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Resumo

O presente trabalho propoe um estudo sobre filtros de equalizacao, na faixa de au-
dio, para o cancelamento do efeito sonoro introduzido por uma sala. Dois modelos de
aproximacao da resposta ao impulso de uma sala sao discutidos, considerando-se também
o filtro inverso correspondente a cada um deles. Um destes filtros, baseado no modelo
auto-regressivo, é projetado em MATLAB e implementado em C sob ambiente Linux.

Palavras-chave: Processamento de Sinais. Equalizacao. Audio.






Abstract

This paper proposes a study of equalization filters in the audio range, to cancel the
sound effect introduced by a room. Two models for approximating the impulse response of
aroom are discussed, considering also the inverse filter corresponding to each of them. One
of these filters, based on autoregressive model, is designed in MATLAB and implemented
in C under Linux environment.

Keywords: Signal Processing. Equalization. Audio.
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1 Introducao

1.1 Contextualizacao

Muitas pesquisas ja foram feitas acerca da filtragem inversa aplicada a sistemas de
processamento de audio. A ideia principal explorada consiste em obter um sistema capaz
de equalizar o som que chega ao ouvinte, eliminando distor¢oes geradas, na maioria das

vezes, pelo som refletido e/ou absorvido pelas paredes e objetos de uma sala.

O som nao viaja apenas diretamente de um transmissor até um receptor, mas também
pode ser refletido e absorvido por elementos presentes no ambiente, conforme mostra a
figura 1. Logo, o som que chega até o receptor nao é exatamente aquele foi produzido, mas
outro som, que consiste numa soma de vérios sinais que sofreram diferentes atenuacoes
e atrasos, de acordo com o caminho que percorreram. Este efeito recebe o nome de
reverberacao, e ocorre em varios ambientes, principalmente em salas, conforme mostra a

figura 1.

sala

*)) ‘ ))o

transmisso receptor

i /

Figura 1: Efeito de reverberacao que pode ser introduzido por uma sala, do transmissor
até o receptor.
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As distorc¢oes introduzidas por uma sala podem, entao, ser modeladas e definidas como
a resposta ao impulso do caminho do transmissor até o receptor do sinal sonoro. Esta
resposta pode ser modelada de diversas maneiras, e varios trabalhos apontam métodos
como modelos de média movel (MA), auto-regressivos (AR), modelos auto-regressivos de
média movel (ARMA), filtros de Kautz [Paatero e Karjalainen 2002], e filtros adaptativos
como filtros LMS |Haykin e Widrow 2003|.

Defina-se h(n) esta resposta. O filtro desejado, portanto, representa o inverso desta
resposta, h~!(n),para que, quando convoluido com o sinal original, possa cancelar o efeito
da sala (h(n) * h='(n) = 1). Este filtro ¢ aplicado antes da transmissio do sinal, e anula

o efeito introduzido, conforme o modelo da figura 2.

ambiente
filiro de
equalizacao
x(n) . y(n)=x(n).1
—{ hi(n) »|  h(n) >
efeito de
reverberacao
transmissor receptor

Figura 2: Modelo representando um filtro de equalizacao capaz de anular o efeito de
reverberacgao introduzido pelo ambiente.

Para que este filtro inverso possa apresentar uma resposta estével, precisa-se garantir
que ele seja um sistema de fase minima. Um sistema de fase minima é um sistema cuja
transformada z possui ambos os polos e zeros no interior do circulo unitario. Uma vez
que a condicao de estabilidade de um sistema é a presencga dos polos no interior do circulo
unitario, quando desejamos um filtro inverso, precisamos aplicar esta condi¢ao também
ao0s zeros, uma vez que esta inversa tera seus zeros no lugar dos polos e vice-versa. Varias
técnicas existem e ja foram pesquisadas para a obtencao de sistemas de fase minima em
filtragem inversa, entre as quais pode-se citar a decomposi¢do de uma resposta em um
componente de fase minima, e outro componente de atraso puro [Oppenheim e Schafer

1998, p. 280].
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1.2 Objetivo do Trabalho

O presente trabalho busca, portanto, estudar diferentes maneiras de se modelar o
efeito introduzido por uma sala quando o som viaja de um transmissor até um receptor,
e, juntamente com isso, obter um filtro inverso capaz de anula-lo. Este filtro sera baseado
na funcao de transferéncia inversa do modelo encontrado para o ambiente, que deve ser

de fase minima, permitindo, assim, uma resposta estavel.

1.3 Estrutura

A secdo 2 ira lidar com a teoria estudada para dois modelos de resposta de uma
sala (MA e AR), e como projetar o filtro inverso correspondente. A se¢ido 3 discutira os
materiais e métodos utilizados para simulagao, obtencao dos coeficientes e implementacao
de um filtro inverso baseado em uma resposta modelada pelo modelo AR. A secao 4
apresentard os resultados obtidos com o modelo AR e o filtro inverso correspondente,

tanto na simulacao como na implementacao.
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2 Fundamentacao Teorica

2.1 Modelagem de um Ambiente de Reverberagao Acts-
tica

Conforme apontado na se¢ao 1, existem diversos métodos para modelagem do efeito
introduzido por uma sala (ou qualquer ambiente de reverberacao actuistica) em um som
que viaja de um transmissor a um receptor. Um modelo ¢ uma aproximacao da relacao
entre um sinal recebido y(n) e um sinal transmitido z(n), e ir4 representar um sistema
"caixa-preta"h(n). Um modelo ndo precisa necessariamente caracterizar a resposta exata
de uma sala, mas deve modelar os efeitos que se deseja anular com o filtro inverso, que

serd baseado na resposta inversa deste modelo.

Uma solugdo que pode ser proposta para a obtencao de h(n) da sala é a de obter
os coeficientes da DFT (Discrete Fourier Transform) de x(n) e y(n) e dividir uns pelos
outros, obtendo a DFT da resposta h(n), conforme a relacdo 2.1. FEsta solu¢ido nao
¢ adequada, ja que os coeficientes da DFT de z(n) podem ser iguais a zero ou muito
proximos de zero, causando desde erros de divisao por zero ou nimeros muito grandes
nos coeficientes da DFT de h(n), gerando overflow, ou seja, nimeros muito grandes que
ultrapassam a capacidade de representacao da maquina onde o processamento esti sendo
feito. A solucao proposta na relacao 2.1, apesar de teoricamente correta, é portanto,
irrealizavel. A aproximacao de h(n) deve ser feita por modelos baseados diretamente no

dominio do tempo.

DFT

y(n) =x(n) x h(n) — Y[k| = X[k|H[k]| & H[k] = —— (2.1)

Dois modelos basicos sao propostos [Hayes 96| para a caracterizacao de um sistema a
partir de suas entradas e saidas no dominio do tempo, e sao eles o modelo de média movel,
abreviado como MA (moving average) e o modelo auto-regressivo, AR (auto-regressive).

Como sera observado adiante, estes modelos sao complementares e conseguem descrever
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a resposta de uma sala de maneiras diferentes, com o primeiro representando um filtro
FIR (finite impulse response), e o segundo, um filtro IIR (infinite impulse response). A
complementaridade destes modelos da origem ao modelo ARMA (auto-regressive moving
average), uma combinagdo que consegue unir a capacidade de modelagem de ambos os
modelos, e pesquisas recentes [Paatero e Karjalainen 2002| apontam que ARMA é um
modelo amplamente usado para modelagem e filtragem inversa na faixa de frequéncias de
audio.

As secoes seguintes irao apresentar os modelos MA e AR e seus filtros inversos cor-

respondentes, fazendo uma anélise das suas capacidades de modelagem.

2.1.1 Modelo MA

O modelo MA representa uma das maneiras mais intuitivas de se descrever o com-
portamento da resposta de uma sala. Ele relaciona o sinal recebido y(n) com o sinal
transmitido xz(n) através de uma somatoria de atrasos e atenuagoes de x(n), conforme

mostra a figura 3. O modelo é representado na equacao 2.2.

i) ., S
-1 .
P e 5
e e
: : B}
L] -

Figura 3: Diagrama de blocos de um modelo MA.

y(n) = x(n) + Z Ajx(n —1) (2.2)

onde p é a ordem do modelo MA.

A equagao acima contempla o fato de que a saida do sistema equivale ao sinal original
transmitido (z(n)) somado a valores anteriores desse mesmo sinal (até a amostra n — p),

atenuados pelas constantes A;(i = 1,...,p). Para uma descricdo do efeito da sala sobre
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o som transmitido, portanto, é necessario determinar as constantes A; de forma que a

equacao 2.2 apresente o menor erro possivel.

Aplicando a transformada-z sobre a equacao 2.2, temos a seguinte relacao:
p .
Y(e ) =X+ AX(z ) (2.3)
i=1

. Que, por sua vez, pode ser reorganizada de forma a representar a resposta ao impulso

da sala H(z™') no dominio z:

V(=) _ H(=) = HiAiz—i (2.4)

Varios métodos sao propostos para a obtencao dos coeficientes A; deste modelo. Entre
os dois principais utilizados, temos as equagoes de Yule-Walker [Hayes 96|, um método
amplamente utilizado tanto para aproximagoes de modelos MA (e que também pode
ser generalizado para modelos AR e ARMA), e métodos iterativos de aproximagao por

minimizagao do erro LMS [Haykin e Widrow 2003|.

O modelo MA apresenta limitacdes por ser de duracao finita, ou seja, fornece coefi-
cientes adequados somente com base na entrada x(n) fornecida, e ndo acumula nenhuma
informacao sobre os sinais anteriores a y(n). [Joaquim 2006] define este tipo de sistema
como sendo um sistema sem memoria. Embora o modelo tenha as vantagens de ser sem-
pre estével e apresente uma caracteristica de fase linear [Joaquim 2006], isso faz com que
a aproximacdo Otima seja garantida somente para o intervalo de z(n — p) a x(n) anali-
sado para o modelo, e para qualquer n em z(n) fora do intervalo previsto, pode existir
uma grande divergéncia entre y(n) real e o aproximado. Assim, o modelo MA se torna
inviavel em muitos casos, pois exige uma ordem p grande para a aproximacao, e oferece

uma resposta sem memoria para um sistema que pode apresentar memdria.

Um efeito de reverberacao introduzido por uma sala pode ser separado em dois com-
ponentes - distor¢ao imediata e eco. O modelo MA, por nao conter memoria, é ruim para
descrever efeitos de eco, uma vez este é uma repeticao peridédica de um trecho do sinal
ao longo de toda a duracao do som. No entanto, para a caracterizacao das distorcoes
sofridas por amostras imediatas do sinal de entrada (de z(n— p) a z(n)), o modelo MA se
mostra bastante preciso. Isso ocorre pois ele se baseia na comparacao de amostras atuais
e anteriores do sinal de entrada x(n) com o sinal de saida y(n), o que ja nao ocorre no

modelo AR, conforme seré visto adiante.
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2.1.2 Modelo AR

Complementando o modelo MA, o modelo AR é capaz de modelar o sinal y(n) a
partir de atrasos do proprio sinal y(n) recebido, representando um modelo realimentado,

conforme a figura 4. A equagao 2.5 representa este modelo.

][]

o I L

Figura 4: Diagrama de blocos de um modelo AR.

y(n) = z(n) + Z Byy(n — 1) (2.5)

A equacao acima contempla o fato de que a saida do sistema equivale ao sinal original
transmitido (z(n)) somado a valores anteriores do sinal recebido (até a amostra n — p),

atenuados pelas constantes B;(i = 1, ..., p).

Aplicando a transformada-z sobre a equacao 2.5, temos a seguinte relacao:
p .
Y(e)=X(")+Y BY(E )z (2.6)
i=1

. Que, por sua vez, pode ser reorganizada de forma a representar a resposta ao impulso

da sala H(z™') no dominio 2:

1=37 Bz (2.7)

A obtencao dos coeficientes para este modelo pode ser feita pelos mesmos métodos
citados na se¢do anterior - Yule-Walker [Hayes 96|, e métodos iterativos de aproximagao

por minimizagao do erro LMS [Haykin e Widrow 2003].
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A vantagem introduzida pelo modelo AR é que este apresenta memoria, e é capaz de
modelar a resposta h(n) em um intervalo infinito de tempo, e com poucos coeficientes. No
entanto, o modelo AR oferece apenas memoria, e nio relaciona y(n) com valores passados
do sinal de entrada z(n), tornando-se uma aproximacao muito pouco precisa dos efeitos
introduzidos pela sala no sinal x(n) em intervalos de tempo imediatos. Conclui-se dai que o
modelo AR é excelente para a caracterizacao de efeitos de eco, com a repeticoes periodicas
por todo o sinal, porém inadequado para descrever as distorcoes imediatas introduzidas no
sinal de entrada. Também pode-se concluir que as vantagens e desvantagens introduzidas

pelos modelos AR e MA sao complementares.

2.2 Filtros Inversos e Analise de Estabilidade

Uma vez com um modelo que caracteriza a resposta de uma sala a um som transmitido,
a funcao de transferéncia do modelo pode ser invertida de modo a obter um filtro capaz
de anular o efeito (conforme a figura 2). Conforme ja comentado na introdu¢ao, alguns
cuidados devem ser tomados na construcao deste filtro, principalmente quanto a inversao
da funcao de transferéncia, onde ha também polos e zeros invertidos. Isso pode tornar a
resposta instavel e/ou ndo causal, uma vez que a condi¢ao de estabilidade e causabilidade
exige que os polos da funcao de transferéncia, em funcao de z, estejam no interior do circulo
unitario. Havendo inversao, devemos, portanto, também fazer esta exigéncia quanto aos
zeros, e com esta exigéncia dizemos que a funcao de transferéncia do modelo da sala deve
ser de fase minima [Oppenheim e Schafer 1998], ou seja, com ambos os zeros e pélos no
interior do circulo unitario. A presente secao ird apresentar as funcoes de transferéncia

inversas dos modelos e a anélise de estabilidade das mesmas.

2.2.1 A partir do modelo MA

A resposta inversa da equagao 2.4, H1(z71), tem a forma:

1
H Yz = : 2.8
(Z ) 1+ Z?:l AZ'Z_Z ( )

(fazendo com que H(z1).H1(z71) =1).

Observa-se a troca dos zeros pelos polos. Para garantir que o sistema da equacgao seja
estavel e causal, todos os pélos do sistema devem se localizar no interior do circulo unitério.

Pode-se provar que o sistema anteriormente apresentado possui esta caracteristica.
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[Hayes 96| define que um processo aleatorio x(n) é estacionario no sentido amplo
(wide sense stationary) quando 1) sua média é constante, 2) a autocorrelacao r.(k,!()
depende apenas da diferenga k — [, e 3) a variancia do processo é finita, ¢,(0) < oc.
Estas condigoes nos garantem que a fungao de distribuicao de probabilidade do processo
nao muda de acordo com o tempo ou a posi¢do. Os sinais z(n) e y(n), transmitido e
recebido, respectivamente, devem possuir esta caracteristica, por se tratarem de sinais

sonoros digitais e quantizados.

O modelo MA, sendo um filtro cuja entrada é um processo estacionario no sentido
amplo (ruido branco), deve também fornecer uma saida estacionaria no sentido amplo,
caso contrario, este nao representara um modelo adequado da sala. Pode-se garantir que
um modelo MA é estacionario em sentido amplo quando o polinémio z# — Y7 | A;2P~"
formado com os seus coeficientes, apresenta raizes no interior do circulo unitario |Takalo,
Hytti e Thalainen 2005]. Métodos como o de Yule-Walker, Burg e aproximagdo LMS
[Bourke 1998] garantem que o processo continua estacionario no sentido amplo, e portanto,
as raizes estao necessariamente no interior do circulo unitario. Nota-se que o modelo MA
obtido por métodos de aproximagao como Yule-Walker gera necessariamente um sistema

com uma resposta de fase minima.

O polinémio acima é o mesmo encontrado no denominador de H~'(27!) e, portanto,
fornece os polos do sistema, que estarao no interior do circulo unitario. O filtro inverso é,

entao, garantidamente estavel e causal.

2.2.2 A partir do modelo AR
A resposta inversa da equagao 2.7, H *(z71), tem a forma:
p .
H'(z)=1-> Bz (2.9)
=1

(fazendo com que H(z"YYH'(271) =1).

Nota-se que para conseguirmos um modelo AR que permita entradas e saidas estaci-
onarias em sentido amplo, hd também a exigéncia de que o polinémio 2# — Y7 B;2P~"
formado com os seus coeficientes, apresente raizes no interior do circulo unitario [Takalo,
Hytti e Thalainen 2005]. As raizes deste polindmio também indicam os polos do modelo

AR, o que mostra que a resposta da sala é estavel e causal.

Com a inversao desta resposta, os zeros trocam de lugar com os poélos. Os zeros
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encontrados na resposta da sala encontram-se na posicao 0 do circulo unitario, com mul-
tiplicidade p (ordem do modelo). Com a inversao e consequente transformacao em polos,

a resposta continua estavel e causal.

2.3 Filtros FIR

Tendo obtido, entao, esta funcao de transferéncia inversa, deve-se procurar uma forma
de implementar um filtro real que a represente. Algumas vezes é impossivel obter uma
implementacao precisa da funcao de transferéncia obtida para um sistema, dada a limi-
tacao dos dispositivos eletronicos e processadores digitais de sinais. Uma aproximagao da

funcao deve, portanto, ser gerada.

A forma mais simples de se conseguir um filtro real a partir de uma func¢ao de transfe-
réncia em z é utilizar filtros FIR (finite impulse response), que sdo exatamente os modelos
de média movel descritos na secao anterior. Filtros FIR, ou filtros nao-recursivos, sao des-
critos por relacoes que descrevem a saida do sistema apenas em funcao de valores presentes
e passados da entrada |[Joaquim 2006], e sdo filtros de facil implementagado em ambientes
de DSP, inclusive otimizados através de estruturas de hardware conhecidas como MAC

(Multiply-and-Accumulate) [Yin 2011].

Com isso, pode-se concluir que os coeficientes do filtro FIR inverso para um modelo
AR de uma sala sdo exatamente os coeficientes A;. Porém, no caso de um filtro FIR inverso
para um modelo MA, devemos realizar o calculo dos coeficientes através de técnicas de
janelas. Na versao mais simples desta técnica, através de janelas retangulares, a ideia
bésica consiste em avaliar a resposta ao impulso do filtro somente uma determinada
quantidade de pontos, de 0 até certo valor n inteiro, fornecendo os coeficientes do filtro.

Nota-se que quanto mais coeficientes, melhor sera a aproximacao do filtro.
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2 Fundamentacao Tedrica
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3 Materiars e Métodos

Na presente secao serao discutidos os materiais e métodos utilizados para o projeto
de um filtro FIR de equalizacao sonora utilizando uma aproximacao por modelo AR de
uma sala. Obviamente um modelo AR nao conseguira caracterizar todo o efeito introdu-
zido por uma reverberagao, no entanto, sera suficiente para anular o eco produzido. Dois
experimentos preliminares sao feitos no MATLAB e em seguida um filtro FIR é desen-
volvido em MATLAB e C sob plataforma Linux. Os resultados dos métodos e algoritmos

desenvolvidos serao apresentados na secao 4.

3.1 Desenvolvimento em MATLAB

O projeto do filtro FIR de equalizacao foi feito primeiramente no ambiente MATLAB,
para fins de testes e simulacao. A razao disso estd no fato de que esta ferramenta proveée
meios simples e eficientes de aplicar os métodos descritos na secao anterior, principalmente
no calculo dos coeficientes do modelo AR, e também prové vérias facilidades para a geragao

de sinais, simulacao de efeitos de eco e plotagem de gréficos.

Dois experimentos foram feitos sobre modelos AR e a anulacao de eco em sistemas de
dudio. O primeiro consiste em simular o efeito de eco em um sinal de impulso unitario na
entrada, e retird-lo com o projeto de um filtro inverso simples. O segundo apresenta um
sinal de som real, gravado em um software de musica, e com um efeito de eco aplicado
por uma ferramenta de edi¢do de dudio [Audacity 2012]; onde um filtro inverso também

é calculado e aplicado.

3.1.1 Filtro FIR em um Sinal de Impulso Unitario com Eco

O modelo apresentado na figura 5 foi desenvolvido com a ferramenta Simulink e simula
um modelo auto-regressivo que introduz eco no sinal de entrada. Nota-se que a repeticao

do eco ¢ periddica a cada 5 amostras. O tempo de amostragem utilizado no modelo é de
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0.25s, 0 que, avaliado entre os tempos 0 a 20s, gera sinais de entrada x(n) e saida y(n)

com 80 amostras.

_.. *

To Worspace

+, sy

Dizerete To Workspace

Impulse o s -5
17

Gain2 Integer Delay

Figura 5: Diagrama de blocos em Simulink capaz de gerar amostras de um impulso
unitario com eco.

Uma vez com as amostras geradas, o algoritmo a seguir é aplicado. A explicacao
do algoritmo se da nas proprias linhas do cédigo, porém convém destacar a funcao ar,
utilizada no codigo. A funcao ar, fornecida no pacote padrao do MATLAB, recebe como
argumentos o sinal que se procura aproximar (y(t)) e a ordem do modelo auto-regressivo,
e retorna uma estrutura do tipo idpoly, contendo um polinémio cujos coeficientes sao
exatamente aqueles do modelo auto-regressivo. A funcao polydata extrai os coeficientes

de idpoly.

% x: sinal sonoro sem o efeito da sala

% y: sinal sonoro com o efeito da sala

% order: ordem do modelo autoregressivo a ser usado na aprorima¢ao
% ta: tempo de amostragem

order=5;

ta = 0.25;

% estima o modelo AR da sala a partir de Yule—Walker
poly = ar(y,order, 'yw’);
% obtém os coeficientes do modelo

A = polydata(poly);

% filtro inverso Hsys
Hsys = tf(A,1,ta);

% plota o diagrama de zeros e pdlos do filtro inverso
figure;

zplane (A, 1) ;



3.1 Desenvolvimento em MATLAB 35

% obtém coeficientes do filtro FIR com uma janela de 10 pontos
% (desnecessdrio, pois A jd é o filtro FIR)
[h,t] = impz(A, 1, 10, 1/ta);

% x2 € o sinal y filtrado (deve se parecer com z, jd que o eco €
retirado)

x2 = conv(y,h);

% o tamanho de z2 é ajustado (apenas para fins de plotagem)

% plotagem de alguns resultados

figure;

stem (1:length(y) ,y);

hold on;

stem (1:length (x2) ,x2, 'r7);

legend ( 'y, '227);

title ( "Sinal recebido e sinal recuperado’, 'FontSize ,12);
hold off;

figure;

stem (1:length (x), x2 — x);

legend ( "erro ) ;

title ( "Erro entre o sinal recuperado e o sinal transmitido’, "FontSize

7,12) 5

3.1.2 Filtro FIR em um Sinal de Som Real com Eco

O segundo experimento consiste em retirar o efeito de eco de um arquivo de som real,
gravado por um software de edi¢ao de dudio. O som é gravado no formato stereo, com
dois canais de audio, porém no presente experimento sera utilizado apenas um canal, para

simplificar o ensaio.

O arquivo de som com eco, virtual_echo21.aif, é produzido a partir do arquivo vir-
tual_ off.aif, com a aplicacao do efeito sendo feita pelo software de edi¢ao Audacity [Auda-
city 2012]. O software prové uma interface grafica que permite a entrada de dois valores:
o atraso, em segundos, e o fator de decaimento do sinal. O primeiro parametro define o
intervalo de tempo no qual havera a repeticao periddica do sinal, e o segundo parametro

define um coeficiente de multiplicagao que seréa aplicado a cada repetigao (causando ate-
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nuacao do som). Assim, os valores escolhidos para o atraso e fator de decaimento foram
0,3s e 0,4, respectivamente, fazendo com que o sinal sonoro apresente uma repeticao

periodica a cada 0, 3s, e multiplicado por 0,4 a cada nova repeticao.

Os arquivos de som tém uma taxa de amostragem de 44,1kHz, uma taxa comum
em CDs de audio, e sdo lidos pela pela funcio AIFFREAD, disponibilizada por [Eaton
2009]. Como o eco introduzido pelo software de edigao é periodico a cada 0, 3s, temos um
intervalo de 44100 x 0, 3 = 13230 amostras a cada repeticao. Assim, o filtro de equalizacao
nao pode ser de ordem menor que 13230, pois caso contrario, ele nao seria capaz de
descrever o efeito de eco introduzido. Aproximar um modelo auto-regressivo de ordem
13230 através de métodos como Yule-Walker é um processo extremamente dispendioso
computacionalmente, de forma que, neste caso, e uma vez que conhecemos o efeito de
eco aplicado no som, podemos declarar que o modelo auto-regressivo que gera o eco é da

forma:

1

1 .
He) = =5 e

(3.1)

O algoritmo abaixo é, entao, aplicado de forma a obter um filtro FIR de equalizacao
e analisar os resultados de sua aplicacao sobre um arquivo de som com eco. O algoritmo

é explicado nos proprios comentarios.

% x_in e y_in: sinais sonoros com os dois canais

% r e y: primeiro canal dos sinais sonoros

% order: ordem do modelo autoregressivo a ser usado na aprorima¢ao
% fa: tempo de amostragem

[y _in,fs ,nbits,trash| = aiffread ( 'virtual echo21.aiff’);
[x_in,fs,nbits ,trash| = aiffread ( 'virtual off.aif’);

y_in = double(y in);

x_in = double(x_in);

fa = 44100;

% retira o primeiro canal dos sinais sonoros
x=x_in(:,1);

y=y_in(:,1);

% coeficientes do modelo auto—regressivo

A = [1 zeros(1,13229) —0.4];
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% resposta ao impulso da sala

|[h_eco,t| = impz(1l, A, 13231, fa);

% plota a resposta ao impulso da sala (para fins de andlise)
figure;

stem (t,h_eco)

title ( "Resposta ao Impulso da Sala’, "FontSize  ,12);

% resposta ao impulso do filtro inverso

[h filtro ,t] — impz(A, 1, 13231, fa);

% aplica o filtro inverso e obtém z2, o sinal z recuperado
x2 = conv(y,h filtro);
x2 = x2(1:length(x));

% calcula o erro rms entre o sinal recuperado e o transmitido
display ( "Erro RMS: %d’);

rms = sqrt (sum((x2—x).72)/length(x));

display (rms) ;

% comparagcao entre o0s sinais transmitido, recebido e recuperado
figure;

subplot (3,1,1);

plot (1:length(x) ,x);

legend ( 'z 7);

title ( "Sinal transmitido’, "FontSize ’,12) ;
subplot (3,1,2);

plot (1:length (y) ,y);

legend 'y 7);

title ( "Sinal recebido ’, "FontSize ,12);
subplot (3,1,3);

plot (1:length (x2) ,x2);

legend ( 'z27);

title ( "Sinal recuperado’, "FontSize  ,12);
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3.2 Implementacao do filtro FIR em Linux

Apoés os experimentos com o projeto de filtros FIR para a equalizagao de eco, um
projeto de filtro em MATLAB e C foi feito para anular o eco de um arquivo de som
real. O céalculo dos coeficientes do filtro foi feito através do MATLAB, uma vez que
nao foi encontrada uma solucao satisfatoria para a analise e aproximacao de um modelo
AR na linguagem C. Assim, temos estes coeficientes exportados em arquivos de texto e
posteriormente lidos pelo programa em C, que sera responsavel por apenas aplicar o filtro
FIR e gravar os resultados na saida do dispositivo de dudio do sistema em que executa.
Este segundo programa, em C, é implementado sob uma plataforma Linux e utiliza a
biblioteca ALSA para lidar com os drivers de som, o que torna necessario explicar a razao

do uso destas ferramentas nas segoes 3.2.2 e 3.2.3.

3.2.1 Calculo dos Coeficientes, em MATLAB

O arquivo de som em questao ¢ o mesmo utilizado no segundo experimento, em
MATLAB, nas secoes anteriores. No entanto, neste caso os coeficientes sao calculados

pelo comando ar, do MATLAB, o que exige um tempo de processamento bastante longo.

Como temos um som no formato stereo, com dois canais de dudio, temos a necessidade
de gerar um filtro inverso para cada canal. Assim, o algoritmo é aplicado duas vezes, e 0s

coeficientes do filtro sao gravados em dois arquivos, hl.out e h2.out.

Para tentar reduzir o tempo de processamento, foram feitas algumas tentativas. Uti-
lizando a funcao decimate, do MATLAB, tentou-se reduzir o nimero de amostras do sinal
em 50 vezes, e, ja que o numero de coeficientes do filtro agora pode ser menor, foi escolhido
um nimero de 44100/dec = 882 coeficientes. No entanto, varias amostras do sinal foram
descartadas (temos um filtro de Chebyshev passa-baixas sendo aplicado), e com isso os
sinais perderam varias de suas frequéncias mais altas, e com isso ja é possivel prever que

o resultado nao sera satisfatorio.

O algoritmo aplicado é dado abaixo. A explicacao é dada nos proprios comentarios

do codigo.

% x e y: sinais sonoros com os dois canais

% order: ordem do modelo autoregressivo a ser usado na aprorimagao
% fa: tempo de amostragem

[v_in,fs,nbits ,trash]| = aiffread ( 'virtual echo21.aiff’);

[x _in,fs ,nbits,trash| = aiffread( 'virtual_ off.aif’);
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y_in = double(y_in);
Xx_in = double(x_in);

fa = 44100;

% size indica a quantidade de amostras a serem levadas
% em consideragdao, para reduzir o tempo de processamento
size = 240000;

y = zeros(size ,2);

x — zeros(size ,2);

for i=1:size

y(i,1) = y_in(i,1);

y(1,2) = y_in(i,2);

x(i,1) = x_in(i,1);

x(i,2) = x_in(i,2);
end

% dec: fator de decimagao

% x d ey d: sinais com a decimacao

dec = 50;

y_d = zeros(size/dec,2);

x_d = zeros(size/dec,2);

x d(:,1) = decimate(x(:,1) ,dec);
x _d(:,2) = decimate(x(:,2) ,dec);
y _d(:,1) = decimate(y(:,1) ,dec);
y _d(:,2) = decimate(y(:,2) ,dec);

% p é a ordem do modelo auto—regressivo
p = ceil ((44100/dec));

polyl = ar(y_d(:,1),p, 'yw’);

poly2 = ar(y_d(:,2),p, 'yw’);

% coeficientes do modelo auto—regressivo
Al = polydata(polyl);
A2 = polydata(poly2);

% calcula a resposta ao impulso do modelo
[hl,t] = impz(Al, 1, p, fa/dec);
[h2,t] = impz(A2, 1, p, fa/dec);
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% plota a resposta ao impulso do filtro inverso

[hecol ;t] = impz (1, Al, p, fa/dec);
plot (hecol);

title ( "Resposta ao Impulso do Modelo AR Calculado ’, "FontSize ,12);

% grava a resposta ao impulso h em arquivos

outl = fopen( ’hl.out’, 'w’);
out2 = fopen( 'h2.o0ut’, 'w’);
fprintf(outl, "%0.5f|n’ hl
fprintf(out2, "%0.5f\n’ h2

fclose (outl);

’

?

)
)
)
) .

?

fclose (out2);

% apenas para fim de testes, realiza a convolug¢ao

% com o sinal original

xl d = conv(y_d(:,1) ,hl);

xl d = x1 d(1l:length(x d(:,1)));
x2 d = conv(y d(:,2),hl);

x2 d = x2 d(1:length(x _d(:,2)));

% comparagio entre os sinais transmitido ,
figure;

dist = length(x_d(:,1));

subplot (3,1,1);

plot (1:dist ,x_d(1:dist));

legend ( 'z ) ;

title ( "Sinal transmitido’, "FontSize  ,12) ;
subplot (3,1,2);

plot (1:dist ,x1_d(1l:dist));

legend ( 'z17);

title ( ’Sinal recebido’, "FontSize ,12);
subplot (3,1,3);

plot (1:dist ,y_d(1:dist));

legend 'y ") ;

title ( ’Sinal recuperado’,  FontSize ’,12);
figure;

plot (1:length(x) ,x2—x);

recebido e recuperado
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title ( "Erro entre os sinais transmitido e recuperado’);

3.2.2 Linux Embarcado

Apos a obtencao dos arquivos hl.out e h2.out, um programa em C é desenvolvido em

Linux, com a proposta de se implementar o filtro em um ambiente de DSP.

Sabe-se que muitas plataformas de DSP atuais necessitam de tempo para serem es-
tudadas e assimiladas, de forma que, dado o escopo do projeto, o estudo da plataforma
e a posterior implementacao seria inviavel. Assim, o sistema operacional Linux aparece
como uma solucao satisfatoria, jA que apresenta um ambiente de programacgao bastante
comum e uniforme, na linguagem C, e que além de funcionar em PCs convencionais, vem
crescendo em seu uso em sistemas embarcados, inclusive em DSPs. Uma das distribuicoes
mais comuns para Linux embarcado é a chamada Angstrom [The Angstrom Distribution
2012].

Linux, portanto, apresenta varias vantagens que contribuiram para a escolha da solu-
¢cao do presente projeto. Estas vantagens também sao a causa do amplo crescimento do
uso de Linux embarcado nos dias atuais, e algumas delas sao listadas por [Hallinan 2010],

entre as quais podemos citar:

e Linux se tornou uma alterativa madura, estavel, e com alto desempenho em relagao
aos sistemas operacionais embarcados proprietarios, além de nao precisar de royalties

para ser distribuido;

e Linux é escalavel, e funciona desde dispositivos pequenos voltados para consumidores
até sistemas de processamento pesado (como DSPs de ponto flutuante em tempo

real).

e Linux tem atraido um enorme niimero de desenvolvedores, possibilitando um suporte
rapido para novas arquiteturas de hardware, plataformas e dispositivos (constante

desenvolvimento de drivers para dispositivos de audio).

,

Além disso, Linux embarcado é um sistema operacional, e retira a necessidade de
uma compreensao profunda de cada sistema onde se deseja implementar um programa.
Os detalhes de hardware, incluindo os drivers de dispositivos (abstracao de software que
permite operar os dispositivos periféricos presentes no sistema), sdo tratados diretamente
no sistema operacional. Com isso, pode-se desenvolver varios aplicativos em PCs conven-

cionais, e transporta-los para uma aplicacao embarcada de uma maneira rapida e simples.
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Assim, embora o programa desenvolvido no presente trabalho nao tenha sido portado para
um sistema de Linux embarcado especifico, pouco esfor¢o seria necessario para isso. O
procedimento necessario para portar uma aplicacao desenvolvida em PCs para um ambi-
ente Linux consistiria apenas na compilacao cruzada para o microcontrolador ou DSP em
questao. Arquiteturas modernas multi-core até mesmo oferecem compiladores capazes de
dividir o c6digo em trechos de codigo criticos, executados no DSP, e trechos de controle
e 1/0, executados no microcontrolador. Exemplo disso é o compilador C6EZRun |Texas
Instruments 2012|, desenvolvido pela Texas Instruments, que produz aplicagdes para a

familia de SoCs OMAP [Texas Instruments 2012|, também da Texas Instruments.

3.2.3 Utilizacao da API ALSA

Diante da necessidade de desenvolver programas que lidam com os drivers de audio em
sistemas Linux, também fez-se necessario utilizar uma API chamada ALSA. ALSA |[ALSA
Project 2012| significa Advanced Linuzx Sound Architecture, e consiste em uma API e
uma série de drivers que permitem o suporte a som em programas desenvolvidos sob
plataforma Linux. Através de funcoes de baixo nivel, a API oferece um controle amplo
das funcionalidades suportadas pelos drivers de audio de um dispositivo |[Tranter 2004].
ALSA também é suportado em muitas plataformas de Linux embarcado, e tem se tornado

cada vez mais comuns em aplicacoes embarcadas de processamento de audio.

[Tranter 2004] fornece varios programas simples, como exemplo, utilizando a API
ALSA. Um deles ilustra a execucao de um arquivo de som, no formato .raw, no dispositivo
padrao de dudio aceito no sistema onde o programa executa. Este programa de exemplo,
entao, é tomado como base para o programa em C desenvolvido, e ¢ modificado pelo
autor de forma a satisfazer os objetivos do presente projeto, abrindo o arquivo de som,

aplicando o filtro FIR, e executando o resultado no dispositivo de som.

3.2.4 Aplicacao do Filtro FIR, em C

O codigo desenvolvido em C, que utiliza Linux e ALSA para a aplicacao do filtro FIR,

é apresentado no Apéndice A.

O codigo utiliza o frame buffer do driver de audio do dispositivo, através da biblioteca
ALSA, para enviar os dados processados em tempo real ao dispositivo de som, a medida
que lé os arquivos de entrada. Frame buffer é um espaco de dados alocado no dispositivo de

audio onde o sistema operacional pode gravar os dados de som, sendo estes dados lidos pelo



3.2 Implementacdo do filtro FIR em Linuz 43

dispositivo de som, que os converte em sinais sonoros. O programa lé, portanto, blocos
de dados do tamanho do frame buffer alocado, aplica o filtro FIR com uma convolucao

simples, e grava os resultados no frame buffer.

A razdo da leitura e processamento em blocos (enquanto temos a opgao de ler o
arquivo de som inteiro e aplicar o filtro a todo o sinal), existe pois a leitura do arquivo
pode ser trocada a qualquer momento por codigo da API ALSA capaz de amostrar o som
recebido no microfone (frame buffer de entrada), o que forneceria uma aplicagao do filtro
em tempo real. Nota-se também que a aplicacao do filtro em blocos de dados faz com que
o sinal de saida nao seja uma convolugao completa do sinal de entrada, porém ainda assim
conta com uma boa aproximagao (quanto maior o tamanho do bloco de dados, melhor a

aproximacao).

Algumas tentativas foram feitas no sentido de se portar o programa para uma pla-
taforma de Linux embarcado em DSP. O programa foi compilado através da ferramenta
C6EZRun |Texas Instruments 2012|, e transferido para o sistema de arquivos de um
sistema Linux, da distribuicao Angstrém, executando numa placa BeagleBoard, uma pla-

taforma de desenvolvimento embarcado open-source bastante popular nos dias atuais.

A placa BeagleBoard [Coley 2012| apresenta um core OMAP3530, saida de video
(HDMI ou S-Video), entrada/saida de audio, slot para cartdao SD, serial RS-232, hea-
ders de JTAG e USB on-the-go. Seu baixo consumo de energia e o tamanho reduzido
(7,2 x 7,2cm) também contribuem para que este seja um sistema com bastante poten-
cial para desenvolvimento de aplicagoes de Linux embarcado e processamento digital de
sinais. O processador OMAP3530 |Texas Instruments 2012|, da Texas Instruments, é um
processador multi-core hibrido, com um processador ARM Cortex-A8 de 720M Hz, um
processador digital de sinal de ponto fixo TMS320C64x+ de 520M Hz e um processador
de video POWERVR SGX. A ferramenta C6EZRun permite compilar trechos de codigo

para executar em cada um destes cores, otimizando o desempenho.
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4 Resultados e Discussao

A presente secao apresentard os resultados obtidos nos experimentos em MATLAB e
na implementacao do filtro inverso em Linux, com o calculo dos coeficientes em MATLAB.
Uma vez com estes resultados, também serd feita uma discussao e anélise dos mesmos a

luz dos objetivos do trabalho.

4.1 Experimentos realizados em MATLAB

4.1.1 Filtro FIR em um Sinal de Impulso Unitario com Eco

A execucao do algoritmo descrito na secao 3.1.1, do primeiro experimento, contendo
um sinal senoidal na entrada e a insercao de um atraso de cinco amostras atenuado em

0.5, gerou a resposta ao impulso inversa apresentada na equacao 4.1:

1
T 1-05z°
(com ordem 5, no modelo auto-regressivo, e o tempo de amostragem T;, = 0, 25s, amostras
de t = 0...20s).

H™'(2) (4.1)

A figura 6 mostra o diagrama de poélos e zeros da resposta acima. Pode-se observar
que todos os poélos estao no interior do circulo unitario, indicando que temos uma resposta

estavel.

A figura 7 mostra uma comparacao entre o sinal transmitido e o sinal recuperado. A
figura 8 apresenta o erro entre o sinal transmitido (z) e o recuperado com filtro inverso
(x2), e mostra que o erro é praticamente inexistente, da ordem de 107'° 0 que indica talvez
apenas um erro de aproximacao nos céalculos do MATLAB. O filtro inverso, portanto,

conseguiu recuperar com precisao o sinal transmitido.
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Figura 6: Diagrama de polos e zeros para a resposta ao impulso do filtro inverso obtido
no primeiro experimento.
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Figura 7: Comparacao entre o sinal transmitido e o sinal recuperado (primeiro experi-

mento).
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Figura 8: Erro entre o sinal recuperado e o sinal transmitido (primeiro experimento).
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1.2 Filtro FIR em um Sinal de Som Real com Eco

O modelo que foi estimado na secao 3.1.2, do segundo experimento, gerou o grafico

resposta ao impulso da figura 9, através da funcao stem(t, h_eco), na linha 22.

Resposta ao Impulso da Sala
T

0 0.03 0.1 0.1a 02 0.25 03

Figura 9: Resposta ao impulso do modelo da sala (antes da inversao) (segundo experi-
mento).

Com a inversao deste modelo e aplicagao do filtro no sinal y, temos um sinal 22, que
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devera ser proximo do sinal x. A semelhanca é facilmente notada (perceptivel ao) e o erro
é minimo. A figura 10 apresenta o erro entre os sinais 2 e x, que nao passa do valor de
10. Uma vez que os valores em questao estao no intervalo de -32768 a 32768 (tipo "signed
short”, de 16 bits) este erro nao ultrapassa 0,01%. Nao obstante, faz-se o célculo do erro
médio quadratico (ou erro RMS) entre os sinais, com base na equacao 4.2, e o resultado

equivale a 2,18 (erro de 0,003%).

Erro entre os sinais trangmitido e recuperado
T

Figura 10: Erro entre os sinais recuperado (22) e o sinal transmitido (z)

4.2 Aplicacao do Filtro FIR, em C

4.2.1 Coeficientes do filtro FIR em MATLAB

O método de Yule-Walker aplicado para estimar o modelo AR da sala gerou uma

resposta ao impulso da sala na forma da figura 11.

Como pode-se observar, o modelo nao foi capaz de estimar exatamente o efeito do
eco, como feito no experimento anterior, e isso ocorre uma vez que o modelo tem uma
ordem muito alta, fazendo com que o método de Yule-Walker se baseie muito mais nas
primeiras amostras do que nas iltimas. Apesar disso, o modelo foi suficiente para retirar
o eco no sinal decimado, embora também tenha eliminado, junto com o eco, partes do

sinal sonoro. A figura 12 mostra o sinal recuperado.
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Resposta ao Impulso do Modelo AR Calculado
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Figura 11: Resposta ao impulso do modelo da sala estimado pelo método Yule-Walker
(aplicacao do filtro).

Nota-se que o filtro eliminou nao s6 o eco, mas também partes do sinal. Isso ocorre
devido a ja comentada imprecisao do modelo AR em descrever o efeito da sala, pois s6
possui informacao do sinal y e nenhuma informacao sobre o sinal z. O método de Yule-
Walker com muitos coeficientes também fez com que a estimativa dos coeficientes fosse

ruim, e isso causou uma descricao imprecisa do efeito da sala.

A aplicacao do filtro FIR no sinal completo, sem decimacao, também se torna impos-
sivel, uma vez que este sinal tem uma frequéncia de amostragem 50 vezes maior. Algumas
técnicas podem ser exploradas para tentar aproximar os coeficientes de um filtro para uma
amostragem maior com base apenas nestes 882 coeficientes, no entanto abordagens como

essa fogem ao escopo do trabalho e podem ser pesquisadas posteriormente.

Apenas para fins de uma implementacao correta, podemos utilizar o modelo AR in-
dicado no experimento anterior, indicado na equacgao 4.1. Este modelo foi exportado nos

arquivos hl.out e h2.out para ser utilizado na implementacao em C.

4.2.2 Implementacao em C

Como ja previsto nas secoes anteriores, reduzir a quantidade de coeficientes do filtro
FIR através da técnica da decimacao faz com que o filtro s6 funcione corretamente para
os proprios sinais decimados. Assim, o filtro aplicado nao foi estimado pelo método de

Yule-Walker, mas sim, previsto pela equagao 4.1, uma vez que ja se conhece o eco que



50 4 Resultados e Discussao

o 1t Sinal transmitido
T

2 ~ —
D —
2 |
i | | | | | | | | |

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w10t Sinal recebido

2 | | | | | | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

o 1t Sinal recuperado
T
[—]

2 — — |
D —
I . —]
4 | | | | | | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figura 12: Comparagao entre os sinais = (transmitido), y (com o efeito da sala) e x1
(recuperado). Nota-se que o filtro inverso anulou nao s6 o eco, mas também partes do
sinal, uma vez que nao se baseou no sinal de entrada x, e sim, em uma aproximacao
arbitraria obtida pelo método de Yule-Walker. (aplicagao do filtro)

existe no sinal.

O programa, que esta indicado no Apéndice A, foi compilado e executado corretamente
em uma plataforma Linux, distribuicao Fedora 15 em um PC com arquitetura x86, e pode-

se perceber que o eco foi removido do arquivo de som.

No entanto, na tentativa de se portar o programa para a placa BeagleBoard, houve
problemas em relacao ao driver de audio fornecido para a placa. Uma mensagem de erro
mostrou que o driver nao era capaz de suportar um tamanho de quadro muito grande para
receber e enviar dados para o dispositivo de dudio (que, no caso do codigo, era de tamanho
50000). A tentativa de reduzir para 13250 quadros, uma quantidade menor e que seria
suficiente para anular o efeito de eco também nao foi aceita pelo hardware. Desta forma,
a melhor maneira de aplicar o filtro no ambiente embarcado seria desenvolver algoritmos
que possam lidar com este gargalo do frame buffer encontrado no driver de dudio da placa

em questao.
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O presente trabalho contou com muitas andlises de métodos e técnicas utilizadas em
processamento digitais de sinais aplicado a equalizagao sonora, e conforme demonstrado,
muitas abordagens se mostraram inadequadas para os objetivos propostos, enquanto ou-
tras nao s6 se mostraram adequadas como também serviram para indicar os proximos

passos a serem tomados em trabalhos futuros.

Exemplos de métodos descartados foram todos aqueles relacionadas a analise de sinais
no dominio da frequéncia. Conforme ja comentado na secao 2.1, estimar uma resposta ao
impulso com base na divisao entre a saida e a entrada é uma alternativa inviavel, dada
a possibilidade de haver divisao por zero ou valores muito proximos de zero, ocasionando
overflow. Outro método foi descartado durante o projeto do filtro FIR, onde pode-se
passar a funcao de transferéncia da funcdo para o dominio da frequéncia, e/*, e aplicar
o filtro nos coeficientes de frequéncia. Esta tultima abordagem, embora correta, é pouco
eficiente dadas as otimizacgoes dos DSPs relacionadas ao dominio do tempo, de forma que

operacoes neste dominio ocorrem de maneira muito mais rapida.

Uma abordagem importante explorada durante o projeto se refere a utilizacao de sinais
para o teste do efeito da sala. Uma entrada de impulso unitério, no sistema caracterizado
pela sala e o filtro inverso, se mostrou muito mais util para a analise dos sinais do que
qualquer outro sinal de entrada. Sinais senoidais, por exemplo, sao mais adequados para

projetos no dominio analégico, e nao digital.

Entre os métodos utilizados que podem ser explorados em trabalhos futuros, temos
a andlise conjunta dos modelos MA e AR, que mostrou que o primeiro é adequado para
uma modelagem precisa de h(n) em intervalos de tempo determinados, sendo uma resposta
FIR, enquanto o segundo é adequado para a modelagem do eco introduzido por uma sala,
sendo uma resposta IIR. Surge, entao, a possibilidade de se unir estas duas caracteristicas
no modelo chamado ARMA - Auto-regressive Mouving Average, um trabalho que pode ser

desenvolvido posteriormente. A figura 13 apresenta um efeito de reverberacao completo
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causado por uma sala em um sinal de impulso unitério (o efeito é aplicado pela ferramenta

de edic@o de dudio [Audacity 2012]).

% 10

Impulso

k= —

0 02 04 0B s 1 12 14 16 18

w10

A —

Figura 13: Efeito de reverberacao completo de uma sala, aplicado em um sinal de impulso
unitario na entrada.

Como pode-se observar na resposta ao impulso com reverberacao, ha um primeiro
trecho, curto, que pode ser descrito com bastante precisao através de um modelo MA.
Em seguida, devido a varias reflexoes e interferéncia entre os sinais refletidos, a resposta
comeca a ficar mais indeterminada e é atenuada com o tempo, o que exige um modelo
AR. Algumas pesquisas sugerem que o modelo de reverberacao de uma sala, portanto,
deve ser do tipo ARMA, com as caracteristicas iniciais da resposta sendo tratadas por
MA, e 0 eco gerado posteriormente por AR. Um filtro inverso a este modelo seria capaz

de anular o efeito com bastante precisao.

Outro possivel trabalho que pode ser desenvolvido em continuacao a este consistiria na
otimizacao do filtro FIR e sua aplicagao em C. Pode-se buscar algumas técnicas capazes de
reduzir o numero dos coeficientes do filtro FIR, e mesmo técnicas que tornam o calculo dos
coeficientes do filtro FIR em tempo real, e na linguagem C, criando um sistema adaptativo.
A alternativa de decimacao no tempo para a reducao dos coeficientes foi tentada durante
o projeto e se mostrou insatisfatoria, uma vez que distorceu varias frequéncias do sinal

SONnoro.

Considerando-se, portanto, os resultados obtidos e as presentes propostas de traba-

lhos futuros, temos ainda o fato de que o uso de DSPs e plataformas de Linux embarcado
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vem crescendo muito rapidamente, tornando importantes as pesquisas nesta area. O
crescimento de aplicagoes multimidia, principalmente em computacao movel e telecomu-
nicagoes, tem constantemente exigido o uso de DSPs para processamento e equalizagao
sonora, de forma a fornecer um contetido de qualidade usuarios, tanto em quesitos de
clareza no som como em possibilidade de interatividade (como em software de edigao
de audio para misicos amadores). E, embora aplicagoes do tipo ja existam em grande
quantidade para plataformas de PCs convencionais, a possibilidade de porta-las para
aplicagoes embarcadas abre um novo paradigma para usuérios e desenvolvedores, apre-
sentando possibilidades de aplicacoes relacionadas a processamento de sinais em tempo
real, em qualquer lugar e em qualquer situacao. E, como o presente trabalho demonstra,
as técnicas de equalizacao sonora, os sistemas Linux embarcados e os compiladores com
otimizacoes para arquiteturas de DSP tem desempenhado um papel importante nestes

avancos.
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APENDICE A - Aplicacdo de um Filtro FIR

em C

A seguir encontra-se o cédigo desenvolvido em C que aplica um filtro FIR cujos

coeficientes estao nos arquivos hl.out e h2.out, gerados na secao 3.2.1 do presente trabalho.

#define ALSA PCM NEW HW PARAMS API

#include <alsa/asoundlib.h>
#include <math.h>

#define DEBUG 1
#define PLAY RESULTS 1

#define FRAME SIZE 50000
#define FIR SIZE 44100

doublex convolution (double *x, double xh, int n, int degree) {
double xy;

int i,k;
y = malloc(sizeof(double) x n);

double aux;
for (i=0;i<n;i++) {
aux = 0;
for (k=0;k<degree;k++) {
if ((i—k)>=0) {
aux += h[k]*x[i—k];
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Apéndice A - Aplicacao de um Filtro FIR em C

return y;

int main() {

long loops;

int rc;

int size , window size, i;
snd pem_ t xhandle;

snd pcm hw params t xparams;
unsigned int val;

int dir;

snd pcm uframes t frames;
char xbuffer;

int play — PLAY RESULTS;

char xout_buffer;
double xin_ revl, *in rev2;
double xhl, xh2;
double xyl, xy2;

/+ open files x/

int writefd;

FILE xhfl, *xhf2;

int fdl;

writefd = creat ("out.raw" ,0);

fdl = open("virtual echo2l.raw" ,0);

hfl = fopen("hl.out","r");
hf2 = fopen ("h2.out" ,"r");

/* Open PCM device for playback. x/
rc = snd_pcem_open(&handle, "default"
if (r¢ < 0) {

, SND_PCM_STREAM PLAYBACK, 0);
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fprintf(stderr ,"unable to open pcm device: %s\n",snd_ strerror(rc)
);
exit (1) ;
}
/x Allocate a hardware parameters object. x/
snd_pcm_hw_ params_alloca(&params) ;
/% Fill it in with default values. x/
snd _pcm hw_ params any(handle, params);
/+* Set the desired hardware parameters. */
/+ Interleaved mode x/
snd _pcm__hw_ params set access(handle, params,
SND_PCM_ACCESS RW_INTERLEAVED) ;
/+ Signed 16—bit little —endian format */
snd _pem  hw params set format(handle, params, SND PCM_ FORMAT S16 LE)
/* Two channels (stereo) x/
snd _pcm hw_ params set channels(handle, params, 2);
/% 44100 bits/second sampling rate (CD quality) x/
val = 44100;
snd_pcm_hw_ params_set rate mnear(handle, params, &val, &dir);
/* Set period size to 32 frames. x/
frames = FRAME SIZE;
snd pcm hw params set period size near(handle, params, &frames, &
dir);
/+ Write the parameters to the driver x/
rc = snd _pcm hw params(handle, params);
if (rc < 0) {
fprintf(stderr ,"unable to set hw parameters: %s\n",snd strerror(
re));
exit (1);
¥
/+* Use a buffer large enough to hold one period x/
snd _pem hw_ params get period size(params, &frames, &dir);
size = frames x 4; /x 2 bytes/sample, 2 channels x/
buffer = (char %) malloc(size);
/* set the window size x/
window size = frames;

/+* We want to loop for 5 seconds x/
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snd _pcm_hw_ params get period time(params, &val, &dir);
/* & seconds in microseconds divided by period time x/

loops = 10000000 / wval;

in_revl = malloc(sizeof(double)«window size);
in_rev2 = malloc(sizeof(double)«window size);
out buffer = (char *) malloc(size);

sizeof (double)«FIR SIZE) ;

sizeof (double)*FIR SIZE) ;

hl = malloc(
h2 = malloc(
// reads the FIR coefficients
for (i=0;i<FIR_SIZE;i++) {
fscanf (hl,"%1{" &hl1[i]);
fscanf (h2,"%lf" &h2[i]);

while (loops > 0) {
loops ——;

/* read buffer x/
if(rd_input)

rc = read (0, buffer , size);
else

rc = read(fdl, buffer, size);

if (re = 0) {
fprintf(stderr, "end of file on input\n");
break;

} else if (rc != size) {

fprintf(stderr, "short read: read %d bytes\n", rc);

// load samples
for (i=0;i<window _size;i++) {
// channel 1

in revl|[i] = (short) (buffer[4xi+1] << 8 | buffer|[4xi]);

// channel 2
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yl =
y2 =

in _rev2[i]| = (short) (buffer[4*i+3] << 8 | buffer[4xi+2]);

convolution (in_revl  hl,window size ,FIR SIZE);

convolution (in_rev2 ,h2,window _size ,FIR_SIZE);

// load channels into out_buffer

for

(i=0;i<window _size;i++) {
// little endian

short a, b;
a = yl[il];
b = y2[i];
out buffer[4xi]| = (char) a;
out buffer[4xi+1] = (char) (a >> 8);
out buffer[4xi+2] = (char) b;
out buffer[4x1+3] = (char) (b >> 8);
}
/x write into sound buffer x/
if (play) {
rc = snd_pecm_ writei (handle, out buffer, frames);
if (rc — —EPIPE) {
fprintf(stderr, "underrun occurred\n");

}

else

snd pcm_prepare(handle) ;
} else if (rc < 0) {

fprintf(stderr ,"error from writei: %s\n",snd strerror(rc)

) ;
} else if (rc != (int)frames) {

fprintf(stderr ,"short write, write %d frames\n", rc);

{

rc = write(writefd , out buffer, size);

free (buffer); free(in_revl); free(in rev2); free(out buffer); free(

h1)

; free(h2);
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snd _pcm _drain(handle);
snd _pcm_close(handle);
close (writefd);

return 0;



