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RESUMO

Neste trabalho de conclusão de curso foram realizados estudos básicos sobre princípios de RMN

visando o entendimento da técnica de RMN de  1H Duplo Quantum no domínio do tempo (1H

RMNDQ-DT),  amplamente  utilizada  para  avaliação  de  intercruzamento  de  cadeias  poliméricas

orgânicas.  Inicialmente,  foi  desenvolvido  um  estudo  dos  princípios  quânticos  da  RMN

(Ressonância  magnética  nuclear),  englobando  as  interações  do  spin  nuclear  com  campos

magnéticos externos (efeito Zeeman nuclear) e internos, com ênfase na interação dipolar magnética,

fundamental para a técnica de 1H RMNDQ-DT. O formalismo do operador densidade foi utilizado

para compreender o efeito de pulsos de radiofrequência nos spins nucleares, a evolução sobre a ação

da interação dipolar e a leitura de sinais de RMN. Após isso, abordou-se a descrição do experimento

básico de duplo quantum e a aplicação deste no estudo do intercruzamento de cadeias poliméricas.

Como ilustração do funcionamento da técnica,  esta  foi aplicada para comparar as estruturas de

ligações cruzadas de dois polietilenos: Polietileno entrecruzado (XLPE – do inglês Cross-linked

polyethylene)  e  Polietileno  de  alta  densidade  (HDPE  –  do  inglês  High-density  polyethylene).

Posteriormente, como uma aplicação, a técnica também foi utilizada no estudo de reticulações não

uniformes numa amostra de XLPE de um duto polimérico.equações.

Palavras-chave: TD-RMN. Coerências de Duplo Quantum. Intercruzamento

1 INTRODUÇÃO

1.1 PRINCÍPIOS DA RMN

Uma das grandezas físicas mais importantes para o presente estudo será o spin, uma vez que sua

existência  possibilita  o  acontecimento  das  interações  que  serão  descritas  aqui  e  que  são

imperscindíveis não só para a ressonância magnética nuclear (RMN), mas para diversas outras áreas

da física. No nosso caso trabalharemos com o spin nuclear, isto é, o spin dos núcleos dos átomos de

uma amostra. O núcleo usado será o hidrogênio (1H).

Uma partícula com spin tem um momento magnético associado à ela. É possível relacionar o

operador momento magnético ( μ ) gerado com o operador de momento angular da partícula (

I ) da seguinte forma [2,3]:
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μ=γ ℏ I                                                                  (1)

Ao colocarmos uma partícula com momento magnético imersa num campo magnético constante

(que chamaremos de  B0 ), ocorre uma interação denominada de “Interação Zeeman Nuclear”.

Essa interação possui um Hamiltoniano na forma (tomando o campo como B=B0 ẑ ) [2,3]:

H z=μ⋅B=−γ ℏ B0 I z=−ℏω0 I z                                                 (2)                

Onde ω0 é uma frequência angular que chamamos de frequência de Larmor. Nesse cenário o

operador  Hamiltoniano só possui dois autoestados de energia (uma vez que estamos nos tratando

do núcleo de 1H, que possui spin ½ ). Tais estados são dados pelos autovetores do operador I z

( ½ e – ½) , que estão ilustradas na figura (1).

Figura 1: Representação dos níveis de energia da interação Zeeman                                                    

Dessa forma é possível estudar o comportamento de um único spin sob não só a interação

Zeeman,  mas  também sob as  outras  interações  que  serão  descritas  aqui.  No entanto  é  preciso

considerar que, se tratando de grandes quantidades de spins, não podemos mais descrever o sistema

olhando apenas para as funções de estado dos spins em particular. Precisamos agora descrevê-lo por

um objeto matemático que nos permita trabalhar com ensembles . Para esse fim será utilizado o

operador que chamamos de “Operador densidade”, que, assim como a função de estado, contém

toda a informação contida em um sistema quântico, mas pode também levar em conta o caráter

estatístico do sistema.

O operador densidade é definido de forma a levar em conta as médias estatísticas e quânticas do

cenário em questão. Podemos escrevê-lo como[1-3]:

ρ= ∑
i , j=1

N

c i c j
* |ψ i ><ψ j |                                                     (3)
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Onde c i  e c j  são os coeficientes da expansão do vetor de estado |ψ > em termos dos

vetores da base  |ψ i > e |ψ j > , respectivamente. O termo c i c j
* é uma media estatística para

toda a amostra do produto destes coeficientes.

O traço do produto do operador densidade com qualquer outro operador representa a média

estatística do observável associado a esse operador. Isso acontece porque a soma dos elementos da

diagonal principal é uma soma das médias dos módulos quadrados dos coeficientes das funções de

estado ( que são as denominadas “populações” de cada estado) . Somando populações normalizadas

temos então a média estatística da grandeza [2,3]:

⟨A⟩=Tr { ρA}                                                             (4)

Para um exemplo de um sistema de 1 e 2 spins, respectivamente, a matriz associada ao operador

densidade será:

1 Spin: (|c1|
2 c1 c2

*

c2 c1
* |c2|

2)       ;       2 Spins: (
|c1|

2
c1 c2

* c1c3
* c1 c4

*

c2 c1
* |c2|

2
c2c3

* c2 c4
*

c3 c1
* c3 c2

* |c3|
2

c1 c4
*

c4 c1
* c4 c2

* c4c3
* |c4|

2)                 (5)

Os termos na diagonal principal são, como dito anteriormente, as chamadas populações. Os

termos  fora  da  diagonal  principal  são  as  “coerências”  [2,3],  que  representam  basicamente

probabilidades de transição entre os estados. As coerências são nomeadas de acordo com a variação

no número quântico magnético associada à transição. O elemento c1 c2
* da matriz para 1 spin da

expressão (5), por exemplo, apresenta uma diferença de ±1  no número quântico magnético dos

estados  | 1/2 ,−1/2>  e  | 1/2,1/2 > ,  por  isso  ele  é  chamado  de  “coerência  de  Single-

Quantum”. Já elemento c1c4
*  da matriz para 2 spins da expressão (5) apresenta uma diferença de

±2 , sendo chamado de “coerência de Duplo-Quantum”. A nomenclatura segue esta lógica para

coerências de ordem maior que podem ser encontradas em matrizes densidade envolvendo mais

spins, de modo geral em um sistema de n spins ½ exsitirão coerências até n-Quantum.

A evolução temporal do operador densidade é dada através da equação de Liouville-Von Neumann,

que pode ser obtida da equação de Schrodinger [2,3]:
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dρ
dt

= i
ℏ [ ρ ,H ]                                                              (6) 

Onde H  é o Hamiltoniano do sistema. Vemos que, se o operador densidade comuta com o

Hamiltoniano,  ele  é  então constante  no tempo.  Caso o  operador  densidade  não comute  com o

Hamiltoniano, o resultado (para um Hamiltoniano independente do tempo) será [2,3]:

ρ(t)=e−i H t /ℏ ρ(0)ei H t / ℏ=U ρ(0)U †                                           (7)

Com U=e−i H t / ℏ sendo o chamado “Operador de evolução temporal” ou “Propagador”.

Para  considerarmos  a  evolução  do  sistema  através  de  vários  Hamiltonianos  diferentes,

escrevemos então o propagador como sendo (Desde que os Hamiltonianos sejam constantes na

fração de tempo que estão sendo considerados):

U=e−iH n t n/ ℏ ...e−iH 2t 2 /ℏ e−iH 1 t1 /ℏ                                               (8)

A fim de compreendermos o cenário no qual trabalharemos em ressonância, vamos considerar a

amostra no equilíbrio térmico. O operador densidade em função do Hamiltoniano H  será então

descrito pela distribuição de Boltzmann-Gibbs [2,3]:

ρeq=
e

−H /k BT

∑
m

e−Em/ k BT
= 1
Z
e−H / kBT= 1

Z (e
−E1 / kBT 0 . ..

0 e−E 2/ k BT . ..
   

⋮ ⋮ ⋱
)                       (9)

Onde Em são as autoenergias do sistema, e Z é a função partição do mesmo. Para o caso

da interação Zeeman, usando a base de autovetores de I z , as populações em equilíbrio térmico

serão escritas como[2,3]:

[ ρeq ]m,m=
emℏω0 /k BT

∑
s=− I

I

e sℏω0/ k BT

                                                  (10)

A equação (10)  pode  ser  simplificada  se  considerarmos os  valores  numéricos  para  as  suas

exponenciais: 

m ℏω0

k BT
=
mℏ γ B0

k BT
≈(1.05×10−34 J⋅s).(2.6×108 rad⋅s−1⋅T−1) .(1T )

(1.38×10−23 J⋅K−1).Temperatura(K )
≈ 10−3

Temperatura (K )
 (11)

Vemos  então  que  para  a  temperatura  ambiente  de T≈300 K (Normalmente  perto  da  qual

onde fazemos os experimentos de RMN) o expoente fica muito pequeno (da ordem de 10−5 ), o
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que nos permite simplificar a exponencial para seu termo de primeira ordem em série de Taylor,

como  feito  na  equação  (12).  Dizemos  que  as  temperaturas  para  as  quais  essa  aproximação  é

aceitável estão no “Regime de altas temperaturas”.

exp[m ℏω0

k BT ]≈1+
m ℏω0

k BT
; ∑

s=−I

I

exp
s ℏω0

k BT
≈2 I +1                             (12)

 O  operador  densidade  e  suas  populações  no  equilíbrio  térmico  e  no  regime  de  altas

temperaturas serão dados por, respectivamente[2,3]:

ρeq=( 1
2 I+1)[1+( ℏω0

k BT ) I z] ; [ ρeq ]mm=
1

2 I+1 [1+( ℏω0

k BT
m)]; [ ρeq]mn(m≠ n)=0       (13)

É possível ver que,  para o equilíbrio,  existem populações que são constantes para todos os

níveis  de  energia.  Isso  sugere  que  a  matriz  densidade  pode  ser  escrita  da  forma

ρeq=
1

2 I+1
(1+ε Δρeq) , com ε=

ℏω0

k BT
. Onde Δρeq  é a perturbação nas populações causada

pela aplicação do campo magnético B0  .Note que, partindo do equilíbrio, a ação de um operador

de evolução unitário nos fornecerá:

U ρeqU
†= 1

2 I +1
(U U †+εU ΔρeqU

†)= 1
2 I+1

(1+εU ΔρeqU
†)               (14)

Ou seja, o termo do operador densidade proporcional à identidade permanece inalterado. Para o

âmbito da RMN a grandeza com a qual trabalharemos será a magnetização, por isso é relevante a

utilização o operador densidade para calculá-la :

M x , y , z=Tr ( ρ μ x , y , z)=γ ℏTr ( ρ I x , y , z)=
1

2 I+1
[Tr (I x , y , z)+ε Tr (Δρeq I x , y , z)]= 1

2 I+1
Tr (Δρeq I x , y , z)

(15)

Como os operadores de momento angular sempre tem traço nulo, o termo da matriz densidade

proporcional  à  identidade  não  contribuirá  para  a  magnetização.  Esses  fatos  destacados  acima

justificam trabalharmos apenas com o termo da perturbação da matriz densidade ( ε Δρeq ). Desta

forma, sempre que for feito uso do operador densidade (ρ) estaremos, à rigor, nos referindo na

verdade  a  ε Δρeq (Como  geralmente  ocorre  com  trabalhos  na  área  de  RMN).  Com  isso,  o
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operador densidade será  dado simplesmente pelo termo proporcional a I z , sendo então escrito

por ρeq=ε I z .

Uma magnetização em uma direção arbitrária no estado de equilíbrio térmico será dada por:

M j=Tr ( ρ μ)=Tr (ε I z γω0 I j)=ε γ ω0Tr ( I z I j)                                 (16)

Logo, no estado de equilíbrio térmico as magnetizações transversais ( I j=I x , y ) são nulas e

somente há magnetizações longitudinais ( I z ). Imaginemos um cenário hipotético semelhante,

mas com ρeq proporcional à I x  ou I y . É possível ver que a equação (16) correspondente

nos diria haver apenas magnetização em x  e em y , respectivamente. Isso mostra que sempre

que obtivermos o valor do operador densidade  proporcional a um operador de momento angular, o

operador pode ser interpretado como magnetização naquele estado.

A manipulação da magnetização da amostra em RMN se dá através da aplicação do que

chamamos de “Pulsos de Radiofrequência”. Tais pulsos são campos magnéticos perpendiculares a

B0  dependentes do tempo dados por[2,3]:

BRF (t)=2 BRF cos (ωRF t)ϕ̂                                               (17)

Onde ϕ̂ é um vetor na direção do pulso aplicado e ωRF  é a frequência angular do campo.

Podemos expandir o cosseno na formula (17) como uma soma de exponenciais complexas, isso

resultará em dois campos magnéticos rotativos em dois sentidos opostos. No entanto somente um

desses campos entrará em ressonância com o spin de fato (chamado de “campo ressonante”) e o

outro  se  manterá  completamente  fora  da ressonância  (chamado de “campo contrarressonante”).

Podemos considerar apenas o termo ressonante do campo no Hamiltoniano, que poderá então ser

escrito como [2,3]:

H RF (t )=−ℏ γ BRF I ϕ e
iωRF t⇒H=H Z+H RF                                  (18)

Onde  I ϕ é o operador de momento angular na direção do  campo aplicado. Para facilitar a

descrição do sistema é conveniente  considerar  o  operador  densidade,  o  Hamiltoniano total  e  a

equação de Liouville-Von Neumman (Equação 6) em um referencial girante com frequência igual à

frequência  do  campo magnético  aplicado.  A  transformação  do  Hamiltoniano,  bem como  a  do

operador densidade, pode ser realizada atuando um operador de rotação nestes [2,3]. Desta forma

obtém-se um Hamiltoniano girante dado por:

H eff=−ℏ(ω0−ωRF )I z−ℏ γ BRF I ϕ                                       (19)
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Da equação de Liouvile-Von Neumman podemos escrever:

dρ
dt

= i
ℏ [ ρ ,−ℏ(ω0−ωRF) I z−ℏ γ BRF I ϕ ]                                  (20)

Onde ρ  agora será o operador densidade no referencial girante. Ao selecionarmos a frequência

ωRF  do campo aplicado como sendo o mais próxima possível da frequência ω0 de Larmor, o

termo do Hamiltoniano proporcional à  I z ficará desprezível frente ao outro termo (em geral o

offset  de  frequência  conseguido  experimentalmente  nos  permite  considerar  isso),  dessa  forma

podemos despreza-lo e reduzir a equação para:

dρ
dt

= i
ℏ [ ρ ,ℏ γ BRF I ϕ ]                                                     (21)

A solução desta equação é dada por (Equação 7),com um propagador da seguinte forma:

U=exp(−i H t /ℏ)=exp (−i [ℏ γ BRF I ϕ ] t /ℏ)=exp (−i γ BRF I ϕ t )

Ou seja, obtemos um operador de rotação em torno da direção  I ϕ [2,3]. Isso demonstra o

efeito dos pulsos de radiofrequência, que consiste em rotacionar o sistema em torno da direção do

campo aplicado. O tempo no argumento da exponencial  evidencia que o ângulo de rotação da

magnetização está diretamente relacionado à duração temporal do pulso.

1.2 INTERAÇÃO DIPOLAR

A interação dipolar entre os núcleos é, como o próprio nome já diz, nada mais que uma

interação  entre  dipolos.  Dado  o  Hamiltoniano  Zeeman  de  um  núcleo  isolado  (Equação  2),  a

interação dipolar somará mais termos nesse hamiltoniano, de forma a torná-lo:

H nuclear=H z+H D                                                     (22)

Onde  H D pode ser encontrado considerando a energia de interação clássica entre dois

dipolos magnéticos [1]:

 U=
μ0

4π [ μ1⋅μ2

r3 −3
(μ1⋅r)(μ2⋅r )

r 5 ]                                         (23)

Com μ1 e μ2 sendo os dois momentos de dipolo magnético, e r sendo o vetor que vai

de um ao outro (vetor internuclear). O Hamiltoniano clássico de dois dipolos interagentes será dado

exatamente pela equação acima.

Tomando o  equivalente  quântico  dos  momentos  magnéticos  ( μ1=γ ℏ I 1 ; μ2=γ ℏ I 2 )

[2,3] e sendo os operadores de spin  I 1 e I 2 ilustrados na figura (2a) juntamente com o vetor
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internuclear r ,  Podemos  substituir  tais  relações  no  Hamiltoniano  clássico  e  encontrar  o

Hamiltoniano quântico para a interação dipolar ( H D ):

H D=−
μ0

4π
γ I γS ℏ

2[ I 1⋅I 2

r3 −3
( I 1⋅r)( I 2⋅r )

r5 ]                                 (24)

Figura 2: a) Ilustração dos operadores de momento angular e do vetor internuclear na interação
dipolar. b) Definição das coordenadas esféricas utilizadas no problema.

A partir do arranjo apresentado na Figura (2b)( lembrando que B0 está na direção ẑ ) pode

ser realizada uma expansão em coordenadas esféricas de H D que resulta em uma soma de termos

de A a F dependentes das coordenadas. Esses termos são conhecidos como 'Alfabeto dipolar'  e

podem ser encontrados com mais detalhes na referência [1].

Para trabalharmos no referencial  girante,  o operador  rotação  R̂ z(ω0 t) deve ser  atuado no

Hamiltoniano geral. Os termos de Hamiltoniano Zeeman e alguns termos do Hamiltoniano dipolar

não tem dependência azimultal e não serão afetados. Outros termos dipolares tem tal dependência e,

ao serem atuados pelo operador rotação, tomam uma dependência também com o tempo (devido ao

ângulo de rotação que depende de t ) de modo que ao tomarmos a média temporal eles se anulam.

O Hamiltoniano dipolar no referencial girante então será dado por [1]:

H̄ D
(0)=−ωDℏ[ I 1 z I 2 z−

1
4
(I 1+ I 2-+ I 1- I 2+)]=−ωD ℏ [A+B ]                             (25)

Com ωD  sendo a frequência de acoplamento dipolar, definida por:

ωD≝ωD(θ )=
μ0

4 π r3 γI γS ℏ
1
2

(3 cos2θ−1)=2π D
1
2
(3cos2θ−1)                    (26)

Com A  e  B  definidos  por  A= I 1+ I 2- e B=−1
4

( I 1+ I 2-+ I 1- I 2+) e  com D sendo a

chamada “amplitude de acoplamento dipolar”.
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No presente estudo trabalharemos com o acoplamento entre dois núcleos de 1H, que é um caso

de acoplamento dipolar homonuclear. Para mostrar o efeito da interação dipolar homonuclear no

sistema  de  spins,  façamos  uma  pequena  discussão  tomando ωD(θ) como  constante,  isto  é,

considerando uma dada distância e orientação angular no espaço.

Podemos  ver  que  A  é  diagonal  na  base  de  autoestados  do  Hamiltoniano  Zeeman  (

|αα> , | ββ > , |αβ > ,| βα> ),  o  que  implica  que  A  e  H z  compartilham  dos  mesmos

autovetores. Com isso, se aplicarmos A em cada um dos estados de H z teremos uma variação em

suas energias tal que a nova energia do j-ésimo estado pode ser encontrada através da teoria de

perturbação independente do tempo ( uma vez que a intensidade da interação dipolar costuma ser

bem menor que a da interação Zeeman) da seguinte forma: 

E j=E j0+∑
i=0

n

<ψ j |H D |ψ i >                                                   (27)

A figura (3a) ilustra as novas energias obtidas pelo efeito do termo A do Hamiltoniano Dipolar.

Figura 3: a) Representação do efeito do termo “A” nos níveis de energia de um par de spins. b)
Padrão de pó da interação dipolar.                                                                                                         

Agora, considerando uma situação mais realista de um sólido policistalino ou amorfo, os vetores

internucleares terão orientações aleatórias. Neste caso, a intensidade associada a cada orientação

θ é obtida pelo elemento de ângulo sólido considerando os vetores distribuidos na superficie de

uma esfera. Dito isto, podemos quantificar a intensidade do sinal ( S (ωD (θ)) ) para cada faixa

infinitesimal de frequência (em módulo |dωD| ) igualando ao valor do ângulo sólido ( P (θ ,φ) )

para cada faixa infinitesimal de ângulo (em módulo |θ| ):

S (ωD (θ))|dωD|=P (θ ,φ)|dθ|⇒ S (ω (θ))=P (θ ,φ)/
dωD

dθ
                     (28)
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Sabendo da relação de ωD  com θ  (Equação 26) e do valor do ângulo sólido em função de

θ  ( ∝sen (θ) para coordenadas esféricas) podemos efetuar o cálculo da equação (28) e obter o

padrão que, a menos de constantes multiplicativas, será ( no domínio θ∈[ 0 ,90 ° [  )[2]:

S (ωD (θ))∝sen θ /|sen(θ )cos(θ )|= 1
|cosθ|

                                  (29)

Podemos  então  obter  a  curva  da  intensidade  do  sinal  gerada  por  cada  um dos  valores  de

acoplamento dipolar através da equação (29). Há uma intensidade máxima que diverge em 90° e

decai até um mínimo em 0°. No entanto, precisamos lembrar que o termo A do acoplamento dipolar

realiza uma separação das frequências de ressonância em dois valores, por isso existe um padrão

(equação  29)  para  cada  uma  das  duas  novas  frequências  e  o  padrão  resultante  será  uma

superposição desses dois padrões, resultando no conhecido padrão de Pake (ou padrão de pó) [2].

Como uma ultima consideração, é preciso levar em conta o efeito da relaxação transversal, que

faz com que o sinal de um dado spin decaia com o tempo. No domínio da frequência isso pode ser

levado  em  conta  considerando  que  o  sinal  de  cada  par  de  spins  não  ocorra  com  uma  única

frequência,  mas com uma distribuição  simétrica de  frequências  em torno da  frequência  média.

Assim podemos considerar esse fenômeno no nosso padrão (equação 29) fazendo a convolução de

uma gaussiana com o padrão de pó, o que resultará numa curva com aspecto demonstrado na figura

(3b)(Para uma gaussiana com média 0 e desvio padrão 0.05).

O efeito  do termo B por  sua vez é  de misturar  os estados  |αβ > e | βα> ,  gerando um

fenômeno que faz com que a interação não seja somente entre dois spins, mas se estenda a vários

( cenário de multi-spin). O espectro resultante será uma soma de espectros do tipo Pake mas com

uma  distribuição  aleatória  de  frequências  dipolares.  O  resultado  é  um  espectro  com  formato

aproximadamente gaussiano cujo desvio padrão é  a  frequência dipolar  média do sistema,  mais

informações em  [2,3].

Para compreendermos o efeito do acoplamento dipolar no caso da RMN no domínio do tempo,

fazemos a transformada inversa de Fourier do sinal obtido. Como os efeitos de cenário de multi-

spin produzem uma curva gaussiana, a transformada inversa de fourier resulta no domínio do tempo

em um padrão também gaussiano. No entanto, quanto maior a largura da gaussiana no domínio da

frequência, menor a largura da gaussiana no domínio do tempo, ou seja, um acoplamento dipolar
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maior (que define uma gaussiana mais larga no domínio da frequência) causa um decaimento mais

rápido do sinal no domínio do tempo.

Há casos em que algumas (ou todas) as cadeias moleculares de uma amostra possuem alto grau

de  mobilidade.  Se  a  frequência  dos  movimentos  moleculares  for  maior  que  a  magnitude  do

acoplamento dipolar, a aleatoriedade dos movimentos nesses casos fará com que os acoplamentos

dipolares entre spins vizinhos sejam promediados a zero na escala de detecção da RMN. No entanto

se essas cadeias moleculares possuírem alguns pontos com restrições de mobilidade, há a formação

de  acoplamentos  dipolares  entre  spins  localizados  nesses  pontos.  Assim,  observamos  um

“Acoplamento Dipolar Residual”, cuja amplitude será denotada por Dres pode ser calculada da

mesma forma que D (presente na equação 26), mas a distância  r que deve ser considerada

agora será a distância média entre tais pontos de restrição de mobilidade, a denotaremos por R̄ . 

1.3 EXPERIMENTO DE 1H de Duplo Quantum no domínio do tempo (1H RMNDQTD)

Uma das características da interação dipolar é que o seu efeito combinado com pulsos de RF

devidamente construídos pode gerar coerências de ordem maior que 1. Esse é o caso da sequência

conhecida como Baum e Pines [6], ilustrada na figura (4). Ela é composta de dois ciclos onde cada

um possui dois pulsos de 90° intercalados por um de 180°. Entre os pulsos o sistema é deixado

evoluir sobre a ação da interação dipolar pelos intervalos τ DQ . Embora os ciclos sejam idênticos

possuem funções diferentes: O primeiro cria as coerências de duplo quantum e o segundo faz a

reconversão  de  suas  amplitudes  para  a  magnetização.  O  ultimo  pulso  de  90°  direciona  a

magnetização para o plano das bobinas e permite enfim a detecção do sinal.

Figura 4: Representação da sequência de Duplo quantum de Baum e Pines [6].

Usaremo-nos dos  resultados  que  a  referência  [7]  obteve ao fazer  o  cálculo do efeito  dessa

sequência de pulsos num par de spins sob influência do acoplamento dipolar. Tal desenvolvimento
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é realizado considerando apenas o termo A do Hamiltoniano (Equação 25), uma vez que somente

este tem papel na formação do sinal.

O valor da matriz densidade após o ciclo de excitação (no ponto G da figura 4) é dado por:

 ρ=( I 1 z+ I 2 z)cos(ωD

2
τDQ)−(2 I 1 x I 2 y+2 I 1 y I 2 x) sen(ωD

2
τDQ)                  (30)

Tomando  os  valores  conhecidos  matriciais  para  os  operadores  de  momento  angular  e

substituindo na expressão acima, temos como resultado:

ρ=(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)2cos(ωD

2
τDQ)−(

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

)4 sen(ωD

2
τ DQ)                 (31)

É possível observar no segundo termo da equação (31) o aparecimento de valores não nulos

nas extremidades da diagonal  secundária da matriz  densidade,  o  que evidencia a  formação das

coerências de duplo quantum (DQ). A sua dependência com ωD  demonstra o papel fundamental

da interação dipolar em tal resultado, indicando que o valor das coerências zeriaria na ausência de

tal  interação.  O  primeiro  termo  só  tem  elementos  diagonais  (fazendo  dele  uma  magnetização

longitudinal) e logo representa as populações dos spins. O efeito da aplicação da segunda parte da

sequencia  de  pulsos  depende  da  fase φ dos  pulsos  de  90°.  Porém,  a  combinação  de  sinais

adquiridos com as fases φ= x ,− y ,− x , x , pode ser feita de modo que a magnetização resultante

só dependa dos termos DQ e MQ. Após a aplicação desse procedimento, conhecido como ciclagem

de fases no jargão da RMN,  é possível escrever o operador densidade associado a cada um dos

termos como:

ρMQ=( I 1 y+ I 2 y)cos2(ωD

2
τ DQ) ; ρDQ=( I 1 y+ I 2 y) sen

2(ωD

2
τ DQ)                 (32)

ρMQ=(
0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

)2cos2(ωD

2
τ DQ) ; ρDQ=(

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

)2 sen2(ωD

2
τ DQ)   (33)

Onde ρDQ  e ρMQ  indicam somente os termos dos operadores densidade correspondentes a

magnetização detectável ( Δm=±1 ) ao final da sequência de pulsos. Note que os sub índices MQ

e DQ significam que são oriundos dos termos de DQ e MQ da equação (31). 

A dedução cujos resultados culminam nas equações (33) ainda é demasiadamente simples, uma

vez que a evolução temporal foi feita considerando-se uma única orientação dos pares de spins em

acoplamento  dipolar.  Para  obter  uma  relação  que  melhor  descreva  a  curva  que  será  obtida
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experimentalmente será preciso considerar as contribuições de todas as orientações. O sinal total

pode ser obtido somando as contribuições (dadas pela Equação 33) de cada orientação e fazendo

uso do padrão de pó para obter a amplitude de cada frequência, ou seja:

 I MQ=∑
i=0

N

P icos2(ωD
(i )

2
τ DQ) ; I DQ=∑

i=0

N

P i sen
2(ωD

(i)

2
τ DQ)                      (34)

Onde  i  percorre  as  frequências  de  acoplamento  dipolar,  e  P i é  a  intensidade  do  sinal

atribuida a cada uma delas pelo padrão de pó. Foi feita uma abordagem numérica para realizar esta

soma, utilizando diversos valores aleatórios para as frequências. As figura (5a) e (5b) mostram o

aspecto  das  curvas  para  N=6  e  N=30  frequências  somadas,  respectivamente.  As  curvas  foram

normalizadas pelo valor de I MQ(0) . 

Figura 5: a) Gráfico do sinal obtido para 6 termos somados. b) Gráfico do sinal obtido para 30
termos somados. c) Dependencia do sinal de DQ com a frequência de acoplamento.

Com N=30 termos somados é possível ver que ambos os sinais ( I DQ e I MQ ) tendem para o

valor de 0,5 para tempos longos e estão relacionados com o valor da frequência de acoplamento

dipolar, uma vez que sua inclinação inicial aumenta com o aumento de ωD médio, como mostra a

figura (5c) para a curva I DQ . 

Para construir um modelo mais realista precisamos considerar a relaxação dos spins, que se dá

através de um decaimento exponencial do tipo  e−t /T2  [1-3]. Acrescentando tal decaimento nas

fórmulas (34) obtemos:

I MQ=e
−t /T 2∑

i=0

N

P i cos2(ωD
(i )

2
τ DQ) ; I DQ=e

−t /T 2∑
i=0

N

P i sen
2(ωD

(i )

2
τ DQ)             (35)

Ao observar o gráfico obtido na figura (6a)(para T 2=2ms ), é possível perceber que a curva

I DQ  ainda possui a propriedade da inclinação inicial depender da frequência dipolar. Vemos que
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a ordenada do ponto de máximo de I DQ também depende de ωD , o que facilita uma primeira

análise visual para comparação de acoplamento dipolar médio entre amostras.

Como último incremento no modelo, vamos considerar uma fração arbitrária da amostra, a

qual chamaremos de F m , como constituida de cadeias moleculares móveis que não produzem

coerências de duplo quantum (as demais cadeias da amostra serão chamadas de F r , de modo que

F m+F r=1 ). O sinal proveniente das cadeias móveis apenas se deve à relaxação das mesmas,

portanto deve decair exponencialmente com um tempo T 2mob de relaxação, resultando num termo

F m e
−t /T 2 mob a ser acrescentado na curva de MQ. Deste modo obtemos o sinal que conhecemos

como “intensidade de referência ( I Ref )”[4,5]:

I Ref=F r e
−t /T 2∑

i=0

N

P icos2(ωD
(i )

2
τ DQ)+F m e

−t /T 2mob ; I DQ=F r e
−t /T 2∑

i=0

N

P i sen
2(ωD

(i)

2
τ DQ) (36)

O gráfico  obtido  das  expressões  acima  na  figura  (6b)  (  Para T 2=2ms e T 2mob=20ms )

representa o sinal  que esperamos obter  em laboratório.  Observando-o é  possível  notar  que um

aumento na fração de cadeias livres faz a curva de Referência decair mais lentamente e o sinal de

Duplo Quantum ser atenuado. 

Entretanto,  o  interesse experimental  costuma ser obter  a frequência de acoplamento dipolar

ωD . Para fazer isso é conveniente que, de posse de um sinal experimental como o da figura (6b),

possamos obter curvas como as da figura (5c), isso é interessante porque a inclinação inicial em tais

curvas, em especial a de I DQ , está relacionada com o valor da frequência de acoplamento. Para

esse fim apresentaremos um procedimento frequentemente utilizado nessa situação.

Figura 6: a) Gráfico do sinal esperado de Duplo quantum com relaxação b) Gráfico do sinal
esperado de duplo quantum com relaxação e com fração de cadeias móveis.

O primeiro a se fazer é retirar a fração de cadeias móveis, que não contribui no sinal de DQ.

Para  isso  basta  realizar  um ajuste  exponencial  na  curva  que  resulta  da  subtração de I ref por
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I DQ em  seus  pontos  finais  (onde  as  curvas  de  Duplo  e  Multi  Quantum  não  teriam  sinal

significativo) e obter F m  e T 2mob . Depois,  subtrai-se F me
−t /T 2 mob da Referência, obtendo a

curva de Multi Quantum.

Ao final, dividimos a curva de Duplo Quantum pela soma dela mesma com a curva de Multi

Quantum. O que resultará em uma curva semelhante à da figura (5c), como mostrado abaixo:

I DQ
I DQ+ I MQ

=
e
−t /T 2∑

i=0

N

P i sen
2(ωD

(i )

2
τDQ)

e−t /T2[∑
i=0

N

Pi sen
2(ωD

(i)

2
τ DQ)+∑

i=0

N

P i cos2(ωD
(i )

2
τ DQ)]

=I DQ
(Norm)              (37)

Esse  processo  é  muito  utilizado  para  a  obtenção  do  acoplamento  dipolar  através  de

experimentos de Duplo Quantum, sendo proposto por Saalwächter e colaboradores [4]. 

2 MATERIAIS E MÉTODOS

Para  o  experimento  foi  utilizado um espectrômetro  Bruker  Minispec.  As  medidas  foram todas

realizadas através da sequência Baum e Pines , utilizando os seguintes parâmetros [6]: tempo de

pulso: 2,35μs; Recicle Delay = 2s; Incremento de 2 τDQ : 0,1 ms

As amostras de XLPE e HDPE são amostras obtidas de dutos para transporte de água, que são

utilizados  em  diversas  aplicações  comerciais.  Para  o  experimento  comparativo  de  DQ  foram

aquecidas a 150°C antes de realizar o experimento, esperando 10 minutos após a amostra atingir a

temperatura para que se tenha uma distribuição homogênea de temperatura. O sinal de RMN obtido

para os  polímeros  nessa  temperatura  indica que não há  componentes  sólidos  (não é  observado

decaimento  rápido  e  gaussiano).  Assim,  nessa  temperatura  espera-se  que  as  únicas  restrições

dinâmicas existentes sejam devido a emaranhamento e/ou reticulação das cadeias dos polímeros.

Para o caso das amostras do tubo de XLPE foi realizado o mesmo procedimento.

3 RESULTADOS

Quando trata-se de fisco-química envolvendo polímeros, é impescindível levar em conta não só

a  composição  química  das  cadeias  e  sua  movimentação  individual  no  espaço,  mas  também a

interação  de  umas  com  as  outras.  Há  um  intesse  em  particular  por  emaranhamento  e
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entrecruzamento,  que  são  dois  tipos  de  restrições  de  mobilidade  capazes  de  afetar  diversas

propriedades macroscópicas do material. Isso justifica a importância de estudos nessa área  para os

mais diversos tipos de industria que trabalham com polímeros.

A figura (7a) ilustra a disposição de cadeias moleculares em um polímero. O primeiro tipo de

restrição  de  mobilidade  (ilustrado  em  amarelo)  trata-se  de  uma  restrição  que  se  faz  e  desfaz

aleatóriamente no tempo, a qual chamamos de emaranhamento. O segundo tipo (em azul) se refere

a  ligações  químicas  entre  as  cadeias,  que  são  restrições  fixas  e  podem  ser  causados  tanto

propositalmente (para, por exemplo, oferecer rigidez mecânica ao material) quanto naturalmente

(podendo inclusive degradar o polímero, a depender da sua utilidade específica). Chamamos tal

restrição de entrecruzamento[8].

Figura 7: a) Representação de entrecruzamento e emaranhamento de cadeias num polímero.
b) Representação da molécula de polietileno e da disposição das cadeias no XLPE e HDPE.

No presente  experimento,  serão  estudados dois  polímeros:  Polietileno Reticulado (XLPE)  e

Polietileno de alta densidade (HDPE). Como mostra a figura (7b), ambos os polímeros possuem

formulas moleculares idênticas, no entanto o XLPE difere do HDPE por possuir reticularização em

suas cadeias, o que faz da comparação entre os sinais das duas amostras um excelente exemplo para

ilustrar  o  funcionamento  da  sequência  de  duplo  quantum  [8].  Para  realizar  o  experimento  é

necessário aquecer os polímeros até temperaturas superiores à fusão da fase cristalina, a fim de que

todas as cadeias se tornem móveis e só haja acoplamentos dipolares residuais ( Dres ) na amostra.

Sabendo  que  os  acoplamentos  são  oriundos  dos  spins  nucleares  dos  pontos  com  restrição  de

mobilidade (emaranhamento e entrecruzamento), o  Dres  será então diretamente proporcional à

densidade  de  ligação cruzada  da  amostra,  uma vez que  é  proporcional  ao inverso do  cubo da

distância média entre os spins.
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Como uma ilustração do funcionamento da sequência, foi feito o experimento de DQ para as

amostras de HDPE e XLPE a 150°C,  o sinal obtido se encontra na figura (8a). É possível observar

que o XLPE apresenta uma inclinação incial mais acentuada, o que demonstra sua densidade de

ligação cruzada como sendo maior que a do HDPE. Para obter tais dados de maneira mais clara, foi

aplicado o procedimento destacado na seção do experimento de DQ para ambos os polímeros.

Por exemplo, para o XLPE, primeiramente subtraimos a curva de referência da curva de Duplo

Quantum  e  obtemos  a  curva  da  imagem  (8b),  onde  está  também  representado  o  ajuste

exponencialfeito. Com o uso da Equação (37), obtemos finalmente a curva de duplo quantum livre

de outros componentes. O mesmo processamento foi aplicado para o HDPE. As curvas puras de

duplo quantum dispostas na figura (8c) são consistentes com o fato do XLPE  possuir  reticulação

química induzida, e logo ter um sinal de Duplo Quantum com uma inclinação incial maior que

aquela presente no gráfico do HDPE. Entretanto, apesar de não possuir entrecruzamento induzido

químicamente, o HDPE possui uma inclinação não nula na figura (8c), indicando a formação de

coerências de duplo quantum. Isso acontece porque suas cadeias moleculares são longas e lisas, o

que  favorece  a  formação  de  emaranhamento  entre  elas  e  consequentemente  contribui  no

acoplamento dipolar residual médio da amostra.                                                                               

                             a)                                            b)                                                 c)                         
 Figura  8:  a)  Curvas  experimentais  obtidas  de  duplo  quantum  de  XLPE  e  HDPE.  b)  Ajuste
exponencial de frações de cadeias móveis do XLPE. c) Curva de duplo quantum de XLPE e HDPE.

Para ilustrar a sensibilidade do procedimento foi utilizada a própria amostra de XLPE, trata-se

de um tubo cilíndico normalmente usado em tubulações de água. Foi feito um experimento de DQ

para diferentes secções radiais da amostra. Tais secções estão identificadas como Interior (parte de

dentro  do duto),  Meio  2 (interna  mais  próxima ao interior),  Meio  1 (interna  mais  próxima ao

exterior) e Exterior (parte externa do duto), como mostra a figura (9a). As amostras eram cilíndros

de 0.5mm de diâmetro e espessura aproximada de 0.2mm. 
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                   a)                                            b)                                                    c)
Figura 9: a) Foto da amostra e representação das divisões feitas para o estudo. b) Duplo Quantum de
XLPE. c) Curva de duplo quantum de XLPE.

No gráfico da figura (9b) é interessante observar como houve uma alteração gradativa nos sinais

obtidos  de   referência  e  de  Duplo Quantum,  demonstrando  o  poder   da  técnica  em  identificar

mudanças na reticularização da amostra. Observa-se a diminuição da intensidade de referência para

τ DQ longos, que está relacionada à diminuição das cadeias com alta mobilidade ao longo do perfil

radial  das  amostras.  Além  disso, ao  aplicar  o  procedimento  (figura  9c),  fica  claro  como  o

acoplamento dipolar do tubo possui uma dependência com o raio. Uma hipótese para explicar tal

fenômeno é que a densidade de ligação cruzada não uniforme pode ser originária do processo de

fabricação do tubo. O processo usual de fabricação desses dutos é denominado de extrusão. Nesse

processo as partículas dos polímeros são fundidas e então moldadas na forma de duto. No entanto,

não é incomum se obter um gradiente radial de temperatura, o que pode tanto afetar a reticulação

(entrecruzamento) das cadeias como a quantidade de cadeias livres (com alta mobilidade). Supondo

que a temperatura influencia na formação das ligações cruzadas e que ela não é uniforme, mas fica

disposta em um gradiente radial no tubo, é possível explicar tanto a variação do perfil de ligação

cruzada, como a diminuição da fração de cadeias livres observada nos experimentos de 1H DQ.

4 CONCLUSÕES E CONSIDERAÇÕES FINAIS

Na presente monografia, apresentamos uma descrição dos princípios básicos que fundamentam

o uso  da  técnica  de  RMN de duplo  quantum de  1H no estudo de  entrecruzamento  de  cadeias

poliméricas. Apresentamos os resultados da evolução temporal do operador densidade mediante a

aplicação da sequência de duplo quantum na presença de interação dipolar e os utilizamos para

compreender  e  analisar  o  sinal  experimental  obtido.  Foi  mostrado  o  fundamento  que  permite

entender  o  processamento  usualmente  utilizado  para  obter  curvas  normalizadas  que  contém
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sobretudo informações sobre os acoplamentos dipolares residuais, esclarecendo o significado das

operações que  fazem parte  do procedimento.  Posteriormente,  a  ilustração do funcionamento da

técnica se deu por meio de uma comparação entre os sinais de duplo quantum de dois polietilenos

comerciais com estruturas químicas similares, Cross-linked polyethylene (XLPE) e High-density

polyethylene  (HDPE),  porém  com  e  sem  a  presença  de  reticularização,  respectivamente.

Observamos que o sinal de duplo quantum normalizado para o XLPE  demonstrou possuir uma

inclinação maior que o sinal do HDPE, acusando a existência de reticularização em suas cadeias

moleculares assim como era esperado. A técnica também foi aplicada para amostras de um duto de

XLPE coletadas ao longo de seu diâmetro.  Verificamos que o duto possuia uma densidade de

ligação  cruzada  dependente  do  raio,  o  que  chegamos  a  conclusão  que  pode  ser  originário  do

gradiente de temperatura que pode estar presente no seu método de fabricação.
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