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Resumo

Nesse projeto temos a finalidade de criar um beamformer de 8 canais para ser utilizado em 

um sistema de ultrassom com focalização dinâmica utilizando como base duas placas fornecidas 

pelas  Texas Instruments,  um  front-end de ultrassom  AFE5805EVM e uma placa destinada a 

testar esse front-end, a TSW1250EVM. 

O método empregado foi o de modificar o funcionamento da TSW1250EVM por meio da 

alteração do código da FPGA modelo Virtex-4 VLX25 implementando um algoritmo de focalização 

por atraso e soma. Para que o sistema fosse funcional foi também desenvolvida uma interface de 

alta  velocidade  para  que  os  dados  gerados  pelo  sistema  fossem  enviados  para  a  placa  de 

processamento de sinais TMS320C6455 DSK-MI para posterior análise.
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Abstract

In this project we aim to create a 8-channel beamformer to be used in a ultrasound 

system with dynamic focus using two boards provided by  Texas Instruments as base, an 

ultrasound  front-end  AFE5805EVM and  a  board  designed  to  test  this  front-end,  the 

TSW1250EVM.

The method used was to modify the operation of  TSW1250EVM by changing the 

code of the FPGA, whose model is Virtex-4 VLX25, implementing a focalisation algorithm by 

delay and summation. To assure that the system is functional, a high-speed interface has 

also developed to send the generated data to the signal processing board  TMS320C6455 

DSK-MI for further analysis
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Glossário

ASIC: circuito integrado desenvolvido para executar uma tarefa especifica

Beamformer: sistema que implementa a técnica de beamforming

Beamforming: técnica de processamento de sinais usada em arranjos de sensores 

para transmissão ou recepção direcional de sinais

Buffer: região de memória temporária

DCLK: sinal do clock de dados

DSP: processador otimizado para o processamento de sinais digitais

EEPROM: um tipo de memória não-volátil

FCLK: sinal do clock de palavras

FPGA: dispositivo  de  lógica  programável  capaz  de  ter  seu  funcionamento 

modificado quando desejado

Front-end: sistema responsável pelos estágios iniciais de um processo, no caso 

de um front-end de ultrassom ele é responsável por fazer a aquisição 

dos dados ultrassônicos

JTAG: porta  amplamente  utilizada  para  depuração  e  programação  de 

circuitos

LVDS: padrão de comunicação diferencial com sinais de baixa tensão

VHDL: linguagem de projeto de circuitos e implementação de circuitos digitais
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Capítulo 1 – Introdução

O ultrassom é uma onda mecânica em uma frequência superior as captadas pelo 

ouvido humano, sendo assim ondas com frequências superiores a 20 kHz. O maior uso do 

ultrassom  é  na  geração  de  imagens  de  ultrassonografia,  que  consiste  na  geração  de 

imagens a partir da análise dos ecos das ondas ultrassônicas com frequências geralmente 

na faixa de 1 MHz a 15 MHz [ref. 1].

A geração das ondas ultrassônicas e a captura de seus ecos são feitas por meio de 

transdutores ultrassônicos. Entre os transdutores, existem os focalizados, capazes de obter 

uma melhor qualidade na aquisição de sinais na sua zona focal e consequentemente uma 

maior resolução nas imagens geradas desta região, porém, como essa zona focal é limitada, 

a região ideal de aquisição de sinais também é. Esse problema pode ser resolvido com um 

transdutor de múltiplos elementos aliado a um sistema de beamforming capaz de ajustar a 

zona  focal  desejada  através  da  defasagem  dos  sinais  capturados  pelos  diferentes 

elementos do transdutor [ref. 1].

1.1. Objetivos

O principal objetivo desse trabalho foi  a construção de um  beamformer utilizando 

uma arquitetura fornecida pela  Texas Instruments1 como sistema de desenvolvimento. A 

arquitetura original [ref. 2 e ref. 3], representada na Figura 1.1 com um diagrama de blocos 

do fluxos de dados, segue uma abordagem de osciloscópio onde se escolhe individualmente 

cada canal que se pretende converter. A nossa proposta foi implementar  um beamformer 

com 8 canais para aplicações em transdutores anulares para o controle de profundidade de 

forma dinâmica.

Figura 1.1 – Diagrama de blocos do fluxo de dados da arquitetura original do sistema

A placa  AFE5805EVM é  um  front-end de ultrassom de 8 canais  com uma saída 

diferencial serial para cada um desses canais para a placa TSW1250EVM, que é uma placa 

1 http://www.ti.com/
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com um circuito de paralelização implementado em uma FPGA (Field Programmable Gate 

Array). Essa FPGA pode ser reprogramada para atender aos objetivos do projeto, criando o 

sistema de beamforming.

Os objetivos específicos foram:

• Estudar sistemas de ultrassom e suas implementações;

• Estudar a documentação das placas AFE5805EVM e TSW1250EVM e propor 

uma nova revisão do projeto de forma a se poder implementar algoritmos de 

focalização dinâmica;

• Implementar o algoritmo de focalização por atraso e soma em dispositivos de 

lógica programável do tipo FPGA;

• Transferir  os  dados  da  FPGA para  a  placa  de  processamento  de  sinais 

digitais  (digital  signal  processor)  da  Texas  Instruments modelo 

TMS320C6455 DSK-MI.

1.2. Estrutura da monografia

Os demais capítulos serão divididos da seguinte forma:

• Capítulo 2 – Neste capítulo será apresentada toda a teoria necessária para o 

entendimento e implementação do sistema;

• Capítulo  3  –  Neste  capítulo  serão  apresentados  as  ferramentas  e 

equipamentos utilizados no projeto, bem como o método empregado;

• Capítulo  4  –  Neste  capítulo  serão apresentados  os  resultados  obtidos  no 

projeto assim como uma discussão sobre eles;

• Capítulo 5 – Neste último capítulo estão descritas as conclusões obtidas com 

o término do projeto.
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Capítulo 2 – Teoria

Nesse capítulo serão explicados os seguintes tópicos teóricos relacionados a esse 

projeto: ultrassom, transdutores, foco em transdutores e sistemas de focalização dinâmica 

em transdutores com múltiplos elementos.

2.1. Ultrassom

O som é uma onda mecânica capaz de transferir energia de um ponto a outro [ref. 4]. 

Sendo uma onda mecânica, o som necessita de um meio material para ser transmitido [ref. 

5],  como sólidos,  líquidos  e  gases.  Desta  forma,  não  é  possível  a  transferência  dessa 

energia no vácuo.

As  ondas  mecânicas  podem  ser  classificadas  em  dois  tipos,  longitudinais  e 

transversais [ref. 6] ou pela sua combinação. Nas ondas longitudinais, as quais ocorrem em 

meios sólidos, líquidos ou gasosos, as vibrações se dão na mesma direção da propagação 

da onda,  enquanto nas ondas transversais,  que ocorrem somente em meios sólidos,  as 

vibrações são perpendiculares a direção de propagação da onda [ref. 7].

Uma das mais importantes características da onda mecânica é a sua frequência. A 

unidade  básica  de  medida  da  frequência  é  o  hertz (Hz),  que  representa  o  número  de 

vibrações, ou ciclos, da onda por segundo.

O sistema auditivo humano não é sensível a toda a gama de frequências existentes, 

sendo capaz de ouvir em geral frequências entre 20 Hz e 20 kHz  . Desse modo, as ondas 

mecânicas com frequência superior a 20 kHz são consideradas ondas ultrassônicas. Em 

sistemas de diagnóstico por ultrassom costumam ser utilizadas ondas entre 1 MHz e 15 

MHz [ref. 4].

Outra  característica  importante  das  ondas  ultrassônicas  é  a  sua  velocidade  de 

propagação em diferentes meios. Esta sofre uma grande variação dependendo do material 

onde  está  sendo  aplicada  [ref.  6].  Na  Tabela  2.1  são  apresentadas  as  velocidades  de 

propagação para diferentes materiais.

Tabela 2.1 – Velocidade de propagação da onda [ref. 6 e ref. 8]

Meio Velocidade (m/s)

Ar (20°C) 344

Água (20°C) 1480

Sangue 1570

Gordura 1460
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Músculo 1580

Osso 3500

Tecido mole (média) 1540

2.2. Transdutor

Um transdutor é um dispositivo que converte um tipo de energia para outro [ref. 6]. O 

transdutor ultrassônico é responsável pela geração das ondas ultrassônicas, o qual tanto 

converte energia elétrica em energia mecânica quanto energia mecânica em elétrica [ref. 6]. 

Esses transdutores são feitos com materiais piezoelétricos como, por exemplo, o cristal de 

quartzo ou cerâmicas como o PZT [ref. 9].

Esses  materiais  apresentam  o  chamado  efeito  piezoelétrico,  o  que  significa  que 

quando aplicado um campo elétrico sobre eles ocorre uma variação nas dimensões suas 

dimensões [ref. 6]. O efeito contrário também ocorre, quando é aplicada uma pressão sobre 

esses materiais é possível detectar campos elétricos sobre os mesmos.

Os materiais piezoelétricos podem ser cortados de forma que a aplicação de campos 

elétricos causem a variação de sua espessura e serem usados como transdutores [ref. 6].

Dependendo  da  construção  do  transdutor  e  da  aplicação  de  um campo elétrico 

alternado com a frequência adequada é possível gerar-se ondas de ultrassom. Esse mesmo 

transdutor criado também pode fazer as leituras dos sinais gerados pelos ecos, que após a 

amplificação podem ser apresentados num osciloscópio ou feito um processamento para a 

geração de imagens [ref. 4].

2.2.1. Foco

Os transdutores podem ser desenvolvidos de modo que produzam um feixe de onda 

de ultrassom tanto não focalizado, onde existe uma região que apresenta um foco natural 

difuso que varia de acordo com o diâmetro do transdutor e o comprimento de onda no meio, 

como  na  Figura  2.1a,  quanto  focalizado,  como  na  Figura  2.1b.  Os  feixes  focalizados 

costumam ser os mais usados para a geração de imagens pois ele produz imagens com 

mais detalhes na zona focal, devido a menor largura do feixe de ultrassom e maior relação 

sinal-ruído.
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(a)

(b)
Figura 2.1 – (a) Campo acústico de onda ultrassônica de 4 MHz em água de um transdutor 

circular com 10 mm de diâmetro (b) Campo acústico de onda ultrassônica de 4 MHz em 
água de um transdutor circular com 10 mm de diâmetro e foco a 30 mm [ref. 10]

O  uso  do  foco  gera  uma  imagem  melhor  na  zona  focal  mas  devido  a  rápida 

divergência  do  campo  obtêm-se  imagens  com  pior  qualidade  fora  desta  região.  Este 

problema pode ser solucionado com o uso de transdutores de foco variável ou focalização 

dinâmica no lugar dos transdutores de foco fixo.

2.2.2. Focalização dinâmica

Para  a  focalização  dinâmica  dos  feixes  de  ultrassom  é  necessário  que  os 

transdutores  utilizados  sejam  compostos  por  mais  de  um  elemento  posicionados 

tradicionalmente em um arranjo linear ou anular [ref. 4]. A diferença entre os dois tipos de 

arranjos é que no linear o feixe é focalizado em duas dimensões, enquanto no anular em 

apenas uma, sobre o seu eixo. O arranjo linear é o mais usado para geração de imagens, 

enquanto o anular precisa ser movimentado mecanicamente (além do foco) para se gerar as 

imagens.

Os  sistemas  de  focalização  dinâmica  tanto  operam  na  transmissão  quanto  na 

recepção. 

Na  transmissão  os  pulsos  elétricos  são  enviados  com atrasos  entre  os  diversos 

elementos. Primeiro os pulsos para o(s) elemento(s) mais externo(s) e posteriormente para 

os mais internos [ref. 4]. O atraso entre os envios para cada elemento varia conforme as 

dimensões do transdutor e a distância focal  desejada.  Na Figura 2.2 é apresentado um 
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exemplo do funcionamento de um sistema como este.

Figura 2.2 – Sistema de ultrassom com focalização por transmissão ajustável [ref. 4]

Já na recepção os pulsos ultrassônicos são primeiramente recebidos no elemento 

mais central  e posteriormente nos mais externos devido à velocidade de propagação da 

onda  no  meio  ser  constante.  Como  se  pode  observar  na  Figura  2.3  os  ecos  chegam 

primeiramente nos elementos centrais. Assim como no caso da focalização com ajuste de 

transmissão  os  atrasos  entre  as  recepções  de  cada  elemento  varia  de  acordo  com as 

dimensões do transdutor e a distância focal pretendida [ref. 4].

Figura 2.3 – Sistema de ultrassom com focalização por recepção dinâmica
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Existem  dois  modos  de  se  implementar  um  sistema  de  focalização  dinâmica 

operando  na  recepção:  o  sistema  de  ultrassom  com  beamforming  analógico  e  o  com 

beamforming digital [ref. 1]. Ambos os modos de implementação necessitam que seja criado 

um atraso diferente para cada elemento, dependendo de onde se deseja focalizar, e que 

após os atrasos os valores de cada canal sejam somados.

Para  o  sistema analógico  (Figura  2.4a)  é  necessária  a  implementação  analógica 

tanto dos circuitos de atrasos ajustáveis quanto do somador, porém é necessário apenas um 

conversor analógico-digital de alta velocidade e resolução. Já para o sistema digital (Figura 

2.4b), apesar da necessidade de um conversor analógico-digital para cada elemento, todo 

os  circuitos  atrasadores  e  o  somador  podem  ser  feitos  digitalmente,  o  que  facilita  o 

desenvolvimento [ref. 1].

(a)

(b)
Figura 2.4 – (a) Sistema de ultrassom com beamforming analógico (b) Sistema de ultrassom 

com beamforming digital [ref. 1]
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Nesse  projeto  é  utilizado  o  sistema  digital  de  beamforming,  com  a  aquisição  e 

armazenamento dos sinais de cada elemento em uma fila e posteriormente de acordo com a 

distância focal selecionam-se os valores para cada atraso pré-calculado e somam-se os 

valores de cada elemento [ref. 4].
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Capítulo 3 – Materiais e Métodos

Nessa  seção  serão apresentadas  as  principais  ferramentas  utilizadas  no  projeto, 

como ele foi implementado e como se dá seu funcionamento.

3.1. VHDL

O VHDL (Very-high-speed integrated circuit Hardware Description Language) é uma 

linguagem de descrição de  hardware usada para facilitar o projeto de circuitos digitais e 

mistos tanto em FPGAs (explicada na sequência) quanto em ASICs (Application-Specific  

Integrated Circuit) .

Essa  linguagem  foi  inicialmente  desenvolvida  pelo  departamento  de  defesa 

americano  [ref.  11]  com  o  propósito  de  ser  um  meio  mais  compacto  e  simples  de 

documentar o funcionamento de circuitos eletrônicos. Posteriormente foram desenvolvidos 

simuladores lógicos para simular esses códigos em VHDL e ferramentas de síntese capazes 

de converter esses códigos na definição da implementação física do circuito.

3.2. FPGA

Uma FPGA (Field-programmable gate array) é um circuito integrado feito para ser 

configurado  pelo  usuário  ou  projetista  após  a  fabricação  da  mesma  [ref.  12].  Essa 

configuração  é  geralmente  especificada  por  meio  de  uma  linguagem  de  descrição  de 

hardware, como o VHDL, e pode ser refeita inúmeras vezes, sendo capaz de implementar 

qualquer função lógica de um ASIC [ref. 12].

As FPGAs têm como vantagens sobre os ASICs a possibilidade de atualização do 

hardware mesmo após o produto já estar pronto e o menor custo para uma produção em 

menor  escala  e  prototipagem  [ref.  13].  Outro  concorrente  são  os  microcontroladores 

programáveis,  mas estes não possibilitam que o sistema funcione paralelamente,  assim 

como qualquer FPGA [ref. 12].

As  FPGAs são formadas por  blocos de entrada e  saída e  uma série  de células 

lógicas interligadas em que a função de cada célula e como elas são interligadas é definido 

com a síntese do circuito a partir da descrição do  hardware.  Em adição a essas células 

programáveis, alguns modelos de FPGA possuem recursos adicionais tanto digitais, como 

DSPs e memória RAM, quanto analógicos, como conversores analógico-digitais.

A empresa inventora  das FPGAs é chamada  Xilinx2,  fundada em 1984 por  dois 

engenheiros de semicondutores e líder desse mercado desde então. Atualmente o  Xilinx 

2 http://www.xilinx.com/
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tem em seu portfólio de produtos FPGAs, CPLDs (Complex Programmable Lógic Devices), 

ferramentas de projeto, propriedades intelectuais e designs de referência. Suas FPGAs são 

divididas em três famílias, com a Virtex como a superior, a Kintex como intermediaria e a 

Artix sendo a família de baixo custo.

Virtex é  a  família  de  FPGAs  de  maior  desempenho  fabricada  pela  Xilinx, 

caracterizada pela integração em hardware de diversos recursos frequentemente utilizados 

em aplicações diversas. Em 2004 foi introduzida a série Virtex-4, composta de três famílias 

de plataformas, oferecendo múltiplas opções de recursos, como núcleos de processadores 

PowerPC, blocos dedicados de DSPs e circuitos gerenciadores de clock de alta velocidade 

[ref. 14].

O modelo especifico contido na placa  TSW1250EVM, a  Virtex-4 VLX25, é um dos 

mais  simples,  possuindo  como  recursos  de  interesse  para  esse  projeto  48  blocos 

XtremeDSP, multiplicadores ou multiplicadores com somadores de 18 bits, 8 gerenciadores 

digitais de clock (DCM) [ref. 15], capazes de sintetizar frequências ou deslocar a fase de um 

sinal periódico, e portas de entrada e saída diferenciais em diversos padrões, incluindo o 

padrão LVDS [ref. 16].

3.3. Hardware utilizado

3.3.1. Placa de Aquisição AFE5805EVM

A placa  de aquisição  AFE5805EVM [ref.  2]  da  Texas Instruments é  uma placa 

desenvolvida  para  o  teste  do  circuito  integrado  AFE5805 em  conjunto  com  a  placa 

ADSDeSer-50EVM [ref. 17] ou TSW1250EVM [ref. 3].

O AFE5805 é um front-end de ultrassom integrado de 8 canais com amostragem de 

até 50 MSPS(milhões de amostas por segundo), resolução de 12 bits e saída de dados 

diferenciais LVDS (Low-voltage differential signaling) criado para sistemas de ultrassom de 

baixo consumo [ref. 18]. A utilização de um padrão diferencial é de extrema importância em 

um sistema de ultrassom devido a sua tolerância a ruídos já que devido a utilização de 

várias fontes de tensão nestes sistemas muito ruído é gerado. Na Figura 3.1 é apresentado 

o diagrama de blocos do front-end.
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Figura 3.1 – Diagrama de blocos do front-end de ultrassom AFE5805 [ref. 18]

Essa placa disponibiliza dentre outros recursos 8 entradas analógicas para os sinais 

do ultrassom, entrada de clock externo, caso do clock interno de 40 MHz não ser adequado 

a aplicação, comunicação com o computador por interface USB para configuração da placa 

e um conector para a saída LVDS dos 8 canais.

3.3.2. Protocolo de comunicação da saída LVDS

A  Texas Instruments tem uma série  de conversores analógico-digital  com saída 

LVDS serial,  e  nesse grupo se insere o  front-end dessa placa.  Para esses circuitos ela 

decidiu utilizar um sistema em que é usado um par de fios para cada canal do conversor, um 

para o clock do quadro, que determina onde começa e termina cada palavra de dados, e um 

para o clock de dados, que determina quando ler o dado de cada canal.

Desse modo, no caso desta placa a saída é composta de dez pares de fios, oito para 

dados e dois para os clocks, com o clock de dados sendo seis vezes maior do que o clock 

do quadro, pois ocorrem leituras dos dados tanto na borda de subida quanto na borda de 

descida desse clock, totalizando doze leituras em cada quadro, como pode-se observar na 

Figura 3.2.
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Figura 3.2 – Diagrama de temporização da saída LVDS, com o clock do quadro (FCLK), 
clock de dados (LCLK) e dados seriais [ref. 18]

3.3.3. Placa de análise LVDS TSW1250EVM

A placa de análise  TSW1250EVM é uma placa fabricada pela  Texas Instruments 

com o intuito de analisar o desempenho dos dispositivos da  TI da série  AFE58xx. É um 

sistema que por meio da placa aliada ao software incluso analisa a capacidade dessa série 

de dispositivos por meio de diversos tipos de teste e geração de estatísticas apresentados 

na interface gráfica do software.

Essa placa possui dentre outros recursos um conector de alta velocidade para uma 

entrada LVDS com até 28 canais, 4 conectores de 40 vias e 4 conectores de 32 vias usados 

como saídas paralelas para os dados de 8 canais e conexão USB. Nessa placa tudo é 

controlado por uma FPGA Virtex-4 VLX25 que recebe seu arquivo de configuração de uma 

memória EEPROM inclusa que pode ser regravada por meio do conector JTAG contido na 

placa, reprogramando assim a FPGA e, consequentemente, alterando todo o funcionamento 

da placa.

3.3.4. Placa de processamento de sinais TMS320C6455 DSK-MI

O TMS320C6455 DSP Starter Kit for Medical Imaging (DKS-MI) é uma plataforma 

de desenvolvimento de baixo custo desenvolvida pela Texas Instruments em conjunto com 

a Spectrum Digital3 para agilizar o desenvolvimento de aplicações de imagens médicas 

baseadas nos DSPs TMS320C64xx, DSPs de ponto fixo e alta performance da TI.

O  DSP incluso  nessa  placa,  o  TMS320C6455 [ref.  19],  é  um DSP de  altíssimo 

desempenho, baseado numa arquitetura de processamento paralelo em nível de instrução 

VLIW  (Very  Long  Instruction  Word)  avançada,  tornando-a  uma  ótima  escolha  para 

3 http://www.spectrumdigital.com/



21

aplicações de vídeo, infraestrutura de telecomunicações geração de imagens médicas. Seu 

núcleo de processamento de sinais possui 8 unidades funcionais, sendo 2 delas unidades 

de multiplicação capazes de executar 4 multiplicações de 16 bits por ciclo de clock, 2 blocos 

de registradores e 2 caminhos de dados.

Essa placa possui uma grande quantidade de conexões, como a Serial RapidIO®, 

USB  e  outros  dois  conectores,  um  para  conexões  HPI  (Host  Port  Interface)  ou  PCI 

(Peripheral  Component  Interconnect)  e  um  para  EMIF  (External  Memory  Interface)  ou 

McBSP (Multichannel Buffered Serial Port), sendo cinco pinos nesses conectores para uso 

geral.

3.4. Implementação

O sistema foi montado, como apresentado na Figura 3.3, conectando-se as placas 

AFE5805EVM e TSW1250EVM através de uma placa de ponte, inclusa no pacote da placa 

de  paralelização.  A  TSW1250EVM foi  então  conectada  ao  computador  possibilitando  a 

reprogramação  de  sua  FPGA através  do  programador  DLC9G, fornecido  pela  Xilinx. 

Também  foram  conectados  16  pinos  de  saída  ao  analisador  lógico  do  osciloscópio 

DS1102CD para a análise do funcionamento do sistema.

Figura 3.3 – Sistema montado para o desenvolvimento, onde 1 é a placa AFE5805EVM, 2 é 
a placa TSW1250EVM, 3 é o programador DLC9G e 4 é o osciloscópio DS1102DC
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3.4.1. Definição das conexões com a FPGA

Analisando os desenhos esquemáticos das placas TSW1250EVM e  AFE5805EVM, 

pôde-se determinar em que pinos da FPGA são feitas cada uma das conexões LVDS vindas 

do front-end de ultrassom. Essas informações são apresentadas na Tabela 3.1.

Tabela 3.1 – Relação das conexões entre os pinos da FPGA e os sinais LVDS vindas do 
front-end de ultrassom

Sinal Pino

Canal 1
Positivo C18

Negativo C19

Canal 2
Positivo F16

Negativo F17

Canal 3
Positivo D19

Negativo E19

Canal 4
Positivo G16

Negativo G17

Canal 5
Positivo D17

Negativo D18

Canal 6
Positivo A18

Negativo B18

Canal 7
Positivo D16

Negativo E16

Canal 8
Positivo B17

Negativo C17

Clock de quadros
Positivo F18

Negativo E18

Clock de dados
Positivo B19

Negativo C20

3.4.2. Entrada de dados LVDS

Procurando no guia de bibliotecas da Virtex-4 [ref. 20] foi encontrado uma primitiva 

de entrada de sinais diferenciais chamada IBUFDS (Input Buffer for Differential Signaling) 

que  entre  outros  tipos  de  sinais  diferenciais  suportados  encontra-se  o  padrão  LVDS 

tornando possível a conversão de todos os sinais LVDS que chegam a FPGA em sinais 

digitais simples, permitindo, assim, sua utilização no desenvolvimento do projeto.
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3.4.3. Desenvolvimento da interface entre placa e FPGA

Foi desenvolvido inicialmente o módulo VHDL responsável por fazer a interface entre 

a  placa  TSW1250EVM e  o  código  implementado.  Esse  módulo  foi  feito  conectando-se 

logicamente os pinos das conexões LVDS aos conversores por meio da primitiva  IBUFDS. 

Os sinais resultantes desses conversores são enviados para os módulos mais internos do 

sistema para serem processados.

Os  módulos  internos  possuem  também  a  entrada  da  distância  focal  desejada, 

determinada por uma entrada externa de 5 bits nomeada no projeto como selector, e a saída 

dos dados após o processamento para a saída externa de 15 bits,  nomeada no projeto 

como  output.  Na  Tabela  3.2  são  apresentadas  as  informações  das  conexões  feitas  no 

projeto, que podem ser facilmente alteradas, caso necessário, entre os sinais lógicos, pinos 

da FPGA e pinos dos conectores da placa.

Tabela 3.2 – Conexões entre sinais lógicos, pinos da FPGA e pinos dos conectores da placa 
TSW1250EVM

Sinal Pino da FPGA Conector/Pino

selector[0] C6 J5/2

selector[1] H4 J5/36

selector[2] H5 J5/34

selector[3] G5 J5/32

selector[4] G2 J5/30

output[0] P1 J6/6

output[1] N2 J6/8

output[2] P2 J6/10

output[3] N3 J6/12

output[4] M3 J6/14

output[5] P4 J6/16

output[6] N4 J6/18

output[7] M4 J6/20

output[8] N5 J6/24

output[9] M5 J6/26

output[10] L4 J6/28

output[11] M6 J6/30

output[12] L5 J6/32

output[13] J6 J6/2

output[14] M2 J4/36
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3.4.4. Geração do clock de amostragem

Para  possibilitar  a  escolha  do  clock de  amostragem  do  front-end AFE5805 foi 

desativado o oscilador de 40 MHz da placa AFE5805EVM e gerado um clock na FPGA por 

meio da divisão da frequência do oscilador de 200 MHz da placa TSW1250EVM. Esse sinal 

de clock é enviado para a entrada de clock externo da AFE5805EVM por meio de um cabo 

adaptado para esse fim. A entrada do clock de 200 MHz é diferencial e o sinal positivo entra 

no pino B12 da FPGA, enquanto o sinal negativo entra no pino A11. A saída do clock se dá 

no pino C1 da FPGA e no pino 36 do conector J3 da placa.

Nesse projeto,  por  dificuldades de sincronização e teste,  o  clock de amostragem 

utilizado foi de 20 MHz.

3.4.5. Circuito de paralelização

O circuito de paralelização de cada canal foi desenvolvido a partir dos dados obtidos 

na Figura 3.2, a partir dos sinais do  clock de dados,  clock de quadros e de cada um dos 

sinais de dados seriais dos canais. Na Figura 3.4 é apresentado um esquemático explicando 

o funcionamento desse circuito.

Para  esse  desenvolvimento  optou-se  pela  duplicação  da  frequência  do  clock de 

dados,  pois  no protocolo  de transmissão  utilizado obtêm-se os  dados  tanto  na descida 

quanto na subida do sinal de clock, o que causa dificuldades na implementação do circuito, 

e com a duplicação da frequência pode-se armazenar os dados apenas na subida do clock 

duplicado, desde que com a fase ajustada.

Para efetuar a duplicação do clock foi utilizado um gerenciador digital de clock (DCM) 

acessível  através  da  primitiva  DCM_BASE,  configurado  por  meio  da  interface  gráfica 

disponibilizada pelo  software de projeto de  hardware da  Xilinx, o  ISE WebPACK (versão 

gratuita utilizada no projeto).

Figura 3.4 – Desenho esquemático do circuito de paralelização, com SDATA sendo a 
entrada de dados serial e DCLK o clock de dados
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3.4.6. Fila de dados

Para se montar o  beamformer é necessário que se adquira dados com diferentes 

atrasos para cada elemento e, para isso, é preciso que se armazenem todos os dados de 

cada elemento durante um período de tempo. Esse armazenamento foi feito em hardware 

com filas, que são buffers em que o primeiro dado a entrar será o primeiro a sair, chamado 

também de FIFO (First In First Out). Tais hardwares possuem 64 posições e palavras de 12 

bits e foram utilizados, ao invés de memoria RAM, por ser mais natural programá-los em 

VHDL e por permitirem uma maior concorrência na transferência dos dados na fila. Nessas 

filas é permitido o acesso a qualquer um de seus valores, com uma entrada externa de 6 

bits que fará a seleção da saída do bloco. Na Figura 3.5 é apresentado um esquemático 

explicando o funcionamento de uma dessas filas.

Figura 3.5 – Desenho esquemático da fila de dados, com Seletor sendo a entrada seletora 
da posição da fila de dados serial e FCLK o clock de quadros
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3.4.7. Integração dos 8 canais

Quando  foram  integrados  os  circuitos  de  paralelização  e  buffers dos  8  canais 

começaram a surgir problemas de sincronização entre os dados dos canais. O problema foi 

diagnosticado como sendo ocasionado pelo fato dos 8 blocos serem divididos em 2 blocos 

na FPGA, 5 no topo de 3 na base, causando uma diferença nos atrasos dos sinais dos 

circuitos  de  cada  canal.  Para  solucionar  esse  problema  os  circuitos  de  duplicação  da 

frequência de clock foram removidos dos paralelizadores e criou-se um único, enviando os 

novos sinais de clock para os blocos de paralelização.

A  partir  desse  ponto  do  projeto  começaram  a  surgir  novos  problemas  de 

sincronização entre o clock de quadros e de dados e por isso fez-se necessário o uso de um 

gerenciador  digital  de  clock para  corrigir  a  fase  do  primeiro  enquanto  o  segundo  era 

corrigido pelo gerenciador responsável por duplicar sua frequência. Na Figura 3.6 pode-se 

observar o esquemático do projeto com essas novas alterações, considerando que não há 

mais um multiplicador de clock dentro dos paralelizadores.

Figura 3.6 – Desenho esquemático dos 8 canais integrados, com SDATA sendo a entrada de 
dados serial e DCLK o clock de dados e FCLK o clock de quadros

3.4.8. Somador

Os valores  vindos  dos  8  buffers devem  ser  somados  para  chegar  ao  resultado 

esperado pelo circuito. Para isso, visando a maior velocidade da soma, foram utilizados os 

blocos de DSP inclusos na FPGA utilizada, os blocos  XtremeDSP. Foram configurados 7 

desses blocos com 3 configurações diferentes,  para montar um sistema de soma em 3 
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níveis.  O nível  superior  recebe os  dados de 12 bits  vindos dos  buffers e  envia  para  o 

próximo nível de somadores dados de 13 bits que são somados e então enviados dados de 

14 bits para o último nível, que gera o resultado final com 15 bits. Nesses 3 níveis, apenas o 

somador final possui  flip-flops para armazenar o resultado final, para que seja necessário 

apenas um pulso de clock para gerar o resultado.

3.4.9. Beamforming

Foram calculados os perfis de atraso necessários para fazer um  beamformer de 8 

canais. Para isso foi definido um transdutor anular de face plana de 8 elementos de mesma 

área, 30 mm de diâmetro, velocidade do som de 1540 m/s (velocidade de propagação média 

em tecidos moles) e distância focal variando em 32 níveis entre 20 mm e 120 mm. Para os 

cálculos dos atrasos apresentados na Tabela 3.3 foi utilizada a fórmula:

d i=
x 2

Ri
2
−x

c
(1)

onde di  é o atraso do elemento i,  x a distancia focal,  Ri o raio do i-ésimo elemento e c a 

velocidade de propagação da onda [ref. 21]. Devido ao fato do transdutor anular utilizado 

possuir seus elementos com mesma área ele é um disco de Fresnel [ref. 21] e com isso os 

raios dos transdutores são determinados pela fórmula:

R i1= Al

π
Ri

2 , i=0,1 , ... ,N−1 (2)

onde Ri é o raio de cada elemento, Al é a área de cada elemento dada por At/N, At é a área 

total da face do transdutor e R0 é o raio central dado por (Al/π)1/2 [ref. 21].

Tabela 3.3 – Perfis de atraso para um  transdutor como um de 8 elementos de mesma área, 
30 mm de diâmetro, velocidade do som de 1540 m/s e distância focal variando entre 20 mm 

e 120 mm

Atrasos para cada elemento (ns)
Distância focal (mm) 1 2 3 4 5 6 7 8
20,0 449 883 1304 1713 2111 2499 2877 3247
23,2 388 767 1137 1498 1852 2199 2538 2872
26,5 342 677 1006 1329 1647 1960 2267 2570
29,7 305 606 902 1194 1482 1765 2045 2322
32,9 276 548 817 1083 1345 1605 1862 2115
36,1 251 500 746 990 1231 1470 1707 1942
39,4 231 460 687 912 1135 1356 1576 1793
42,6 214 426 636 845 1052 1258 1462 1665
45,8 199 396 592 787 981 1173 1364 1554
49,0 186 370 554 736 918 1098 1278 1457
52,3 174 348 520 692 863 1033 1202 1370
55,5 164 328 490 652 814 974 1134 1293
58,7 155 310 464 617 770 922 1074 1225
61,9 147 294 440 585 731 875 1019 1163
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65,2 140 279 418 557 695 833 970 1107
68,4 133 266 399 531 663 794 925 1056
71,6 127 254 381 507 633 759 884 1009
74,8 122 243 365 486 606 727 847 967
78,1 117 233 350 466 582 697 812 927
81,3 112 224 336 447 559 670 781 891
84,5 108 216 323 430 538 644 751 858
87,7 104 208 311 415 518 621 724 827
91,0 100 200 300 400 500 599 699 798
94,2 97 194 290 387 483 579 675 771
97,4 94 187 281 374 467 560 653 745
100,6 91 181 272 362 452 542 632 722
103,9 88 176 263 351 438 525 613 700
107,1 85 170 255 340 425 510 594 679
110,3 83 165 248 330 413 495 577 659
113,5 80 161 241 321 401 481 561 641
116,8 78 156 234 312 390 468 545 623
120,0 76 152 228 304 380 455 531 606

Para o cálculo dos valores que serão utilizados no projeto os valores da Tabela 3.3 

foram multiplicados pela frequência,  nesse caso de 20 MHz, e o resultado precisou ser 

subtraído de 64 devido ao modo com que foram construídos os  buffers.  Porém, como a 

subtração de 64 resultou em um valor -1 (valor inexistente na implementação) e nenhum 

valor 63 (o máximo valor de atraso possível), realizou-se a subtração de 65 invés de 64, já 

que isso não afeta o foco, resultando nos valores da Tabela 3.4.

Tabela 3.4 – Dados dos perfis de atraso da Tabela 3.3 convertidos para utilização no projeto

Valores para configuração dos atrasos de cada elemento
Distância focal (mm) 1 2 3 4 5 6 7 8
20,0 56 47 39 31 23 15 7 0
23,2 57 50 42 35 28 21 14 8
26,5 58 51 45 38 32 26 20 14
29,7 59 53 47 41 35 30 24 19
32,9 59 54 49 43 38 33 28 23
36,1 60 55 50 45 40 36 31 26
39,4 60 56 51 47 42 38 33 29
42,6 61 56 52 48 44 40 36 32
45,8 61 57 53 49 45 42 38 34
49,0 61 58 54 50 47 43 39 36
52,3 62 58 55 51 48 44 41 38
55,5 62 58 55 52 49 46 42 39
58,7 62 59 56 53 50 47 44 41
61,9 62 59 56 53 50 47 45 42
65,2 62 59 57 54 51 48 46 43
68,4 62 60 57 54 52 49 46 44
71,6 62 60 57 55 52 50 47 45
74,8 63 60 58 55 53 50 48 46
78,1 63 60 58 56 53 51 49 46
81,3 63 61 58 56 54 52 49 47
84,5 63 61 59 56 54 52 50 48
87,7 63 61 59 57 55 53 51 48
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91,0 63 61 59 57 55 53 51 49
94,2 63 61 59 57 55 53 52 50
97,4 63 61 59 58 56 54 52 50
100,6 63 61 60 58 56 54 52 51
103,9 63 61 60 58 56 54 53 51
107,1 63 62 60 58 56 55 53 51
110,3 63 62 60 58 57 55 53 52
113,5 63 62 60 59 57 55 54 52
116,8 63 62 60 59 57 56 54 53
120,0 63 62 60 59 57 56 54 53

3.4.10. Saída de dados

A Xilinx recomenda que,  quando disponível,  se utilize a conexão EMIF (External 

Memory Interface) para fazer a comunicação entre os DSPs da Texas Instruments e suas 

FPGAs. A EMIF é um protocolo de comunicação feito para que um circuito integrado seja 

capaz de acessar uma memória RAM externa e para utilizar esse protocolo no projeto deve-

se criar um bloco de memória RAM na FPGA com os dados que se deseja enviar ao DSP.

Apesar de recomendado pela Xilinx, nesse projeto o EMIF não foi utilizado, pois com 

sua utilização seria impossível se testar o funcionamento do beamformer sem que antes se 

iniciasse o desenvolvimento do software do DSP TMS320C6455, já que os dados devem ser 

requisitados pelo DSP.

Devido a essas questões foi decidido que os dados seriam enviados da FPGA para o 

DSP através dos 5 pinos disponíveis na placa de DSP como entrada e saída de uso geral. 

Para isso foi criado um protocolo de comunicação em que são enviados 4 sinais de dados e 

1  sinal  de  clock simultaneamente.  Nesse  protocolo  a  saída  de  15  bits  é  parcialmente 

serializada, sendo completada com mais um bit com valor “0” e dividida em 4 partes de 4 

bits.  Entre 2 saídas consecutivas  é enviado um sinal  “1”  nos  4 sinais  de dados com a 

finalidade de sincronizar a comunicação. A Figura 3.7 ilustra o protocolo criado.
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Figura 3.7 – Protocolo de saída de dados para a placa de processamento de sinais
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Capítulo 4 – Resultados e Discussões

Nesse capítulo serão apresentados os resultados obtidos por meio das formas de 

onda  obtidas  pelo  analisador  lógico  do  osciloscópio  DS1102CD,  porém,  não  serão 

apresentadas imagens das simulações realizadas pois, apesar de terem sido realizadas no 

início do projeto, elas se mostraram falhas quando executado o projeto no hardware real 

devido a problemas de sincronização entre os dois clocks utilizados na aquisição dos dados 

do projeto.

Todas as formas de ondas obtidas e apresentadas nesse capítulo não são de dados 

obtidos de um transdutor, pois esse projeto só visa implementar o sistema de beamforming, 

deixando tanto a criação do transdutor quanto a análise dos sinais e geração de imagens de 

fora. Sendo assim, os dados de entrada que a placa  TSW1250EVM utiliza foram gerados 

pela AFE5805 em modo de geração de padrões de teste.

Primeiramente são apresentadas as formas de onda obtidas utilizando somente o 

bloco paralelizador. A entrada para esse teste foi um sinal de tipo rampa, pois ele passa por 

todos os valores de entrada possíveis, sendo assim ideal para testar o sistema. Nas Figuras 

4.1a e 4.1b são apresentadas as formas de onda obtidas, sendo a primeira com uma escala 

de tempo maior para mostrar os bits menos significativos (de D0 a D6) e na segunda com 

uma escala menor para mostrar os bits mais significativos (D7 a D11).

(a)
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(b)
Figura 4.1 – Formas de onda do teste do circuito de paralelização, onde os dados da função 

rampa são exibidos em (a) com uma escala de tempo maior para a visualização dos bits 
menos significativos e em (b) com uma escala de tempo menor para a visualização dos bits 

mais significativos

Para testar o funcionamento das filas foi utilizada a mesma configuração do AFE5805 

do  teste  anterior  e  as  formas  de  onda  de  um  dos  últimos  elementos  da  fila  são 

apresentadas, para que se possa garantir que nenhum dado corrompeu-se no processo.

Nesse teste a seleção do elemento foi feita pela entrada externa da distância focal, 

com os sinais, por praticidade, sendo gerados internamente na FPGA, saindo por 4 pinos de 

um conector e voltando por outros 4 pinos, e por serem utilizados somente 4 pinos (por não 

ser  encontrado  um  cabo  com  os  conectores  adequados  com  5  pinos)  o  bit  menos 

significativo ficou em “0”, alcançando assim somente os valores pares da fila. Sendo assim, 

as formas de onda obtidas no penúltimo valor (62) da fila do canal 1 são apresentadas na 

Figuras 4.2a e 4.2b do mesmo modo que nas Figuras 4.1.
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(a)

(b)
Figura 4.2 – Formas de onda do teste da fila de dados, onde os dados da função rampa 

adquiridos do penúltimo valor da fila são exibidos em (a) com uma escala de tempo maior 
para a visualização dos bits menos significativos e em (b) com uma escala de tempo menor 

para a visualização dos bits mais significativos

Para o teste de integração de uma parte do circuito, compreendido pelos 8 canais, 

pelo circuito de soma e pelos atrasos diferentes para cada canal, foram realizados 3 testes. 

Estes testes foram feitos com o mesmo padrão de configuração do teste das filas, desta vez, 

no entanto, a entrada externa do valor do foco não afeta diretamente as filas e sim muda os 

valores acessados das filas de acordo com uma tabela de testes previamente gerada, a 

Tabela 4.1.
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Tabela 4.1 – Tabela usada para testes no projeto

Entrada seletora
externa

Posição da fila para cada canal
1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1
1 2 1 2 1 1 2 1 2
2 3 3 3 3 3 3 3 3
3 4 1 4 1 1 4 1 4
4 5 1 5 1 1 5 1 5
5 6 6 6 6 6 6 6 6
6 6 1 6 1 1 6 1 6
7 8 1 8 1 1 8 1 8
8 9 9 9 9 9 9 9 9
9 10 1 10 1 1 10 1 10
10 11 1 11 1 1 11 1 11
11 12 12 12 12 12 12 12 12
12 13 1 13 1 1 13 1 13
13 14 1 14 1 1 14 1 14
14 15 15 15 15 15 15 15 15
15 16 1 16 1 1 16 1 16
16 17 1 17 1 1 17 1 17
17 18 18 18 18 18 18 18 18
18 19 1 19 1 1 19 1 19
19 20 1 20 1 1 20 1 20
20 21 21 21 21 21 21 21 21
21 22 1 22 1 1 22 1 22
22 23 1 23 1 1 23 1 23
23 24 24 24 24 24 24 24 24
24 25 1 25 1 1 25 1 25
25 26 1 26 1 1 26 1 26
26 27 27 27 27 27 27 27 27
27 28 1 28 1 1 28 1 28
28 29 1 29 1 1 29 1 29
29 30 30 30 30 30 30 30 30
30 60 60 60 60 60 60 60 60
31 32 1 32 1 1 32 1 32

No primeiro teste de integração é recebido o valor  2 da entrada seletora externa 

fazendo com que, segundo a Tabela 4.1, sejam somados os terceiros valores das filas dos 8 

canais e sendo assim, com todos os valores iguais, seria o mesmo que multiplicar a entrada 

por 8 que em base binária é o mesmo que fazer um deslocamento triplo a esquerda, como 

pode ser visto nas Figuras 4.3.
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(a)

(b)
Figura 4.3 – Formas de onda do primeiro teste de integração, em que são somados os 

terceiros valores das filas dos 8 canais sendo exibidas em (a) com uma escala de tempo 
maior para a visualização dos bits menos significativos e em (b) com uma escala de tempo 

menor para a visualização dos bits mais significativos

No segundo teste de integração é recebido o valor 30 da entrada seletora externa 

fazendo com que, segundo a Tabela 4.1, sejam somados os sexagésimos valores das filas 

dos 8 canais e sendo assim, espera-se um resultado como o anterior nas Figuras 4.4.
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(a)

(b)
Figura 4.4 – Formas de onda do segundo teste de integração somando o sexagésimo valor 
da fila de cada um dos canais sendo exibidas em (a) com uma escala de tempo maior para 
a visualização dos bits menos significativos e em (b) com uma escala de tempo menor para 

a visualização dos bits mais significativos

No terceiro teste de integração é recebido o valor  6 da entrada seletora externa 

fazendo com que, segundo a Tabela 4.1, sejam somados os primeiros valores das filas de 4 

dos canais e os sextos valores dos outros 4 canais e sendo assim, espera-se um resultado 

onde mude em relação ao anterior apenas o sinal D2, que deve ficar em “1” nas Figuras 4.5, 

pois as somas de 4*x e 4*(x+5), sendo x um número qualquer, resultam em 4*(x+(x+5)), que 

em base binária é (x<<1 + 101)<<2 que pode ser manipulado para chegar a (x+10)<<3 + 

100,  com  a<<b sendo o operador de deslocamento binário a esquerda representando  a 

sendo deslocado b bits a esquerda.



37

(a)

(b)
Figura 4.5 – Formas de onda do terceiro teste de integração somando o primeiro valor da fila 

de metade dos canais e o sexto valor da outra metade sendo exibidas em (a) com uma 
escala de tempo maior para a visualização dos bits menos significativos e em (b) com uma 

escala de tempo menor para a visualização dos bits mais significativos

Para  testar  a  saída  parcialmente  serializada  apresentada  na  seção  3.3.11  foi 

executado um teste semelhante ao anterior, porém com a inclusão do bloco de formatação 

de saída. Na Figura 4.6 os sinais de D0 a D9 são os 10 bits de saída mais significativos 

apresentados  em  paralelo,  enquanto  os  sinais  de  D11  a  D14  são  os  dados  de  saída 

parcialmente serializados e o sinal D10 é o clock de saída, de acordo com o protocolo de 

comunicação proposto.
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Figura 4.6 – Formas de onda do teste do protocolo comunicação para saída de dados

E como último teste, os dados de teste vindos da Tabela 4.1 foram substituídos pelos 

dados da Tabela 3.4 para testar o sistema de beamforming. Nesse teste também foi alterado 

o  padrão  de testes  gerado  pelo  AFE5805 para  possibilitar  a  verificação  dos resultados 

apresentados e no lugar da função rampa foram utilizados sinais de 12 bits alternando entre 

“000000111111” e “111111000000” e o bloco de formatação da saída também foi removido 

para facilitar a análise dos resultados. Os resultados para uma distância focal fixa em 32,9 

mm é apresentado na Figura 4.7.

Figura 4.7 – Forma de onda obtida no teste do sistema de beamforming

Os dados obtidos na Figura 4.7 foram os esperados, já que para a distancia focal de 

32,9  mm  existem  3  canais  buscando  dados  nas  filas  em  posições  pares  e  5  canais 

buscando os dados em posições impares, o que resulta em em alguns ciclos a ocorrência 
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de uma saída dada por: 3x“000000111111”+5x“111111000000” que convertendo para base 

decimal resultar em 20349, ou “100111101111101” em base binária; e em outros ciclos a 

ocorrência de uma saída dada por: 5x “000000111111”+3x “111111000000” que convertendo 

para base decimal resulta em 12411, ou “011000001111011” em base binária.
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Capítulo 5 – Conclusão

Os resultados obtidos ao fim desse projeto foram de acordo com o esperado, porém 

como foram utilizados somente dados artificiais, os padrões de teste, não se pôde mensurar 

os ganhos que seriam obtidos na aquisição de sinais de ultrassom.

Para esse trabalho foi necessário integrar os conhecimentos adquiridos em várias 

disciplinas, como Sistemas Digitais, que permitiu o entendimento da lógica implementada 

dentro da FPGA, e Linguagens de Descrição de Hardware, responsável pelo conhecimento 

da programação em VHDL utilizada no projeto. Mas nesse projeto outros conhecimentos 

foram necessários, que foram adquiridos fazendo um estudo acerca do assunto, como o 

funcionamento  de  um  sistema  de  ultrassom,  desde  a  aquisição  dos  dados  até  o  seu 

processamento, e o que é, como funciona e quais os meios de implementar um sistema de 

beamforming,  utilizado não só em sistemas de ultrassom mas também em sistemas de 

radares e sonares. Outro aprendizado fundamental foi a diferença entre uma simulação e a 

real implementação em hardware, onde muitos problemas podem surgir e se torna muito 

mais difícil encontrá-los.

Os trabalhos futuros que poderiam ser feitos com relação a esse projeto seriam: 

portá-lo para uma placa com uma FPGA mais moderna e de maior desempenho, já que a 

Virtex-4  está  saindo  de  linha,  para  poder  utilizar  frequências  de amostragem de  dados 

maiores; e principalmente concluir o sistema de ultrassom a partir desse projeto, criando um 

transdutor de 8 elementos para a aquisição de sinais reais e fazendo o processamento dos 

sinais da saída desse projeto para a geração de imagens.



41

Bibliografia

[1]  –  BRUNNER,  E.  How  Ultrasound  System  Considerations  Influence  Front-End 

Component Choice.

Disponível  em:  <http://www.analog.com/library/analogDialogue/archives/36-

03/ultrasound/index.html>. Acesso em: 06 de novembro de 2010.

[2] – Texas Instruments. AFE5805EVM.

Disponível  em:  <http://focus.ti.com/lit/ug/slou222b/slou222b.pdf>.  Acesso  em:  06  de 

novembro de 2010.

[3]  –  Texas  Instruments.  TSW1250EVM: High-Speed  LVDS Deserializer  and  Analysis 

System User's Guide.

Disponível  em:  <http://focus.ti.com/lit/ug/slou260c/slou260c.pdf>.  Acesso  em:  06  de 

novembro de 2010.

[4] - SPRAWLS, P. Ultrasound Production and Interactions. 

Disponível em: <http://www.sprawls.org/ppmi2/USPRO/>. Acesso em: 06 de novembro de 

2010.

[5] – Som. 

Disponível em: <http://pt.wikipedia.org/wiki/Som>. Acesso em: 06 de novembro de 2010.

[6] – PÉCORA, J. D.,GUERISOLI, D. M. Z. Ultra-som.

Disponível  em:  <http://www.forp.usp.br/restauradora/us01.htm>.  Acesso  em:  06  de 

novembro de  2010.

[7] – KINSLER, L. E. et AL. Fundamentals of acoustics. 4thed. New York: John Wiley ands 

Sons, 1999.

[8] – LEE, J. J. Formação e processamento de imagens de ultrassom. 2010. Dissertação 

de mestrado – Departamento de Engenharia Elétrica, Escola de Engenharia de São Carlos, 

Universidade de São Paulo, 2010.

[9] – Honda Electronics. Piezoelectric Ceramics.

Disponível em: <http://www.honda-el.co.jp/ufile/file/249.pdf>. Acesso em: 06 de novembro de 

2010.

[10] – Ultrasonic sensor.

Disponível  em:  <http://en.wikipedia.org/wiki/Ultrasonic_sensor>.  Acesso  em:  06  de 

novembro de 2010.



42

[11] – VHDL.

Disponível em: <http://en.wikipedia.org/wiki/VHDL>. Acesso em: 06 de novembro de 2010.

[12] – Field-Programmable gate array.

Disponível  em:  <http://en.wikipedia.org/wiki/Field-programmable_gate_array>.  Acesso  em: 

06 de novembro de 2010.

[13] – ARAÚJO, A. A. et al. Programa Nacional de Microeletrônica, Contribuições para a 

formulação de um Plano Estruturado de Ações.

Disponível  em:  <http://www.ci-brasil.gov.br/index2.php?

option=com_docs&task=download&id=57&field=doc1&no_html=1>. Acesso  em:  06  de 

novembro de 2010.

[14] – Xilinx.

Disponível em: <http://en.wikipedia.org/wiki/Xilinx>. Acesso em: November 06, 2010.

[15] – Xilinx. Virtex-4 Family Overview.

Disponível  em:  <http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf>. 

Acesso em: 06 de novembro de 2010.

[16] – Xilinx. Virtex-4 FPGA User Guide.

Disponível  em:  <http://www.xilinx.com/support/documentation/user_guides/ug070.pdf>. 

Acesso em: 06 de novembro de 2010.

[17] – Texas Instruments. ADSDeSer-50EVM Evaluation Module.

Disponível  em: <http://focus.ti.com/lit/ug/sbau091/sbau091.pdf>.  Acesso  em:  06  de 

novembro de 2010.

[18] – Texas Instruments. FULLY-INTEGRATED, 8-CHANNEL ANALOG FRONT-END FOR 

ULTRASOUND 0.85nV/√Hz, 12-Bit, 50MSPS, 122mW/Channel.

Disponível em: http://focus.ti.com/lit/ds/symlink/afe5805.pdf. Acesso em: 06 de novembro de 

2010.

[19] – Texas Instruments. TMS320C6455 Fixed-Point Digital Signal Processor.

Disponível  em:  <http://pdf1.alldatasheet.com/datasheet-

pdf/view/106954/TI/TMS320C6455.html>. Acesso em: 06 de novembro de 2010.

[20] – Xilinx. Virtex-4 Libraries Guide for HDL Designs.

 Disponível em: <http://www.xilinx.com/itp/xilinx8/books/docs/v4ldl/v4ldl.pdf>. Acesso em: 06 

de novembro de 2010.



43

[21] – ENDO, W. et al.  Projeto, simulação e caracterização de um transdutor de arranjo 

anular  com  focalização  dinâmica.  2010,  Bonito-MS.  XVIII  Congresso  Brasileiro  de 

Automática, 2010. v. 1. p. 656-662.



44

Anexos

Códigos VHDL de cada módulo do projeto

Módulo de interface (principal)

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
Library UNISIM; 
use UNISIM.vcomponents.all; 

entity main_unit is 
GENERIC (N : integer := 64; 

M : integer := 32); 
    Port ( clk200p : in STD_LOGIC; 

  clk200n : in STD_LOGIC; 
  sampleclk : out STD_LOGIC; 
  saidatesteselector : out STD_LOGIC_VECTOR (3 downto 0); --para testar entrada 

selector 
  chp : in  STD_LOGIC_VECTOR (8 downto 1); 

           chn : in  STD_LOGIC_VECTOR (8 downto 1); 
           fclkp : in  STD_LOGIC; 
           fclkn : in  STD_LOGIC; 
           dclkp : in  STD_LOGIC; 
           dclkn : in  STD_LOGIC; 
           selector : in INTEGER range 0 to M-1; 
           output : out  STD_LOGIC_VECTOR (14 downto 0)); 
end main_unit; 

architecture Behavioral of main_unit is 
type auxtype is array (8 downto 1) OF STD_LOGIC_VECTOR (11 downto 0); 
signal clk200 : STD_LOGIC; 
signal clk200cnt : integer range 0 to 19 := 0; 
signal ch : STD_LOGIC_VECTOR (8 downto 1); 
signal fclk : STD_LOGIC; 
signal dclk : STD_LOGIC; 
signal aux : STD_LOGIC_VECTOR (14 downto 0); 
signal ready : STD_LOGIC; 

component selector_unit is 
GENERIC (N : integer := 64; 

M : integer := 32); 
 Port ( clk200 : in STD_LOGIC; 

  fclk : in  STD_LOGIC; 
  dclk : in  STD_LOGIC; 
  input : in  STD_LOGIC_VECTOR (8 downto 1); 
  selector : in INTEGER range 0 to M-1; 
  ready : out STD_LOGIC; 
  output : out STD_LOGIC_VECTOR (14 downto 0)); 

end component selector_unit; 
begin 

---- bloco do divisor de clock de 200mhz para 20mhz 
IBUFDS_clk200 : IBUFDS 

   generic map ( 
      IOSTANDARD => "LVDS_25") 
   port map ( 
      O => clk200,  -- Clock buffer output 
      I => clk200p,  -- Diff_p clock buffer input 
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      IB => clk200n -- Diff_n clock buffer input 
   ); 

 
process (clk200) 
begin 

if (clk200'event AND clk200='1') then 
if (clk200cnt < 5) then 

sampleclk <= '1'; 
clk200cnt <= clk200cnt + 1; 

elsif (clk200cnt < 9) then 
sampleclk <= '0'; 
clk200cnt <= clk200cnt + 1; 

else 
sampleclk <= '0'; 
clk200cnt <= 0; 

end if; 
end if; 

end process; 
---- fim do bloco do divisor de clock 

---- bloco de conversoes LVDS -> serial 
IBUFDS_channels: FOR i IN ch'RANGE GENERATE 
BEGIN 

IBUFDS_channel : IBUFDS 
generic map ( 

IOSTANDARD => "LVDS_25") 
port map ( 

O => ch(i),  -- Clock buffer output 
I => chp(i),  -- Diff_p clock buffer input 
IB => chn(i) -- Diff_n clock buffer input 

); 
END GENERATE IBUFDS_channels; 
 
IBUFDS_fclk : IBUFDS 

   generic map ( 
      IOSTANDARD => "LVDS_25") 
   port map ( 
      O => fclk,  -- Clock buffer output 
      I => fclkp,  -- Diff_p clock buffer input 
      IB => fclkn -- Diff_n clock buffer input 
   ); 

 
IBUFDS_dclk : IBUFDS 

   generic map ( 
      IOSTANDARD => "LVDS_25") 
   port map ( 
      O => dclk,  -- Clock buffer output 
      I => dclkp,  -- Diff_p clock buffer input 
      IB => dclkn -- Diff_n clock buffer input 
   ); 
---- fim bloco de conversoes LVDS -> serial 

 
selector1 : selector_unit 

generic map (N => N, 
M  => M) 

port map ( 
clk200 => clk200, 
fclk => fclk, 
dclk => dclk, 
input => ch, 
selector => selector, 
ready => ready, 
output => aux 

); 

saidatesteselector <= "0010"; --saida usada para teste do da entrada selector 
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output(14 downto 0) <= aux(14 downto 0); 

end Behavioral;

Módulo de integração

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

Library UNISIM; 
use UNISIM.vcomponents.all; 

use types.ALL; 

entity selector_unit is 
GENERIC (N : integer := 64; 

M : integer := 32); 
    Port ( clk200 : in STD_LOGIC; 

  fclk : in  STD_LOGIC; 
           dclk : in  STD_LOGIC; 
           input : in  STD_LOGIC_VECTOR (8 downto 1); 

  selector : in INTEGER range 0 to M-1; 
  ready : out STD_LOGIC; 

           output : out STD_LOGIC_VECTOR (14 downto 0)); 
end selector_unit; 

architecture Behavioral of selector_unit is 
TYPE selvectype is array (8 downto 1) of INTEGER range 0 to N-1; 
signal aux : array8por12 := (others => (others => '0')); 
signal sel_vector : selvectype; 
signal dclk2x : STD_LOGIC; 
signal fclk90, fclk180, fclk270, CLK0, fclk0, dclk2xlock : STD_LOGIC; 
signal RST : STD_LOGIC := '1'; 
signal outputaux :  STD_LOGIC_VECTOR (14 downto 0); 
signal fclkphase, fclkphase2x, fclkphase180, fclkphaselock : STD_LOGIC; 
signal posfclk : STD_LOGIC := '0'; 
signal resetcounter : integer range 0 to 20 := 0; 
signal preoutput : STD_LOGIC_VECTOR (19 downto 0); 
signal csaida : integer range 0 to 5 := 5; 
signal clk100, clk100lock : STD_LOGIC; 

 
component buffer_unit 

GENERIC (N : integer := 64; 
M : integer := 32); 

 Port ( sdata : in  STD_LOGIC; 
fclk : in  STD_LOGIC; 
fclkphase : in STD_LOGIC; 
fclkphaselock : in STD_LOGIC; 
dclk2x : in  STD_LOGIC; 
dclk2xlock : in STD_LOGIC; 
selector : in INTEGER range 0 to M-1; 
output : inout  STD_LOGIC_VECTOR (11 downto 0)); 

end component buffer_unit; 
 
component sum8_unit 

 Port ( ch : in  array8por12; 
  fclk : in STD_LOGIC; 
  dclk : in STD_LOGIC; 
  ready : out STD_LOGIC; 
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  output : out  STD_LOGIC_VECTOR (14 downto 0)); 
end component sum8_unit; 
 
COMPONENT dclk2x_unit 
PORT( 

CLKIN_IN : IN std_logic; 
RST_IN : IN std_logic;          
CLK0_OUT : OUT std_logic; 
CLK2X_OUT : OUT std_logic; 
LOCKED_OUT : OUT std_logic 
); 

END COMPONENT; 
 
COMPONENT fclkphase_unit 
PORT( 

CLKIN_IN : IN std_logic; 
RST_IN : IN std_logic;          
CLK0_OUT : OUT std_logic; 
CLK2X_OUT : OUT std_logic; 
CLK180_OUT : OUT std_logic; 
LOCKED_OUT : OUT std_logic 
); 

END COMPONENT; 

COMPONENT clk100_unit 
PORT( 

CLKIN_IN : IN std_logic; 
RST_IN : IN std_logic;          
CLKDV_OUT : OUT std_logic; 
CLK0_OUT : OUT std_logic; 
LOCKED_OUT : OUT std_logic 
); 

END COMPONENT; 
 
TYPE tabletype IS array (0 to M-1, 1 to 8) OF INTEGER range 0 to N-1; 
signal table : tabletype := 

( 
(56, 47, 39, 31, 23, 15, 7, 0), --foco=20mm 
(57, 50, 42, 35, 28, 21, 14, 8), 
(58, 51, 45, 38, 32, 26, 20, 14), 
(59, 53, 47, 41, 35, 30, 24, 19), 
(59, 54, 49, 43, 38, 33, 28, 23), 
(60, 55, 50, 45, 40, 36, 31, 26), 
(60, 56, 51, 47, 42, 38, 33, 29), 
(61, 56, 52, 48, 44, 40, 36, 32), 
(61, 57, 53, 49, 45, 42, 38, 34), 
(61, 58, 54, 50, 47, 43, 39, 36), 
(62, 58, 55, 51, 48, 44, 41, 38), 
(62, 58, 55, 52, 49, 46, 42, 39), 
(62, 59, 56, 53, 50, 47, 44, 41), 
(62, 59, 56, 53, 50, 47, 45, 42), 
(62, 59, 57, 54, 51, 48, 46, 43), 
(62, 60, 57, 54, 52, 49, 46, 44), 
(62, 60, 57, 55, 52, 50, 47, 45), 
(63, 60, 58, 55, 53, 50, 48, 46), 
(63, 60, 58, 56, 53, 51, 49, 46), 
(63, 61, 58, 56, 54, 52, 49, 47), 
(63, 61, 59, 56, 54, 52, 50, 48), 
(63, 61, 59, 57, 55, 53, 51, 48), 
(63, 61, 59, 57, 55, 53, 51, 49), 
(63, 61, 59, 57, 55, 53, 52, 50), 
(63, 61, 59, 58, 56, 54, 52, 50), 
(63, 61, 60, 58, 56, 54, 52, 51), 
(63, 61, 60, 58, 56, 54, 53, 51), 
(63, 62, 60, 58, 56, 55, 53, 51), 
(63, 62, 60, 58, 57, 55, 53, 52), 
(63, 62, 60, 59, 57, 55, 54, 52), 
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(63, 62, 60, 59, 57, 56, 54, 53), 
(63, 62, 60, 59, 57, 56, 54, 53) --foco=120mm 

); 
 

begin 

buffers: FOR i IN input'RANGE GENERATE 
BEGIN 

buffer1: buffer_unit 
generic map ( 

N => N, 
M => M) 

port map( 
sdata => input(i), 
fclk => fclk, 
fclkphase => fclkphase180, 
fclkphaselock => fclkphaselock, 
dclk2x => dclk2x, 
dclk2xlock => dclk2xlock, 
selector => sel_vector(i), 
output => aux(i) 

); 
END GENERATE buffers; 
 
selection: FOR i IN input'RANGE GENERATE 
BEGIN 

sel_vector(i) <= table(selector,i); 
END GENERATE selection; 

sum8 : sum8_unit 
port map ( 

ch => aux, 
fclk => fclkphase, 
dclk => dclk, 
ready => open, 
output => outputaux 

); 

output(9 downto 0) <= outputaux(14 downto 5); 

--saida dividida em 4 partes de 4 bits enviando os bits mais significativos primeiro 
--as 4 partes enviadas são precedidas por "1111" para sincronia 
preoutput(19 downto 15) <= "11110"; 
process (clk100) 
begin 

if (clk100'event and clk100='0') then 
output(14 downto 11) <= preoutput(4*csaida+3 downto 4*csaida); 
if (csaida > 0) then 

csaida <= csaida - 1; 
else 

csaida <= 4;--5 
preoutput(14 downto 0) <= outputaux; 

end if; 
end if; 

end process; 
output(10) <= clk100; 
 
--geracao do sinal de reset para os geradores de clock 
process (fclk) 
begin 

if (fclk'event AND fclk='1') then 
if (resetcounter < 20) then 

resetcounter <= resetcounter + 1; 
RST <= '1'; 

else 
resetcounter <= 20; 
RST <= '0'; 
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end if; 
end if; 

end process; 
 
--geracao do clock dclk x 2 
Inst_dclk2x_unit: dclk2x_unit PORT MAP( 

CLKIN_IN => dclk, 
RST_IN => RST, 
CLK0_OUT => OPEN, 
CLK2X_OUT => dclk2x, 
LOCKED_OUT => dclk2xlock 

); 
 
--geracao do clock fclk defasado 
Inst_fclkphase_unit: fclkphase_unit PORT MAP( 

CLKIN_IN => fclk, 
RST_IN => RST, 
CLK0_OUT => fclkphase, 
CLK2X_OUT => fclkphase2x, 
CLK180_OUT => fclkphase180, 
LOCKED_OUT => fclkphaselock 

); 
 
--geracao do clock de 100mhz para a saida serial 
Inst_clk100_unit: clk100_unit PORT MAP( 

CLKIN_IN => clk200, 
RST_IN => RST, 
CLKDV_OUT => clk100, 
CLK0_OUT => open, 
LOCKED_OUT => clk100lock 

); 

end Behavioral;

Módulo da fila

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity buffer_unit is 
GENERIC (N : integer := 64; 

M : integer := 32); 
Port (sdata : in  STD_LOGIC; 

fclk : in  STD_LOGIC; 
fclkphase : in STD_LOGIC; 
fclkphaselock : in STD_LOGIC; 

         dclk2x : in  STD_LOGIC; 
dclk2xlock : in STD_LOGIC; 
selector : in  INTEGER range 0 to M-1; 
output : out  STD_LOGIC_VECTOR (11 downto 0)); 

end buffer_unit; 

architecture Behavioral of buffer_unit is 
signal pdata : STD_LOGIC_VECTOR (11 downto 0); 
type buffertype is array (N-1 downto 0) of STD_LOGIC_VECTOR (11 downto 0); 
signal buffer_vector : buffertype; 
signal ready : STD_LOGIC; 

component deserializer 
Port (sdata : in  STD_LOGIC; 

fclk : in  STD_LOGIC; 
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fclkphase : in STD_LOGIC; 
   fclkphaselock : in STD_LOGIC; 

            dclk2x : in  STD_LOGIC; 
   dclk2xlock : in STD_LOGIC; 

ready : out STD_LOGIC; 
pdata : out  STD_LOGIC_VECTOR (11 downto 0)); 

end component deserializer; 
begin 

deserializer1: 
deserializer port map( 

sdata => sdata, 
fclk => fclk, 
fclkphase => fclkphase, 
fclkphaselock => fclkphaselock, 
dclk2x => dclk2x, 
dclk2xlock => dclk2xlock, 
ready => ready, 
pdata => pdata 

); 
 
process (ready,selector) 
begin 

if (ready'event AND ready='1') then 
buffer_vector(N-1 downto 1) <= buffer_vector(N-2 downto 0); 
buffer_vector(0) <= pdata; 

end if; 
output <= buffer_vector(selector); 

end process; 

 
end Behavioral;

Módulo do circuito paralelização

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

Library UNISIM; 
use UNISIM.vcomponents.all; 

entity deserializer is 
    Port ( sdata : in  STD_LOGIC; 
           fclk : in  STD_LOGIC; 

  fclkphase : in STD_LOGIC; 
  fclkphaselock : in STD_LOGIC; 

           dclk2x : in  STD_LOGIC; 
  dclk2xlock : in STD_LOGIC; 
  ready : inout STD_LOGIC; 

           pdata : inout  STD_LOGIC_VECTOR (11 downto 0)); 
end deserializer; 

architecture Behavioral of deserializer is 
signal delay_pdata : STD_LOGIC_VECTOR (10 downto 0); 
signal counter : integer range 0 to 11 := 0; 
signal readyaux : STD_LOGIC := '1'; 
signal dclk2xAux : STD_LOGIC := '0'; 
signal CLK0 : STD_LOGIC; 
signal RST : STD_LOGIC := '1'; 

begin 

process (dclk2x) 
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begin 
if (dclk2x'event AND dclk2x='0') then 

pdata(0) <= pdata(1); 
pdata(1) <= pdata(2); 
pdata(2) <= pdata(3); 
pdata(3) <= pdata(4); 
pdata(4) <= pdata(5); 
pdata(5) <= pdata(6); 
pdata(6) <= pdata(7); 
pdata(7) <= pdata(8); 
pdata(8) <= pdata(9); 
pdata(9) <= pdata(10); 
pdata(10) <= pdata(11); 
pdata(11) <= sdata;  

end if; 
end process; 
 
ready <= fclkphase;  

end Behavioral;

Módulo de soma

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.types.ALL; 

entity sum8_unit is 
    Port ( ch : in  array8por12; 

  fclk : in STD_LOGIC; 
  dclk : in STD_LOGIC; 
  ready : out STD_LOGIC; 

           output : out  STD_LOGIC_VECTOR (14 downto 0)); 
end sum8_unit; 

architecture Behavioral of sum8_unit is 
signal auxout : array7por15 := (others => (others => '0')); 
signal caux : integer range 0 to 5 := 0; 
signal counter : integer range 0 to 5 := 0; 
signal resultenable : STD_LOGIC := '0'; 
signal sumclk : STD_LOGIC_VECTOR (3 downto 1) := "000"; 
signal nfclk : STD_LOGIC; 
signal posfclk : STD_LOGIC := '0'; 
signal readyaux : STD_LOGIC := '0'; 
 
COMPONENT suml1_unit 
PORT( 

a : IN std_logic_vector(11 downto 0); 
b : IN std_logic_vector(11 downto 0); 
s : OUT std_logic_vector(12 downto 0) 
); 

END COMPONENT; 
 
COMPONENT suml2_unit 
PORT( 

a : IN std_logic_vector(12 downto 0); 
b : IN std_logic_vector(12 downto 0); 
s : OUT std_logic_vector(13 downto 0) 
); 

END COMPONENT; 
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COMPONENT suml3_unit 
PORT( 

a : IN std_logic_vector(13 downto 0); 
b : IN std_logic_vector(13 downto 0); 
clk : IN std_logic;          
s : OUT std_logic_vector(14 downto 0) 
); 

END COMPONENT; 
 
-- Synplicity black box declaration 
attribute syn_black_box : boolean; 
attribute syn_black_box of suml1_unit: component is true; 
attribute syn_black_box of suml2_unit: component is true; 
attribute syn_black_box of suml3_unit: component is true; 

begin 
 
sumsl1 : FOR i IN 4 downto 1 GENERATE 
BEGIN 

suml1 : suml1_unit 
port map ( 

a => ch(2*i)(11 downto 0), 
b => ch(2*i-1)(11 downto 0), 
s => auxout(i+4)(12 downto 0) 

); 
END GENERATE sumsl1; 
 
sumsl2 : FOR i IN 2 downto 1 GENERATE 
BEGIN 

suml2 : suml2_unit 
port map ( 

a => auxout(2*i+4)(12 downto 0), 
b => auxout(2*i+3)(12 downto 0), 
s => auxout(i+2)(13 downto 0) 

); 
END GENERATE sumsl2; 
 
sumsl3 : suml3_unit 

port map ( 
a => auxout(4)(13 downto 0), 
b => auxout(3)(13 downto 0), 
clk => fclk,---------- 
s => auxout(2)(14 downto 0) 

); 
 

output <= auxout(2); 
 

end Behavioral;
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