UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

RODRIGO CARAMASCHI VERNIZZI

Desenvolvimento de dispositivo para aquisicdo de dados da
rede CAN de um veiculo e transmissao através da Internet

Sao Carlos
2024

RODRIGO CARAMASCHI VERNIZZI

Desenvolvimento de dispositivo para aquisicao de dados da
rede CAN de um veiculo e transmissao através da Internet

Primeira Versao

Sao Carlos
2024

Monografia apresentada ao Curso
de Engenharia Elétrica com
énfase em Eletronica, da Escola
de Engenharia de Sao Carlos
da Universidade de Sao Paulo,
como parte dos requisitos para
obtencéo do Titulo de Engenheiro
Eletricista

Orientador: Prof. Dr. Marco Henri-
que Terra

AUTORIZO A REPRODUGCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Verni zzi, Rodrigo

V538d Desenvol vi nento de di spositivo para aquisi ¢cdo de
dados da rede CAN de umveiculo e transni ssdo através
da Internet / Rodrigo Vernizzi; orientador Marco
Henrique Terra. S&do Carlos, 2024.

Monogr afi a (Graduagdo em Engenharia El étrica com
énfase em El etrénica) -- Escola de Engenharia de S&o
Carl os da Universi dade de S&o Paul o, 2024.

1. CAN Bus. 2. Telenetria. 3. Aquisicao de Dados.
I. Titulo.

Eduardo Graziosi Silva - CRB - 8/8907

FOLHA DE APROVACAO

Nome: Rodrigo Caramaschi Vernizzi

Titulo: “Desenvolvimento de dispositivo para aquisi¢cao de dados
da rede CAN de um veiculo e transmissao através da Internet”

Trabalho de Concluséo de Curso defendido e aprovado
em_30) /O [

comNOTA 9 U (fowe, 200), pela Comissao
! Julgadora:

Prof. Titular Marco Henrique Terra - Orientador - SEL/EESC/USP

Prof. Associado Valdir Grassi Junior - SEL/EESC/USP

Mestre Nicolas dos Santos Rosa - Doutorando EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Junior

Este trabalho é dedicado a minha familia,
aos meus amigos e a minha namorada,
que sempre me apoiaram e incentivaram.
Em especial ao meu pai e minha mae,
que com muito amor e carinho,

me ajudaram a chegar onde cheguei.

AGRADECIMENTOS

Gostaria de agradecer a Universidade de Sao Paulo (USP) e a equipe EESC USP Baja,
pela oportunidade de realizar e publicar esta pesquisa e por fornecer os equipamentos
necessarios.

“Mesmo quando tudo parece desabar,

cabe a mim decidir entre rir ou chorar,

ir ou ficar, desistir ou lutar; porque descobri,
no caminho incerto da vida,

que o mais importante é o decidir.”
Coralina, Cora

RESUMO

VERNIZZI, R. C. Titulo: Desenvolvimento de dispositivo para aquisicao de dados da
rede CAN de um veiculo e transmissao através da Internet. 2024. Monografia (Trabalho
de Conclusao de Curso) — Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo,
Séo Carlos, 2024.

O presente trabalho descreve o desenvolvimento de um dispositivo de baixo custo para a
aquisicao de dados da rede CAN de veiculos e sua transmissao pela internet, projetado
com base no microcontrolador ESP32, juntamente com um sistema de armazenamento
local, em um cartdo SD, garantindo a integridade dos dados e preservando-os para analises
posteriores. Além disso, foi feita uma interface para o usuario, permitindo assim, o monitora-
mento em tempo real das condi¢cdes do automovel, exibindo dados como velocidade e RPM.
Testado em um carro da equipe EESC USP Baja, o sistema demonstrou robustez e grande
eficiéncia em seu papel. Este dispositivo e todo o sistema relacionado, mostraram-se uma
solucao viavel e acessivel para a telemetria, com aplicagdes diversas, como diagnosticos
preventivos e otimiza¢cao do desempenho.

Palavras-chave: CAN Bus. Telemetria. ESP32. Aquisicdo de dados. Internet das Coisas
(loT).

ABSTRACT

VERNIZZI, R. C. Title:Development of a device for acquiring data from a vehicle’s
CAN network and transmitting it over the Internet 2024. Monograph (Course Conclusion
Paper) - Sdo Carlos School of Engineering, University of Sdo Paulo, Sdo Carlos, 2024.

This work describes the development of a low-cost device for acquiring data from the
CAN network of vehicles and transmitting it over the Internet, designed using the ESP32
microcontroller. Together with a local storage system on an SD card, it guarantees the
integrity of the data and preserves it for later analysis. In addition, a user interface was
designed, allowing real-time monitoring of the car’s condition, displaying data such as speed
and RPM. Tested in a car from EESC USP Baja team, the system proved to be robust and
highly efficient in its role. This device and the entire related system proved to be a viable and
affordable solution for telemetry, with diverse applications such as preventive diagnostics
and performance optimization.

Keywords: CAN Bus. Telemetry. ESP32. Data acquisition. Internet of Things (loT).

LISTA DE ILUSTRACOES

[Figura 1 — Conexao dos multiplos nés de umarede CANBus 23
[Figura2 — Sinais Elétricos da Transmissao CAN| 24
[Figura 3 — Diagramade Blocos|. 26
[Figura 4 — Microcontrolador ESP32|o 30
[Figura 5 — Alimentagaodocircuito] o 30
[Figura6 — Comunicagao CAN| 31
[Figura 7 — Circuito para alimentacdodocartaoSD| 32
[Figura 8 — Circuito para salvamentodocartaoSD| 33
[Figura9 — PCBoprojetadal. 34
[Figura 10 — Esquematico de comunicagao| oo .. 34
[Figura 11 — Estruturado Bancode Dados| 35
[Figura 12 — Diagrama de alto nivel paraconexao WiFi|. 36
[Figura 13 — Diagrama de alto nivel para aquisicao de dados do barramento CAN| . . 36
[Figura 14 — Diagrama de alto nivel para salvamentono cartao SD| 37
[Figura 15 — Pagina inicial do aplicativo| 38
[Figura 16 — Diagrama de alto nivel para layout do aplicativol. 38
[Figura 17 — Pagina dedicada agraficol 39
[Figura 18 — Diagrama de alto nivel para /ayout do aplicativo|. 39
[Figura 19 — Diagrama de alto nivel paraos graficos| 40
[Figura 20 — Diagrama de alto nivel para aquisicao dos dados da nuvem| 40
[Figura21 — PCBfinalizadal. 43

[Figura 22 — PCB finalizada, partedetras| 43

CAN

OBD

loT

MQTT

RPM

STFT

DTCs

PCB

LISTA DE ABREVIATURAS E SIGLAS

Controller Area Network

On-Board Diagnostics

Internet of Things

Message Queuing Telemetry Transport
Rotacao Por Minuto

Short-Term Fuel Trim

Diagnostic Trouble Codes

Printed Circuit Board

SUMARIO

1 INTRODUCAO!. . . . v ittt i et e ettt e e e et e e 21
(1.1 ObjetivoGeral|. 21
(1.2 Objetivos Especificos|, 21
2 REVISAOBIBLIOGRAFICA|ttt iiiee e 23
(2.1 Consideracoes Iniciais| 23
2 CANBusveicular 23
[2.2.1 Arquiteturafisical L 23
2.3 Integracao de Internet das Coisas (loT) no monitoramento veicular. 24
2.4 Monitoramento de consumo de combustivel e eficiencia operacional |
I comsensoresOBD-Ill 25
[2.5 Telemetria e aquisicao de dados de veiculos| 25
26 Protocolo CAN com ESP32 27
(2.7 Consideracoes Finais| 28
3 METODOLOGIAI. e e e e e e e e e e e e 29
(3.1 Projeto eletronico|, 29
B4 Microconfroladod 29
[3.1.2 Alimentacaol 30
[3.1.3 Comunicacao CAN| 31
3.1.4 CartaoSDeUSB| 32
[3.1.5 Design PCB| 33
B2 Bancodedados 34
(3.3 Programacao do microcontrolador{. 35
(3.4 Desenvolvimento do aplicativo| 37
4 RESULTADOSEDISCUSSAQ|. . . « v vt o vttt et e i e e e e e e 41
4.1 Desempenhodarede CAN 41
4.2 Frequencia de aquisicao e salvamento| 41
4.3 Transmissao de dados vialnternet/. a1
4.4 Aplicativo| 42
(4.5 Placa de circuitoimpresso| 42
5 CONCLUSAOD . . . ittt e et e e e e e e e e e e e a 45

REFERENCIAS] oottt e e e e e e 47

6 APENDICE A: DEFINICOES DE PARAMETROS/ 49

8 APENDICE C: FUNCOESDO CARTAOSD|. v oo .. 53
9 APENDICE D: COMUNICACAO COM O BANCO DE DADOS|. 55
H0 APENDICE E: CODIGO PARA O VELOCIMETRO E O TACOMETRO| . 57
11 APENDICE F: TABELA E BOTAO DO APLICATIVO| 59
H2 APENDICEG:GRAFICOS!t ittt e et e e 61

13 APENDICE H: AQUISICAO DE DADOSDOAPP|. 63

21
1 INTRODUGCAO

O setor automotivo estd em constante evolugao, impulsionado pela crescente demanda
por veiculos conectados e autbnomos. Essa mudancga exige a coleta e analise de grandes
volumes de dados em tempo real para diversos fins, como monitoramento do status do
veiculo, dirigibilidade segura e eficiente, desenvolvimento de veiculos autbnomos e servigos
telematicos. Nos veiculos atuais, a rede CAN (Controller Area Network), desempenha um
papel crucial como rede de comunicacao serial padronizada para sistemas embarcados.
Sua robustez, confiabilidade, baixo custo e capacidade de transmitir varios sinais em um
unico barramento a tornam essencial para diversas fungbes (Robert Bosch GmbH, 2012).

Contudo, a maioria dos carros, principalmente os populares, ndo permitem ao usuario
um acesso facilitado aos dados de seu veiculo, fazendo com que tenha menos informagoes
a respeito da saude e condigdes do veiculo. Alterar o sistema embarcado do carro para que
esse acesso seja facilitado € invidvel devido a quebra de garantia, ao nivel de complexidade
e ao fato de que o usuério se torna dependente de um servigco. Uma das maneiras de
contornar este problema e através do CAN Sniffer, um dispositivo conectado a porta OBD
do veiculo que consegue captar os dados da rede CAN (ELECTRONICS, [2024).

O CAN sniffer € uma solucéo pratica e eficiente para a coleta de dados de veiculos,
permitindo assim a transmissédo destes dados para diversos usos como, a manutengao
preventiva e diagnéstico remoto (TIETOEVRY, [2023). Este dispositivo |é os dados brutos da
rede CAN e os transmite para um servidor central, onde podem ser analisados para os fins
desejados.

Ademais, a transmissao pela internet destes dados pode possibilitar outras fungdes
para a telemetria automotiva (LI; LIU; LUO, 2008). Os dados podem ser utilizados por
fabricantes de veiculos para melhorar os projetos futuros, por seguradoras para ajustar
politicas de seguros baseadas no comportamento de condugéo e por desenvolvedores de
aplicativos para criar novas funcionalidades que aumentem a seguranca e a conveniéncia
dos motoristas.

Ja& no contexto de automaoveis autbnomos, este dispositivo pode ser utilizado para uma
comunicacao entre os veiculos com uma infraestrutura inteligente, contribuindo para a
construgdo de um ecossistema de transporte mais seguro e eficiente.

1.1 Obijetivo Geral

Este trabalho visa explorar e desenvolver um dispositivo de baixo custo e de facil
utilizacao para aquisitar os dados da rede CAN de um veiculo e transmiti-los pela internet.

1.2 Objetivos Especificos

Para atingir o objetivo geral € necessario, cumprir 0s seguintes objetivos especificos:

22

Projetar e manufaturar um hardware necessario para coletar os dados;
Desenvolver um software para salvar e transmitir os dados;
Criar e estruturar um banco de dados na nuvem,;

Desenvolver um aplicativo web, iOS e Android que disponibilizara os dados em tempo
real para o usuario.

23

2 REVISAO BIBLIOGRAFICA

2.1 Consideracoes Iniciais

Nesta revisao bibliografica, busca-se explorar estudos e solucbes que envolvem a
utilizagdo de microcontroladores para aquisicao de dados veiculares, com transmissao
desses dados via internet, Internet das Coisas, do inglés Internet of Things (IoT). Assim,
€ de interesse identificar abordagens e métodos eficientes para captar informagdes da
rede CAN de um veiculo e envia-las para uma plataforma de armazenamento em nuvem,
proporcionando acesso remoto e em tempo real aos dados. Além disso, a pesquisa visa
avaliar diferentes microcontroladores, considerando suas capacidades de comunicagdo sem
fio, custos e compatibilidade com os requisitos do projeto.

2.2 CAN Bus veicular

CAN Bus é um protocolo de barramento serial adotado vastamente pela industria
automotiva. Atualmente esta tecnologia é adotada para reducao dos chicotes assim como
aprimorar o controle do veiculo (SALUNKHE; KAMBLE; JADHAV, 2016). Atualmente em um
veiculo existem multiplas redes CAN, conectadas no mesmo barramento, cada uma dessas

redes é denominada de nés. A Figura[f]ilustra como é feita esta conexao.

Figura 1 — Conexao dos multiplos nés de uma rede CAN Bus

HVAC -
Ventilation ECU

CAN Controller

|
|

Bus - —— - —— - | Bus
Terminator |5 & Terminator
120 Obms T 120 Ohms

Fonte: BOLAND MORGAN |. BURGETT|(2021)

Nos carros atuais é possivel localizar um conector que fornece acesso aos dados do
veiculo, este conector é comumente referido como OBD-II, (On Board On Board Diagnostics)
e neste esta presente os terminais da rede CAN.

2.2.1 Arquitetura fisica

A arquitetura fisica de uma rede CAN é composta por 2 canais, um CAN High e outro
para CAN Low, sendo assim é transmitido um sinal diferencial, com uma logica de dois

24

estados:

« Dominante - Nivel 0 - 3V5;

* Recessivo - Nivel 1 - 2V5.

Como pode ser observado na Figura[2]

Figura 2 — Sinais Elétricos da Transmissédo CAN

Tenséo Dominante

Tenséo Recessiva

Tenséo Dominante

| | I | | Loégica do Driver

Fonte: (EMBARCADOS, 2020)

Com essa imagem é possivel perceber que ao ser transmitido o bit 1, o estado é
recessivo, ou seja, as tensdes sao iguais, ja quando esta sendo transmitido o bit 0, as
tensdes sao diferentes, sendo assim, o estado € dominante. Esta representagao ajuda a
compreender como o protocolo CAN utiliza a diferenga de tensao entre CAN High e CAN
Low para transmitir dados binarios. Esse método torna a comunicagdo mais robusta e
resistente a interferéncias, ideal para ambientes como os sistemas automotivos. Além da
robustez contra interferéncias, o protocolo CAN apresenta deteccao de erros e sistema de
prioridade de mensagem, tornando-a ainda mais ideal para o sistema automotivo.

Porém uma das desvantagens que a CAN apresenta neste cenéario € uma taxa de
transmissao limitada em 1Mbps, para contornar esta barreira existe a tecnologia CAN FD
(Flexible Data Rate), que com ela é possivel ajustar a taxa de transmissao para até 5 Mbps.

Também existe o protocolo FlexRay, o qual possui uma taxa de transferéncia mais
elevada, contudo também apresenta maior complexidade e custo.

2.3 Integracao de Internet das Coisas (IoT) no monitoramento veicular

Com o objetivo de reduzir o numero de acidentes de transito relacionados a saude do
veiculo, Naurudin et al. (2023) realizaram um estudo para entender como a integra¢ao do
loT, do inglés, Internet of Things, pode tornar o monitoramento veicular mais 0til e pratico
para os donos de automoveis. Para o projeto foi escolhido o protocolo MQTT (Message
Queuing Telemetry Transport) devido a sua eficiéncia na transmissao de dados em redes
com largura de banda limitada e alta laténcia, caracteristicas comuns em sistemas de loT
moveis (NURUDIN; ZARLIS, |2023). O sistema desenvolvido coleta dados criticos do veiculo,

25

como RPM (rotag&o por minuto), temperatura do motor, e os transmite para um servidor
no qual podem ser acessados por uma interface web. Essa abordagem permite a criacao
de um sistema de monitoramento continuo que fornece alertas imediatos caso alguma
situacao adversa seja detectada, promovendo uma manutengao preventiva e aumentando
a seguranca operacional dos carros (NURUDIN; ZARLIS, 2023). Em suma, este estudo
enfatiza a importancia da conectividade loT para o monitoramento em tempo real das
condic¢des dos veiculos, destacando o uso do protocolo MQTT como uma solugao eficiente
para a transmissao de dados em redes moveis.

2.4 Monitoramento de consumo de combustivel e eficiéncia operacional com senso-
res OBD-II

Rimpas et al. (2020) tinha como objetivo principal investigar a utilizagdo de sensores
OBD-Il para monitorar os parametros operacionais e de consumo de combustivel em
veiculos, com o intuito de aprimorar a eficiéncia do consumo e reduzir as emissdes de gases
toxicos, utilizando tecnologias acessiveis e disponiveis, como o OBD-Il e o barramento CAN
Bus (RIMPAS; PAPADAKIS; SAMARAKOU, [2020). O estudo se concentrou na selegao de
parametros cruciais para o desempenho e a eficiéncia do veiculo: temperatura do liquido de
arrefecimento do motor, a razao de oxigénio no escape (sonda lambda), a taxa de fluxo de
ar, a velocidade do veiculo e o ajuste de combustivel de curto prazo (STFT), do inglés Short-
Term Fuel Trim. A coleta de dados foi realizada utilizando um scanner OBD-Il (ELM 327 Mini
Bluetooth) conectado ao veiculo durante um trajeto de 5 km, incluindo vias com diferentes
condigcdes de trafego (alta e baixa densidade). Os dados coletados foram transmitidos via
Bluetooth para um notebook e registrados em tempo real utilizando o software ScanMaster.

2.5 Telemetria e aquisicao de dados de veiculos

A aquisicao de dados de sensores presentes em um veiculo assim como a analise deles,
telemetria, sdo essenciais tanto para o publico geral quanto para equipes de competicao
(CHANDIRAMANI; BHANDARI; HARIPRASAD, |2014). Monitorar as condi¢des de direcéo
tem como objetivo detectar parametros do veiculo em si, condigées do automovel, assim
como do ambiente ao redor deles, como por exemplo, clima, congestionamento, perfil da
superficie (TAYLOR NATHAN GRIFFITHS; GELENCSER, 2016).

Métodos para aquisicao dos dados

Para conseguir aquisitar os dados, € necessario definir um microprocessador que seja
capaz de aquisitar os dados dos sensores e salva-los ou transmiti-los para uma central.

26

Atmega 168

Uma pesquisa direcionada para aquisi¢ao de dados de um veiculo de corrida, utilizando
o microcontrolador da Atmega168 (CHANDIRAMANI; BHANDARI; HARIPRASAD, 2014),
devido a sua facilidade de programacao e pela quantidade de entradas ADC disponiveis no
microcontrolador. O diagrama da Figura 3} representa o sistema de aquisi¢ao adotado

Figura 3 — Diagrama de Blocos

POWER SUPPLY WIRELESS MODULE

f 3

RTC :> EMBEDDED CONTROLLER E EEPROM
< <—

S

REMOVABLE
SENSOR COMPACT FLASH
INPUTS MEMORY CARD

Fonte: CHANDIRAMANI; BHANDARI; HARIPRASAD, (2014)

Como pode ser visto, no trabalho mencionado, os sensores enviam o sinal diretamente
para a unidade de controle, que os salva e transmite utilizando o protocolo ZigBee, segundo
os autores, este protocolo foi adotado por possuir um menor consumo de poténcia que o
Wi-Fi.

PIC

(SAQFALHAIT; ABUSHAMMA, 2024) desenvolveram um projeto de scanner para diag-
néstico veicular baseado em OBD-Il visando fornecer uma solugao independente e acessivel
para que os proprietarios dos veiculos possam ter acesso aos dados.

Com este projeto apresentado foi possivel a aquisicdo dos dados dos automdveis,
contudo, segundo os autores, por ser baseado em um microcontrolador mais antigo, seu
desenvolvimento assim como integracdo com novas tecnologias sdo um desafio, além do
fato de ser necessario adicionar um controlador CAN externo ao microprocessador.

Arduino UNO

Com o objetivo de criar um sistema de registro de dados (Data logger), para aquisi¢ao
de parametros como RPM, velocidade do veiculo, acionamento do freio e marcha, de um
veiculo de duas rodas, (YADAV; SAKLE, |2023), optaram por uma abordagem baixo custo.
Para isso, optaram pelo microcontrolador Arduino UNO, visando economia de tempo e de
recursos. Este microcontrolador recebe dados diretamente dos sensores, ou seja, ndo esta
conectado a nenhum barramento.

27

Inicialmente comegaram o projeto em bancada e em seguida embarcaram o sistema
em uma motocicleta Bajaj M-80, para testes em condi¢des de condugéo reais, incluindo um
circuito urbano com 2,61 km de extensdo. Durante esses testes, os dados foram registrados
a uma taxa de 3 Hz, o que segundo os autores fornece uma base robusta para a analise de
padrdes de troca de marchas e comportamento de direcao (YADAV; SAKLE, 2023).

O estudo concluiu que o data logger desenvolvido ndao sé € eficaz e preciso, mas
também pode ser adaptado para diferentes tipos de veiculos com modificagbées minimas,
fornecendo uma solugéo versatil e econémica para monitoramento e analise de dados
veiculares. Ou seja, mesmo com um processador de facil acesso e baixo custo € possivel
realizar um projeto neste tema com alta confiabilidade e eficacia.

Raspberry Pi

Um estudo liderado por Moniaga (2018) explorou a utilizagdo de uma Raspberry Pi para
aquisicao de dados via OBD-Il, visando analisar acidentes causados por mau funcionamento
do carro, além disso, permitir que proprietarios de veiculos detectem e resolvam problema
antes que se agravem, melhorando a segurancga rodoviaria geral (MONIAGA J. V.; SAHIDI,
2018).

Neste estudo foi utilizado um scanner OBD comercial, que envia os dados aquisitados
para uma Raspberry, a qual processara e enviara os dados via Bluetooth para o usuério. A
interface do usuario foi desenvolvida para exibir de forma clara as informagdes de diagnés-
tico, incluindo cédigos de falha detectados DTCs, do inglés Diagnostic Trouble Codes, que
indicam problemas especificos no veiculo.

Os resultados do estudo demonstraram que a integragéo do OBD-1l com o Raspberry Pi
€ eficaz para o diagnéstico em tempo real de veiculos. A configuracao permitiu a coleta e
processamento de dados de diagnostico de maneira eficiente. Além disso, 0 uso de conexao
Bluetooth para comunicagao entre a Raspberry Pi e o dispositivo de exibicdo de dados
mostrou ser uma solugao pratica e de baixo consumo de energia.

2.6 Protocolo CAN com ESP32

A documentacao oficial da Espressif Systems (SYSTEMS, 2023) oferece uma explicacao
detalhada sobre o funcionamento e implementagdo do protocolo CAN utilizando uma
ESP32 como microcontrolador. Este material além de abordar requisitos e configuragbes de
software também auxilia no desenvolvimento do hardware. No contexto de desenvolver um
dispositivo de aquisicao de dados veiculares, como o discutido no presente trabalho, utilizar
um controlador CAN com o microcontrolador acima citado se mostra uma solugéao eficiente
e de baixo custo. Apesar de possuir um controlador CAN integrado, ainda é necessario
um transceiver externo a ESP32 para lidar com a interface fisica da rede CAN (SYSTEMS,
2023).

28

2.7 Consideracoes Finais

Analisando os trabalhos e solugdes ja estudadas, percebe-se uma lacuna na escolha
de microprocessadores, uma vez que 0s escolhidos ndo possuem as novas tecnologias ou
apresentam um custo muito elevado. Portanto busca-se outras op¢cdes mais modernas e
com melhor custo beneficio, como por exemplo ESP32 ou STM32.

Além disso, a maioria dos estudos nao focou na facilidade de acesso aos dados ad-
quiridos, deixando de lado a implementagao de plataformas acessiveis, como um site ou
aplicativo. Essa falta de enfoque na interface de visualizacdo dos dados pode limitar o uso
pratico das informagdes coletadas.

29
3 METODOLOGIA

O objetivo principal deste projeto é desenvolver um sistema de aquisicdo de dados
para um veiculo de corrida. Para isso, sera criada uma placa de aquisi¢cao eletrénica que,
utilizando um microcontrolador com conectividade Wi-Fi, permitira a leitura dos dados dos
sensores e o0 envio dessas informagdes para um servidor web na nuvem. Com os dados
disponiveis na plataforma de nuvem FireBase, espera-se possibilitar a visualizagdo em um
dispositivo smartphone, oferecendo praticidade no monitoramento e andlise do desempenho
do veiculo.

O desenvolvimento deste projeto envolveu as seguintes etapas:

1. 1 - Projeto Eletrénico;
2. 2 - Criacao e configuracao do banco de dados;
3. 3 - Programacéao do microcontrolador;

4. 4 - Desenvolvimento do app/web.

Essa subdivisdo também estd em ordem de execucao do projeto.

3.1 Projeto eletrénico

Nesta secao sera apresentada toda a metodologia envolvida para o projeto eletrénico
do dispositivo.

3.1.1 Microcontrolador

A primeira etapa do projeto foi tomar a decisdo de qual microcontrolador utilizar, visto os
trabalhos analisados na revisao bibliografica, os autores optavam pela escolha mais pratica
e que atenda todos os requisitos do projeto. Sendo assim, as duas principais necessidades
que o microcontrolador precisa ter € compatibilidade com protocolo CAN e com modulo
Wi-Fi.

Para cumprir ambos requisitos, o ESP32 foi o escolhido para o projeto, ilustrado na
Figura 4]

Embora o ESP32 tenha um controlador compativel com barramento CAN integrado,
ele nao possui um CAN transceiver integrado, portanto, deve-se utilizar um externo para
conectar-se a uma rede CAN. Em suma, um controlador CAN é a parte de hardware
responsavel por lidar com o protocolo CAN, ja o transceiver é a parte fisica, ou seja, lidar
com a comunicagao diferencial.

30

Figura 4 — Microcontrolador ESP32

Fonte: Retirado de (SYSTEMS, [2023)

3.1.2 Alimentagao

Levando em consideragéo que a tensdo da bateria utilizada no carro do grupo extracurri-
cular, Baja, e também dos carros convencionais € de 12 V, € necessario converter a tensao
de 12 V para 3,3 V (tenséo de funcionamento da rede CAN).

O esquematico pode ser visto na Figura [

Figura 5 — Alimentagao do circuito

5V 5V 33V

12v

U6

12v Vout
12v Vout

GNDin GNDout
GNDin GNDout

BUCK_CONVERT

1

Fonte: préprio autor.

Fazer uma converséo direta de 12 V para 3,3 V, além de ser preciso um conversor muito
bem regulado e estavel, de acordo com Texas Instruments 2008, a dissipacédo de calor
também pode ser um problema. Para isso, foi inicialmente utilizado um Mini Buck para
converter de 12 V para 5V, esta tenséo é interessante também pois serve para alimentar
outros circuitos, nessa etapa de regulacao, os capacitores C1 e C2 (10 uF) estdo presentes
para filtrar e estabilizar a saida de 5V. Essa saida seré a entrada de um regulador de tens@o
7833 (componente U21), ja nesta Ultima etapa de regulagao de tensédo, o diodo D1 (1N4001)
protege contra tensdes reversas, enquanto os capacitores C3 e C4 (1 nF) filtram os ruidos
na entrada e saida.

31

Para confirmar que o regulador de tensao esta operando em condi¢des corretas de
temperatura, foi utilizada a seguinte equacao:

Ty=Ta+pjaxV xI=30+65x(5—3,3) x 100mA = 41,05°C (3.1)
Sendo:

» T's: temperatura ambiente;
» T';: temperatura de juncao;

* psa: resistividade térmica de jungdo com ambiente;

V: tensao dissipada;

* |: Corrente consumida.

Como a temperatura de jungao resultante, 41,05 °C, foi menor que a maxima especificada
pela fabricante Unisonic Technologies 2005 (150°C), conclui-se que o circuito € aplicavel.
3.1.3 Comunicacao CAN

Para a correta comunicacao CAN, foi utilizado o transceiver SN65HVD233, e o circuito
ilustrado na Figura 6]

Figura 6 — Comunicacao CAN

3.3V

A
Utz ® $ O CANH
CAN_Tx O ; X0 RS |5 R105
5] GND CANH [— C10
% Vce CANL 5 120
CAN_Rx O RXD Vref [—&— | | 100pF
SNB5HVD230 e - O canL
0.1uF

Fonte: proprio autor.

Neste circuito o componente principal é o transceiver SN65HVD230, responsavel por
converter o sinal serial (CAN_TX e CAN_RX) do ESP32 em sinal diferencial (CAN_H e
CAN_L), ou seja, faz a interface entre o microcontrolador e a rede CAN.

O capacitor C11, de 0,1 uF tem como objetivo desacoplar a alimentagéo do transceiver,
ou seja, filtrar ruidos de alta frequéncia. Ja o capacitor C10, de 100 pF, também & um filtro
de alta frequéncia com o objetivo de minimizar ruidos na linha de transmissao.

Por fim, o resistor R105 de 120 2 é o resistor de terminagao da rede CAN, utilizado para
evitar reflexdes do sinal e garantir a integridade dos dados.

32

3.1.4 Cartao SD e USB

Com o intuito de salvar todos os dados em um datalog embarcado, também foi desen-
volvido um circuito para salvamento e leitura de um cartdo SD, assim como acessa-lo por
meio de um cabo USB. Optou-se por desenvolver o circuito ao invés de comprar um modulo
visando uma melhor integragéo na PCB. O circuito desenvolvido, estd mostrado nas Figuras

e
Figura 7 — Circuito para alimentagao do cartdo SD

USB_5V Qr—————

[] R106
100

Q16
1 [E9 IRLML6401TR

—— GLK 5V
Q2
ET IRLML2502TR [R107
USB_Trigger 10k

Fonte: proprio autor.

O circuito da Figura[7|faz parte da comunicagdo USB, controlando a alimentacéo de 5V
(GLK_5V) com base na entrada USB_Trigger. Neste circuito o MOSFET Q2 tem seu gate
controlado pelo USB_Trigger, quando este sinal é ativado, o transistor Q16 € acionado, e

por fim, este controla a alimentagéo 5V.

33

Figura 8 — Circuito para salvamento do cartdo SD

U19
; VSS_1 plY] :g—o USB_D-
sD_DAT1 O rm DP 14—0 USB_D+
SPI_MISO_DATO O ~— oo Vss_2 [—= SD1
SPI_SCK_CLK O =] CLK VDDA [—3 QO GLK_VDD i
SPI_MOsI_cMD O = cmD LED —7 SD_DAT2 Q————] DAT2/X
SPI_CS_DAT3 O =— D3 GPIO [—5 O GLK_GPIO SPI_CS_DAT3 0—3 DAT3/CS
sD DAT2 O £ b2 5V 3 O GLK 5v 5 SPI_MOSI_CMD O—4 CMD /DI
—— PMOS VDD O GLK_vDD s < =] VDD
2 SPI_SCK_CLK Q—=— CLK/SCLK
GLB23K ‘|| =i 6 | yes
_I__ I SPLMISO_DATO Q——X—] DATO/ D0
| SD_DAT1 DAT1 /X
Cc7 C C9 - 2 x
4.7uF 22uF 0.1uF
SOCKET_MICRO_SD
t & < &
GLK_GPIO R8 GLK_VDD
4.7k
R7

10k

Fonte: proprio autor.

O resistor F106, de 100 € limita a corrente de alimentacao e o resistor R107, de 10
k() opera como um pull-down, conectado ao gate de Q16, garantindo assim que este
permaneca desligado quando USB_Trigger esta inativo.

Ja o segundo circuito da Figura [8 é implementado uma interface entre um host USB
e o cartdao SD, utilizando o controlador GL823K. Em suma, este circuito tem o seguinte
funcionamento, os pinos USB_D- e USB_D+ no controlador GL823K se conectam ao
host USB, enquanto os pinos SPI_SCK, SPI_MOSI, SPI_MISO, e SPI_CS permitem a
comunicacao serial com o cartdo microSD.

Os resistores R7 (10 kS2) e R8 (4.7 kS2), além de operarem como pull-down e pull-up,
sdo também um divisor de tensao, garantindo que a tenséo na linha GLK_GP IO seja uma
fracdo da alimentagao total GLK_VDD, estabilizando o sinal e prevenindo flutuagdes que
poderiam causar mau funcionamento no circuito. E por fim, os capacitores C7 (4,7 uF),
C8 (22 pF), e C9 (0,1 uF) sdo usados para filtrar e estabilizar a alimentagédo do circuito,
prevenindo interferéncias e ruidos.

3.1.5 Design PCB

Também foi feita uma PCB, do inglés (Printed Circuit Board), para agrupar todos os
circuitos em uma dimensao (101 x 83 mm) otimizada para ser embarcada em um carro do
Baja, ou seja de forma compacta, porém ao mesmo tempo do tamanho que caiba na caixa
ja existente. Esta PCB pode ser vista na Figura [9}

Esta PCB foi feita com dimensionamento seguindo a norma IPC2221, (IPC, 1998),

34

Figura 9 — PCB projetada

-4
i
3
I
m
3
3
mn
o

Fonte: proprio autor.

e também tomando os devidos cuidados para minimizar a possibilidade de interferéncia
eletromagnética nas trilhas. Foi pensando também em uma fixagdo ao chassi do carro com
uma case impressa em 3D e fixada com coxins de borracha com o intuito de minimizar a
vibracao.

3.2 Banco de dados

O caminho que os dados seguirdo até o usudrio segue o esquematico da Figura [T0]

Figura 10 — Esquematico de comunicacao

Madulo
ﬁ
Embarcado

Banco de Dados
App

Fonte: proprio autor.

Na primeira parte da metodologia ja foi abordado o médulo embarcado, e neste sera
apresentado o banco de dados. A plataforma cloud escolhida foi a FireBase da Google,
visto sua facilidade de uso e por possuir uma versao gratuita com grande armazenamento.

Nesta plataforma foi escolhido o servigo FireStore, o qual funciona da seguinte maneira,
simplificadamente, primeiro, define-se uma colecao e dentro dela ter& um documento, e
neste documento as variaveis que serao salvas. Foi escolhido este servigo, uma vez que é
o mais atual da Google, e este permite cadastrar varios médulos em uma sé plataforma, ou

35

seja, caso queira acompanhar os dados de mais de um carro, esta seria a maneira mais
eficaz.

Na Figura[11] pode ser visto as divisdes citadas acima, e os dados que serdo salvos,
mais a direita.

Figura 11 — Estrutura do Banco de Dados

Al » BAJA > WZkib3T7jOyP4.

2 (default) I BAJA = i B wzkib3

+ Iniciar colegdo + Adicionar documento + Iniciar ¢

BAJA WZkfb3T7j0yP4Tt95q9x > + Adicionar campo

Fonte: proprio autor.

Cada variavel sera utilizada para o seguinte proposito:

* RPM: aquisicdo em tempo real do valor do RPM do motor;
+ Vel: aquisicdo em tempo real da velocidade [km/h];

» rot:registro do maior valor de RPM;

+ speed: registro do maior valor de velocidade[km/h];

* status: status do Veiculo (1 - ligado, 0 - desligado);

* time:temporizador[min].

3.3 Programacao do microcontrolador

Para a programacao do ESP32, foi utilizada a plataforma ESP-IDF no VSCode. O ESP-
IDF oferece um ambiente de desenvolvimento robusto e completo que permite o acesso as
bibliotecas e ferramentas para o desenvolvimento de sistemas IoT. J& 0 VSCode como IDE,
oferece praticidade e eficiéncia, com uma interface leve, além de ferramentas de depuragao
avangadas. Assim utilizar ambas ferramentas, favorecem o projeto.

Para estabelecer a conexao com o Wi-Fi e a comunicagdo com o banco de dados
foi utilizado o cédigo presente no |APENDICE A: DEFINICOES DE PARAMETROS| Com
este codigo o dispositivo tenta conectar-se a uma rede Wi-Fi usando a biblioteca WiFi
Manager, caso ndo consiga imprime "Falha na Conexao"e caso conecte, "Conectado.".

36

Depois, configura as credenciais da Firebase (API key, e-mail e senha do usuario) e inicia a
conexao com ela.
O diagrama em alto nivel deste cédigo pode ser observado na Figura[12]

Figura 12 — Diagrama de alto nivel para conexao WiFi

Conexdo WiFi Configuracao da AP Inicializacao da
da FireBase Firepbase

Fonte: proprio autor.

Para aquisitar os dados da CAN foi utilizada uma biblioteca ja existente, a qual facilitou
na programagcao e pode ser vista no JAPENDICE B: CAN| Neste exemplo, os dados de ID
0x010 sao analisados e dentro do laco while sdo lidos até 4 bytes de dados da mensagem
CAN e os armazena em um buffer. Apos a leitura, o valor de can.vel (velocidade) é

calculado combinando os dois primeiros bytes do buffer usando operagdes bit a bit, j& o
dado can.rot é combinado aos préximos 2 bytes. Por fim, o indice i € zerado ao final para
que o buffer possa ser reutilizado na préxima leitura.

O diagrama em alto nivel deste cédigo pode ser observado na Figura[13]

Figura 13 — Diagrama de alto nivel para aquisi¢do de dados do barramento CAN

Verificaco de ID do Leitura de dades do Extracdo e
pacote CAN barramento CAN Conversdo de dados Hesel ool

Fonte: proprio autor.

Para realizar as fung¢des desejadas com o cartdo SD, foi utilizado o codigo que pode
ser visto no[APENDICE C: FUNCOES DO CARTAO SD| este cddigo lida com a verificagao,
leitura e escrita de arquivos, seguindo a légica:

* Checkfiles: Verifica se existem arquivos no formato /£i1 1eNNN. t xt sendo "NNN"um
numero, caso ja exista é acrescentado 1 ao valor do nimero criando um novo arquivo.

« readFile: Esta fungéo |é e imprime o conteudo de um arquivo, especificando seu
path.

* writeFile: Abre um arquivo para salvar os dados nele.

* appendFile: Abre um arquivo para salvar dados no final.

O diagrama em alto nivel deste cédigo pode ser observado na Figura [14]

37
Figura 14 — Diagrama de alto nivel para salvamento no cartdo SD

Verificaggio de Leitura de arquivos Escrita de arquivos Atualiza arquivos
Arquivos

Fonte: préprio autor.

E por fim para transmitir estes dados para o banco de dados, foi utilizado o codigo
presente no /APENDICE D: COMUNICACAO COM O BANCO DE DADOS] realizando as
devidas alteracoes, ou seja, alterando o0 nome de qual variavel sera enviada e o endereco

para qual sera enviada. O comando Firebase.Firestore.createDocument, faz
uma requisigao para criar um novo documento na FireStore, sendo:

fbdo: Objeto gerenciador de respostas e erros.

FIREBASE_PROJECT_ID: O ID do projeto no Firebase.
* documentPath.c_str (): O caminho do documento que sera criado.

» content.raw () : O conteudo (dados) que sera salvo no documento.

3.4 Desenvolvimento do aplicativo

A Ultima etapa do projeto foi o desenvolvimento do aplicativo, para isso foi utilizado o
framework Flutter, o qual além de permitir uma facil integracdo com a Firebase, permite
desenvolver aplicativo web, iOs e também Android com 0 mesmo cddigo.

Além disso, foi feita também uma pesquisa com o time EESC USP Baja para que o
layout do aplicativo possua a identidade visual da equipe. Entéo foi utilizado o grito de guerra
da equipe, assim como suas cores principais: preto, laranja e azul. Como pode ser visto na
Figura[15] a pagina inicial do aplicativo.

38

Figura 15 — P4gina inicial do aplicativo

EESC NAO PARA

2000 4000

/6000

(@ RPM Méx.

(&) Tempo.

Graficos >

Fonte: proprio autor.

Nessa pagina € possivel acompanhar em tempo real a velocidade e o RPM nos veloci-
metro e tacoOmetro, respectivamente.

Para fazer o gréfico dos velocimetro e tacometro com movimentagao, foi utilizado o
codigo presente no|APENDICE E: CODIGO PARA O VELOCIMETRO E O TACOMETRO|
neste é definido um container, que sera a area na qual estes itens serao disponibilizados,

dentro dessa estrutura € definido o primeiro child, ou seja, uma estrutura, que sera o
velocimetro, o tacdmetro ndo esta no apéndice porém foi feito de forma analoga. Neste
child é definido o ponteiro e também os valores intervalados, e para correlacionar o
angulo que o ponteiro esta e o valor que apontara, foi utilizada uma biblioteca j& pronta,
syncfusion.

O diagrama em alto nivel deste cédigo pode ser observado na Figura [16]

Figura 16 — Diagrama de alto nivel para layout do aplicativo

Container SfRadialGauge R_adlaIAm_s
; o Configura o eixo e
Define o tamanho Animacao e layout e

Fonte: proprio autor.

Na tabela abaixo do velocimetro e tacémetro, é registrado o maior valor de cada variavel
assim como quanto tempo de corrida ja passou, em minutos. No canto inferior esquerdo

39

€ possivel ver um botao que direciona para a pagina de gréaficos a qual pode ser vista na

Figura[17]

Figura 17 — Pagina dedicada a grafico

< Dashboard

Time (s)

Fonte: proprio autor.

O primeiro quadrado esta na cor preta, uma vez que este foi selecionado para mostrar
na tela, e este seria o grafico de RPM por tempo.

Para fazer essas estruturas foi utilizado o cédigo presente no|APENDICE F: TABELA
[E BOTAO DO APLICATIVO, neste inicialmente é definido um children, uma estrutura
dentro do child, que contém trés custom container, que sdo as 3 linhas da tabela.
Ja para o botao € utilizado 0 children, textButton e quecom afungdo onPressed
€ definido a fungédo que sera executada ao pressionar o botao.

Segue diagrama em alto nivel deste codigo pode ser observado na Figura[18]

Figura 18 — Diagrama de alto nivel para layout do aplicativo

i ™y
Column
Jrganiza os

CustomContainers
. e

h

SirzedBox
Cria o espaco - o
ROW
Contém o TextButton

e o lconButton
L e

h

Fonte: préprio autor.

Nesta pagina, trés graficos podem ser selecionados, rotacao por tempo, velocidade por
tempo ou rotacdo por velocidade, todos séo de interesse para testes como por exemplo o de

40

aceleracdo e velocidade. Estes gréaficos sao atualizados em tempo real e também possui cur-
sor tanto para zoom quanto para analisar o valor de forma mais precisa. O cédigo para gerar
estes graficos esta no|APENDICE G: GRAFICOS) neste é criado um widget, o qual contém
um container com o grafico desejado. Nesta etapa foi utilizada a biblioteca, SfCartesian-

Chart, na qual é possivel selecionar opgdes como zoom (enableSelectionZooming:
true), linhas de marcagéo (crosshairBehavior: CrosshairBehavior (enable:
true) € movimentar o grafico (enablePanning: true) de forma mais facil. E para
definir os eixos foi utilizada as fungdes PrimaryXAxis parao eixo X e PrimaryYAxis
para o eixo Y.

O diagrama em alto nivel dos gréficos pode ser observado na Figura[19]

Figura 19 — Diagrama de alto nivel para os graficos

SfCartesianChart
Configuracbes como
Z0oom, eixos e valores

Container
Define o tamanho

Fonte: proprio autor.

Por fim, o cédigo no|[APENDICE H: AQUISICAO DE DADOS DO APP|foi utilizado para
aquisitar os dados presentes no banco de dados, nafungdo FirebaseFirestore.instance

é definido o caminho para os dados, e a fungdo snapshot € executada para captar os
dados e salva-los nas variaveis do aplicativo. O qual esta explicado no diagrama de alto
nivel da Figura [20]

Figura 20 — Diagrama de alto nivel para aquisi¢do dos dados da navem

Importa dados da Contém o dado Transforma snapshot Retorna o mapa de
FireStore recebido em mapa de dados dados ou nulo

Fonte: proprio autor.

41

4 RESULTADOS E DISCUSSAO

Apoés a aplicagao da metodologia proposta, todo o projeto foi colocado em teste, e os
resultados evidenciaram que o dispositivo foi capaz de adquirir os dados da rede CAN e
transmiti-los pela internet. Sendo assim, pode-se concluir que todas as etapas foram bem
sucedidas, a parte eletrénica cumpriu todos os requisitos, a configuragdo do banco de dados
que garantiu que os dados fossem armazenados nos locais corretos, assim como o cddigo
do ESP32, que possibilitou uma aquisi¢ao e transmissao confiavel e funcional. E o aplicativo
que cumpriu o propdésito de mostrar ao usuario os dados do veiculo em tempo real.

4.1 Desempenho da rede CAN

A rede CAN foi configurada para operar com uma taxa de 250 kbps, um valor capaz de
atender as demandas do projeto. Um pacote era enviado a cada 775 us, contendo todas os
dados dos sensores de RPM e de velocidade. Tanto a estabilidade quanto a integridade dos
dados da rede CAN foram comprovadas pelos testes realizados, ou seja, durante os testes
n&o foi visto nenhuma perda de pacote na comunicagéo diferencial, mostrando assim ser
robusta e eficaz.

4.2 Frequéncia de aquisicao e salvamento

O sistema de salvamento de dados no cartdo SD é de 50 Hz, ou seja, existe uma alta
taxa de aquisicao e salvamento local, o que permite uma andlise mais completa e fiel apos a
realizacao do teste ou da corrida. Ou seja, este sistema local garante a aquisicao de dados
completa e integra mesmo que ocorra erros de comunicagao via internet. Esta configuragéo
balanceou de forma eficiente a necessidade de alta resolugdo temporal com a capacidade
de armazenamento e processamento do sistema.

4.3 Transmissao de dados via Internet

Os dados coletados pela ESP32 sao enviados para a Firebase utilizando uma conexao
via internet, com uma taxa média de transmissao de 30 kbps, embora esse valor seja
relativamente baixo em comparagcdo com sistemas de maior complexidade, se mostrou
adequado no contexto deste trabalho.

Durante os testes também foi registrado que o atraso, delay médio entre a aquisicao
dos dados e sua exibi¢do no aplicativo foi de 180 ms. Além disso, foi medido que uma
mensagem é enviada a cada 100 ms sem que ocorra nenhuma perda de pacotes entre o
ESP32 e o aplicativo.

42

No entanto em situagdes extremas (utilizacdo de dados moveis) foi notado um delay
de até 1 segundo. Este atraso, porém, nao é prejudicial ao projeto uma vez que existe em
paralelo os dados do cartao SD.

4.4 Aplicativo

O aplicativo teve o funcionamento estavel durante todos os testes e pelo fato de ser
multiplataforma, é de ampla utilizacao pelos usuarios. Ademais o aplicativo por possuir um
layout mais simples e de facil usabilidade, permitiu uma integracdo melhor e mais eficiente
com a equipe.

Os graficos gerados em tempo real cumpriram o propésito de informar ao usuario as
condi¢cdes em tempo real do veiculo, contudo as analises destes dados, pelo fato do delay,
nao foram tao precisas quanto o esperado, especialmente em situa¢cées onde o tempo de
resposta é critico, como em testes de aceleragdo ou frenagem. Porém esse problema foi
facilmente contornado pela utilizacdo dos dados salvos na meméria local.

4.5 Placa de circuito impresso

A PCB nao apresentou falhas com a vibragdo do carro nem sinais de interferéncias
eletromagnéticas, sendo assim, obteve um 6timo resultado. A versao final da PCB pode ser
vista na Figura [21]

43

Figura 21 — PCB finalizada

¥ YL L.
T26RRTLAY B o FooNLmEI20 B 10418 £0.EX 2K Ao
AESAREREERX

D
a-
0
o
0
]
1
i}
]
o
n
i
= |

oRESs | Wwsued] - 2J0L

3
L

|22 | USSn

FBUISTUT_NHD
i

vl -

Fonte: proprio autor.

Figura 22 — PCB finalizada, parte de tras

Fonte: préprio autor.

45

5 CONCLUSAO

Este trabalho teve como objetivo desenvolver um dispositivo para aquisicdo de dados da
rede CAN de um veiculo e transmiti-los pela internet, abordando todas as etapas necessarias
para o funcionamento eficiente do sistema. O hardware e software desenvolvido resultou
em um dispositivo de baixo custo, capaz de atingir os objetivos com éxito.

Os testes demonstraram que os requisitos necessarios, para o0 monitoramento veicular
em aplicacdes cotidianas e também em competicdes, foram atingidos. Mesmo com o atraso
observado, a robustez do dispositivo consegue garantir sua confiabilidade.

Em suma, o trabalho foi concluido de forma satisfatéria, atingindo os objetivos propostos,
apresentando ainda, grande potencial para futuras aplicagcdes e melhorias.

47

REFERENCIAS

BOLAND MORGAN |. BURGETT, A. J. E. R. M. S. I. H. M. An overview of can-bus
development, utilization, and future potential in serial network messaging for off-road mobile
equipment. In: AHMAD, F.; SULTAN, M. (Ed.). Technology in Agriculture. Rijeka: IntechOpen,
2021. cap. 25. Disponivel em: https://doi.org/10.5772/intechopen.98444.

CHANDIRAMANI, J. R.; BHANDARI, S.; HARIPRASAD, S. Vehicle data acquisition and
telemetry. In: 2014 Fifth International Conference on Signal and Image Processing. [S.I.:
s.n.], 2014. p. 187-191.

ELECTRONICS, C. CAN Bus Sniffer - Reverse Engineer Vehicle Data [Savvy-
CAN/Wireshark]. 2024. Disponivel em: https://www.csselectronics.com/pages/
can-bus-sniffer-reverse-engineering.

EMBARCADOS. Barramento CAN entre Arduinos UNQO. 2020. Accessed: 2024-08-27.
Disponivel em: https://embarcados.com.br/barramento-can-entre-arduinos-uno/.

IPC. IPC-2221: Generic Standard on Printed Board Design. [S.l.], 1998. Acesso em: 3 set.
2024. Disponivel em: https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/
MATERIALS/IPC-2221A(L).pdf.

LI, R.; LIU, C.; LUO, F. A design for automotive can bus monitoring system. In: 2008 IEEE
Vehicle Power and Propulsion Conference. [S.l.: s.n.], 2008. p. 1-5.

MONIAGA J. V., M. S. R. H. D. A.; SAHIDI, F. Diagnostics vehicle’s condition using obd-ii
and raspberry pi technology: study literature. In: IOP PUBLISHING. Journal of Physics:
Conference Series. [S.l.], 2018. v. 978, p. 012011.

NURUDIN, A. A. S.; ZARLIS, M. Monitoring applications for vehicle based on internet of
things (iot) using the maqtt protocol. Procedia Computer Science, Elsevier, v. 227, p. 73-82,
2023.

RIMPAS, D.; PAPADAKIS, A.; SAMARAKOU, M. Obd-ii sensor diagnostics for monitoring
vehicle operation and consumption. Energy Reports, Elsevier, v. 6, p. 55-63, 2020.

Robert Bosch GmbH. CAN Specification. [S.l.], 2012. Accessed: 2024-06-19. Disponivel em:
http://esd.cs.ucr.edu/webres/can20.pdf.

SALUNKHE, A. A.; KAMBLE, P. P.; JADHAV, R. Design and implementation of can bus
protocol for monitoring vehicle parameters. In: 2016 IEEE International Conference on
Recent Trends in Electronics, Information Communication Technology (RTEICT). [S.l.: s.n.],
2016. p. 301-304.

SAQFALHAIT, A.; ABUSHAMMA, M. On-Board Diagnostics Project. 2024. Hardware
graduation project, Supervisor: Dr. Samer Arandi.

SYSTEMS, E. ESP32 TWAI (CAN) Controller — ESP-IDF Programming Guide. [S.l.], 2023.
Accessed: 2024-09-16. Disponivel em: https://docs.espressif.com/projects/esp-idf/en/latest/
esp32/api-reference/peripherals/twai.html.

https://doi.org/10.5772/intechopen.98444
https://www.csselectronics.com/pages/can-bus-sniffer-reverse-engineering
https://www.csselectronics.com/pages/can-bus-sniffer-reverse-engineering
https://embarcados.com.br/barramento-can-entre-arduinos-uno/
https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf
https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf
http://esd.cs.ucr.edu/webres/can20.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/twai.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/twai.html

48

TAYLOR NATHAN GRIFFITHS, A.B. S. A. T. P. Z. X. P.; GELENCSER, A. Data mining for
vehicle telemetry. Applied Artificial Intelligence, Taylor & Francis, v. 30, n. 3, p. 233-256,
2016. Disponivel em: https://doi.org/10.1080/08839514.2016.1156954.

Texas Instruments. SN65HVD230 3.3-V CAN Transceiver. [S.l.], 2008. Acesso em: 3 set.
2024. Disponivel em: https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1725330017442&
ref_url=https%253A%252F%252Fwww.google.com%252F.

TIETOEVRY. Connected Vehicle and Telematics Development Services. [S.l.], 2023.
Accessed: 2024-06-19. Disponivel em: https://www.tietoevry.com/en/industries/automotive/
connected-vehicle-and-telematics/.

Unisonic Technologies Co., Ltd. LM78XX: 3-Terminal 1A Positive Voltage Regulator. [S.1.],
2005. Acesso em: 3 set. 2024. Disponivel em: https://www.unisonic.com.tw.

YADAYV, A.; SAKLE, N. Development of low-cost data logger system for capturing
transmission parameters of two-wheeler using arduino. Materials Today: Proceedings,
Elsevier, v. 72, p. 1697—-1703, 2023.

https://doi.org/10.1080/08839514.2016.1156954
https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1725330017442&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1725330017442&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.tietoevry.com/en/industries/automotive/connected-vehicle-and-telematics/
https://www.tietoevry.com/en/industries/automotive/connected-vehicle-and-telematics/
https://www.unisonic.com.tw

10

11

12

13

14

15

16

17

18

19

20

21

22

23

6 APENDICE A: DEFINICOES DE PARAMETROS

WiFiManager wm;
bool res;
res = wm.autoConnect ("BAJA-IoT");

if ('res) {

Serial.println("Falha na _,conex o.");
}
else {

Serial.println("Conectado.");

Serial.printf ("Firebase CLient_v%s\n\n",

FIREBASE_CLIENT_VERSION) ;
config.api_key = API_KEY;

auth.user.email = USER_EMAIL;
auth.user.password = USER_PASSWORD;

config.token_status_callback = tokenStatusCallback;

Firebase.begin (&config, &auth);
Firebase.reconnectWiFi (true);

}

49

51

7 APENDICE B: CAN

10

11

12

13

14

15

16

17

18

19

if (CAN.packetId() == 0X010) {
while (CAN.available() && 1i<4) {
can.buffer[i] = uint8_t (CAN.read());
i +=1;
}
can.vel = ((uintle_t)can.buffer[1l] << 8) | can.buffer[0];
// filter = ((uintlé6_t)can.buffer[l] << 8) | can.buffer
[0];
// 1f (filter<9999)
// can.vel = filter;
can.rot = ((uintl6_t)can.buffer[3] << 8) | can.buffer([2];
// filter = ((uintlé6_t)can.buffer[3] << 8) can.buffer
[2];

// if (filter<9999)

// can.rot = filter;

// memcpy (&can.temp_celsius, can.buffer+4, 4);

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

8 APENDICE C: FUNCOES DO CARTAO SD

void Checkfiles (fs::FS &fs, char xpath) {

int 1 = 0;

while (fs.exists (path)) {

i+=1;

sprintf (path,"/file%03d.txt",1i);
Serial.println (path);

}

// Fun o para leitura SD

void readFile(fs::FS &fs, const char = path) {

Serial.printf ("Reading file: %s\n", path);

File file = fs.open (path);
if('file) {
Serial.println("Failed to_open, file for reading");

return;

Serial.print ("Read from file: ");
while (file.available ()) {

Serial.write(file.read());

// Fun o Escrita do SD

void writeFile(fs::FS &fs, const char % path, const char «*

message) {

Serial.printf ("Writing file: %s\n", path);

File file = fs.open(path, FILE_WRITE);

if(!'file) {
Serial.println("Failed to_open, file for writing");
return;

}

if(file.print (message)) {

Serial.println("File_written");

53

37

38

39

40

41

42

43

44

45

46

47

54

} else {

Serial.println("Write_ failed");

// Criar ou adiocionar dados

salvar no sd)

void appendFile(fs::FS &fs, const char

message) {
File file = fs.open(path,
file.println (message);

file.close();

(essa vai

"a")’.

ser utilizada para

* path,

const char =

9 APENDICE D: COMUNICAGCAO COM O BANCO DE DADOS

if (Firebase.Firestore.createDocument (&fbdo,
FIREBASE _PROJECT_ID, "", documentPath.c_str(),

raw())){

content.

Serial.printf ("ok\n%$s\n\n", fbdo.payload().c_str());

return;
}else(

Serial.println (fbdo.errorReason());

55

10 APENDICE E: CODIGO PARA O VELOCIMETRO E O TACOMETRO

57

1 Container (

2 height: 150,

3 width: 150,

4 child: SfRadialGauge (

5 enableloadingAnimation: true,

6 animationDuration: 4500,

7 axes: <RadialAxis>]|

8 RadialAxis (

9 minimum: O,

10 maximum: 60.5,

11 axisLineStyle: AxisLineStyle (

12 thickness: 20, color: Colors.

grey),

13 showTicks: true,

14 axisLabelStyle: GaugeTextStyle (
color: Colors.white),

15 minorTickStyle: MinorTickStyle(
color: Colors.white),

16 majorTickStyle: MajorTickStyle (
color: Colors.white),

17 pointers: <GaugePointer>|

18 NeedlePointer (

19 value: vel,

20 enableAnimation: true,

21 needleStartWidth:

22 needleEndWidth: 5,

23 needleColor: Color (OxFFDADADA

)
24 knobStyle: KnobStyle (
25 color: Color.fromARGB
(255, 235, 3)
26 borderColor: Color (0
xFEFDADADA) ,

27 knobRadius: 0.06,

28 borderWidth: 0.04),

29 tailStyle: TailStyle(

30 color: Color.fromARGB

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

58

(255, 165, 4, 4),

width: 5,
length: 0.15)),
RangePointer (

value: vel,
width: 20,
enableAnimation: true,
color: Colors.orange)
1,
annotations: <GaugeAnnotation>]|
GaugeAnnotation (
widget: Container (
child:

Text (vel.

toStringAsFixed (0)

’ km/h’,

style: TextStyle(

fontSize: 15,
fontWeight:
FontWeight.
bold,
color: Colors.
white,
))),
angle: 90,

positionFactor: 0.87,

i

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

59

11 APENDICE F: TABELA E BOTAO DO APLICATIVO

SizedBox (height: 25),

Column (
children: |
CustomContainer (
"Velocidade M x.',
snapshot.data! [’ speed’] .toStringAsFixed(0),
Icons.speed_sharp,
),
CustomContainer (
"RPM_ M x.’,
snapshot.data! [rot’].toStringAsFixed (0),
Icons.speed_outlined,
)
CustomContainer (
"Tempo.’,
snapshot.data! ["time’] .toStringAsFixed(0),
Icons.speed_outlined,
),
I

),
SizedBox (height: 5),

Row (
children: [
TextButton (
onPressed: () |
Navigator.push (
context,
MaterialPageRoute (
builder: (context) =>
GraficosScreen()),
)i
by
child: Text (
"Gr ficos’,

style: TextStyle(color: Colors.white),

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

60

) s

)

IconButton (

onPressed: () {
Navigator.push (
context,
MaterialPageRoute (
builder: (context) =>
GraficosScreen()),
)i
by
icon: Icon(Icons.arrow_forward,

Colors.white),

color:

61

12 APENDICE G: GRAFICOS

Widget _buildRpmTimeChart (List<int> timeValues, List<double
> rpmValues) |

return Container (
height: 400,
child: SfCartesianChart (

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

zoomPanBehavior: ZoomPanBehavior (

enablePinching: true,

enablePanning: true,

enableSelectionZooming: true,

selectionRectBorderColor: Colors.red,

selectionRectBorderWidth: 1,

selectionRectColor: Colors.grey),
primaryXAxis: NumericAxis (

interactiveTooltip: InteractiveTooltip (

enable: true),
title:

AxisTitle(text: 'Time_ (s)’, textStyle: TextStyle(

fontSize: 12)),
labelFormat: " {value}’,
labelStyle: TextStyle (fontSize: 10),

)

primaryYAxis: NumericAxis (
title: AxisTitle(text: "RPM’, textStyle:
fontSize: 12)),
labelStyle: TextStyle(fontSize: 10),

)

series: <ChartSeries>]|
LineSeries<dynamic, dynamic> (

dataSource: _getDataPoints (timeValues,

TextStyle (

rpmValues),

xValueMapper: (dynamic data, _) => datal[’'x'],

yValueMapper: (dynamic data, _) => datal’y’],

)
I

33

34

35

36

37

38

39

40

41

42

43

44

62

crosshairBehavior: CrosshairBehavior (

enable: true,

activationMode: ActivationMode.singleTap,
lineType: CrosshairLineType.both,
shouldAlwaysShow: true,

lineColor: Colors.blue.withOpacity (0.5),
lineWidth: 1,

lineDashArray: [5, 5],

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

13 APENDICE H: AQUISICAO DE DADOS DO APP

import ’'package:cloud_firestore/cloud_firestore.dart’;

class DataRetrievalService {
static Stream<Map<String, dynamic>?> retrieveData ()
return FirebaseFirestore.instance
.collection (’BAJA")
.doc (")
.snapshots ()
.map ((snapshot) {
if (snapshot.exists) {
Map<String, dynamic>? data =
snapshot.data () as Map<String, dynamic>?;
Explicit cast
if (data != null) {
return {
"RPM’ : datal[’RPM’],
"vVel’ : datal[’Vel’],
"Status’: data[’status’],
"speed’ : datal[’speed’],
"rot’: datal[’rot’],
"time’ : datal[’time’],

}i

}

return null; // Return null if the document does

exist or 1f the fields are not found

1)

//

not

63

	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de abreviaturas e siglas
	Sumário
	INTRODUÇÃO
	Objetivo Geral
	Objetivos Específicos

	REVISÃO BIBLIOGRÁFICA
	Considerações Iniciais
	CAN Bus veicular
	Arquitetura física

	Integração de Internet das Coisas (IoT) no monitoramento veicular
	Monitoramento de consumo de combustível e eficiência operacional com sensores OBD-II
	Telemetria e aquisição de dados de veículos
	Protocolo CAN com ESP32
	Considerações Finais

	Metodologia
	Projeto eletrônico
	Microcontrolador
	Alimentação
	Comunicação CAN
	Cartão SD e USB
	Design PCB

	Banco de dados
	Programação do microcontrolador
	Desenvolvimento do aplicativo

	Resultados e Discussão
	Desempenho da rede CAN
	Frequência de aquisição e salvamento
	Transmissão de dados via Internet
	Aplicativo
	Placa de circuito impresso

	Conclusão
	REFERÊNCIAS
	Apêndice A: Definições de Parâmetros
	Apêndice B: CAN
	Apêndice C: Funções do cartão SD
	Apêndice D: Comunicação com o banco de dados
	Apêndice E: Código para o velocímetro e o tacômetro
	Apêndice F: Tabela e botão do aplicativo
	Apêndice G: Gráficos
	Apêndice H: Aquisição de dados do App

