
1

Luis Adalberto Beloni Bózoli

SISTEMA DE PRÉ-PROCESSAMENTO

DE SINAIS ULTRASSÔNICOS PARA

SISTEMA DE AQUISIÇÃO COM

FOCALIZAÇÃO DINÂMICA

Trabalho de Conclusão de Curso apresentado à
Escola de Engenharia de São Carlos, da

Universidade de São Paulo

Curso de Engenharia de Computação com
ênfase em Sistemas Embarcados

ORIENTADOR: Professor Doutor Carlos Dias Maciel

São Carlos
2010

2

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica preparada pela Seção de Tratamento
 da Informação do Serviço de Biblioteca – EESC/USP

Bózoli, Luís Adalberto Beloni
 Sistema de pré-processamento de sinais ultrassônicos
para sistema de aquisição com focalização dinâmica / Luís
Adalberto Beloni Bózoli ; orientador Carlos Dias Maciel.
–- São Carlos, 2010.

 Trabalho de Conclusão de Curso (Graduação em
Engenharia da Computação) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2010.

B793s

 1. Imageamento (bioengenharia). 2. Ultrassonografia.
3. VHDL. I. Título.

3

1

Autor: Luis Adalberto Beloni Bózoli

Título: Sistema de pré-processamento de sinais ultrassônicos para sistema de aquisição com

focalização dinâmica

Data: 08 de novembro de 2010

Orientador: Prof. Dr. Carlos Dias Maciel

Área de Concentração: Engenharia Biomédica

Resumo

Nesse projeto temos a finalidade de criar um beamformer de 8 canais para ser utilizado em

um sistema de ultrassom com focalização dinâmica utilizando como base duas placas fornecidas

pelas Texas Instruments, um front-end de ultrassom AFE5805EVM e uma placa destinada a

testar esse front-end, a TSW1250EVM.

O método empregado foi o de modificar o funcionamento da TSW1250EVM por meio da

alteração do código da FPGA modelo Virtex-4 VLX25 implementando um algoritmo de focalização

por atraso e soma. Para que o sistema fosse funcional foi também desenvolvida uma interface de

alta velocidade para que os dados gerados pelo sistema fossem enviados para a placa de

processamento de sinais TMS320C6455 DSK-MI para posterior análise.

Palavras-chaves: focalização dinâmica, formação de feixes, ultrassom, FPGA, VHDL,

TSW1250EVM

2

Author: Luis Adalberto Beloni Bózoli

Title: Pre-processing system of ultrasonic signals for acquisition system with dynamic focus

Date: November 08, 2010

Advisor: Prof. Dr. Carlos Dias Maciel

Concentration Area: Biomedical Engineering

Abstract

In this project we aim to create a 8-channel beamformer to be used in a ultrasound

system with dynamic focus using two boards provided by Texas Instruments as base, an

ultrasound front-end AFE5805EVM and a board designed to test this front-end, the

TSW1250EVM.

The method used was to modify the operation of TSW1250EVM by changing the

code of the FPGA, whose model is Virtex-4 VLX25, implementing a focalisation algorithm by

delay and summation. To assure that the system is functional, a high-speed interface has

also developed to send the generated data to the signal processing board TMS320C6455

DSK-MI for further analysis

Keywords: dynamic focalisation, beamforming, ultrasound, FPGA, VHDL, TSW1250EVM

3

Lista de figuras

Figura 1.1 – Diagrama de blocos do fluxo de dados da arquitetura original do sistema.....9

Figura 2.1 – (a) Campo acústico de onda ultrassônica de 4 MHz em água de um

transdutor circular com 10 mm de diâmetro (b) Campo acústico de onda ultrassônica de 4

MHz em água de um transdutor circular com 10 mm de diâmetro e foco a 30 mm [ref. 10]..13

Figura 2.2 – Sistema de ultrassom com focalização por transmissão ajustável [ref. 4]....14

Figura 2.3 – Sistema de ultrassom com focalização por recepção dinâmica...................14

Figura 2.4 – (a) Sistema de ultrassom com beamforming analógico (b) Sistema de

ultrassom com beamforming digital [ref. 1]..15

Figura 3.1 – Diagrama de blocos do front-end de ultrassom AFE5805 [ref. 18]...............19

Figura 3.2 – Diagrama de temporização da saída LVDS, com o clock do quadro (FCLK),

clock de dados (LCLK) e dados seriais [ref. 18]..20

Figura 3.3 – Sistema montado para o desenvolvimento, onde 1 é a placa AFE5805EVM,

2 é a placa TSW1250EVM, 3 é o programador DLC9G e 4 é o osciloscópio DS1102DC.....21

Figura 3.4 – Desenho esquemático do circuito de paralelização, com SDATA sendo a

entrada de dados serial e DCLK o clock de dados..24

Figura 3.5 – Desenho esquemático da fila de dados, com Seletor sendo a entrada

seletora da posição da fila de dados serial e FCLK o clock de quadros................................25

Figura 3.6 – Desenho esquemático dos 8 canais integrados, com SDATA sendo a

entrada de dados serial e DCLK o clock de dados e FCLK o clock de quadros....................26

Figura 3.7 – Protocolo de saída de dados para a placa de processamento de sinais......30

Figura 4.1 – Formas de onda do teste do circuito de paralelização, onde os dados da

função rampa são exibidos em (a) com uma escala de tempo maior para a visualização dos

bits menos significativos e em (b) com uma escala de tempo menor para a visualização dos

bits mais significativos...32

Figura 4.2 – Formas de onda do teste da fila de dados, onde os dados da função rampa

adquiridos do penúltimo valor da fila são exibidos em (a) com uma escala de tempo maior

para a visualização dos bits menos significativos e em (b) com uma escala de tempo menor

para a visualização dos bits mais significativos...33

Figura 4.3 – Formas de onda do primeiro teste de integração, em que são somados os

terceiros valores das filas dos 8 canais sendo exibidas em (a) com uma escala de tempo

maior para a visualização dos bits menos significativos e em (b) com uma escala de tempo

menor para a visualização dos bits mais significativos..35

Figura 4.4 – Formas de onda do segundo teste de integração somando o sexagésimo

valor da fila de cada um dos canais sendo exibidas em (a) com uma escala de tempo maior

para a visualização dos bits menos significativos e em (b) com uma escala de tempo menor

4

para a visualização dos bits mais significativos...36

Figura 4.5 – Formas de onda do terceiro teste de integração somando o primeiro valor da

fila de metade dos canais e o sexto valor da outra metade sendo exibidas em (a) com uma

escala de tempo maior para a visualização dos bits menos significativos e em (b) com uma

escala de tempo menor para a visualização dos bits mais significativos...............................37

Figura 4.6 – Formas de onda do teste do protocolo comunicação para saída de dados. 38

Figura 4.7 – Forma de onda obtida no teste do sistema de beamforming.......................38

5

Lista de tabelas

Tabela 2.1 – Velocidade de propagação da onda [ref. 6 e ref. 8]......................................11

Tabela 3.1 – Relação das conexões entre os pinos da FPGA e os sinais LVDS vindas do

front-end de ultrassom..22

Tabela 3.2 – Conexões entre sinais lógicos, pinos da FPGA e pinos dos conectores da

placa TSW1250EVM...23

Tabela 3.3 – Perfis de atraso para um transdutor como um de 8 elementos de mesma

área, 30 mm de diâmetro, velocidade do som de 1540 m/s e distância focal variando entre

20 mm e 120 mm..27

Tabela 3.4 – Dados dos perfis de atraso da Tabela 3.3 convertidos para utilização no

projeto...28

Tabela 4.1 – Tabela usada para testes no projeto..34

6

Sumário

Resumo...1

Abstract...2

Glossário...8

Capítulo 1 – Introdução...9

1.1. Objetivos..9

1.2. Estrutura da monografia..10

Capítulo 2 – Teoria..11

2.1. Ultrassom...11

2.2. Transdutor...12

2.2.1. Foco...12

2.2.2. Focalização dinâmica...13

Capítulo 3 – Materiais e Métodos..17

3.1. VHDL...17

3.2. FPGA...17

3.3. Hardware utilizado...18

3.3.1. Placa de Aquisição AFE5805EVM..18

3.3.2. Protocolo de comunicação da saída LVDS..19

3.3.3. Placa de análise LVDS TSW1250EVM..20

3.3.4. Placa de processamento de sinais TMS320C6455 DSK-MI...............................20

3.4. Implementação..21

3.4.1. Definição das conexões com a FPGA..22

3.4.2. Entrada de dados LVDS...22

3.4.3. Desenvolvimento da interface entre placa e FPGA..23

3.4.4. Geração do clock de amostragem..24

3.4.5. Circuito de paralelização..24

3.4.6. Fila de dados..25

3.4.7. Integração dos 8 canais...26

3.4.8. Somador..26

3.4.9. Beamforming..27

3.4.10. Saída de dados..29

Capítulo 4 – Resultados e Discussões..31

Capítulo 5 – Conclusão...40

Bibliografia..41

Anexos..44

Códigos VHDL de cada módulo do projeto...44

7

Módulo de interface (principal)...44

Módulo de integração...46

Módulo da fila...49

Módulo do circuito paralelização..50

Módulo de soma..51

8

Glossário

ASIC: circuito integrado desenvolvido para executar uma tarefa especifica

Beamformer: sistema que implementa a técnica de beamforming

Beamforming: técnica de processamento de sinais usada em arranjos de sensores

para transmissão ou recepção direcional de sinais

Buffer: região de memória temporária

DCLK: sinal do clock de dados

DSP: processador otimizado para o processamento de sinais digitais

EEPROM: um tipo de memória não-volátil

FCLK: sinal do clock de palavras

FPGA: dispositivo de lógica programável capaz de ter seu funcionamento

modificado quando desejado

Front-end: sistema responsável pelos estágios iniciais de um processo, no caso

de um front-end de ultrassom ele é responsável por fazer a aquisição

dos dados ultrassônicos

JTAG: porta amplamente utilizada para depuração e programação de

circuitos

LVDS: padrão de comunicação diferencial com sinais de baixa tensão

VHDL: linguagem de projeto de circuitos e implementação de circuitos digitais

9

Capítulo 1 – Introdução

O ultrassom é uma onda mecânica em uma frequência superior as captadas pelo

ouvido humano, sendo assim ondas com frequências superiores a 20 kHz. O maior uso do

ultrassom é na geração de imagens de ultrassonografia, que consiste na geração de

imagens a partir da análise dos ecos das ondas ultrassônicas com frequências geralmente

na faixa de 1 MHz a 15 MHz [ref. 1].

A geração das ondas ultrassônicas e a captura de seus ecos são feitas por meio de

transdutores ultrassônicos. Entre os transdutores, existem os focalizados, capazes de obter

uma melhor qualidade na aquisição de sinais na sua zona focal e consequentemente uma

maior resolução nas imagens geradas desta região, porém, como essa zona focal é limitada,

a região ideal de aquisição de sinais também é. Esse problema pode ser resolvido com um

transdutor de múltiplos elementos aliado a um sistema de beamforming capaz de ajustar a

zona focal desejada através da defasagem dos sinais capturados pelos diferentes

elementos do transdutor [ref. 1].

1.1. Objetivos

O principal objetivo desse trabalho foi a construção de um beamformer utilizando

uma arquitetura fornecida pela Texas Instruments1 como sistema de desenvolvimento. A

arquitetura original [ref. 2 e ref. 3], representada na Figura 1.1 com um diagrama de blocos

do fluxos de dados, segue uma abordagem de osciloscópio onde se escolhe individualmente

cada canal que se pretende converter. A nossa proposta foi implementar um beamformer

com 8 canais para aplicações em transdutores anulares para o controle de profundidade de

forma dinâmica.

Figura 1.1 – Diagrama de blocos do fluxo de dados da arquitetura original do sistema

A placa AFE5805EVM é um front-end de ultrassom de 8 canais com uma saída

diferencial serial para cada um desses canais para a placa TSW1250EVM, que é uma placa

1 http://www.ti.com/

10

com um circuito de paralelização implementado em uma FPGA (Field Programmable Gate

Array). Essa FPGA pode ser reprogramada para atender aos objetivos do projeto, criando o

sistema de beamforming.

Os objetivos específicos foram:

• Estudar sistemas de ultrassom e suas implementações;

• Estudar a documentação das placas AFE5805EVM e TSW1250EVM e propor

uma nova revisão do projeto de forma a se poder implementar algoritmos de

focalização dinâmica;

• Implementar o algoritmo de focalização por atraso e soma em dispositivos de

lógica programável do tipo FPGA;

• Transferir os dados da FPGA para a placa de processamento de sinais

digitais (digital signal processor) da Texas Instruments modelo

TMS320C6455 DSK-MI.

1.2. Estrutura da monografia

Os demais capítulos serão divididos da seguinte forma:

• Capítulo 2 – Neste capítulo será apresentada toda a teoria necessária para o

entendimento e implementação do sistema;

• Capítulo 3 – Neste capítulo serão apresentados as ferramentas e

equipamentos utilizados no projeto, bem como o método empregado;

• Capítulo 4 – Neste capítulo serão apresentados os resultados obtidos no

projeto assim como uma discussão sobre eles;

• Capítulo 5 – Neste último capítulo estão descritas as conclusões obtidas com

o término do projeto.

11

Capítulo 2 – Teoria

Nesse capítulo serão explicados os seguintes tópicos teóricos relacionados a esse

projeto: ultrassom, transdutores, foco em transdutores e sistemas de focalização dinâmica

em transdutores com múltiplos elementos.

2.1. Ultrassom

O som é uma onda mecânica capaz de transferir energia de um ponto a outro [ref. 4].

Sendo uma onda mecânica, o som necessita de um meio material para ser transmitido [ref.

5], como sólidos, líquidos e gases. Desta forma, não é possível a transferência dessa

energia no vácuo.

As ondas mecânicas podem ser classificadas em dois tipos, longitudinais e

transversais [ref. 6] ou pela sua combinação. Nas ondas longitudinais, as quais ocorrem em

meios sólidos, líquidos ou gasosos, as vibrações se dão na mesma direção da propagação

da onda, enquanto nas ondas transversais, que ocorrem somente em meios sólidos, as

vibrações são perpendiculares a direção de propagação da onda [ref. 7].

Uma das mais importantes características da onda mecânica é a sua frequência. A

unidade básica de medida da frequência é o hertz (Hz), que representa o número de

vibrações, ou ciclos, da onda por segundo.

O sistema auditivo humano não é sensível a toda a gama de frequências existentes,

sendo capaz de ouvir em geral frequências entre 20 Hz e 20 kHz . Desse modo, as ondas

mecânicas com frequência superior a 20 kHz são consideradas ondas ultrassônicas. Em

sistemas de diagnóstico por ultrassom costumam ser utilizadas ondas entre 1 MHz e 15

MHz [ref. 4].

Outra característica importante das ondas ultrassônicas é a sua velocidade de

propagação em diferentes meios. Esta sofre uma grande variação dependendo do material

onde está sendo aplicada [ref. 6]. Na Tabela 2.1 são apresentadas as velocidades de

propagação para diferentes materiais.

Tabela 2.1 – Velocidade de propagação da onda [ref. 6 e ref. 8]

Meio Velocidade (m/s)

Ar (20°C) 344

Água (20°C) 1480

Sangue 1570

Gordura 1460

12

Músculo 1580

Osso 3500

Tecido mole (média) 1540

2.2. Transdutor

Um transdutor é um dispositivo que converte um tipo de energia para outro [ref. 6]. O

transdutor ultrassônico é responsável pela geração das ondas ultrassônicas, o qual tanto

converte energia elétrica em energia mecânica quanto energia mecânica em elétrica [ref. 6].

Esses transdutores são feitos com materiais piezoelétricos como, por exemplo, o cristal de

quartzo ou cerâmicas como o PZT [ref. 9].

Esses materiais apresentam o chamado efeito piezoelétrico, o que significa que

quando aplicado um campo elétrico sobre eles ocorre uma variação nas dimensões suas

dimensões [ref. 6]. O efeito contrário também ocorre, quando é aplicada uma pressão sobre

esses materiais é possível detectar campos elétricos sobre os mesmos.

Os materiais piezoelétricos podem ser cortados de forma que a aplicação de campos

elétricos causem a variação de sua espessura e serem usados como transdutores [ref. 6].

Dependendo da construção do transdutor e da aplicação de um campo elétrico

alternado com a frequência adequada é possível gerar-se ondas de ultrassom. Esse mesmo

transdutor criado também pode fazer as leituras dos sinais gerados pelos ecos, que após a

amplificação podem ser apresentados num osciloscópio ou feito um processamento para a

geração de imagens [ref. 4].

2.2.1. Foco

Os transdutores podem ser desenvolvidos de modo que produzam um feixe de onda

de ultrassom tanto não focalizado, onde existe uma região que apresenta um foco natural

difuso que varia de acordo com o diâmetro do transdutor e o comprimento de onda no meio,

como na Figura 2.1a, quanto focalizado, como na Figura 2.1b. Os feixes focalizados

costumam ser os mais usados para a geração de imagens pois ele produz imagens com

mais detalhes na zona focal, devido a menor largura do feixe de ultrassom e maior relação

sinal-ruído.

13

(a)

(b)
Figura 2.1 – (a) Campo acústico de onda ultrassônica de 4 MHz em água de um transdutor

circular com 10 mm de diâmetro (b) Campo acústico de onda ultrassônica de 4 MHz em
água de um transdutor circular com 10 mm de diâmetro e foco a 30 mm [ref. 10]

O uso do foco gera uma imagem melhor na zona focal mas devido a rápida

divergência do campo obtêm-se imagens com pior qualidade fora desta região. Este

problema pode ser solucionado com o uso de transdutores de foco variável ou focalização

dinâmica no lugar dos transdutores de foco fixo.

2.2.2. Focalização dinâmica

Para a focalização dinâmica dos feixes de ultrassom é necessário que os

transdutores utilizados sejam compostos por mais de um elemento posicionados

tradicionalmente em um arranjo linear ou anular [ref. 4]. A diferença entre os dois tipos de

arranjos é que no linear o feixe é focalizado em duas dimensões, enquanto no anular em

apenas uma, sobre o seu eixo. O arranjo linear é o mais usado para geração de imagens,

enquanto o anular precisa ser movimentado mecanicamente (além do foco) para se gerar as

imagens.

Os sistemas de focalização dinâmica tanto operam na transmissão quanto na

recepção.

Na transmissão os pulsos elétricos são enviados com atrasos entre os diversos

elementos. Primeiro os pulsos para o(s) elemento(s) mais externo(s) e posteriormente para

os mais internos [ref. 4]. O atraso entre os envios para cada elemento varia conforme as

dimensões do transdutor e a distância focal desejada. Na Figura 2.2 é apresentado um

14

exemplo do funcionamento de um sistema como este.

Figura 2.2 – Sistema de ultrassom com focalização por transmissão ajustável [ref. 4]

Já na recepção os pulsos ultrassônicos são primeiramente recebidos no elemento

mais central e posteriormente nos mais externos devido à velocidade de propagação da

onda no meio ser constante. Como se pode observar na Figura 2.3 os ecos chegam

primeiramente nos elementos centrais. Assim como no caso da focalização com ajuste de

transmissão os atrasos entre as recepções de cada elemento varia de acordo com as

dimensões do transdutor e a distância focal pretendida [ref. 4].

Figura 2.3 – Sistema de ultrassom com focalização por recepção dinâmica

15

Existem dois modos de se implementar um sistema de focalização dinâmica

operando na recepção: o sistema de ultrassom com beamforming analógico e o com

beamforming digital [ref. 1]. Ambos os modos de implementação necessitam que seja criado

um atraso diferente para cada elemento, dependendo de onde se deseja focalizar, e que

após os atrasos os valores de cada canal sejam somados.

Para o sistema analógico (Figura 2.4a) é necessária a implementação analógica

tanto dos circuitos de atrasos ajustáveis quanto do somador, porém é necessário apenas um

conversor analógico-digital de alta velocidade e resolução. Já para o sistema digital (Figura

2.4b), apesar da necessidade de um conversor analógico-digital para cada elemento, todo

os circuitos atrasadores e o somador podem ser feitos digitalmente, o que facilita o

desenvolvimento [ref. 1].

(a)

(b)
Figura 2.4 – (a) Sistema de ultrassom com beamforming analógico (b) Sistema de ultrassom

com beamforming digital [ref. 1]

16

Nesse projeto é utilizado o sistema digital de beamforming, com a aquisição e

armazenamento dos sinais de cada elemento em uma fila e posteriormente de acordo com a

distância focal selecionam-se os valores para cada atraso pré-calculado e somam-se os

valores de cada elemento [ref. 4].

17

Capítulo 3 – Materiais e Métodos

Nessa seção serão apresentadas as principais ferramentas utilizadas no projeto,

como ele foi implementado e como se dá seu funcionamento.

3.1. VHDL

O VHDL (Very-high-speed integrated circuit Hardware Description Language) é uma

linguagem de descrição de hardware usada para facilitar o projeto de circuitos digitais e

mistos tanto em FPGAs (explicada na sequência) quanto em ASICs (Application-Specific

Integrated Circuit) .

Essa linguagem foi inicialmente desenvolvida pelo departamento de defesa

americano [ref. 11] com o propósito de ser um meio mais compacto e simples de

documentar o funcionamento de circuitos eletrônicos. Posteriormente foram desenvolvidos

simuladores lógicos para simular esses códigos em VHDL e ferramentas de síntese capazes

de converter esses códigos na definição da implementação física do circuito.

3.2. FPGA

Uma FPGA (Field-programmable gate array) é um circuito integrado feito para ser

configurado pelo usuário ou projetista após a fabricação da mesma [ref. 12]. Essa

configuração é geralmente especificada por meio de uma linguagem de descrição de

hardware, como o VHDL, e pode ser refeita inúmeras vezes, sendo capaz de implementar

qualquer função lógica de um ASIC [ref. 12].

As FPGAs têm como vantagens sobre os ASICs a possibilidade de atualização do

hardware mesmo após o produto já estar pronto e o menor custo para uma produção em

menor escala e prototipagem [ref. 13]. Outro concorrente são os microcontroladores

programáveis, mas estes não possibilitam que o sistema funcione paralelamente, assim

como qualquer FPGA [ref. 12].

As FPGAs são formadas por blocos de entrada e saída e uma série de células

lógicas interligadas em que a função de cada célula e como elas são interligadas é definido

com a síntese do circuito a partir da descrição do hardware. Em adição a essas células

programáveis, alguns modelos de FPGA possuem recursos adicionais tanto digitais, como

DSPs e memória RAM, quanto analógicos, como conversores analógico-digitais.

A empresa inventora das FPGAs é chamada Xilinx2, fundada em 1984 por dois

engenheiros de semicondutores e líder desse mercado desde então. Atualmente o Xilinx

2 http://www.xilinx.com/

18

tem em seu portfólio de produtos FPGAs, CPLDs (Complex Programmable Lógic Devices),

ferramentas de projeto, propriedades intelectuais e designs de referência. Suas FPGAs são

divididas em três famílias, com a Virtex como a superior, a Kintex como intermediaria e a

Artix sendo a família de baixo custo.

Virtex é a família de FPGAs de maior desempenho fabricada pela Xilinx,

caracterizada pela integração em hardware de diversos recursos frequentemente utilizados

em aplicações diversas. Em 2004 foi introduzida a série Virtex-4, composta de três famílias

de plataformas, oferecendo múltiplas opções de recursos, como núcleos de processadores

PowerPC, blocos dedicados de DSPs e circuitos gerenciadores de clock de alta velocidade

[ref. 14].

O modelo especifico contido na placa TSW1250EVM, a Virtex-4 VLX25, é um dos

mais simples, possuindo como recursos de interesse para esse projeto 48 blocos

XtremeDSP, multiplicadores ou multiplicadores com somadores de 18 bits, 8 gerenciadores

digitais de clock (DCM) [ref. 15], capazes de sintetizar frequências ou deslocar a fase de um

sinal periódico, e portas de entrada e saída diferenciais em diversos padrões, incluindo o

padrão LVDS [ref. 16].

3.3. Hardware utilizado

3.3.1. Placa de Aquisição AFE5805EVM

A placa de aquisição AFE5805EVM [ref. 2] da Texas Instruments é uma placa

desenvolvida para o teste do circuito integrado AFE5805 em conjunto com a placa

ADSDeSer-50EVM [ref. 17] ou TSW1250EVM [ref. 3].

O AFE5805 é um front-end de ultrassom integrado de 8 canais com amostragem de

até 50 MSPS(milhões de amostas por segundo), resolução de 12 bits e saída de dados

diferenciais LVDS (Low-voltage differential signaling) criado para sistemas de ultrassom de

baixo consumo [ref. 18]. A utilização de um padrão diferencial é de extrema importância em

um sistema de ultrassom devido a sua tolerância a ruídos já que devido a utilização de

várias fontes de tensão nestes sistemas muito ruído é gerado. Na Figura 3.1 é apresentado

o diagrama de blocos do front-end.

19

Figura 3.1 – Diagrama de blocos do front-end de ultrassom AFE5805 [ref. 18]

Essa placa disponibiliza dentre outros recursos 8 entradas analógicas para os sinais

do ultrassom, entrada de clock externo, caso do clock interno de 40 MHz não ser adequado

a aplicação, comunicação com o computador por interface USB para configuração da placa

e um conector para a saída LVDS dos 8 canais.

3.3.2. Protocolo de comunicação da saída LVDS

A Texas Instruments tem uma série de conversores analógico-digital com saída

LVDS serial, e nesse grupo se insere o front-end dessa placa. Para esses circuitos ela

decidiu utilizar um sistema em que é usado um par de fios para cada canal do conversor, um

para o clock do quadro, que determina onde começa e termina cada palavra de dados, e um

para o clock de dados, que determina quando ler o dado de cada canal.

Desse modo, no caso desta placa a saída é composta de dez pares de fios, oito para

dados e dois para os clocks, com o clock de dados sendo seis vezes maior do que o clock

do quadro, pois ocorrem leituras dos dados tanto na borda de subida quanto na borda de

descida desse clock, totalizando doze leituras em cada quadro, como pode-se observar na

Figura 3.2.

20

Figura 3.2 – Diagrama de temporização da saída LVDS, com o clock do quadro (FCLK),
clock de dados (LCLK) e dados seriais [ref. 18]

3.3.3. Placa de análise LVDS TSW1250EVM

A placa de análise TSW1250EVM é uma placa fabricada pela Texas Instruments

com o intuito de analisar o desempenho dos dispositivos da TI da série AFE58xx. É um

sistema que por meio da placa aliada ao software incluso analisa a capacidade dessa série

de dispositivos por meio de diversos tipos de teste e geração de estatísticas apresentados

na interface gráfica do software.

Essa placa possui dentre outros recursos um conector de alta velocidade para uma

entrada LVDS com até 28 canais, 4 conectores de 40 vias e 4 conectores de 32 vias usados

como saídas paralelas para os dados de 8 canais e conexão USB. Nessa placa tudo é

controlado por uma FPGA Virtex-4 VLX25 que recebe seu arquivo de configuração de uma

memória EEPROM inclusa que pode ser regravada por meio do conector JTAG contido na

placa, reprogramando assim a FPGA e, consequentemente, alterando todo o funcionamento

da placa.

3.3.4. Placa de processamento de sinais TMS320C6455 DSK-MI

O TMS320C6455 DSP Starter Kit for Medical Imaging (DKS-MI) é uma plataforma

de desenvolvimento de baixo custo desenvolvida pela Texas Instruments em conjunto com

a Spectrum Digital3 para agilizar o desenvolvimento de aplicações de imagens médicas

baseadas nos DSPs TMS320C64xx, DSPs de ponto fixo e alta performance da TI.

O DSP incluso nessa placa, o TMS320C6455 [ref. 19], é um DSP de altíssimo

desempenho, baseado numa arquitetura de processamento paralelo em nível de instrução

VLIW (Very Long Instruction Word) avançada, tornando-a uma ótima escolha para

3 http://www.spectrumdigital.com/

21

aplicações de vídeo, infraestrutura de telecomunicações geração de imagens médicas. Seu

núcleo de processamento de sinais possui 8 unidades funcionais, sendo 2 delas unidades

de multiplicação capazes de executar 4 multiplicações de 16 bits por ciclo de clock, 2 blocos

de registradores e 2 caminhos de dados.

Essa placa possui uma grande quantidade de conexões, como a Serial RapidIO®,

USB e outros dois conectores, um para conexões HPI (Host Port Interface) ou PCI

(Peripheral Component Interconnect) e um para EMIF (External Memory Interface) ou

McBSP (Multichannel Buffered Serial Port), sendo cinco pinos nesses conectores para uso

geral.

3.4. Implementação

O sistema foi montado, como apresentado na Figura 3.3, conectando-se as placas

AFE5805EVM e TSW1250EVM através de uma placa de ponte, inclusa no pacote da placa

de paralelização. A TSW1250EVM foi então conectada ao computador possibilitando a

reprogramação de sua FPGA através do programador DLC9G, fornecido pela Xilinx.

Também foram conectados 16 pinos de saída ao analisador lógico do osciloscópio

DS1102CD para a análise do funcionamento do sistema.

Figura 3.3 – Sistema montado para o desenvolvimento, onde 1 é a placa AFE5805EVM, 2 é
a placa TSW1250EVM, 3 é o programador DLC9G e 4 é o osciloscópio DS1102DC

22

3.4.1. Definição das conexões com a FPGA

Analisando os desenhos esquemáticos das placas TSW1250EVM e AFE5805EVM,

pôde-se determinar em que pinos da FPGA são feitas cada uma das conexões LVDS vindas

do front-end de ultrassom. Essas informações são apresentadas na Tabela 3.1.

Tabela 3.1 – Relação das conexões entre os pinos da FPGA e os sinais LVDS vindas do
front-end de ultrassom

Sinal Pino

Canal 1
Positivo C18

Negativo C19

Canal 2
Positivo F16

Negativo F17

Canal 3
Positivo D19

Negativo E19

Canal 4
Positivo G16

Negativo G17

Canal 5
Positivo D17

Negativo D18

Canal 6
Positivo A18

Negativo B18

Canal 7
Positivo D16

Negativo E16

Canal 8
Positivo B17

Negativo C17

Clock de quadros
Positivo F18

Negativo E18

Clock de dados
Positivo B19

Negativo C20

3.4.2. Entrada de dados LVDS

Procurando no guia de bibliotecas da Virtex-4 [ref. 20] foi encontrado uma primitiva

de entrada de sinais diferenciais chamada IBUFDS (Input Buffer for Differential Signaling)

que entre outros tipos de sinais diferenciais suportados encontra-se o padrão LVDS

tornando possível a conversão de todos os sinais LVDS que chegam a FPGA em sinais

digitais simples, permitindo, assim, sua utilização no desenvolvimento do projeto.

23

3.4.3. Desenvolvimento da interface entre placa e FPGA

Foi desenvolvido inicialmente o módulo VHDL responsável por fazer a interface entre

a placa TSW1250EVM e o código implementado. Esse módulo foi feito conectando-se

logicamente os pinos das conexões LVDS aos conversores por meio da primitiva IBUFDS.

Os sinais resultantes desses conversores são enviados para os módulos mais internos do

sistema para serem processados.

Os módulos internos possuem também a entrada da distância focal desejada,

determinada por uma entrada externa de 5 bits nomeada no projeto como selector, e a saída

dos dados após o processamento para a saída externa de 15 bits, nomeada no projeto

como output. Na Tabela 3.2 são apresentadas as informações das conexões feitas no

projeto, que podem ser facilmente alteradas, caso necessário, entre os sinais lógicos, pinos

da FPGA e pinos dos conectores da placa.

Tabela 3.2 – Conexões entre sinais lógicos, pinos da FPGA e pinos dos conectores da placa
TSW1250EVM

Sinal Pino da FPGA Conector/Pino

selector[0] C6 J5/2

selector[1] H4 J5/36

selector[2] H5 J5/34

selector[3] G5 J5/32

selector[4] G2 J5/30

output[0] P1 J6/6

output[1] N2 J6/8

output[2] P2 J6/10

output[3] N3 J6/12

output[4] M3 J6/14

output[5] P4 J6/16

output[6] N4 J6/18

output[7] M4 J6/20

output[8] N5 J6/24

output[9] M5 J6/26

output[10] L4 J6/28

output[11] M6 J6/30

output[12] L5 J6/32

output[13] J6 J6/2

output[14] M2 J4/36

24

3.4.4. Geração do clock de amostragem

Para possibilitar a escolha do clock de amostragem do front-end AFE5805 foi

desativado o oscilador de 40 MHz da placa AFE5805EVM e gerado um clock na FPGA por

meio da divisão da frequência do oscilador de 200 MHz da placa TSW1250EVM. Esse sinal

de clock é enviado para a entrada de clock externo da AFE5805EVM por meio de um cabo

adaptado para esse fim. A entrada do clock de 200 MHz é diferencial e o sinal positivo entra

no pino B12 da FPGA, enquanto o sinal negativo entra no pino A11. A saída do clock se dá

no pino C1 da FPGA e no pino 36 do conector J3 da placa.

Nesse projeto, por dificuldades de sincronização e teste, o clock de amostragem

utilizado foi de 20 MHz.

3.4.5. Circuito de paralelização

O circuito de paralelização de cada canal foi desenvolvido a partir dos dados obtidos

na Figura 3.2, a partir dos sinais do clock de dados, clock de quadros e de cada um dos

sinais de dados seriais dos canais. Na Figura 3.4 é apresentado um esquemático explicando

o funcionamento desse circuito.

Para esse desenvolvimento optou-se pela duplicação da frequência do clock de

dados, pois no protocolo de transmissão utilizado obtêm-se os dados tanto na descida

quanto na subida do sinal de clock, o que causa dificuldades na implementação do circuito,

e com a duplicação da frequência pode-se armazenar os dados apenas na subida do clock

duplicado, desde que com a fase ajustada.

Para efetuar a duplicação do clock foi utilizado um gerenciador digital de clock (DCM)

acessível através da primitiva DCM_BASE, configurado por meio da interface gráfica

disponibilizada pelo software de projeto de hardware da Xilinx, o ISE WebPACK (versão

gratuita utilizada no projeto).

Figura 3.4 – Desenho esquemático do circuito de paralelização, com SDATA sendo a
entrada de dados serial e DCLK o clock de dados

25

3.4.6. Fila de dados

Para se montar o beamformer é necessário que se adquira dados com diferentes

atrasos para cada elemento e, para isso, é preciso que se armazenem todos os dados de

cada elemento durante um período de tempo. Esse armazenamento foi feito em hardware

com filas, que são buffers em que o primeiro dado a entrar será o primeiro a sair, chamado

também de FIFO (First In First Out). Tais hardwares possuem 64 posições e palavras de 12

bits e foram utilizados, ao invés de memoria RAM, por ser mais natural programá-los em

VHDL e por permitirem uma maior concorrência na transferência dos dados na fila. Nessas

filas é permitido o acesso a qualquer um de seus valores, com uma entrada externa de 6

bits que fará a seleção da saída do bloco. Na Figura 3.5 é apresentado um esquemático

explicando o funcionamento de uma dessas filas.

Figura 3.5 – Desenho esquemático da fila de dados, com Seletor sendo a entrada seletora
da posição da fila de dados serial e FCLK o clock de quadros

26

3.4.7. Integração dos 8 canais

Quando foram integrados os circuitos de paralelização e buffers dos 8 canais

começaram a surgir problemas de sincronização entre os dados dos canais. O problema foi

diagnosticado como sendo ocasionado pelo fato dos 8 blocos serem divididos em 2 blocos

na FPGA, 5 no topo de 3 na base, causando uma diferença nos atrasos dos sinais dos

circuitos de cada canal. Para solucionar esse problema os circuitos de duplicação da

frequência de clock foram removidos dos paralelizadores e criou-se um único, enviando os

novos sinais de clock para os blocos de paralelização.

A partir desse ponto do projeto começaram a surgir novos problemas de

sincronização entre o clock de quadros e de dados e por isso fez-se necessário o uso de um

gerenciador digital de clock para corrigir a fase do primeiro enquanto o segundo era

corrigido pelo gerenciador responsável por duplicar sua frequência. Na Figura 3.6 pode-se

observar o esquemático do projeto com essas novas alterações, considerando que não há

mais um multiplicador de clock dentro dos paralelizadores.

Figura 3.6 – Desenho esquemático dos 8 canais integrados, com SDATA sendo a entrada de
dados serial e DCLK o clock de dados e FCLK o clock de quadros

3.4.8. Somador

Os valores vindos dos 8 buffers devem ser somados para chegar ao resultado

esperado pelo circuito. Para isso, visando a maior velocidade da soma, foram utilizados os

blocos de DSP inclusos na FPGA utilizada, os blocos XtremeDSP. Foram configurados 7

desses blocos com 3 configurações diferentes, para montar um sistema de soma em 3

27

níveis. O nível superior recebe os dados de 12 bits vindos dos buffers e envia para o

próximo nível de somadores dados de 13 bits que são somados e então enviados dados de

14 bits para o último nível, que gera o resultado final com 15 bits. Nesses 3 níveis, apenas o

somador final possui flip-flops para armazenar o resultado final, para que seja necessário

apenas um pulso de clock para gerar o resultado.

3.4.9. Beamforming

Foram calculados os perfis de atraso necessários para fazer um beamformer de 8

canais. Para isso foi definido um transdutor anular de face plana de 8 elementos de mesma

área, 30 mm de diâmetro, velocidade do som de 1540 m/s (velocidade de propagação média

em tecidos moles) e distância focal variando em 32 níveis entre 20 mm e 120 mm. Para os

cálculos dos atrasos apresentados na Tabela 3.3 foi utilizada a fórmula:

d i=
x 2

Ri
2
−x

c
(1)

onde di é o atraso do elemento i, x a distancia focal, Ri o raio do i-ésimo elemento e c a

velocidade de propagação da onda [ref. 21]. Devido ao fato do transdutor anular utilizado

possuir seus elementos com mesma área ele é um disco de Fresnel [ref. 21] e com isso os

raios dos transdutores são determinados pela fórmula:

R i1= Al

π
Ri

2 , i=0,1 , ... ,N−1 (2)

onde Ri é o raio de cada elemento, Al é a área de cada elemento dada por At/N, At é a área

total da face do transdutor e R0 é o raio central dado por (Al/π)1/2 [ref. 21].

Tabela 3.3 – Perfis de atraso para um transdutor como um de 8 elementos de mesma área,
30 mm de diâmetro, velocidade do som de 1540 m/s e distância focal variando entre 20 mm

e 120 mm

Atrasos para cada elemento (ns)
Distância focal (mm) 1 2 3 4 5 6 7 8
20,0 449 883 1304 1713 2111 2499 2877 3247
23,2 388 767 1137 1498 1852 2199 2538 2872
26,5 342 677 1006 1329 1647 1960 2267 2570
29,7 305 606 902 1194 1482 1765 2045 2322
32,9 276 548 817 1083 1345 1605 1862 2115
36,1 251 500 746 990 1231 1470 1707 1942
39,4 231 460 687 912 1135 1356 1576 1793
42,6 214 426 636 845 1052 1258 1462 1665
45,8 199 396 592 787 981 1173 1364 1554
49,0 186 370 554 736 918 1098 1278 1457
52,3 174 348 520 692 863 1033 1202 1370
55,5 164 328 490 652 814 974 1134 1293
58,7 155 310 464 617 770 922 1074 1225
61,9 147 294 440 585 731 875 1019 1163

28

65,2 140 279 418 557 695 833 970 1107
68,4 133 266 399 531 663 794 925 1056
71,6 127 254 381 507 633 759 884 1009
74,8 122 243 365 486 606 727 847 967
78,1 117 233 350 466 582 697 812 927
81,3 112 224 336 447 559 670 781 891
84,5 108 216 323 430 538 644 751 858
87,7 104 208 311 415 518 621 724 827
91,0 100 200 300 400 500 599 699 798
94,2 97 194 290 387 483 579 675 771
97,4 94 187 281 374 467 560 653 745
100,6 91 181 272 362 452 542 632 722
103,9 88 176 263 351 438 525 613 700
107,1 85 170 255 340 425 510 594 679
110,3 83 165 248 330 413 495 577 659
113,5 80 161 241 321 401 481 561 641
116,8 78 156 234 312 390 468 545 623
120,0 76 152 228 304 380 455 531 606

Para o cálculo dos valores que serão utilizados no projeto os valores da Tabela 3.3

foram multiplicados pela frequência, nesse caso de 20 MHz, e o resultado precisou ser

subtraído de 64 devido ao modo com que foram construídos os buffers. Porém, como a

subtração de 64 resultou em um valor -1 (valor inexistente na implementação) e nenhum

valor 63 (o máximo valor de atraso possível), realizou-se a subtração de 65 invés de 64, já

que isso não afeta o foco, resultando nos valores da Tabela 3.4.

Tabela 3.4 – Dados dos perfis de atraso da Tabela 3.3 convertidos para utilização no projeto

Valores para configuração dos atrasos de cada elemento
Distância focal (mm) 1 2 3 4 5 6 7 8
20,0 56 47 39 31 23 15 7 0
23,2 57 50 42 35 28 21 14 8
26,5 58 51 45 38 32 26 20 14
29,7 59 53 47 41 35 30 24 19
32,9 59 54 49 43 38 33 28 23
36,1 60 55 50 45 40 36 31 26
39,4 60 56 51 47 42 38 33 29
42,6 61 56 52 48 44 40 36 32
45,8 61 57 53 49 45 42 38 34
49,0 61 58 54 50 47 43 39 36
52,3 62 58 55 51 48 44 41 38
55,5 62 58 55 52 49 46 42 39
58,7 62 59 56 53 50 47 44 41
61,9 62 59 56 53 50 47 45 42
65,2 62 59 57 54 51 48 46 43
68,4 62 60 57 54 52 49 46 44
71,6 62 60 57 55 52 50 47 45
74,8 63 60 58 55 53 50 48 46
78,1 63 60 58 56 53 51 49 46
81,3 63 61 58 56 54 52 49 47
84,5 63 61 59 56 54 52 50 48
87,7 63 61 59 57 55 53 51 48

29

91,0 63 61 59 57 55 53 51 49
94,2 63 61 59 57 55 53 52 50
97,4 63 61 59 58 56 54 52 50
100,6 63 61 60 58 56 54 52 51
103,9 63 61 60 58 56 54 53 51
107,1 63 62 60 58 56 55 53 51
110,3 63 62 60 58 57 55 53 52
113,5 63 62 60 59 57 55 54 52
116,8 63 62 60 59 57 56 54 53
120,0 63 62 60 59 57 56 54 53

3.4.10. Saída de dados

A Xilinx recomenda que, quando disponível, se utilize a conexão EMIF (External

Memory Interface) para fazer a comunicação entre os DSPs da Texas Instruments e suas

FPGAs. A EMIF é um protocolo de comunicação feito para que um circuito integrado seja

capaz de acessar uma memória RAM externa e para utilizar esse protocolo no projeto deve-

se criar um bloco de memória RAM na FPGA com os dados que se deseja enviar ao DSP.

Apesar de recomendado pela Xilinx, nesse projeto o EMIF não foi utilizado, pois com

sua utilização seria impossível se testar o funcionamento do beamformer sem que antes se

iniciasse o desenvolvimento do software do DSP TMS320C6455, já que os dados devem ser

requisitados pelo DSP.

Devido a essas questões foi decidido que os dados seriam enviados da FPGA para o

DSP através dos 5 pinos disponíveis na placa de DSP como entrada e saída de uso geral.

Para isso foi criado um protocolo de comunicação em que são enviados 4 sinais de dados e

1 sinal de clock simultaneamente. Nesse protocolo a saída de 15 bits é parcialmente

serializada, sendo completada com mais um bit com valor “0” e dividida em 4 partes de 4

bits. Entre 2 saídas consecutivas é enviado um sinal “1” nos 4 sinais de dados com a

finalidade de sincronizar a comunicação. A Figura 3.7 ilustra o protocolo criado.

30

Figura 3.7 – Protocolo de saída de dados para a placa de processamento de sinais

31

Capítulo 4 – Resultados e Discussões

Nesse capítulo serão apresentados os resultados obtidos por meio das formas de

onda obtidas pelo analisador lógico do osciloscópio DS1102CD, porém, não serão

apresentadas imagens das simulações realizadas pois, apesar de terem sido realizadas no

início do projeto, elas se mostraram falhas quando executado o projeto no hardware real

devido a problemas de sincronização entre os dois clocks utilizados na aquisição dos dados

do projeto.

Todas as formas de ondas obtidas e apresentadas nesse capítulo não são de dados

obtidos de um transdutor, pois esse projeto só visa implementar o sistema de beamforming,

deixando tanto a criação do transdutor quanto a análise dos sinais e geração de imagens de

fora. Sendo assim, os dados de entrada que a placa TSW1250EVM utiliza foram gerados

pela AFE5805 em modo de geração de padrões de teste.

Primeiramente são apresentadas as formas de onda obtidas utilizando somente o

bloco paralelizador. A entrada para esse teste foi um sinal de tipo rampa, pois ele passa por

todos os valores de entrada possíveis, sendo assim ideal para testar o sistema. Nas Figuras

4.1a e 4.1b são apresentadas as formas de onda obtidas, sendo a primeira com uma escala

de tempo maior para mostrar os bits menos significativos (de D0 a D6) e na segunda com

uma escala menor para mostrar os bits mais significativos (D7 a D11).

(a)

32

(b)
Figura 4.1 – Formas de onda do teste do circuito de paralelização, onde os dados da função

rampa são exibidos em (a) com uma escala de tempo maior para a visualização dos bits
menos significativos e em (b) com uma escala de tempo menor para a visualização dos bits

mais significativos

Para testar o funcionamento das filas foi utilizada a mesma configuração do AFE5805

do teste anterior e as formas de onda de um dos últimos elementos da fila são

apresentadas, para que se possa garantir que nenhum dado corrompeu-se no processo.

Nesse teste a seleção do elemento foi feita pela entrada externa da distância focal,

com os sinais, por praticidade, sendo gerados internamente na FPGA, saindo por 4 pinos de

um conector e voltando por outros 4 pinos, e por serem utilizados somente 4 pinos (por não

ser encontrado um cabo com os conectores adequados com 5 pinos) o bit menos

significativo ficou em “0”, alcançando assim somente os valores pares da fila. Sendo assim,

as formas de onda obtidas no penúltimo valor (62) da fila do canal 1 são apresentadas na

Figuras 4.2a e 4.2b do mesmo modo que nas Figuras 4.1.

33

(a)

(b)
Figura 4.2 – Formas de onda do teste da fila de dados, onde os dados da função rampa

adquiridos do penúltimo valor da fila são exibidos em (a) com uma escala de tempo maior
para a visualização dos bits menos significativos e em (b) com uma escala de tempo menor

para a visualização dos bits mais significativos

Para o teste de integração de uma parte do circuito, compreendido pelos 8 canais,

pelo circuito de soma e pelos atrasos diferentes para cada canal, foram realizados 3 testes.

Estes testes foram feitos com o mesmo padrão de configuração do teste das filas, desta vez,

no entanto, a entrada externa do valor do foco não afeta diretamente as filas e sim muda os

valores acessados das filas de acordo com uma tabela de testes previamente gerada, a

Tabela 4.1.

34

Tabela 4.1 – Tabela usada para testes no projeto

Entrada seletora
externa

Posição da fila para cada canal
1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1
1 2 1 2 1 1 2 1 2
2 3 3 3 3 3 3 3 3
3 4 1 4 1 1 4 1 4
4 5 1 5 1 1 5 1 5
5 6 6 6 6 6 6 6 6
6 6 1 6 1 1 6 1 6
7 8 1 8 1 1 8 1 8
8 9 9 9 9 9 9 9 9
9 10 1 10 1 1 10 1 10
10 11 1 11 1 1 11 1 11
11 12 12 12 12 12 12 12 12
12 13 1 13 1 1 13 1 13
13 14 1 14 1 1 14 1 14
14 15 15 15 15 15 15 15 15
15 16 1 16 1 1 16 1 16
16 17 1 17 1 1 17 1 17
17 18 18 18 18 18 18 18 18
18 19 1 19 1 1 19 1 19
19 20 1 20 1 1 20 1 20
20 21 21 21 21 21 21 21 21
21 22 1 22 1 1 22 1 22
22 23 1 23 1 1 23 1 23
23 24 24 24 24 24 24 24 24
24 25 1 25 1 1 25 1 25
25 26 1 26 1 1 26 1 26
26 27 27 27 27 27 27 27 27
27 28 1 28 1 1 28 1 28
28 29 1 29 1 1 29 1 29
29 30 30 30 30 30 30 30 30
30 60 60 60 60 60 60 60 60
31 32 1 32 1 1 32 1 32

No primeiro teste de integração é recebido o valor 2 da entrada seletora externa

fazendo com que, segundo a Tabela 4.1, sejam somados os terceiros valores das filas dos 8

canais e sendo assim, com todos os valores iguais, seria o mesmo que multiplicar a entrada

por 8 que em base binária é o mesmo que fazer um deslocamento triplo a esquerda, como

pode ser visto nas Figuras 4.3.

35

(a)

(b)
Figura 4.3 – Formas de onda do primeiro teste de integração, em que são somados os

terceiros valores das filas dos 8 canais sendo exibidas em (a) com uma escala de tempo
maior para a visualização dos bits menos significativos e em (b) com uma escala de tempo

menor para a visualização dos bits mais significativos

No segundo teste de integração é recebido o valor 30 da entrada seletora externa

fazendo com que, segundo a Tabela 4.1, sejam somados os sexagésimos valores das filas

dos 8 canais e sendo assim, espera-se um resultado como o anterior nas Figuras 4.4.

36

(a)

(b)
Figura 4.4 – Formas de onda do segundo teste de integração somando o sexagésimo valor
da fila de cada um dos canais sendo exibidas em (a) com uma escala de tempo maior para
a visualização dos bits menos significativos e em (b) com uma escala de tempo menor para

a visualização dos bits mais significativos

No terceiro teste de integração é recebido o valor 6 da entrada seletora externa

fazendo com que, segundo a Tabela 4.1, sejam somados os primeiros valores das filas de 4

dos canais e os sextos valores dos outros 4 canais e sendo assim, espera-se um resultado

onde mude em relação ao anterior apenas o sinal D2, que deve ficar em “1” nas Figuras 4.5,

pois as somas de 4*x e 4*(x+5), sendo x um número qualquer, resultam em 4*(x+(x+5)), que

em base binária é (x<<1 + 101)<<2 que pode ser manipulado para chegar a (x+10)<<3 +

100, com a<<b sendo o operador de deslocamento binário a esquerda representando a

sendo deslocado b bits a esquerda.

37

(a)

(b)
Figura 4.5 – Formas de onda do terceiro teste de integração somando o primeiro valor da fila

de metade dos canais e o sexto valor da outra metade sendo exibidas em (a) com uma
escala de tempo maior para a visualização dos bits menos significativos e em (b) com uma

escala de tempo menor para a visualização dos bits mais significativos

Para testar a saída parcialmente serializada apresentada na seção 3.3.11 foi

executado um teste semelhante ao anterior, porém com a inclusão do bloco de formatação

de saída. Na Figura 4.6 os sinais de D0 a D9 são os 10 bits de saída mais significativos

apresentados em paralelo, enquanto os sinais de D11 a D14 são os dados de saída

parcialmente serializados e o sinal D10 é o clock de saída, de acordo com o protocolo de

comunicação proposto.

38

Figura 4.6 – Formas de onda do teste do protocolo comunicação para saída de dados

E como último teste, os dados de teste vindos da Tabela 4.1 foram substituídos pelos

dados da Tabela 3.4 para testar o sistema de beamforming. Nesse teste também foi alterado

o padrão de testes gerado pelo AFE5805 para possibilitar a verificação dos resultados

apresentados e no lugar da função rampa foram utilizados sinais de 12 bits alternando entre

“000000111111” e “111111000000” e o bloco de formatação da saída também foi removido

para facilitar a análise dos resultados. Os resultados para uma distância focal fixa em 32,9

mm é apresentado na Figura 4.7.

Figura 4.7 – Forma de onda obtida no teste do sistema de beamforming

Os dados obtidos na Figura 4.7 foram os esperados, já que para a distancia focal de

32,9 mm existem 3 canais buscando dados nas filas em posições pares e 5 canais

buscando os dados em posições impares, o que resulta em em alguns ciclos a ocorrência

39

de uma saída dada por: 3x“000000111111”+5x“111111000000” que convertendo para base

decimal resultar em 20349, ou “100111101111101” em base binária; e em outros ciclos a

ocorrência de uma saída dada por: 5x “000000111111”+3x “111111000000” que convertendo

para base decimal resulta em 12411, ou “011000001111011” em base binária.

40

Capítulo 5 – Conclusão

Os resultados obtidos ao fim desse projeto foram de acordo com o esperado, porém

como foram utilizados somente dados artificiais, os padrões de teste, não se pôde mensurar

os ganhos que seriam obtidos na aquisição de sinais de ultrassom.

Para esse trabalho foi necessário integrar os conhecimentos adquiridos em várias

disciplinas, como Sistemas Digitais, que permitiu o entendimento da lógica implementada

dentro da FPGA, e Linguagens de Descrição de Hardware, responsável pelo conhecimento

da programação em VHDL utilizada no projeto. Mas nesse projeto outros conhecimentos

foram necessários, que foram adquiridos fazendo um estudo acerca do assunto, como o

funcionamento de um sistema de ultrassom, desde a aquisição dos dados até o seu

processamento, e o que é, como funciona e quais os meios de implementar um sistema de

beamforming, utilizado não só em sistemas de ultrassom mas também em sistemas de

radares e sonares. Outro aprendizado fundamental foi a diferença entre uma simulação e a

real implementação em hardware, onde muitos problemas podem surgir e se torna muito

mais difícil encontrá-los.

Os trabalhos futuros que poderiam ser feitos com relação a esse projeto seriam:

portá-lo para uma placa com uma FPGA mais moderna e de maior desempenho, já que a

Virtex-4 está saindo de linha, para poder utilizar frequências de amostragem de dados

maiores; e principalmente concluir o sistema de ultrassom a partir desse projeto, criando um

transdutor de 8 elementos para a aquisição de sinais reais e fazendo o processamento dos

sinais da saída desse projeto para a geração de imagens.

41

Bibliografia

[1] – BRUNNER, E. How Ultrasound System Considerations Influence Front-End

Component Choice.

Disponível em: <http://www.analog.com/library/analogDialogue/archives/36-

03/ultrasound/index.html>. Acesso em: 06 de novembro de 2010.

[2] – Texas Instruments. AFE5805EVM.

Disponível em: <http://focus.ti.com/lit/ug/slou222b/slou222b.pdf>. Acesso em: 06 de

novembro de 2010.

[3] – Texas Instruments. TSW1250EVM: High-Speed LVDS Deserializer and Analysis

System User's Guide.

Disponível em: <http://focus.ti.com/lit/ug/slou260c/slou260c.pdf>. Acesso em: 06 de

novembro de 2010.

[4] - SPRAWLS, P. Ultrasound Production and Interactions.

Disponível em: <http://www.sprawls.org/ppmi2/USPRO/>. Acesso em: 06 de novembro de

2010.

[5] – Som.

Disponível em: <http://pt.wikipedia.org/wiki/Som>. Acesso em: 06 de novembro de 2010.

[6] – PÉCORA, J. D.,GUERISOLI, D. M. Z. Ultra-som.

Disponível em: <http://www.forp.usp.br/restauradora/us01.htm>. Acesso em: 06 de

novembro de 2010.

[7] – KINSLER, L. E. et AL. Fundamentals of acoustics. 4thed. New York: John Wiley ands

Sons, 1999.

[8] – LEE, J. J. Formação e processamento de imagens de ultrassom. 2010. Dissertação

de mestrado – Departamento de Engenharia Elétrica, Escola de Engenharia de São Carlos,

Universidade de São Paulo, 2010.

[9] – Honda Electronics. Piezoelectric Ceramics.

Disponível em: <http://www.honda-el.co.jp/ufile/file/249.pdf>. Acesso em: 06 de novembro de

2010.

[10] – Ultrasonic sensor.

Disponível em: <http://en.wikipedia.org/wiki/Ultrasonic_sensor>. Acesso em: 06 de

novembro de 2010.

42

[11] – VHDL.

Disponível em: <http://en.wikipedia.org/wiki/VHDL>. Acesso em: 06 de novembro de 2010.

[12] – Field-Programmable gate array.

Disponível em: <http://en.wikipedia.org/wiki/Field-programmable_gate_array>. Acesso em:

06 de novembro de 2010.

[13] – ARAÚJO, A. A. et al. Programa Nacional de Microeletrônica, Contribuições para a

formulação de um Plano Estruturado de Ações.

Disponível em: <http://www.ci-brasil.gov.br/index2.php?

option=com_docs&task=download&id=57&field=doc1&no_html=1>. Acesso em: 06 de

novembro de 2010.

[14] – Xilinx.

Disponível em: <http://en.wikipedia.org/wiki/Xilinx>. Acesso em: November 06, 2010.

[15] – Xilinx. Virtex-4 Family Overview.

Disponível em: <http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf>.

Acesso em: 06 de novembro de 2010.

[16] – Xilinx. Virtex-4 FPGA User Guide.

Disponível em: <http://www.xilinx.com/support/documentation/user_guides/ug070.pdf>.

Acesso em: 06 de novembro de 2010.

[17] – Texas Instruments. ADSDeSer-50EVM Evaluation Module.

Disponível em: <http://focus.ti.com/lit/ug/sbau091/sbau091.pdf>. Acesso em: 06 de

novembro de 2010.

[18] – Texas Instruments. FULLY-INTEGRATED, 8-CHANNEL ANALOG FRONT-END FOR

ULTRASOUND 0.85nV/√Hz, 12-Bit, 50MSPS, 122mW/Channel.

Disponível em: http://focus.ti.com/lit/ds/symlink/afe5805.pdf. Acesso em: 06 de novembro de

2010.

[19] – Texas Instruments. TMS320C6455 Fixed-Point Digital Signal Processor.

Disponível em: <http://pdf1.alldatasheet.com/datasheet-

pdf/view/106954/TI/TMS320C6455.html>. Acesso em: 06 de novembro de 2010.

[20] – Xilinx. Virtex-4 Libraries Guide for HDL Designs.

 Disponível em: <http://www.xilinx.com/itp/xilinx8/books/docs/v4ldl/v4ldl.pdf>. Acesso em: 06

de novembro de 2010.

43

[21] – ENDO, W. et al. Projeto, simulação e caracterização de um transdutor de arranjo

anular com focalização dinâmica. 2010, Bonito-MS. XVIII Congresso Brasileiro de

Automática, 2010. v. 1. p. 656-662.

44

Anexos

Códigos VHDL de cada módulo do projeto

Módulo de interface (principal)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
Library UNISIM;
use UNISIM.vcomponents.all;

entity main_unit is
GENERIC (N : integer := 64;

M : integer := 32);
 Port (clk200p : in STD_LOGIC;

 clk200n : in STD_LOGIC;
 sampleclk : out STD_LOGIC;
 saidatesteselector : out STD_LOGIC_VECTOR (3 downto 0); --para testar entrada

selector
 chp : in STD_LOGIC_VECTOR (8 downto 1);

 chn : in STD_LOGIC_VECTOR (8 downto 1);
 fclkp : in STD_LOGIC;
 fclkn : in STD_LOGIC;
 dclkp : in STD_LOGIC;
 dclkn : in STD_LOGIC;
 selector : in INTEGER range 0 to M-1;
 output : out STD_LOGIC_VECTOR (14 downto 0));
end main_unit;

architecture Behavioral of main_unit is
type auxtype is array (8 downto 1) OF STD_LOGIC_VECTOR (11 downto 0);
signal clk200 : STD_LOGIC;
signal clk200cnt : integer range 0 to 19 := 0;
signal ch : STD_LOGIC_VECTOR (8 downto 1);
signal fclk : STD_LOGIC;
signal dclk : STD_LOGIC;
signal aux : STD_LOGIC_VECTOR (14 downto 0);
signal ready : STD_LOGIC;

component selector_unit is
GENERIC (N : integer := 64;

M : integer := 32);
 Port (clk200 : in STD_LOGIC;

 fclk : in STD_LOGIC;
 dclk : in STD_LOGIC;
 input : in STD_LOGIC_VECTOR (8 downto 1);
 selector : in INTEGER range 0 to M-1;
 ready : out STD_LOGIC;
 output : out STD_LOGIC_VECTOR (14 downto 0));

end component selector_unit;
begin

---- bloco do divisor de clock de 200mhz para 20mhz
IBUFDS_clk200 : IBUFDS

 generic map (
 IOSTANDARD => "LVDS_25")
 port map (
 O => clk200, -- Clock buffer output
 I => clk200p, -- Diff_p clock buffer input

45

 IB => clk200n -- Diff_n clock buffer input
);

process (clk200)
begin

if (clk200'event AND clk200='1') then
if (clk200cnt < 5) then

sampleclk <= '1';
clk200cnt <= clk200cnt + 1;

elsif (clk200cnt < 9) then
sampleclk <= '0';
clk200cnt <= clk200cnt + 1;

else
sampleclk <= '0';
clk200cnt <= 0;

end if;
end if;

end process;
---- fim do bloco do divisor de clock

---- bloco de conversoes LVDS -> serial
IBUFDS_channels: FOR i IN ch'RANGE GENERATE
BEGIN

IBUFDS_channel : IBUFDS
generic map (

IOSTANDARD => "LVDS_25")
port map (

O => ch(i), -- Clock buffer output
I => chp(i), -- Diff_p clock buffer input
IB => chn(i) -- Diff_n clock buffer input

);
END GENERATE IBUFDS_channels;

IBUFDS_fclk : IBUFDS

 generic map (
 IOSTANDARD => "LVDS_25")
 port map (
 O => fclk, -- Clock buffer output
 I => fclkp, -- Diff_p clock buffer input
 IB => fclkn -- Diff_n clock buffer input
);

IBUFDS_dclk : IBUFDS

 generic map (
 IOSTANDARD => "LVDS_25")
 port map (
 O => dclk, -- Clock buffer output
 I => dclkp, -- Diff_p clock buffer input
 IB => dclkn -- Diff_n clock buffer input
);
---- fim bloco de conversoes LVDS -> serial

selector1 : selector_unit

generic map (N => N,
M => M)

port map (
clk200 => clk200,
fclk => fclk,
dclk => dclk,
input => ch,
selector => selector,
ready => ready,
output => aux

);

saidatesteselector <= "0010"; --saida usada para teste do da entrada selector

46

output(14 downto 0) <= aux(14 downto 0);

end Behavioral;

Módulo de integração

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

Library UNISIM;
use UNISIM.vcomponents.all;

use types.ALL;

entity selector_unit is
GENERIC (N : integer := 64;

M : integer := 32);
 Port (clk200 : in STD_LOGIC;

 fclk : in STD_LOGIC;
 dclk : in STD_LOGIC;
 input : in STD_LOGIC_VECTOR (8 downto 1);

 selector : in INTEGER range 0 to M-1;
 ready : out STD_LOGIC;

 output : out STD_LOGIC_VECTOR (14 downto 0));
end selector_unit;

architecture Behavioral of selector_unit is
TYPE selvectype is array (8 downto 1) of INTEGER range 0 to N-1;
signal aux : array8por12 := (others => (others => '0'));
signal sel_vector : selvectype;
signal dclk2x : STD_LOGIC;
signal fclk90, fclk180, fclk270, CLK0, fclk0, dclk2xlock : STD_LOGIC;
signal RST : STD_LOGIC := '1';
signal outputaux : STD_LOGIC_VECTOR (14 downto 0);
signal fclkphase, fclkphase2x, fclkphase180, fclkphaselock : STD_LOGIC;
signal posfclk : STD_LOGIC := '0';
signal resetcounter : integer range 0 to 20 := 0;
signal preoutput : STD_LOGIC_VECTOR (19 downto 0);
signal csaida : integer range 0 to 5 := 5;
signal clk100, clk100lock : STD_LOGIC;

component buffer_unit

GENERIC (N : integer := 64;
M : integer := 32);

 Port (sdata : in STD_LOGIC;
fclk : in STD_LOGIC;
fclkphase : in STD_LOGIC;
fclkphaselock : in STD_LOGIC;
dclk2x : in STD_LOGIC;
dclk2xlock : in STD_LOGIC;
selector : in INTEGER range 0 to M-1;
output : inout STD_LOGIC_VECTOR (11 downto 0));

end component buffer_unit;

component sum8_unit

 Port (ch : in array8por12;
 fclk : in STD_LOGIC;
 dclk : in STD_LOGIC;
 ready : out STD_LOGIC;

47

 output : out STD_LOGIC_VECTOR (14 downto 0));
end component sum8_unit;

COMPONENT dclk2x_unit
PORT(

CLKIN_IN : IN std_logic;
RST_IN : IN std_logic;
CLK0_OUT : OUT std_logic;
CLK2X_OUT : OUT std_logic;
LOCKED_OUT : OUT std_logic
);

END COMPONENT;

COMPONENT fclkphase_unit
PORT(

CLKIN_IN : IN std_logic;
RST_IN : IN std_logic;
CLK0_OUT : OUT std_logic;
CLK2X_OUT : OUT std_logic;
CLK180_OUT : OUT std_logic;
LOCKED_OUT : OUT std_logic
);

END COMPONENT;

COMPONENT clk100_unit
PORT(

CLKIN_IN : IN std_logic;
RST_IN : IN std_logic;
CLKDV_OUT : OUT std_logic;
CLK0_OUT : OUT std_logic;
LOCKED_OUT : OUT std_logic
);

END COMPONENT;

TYPE tabletype IS array (0 to M-1, 1 to 8) OF INTEGER range 0 to N-1;
signal table : tabletype :=

(
(56, 47, 39, 31, 23, 15, 7, 0), --foco=20mm
(57, 50, 42, 35, 28, 21, 14, 8),
(58, 51, 45, 38, 32, 26, 20, 14),
(59, 53, 47, 41, 35, 30, 24, 19),
(59, 54, 49, 43, 38, 33, 28, 23),
(60, 55, 50, 45, 40, 36, 31, 26),
(60, 56, 51, 47, 42, 38, 33, 29),
(61, 56, 52, 48, 44, 40, 36, 32),
(61, 57, 53, 49, 45, 42, 38, 34),
(61, 58, 54, 50, 47, 43, 39, 36),
(62, 58, 55, 51, 48, 44, 41, 38),
(62, 58, 55, 52, 49, 46, 42, 39),
(62, 59, 56, 53, 50, 47, 44, 41),
(62, 59, 56, 53, 50, 47, 45, 42),
(62, 59, 57, 54, 51, 48, 46, 43),
(62, 60, 57, 54, 52, 49, 46, 44),
(62, 60, 57, 55, 52, 50, 47, 45),
(63, 60, 58, 55, 53, 50, 48, 46),
(63, 60, 58, 56, 53, 51, 49, 46),
(63, 61, 58, 56, 54, 52, 49, 47),
(63, 61, 59, 56, 54, 52, 50, 48),
(63, 61, 59, 57, 55, 53, 51, 48),
(63, 61, 59, 57, 55, 53, 51, 49),
(63, 61, 59, 57, 55, 53, 52, 50),
(63, 61, 59, 58, 56, 54, 52, 50),
(63, 61, 60, 58, 56, 54, 52, 51),
(63, 61, 60, 58, 56, 54, 53, 51),
(63, 62, 60, 58, 56, 55, 53, 51),
(63, 62, 60, 58, 57, 55, 53, 52),
(63, 62, 60, 59, 57, 55, 54, 52),

48

(63, 62, 60, 59, 57, 56, 54, 53),
(63, 62, 60, 59, 57, 56, 54, 53) --foco=120mm

);

begin

buffers: FOR i IN input'RANGE GENERATE
BEGIN

buffer1: buffer_unit
generic map (

N => N,
M => M)

port map(
sdata => input(i),
fclk => fclk,
fclkphase => fclkphase180,
fclkphaselock => fclkphaselock,
dclk2x => dclk2x,
dclk2xlock => dclk2xlock,
selector => sel_vector(i),
output => aux(i)

);
END GENERATE buffers;

selection: FOR i IN input'RANGE GENERATE
BEGIN

sel_vector(i) <= table(selector,i);
END GENERATE selection;

sum8 : sum8_unit
port map (

ch => aux,
fclk => fclkphase,
dclk => dclk,
ready => open,
output => outputaux

);

output(9 downto 0) <= outputaux(14 downto 5);

--saida dividida em 4 partes de 4 bits enviando os bits mais significativos primeiro
--as 4 partes enviadas são precedidas por "1111" para sincronia
preoutput(19 downto 15) <= "11110";
process (clk100)
begin

if (clk100'event and clk100='0') then
output(14 downto 11) <= preoutput(4*csaida+3 downto 4*csaida);
if (csaida > 0) then

csaida <= csaida - 1;
else

csaida <= 4;--5
preoutput(14 downto 0) <= outputaux;

end if;
end if;

end process;
output(10) <= clk100;

--geracao do sinal de reset para os geradores de clock
process (fclk)
begin

if (fclk'event AND fclk='1') then
if (resetcounter < 20) then

resetcounter <= resetcounter + 1;
RST <= '1';

else
resetcounter <= 20;
RST <= '0';

49

end if;
end if;

end process;

--geracao do clock dclk x 2
Inst_dclk2x_unit: dclk2x_unit PORT MAP(

CLKIN_IN => dclk,
RST_IN => RST,
CLK0_OUT => OPEN,
CLK2X_OUT => dclk2x,
LOCKED_OUT => dclk2xlock

);

--geracao do clock fclk defasado
Inst_fclkphase_unit: fclkphase_unit PORT MAP(

CLKIN_IN => fclk,
RST_IN => RST,
CLK0_OUT => fclkphase,
CLK2X_OUT => fclkphase2x,
CLK180_OUT => fclkphase180,
LOCKED_OUT => fclkphaselock

);

--geracao do clock de 100mhz para a saida serial
Inst_clk100_unit: clk100_unit PORT MAP(

CLKIN_IN => clk200,
RST_IN => RST,
CLKDV_OUT => clk100,
CLK0_OUT => open,
LOCKED_OUT => clk100lock

);

end Behavioral;

Módulo da fila

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity buffer_unit is
GENERIC (N : integer := 64;

M : integer := 32);
Port (sdata : in STD_LOGIC;

fclk : in STD_LOGIC;
fclkphase : in STD_LOGIC;
fclkphaselock : in STD_LOGIC;

 dclk2x : in STD_LOGIC;
dclk2xlock : in STD_LOGIC;
selector : in INTEGER range 0 to M-1;
output : out STD_LOGIC_VECTOR (11 downto 0));

end buffer_unit;

architecture Behavioral of buffer_unit is
signal pdata : STD_LOGIC_VECTOR (11 downto 0);
type buffertype is array (N-1 downto 0) of STD_LOGIC_VECTOR (11 downto 0);
signal buffer_vector : buffertype;
signal ready : STD_LOGIC;

component deserializer
Port (sdata : in STD_LOGIC;

fclk : in STD_LOGIC;

50

fclkphase : in STD_LOGIC;
 fclkphaselock : in STD_LOGIC;

 dclk2x : in STD_LOGIC;
 dclk2xlock : in STD_LOGIC;

ready : out STD_LOGIC;
pdata : out STD_LOGIC_VECTOR (11 downto 0));

end component deserializer;
begin

deserializer1:
deserializer port map(

sdata => sdata,
fclk => fclk,
fclkphase => fclkphase,
fclkphaselock => fclkphaselock,
dclk2x => dclk2x,
dclk2xlock => dclk2xlock,
ready => ready,
pdata => pdata

);

process (ready,selector)
begin

if (ready'event AND ready='1') then
buffer_vector(N-1 downto 1) <= buffer_vector(N-2 downto 0);
buffer_vector(0) <= pdata;

end if;
output <= buffer_vector(selector);

end process;

end Behavioral;

Módulo do circuito paralelização

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

Library UNISIM;
use UNISIM.vcomponents.all;

entity deserializer is
 Port (sdata : in STD_LOGIC;
 fclk : in STD_LOGIC;

 fclkphase : in STD_LOGIC;
 fclkphaselock : in STD_LOGIC;

 dclk2x : in STD_LOGIC;
 dclk2xlock : in STD_LOGIC;
 ready : inout STD_LOGIC;

 pdata : inout STD_LOGIC_VECTOR (11 downto 0));
end deserializer;

architecture Behavioral of deserializer is
signal delay_pdata : STD_LOGIC_VECTOR (10 downto 0);
signal counter : integer range 0 to 11 := 0;
signal readyaux : STD_LOGIC := '1';
signal dclk2xAux : STD_LOGIC := '0';
signal CLK0 : STD_LOGIC;
signal RST : STD_LOGIC := '1';

begin

process (dclk2x)

51

begin
if (dclk2x'event AND dclk2x='0') then

pdata(0) <= pdata(1);
pdata(1) <= pdata(2);
pdata(2) <= pdata(3);
pdata(3) <= pdata(4);
pdata(4) <= pdata(5);
pdata(5) <= pdata(6);
pdata(6) <= pdata(7);
pdata(7) <= pdata(8);
pdata(8) <= pdata(9);
pdata(9) <= pdata(10);
pdata(10) <= pdata(11);
pdata(11) <= sdata;

end if;
end process;

ready <= fclkphase;

end Behavioral;

Módulo de soma

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

use work.types.ALL;

entity sum8_unit is
 Port (ch : in array8por12;

 fclk : in STD_LOGIC;
 dclk : in STD_LOGIC;
 ready : out STD_LOGIC;

 output : out STD_LOGIC_VECTOR (14 downto 0));
end sum8_unit;

architecture Behavioral of sum8_unit is
signal auxout : array7por15 := (others => (others => '0'));
signal caux : integer range 0 to 5 := 0;
signal counter : integer range 0 to 5 := 0;
signal resultenable : STD_LOGIC := '0';
signal sumclk : STD_LOGIC_VECTOR (3 downto 1) := "000";
signal nfclk : STD_LOGIC;
signal posfclk : STD_LOGIC := '0';
signal readyaux : STD_LOGIC := '0';

COMPONENT suml1_unit
PORT(

a : IN std_logic_vector(11 downto 0);
b : IN std_logic_vector(11 downto 0);
s : OUT std_logic_vector(12 downto 0)
);

END COMPONENT;

COMPONENT suml2_unit
PORT(

a : IN std_logic_vector(12 downto 0);
b : IN std_logic_vector(12 downto 0);
s : OUT std_logic_vector(13 downto 0)
);

END COMPONENT;

52

COMPONENT suml3_unit
PORT(

a : IN std_logic_vector(13 downto 0);
b : IN std_logic_vector(13 downto 0);
clk : IN std_logic;
s : OUT std_logic_vector(14 downto 0)
);

END COMPONENT;

-- Synplicity black box declaration
attribute syn_black_box : boolean;
attribute syn_black_box of suml1_unit: component is true;
attribute syn_black_box of suml2_unit: component is true;
attribute syn_black_box of suml3_unit: component is true;

begin

sumsl1 : FOR i IN 4 downto 1 GENERATE
BEGIN

suml1 : suml1_unit
port map (

a => ch(2*i)(11 downto 0),
b => ch(2*i-1)(11 downto 0),
s => auxout(i+4)(12 downto 0)

);
END GENERATE sumsl1;

sumsl2 : FOR i IN 2 downto 1 GENERATE
BEGIN

suml2 : suml2_unit
port map (

a => auxout(2*i+4)(12 downto 0),
b => auxout(2*i+3)(12 downto 0),
s => auxout(i+2)(13 downto 0)

);
END GENERATE sumsl2;

sumsl3 : suml3_unit

port map (
a => auxout(4)(13 downto 0),
b => auxout(3)(13 downto 0),
clk => fclk,----------
s => auxout(2)(14 downto 0)

);

output <= auxout(2);

end Behavioral;

	Resumo
	Abstract
	Glossário
	Capítulo 1 – Introdução
	1.1. Objetivos
	1.2. Estrutura da monografia

	Capítulo 2 – Teoria
	2.1. Ultrassom
	2.2. Transdutor
	2.2.1. Foco
	2.2.2. Focalização dinâmica

	Capítulo 3 – Materiais e Métodos
	3.1. VHDL
	3.2. FPGA
	3.3. Hardware utilizado
	3.3.1. Placa de Aquisição AFE5805EVM
	3.3.2. Protocolo de comunicação da saída LVDS
	3.3.3. Placa de análise LVDS TSW1250EVM
	3.3.4. Placa de processamento de sinais TMS320C6455 DSK-MI

	3.4. Implementação
	3.4.1. Definição das conexões com a FPGA
	3.4.2. Entrada de dados LVDS
	3.4.3. Desenvolvimento da interface entre placa e FPGA
	3.4.4. Geração do clock de amostragem
	3.4.5. Circuito de paralelização
	3.4.6. Fila de dados
	3.4.7. Integração dos 8 canais
	3.4.8. Somador
	3.4.9. Beamforming
	3.4.10. Saída de dados

	Capítulo 4 – Resultados e Discussões
	Capítulo 5 – Conclusão
	Bibliografia
	Anexos
	Códigos VHDL de cada módulo do projeto
	Módulo de interface (principal)
	Módulo de integração
	Módulo da fila
	Módulo do circuito paralelização
	Módulo de soma

