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RESUMO

Neste trabalho de conclusdo de curso foram realizados estudos basicos sobre principios de RMN
visando o entendimento da técnica de RMN de 'H Duplo Quantum no dominio do tempo (1H
RMNDQ-DT), amplamente utilizada para avaliagdo de intercruzamento de cadeias poliméricas
organicas. Inicialmente, foi desenvolvido um estudo dos principios quanticos da RMN
(Ressonancia magnética nuclear), englobando as interagdes do spin nuclear com campos
magnéticos externos (efeito Zeeman nuclear) e internos, com €nfase na interacao dipolar magnética,
fundamental para a técnica de |lH RMNDQ-DT. O formalismo do operador densidade foi utilizado
para compreender o efeito de pulsos de radiofrequéncia nos spins nucleares, a evolugdo sobre a agado
da interacdo dipolar e a leitura de sinais de RMN. Ap0os isso, abordou-se a descricdo do experimento
basico de duplo quantum e a aplicacdo deste no estudo do intercruzamento de cadeias poliméricas.
Como ilustracdo do funcionamento da técnica, esta foi aplicada para comparar as estruturas de
ligagdes cruzadas de dois polietilenos: Polietileno entrecruzado (XLPE — do inglés Cross-linked
polyethylene) e Polietileno de alta densidade (HDPE — do inglés High-density polyethylene).
Posteriormente, como uma aplicacdo, a técnica também foi utilizada no estudo de reticulagdes ndo

uniformes numa amostra de XLPE de um duto polimérico.equagdes.

Palavras-chave: TD-RMN. Coeréncias de Duplo Quantum. Intercruzamento

1 INTRODUCAO

1.1 PRINCIiPIOS DA RMN

Uma das grandezas fisicas mais importantes para o presente estudo serd o spin, uma vez que sua
existéncia possibilita o acontecimento das interagdes que serdo descritas aqui € que sdo
imperscindiveis ndo so para a ressonancia magnética nuclear (RMN), mas para diversas outras areas
da fisica. No nosso caso trabalharemos com o spin nuclear, isto €, o spin dos nucleos dos dtomos de

uma amostra. O nucleo usado sera o hidrogénio ('H).

Uma particula com spin tem um momento magnético associado a ela. E possivel relacionar o
operador momento magnético ( u ) gerado com o operador de momento angular da particula (

I ) da seguinte forma [2,3]:



u=yhl (1)

Ao colocarmos uma particula com momento magnético imersa num campo magnético constante

ue chamaremos de B ocorre uma interacdo denominada de “Interacao Zeeman Nuclear”.
0 )

Essa intera¢ao possui um Hamiltoniano na forma (tomando o campo como B=B8,z )[2,3]:

Hz::u.B=_yhBOIz:_ha)OIz (2)

Onde , ¢ uma frequéncia angular que chamamos de frequéncia de Larmor. Nesse cenario o

operador Hamiltoniano s6 possui dois autoestados de energia (uma vez que estamos nos tratando

do nucleo de 'H, que possui spin % ). Tais estados sdo dados pelos autovetores do operador 1,

(%2e—"%), que estdo ilustradas na figura (1).
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Figura 1: Representacao dos niveis de energia da interagdo Zeeman

Dessa forma ¢ possivel estudar o comportamento de um Unico spin sob ndo s6 a interacao
Zeeman, mas também sob as outras interagdes que serdo descritas aqui. No entanto € preciso
considerar que, se tratando de grandes quantidades de spins, ndo podemos mais descrever o sistema
olhando apenas para as fungdes de estado dos spins em particular. Precisamos agora descrevé-lo por
um objeto matematico que nos permita trabalhar com ensembles . Para esse fim sera utilizado o
operador que chamamos de “Operador densidade”, que, assim como a fungdo de estado, contém
toda a informacdo contida em um sistema quantico, mas pode também levar em conta o carater

estatistico do sistema.

O operador densidade ¢ definido de forma a levar em conta as médias estatisticas e quanticas do

cenario em questdo. Podemos escrevé-lo como[1-3]:

N _
p= 2 ey <y 3)

i, j=1



Onde ¢; e ¢, sdo os coeficientes da expansdo do vetor de estado |y > em termos dos

. * r . ’ .
vetores da base |y,> e |y ;= » respectivamente. O termo ¢,c; €uma media estatistica para

toda a amostra do produto destes coeficientes.

O traco do produto do operador densidade com qualquer outro operador representa a média
estatistica do observavel associado a esse operador. Isso acontece porque a soma dos elementos da
diagonal principal ¢ uma soma das médias dos modulos quadrados dos coeficientes das fungdes de
estado ( que s3o as denominadas “populagdes” de cada estado) . Somando popula¢des normalizadas

temos entdo a média estatistica da grandeza [2,3]:
(A)=Tr{pd} 4)

Para um exemplo de um sistema de 1 e 2 spins, respectivamente, a matriz associada ao operador

densidade sera:

2 * * *
|cl| Ci1Cy C1C3 C1Cy

|c |2 ¢ ¢ c,c, |c |2 c,cy €y,
: 1 1%2 :
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ciy €4y cyc ey
Os termos na diagonal principal sdo, como dito anteriormente, as chamadas populagdes. Os
termos fora da diagonal principal sdo as “coeréncias” [2,3], que representam basicamente
probabilidades de transi¢ao entre os estados. As coeréncias sdo nomeadas de acordo com a variagdo
/4 ~ M S M 2\ M ~ * . .
no nimero quantico magnético associada a transi¢cdo. O elemento c¢,c, da matriz para 1 spin da
expressao (5), por exemplo, apresenta uma diferenca de =1 no nimero quantico magnético dos
estados |1/2,—1/2> e |1/2,1/2> |, por isso ele é chamado de “coeréncia de Single-
’ * . . ~ .
Quantum”. J4 elemento c¢,c, da matriz para 2 spins da expressao (5) apresenta uma diferenca de
+2 , sendo chamado de “coeréncia de Duplo-Quantum”. A nomenclatura segue esta logica para
coeréncias de ordem maior que podem ser encontradas em matrizes densidade envolvendo mais

spins, de modo geral em um sistema de n spins 'z exsitirdo coeréncias até n-Quantum.

A evolucao temporal do operador densidade ¢ dada através da equagdo de Liouville-Von Neumann,

que pode ser obtida da equacdo de Schrodinger [2,3]:



D= tlp.H) ©)
Onde H ¢ o Hamiltoniano do sistema. Vemos que, se o operador densidade comuta com o
Hamiltoniano, ele ¢ entdo constante no tempo. Caso o operador densidade ndo comute com o

Hamiltoniano, o resultado (para um Hamiltoniano independente do tempo) sera [2,3]:
plr)=e """ p(0)e™"=U p(0)U" ()

Com U=¢ """ sendo o chamado “Operador de evolugio temporal” ou “Propagador”.

Para considerarmos a evolucdo do sistema através de varios Hamiltonianos diferentes,
escrevemos entdo o propagador como sendo (Desde que os Hamiltonianos sejam constantes na
fracdo de tempo que estdo sendo considerados):

U= Hatdh il =it ln )

A fim de compreendermos o cenario no qual trabalharemos em ressonancia, vamos considerar a
amostra no equilibrio térmico. O operador densidade em fun¢ao do Hamiltoniano /A  sera entdo
descrito pela distribui¢do de Boltzmann-Gibbs [2,3]:

—E,lk,T
e

—~Hlk,T
e

1 —wmr_1[ 0 e T (9)

Peg— Z o EARAT _Ee ~7

m

Onde E, si30 as autoenergias do sistema, ¢ Z ¢ a funcdo particio do mesmo. Para o caso

m

da interagdo Zeeman, usando a base de autovetores de /. , as populacdes em equilibrio térmico

V4

serdo escritas como[2,3]:

emth/kET

[Pelpw=—T—"" (10)

Z eshwu/kBT

s=—1

A equagdo (10) pode ser simplificada se considerarmos os valores numéricos para as suas

exponenciais:
mho,_mhyB, (1.05%10*J5).(2.6x10"rad-s T ).(1T) __ 10°° (10
kyT kgT (1.38x 1072 J-K"). Temperatura( K ) Temperatura (K )

Vemos entdo que para a temperatura ambiente de 7~300K (Normalmente perto da qual

onde fazemos os experimentos de RMN) o expoente fica muito pequeno (da ordem de 10> ), o



que nos permite simplificar a exponencial para seu termo de primeira ordem em série de Taylor,
como feito na equacdo (12). Dizemos que as temperaturas para as quais essa aproximacao ¢

aceitavel estdo no “Regime de altas temperaturas”.

1

mhw, sho,
~1+ ; ~21+1 12
k,T S?Q,GXP ki, T (12)

mhw,
kT

exp

O operador densidade e suas populacdes no equilibrio térmico e no regime de altas

temperaturas serdo dados por, respectivamente[2,3]:

_(_1 ho,
p%_(21+1)[1+ )[Z

k,T
E possivel ver que, para o equilibrio, existem populagdes que sdo constantes para todos os

m "[peq]mn(m;tn)zo (13)

1 ho,
. 1+
» Lyl 21+1[ k, T

niveis de energia. Isso sugere que a matriz densidade pode ser escrita da forma

hw,
1+ eApeq) com &=

. A4 & a lagd
27+ 1 ( , Ko T Onde 4p,, ¢ aperturbagdo nas populagdes causada

peq

pela aplicagdo do campo magnético B, .Note que, partindo do equilibrio, a acdo de um operador

de evolucao unitario nos fornecera:

Up,U'= UU'+eU dp, U"|=o——(1+eU 4p, U’ (14)

1
27+1 27+1
Ou seja, o termo do operador densidade proporcional a identidade permanece inalterado. Para o
ambito da RMN a grandeza com a qual trabalharemos serd a magnetizagdo, por isso ¢ relevante a

utilizagdo o operador densidade para calculé-la :

J=—1
T2 I+]

Mx,y,z:Tr(plux,y,z):yhTr(pI [Tr(Ix,y,z)+8Tr(Apqux,y,z)]: Tr(Apeq]

x,y,z)

(15)

271+1

Como os operadores de momento angular sempre tem traco nulo, o termo da matriz densidade
proporcional a identidade ndo contribuird para a magnetizagdo. Esses fatos destacados acima

justificam trabalharmos apenas com o termo da perturbagdo da matriz densidade ( ¢ 4p,, ). Desta

forma, sempre que for feito uso do operador densidade (p) estaremos, a rigor, nos referindo na

verdade a ¢ 4p,, (Como geralmente ocorre com trabalhos na area de RMN). Com isso, o



operador densidade serd dado simplesmente pelo termo proporcional a /. , sendo entdo escrito

z

por p.=¢el,
Uma magnetiza¢do em uma dire¢do arbitraria no estado de equilibrio térmico sera dada por:
Mj:Tr(p,u)ZTr(elzya)olj)zeycooTr(]zlj) (16)

Logo, no estado de equilibrio térmico as magnetizagdes transversais ( /=1, ) sdo nulas e
somente ha magnetizacdes longitudinais ( /., ). Imaginemos um cenério hipotético semelhante,

mas com p, proporcionala [ ou [ .E possivel ver que a equagdo (16) correspondente
nos diria haver apenas magnetizaciloem x eem ) ,respectivamente. [sso mostra que sempre
que obtivermos o valor do operador densidade proporcional a um operador de momento angular, o

operador pode ser interpretado como magnetizacao naquele estado.

A manipulacdo da magnetizagdo da amostra em RMN se dé através da aplicacdo do que
chamamos de “Pulsos de Radiofrequéncia”. Tais pulsos sdo campos magnéticos perpendiculares a
B, dependentes do tempo dados por[2,3]:
BRF(t>:2BRFCOS(CURFt)(13 (17)
Onde & ¢ um vetor na dire¢do do pulso aplicado e w,,. ¢ a frequéncia angular do campo.
Podemos expandir o cosseno na formula (17) como uma soma de exponenciais complexas, 1sso
resultarda em dois campos magnéticos rotativos em dois sentidos opostos. No entanto somente um
desses campos entrard em ressonincia com o spin de fato (chamado de “campo ressonante”) e o
outro se mantera completamente fora da ressonancia (chamado de “campo contrarressonante”).
Podemos considerar apenas o termo ressonante do campo no Hamiltoniano, que poderd entdo ser
escrito como [2,3]:
HRF(t):_hVBRF]qbeimRFt:)H:HZ"'HRF (18)
Onde 1, ¢ o operador de momento angular na dire¢do do campo aplicado. Para facilitar a
descri¢ao do sistema ¢ conveniente considerar o operador densidade, o Hamiltoniano total e a
equacdo de Liouville-Von Neumman (Equagdo 6) em um referencial girante com frequéncia igual a
frequéncia do campo magnético aplicado. A transformacdo do Hamiltoniano, bem como a do
operador densidade, pode ser realizada atuando um operador de rotacao nestes [2,3]. Desta forma
obtém-se um Hamiltoniano girante dado por:

H y=—h(wy—wpe) 1.~y By 1, (19)



Da equacdo de Liouvile-Von Neumman podemos escrever:

d .
d_fzih[pl_h(wo_wRF)Iz_hyBRF]¢] (20)

Onde p agora serd o operador densidade no referencial girante. Ao selecionarmos a frequéncia
wzr do campo aplicado como sendo o mais proxima possivel da frequéncia @, de Larmor, o
termo do Hamiltoniano proporcional & [, ficard desprezivel frente ao outro termo (em geral o

offset de frequéncia conseguido experimentalmente nos permite considerar isso), dessa forma
podemos despreza-lo e reduzir a equagdo para:

o
=g lp hy Byl 1)

A solugdo desta equagdo ¢ dada por (Equagdo 7),com um propagador da seguinte forma:
U=exp(—iHtlh)=exp(—i[hyBg1,)tIh)=exp(—iy Bpr1,t)
Ou seja, obtemos um operador de rotagdo em torno da dire¢do 7, [2,3]. Isso demonstra o
efeito dos pulsos de radiofrequéncia, que consiste em rotacionar o sistema em torno da direcao do
campo aplicado. O tempo no argumento da exponencial evidencia que o angulo de rotacdo da

magnetizacao esta diretamente relacionado a duracao temporal do pulso.

1.2 INTERACAO DIPOLAR

A interacdo dipolar entre os nucleos €, como o proprio nome ja diz, nada mais que uma
interacao entre dipolos. Dado o Hamiltoniano Zeeman de um nucleo isolado (Equagdo 2), a
interacao dipolar somara mais termos nesse hamiltoniano, de forma a torna-lo:

H e =H .+ H (22)

Onde H, pode ser encontrado considerando a energia de interacdo classica entre dois

dipolos magnéticos [1]:

e .”1',”2_3 (/‘1"’)(”2"’)
41 1”3 I"S

U (23)

Com u, e u, sendo os dois momentos de dipolo magnético, e r sendo o vetor que vai

de um ao outro (vetor internuclear). O Hamiltoniano classico de dois dipolos interagentes sera dado
exatamente pela equagdo acima.
Tomando o equivalente quantico dos momentos magnéticos ( u,=yhl, ; w,=yhl, )

[2,3] e sendo os operadores de spin [, e [, ilustrados na figura (2a) juntamente com o vetor



internuclear r , Podemos substituir tais relagdes no Hamiltoniano classico e encontrar o

Hamiltoniano quantico para a interacdo dipolar ( H, ):

1,1 Iy-r)( 1y
HD:_f_;VJVshzl ;32_3( 1”)(5 2F) (24)

¥

2) * b)

Figura 2: a) Ilustragdo dos operadores de momento angular e do vetor internuclear na interagao
dipolar. b) Definicao das coordenadas esféricas utilizadas no problema.

A vpartir do arranjo apresentado na Figura (2b)( lembrando que B, estd na direcdo Zz ) pode

ser realizada uma expansdo em coordenadas esféricas de /H, que resulta em uma soma de termos

de A a F dependentes das coordenadas. Esses termos sdo conhecidos como 'Alfabeto dipolar' e

podem ser encontrados com mais detalhes na referéncia [1].

Para trabalharmos no referencial girante, o operador rotacdo Iéz(wot) deve ser atuado no

Hamiltoniano geral. Os termos de Hamiltoniano Zeeman e alguns termos do Hamiltoniano dipolar
nao tem dependéncia azimultal e ndo serdo afetados. Outros termos dipolares tem tal dependéncia e,
ao serem atuados pelo operador rotacdo, tomam uma dependéncia também com o tempo (devido ao
angulo de rotacao que depende de ¢ ) de modo que ao tomarmos a média temporal eles se anulam.

O Hamiltoniano dipolar no referencial girante entdo sera dado por [1]:

H(g):_th 112122_%(114—[2—4-]1—]24—) :_th[A"'B] (25)

Com w, sendo a frequéncia de acoplamento dipolar, definida por:

wa:“a)D(H):ﬁy, ysh%(3 cos20—1)=27rD%(3 cos’0—1) (26)

Com A4 e B definidos por A=1_1, e BZ_TI(11+12_+11_12+) e com D sendo a

chamada “amplitude de acoplamento dipolar”.



No presente estudo trabalharemos com o acoplamento entre dois nucleos de 'H, que é um caso
de acoplamento dipolar homonuclear. Para mostrar o efeito da interacdo dipolar homonuclear no
sistema de spins, fagamos uma pequena discussio tomando w,(6) como constante, isto é,
considerando uma dada distancia e orientagdao angular no espago.

Podemos ver que A ¢ diagonal na base de autoestados do Hamiltoniano Zeeman (

laoa>,|pp>,|af>,|fo> ), o que implica quee A4 e H_, compartilham dos mesmos

autovetores. Com isso, se aplicarmos A em cada um dos estados de /H_ teremos uma variagdo em

z

suas energias tal que a nova energia do j-ésimo estado pode ser encontrada através da teoria de
perturbacdo independente do tempo ( uma vez que a intensidade da intera¢do dipolar costuma ser

bem menor que a da interagdo Zeeman) da seguinte forma:

n
Ej:Ej0+;)<l//j|HD|'//i> (27)
A figura (3a) ilustra as novas energias obtidas pelo efeito do termo A do Hamiltoniano Dipolar.
E E .-fiw /4 Padrdo de pé da interacao dipolar
- _ B 41
3 x
laa> fw, Ewrfin /4  Egrhiw, /4 [Hiw,-fiw, /2
= = ' 4 = 3]
loB> _Ba>  tiw fwyhuwy2 2
E______w_ U E iy /4 L % 2
[ N
‘ ) J k
35 a4 6 1 3 3
wn ) UJU Amplitude de acoplamento (unidades de w_D/2)
a
b)

Figura 3: a) Representagao do efeito do termo “A” nos niveis de energia de um par de spins. b)
Padrao de p6 da interagdo dipolar.

Agora, considerando uma situa¢do mais realista de um so6lido policistalino ou amorfo, os vetores
internucleares terdo orientagdes aleatorias. Neste caso, a intensidade associada a cada orientacao
6 ¢ obtida pelo elemento de angulo s6lido considerando os vetores distribuidos na superficie de
uma esfera. Dito isto, podemos quantificar a intensidade do sinal ( S(w,(60)) ) para cada faixa
infinitesimal de frequéncia (em moédulo |dw,| ) igualando ao valor do angulo sélido ( P(6,¢) )

para cada faixa infinitesimal de Angulo (em modulo |0 ):

S(w,(0))|dw,|=P(0,9)ldol=S((0))=P (0, ¢)/ (28)
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Sabendo da relagdio de w, com @ (Equagdo 26) e do valor do angulo solido em fungdo de
0 ( ocsen(f) para coordenadas esféricas) podemos efetuar o calculo da equagio (28) e obter o

padrdo que, a menos de constantes multiplicativas, serd ( no dominio 6€[0,90°[ )[2]:

S(w,(0))acsen 01|sen(8)cos(6)|=— 29)

|cos 4|
Podemos entdo obter a curva da intensidade do sinal gerada por cada um dos valores de
acoplamento dipolar através da equagdo (29). H4 uma intensidade maxima que diverge em 90° e
decai até um minimo em 0°. No entanto, precisamos lembrar que o termo A do acoplamento dipolar
realiza uma separacdo das frequéncias de ressonancia em dois valores, por isso existe um padrao
(equagdo 29) para cada uma das duas novas frequéncias e o padrdo resultante sera uma

superposi¢ao desses dois padrdes, resultando no conhecido padrao de Pake (ou padrao de pd) [2].

Como uma ultima consideragdo, ¢ preciso levar em conta o efeito da relaxacdo transversal, que
faz com que o sinal de um dado spin decaia com o tempo. No dominio da frequéncia isso pode ser
levado em conta considerando que o sinal de cada par de spins ndo ocorra com uma Unica
frequéncia, mas com uma distribuicdo simétrica de frequéncias em torno da frequéncia média.
Assim podemos considerar esse fendmeno no nosso padrdo (equacdo 29) fazendo a convolucao de
uma gaussiana com o padrao de pd, o que resultara numa curva com aspecto demonstrado na figura

(3b)(Para uma gaussiana com média 0 e desvio padrao 0.05).

O efeito do termo B por sua vez é de misturar os estados |af> e |fa> , gerando um
fendmeno que faz com que a interacdo ndo seja somente entre dois spins, mas se estenda a varios
( cendrio de multi-spin). O espectro resultante serd uma soma de espectros do tipo Pake mas com
uma distribuigdo aleatéria de frequéncias dipolares. O resultado é um espectro com formato
aproximadamente gaussiano cujo desvio padrdo ¢ a frequéncia dipolar média do sistema, mais

informagdes em [2,3].

Para compreendermos o efeito do acoplamento dipolar no caso da RMN no dominio do tempo,
fazemos a transformada inversa de Fourier do sinal obtido. Como os efeitos de cendrio de multi-
spin produzem uma curva gaussiana, a transformada inversa de fourier resulta no dominio do tempo
em um padrdo também gaussiano. No entanto, quanto maior a largura da gaussiana no dominio da

frequéncia, menor a largura da gaussiana no dominio do tempo, ou seja, um acoplamento dipolar

11



maior (que define uma gaussiana mais larga no dominio da frequéncia) causa um decaimento mais

rapido do sinal no dominio do tempo.

Ha casos em que algumas (ou todas) as cadeias moleculares de uma amostra possuem alto grau
de mobilidade. Se a frequéncia dos movimentos moleculares for maior que a magnitude do
acoplamento dipolar, a aleatoriedade dos movimentos nesses casos fard com que os acoplamentos
dipolares entre spins vizinhos sejam promediados a zero na escala de detec¢do da RMN. No entanto
se essas cadeias moleculares possuirem alguns pontos com restricdes de mobilidade, ha a formagao
de acoplamentos dipolares entre spins localizados nesses pontos. Assim, observamos um

“Acoplamento Dipolar Residual”, cuja amplitude serd denotada por D, pode ser calculada da

res

mesma forma que D (presente na equagdo 26), mas a distancia r» que deve ser considerada

agora serd a distancia média entre tais pontos de restricdo de mobilidade, a denotaremos por R

1.3 EXPERIMENTO DE 'H de Duplo Quantum no dominio do tempo (1H RMNDQTD)

Uma das caracteristicas da interacao dipolar € que o seu efeito combinado com pulsos de RF
devidamente construidos pode gerar coeréncias de ordem maior que 1. Esse ¢ o caso da sequéncia
conhecida como Baum e Pines [6], ilustrada na figura (4). Ela é composta de dois ciclos onde cada
um possui dois pulsos de 90° intercalados por um de 180°. Entre os pulsos o sistema ¢ deixado
evoluir sobre a agdo da intera¢do dipolar pelos intervalos 7,, . Embora os ciclos sejam idénticos
possuem fungdes diferentes: O primeiro cria as coeréncias de duplo quantum e o segundo faz a
reconversdo de suas amplitudes para a magnetizacdo. O ultimo pulso de 90° direciona a
magnetizagdo para o plano das bobinas e permite enfim a deteccdo do sinal.

Excitagéo Reconversao Detecgao

90°)X (180°), (90°), (90° )q) (180°), (90%), (90°),
lfm ITDQI lfm ITDQ
2us

Figura 4: Representacdo da sequéncia de Duplo quantum de Baum e Pines [6].

Usaremo-nos dos resultados que a referéncia [7] obteve ao fazer o célculo do efeito dessa

sequéncia de pulsos num par de spins sob influéncia do acoplamento dipolar. Tal desenvolvimento

12



¢ realizado considerando apenas o termo A do Hamiltoniano (Equagdo 25), uma vez que somente
este tem papel na formagdo do sinal.

O valor da matriz densidade ap6s o ciclo de excitagdo (no ponto G da figura 4) ¢ dado por:

@p ®p
p=(1,.+1,)cos 5 Too _<211x]2y+211y12x)sen 5 oo (30)

Tomando os valores conhecidos matriciais para os operadores de momento angular e

substituindo na expressdo acima, temos como resultado:

10 0 0 00 0 —i

_[o =10 0 p 000 0 p

PZlo 0 1 0 ZCOS(TTDQ)_O 00 0 4”"(7”’9) Gl
0 0 0 —I i 00 0

E possivel observar no segundo termo da equacio (31) o aparecimento de valores nio nulos
nas extremidades da diagonal secunddria da matriz densidade, o que evidencia a formagdo das
coeréncias de duplo quantum (DQ). A sua dependéncia com @, demonstra o papel fundamental
da interagdo dipolar em tal resultado, indicando que o valor das coeréncias zeriaria na auséncia de
tal interacdo. O primeiro termo s tem elementos diagonais (fazendo dele uma magnetizagdo
longitudinal) e logo representa as populagdes dos spins. O efeito da aplicagdo da segunda parte da
sequencia de pulsos depende da fase ¢ dos pulsos de 90°. Porém, a combinacdo de sinais
adquiridos com as fases ¢=x,—y,—x,x ,pode ser feita de modo que a magnetizagdo resultante
s6 dependa dos termos DQ e MQ. Apds a aplicagdo desse procedimento, conhecido como ciclagem
de fases no jargdo da RMN, ¢ possivel escrever o operador densidade associado a cada um dos

termos como:

2| @p ) 2[ @b
Pro=|11,+1,,)cos = Too| 5 Poo= (1,,+1,, (7 (32)
0 —i 0 0 0 -1 0 0
i 0 0 O 2| @p ) i 0 0 0 Wp
Po=o 0 0 —i 2cos 5 ool 3 Poo=ly o o 2sen TTDQ) (33)
0 0 i O 0 0 0

Onde p,, e p,, indicam somente os termos dos operadores densidade correspondentes a
magnetizacgdo detectavel ( 4m==x1 ) ao final da sequéncia de pulsos. Note que os sub indices MQ
e DQ significam que sdo oriundos dos termos de DQ e MQ da equagdo (31).

A deducdo cujos resultados culminam nas equagdes (33) ainda é demasiadamente simples, uma
vez que a evolucao temporal foi feita considerando-se uma tUnica orientagdo dos pares de spins em

acoplamento dipolar. Para obter uma relacdo que melhor descreva a curva que serd obtida
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experimentalmente serd preciso considerar as contribuicdes de todas as orientagdes. O sinal total
pode ser obtido somando as contribui¢des (dadas pela Equacao 33) de cada orientagdo e fazendo

uso do padrdo de pd para obter a amplitude de cada frequéncia, ou seja:
N o' N
[MQ:Z [)I-COS2 TDTDQ , IDQ:Z Pisel’lz TDTDQ (34)
i=0 i=0

Onde 1 percorre as frequéncias de acoplamento dipolar, e P, ¢ a intensidade do sinal
atribuida a cada uma delas pelo padrao de pd. Foi feita uma abordagem numérica para realizar esta
soma, utilizando diversos valores aleatérios para as frequéncias. As figura (5a) e (5b) mostram o

aspecto das curvas para N=6 e N=30 frequéncias somadas, respectivamente. As curvas foram

normalizadas pelo valor de 7 MQ( 0)

Sinal esperado de RMN Sinal esperado de RMN
N=6; w_D=1.2 krad/s N=30; w_D=1.2 krad/s Sinal esperado de RMN N=30
10 — 1DQ 1.0 — 1DQ Lo — 1.DQ w_D=0.6 krad/s
% — imo | B — Mo 3 — 1.DQ w_D=1.2 krad/s
Jos - B 0.8 - gos —— 1.DQ w_D=2.4 krad/s
£ = B
506 G 0.6 506
S 5 S
K 0.4 & 0.4 8 0.4
e 2 @
c c c
802 8 0.21 202
< £ £
0.0 0.0 0.0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
©_DQ(ms) T_DQ(ms) T_DQ(ms)
a) b) c)

Figura 5: a) Grafico do sinal obtido para 6 termos somados. b) Grafico do sinal obtido para 30
termos somados. ¢) Dependencia do sinal de DQ com a frequéncia de acoplamento.

Com N=30 termos somados ¢ possivel ver que ambos os sinais ( /,, ¢ [,, ) tendem para o

valor de 0,5 para tempos longos e estdo relacionados com o valor da frequéncia de acoplamento
dipolar, uma vez que sua inclinacgao inicial aumenta com o aumento de ®, médio, como mostra a
figura (5c) para a curva [,
Para construir um modelo mais realista precisamos considerar a relaxagdo dos spins, que se da
—tIT,

através de um decaimento exponencial do tipo e [1-3]. Acrescentando tal decaimento nas

formulas (34) obtemos:

N (i) N (i)
_ w _ w
Iyp=e t/TZZ P,»cos2 TDTDQ ; Ipp=e t/TZZP,-senz TD‘[DQ (35)
i=0 i=0

Ao observar o grafico obtido na figura (6a)(para 7,=2ms ), € possivel perceber que a curva

I, ainda possui a propriedade da inclinagdo inicial depender da frequéncia dipolar. Vemos que
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a ordenada do ponto de maximo de [, também depende de @, , o que facilita uma primeira
analise visual para comparagao de acoplamento dipolar médio entre amostras.
Como ultimo incremento no modelo, vamos considerar uma fracdo arbitraria da amostra, a

qual chamaremos de F, , como constituida de cadeias moleculares mdveis que ndo produzem
coeréncias de duplo quantum (as demais cadeias da amostra serdo chamadas de F, , de modo que
F,+F =1 ). O sinal proveniente das cadeias moveis apenas se deve a relaxagdo das mesmas,
portanto deve decair exponencialmente com um tempo 7,,,, de relaxacdo, resultando num termo
F,e " a ser acrescentado na curva de MQ. Deste modo obtemos o sinal que conhecemos
como “intensidade de referéncia ( 1, )’[4,5]:
e N w(i) - . w(i)
[ey=F, """ Pcos’ TDTDQ +F, e T I ,=F,e ") Psen’ TDTDQ (36)
i=0 i=0
O gréfico obtido das expressdes acima na figura (6b) ( Para T,=2ms e T,,,=20ms )
representa o sinal que esperamos obter em laboratorio. Observando-o ¢ possivel notar que um
aumento na fracdo de cadeias livres faz a curva de Referéncia decair mais lentamente e o sinal de
Duplo Quantum ser atenuado.
Entretanto, o interesse experimental costuma ser obter a frequéncia de acoplamento dipolar
w, .Parafazer isso € conveniente que, de posse de um sinal experimental como o da figura (6b),
possamos obter curvas como as da figura (5¢), isso ¢ interessante porque a inclinagdo inicial em tais
curvas, em especial a de [, , esta relacionada com o valor da frequéncia de acoplamento. Para

esse fim apresentaremos um procedimento frequentemente utilizado nessa situagao.
Sinal esperado de RMN

Sinal esperado de RMN N=30 N=30; w D=1.2 krad/s

1.0 — 1.DQ w_D=0.6 krad/s 1.0 — 1DQ Fm=01
% — | MQ w_D=0.6 krad/s iy LMQ F m=0.1
N 081 — 1.DQ w_D=1.2 krad/s R 0.81 — 1DQ F.m=0.3
g — I_MQ w_D=1.2 krad/s g — I_.MQ F_m=0.3
506 —— 1.DQ w_D=2.4 krad/s 5 0.6 — 1.DQ F_m=0.6
< —— |_MQ w_D=2.4 krad/s p IMQ F.m=0.6
% °
® 0.4 £ 0.41
o G
c 5
8021 £ 021
2 IS

0.0 ; ‘ ‘
0.0 ; ‘ : 0 5 10 15 20
0 5 10 15 20

T.DQ(ms) TDQ(ms)

Figura 6: a) Gréfico do sinal esperado de Duplo quantum com relaxa¢do b) Grafico do sinal
esperado de duplo quantum com relaxagdo e com fragdo de cadeias moveis.
O primeiro a se fazer ¢ retirar a fragdo de cadeias mdveis, que ndo contribui no sinal de DQ.

Para isso basta realizar um ajuste exponencial na curva que resulta da subtragdo de /7, por
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I,, em seus pontos finais (onde as curvas de Duplo e Multi Quantum ndo teriam sinal

—t/T 2mob

significativo) e obter F, e T,,, .Depois, subtrai-se F, e da Referéncia, obtendo a

curva de Multi Quantum.
Ao final, dividimos a curva de Duplo Quantum pela soma dela mesma com a curva de Multi
Quantum. O que resultara em uma curva semelhante a da figura (5¢), como mostrado abaixo:
N (i)
—4T 2| @p
e ‘Q Psen|—r1
5

w(i)

=D
2 tpo

I

— :I(Norm) (37)
1 DQ+I MO

. DO
of)
7

Esse processo ¢ muito utilizado para a obtengdo do acoplamento dipolar através de

N
—tT, 2
e Z P, sen

i=0

N

2

+Z P,cos
i=0

experimentos de Duplo Quantum, sendo proposto por Saalwéchter e colaboradores [4].

2 MATERIAIS E METODOS

Para o experimento foi utilizado um espectrometro Bruker Minispec. As medidas foram todas
realizadas através da sequéncia Baum e Pines , utilizando os seguintes parametros [6]: tempo de

pulso: 2,35ps; Recicle Delay = 2s; Incremento de 27, :0,1 ms

As amostras de XLPE e HDPE s3o amostras obtidas de dutos para transporte de agua, que sao
utilizados em diversas aplicagdes comerciais. Para o experimento comparativo de DQ foram
aquecidas a 150°C antes de realizar o experimento, esperando 10 minutos ap6s a amostra atingir a
temperatura para que se tenha uma distribuicdo homogénea de temperatura. O sinal de RMN obtido
para os polimeros nessa temperatura indica que ndo ha componentes solidos (ndo ¢ observado
decaimento rapido e gaussiano). Assim, nessa temperatura espera-se que as Unicas restrigdes
dindmicas existentes sejam devido a emaranhamento e/ou reticulacdo das cadeias dos polimeros.

Para o caso das amostras do tubo de XLPE foi realizado o mesmo procedimento.

3 RESULTADOS

Quando trata-se de fisco-quimica envolvendo polimeros, ¢ impescindivel levar em conta ndo s6
a composi¢do quimica das cadeias e sua movimentacdo individual no espago, mas também a

interagdo de umas com as outras. H4 um intesse em particular por emaranhamento e
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entrecruzamento, que sdo dois tipos de restricdes de mobilidade capazes de afetar diversas
propriedades macroscopicas do material. Isso justifica a importancia de estudos nessa area para os

mais diversos tipos de industria que trabalham com polimeros.

A figura (7a) ilustra a disposi¢do de cadeias moleculares em um polimero. O primeiro tipo de
restricdo de mobilidade (ilustrado em amarelo) trata-se de uma restricdo que se faz e desfaz
aleatdriamente no tempo, a qual chamamos de emaranhamento. O segundo tipo (em azul) se refere
a ligacdes quimicas entre as cadeias, que sdo restrigoes fixas e podem ser causados tanto
propositalmente (para, por exemplo, oferecer rigidez mecanica ao material) quanto naturalmente
(podendo inclusive degradar o polimero, a depender da sua utilidade especifica). Chamamos tal

restri¢ao de entrecruzamentol[8].

b ; { CHy;——CH, "

O Entrecruzamento
O Emaranhamento #

=h

' ! N \)| Molécula de polietileno

/)

N (W) XLPE
n——_ J HDPE
a) b)

Figura 7: a) Representac¢do de entrecruzamento e emaranhamento de cadeias num polimero.
b) Representacao da molécula de polietileno e da disposi¢ao das cadeias no XLPE e HDPE.

No presente experimento, serdo estudados dois polimeros: Polietileno Reticulado (XLPE) e
Polietileno de alta densidade (HDPE). Como mostra a figura (7b), ambos os polimeros possuem
formulas moleculares idénticas, no entanto o XLPE difere do HDPE por possuir reticularizacdo em
suas cadeias, o que faz da comparacdo entre os sinais das duas amostras um excelente exemplo para
ilustrar o funcionamento da sequéncia de duplo quantum [8]. Para realizar o experimento ¢
necessario aquecer os polimeros até temperaturas superiores a fusdo da fase cristalina, a fim de que

todas as cadeias se tornem moveis e s6 haja acoplamentos dipolares residuais ( D, ) na amostra.

Sabendo que os acoplamentos sdo oriundos dos spins nucleares dos pontos com restricdo de
mobilidade (emaranhamento e entrecruzamento), o D, serd entdo diretamente proporcional a

densidade de ligagdo cruzada da amostra, uma vez que ¢ proporcional ao inverso do cubo da

distancia média entre os spins.
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Como uma ilustragdo do funcionamento da sequéncia, foi feito o experimento de DQ para as
amostras de HDPE e XLPE a 150°C, o sinal obtido se encontra na figura (8a). E possivel observar
que o XLPE apresenta uma inclina¢do incial mais acentuada, o que demonstra sua densidade de
ligagdo cruzada como sendo maior que a do HDPE. Para obter tais dados de maneira mais clara, foi

aplicado o procedimento destacado na se¢do do experimento de DQ para ambos os polimeros.

Por exemplo, para o XLPE, primeiramente subtraimos a curva de referéncia da curva de Duplo
Quantum e obtemos a curva da imagem (8b), onde estda também representado o ajuste
exponencialfeito. Com o uso da Equagao (37), obtemos finalmente a curva de duplo quantum livre
de outros componentes. O mesmo processamento foi aplicado para o HDPE. As curvas puras de
duplo quantum dispostas na figura (8c) sdo consistentes com o fato do XLPE possuir reticulagao
quimica induzida, e logo ter um sinal de Duplo Quantum com uma inclinacdo incial maior que
aquela presente no grafico do HDPE. Entretanto, apesar de ndo possuir entrecruzamento induzido
quimicamente, o HDPE possui uma inclinagdo ndo nula na figura (8c), indicando a formacao de
coeréncias de duplo quantum. Isso acontece porque suas cadeias moleculares sdo longas e lisas, o
que favorece a formacdo de emaranhamento entre elas e consequentemente contribui no

acoplamento dipolar residual médio da amostra.

XLPE e HDPE - Duplo Quantum a 150°C  XLPE - Ajuste expoencial para lgeq-lpq XLPE e HDPE - Curva de duplo quantum
10— 1 10—
© 3 ler {HDPE | @ " lggr - Ipg: XLPE 2 HDPE
N 084 * lpg tHDPE | N S g « XLPE |
© o . © =
g 5N Irgr : XLPE g \"\ g§
s 0,61 e lpq : XLPE 5 . 3 N 06
g 801 )
® 044 Oog © e ‘60’4_ L L
ke fa - T £ i .
@ aa,, 2 T~ s eee?
g 0,2 Troel § B 02{ & et
£ $ = o .
o %oy c [
0,0 nalBR00000 § 6 5 88 4 0 0s 0,01 ‘ : . . ‘ : ‘ = 00 f’ . ' . : . .
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 01 2 3 4 5 6 7
2150(ms) 21p0(Ms) 2tpq(ms)
a) b) ¢)

Figura 8: a) Curvas experimentais obtidas de duplo quantum de XLPE e HDPE. b) Ajuste
exponencial de fragdes de cadeias moveis do XLPE. ¢) Curva de duplo quantum de XLPE e HDPE.

Para ilustrar a sensibilidade do procedimento foi utilizada a propria amostra de XLPE, trata-se
de um tubo cilindico normalmente usado em tubulacdes de agua. Foi feito um experimento de DQ
para diferentes seccoes radiais da amostra. Tais secgdes estdo identificadas como Interior (parte de
dentro do duto), Meio 2 (interna mais proxima ao interior), Meio 1 (interna mais proxima ao
exterior) e Exterior (parte externa do duto), como mostra a figura (9a). As amostras eram cilindros

de 0.5mm de didmetro e espessura aproximada de 0.2mm.

18



XLPE - Duplo quantum a 142°C XLPE - Duplo quantum a 142°C

i58 1,0 = - phom;a 1S
2oy —~ B Exterior - Igge ’ Interior - |NDQ
T 0,84 " Bdeer -lbad W 68 Meio 2 - N |
=) 6 Meio 2 - Igee 2
~ % . Meio2-1 = Meio 1 - INDQ
& lo
D 0,64 ) 4 © 06 ) i
© Meio 1 - Iggr o Exterior - "4
g047 + Meio1-lpg | s SRR R AR
g) ' S Interior - Iger @ 0,44 L
+ Interior - | e
9 0,24 ¢§f,' pa 9 024 &
£ ‘f% 2594
rigg * % 232828 s
L R N T | S
0 2 4 6 8 10 12 14 ) 1 2 3 4 5 6
21pq(MS) 2tpq(ms)
b) ¢)

Figura 9: a) Foto da amostra e representag¢do das divisdes feitas para o estudo. b) Duplo Quantum de
XLPE. ¢) Curva de duplo quantum de XLPE.

No grafico da figura (9b) ¢ interessante observar como houve uma alteracdo gradativa nos sinais
obtidos de referéncia e de Duplo Quantum, demonstrando o poder da técnica em identificar
mudangas na reticularizagdo da amostra. Observa-se a diminui¢cdo da intensidade de referéncia para

Tpo longos, que esta relacionada a diminuigdo das cadeias com alta mobilidade ao longo do perfil
radial das amostras. Além disso, ao aplicar o procedimento (figura 9c), fica claro como o
acoplamento dipolar do tubo possui uma dependéncia com o raio. Uma hipotese para explicar tal
fenomeno ¢ que a densidade de ligagdo cruzada nao uniforme pode ser origindria do processo de
fabricagdo do tubo. O processo usual de fabricacdo desses dutos ¢ denominado de extrusao. Nesse
processo as particulas dos polimeros sdo fundidas e entdo moldadas na forma de duto. No entanto,
ndo ¢ incomum se obter um gradiente radial de temperatura, o que pode tanto afetar a reticulagdo
(entrecruzamento) das cadeias como a quantidade de cadeias livres (com alta mobilidade). Supondo
que a temperatura influencia na formacao das ligacdes cruzadas e que ela ndo ¢ uniforme, mas fica
disposta em um gradiente radial no tubo, ¢ possivel explicar tanto a variagdao do perfil de ligacdo

cruzada, como a diminui¢do da fragdo de cadeias livres observada nos experimentos de 'H DQ.

4 CONCLUSOES E CONSIDERACOES FINAIS

Na presente monografia, apresentamos uma descri¢do dos principios basicos que fundamentam
o uso da técnica de RMN de duplo quantum de 'H no estudo de entrecruzamento de cadeias
poliméricas. Apresentamos os resultados da evolucao temporal do operador densidade mediante a
aplicacdo da sequéncia de duplo quantum na presenca de interacdo dipolar e os utilizamos para
compreender e analisar o sinal experimental obtido. Foi mostrado o fundamento que permite

entender o processamento usualmente utilizado para obter curvas normalizadas que contém
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sobretudo informacdes sobre os acoplamentos dipolares residuais, esclarecendo o significado das
operagdes que fazem parte do procedimento. Posteriormente, a ilustragdo do funcionamento da
técnica se deu por meio de uma comparacdo entre os sinais de duplo quantum de dois polietilenos
comerciais com estruturas quimicas similares, Cross-linked polyethylene (XLPE) e High-density
polyethylene (HDPE), porém com e sem a presenca de reticularizacdo, respectivamente.
Observamos que o sinal de duplo quantum normalizado para o XLPE demonstrou possuir uma
inclinagdo maior que o sinal do HDPE, acusando a existéncia de reticularizacdo em suas cadeias
moleculares assim como era esperado. A técnica também foi aplicada para amostras de um duto de
XLPE coletadas ao longo de seu diametro. Verificamos que o duto possuia uma densidade de
ligacdo cruzada dependente do raio, o que chegamos a conclusdo que pode ser originario do

gradiente de temperatura que pode estar presente no seu método de fabricagao.
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