB-UART2"

echo BB-UART2 > /sys/devices/bone capemgr.7/slots
echo "UART2 Habilitada"

echo "Arquivo slots:"

cat /sys/devices/bone capemgr.7/slots
echo "Mensagens do sistema"

dmesg | grep UART

16

18

20

Apéndice D

Cédigo em Python da interface de

controle

O codigo a seguir é responsavel pela implementacao da interface gréafica utilizada no
computador remoto bem como a a comunicagao com a BeagleBone através da porta 5001
para enviar os comandos para a plataforma madvel. Trata-se de um codigo em Python e
Objective C.

from Cocoa import =
import socket
import os

UDP IP = "10.0.0.89"

|UDP_PORT = 5001
7| sock = socket.socket (socket .AF INET, socket.SOCK DGRAM)

sock.bind (("0.0.0.0" ,UDP_PORT))
command = ’'x’

response = '#’

def send(char):
global command

global response

command = char

sock .sendto (command, (UDP_IP, UDP_PORT))
response , addr = sock.recvfrom (1024)

class ClientController (NSWindowController) :

command = 'x’

TextFieldl = objc.IBOutlet ()
TextField2 = objc.IBOutlet ()
currentTextField = objc.IBOutlet ()
#distanceTextField = objc.IBOutlet ()

def windowDidLoad(self):
NSWindowController . windowDidLoad (self)

@objc.IBAction

64
65
66
67
68
69

ENEEEN |
= O

Y O o W N

-3

0 0 N J 3 4 N 9

o0
N

78 D. CODIGO EM PYTHON DA INTERFACE DE CONTROLE
def dirRight (self, sender):
send (’d’)
self .updateDisplay ()
@objc.IBAction
def dirLeft (self, sender):
send(’a’)
self .updateDisplay ()
@objc.IBAction
def dirFront (self, sender):
send ('w’)
self.updateDisplay ()
@objc.IBAction
def dirBack (self, sender):
send(’'s’)
self .updateDisplay ()
@objc.IBAction
def stop (self, sender):
send ('x7)
self .updateDisplay ()
@objc.IBAction
def loop (self, sender):
time.sleep (1)
def updateDisplay(self):
self . TextFieldl.setStringValue (UDP_IP)
self . TextField2.setStringValue (UDP_PORT)
self.currentTextField.setStringValue (command)
#self .distanceTextField.setStringValue (response)
if name =" man ":

app = NSApplication.sharedApplication ()

Initiate the contrller with a XIB
viewController = ClientController. alloc () .initWithWindowNibName ("Window")

Show the window
viewController .showWindow (viewController)

Bring app to top
NSApp. activatelgnoringOtherApps _(True)

from PyObjCTools import AppHelper

AppHelper . runEventLoop ()

T = W N =

16

O S S G
S © 00 3

T B W N =

W W W W N NN NN NN NN
W N = O © 0 3 O C C

Apéndice E

Cdédigo em Python para monitorar a

laténcia

O codigo em Python abaixo é executado no computador cliente e tem como objetivo

verificar a laténcia de comunicacao com a BeagleBone.

import threading

import socket

import time

import select

from multiprocessing import Process
BeagleBone IP="10.0.0.89"

Port _Latency = 5003

sock ltc = socket.socket(socket .AF INET, socket .SOCK DGRAM)
sock ltc.bind (("0.0.0.0",Port Latency))
sock ltc.setblocking (0)

pacotes = 100

def latencyRequest ():

avg = 0
cont = 0
for i in range(0, pacotes):
sock ltc.sendto(’'p’, (BeagleBone IP, Port Latency))
send time = time.time ()
ready = select.select ([sock ltc]|, [], [], 0.002)
if ready[0]:
data = sock ltc.recv(1024)
if data =— ’'p’:
cont +=1
recieve time = time.time ()
avg += recieve time — send time
time.sleep (0.005)
avg = avg/pacotes

print ’%0.3f ms > % (avgx1000.0)
print ’packet loss: %.1f ' % (pacotes—cont)
while True:
pl = Process(target=latencyRequest)
pl.start ()
pl.join ()
time.sleep (0.5)

Apéndice F

Cédigo em Python para monitorar os

sensores

O codigo abaixo é resposavel pelo recebimento das informacoes dos sensores no com-

putador cliente. Sua implementacao é em Python.

import threading
import socket
import time
import select

T = W N =

7| BeagleBone IP="10.0.0.89"

9| Port _Sensor = 5002

10| sock _sen = socket.socket (socket.AF INET, socket .SOCK DGRAM)
11| sock sen.bind (("0.0.0.0",Port_Sensor))

12| sock sen.setblocking (0)

15| def sensorRead () :
16 print "Sensor"

17 while True:

18 send time = time.time ()

19 ready = select.select ([sock _sen], [], [], 0.01)
20 if ready[0]:

21 data = sock sen.recv(1024)

22 print data

23

24

25

26|t sensor = threading.Thread(target=sensorRead)
27|t _sensor.daemon = True

28|t _sensor.start ()

29

while True:

w W

pass

