
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

RODRIGO CARAMASCHI VERNIZZI

Desenvolvimento de dispositivo para aquisição de dados da

rede CAN de um veículo e transmissão através da Internet

São Carlos

2024





RODRIGO CARAMASCHI VERNIZZI

Desenvolvimento de dispositivo para aquisição de dados da
rede CAN de um veículo e transmissão através da Internet

Monografia apresentada ao Curso

de Engenharia Elétrica com

ênfase em Eletrônica, da Escola

de Engenharia de São Carlos

da Universidade de São Paulo,

como parte dos requisitos para

obtenção do Título de Engenheiro

Eletricista

Orientador: Prof. Dr. Marco Henri-

que Terra

Primeira Versão

São Carlos

2024



AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

 
 
Vernizzi, Rodrigo

 V538d Desenvolvimento de dispositivo para aquisição de 
dados da rede CAN de um veículo e transmissão através
da Internet / Rodrigo Vernizzi; orientador Marco
Henrique Terra. São Carlos, 2024.

 
 
Monografia (Graduação em Engenharia Elétrica com 

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2024.

 
 
1. CAN Bus. 2. Telemetria. 3. Aquisição de Dados. 

I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

                               1 / 1



FOLHA DE APROVAÇÃO 

Nome: Rodrigo Caramaschi Vernizzi 

Título: "Desenvolvimento de dispositivo para aquisição de dados 
da rede CAN de um veículo e transmissão através da Internet" 

Trabalho de Conclusão de Curs~ndido e aprovado 
em;iC)_I [-O I , 

com NOTA <-; O ( fvplJ-., J "-0 ), pela Comissão 
1 Julg ora: 

Prof. Titular Marco Henrique Terra - Orientador - SEL/EESC/USP 

Prof. Associado Valdir Grassi Junior - SEL/EESC/USP 

Mestre Nícolas dos Santos Rosa - Doutorando EESC/USP 

Coordenador da Coe-Engenharia Elétrica - EESC/USP: 
Professor Associado José Carlos de Melo Vieira Júnior 





Este trabalho é dedicado à minha família,

aos meus amigos e a minha namorada,

que sempre me apoiaram e incentivaram.

Em especial ao meu pai e minha mãe,

que com muito amor e carinho,

me ajudaram a chegar onde cheguei.





AGRADECIMENTOS

Gostaria de agradecer à Universidade de São Paulo (USP) e a equipe EESC USP Baja,

pela oportunidade de realizar e publicar esta pesquisa e por fornecer os equipamentos

necessários.





“Mesmo quando tudo parece desabar,

cabe a mim decidir entre rir ou chorar,

ir ou ficar, desistir ou lutar; porque descobri,

no caminho incerto da vida,

que o mais importante é o decidir.”

Coralina, Cora





RESUMO

VERNIZZI, R. C. Título: Desenvolvimento de dispositivo para aquisição de dados da

rede CAN de um veículo e transmissão através da Internet. 2024. Monografia (Trabalho

de Conclusão de Curso) – Escola de Engenharia de São Carlos, Universidade de São Paulo,

São Carlos, 2024.

O presente trabalho descreve o desenvolvimento de um dispositivo de baixo custo para a

aquisição de dados da rede CAN de veículos e sua transmissão pela internet, projetado

com base no microcontrolador ESP32, juntamente com um sistema de armazenamento

local, em um cartão SD, garantindo a integridade dos dados e preservando-os para análises

posteriores. Além disso, foi feita uma interface para o usuário, permitindo assim, o monitora-

mento em tempo real das condições do automóvel, exibindo dados como velocidade e RPM.

Testado em um carro da equipe EESC USP Baja, o sistema demonstrou robustez e grande

eficiência em seu papel. Este dispositivo e todo o sistema relacionado, mostraram-se uma

solução viável e acessível para a telemetria, com aplicações diversas, como diagnósticos

preventivos e otimização do desempenho.

Palavras-chave: CAN Bus. Telemetria. ESP32. Aquisição de dados. Internet das Coisas

(IoT).





ABSTRACT

VERNIZZI, R. C. Title:Development of a device for acquiring data from a vehicle’s

CAN network and transmitting it over the Internet 2024. Monograph (Course Conclusion

Paper) - São Carlos School of Engineering, University of São Paulo, São Carlos, 2024.

This work describes the development of a low-cost device for acquiring data from the

CAN network of vehicles and transmitting it over the Internet, designed using the ESP32

microcontroller. Together with a local storage system on an SD card, it guarantees the

integrity of the data and preserves it for later analysis. In addition, a user interface was

designed, allowing real-time monitoring of the car’s condition, displaying data such as speed

and RPM. Tested in a car from EESC USP Baja team, the system proved to be robust and

highly efficient in its role. This device and the entire related system proved to be a viable and

affordable solution for telemetry, with diverse applications such as preventive diagnostics

and performance optimization.

Keywords: CAN Bus. Telemetry. ESP32. Data acquisition. Internet of Things (IoT).





LISTA DE ILUSTRAÇÕES

Figura 1 – Conexão dos múltiplos nós de uma rede CAN Bus . . . . . . . . . . . . 23

Figura 2 – Sinais Elétricos da Transmissão CAN . . . . . . . . . . . . . . . . . . . 24

Figura 3 – Diagrama de Blocos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figura 4 – Microcontrolador ESP32 . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figura 5 – Alimentação do circuito . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figura 6 – Comunicação CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figura 7 – Circuito para alimentação do cartão SD . . . . . . . . . . . . . . . . . . 32

Figura 8 – Circuito para salvamento do cartão SD . . . . . . . . . . . . . . . . . . 33

Figura 9 – PCB projetada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figura 10 – Esquemático de comunicação . . . . . . . . . . . . . . . . . . . . . . . 34

Figura 11 – Estrutura do Banco de Dados . . . . . . . . . . . . . . . . . . . . . . . 35

Figura 12 – Diagrama de alto nível para conexão WiFi . . . . . . . . . . . . . . . . . 36

Figura 13 – Diagrama de alto nível para aquisição de dados do barramento CAN . . 36

Figura 14 – Diagrama de alto nível para salvamento no cartão SD . . . . . . . . . . 37

Figura 15 – Página inicial do aplicativo . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figura 16 – Diagrama de alto nível para layout do aplicativo . . . . . . . . . . . . . . 38

Figura 17 – Página dedicada a gráfico . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figura 18 – Diagrama de alto nível para layout do aplicativo . . . . . . . . . . . . . . 39

Figura 19 – Diagrama de alto nível para os gráficos . . . . . . . . . . . . . . . . . . 40

Figura 20 – Diagrama de alto nível para aquisição dos dados da núvem . . . . . . . 40

Figura 21 – PCB finalizada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figura 22 – PCB finalizada, parte de trás . . . . . . . . . . . . . . . . . . . . . . . . 43





LISTA DE ABREVIATURAS E SIGLAS

CAN Controller Area Network

OBD On-Board Diagnostics

IoT Internet of Things

MQTT Message Queuing Telemetry Transport

RPM Rotação Por Minuto

STFT Short-Term Fuel Trim

DTCs Diagnostic Trouble Codes

PCB Printed Circuit Board





SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Objetivo Geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Objetivos Específicos . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 REVISÃO BIBLIOGRÁFICA . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Considerações Iniciais . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 CAN Bus veicular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Arquitetura física . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Integração de Internet das Coisas (IoT) no monitoramento veicular . 24

2.4 Monitoramento de consumo de combustível e eficiência operacional

com sensores OBD-II . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Telemetria e aquisição de dados de veículos . . . . . . . . . . . . . . 25

2.6 Protocolo CAN com ESP32 . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Considerações Finais . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 METODOLOGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Projeto eletrônico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Microcontrolador . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Alimentação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Comunicação CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4 Cartão SD e USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.5 Design PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Banco de dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Programação do microcontrolador . . . . . . . . . . . . . . . . . . . . 35

3.4 Desenvolvimento do aplicativo . . . . . . . . . . . . . . . . . . . . . . 37

4 RESULTADOS E DISCUSSÃO . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Desempenho da rede CAN . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Frequência de aquisição e salvamento . . . . . . . . . . . . . . . . . 41

4.3 Transmissão de dados via Internet . . . . . . . . . . . . . . . . . . . . 41

4.4 Aplicativo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Placa de circuito impresso . . . . . . . . . . . . . . . . . . . . . . . . 42

5 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 APÊNDICE A: DEFINIÇÕES DE PARÂMETROS . . . . . . . . . . . . . 49



7 APÊNDICE B: CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 APÊNDICE C: FUNÇÕES DO CARTÃO SD . . . . . . . . . . . . . . . . 53

9 APÊNDICE D: COMUNICAÇÃO COM O BANCO DE DADOS . . . . . . 55

10 APÊNDICE E: CÓDIGO PARA O VELOCÍMETRO E O TACÔMETRO . 57

11 APÊNDICE F: TABELA E BOTÃO DO APLICATIVO . . . . . . . . . . . 59

12 APÊNDICE G: GRÁFICOS . . . . . . . . . . . . . . . . . . . . . . . . . 61

13 APÊNDICE H: AQUISIÇÃO DE DADOS DO APP . . . . . . . . . . . . . 63



21

1 INTRODUÇÃO

O setor automotivo está em constante evolução, impulsionado pela crescente demanda

por veículos conectados e autônomos. Essa mudança exige a coleta e análise de grandes

volumes de dados em tempo real para diversos fins, como monitoramento do status do

veículo, dirigibilidade segura e eficiente, desenvolvimento de veículos autônomos e serviços

telemáticos. Nos veículos atuais, a rede CAN (Controller Area Network), desempenha um

papel crucial como rede de comunicação serial padronizada para sistemas embarcados.

Sua robustez, confiabilidade, baixo custo e capacidade de transmitir vários sinais em um

único barramento a tornam essencial para diversas funções (Robert Bosch GmbH, 2012).

Contudo, a maioria dos carros, principalmente os populares, não permitem ao usuário

um acesso facilitado aos dados de seu veículo, fazendo com que tenha menos informações

a respeito da saúde e condições do veículo. Alterar o sistema embarcado do carro para que

esse acesso seja facilitado é inviável devido a quebra de garantia, ao nível de complexidade

e ao fato de que o usuário se torna dependente de um serviço. Uma das maneiras de

contornar este problema e através do CAN Sniffer, um dispositivo conectado à porta OBD

do veículo que consegue captar os dados da rede CAN (ELECTRONICS, 2024).

O CAN sniffer é uma solução prática e eficiente para a coleta de dados de veículos,

permitindo assim a transmissão destes dados para diversos usos como, a manutenção

preventiva e diagnóstico remoto (TIETOEVRY, 2023). Este dispositivo lê os dados brutos da

rede CAN e os transmite para um servidor central, onde podem ser analisados para os fins

desejados.

Ademais, a transmissão pela internet destes dados pode possibilitar outras funções

para a telemetria automotiva (LI; LIU; LUO, 2008). Os dados podem ser utilizados por

fabricantes de veículos para melhorar os projetos futuros, por seguradoras para ajustar

políticas de seguros baseadas no comportamento de condução e por desenvolvedores de

aplicativos para criar novas funcionalidades que aumentem a segurança e a conveniência

dos motoristas.

Já no contexto de automóveis autônomos, este dispositivo pode ser utilizado para uma

comunicação entre os veículos com uma infraestrutura inteligente, contribuindo para a

construção de um ecossistema de transporte mais seguro e eficiente.

1.1 Objetivo Geral

Este trabalho visa explorar e desenvolver um dispositivo de baixo custo e de fácil

utilização para aquisitar os dados da rede CAN de um veículo e transmiti-los pela internet.

1.2 Objetivos Específicos

Para atingir o objetivo geral é necessário, cumprir os seguintes objetivos específicos:



22

• Projetar e manufaturar um hardware necessário para coletar os dados;

• Desenvolver um software para salvar e transmitir os dados;

• Criar e estruturar um banco de dados na nuvem;

• Desenvolver um aplicativo web, iOS e Android que disponibilizará os dados em tempo

real para o usuário.



23

2 REVISÃO BIBLIOGRÁFICA

2.1 Considerações Iniciais

Nesta revisão bibliográfica, busca-se explorar estudos e soluções que envolvem a

utilização de microcontroladores para aquisição de dados veiculares, com transmissão

desses dados via internet, Internet das Coisas, do inglês Internet of Things (IoT). Assim,

é de interesse identificar abordagens e métodos eficientes para captar informações da

rede CAN de um veículo e enviá-las para uma plataforma de armazenamento em nuvem,

proporcionando acesso remoto e em tempo real aos dados. Além disso, a pesquisa visa

avaliar diferentes microcontroladores, considerando suas capacidades de comunicação sem

fio, custos e compatibilidade com os requisitos do projeto.

2.2 CAN Bus veicular

CAN Bus é um protocolo de barramento serial adotado vastamente pela indústria

automotiva. Atualmente esta tecnologia é adotada para redução dos chicotes assim como

aprimorar o controle do veículo (SALUNKHE; KAMBLE; JADHAV, 2016). Atualmente em um

veículo existem múltiplas redes CAN, conectadas no mesmo barramento, cada uma dessas

redes é denominada de nós. A Figura 1 ilustra como é feita esta conexão.

Figura 1 – Conexão dos múltiplos nós de uma rede CAN Bus

Fonte: BOLAND MORGAN I. BURGETT (2021)

Nos carros atuais é possível localizar um conector que fornece acesso aos dados do

veículo, este conector é comumente referido como OBD-II, (On Board On Board Diagnostics)

e neste está presente os terminais da rede CAN.

2.2.1 Arquitetura física

A arquitetura física de uma rede CAN é composta por 2 canais, um CAN High e outro

para CAN Low, sendo assim é transmitido um sinal diferencial, com uma lógica de dois



24

estados:

• Dominante - Nível 0 - 3V5;

• Recessivo - Nível 1 - 2V5.

Como pode ser observado na Figura 2.

Figura 2 – Sinais Elétricos da Transmissão CAN

Fonte: (EMBARCADOS, 2020)

Com essa imagem é possível perceber que ao ser transmitido o bit 1, o estado é

recessivo, ou seja, as tensões são iguais, já quando esta sendo transmitido o bit 0, as

tensões são diferentes, sendo assim, o estado é dominante. Esta representação ajuda a

compreender como o protocolo CAN utiliza a diferença de tensão entre CAN High e CAN

Low para transmitir dados binários. Esse método torna a comunicação mais robusta e

resistente a interferências, ideal para ambientes como os sistemas automotivos. Além da

robustez contra interferências, o protocolo CAN apresenta detecção de erros e sistema de

prioridade de mensagem, tornando-a ainda mais ideal para o sistema automotivo.

Porém uma das desvantagens que a CAN apresenta neste cenário é uma taxa de

transmissão limitada em 1Mbps, para contornar esta barreira existe a tecnologia CAN FD

(Flexible Data Rate), que com ela é possível ajustar a taxa de transmissão para até 5 Mbps.

Também existe o protocolo FlexRay, o qual possui uma taxa de transferência mais

elevada, contudo também apresenta maior complexidade e custo.

2.3 Integração de Internet das Coisas (IoT) no monitoramento veicular

Com o objetivo de reduzir o número de acidentes de trânsito relacionados à saúde do

veículo, Naurudin et al. (2023) realizaram um estudo para entender como a integração do

IoT, do inglês, Internet of Things, pode tornar o monitoramento veicular mais útil e prático

para os donos de automóveis. Para o projeto foi escolhido o protocolo MQTT (Message

Queuing Telemetry Transport) devido à sua eficiência na transmissão de dados em redes

com largura de banda limitada e alta latência, características comuns em sistemas de IoT

móveis (NURUDIN; ZARLIS, 2023). O sistema desenvolvido coleta dados críticos do veículo,



25

como RPM (rotação por minuto), temperatura do motor, e os transmite para um servidor

no qual podem ser acessados por uma interface web. Essa abordagem permite a criação

de um sistema de monitoramento contínuo que fornece alertas imediatos caso alguma

situação adversa seja detectada, promovendo uma manutenção preventiva e aumentando

a segurança operacional dos carros (NURUDIN; ZARLIS, 2023). Em suma, este estudo

enfatiza a importância da conectividade IoT para o monitoramento em tempo real das

condições dos veículos, destacando o uso do protocolo MQTT como uma solução eficiente

para a transmissão de dados em redes móveis.

2.4 Monitoramento de consumo de combustível e eficiência operacional com senso-

res OBD-II

Rimpas et al. (2020) tinha como objetivo principal investigar a utilização de sensores

OBD-II para monitorar os parâmetros operacionais e de consumo de combustível em

veículos, com o intuito de aprimorar a eficiência do consumo e reduzir as emissões de gases

tóxicos, utilizando tecnologias acessíveis e disponíveis, como o OBD-II e o barramento CAN

Bus (RIMPAS; PAPADAKIS; SAMARAKOU, 2020). O estudo se concentrou na seleção de

parâmetros cruciais para o desempenho e a eficiência do veículo: temperatura do líquido de

arrefecimento do motor, a razão de oxigênio no escape (sonda lambda), a taxa de fluxo de

ar, a velocidade do veículo e o ajuste de combustível de curto prazo (STFT), do inglês Short-

Term Fuel Trim. A coleta de dados foi realizada utilizando um scanner OBD-II (ELM 327 Mini

Bluetooth) conectado ao veículo durante um trajeto de 5 km, incluindo vias com diferentes

condições de tráfego (alta e baixa densidade). Os dados coletados foram transmitidos via

Bluetooth para um notebook e registrados em tempo real utilizando o software ScanMaster.

2.5 Telemetria e aquisição de dados de veículos

A aquisição de dados de sensores presentes em um veículo assim como a análise deles,

telemetria, são essenciais tanto para o público geral quanto para equipes de competição

(CHANDIRAMANI; BHANDARI; HARIPRASAD, 2014). Monitorar as condições de direção

tem como objetivo detectar parâmetros do veículo em si, condições do automóvel, assim

como do ambiente ao redor deles, como por exemplo, clima, congestionamento, perfil da

superfície (TAYLOR NATHAN GRIFFITHS; GELENCSER, 2016).

Métodos para aquisição dos dados

Para conseguir aquisitar os dados, é necessário definir um microprocessador que seja

capaz de aquisitar os dados dos sensores e salvá-los ou transmiti-los para uma central.



26

Atmega 168

Uma pesquisa direcionada para aquisição de dados de um veículo de corrida, utilizando

o microcontrolador da Atmega168 (CHANDIRAMANI; BHANDARI; HARIPRASAD, 2014),

devido a sua facilidade de programação e pela quantidade de entradas ADC disponíveis no

microcontrolador. O diagrama da Figura 3, representa o sistema de aquisição adotado

Figura 3 – Diagrama de Blocos

Fonte: CHANDIRAMANI; BHANDARI; HARIPRASAD (2014)

Como pode ser visto, no trabalho mencionado, os sensores enviam o sinal diretamente

para a unidade de controle, que os salva e transmite utilizando o protocolo ZigBee, segundo

os autores, este protocolo foi adotado por possuir um menor consumo de potência que o

Wi-Fi.

PIC

(SAQFALHAIT; ABUSHAMMA, 2024) desenvolveram um projeto de scanner para diag-

nóstico veicular baseado em OBD-II visando fornecer uma solução independente e acessível

para que os proprietários dos veículos possam ter acesso aos dados.

Com este projeto apresentado foi possível a aquisição dos dados dos automóveis,

contudo, segundo os autores, por ser baseado em um microcontrolador mais antigo, seu

desenvolvimento assim como integração com novas tecnologias são um desafio, além do

fato de ser necessário adicionar um controlador CAN externo ao microprocessador.

Arduino UNO

Com o objetivo de criar um sistema de registro de dados (Data logger ), para aquisição

de parâmetros como RPM, velocidade do veículo, acionamento do freio e marcha, de um

veículo de duas rodas, (YADAV; SAKLE, 2023), optaram por uma abordagem baixo custo.

Para isso, optaram pelo microcontrolador Arduino UNO, visando economia de tempo e de

recursos. Este microcontrolador recebe dados diretamente dos sensores, ou seja, não está

conectado a nenhum barramento.



27

Inicialmente começaram o projeto em bancada e em seguida embarcaram o sistema

em uma motocicleta Bajaj M-80, para testes em condições de condução reais, incluindo um

circuito urbano com 2,61 km de extensão. Durante esses testes, os dados foram registrados

a uma taxa de 3 Hz, o que segundo os autores fornece uma base robusta para a análise de

padrões de troca de marchas e comportamento de direção (YADAV; SAKLE, 2023).

O estudo concluiu que o data logger desenvolvido não só é eficaz e preciso, mas

também pode ser adaptado para diferentes tipos de veículos com modificações mínimas,

fornecendo uma solução versátil e econômica para monitoramento e análise de dados

veiculares. Ou seja, mesmo com um processador de fácil acesso e baixo custo é possível

realizar um projeto neste tema com alta confiabilidade e eficácia.

Raspberry Pi

Um estudo liderado por Moniaga (2018) explorou a utilização de uma Raspberry Pi para

aquisição de dados via OBD-II, visando analisar acidentes causados por mau funcionamento

do carro, além disso, permitir que proprietários de veículos detectem e resolvam problema

antes que se agravem, melhorando a segurança rodoviária geral (MONIAGA J. V.; SAHIDI,

2018).

Neste estudo foi utilizado um scanner OBD comercial, que envia os dados aquisitados

para uma Raspberry, a qual processará e enviará os dados via Bluetooth para o usuário. A

interface do usuário foi desenvolvida para exibir de forma clara as informações de diagnós-

tico, incluindo códigos de falha detectados DTCs, do inglês Diagnostic Trouble Codes, que

indicam problemas específicos no veículo.

Os resultados do estudo demonstraram que a integração do OBD-II com o Raspberry Pi

é eficaz para o diagnóstico em tempo real de veículos. A configuração permitiu a coleta e

processamento de dados de diagnóstico de maneira eficiente. Além disso, o uso de conexão

Bluetooth para comunicação entre a Raspberry Pi e o dispositivo de exibição de dados

mostrou ser uma solução prática e de baixo consumo de energia.

2.6 Protocolo CAN com ESP32

A documentação oficial da Espressif Systems (SYSTEMS, 2023) oferece uma explicação

detalhada sobre o funcionamento e implementação do protocolo CAN utilizando uma

ESP32 como microcontrolador. Este material além de abordar requisitos e configurações de

software também auxilia no desenvolvimento do hardware. No contexto de desenvolver um

dispositivo de aquisição de dados veiculares, como o discutido no presente trabalho, utilizar

um controlador CAN com o microcontrolador acima citado se mostra uma solução eficiente

e de baixo custo. Apesar de possuir um controlador CAN integrado, ainda é necessário

um transceiver externo a ESP32 para lidar com a interface física da rede CAN (SYSTEMS,

2023).



28

2.7 Considerações Finais

Analisando os trabalhos e soluções já estudadas, percebe-se uma lacuna na escolha

de microprocessadores, uma vez que os escolhidos não possuem as novas tecnologias ou

apresentam um custo muito elevado. Portanto busca-se outras opções mais modernas e

com melhor custo benefício, como por exemplo ESP32 ou STM32.

Além disso, a maioria dos estudos não focou na facilidade de acesso aos dados ad-

quiridos, deixando de lado a implementação de plataformas acessíveis, como um site ou

aplicativo. Essa falta de enfoque na interface de visualização dos dados pode limitar o uso

prático das informações coletadas.



29

3 METODOLOGIA

O objetivo principal deste projeto é desenvolver um sistema de aquisição de dados

para um veículo de corrida. Para isso, será criada uma placa de aquisição eletrônica que,

utilizando um microcontrolador com conectividade Wi-Fi, permitirá a leitura dos dados dos

sensores e o envio dessas informações para um servidor web na nuvem. Com os dados

disponíveis na plataforma de nuvem FireBase, espera-se possibilitar a visualização em um

dispositivo smartphone, oferecendo praticidade no monitoramento e análise do desempenho

do veículo.

O desenvolvimento deste projeto envolveu as seguintes etapas:

1. 1 - Projeto Eletrônico;

2. 2 - Criação e configuração do banco de dados;

3. 3 - Programação do microcontrolador;

4. 4 - Desenvolvimento do app/web.

Essa subdivisão também está em ordem de execução do projeto.

3.1 Projeto eletrônico

Nesta seção será apresentada toda a metodologia envolvida para o projeto eletrônico

do dispositivo.

3.1.1 Microcontrolador

A primeira etapa do projeto foi tomar a decisão de qual microcontrolador utilizar, visto os

trabalhos analisados na revisão bibliográfica, os autores optavam pela escolha mais prática

e que atenda todos os requisitos do projeto. Sendo assim, as duas principais necessidades

que o microcontrolador precisa ter é compatibilidade com protocolo CAN e com módulo

Wi-Fi.

Para cumprir ambos requisitos, o ESP32 foi o escolhido para o projeto, ilustrado na

Figura 4

Embora o ESP32 tenha um controlador compatível com barramento CAN integrado,

ele não possui um CAN transceiver integrado, portanto, deve-se utilizar um externo para

conectar-se a uma rede CAN. Em suma, um controlador CAN é a parte de hardware

responsável por lidar com o protocolo CAN, já o transceiver é a parte física, ou seja, lidar

com a comunicação diferencial.



30

Figura 4 – Microcontrolador ESP32

Fonte: Retirado de (SYSTEMS, 2023)

3.1.2 Alimentação

Levando em consideração que a tensão da bateria utilizada no carro do grupo extracurri-

cular, Baja, e também dos carros convencionais é de 12 V, é necessário converter a tensão

de 12 V para 3,3 V (tensão de funcionamento da rede CAN).

O esquemático pode ser visto na Figura 5.

Figura 5 – Alimentação do circuito

Fonte: próprio autor.

Fazer uma conversão direta de 12 V para 3,3 V, além de ser preciso um conversor muito

bem regulado e estável, de acordo com Texas Instruments 2008, a dissipação de calor

também pode ser um problema. Para isso, foi inicialmente utilizado um Mini Buck para

converter de 12 V para 5 V, esta tensão é interessante também pois serve para alimentar

outros circuitos, nessa etapa de regulação, os capacitores C1 e C2 (10 µF) estão presentes

para filtrar e estabilizar a saída de 5V. Essa saída será a entrada de um regulador de tensão

7833 (componente U21), já nesta última etapa de regulação de tensão, o diodo D1 (1N4001)

protege contra tensões reversas, enquanto os capacitores C3 e C4 (1 nF) filtram os ruídos

na entrada e saída.



31

Para confirmar que o regulador de tensão está operando em condições corretas de

temperatura, foi utilizada a seguinte equação:

TJ = TA + ρJA × V × I = 30 + 65× (5− 3, 3)× 100mA = 41, 05°C (3.1)

Sendo:

• TA: temperatura ambiente;

• TJ : temperatura de junção;

• ρJA: resistividade térmica de junção com ambiente;

• V: tensão dissipada;

• I: Corrente consumida.

Como a temperatura de junção resultante, 41,05 °C, foi menor que a máxima especificada

pela fabricante Unisonic Technologies 2005 (150°C), conclui-se que o circuito é aplicável.

3.1.3 Comunicação CAN

Para a correta comunicação CAN, foi utilizado o transceiver SN65HVD233, e o circuito

ilustrado na Figura 6.

Figura 6 – Comunicação CAN

Fonte: próprio autor.

Neste circuito o componente principal é o transceiver SN65HVD230, responsável por

converter o sinal serial (CAN_TX e CAN_RX) do ESP32 em sinal diferencial (CAN_H e

CAN_L), ou seja, faz a interface entre o microcontrolador e a rede CAN.

O capacitor C11, de 0,1 µF tem como objetivo desacoplar a alimentação do transceiver,

ou seja, filtrar ruídos de alta frequência. Já o capacitor C10, de 100 pF, também é um filtro

de alta frequência com o objetivo de minimizar ruídos na linha de transmissão.

Por fim, o resistor R105 de 120 Ω é o resistor de terminação da rede CAN, utilizado para

evitar reflexões do sinal e garantir a integridade dos dados.



32

3.1.4 Cartão SD e USB

Com o intuito de salvar todos os dados em um datalog embarcado, também foi desen-

volvido um circuito para salvamento e leitura de um cartão SD, assim como acessá-lo por

meio de um cabo USB. Optou-se por desenvolver o circuito ao invés de comprar um módulo

visando uma melhor integração na PCB. O circuito desenvolvido, está mostrado nas Figuras

7 e 8.

Figura 7 – Circuito para alimentação do cartão SD

Fonte: próprio autor.

O circuito da Figura 7 faz parte da comunicação USB, controlando a alimentação de 5V

(GLK_5V) com base na entrada USB_Trigger. Neste circuito o MOSFET Q2 tem seu gate

controlado pelo USB_Trigger, quando este sinal é ativado, o transistor Q16 é acionado, e

por fim, este controla a alimentação 5V.



33

Figura 8 – Circuito para salvamento do cartão SD

Fonte: próprio autor.

O resistor F106, de 100 Ω limita a corrente de alimentação e o resistor R107, de 10

kΩ opera como um pull-down, conectado ao gate de Q16, garantindo assim que este

permaneça desligado quando USB_Trigger está inativo.

Já o segundo circuito da Figura 8 é implementado uma interface entre um host USB

e o cartão SD, utilizando o controlador GL823K. Em suma, este circuito tem o seguinte

funcionamento, os pinos USB_D- e USB_D+ no controlador GL823K se conectam ao

host USB, enquanto os pinos SPI_SCK, SPI_MOSI, SPI_MISO, e SPI_CS permitem a

comunicação serial com o cartão microSD.

Os resistores R7 (10 kΩ) e R8 (4.7 kΩ), além de operarem como pull-down e pull-up,

são também um divisor de tensão, garantindo que a tensão na linha GLK_GPIO seja uma

fração da alimentação total GLK_VDD, estabilizando o sinal e prevenindo flutuações que

poderiam causar mau funcionamento no circuito. E por fim, os capacitores C7 (4,7 µF),

C8 (22 µF), e C9 (0,1 µF) são usados para filtrar e estabilizar a alimentação do circuito,

prevenindo interferências e ruídos.

3.1.5 Design PCB

Também foi feita uma PCB, do inglês (Printed Circuit Board), para agrupar todos os

circuitos em uma dimensão (101 x 83 mm) otimizada para ser embarcada em um carro do

Baja, ou seja de forma compacta, porém ao mesmo tempo do tamanho que caiba na caixa

já existente. Esta PCB pode ser vista na Figura 9.

Esta PCB foi feita com dimensionamento seguindo a norma IPC2221, (IPC, 1998),



34

Figura 9 – PCB projetada

Fonte: próprio autor.

e também tomando os devidos cuidados para minimizar a possibilidade de interferência

eletromagnética nas trilhas. Foi pensando também em uma fixação ao chassi do carro com

uma case impressa em 3D e fixada com coxins de borracha com o intuito de minimizar a

vibração.

3.2 Banco de dados

O caminho que os dados seguirão até o usuário segue o esquemático da Figura 10.

Figura 10 – Esquemático de comunicação

Fonte: próprio autor.

Na primeira parte da metodologia já foi abordado o módulo embarcado, e neste será

apresentado o banco de dados. A plataforma cloud escolhida foi a FireBase da Google,

visto sua facilidade de uso e por possuir uma versão gratuita com grande armazenamento.

Nesta plataforma foi escolhido o serviço FireStore, o qual funciona da seguinte maneira,

simplificadamente, primeiro, define-se uma coleção e dentro dela terá um documento, e

neste documento as variáveis que serão salvas. Foi escolhido este serviço, uma vez que é

o mais atual da Google, e este permite cadastrar vários módulos em uma só plataforma, ou



35

seja, caso queira acompanhar os dados de mais de um carro, esta seria a maneira mais

eficaz.

Na Figura 11 pode ser visto as divisões citadas acima, e os dados que serão salvos,

mais a direita.

Figura 11 – Estrutura do Banco de Dados

Fonte: próprio autor.

Cada variável será utilizada para o seguinte proposito:

• RPM: aquisição em tempo real do valor do RPM do motor;

• Vel: aquisição em tempo real da velocidade [km/h];

• rot: registro do maior valor de RPM;

• speed: registro do maior valor de velocidade[km/h];

• status: status do Veículo (1 - ligado, 0 - desligado);

• time: temporizador[min].

3.3 Programação do microcontrolador

Para a programação do ESP32, foi utilizada a plataforma ESP-IDF no VSCode. O ESP-

IDF oferece um ambiente de desenvolvimento robusto e completo que permite o acesso às

bibliotecas e ferramentas para o desenvolvimento de sistemas IoT. Já o VSCode como IDE,

oferece praticidade e eficiência, com uma interface leve, além de ferramentas de depuração

avançadas. Assim utilizar ambas ferramentas, favorecem o projeto.

Para estabelecer a conexão com o Wi-Fi e a comunicação com o banco de dados

foi utilizado o código presente no APÊNDICE A: DEFINIÇÕES DE PARÂMETROS. Com

este código o dispositivo tenta conectar-se à uma rede Wi-Fi usando a biblioteca WiFi

Manager, caso não consiga imprime "Falha na Conexão"e caso conecte, "Conectado.".



36

Depois, configura as credenciais da Firebase (API key, e-mail e senha do usuário) e inicia a

conexão com ela.

O diagrama em alto nível deste código pode ser observado na Figura 12.

Figura 12 – Diagrama de alto nível para conexão WiFi

Fonte: próprio autor.

Para aquisitar os dados da CAN foi utilizada uma biblioteca já existente, a qual facilitou

na programação e pode ser vista no APÊNDICE B: CAN. Neste exemplo, os dados de ID

0x010 são analisados e dentro do laço while são lidos até 4 bytes de dados da mensagem

CAN e os armazena em um buffer. Após a leitura, o valor de can.vel (velocidade) é

calculado combinando os dois primeiros bytes do buffer usando operações bit a bit, já o

dado can.rot é combinado aos próximos 2 bytes. Por fim, o índice i é zerado ao final para

que o buffer possa ser reutilizado na próxima leitura.

O diagrama em alto nível deste código pode ser observado na Figura 13.

Figura 13 – Diagrama de alto nível para aquisição de dados do barramento CAN

Fonte: próprio autor.

Para realizar as funções desejadas com o cartão SD, foi utilizado o código que pode

ser visto no APÊNDICE C: FUNÇÕES DO CARTÃO SD, este código lida com a verificação,

leitura e escrita de arquivos, seguindo a lógica:

• Checkfiles: Verifica se existem arquivos no formato /fileNNN.txt sendo "NNN"um

número, caso já exista é acrescentado 1 ao valor do número criando um novo arquivo.

• readFile: Esta função lê e imprime o conteúdo de um arquivo, especificando seu

path.

• writeFile: Abre um arquivo para salvar os dados nele.

• appendFile: Abre um arquivo para salvar dados no final.

O diagrama em alto nível deste código pode ser observado na Figura 14.



37

Figura 14 – Diagrama de alto nível para salvamento no cartão SD

Fonte: próprio autor.

E por fim para transmitir estes dados para o banco de dados, foi utilizado o código

presente no APÊNDICE D: COMUNICAÇÃO COM O BANCO DE DADOS, realizando as

devidas alterações, ou seja, alterando o nome de qual variável será enviada e o endereço

para qual será enviada. O comando Firebase.Firestore.createDocument, faz

uma requisição para criar um novo documento na FireStore, sendo:

• fbdo: Objeto gerenciador de respostas e erros.

• FIREBASE_PROJECT_ID: O ID do projeto no Firebase.

• documentPath.c_str(): O caminho do documento que será criado.

• content.raw(): O conteúdo (dados) que será salvo no documento.

3.4 Desenvolvimento do aplicativo

A última etapa do projeto foi o desenvolvimento do aplicativo, para isso foi utilizado o

framework Flutter, o qual além de permitir uma fácil integração com a Firebase, permite

desenvolver aplicativo web, iOs e também Android com o mesmo código.

Além disso, foi feita também uma pesquisa com o time EESC USP Baja para que o

layout do aplicativo possua a identidade visual da equipe. Então foi utilizado o grito de guerra

da equipe, assim como suas cores principais: preto, laranja e azul. Como pode ser visto na

Figura 15, a página inicial do aplicativo.



38

Figura 15 – Página inicial do aplicativo

Fonte: próprio autor.

Nessa página é possível acompanhar em tempo real a velocidade e o RPM nos velocí-

metro e tacômetro, respectivamente.

Para fazer o gráfico dos velocímetro e tacômetro com movimentação, foi utilizado o

código presente no APÊNDICE E: CÓDIGO PARA O VELOCÍMETRO E O TACÔMETRO,

neste é definido um container, que será a área na qual estes itens serão disponibilizados,

dentro dessa estrutura é definido o primeiro child, ou seja, uma estrutura, que será o

velocímetro, o tacômetro não está no apêndice porém foi feito de forma análoga. Neste

child é definido o ponteiro e também os valores intervalados, e para correlacionar o

ângulo que o ponteiro está e o valor que apontará, foi utilizada uma biblioteca já pronta,

syncfusion.

O diagrama em alto nível deste código pode ser observado na Figura 16.

Figura 16 – Diagrama de alto nível para layout do aplicativo

Fonte: próprio autor.

Na tabela abaixo do velocímetro e tacômetro, é registrado o maior valor de cada variável

assim como quanto tempo de corrida já passou, em minutos. No canto inferior esquerdo



39

é possível ver um botão que direciona para a página de gráficos a qual pode ser vista na

Figura 17.

Figura 17 – Página dedicada a gráfico

Fonte: próprio autor.

O primeiro quadrado está na cor preta, uma vez que este foi selecionado para mostrar

na tela, e este seria o gráfico de RPM por tempo.

Para fazer essas estruturas foi utilizado o código presente no APÊNDICE F: TABELA

E BOTÃO DO APLICATIVO, neste inicialmente é definido um children, uma estrutura

dentro do child, que contém três custom container, que são as 3 linhas da tabela.

Já para o botão é utilizado o children, textButton e que com a função onPressed

é definido a função que será executada ao pressionar o botão.

Segue diagrama em alto nível deste código pode ser observado na Figura 18.

Figura 18 – Diagrama de alto nível para layout do aplicativo

Fonte: próprio autor.

Nesta página, três gráficos podem ser selecionados, rotação por tempo, velocidade por

tempo ou rotação por velocidade, todos são de interesse para testes como por exemplo o de



40

aceleração e velocidade. Estes gráficos são atualizados em tempo real e também possui cur-

sor tanto para zoom quanto para analisar o valor de forma mais precisa. O código para gerar

estes gráficos está no APÊNDICE G: GRÁFICOS, neste é criado um widget, o qual contém

um container com o gráfico desejado. Nesta etapa foi utilizada a biblioteca, SfCartesian-

Chart, na qual é possível selecionar opções como zoom (enableSelectionZooming:

true), linhas de marcação (crosshairBehavior: CrosshairBehavior(enable:

true) e movimentar o gráfico (enablePanning: true) de forma mais fácil. E para

definir os eixos foi utilizada as funções PrimaryXAxis para o eixo X e PrimaryYAxis

para o eixo Y.

O diagrama em alto nível dos gráficos pode ser observado na Figura 19.

Figura 19 – Diagrama de alto nível para os gráficos

Fonte: próprio autor.

Por fim, o código no APÊNDICE H: AQUISIÇÃO DE DADOS DO APP foi utilizado para

aquisitar os dados presentes no banco de dados, na função FirebaseFirestore.instance

é definido o caminho para os dados, e a função snapshot é executada para captar os

dados e salvá-los nas variáveis do aplicativo. O qual esta explicado no diagrama de alto

nivel da Figura 20.

Figura 20 – Diagrama de alto nível para aquisição dos dados da núvem

Fonte: próprio autor.



41

4 RESULTADOS E DISCUSSÃO

Após a aplicação da metodologia proposta, todo o projeto foi colocado em teste, e os

resultados evidenciaram que o dispositivo foi capaz de adquirir os dados da rede CAN e

transmiti-los pela internet. Sendo assim, pode-se concluir que todas as etapas foram bem

sucedidas, a parte eletrônica cumpriu todos os requisitos, a configuração do banco de dados

que garantiu que os dados fossem armazenados nos locais corretos, assim como o código

do ESP32, que possibilitou uma aquisição e transmissão confiável e funcional. E o aplicativo

que cumpriu o propósito de mostrar ao usuário os dados do veículo em tempo real.

4.1 Desempenho da rede CAN

A rede CAN foi configurada para operar com uma taxa de 250 kbps, um valor capaz de

atender as demandas do projeto. Um pacote era enviado a cada 775 µs, contendo todas os

dados dos sensores de RPM e de velocidade. Tanto a estabilidade quanto a integridade dos

dados da rede CAN foram comprovadas pelos testes realizados, ou seja, durante os testes

não foi visto nenhuma perda de pacote na comunicação diferencial, mostrando assim ser

robusta e eficaz.

4.2 Frequência de aquisição e salvamento

O sistema de salvamento de dados no cartão SD é de 50 Hz, ou seja, existe uma alta

taxa de aquisição e salvamento local, o que permite uma análise mais completa e fiel após a

realização do teste ou da corrida. Ou seja, este sistema local garante a aquisição de dados

completa e integra mesmo que ocorra erros de comunicação via internet. Esta configuração

balanceou de forma eficiente a necessidade de alta resolução temporal com a capacidade

de armazenamento e processamento do sistema.

4.3 Transmissão de dados via Internet

Os dados coletados pela ESP32 são enviados para a Firebase utilizando uma conexão

via internet, com uma taxa média de transmissão de 30 kbps, embora esse valor seja

relativamente baixo em comparação com sistemas de maior complexidade, se mostrou

adequado no contexto deste trabalho.

Durante os testes também foi registrado que o atraso, delay médio entre a aquisição

dos dados e sua exibição no aplicativo foi de 180 ms. Além disso, foi medido que uma

mensagem é enviada a cada 100 ms sem que ocorra nenhuma perda de pacotes entre o

ESP32 e o aplicativo.



42

No entanto em situações extremas (utilização de dados móveis) foi notado um delay

de até 1 segundo. Este atraso, porém, não é prejudicial ao projeto uma vez que existe em

paralelo os dados do cartão SD.

4.4 Aplicativo

O aplicativo teve o funcionamento estável durante todos os testes e pelo fato de ser

multiplataforma, é de ampla utilização pelos usuários. Ademais o aplicativo por possuir um

layout mais simples e de fácil usabilidade, permitiu uma integração melhor e mais eficiente

com a equipe.

Os gráficos gerados em tempo real cumpriram o propósito de informar ao usuário as

condições em tempo real do veículo, contudo as análises destes dados, pelo fato do delay,

não foram tão precisas quanto o esperado, especialmente em situações onde o tempo de

resposta é crítico, como em testes de aceleração ou frenagem. Porém esse problema foi

facilmente contornado pela utilização dos dados salvos na memória local.

4.5 Placa de circuito impresso

A PCB não apresentou falhas com a vibração do carro nem sinais de interferências

eletromagnéticas, sendo assim, obteve um ótimo resultado. A versão final da PCB pode ser

vista na Figura 21.



43

Figura 21 – PCB finalizada

Fonte: próprio autor.

Figura 22 – PCB finalizada, parte de trás

Fonte: próprio autor.





45

5 CONCLUSÃO

Este trabalho teve como objetivo desenvolver um dispositivo para aquisição de dados da

rede CAN de um veículo e transmiti-los pela internet, abordando todas as etapas necessárias

para o funcionamento eficiente do sistema. O hardware e software desenvolvido resultou

em um dispositivo de baixo custo, capaz de atingir os objetivos com êxito.

Os testes demonstraram que os requisitos necessários, para o monitoramento veicular

em aplicações cotidianas e também em competições, foram atingidos. Mesmo com o atraso

observado, a robustez do dispositivo consegue garantir sua confiabilidade.

Em suma, o trabalho foi concluído de forma satisfatória, atingindo os objetivos propostos,

apresentando ainda, grande potencial para futuras aplicações e melhorias.





47

REFERÊNCIAS

BOLAND MORGAN I. BURGETT, A. J. E. R. M. S. I. H. M. An overview of can-bus
development, utilization, and future potential in serial network messaging for off-road mobile
equipment. In: AHMAD, F.; SULTAN, M. (Ed.). Technology in Agriculture. Rijeka: IntechOpen,
2021. cap. 25. Disponível em: https://doi.org/10.5772/intechopen.98444.

CHANDIRAMANI, J. R.; BHANDARI, S.; HARIPRASAD, S. Vehicle data acquisition and
telemetry. In: 2014 Fifth International Conference on Signal and Image Processing. [S.l.:
s.n.], 2014. p. 187–191.

ELECTRONICS, C. CAN Bus Sniffer - Reverse Engineer Vehicle Data [Savvy-
CAN/Wireshark]. 2024. Disponível em: https://www.csselectronics.com/pages/
can-bus-sniffer-reverse-engineering.

EMBARCADOS. Barramento CAN entre Arduinos UNO. 2020. Accessed: 2024-08-27.
Disponível em: https://embarcados.com.br/barramento-can-entre-arduinos-uno/.

IPC. IPC-2221: Generic Standard on Printed Board Design. [S.l.], 1998. Acesso em: 3 set.
2024. Disponível em: https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/
MATERIALS/IPC-2221A(L).pdf.

LI, R.; LIU, C.; LUO, F. A design for automotive can bus monitoring system. In: 2008 IEEE
Vehicle Power and Propulsion Conference. [S.l.: s.n.], 2008. p. 1–5.

MONIAGA J. V., M. S. R. H. D. A.; SAHIDI, F. Diagnostics vehicle’s condition using obd-ii
and raspberry pi technology: study literature. In: IOP PUBLISHING. Journal of Physics:
Conference Series. [S.l.], 2018. v. 978, p. 012011.

NURUDIN, A. A. S.; ZARLIS, M. Monitoring applications for vehicle based on internet of
things (iot) using the mqtt protocol. Procedia Computer Science, Elsevier, v. 227, p. 73–82,
2023.

RIMPAS, D.; PAPADAKIS, A.; SAMARAKOU, M. Obd-ii sensor diagnostics for monitoring
vehicle operation and consumption. Energy Reports, Elsevier, v. 6, p. 55–63, 2020.

Robert Bosch GmbH. CAN Specification. [S.l.], 2012. Accessed: 2024-06-19. Disponível em:
http://esd.cs.ucr.edu/webres/can20.pdf.

SALUNKHE, A. A.; KAMBLE, P. P.; JADHAV, R. Design and implementation of can bus
protocol for monitoring vehicle parameters. In: 2016 IEEE International Conference on
Recent Trends in Electronics, Information Communication Technology (RTEICT). [S.l.: s.n.],
2016. p. 301–304.

SAQFALHAIT, A.; ABUSHAMMA, M. On-Board Diagnostics Project. 2024. Hardware
graduation project, Supervisor: Dr. Samer Arandi.

SYSTEMS, E. ESP32 TWAI (CAN) Controller — ESP-IDF Programming Guide. [S.l.], 2023.
Accessed: 2024-09-16. Disponível em: https://docs.espressif.com/projects/esp-idf/en/latest/
esp32/api-reference/peripherals/twai.html.

https://doi.org/10.5772/intechopen.98444
https://www.csselectronics.com/pages/can-bus-sniffer-reverse-engineering
https://www.csselectronics.com/pages/can-bus-sniffer-reverse-engineering
https://embarcados.com.br/barramento-can-entre-arduinos-uno/
https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf
https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf
http://esd.cs.ucr.edu/webres/can20.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/twai.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/twai.html


48

TAYLOR NATHAN GRIFFITHS, A. B. S. A. T. P. Z. X. P.; GELENCSER, A. Data mining for
vehicle telemetry. Applied Artificial Intelligence, Taylor & Francis, v. 30, n. 3, p. 233–256,
2016. Disponível em: https://doi.org/10.1080/08839514.2016.1156954.

Texas Instruments. SN65HVD230 3.3-V CAN Transceiver. [S.l.], 2008. Acesso em: 3 set.
2024. Disponível em: https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1725330017442&
ref_url=https%253A%252F%252Fwww.google.com%252F.

TIETOEVRY. Connected Vehicle and Telematics Development Services. [S.l.], 2023.
Accessed: 2024-06-19. Disponível em: https://www.tietoevry.com/en/industries/automotive/
connected-vehicle-and-telematics/.

Unisonic Technologies Co., Ltd. LM78XX: 3-Terminal 1A Positive Voltage Regulator. [S.l.],
2005. Acesso em: 3 set. 2024. Disponível em: https://www.unisonic.com.tw.

YADAV, A.; SAKLE, N. Development of low-cost data logger system for capturing
transmission parameters of two-wheeler using arduino. Materials Today: Proceedings,
Elsevier, v. 72, p. 1697–1703, 2023.

https://doi.org/10.1080/08839514.2016.1156954
https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1725330017442&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/sn65hvd230.pdf?ts=1725330017442&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.tietoevry.com/en/industries/automotive/connected-vehicle-and-telematics/
https://www.tietoevry.com/en/industries/automotive/connected-vehicle-and-telematics/
https://www.unisonic.com.tw


49

6 APÊNDICE A: DEFINIÇÕES DE PARÂMETROS

1 // definindo a biblioteca Wifi

2 WiFiManager wm;

3 bool res;

4 res = wm.autoConnect("BAJA-IoT");

5 if(!res) {

6 Serial.println("Falha na conex o.");

7 }

8 else {

9 Serial.println("Conectado.");

10 }

11 //definindo as chaves e os par metros da Firebase

12 Serial.printf("Firebase CLient v%s\n\n",

FIREBASE_CLIENT_VERSION);

13 config.api_key = API_KEY;

14

15 auth.user.email = USER_EMAIL;

16 auth.user.password = USER_PASSWORD;

17

18

19 config.token_status_callback = tokenStatusCallback;

20

21 Firebase.begin(&config, &auth);

22 Firebase.reconnectWiFi(true);

23 }





51

7 APÊNDICE B: CAN

1 if(CAN.packetId() == 0X010){

2 while (CAN.available() && i<4) {

3 can.buffer[i] = uint8_t(CAN.read());

4 i += 1;

5 }

6

7 can.vel = ((uint16_t)can.buffer[1] << 8) | can.buffer[0];

8 // filter = ((uint16_t)can.buffer[1] << 8) | can.buffer

[0];

9 // if (filter<9999)

10 // can.vel = filter;

11

12 can.rot = ((uint16_t)can.buffer[3] << 8) | can.buffer[2];

13 // filter = ((uint16_t)can.buffer[3] << 8) | can.buffer

[2];

14 // if (filter<9999)

15 // can.rot = filter;

16

17 // memcpy(&can.temp_celsius, can.buffer+4, 4);

18 i = 0;

19 }





53

8 APÊNDICE C: FUNÇÕES DO CARTÃO SD

1 void Checkfiles(fs::FS &fs, char *path) {

2 int i = 0;

3 while(fs.exists(path)){

4 i+=1;

5 sprintf(path,"/file%03d.txt",i);

6 Serial.println(path);

7 }

8 }

9

10 // F u n o para leitura SD

11 void readFile(fs::FS &fs, const char * path){

12 Serial.printf("Reading file: %s\n", path);

13

14 File file = fs.open(path);

15 if(!file){

16 Serial.println("Failed to open file for reading");

17 return;

18 }

19

20 Serial.print("Read from file: ");

21 while(file.available()){

22 Serial.write(file.read());

23 }

24 }

25

26 // F u n o Escrita do SD

27 void writeFile(fs::FS &fs, const char * path, const char *

message){

28 Serial.printf("Writing file: %s\n", path);

29

30 File file = fs.open(path, FILE_WRITE);

31 if(!file){

32 Serial.println("Failed to open file for writing");

33 return;

34 }

35 if(file.print(message)){

36 Serial.println("File written");



54

37 } else {

38 Serial.println("Write failed");

39 }

40 }

41

42 // Criar ou adiocionar dados (essa vai ser utilizada para

salvar no sd)

43 void appendFile(fs::FS &fs, const char * path, const char *

message){

44 File file = fs.open(path, "a");

45 file.println(message);

46 file.close();

47 }



55

9 APÊNDICE D: COMUNICAÇÃO COM O BANCO DE DADOS

1 if(Firebase.Firestore.createDocument(&fbdo,

FIREBASE_PROJECT_ID, "", documentPath.c_str(), content.

raw() )){

2 Serial.printf("ok\n%s\n\n", fbdo.payload().c_str());

3 return;

4 }else{

5 Serial.println(fbdo.errorReason());

6 }





57

10 APÊNDICE E: CÓDIGO PARA O VELOCÍMETRO E O TACÔMETRO

1 Container(

2 height: 150,

3 width: 150,

4 child: SfRadialGauge(

5 enableLoadingAnimation: true,

6 animationDuration: 4500,

7 axes: <RadialAxis>[

8 RadialAxis(

9 minimum: 0,

10 maximum: 60.5,

11 axisLineStyle: AxisLineStyle(

12 thickness: 20, color: Colors.

grey),

13 showTicks: true,

14 axisLabelStyle: GaugeTextStyle(

color: Colors.white),

15 minorTickStyle: MinorTickStyle(

color: Colors.white),

16 majorTickStyle: MajorTickStyle(

color: Colors.white),

17 pointers: <GaugePointer>[

18 NeedlePointer(

19 value: vel,

20 enableAnimation: true,

21 needleStartWidth: 0,

22 needleEndWidth: 5,

23 needleColor: Color(0xFFDADADA

),

24 knobStyle: KnobStyle(

25 color: Color.fromARGB

(255, 235, 3, 3),

26 borderColor: Color(0

xFFDADADA),

27 knobRadius: 0.06,

28 borderWidth: 0.04),

29 tailStyle: TailStyle(

30 color: Color.fromARGB



58

(255, 165, 4, 4),

31 width: 5,

32 length: 0.15)),

33 RangePointer(

34 value: vel,

35 width: 20,

36 enableAnimation: true,

37 color: Colors.orange)

38 ],

39 annotations: <GaugeAnnotation>[

40 GaugeAnnotation(

41 widget: Container(

42 child:

43 Text(vel.

toStringAsFixed(0) +

’ km/h’,

44 style: TextStyle(

45 fontSize: 15,

46 fontWeight:

FontWeight.

bold,

47 color: Colors.

white,

48 ))),

49 angle: 90,

50 positionFactor: 0.87,

51 )

52 ]),

53 ],

54 ),

55 ),



59

11 APÊNDICE F: TABELA E BOTÃO DO APLICATIVO

1 SizedBox(height: 25),

2 // Custom containers

3 Column(

4 children: [

5 CustomContainer(

6 ’Velocidade M x .’,

7 snapshot.data![’speed’].toStringAsFixed(0),

8 Icons.speed_sharp,

9 ),

10 CustomContainer(

11 ’RPM M x .’,

12 snapshot.data![’rot’].toStringAsFixed(0),

13 Icons.speed_outlined,

14 ),

15 CustomContainer(

16 ’Tempo.’,

17 snapshot.data![’time’].toStringAsFixed(0),

18 Icons.speed_outlined,

19 ),

20 ],

21 ),

22 SizedBox(height: 5),

23 // "Gr ficos" button

24 Row(

25 children: [

26 TextButton(

27 onPressed: () {

28 Navigator.push(

29 context,

30 MaterialPageRoute(

31 builder: (context) =>

GraficosScreen()),

32 );

33 },

34 child: Text(

35 ’Gr ficos’,

36 style: TextStyle(color: Colors.white),



60

37 ),

38 ),

39 IconButton(

40 onPressed: () {

41 Navigator.push(

42 context,

43 MaterialPageRoute(

44 builder: (context) =>

GraficosScreen()),

45 );

46 },

47 icon: Icon(Icons.arrow_forward, color:

Colors.white),

48 ),

49 ],

50 ),

51 ],

52 ),

53 );

54 },

55 );

56 }

57 }



61

12 APÊNDICE G: GRÁFICOS

1 Widget _buildRpmTimeChart(List<int> timeValues, List<double

> rpmValues) {

2 return Container(

3 height: 400,

4 child: SfCartesianChart(

5 zoomPanBehavior: ZoomPanBehavior(

6 // Enables pinch zooming

7 enablePinching: true,

8 enablePanning: true,

9 enableSelectionZooming: true,

10 selectionRectBorderColor: Colors.red,

11 selectionRectBorderWidth: 1,

12 selectionRectColor: Colors.grey),

13 primaryXAxis: NumericAxis(

14 interactiveTooltip: InteractiveTooltip(

15 // Enables the crosshair tooltip

16 enable: true),

17 title:

18 AxisTitle(text: ’Time (s)’, textStyle: TextStyle(

fontSize: 12)),

19 labelFormat: ’{value}’,

20 labelStyle: TextStyle(fontSize: 10), // Adjust label

font size

21 ),

22 primaryYAxis: NumericAxis(

23 title: AxisTitle(text: ’RPM’, textStyle: TextStyle(

fontSize: 12)),

24 labelStyle: TextStyle(fontSize: 10), // Adjust label

font size

25 ),

26 series: <ChartSeries>[

27 LineSeries<dynamic, dynamic>(

28 dataSource: _getDataPoints(timeValues, rpmValues),

29 xValueMapper: (dynamic data, _) => data[’x’],

30 yValueMapper: (dynamic data, _) => data[’y’],

31 ),

32 ],



62

33 crosshairBehavior: CrosshairBehavior(

34 enable: true,

35 activationMode: ActivationMode.singleTap,

36 lineType: CrosshairLineType.both,

37 shouldAlwaysShow: true,

38 lineColor: Colors.blue.withOpacity(0.5),

39 lineWidth: 1,

40 lineDashArray: [5, 5],

41 ),

42 ),

43 );

44 }



63

13 APÊNDICE H: AQUISIÇÃO DE DADOS DO APP

1 import ’package:cloud_firestore/cloud_firestore.dart’;

2

3 class DataRetrievalService {

4 static Stream<Map<String, dynamic>?> retrieveData() {

5 return FirebaseFirestore.instance

6 .collection(’BAJA’)

7 .doc(’’)

8 .snapshots()

9 .map((snapshot) {

10 if (snapshot.exists) {

11 Map<String, dynamic>? data =

12 snapshot.data() as Map<String, dynamic>?; //

Explicit cast

13 if (data != null) {

14 return {

15 ’RPM’: data[’RPM’],

16 ’Vel’: data[’Vel’],

17 ’Status’: data[’status’],

18 ’speed’: data[’speed’],

19 ’rot’: data[’rot’],

20 ’time’: data[’time’],

21 };

22 }

23 }

24 return null; // Return null if the document does not

exist or if the fields are not found

25 });

26 }

27 }


	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de abreviaturas e siglas
	Sumário
	INTRODUÇÃO
	Objetivo Geral
	Objetivos Específicos

	REVISÃO BIBLIOGRÁFICA
	Considerações Iniciais
	CAN Bus veicular
	Arquitetura física

	Integração de Internet das Coisas (IoT) no monitoramento veicular
	Monitoramento de consumo de combustível e eficiência operacional com sensores OBD-II
	Telemetria e aquisição de dados de veículos
	Protocolo CAN com ESP32
	Considerações Finais

	Metodologia
	Projeto eletrônico
	Microcontrolador
	Alimentação
	Comunicação CAN
	Cartão SD e USB
	Design PCB

	Banco de dados
	Programação do microcontrolador
	Desenvolvimento do aplicativo

	Resultados e Discussão
	Desempenho da rede CAN
	Frequência de aquisição e salvamento
	Transmissão de dados via Internet
	Aplicativo
	Placa de circuito impresso

	Conclusão
	REFERÊNCIAS
	Apêndice A: Definições de Parâmetros
	Apêndice B: CAN
	Apêndice C: Funções do cartão SD
	Apêndice D: Comunicação com o banco de dados
	Apêndice E: Código para o velocímetro e o tacômetro
	Apêndice F: Tabela e botão do aplicativo
	Apêndice G: Gráficos
	Apêndice H: Aquisição de dados do App

