

UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Automação Residencial de baixo custo por meio de

dispositivos móveis com sistema operacional

Android

Autor: Lucas Bragazza Beghini

Orientador: Prof. Dr. Evandro L. L. Rodrigues

São Carlos

2013

Lucas Bragazza Beghini

Automação residencial de baixo

custo por meio de dispositivos

móveis com sistema operacional

Android

Trabalho de Conclusão de Curso

apresentado à Escola de Engenharia de São

Carlos, da Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase

em Eletrônica

ORIENTADOR: Prof. Dr. Evandro Luís Linhari Rodrigues

São Carlos

2013

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU
ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE
CITADA A FONTE.

Agradecimentos

A Deus, por sempre me dar forças para superar os obstáculos encontrados.

A meus pais, pelo apoio incondicional em todos os momentos, e por terem

fornecido todo o suporte necessário para minha formação.

A todos os meus familiares, em especial à minha tia Lucia, pelos conselhos e

auxílio na revisão dos textos, e a meu tio Bruno, pelas discussões sempre pertinentes

sobre o tema e pelo empréstimo de sua câmera IP pessoal.

À minha namorada, Samara, por todo o carinho e pelo auxílio com a revisão de

textos e formatação desta monografia.

A meu orientador, Evandro, pelos conselhos, cobranças e ensinamentos, e por

sua competência em ministrar a matéria "Aplicação de Microprocessadores II", que foi

de fundamental importância para realização deste trabalho.

A meus amigos, por tornarem esses 5 anos de graduação ainda mais

especiais.

 A todos vocês, o meu sincero obrigado.

Resumo

 O objetivo deste trabalho foi a implementação de um sistema de automação

residencial de baixo custo, utilizando um Arduino Uno como central de automação,

com acesso via internet de qualquer lugar mundo. Foi desenvolvido um aplicativo para

celulares com sistema operacional Android, capaz de controlar alguns processos de

uma residência de acordo com as necessidades do usuário, tais como: controle de

alimentação de animais de estimação, sistemas de iluminação e alarme. Para criação

do aplicativo foi utilizado o App Inventor, que possui uma interface gráfica de

programação, possibilitando aos usuários sem experiência com programação em

linguagem Java, o desenvolvimento de aplicativos. O binômio custo-benefício foi

alcançado indicando que o valor agregado dos benefícios aos usuários tais como:

praticidade, segurança e simplicidade, na execução das tarefas com baixo custo de

investimento, seja o principal estímulo para investimentos em melhorias na automação

residencial.

Palavras-chave: Automação Residencial, Arduino, Ethernet Shield, Android, App

Inventor

Abstract

 The objective of this work was the implementation of a low cost home

automation system, using an Arduino Uno as central automation, with access through

the Internet from anywhere in the world. It was developed an application for mobile

phones with Android operating system, capable to control some processes of a

residence according to user needs, such as :control of feeding pets, lighting and alarm

systems. To create the application was used App Inventor, which has a graphical

interface programming, enabling users without programming experience in Java

language, application development. The cost-benefit was achieved indicating that the

value of user benefits such as convenience, security and simplicity, in performing the

tasks with low investment cost, be the main stimulus for investments and

improvements in home automation systems.

Keywords: Home Automation, Arduino, Ethernet Shield, Android, App Inventor

Lista de Figuras

Figura 2.1 - O projeto .. 21
Figura 2.2 - Arduino Uno ... 22
Figura 2.3 - Arduino Uno e Ethernet Shield ... 25
Figura 2.4 - Interface de Programação ... 26
Figura 2.5 - Intranet e Internet .. 27
Figura 2.6 - Hierarquia de domínios .. 29
Figura 2.7 - Funcionamento do servidor.. 30
Figura 2.8 - Tela de desenvolvimento do aplicativo .. 32
Figura 2.9 - Editor de blocos do App Inventor ... 33
Figura 2.10 a) Encapsulamento b) Circuito integrado 35
Figura 2.11 - Representação do motor de passo unipolar ... 36
Figura 2.12 - Representação do motor de passo bipolar ... 37
Figura 2.13 - Constituição de motores de imã permanente ... 37
Figura 2.14 - Sequências de acionamento .. 38
Figura 3.1 - Redirecionamento de fluxo pelo no-ip .. 40
Figura 3.2 - Regra de roteamento ... 41
Figura 3.3 - Atualização do DDNS .. 41
Figura 3.4 - Circuito para controle de lâmpadas .. 42
Figura 3.5 - Interruptor paralelo e relê ... 43
Figura 3.6 - Circuito de implementação do alarme .. 44
Figura 3.7 - Fluxograma para alimentação via internet ... 47
Figura 3.8 - Câmera IP ... 48
Figura 3.9 - Esquema de ligação motor de passo ... 49
Figura 3.10 - Desenho ilustrativo do sistema de alimentação 49
Figura 3.11 - Telas de interação com o usuário .. 50
Figura 4.1 - Amostra da página ... 55
Figura 4.2 - Aplicativo em funcionamento ... 57

Lista de Siglas

CLPs (Controladores Lógicos Programáveis)

PC (Personal Computer)

LED (Light Emitting Diode)

LCD (Liquid Crystal Display)

KB (Kilobyte)

ARM (Advanced RISC Machine)

SRAM (Static Random Access Memory)

SPI (Serial Peripheral Interface)

TCP/IP – (Transmission Control Protocol) / IP (Internet Protocol)

SMTP – (Simple Mail Transfer Protocol)

FTP – (File Transfer Protocol)

HTTP - (HyperText Transfer Protocol)

DNS (Domain Name System)

gTLDs (Generic Top Level Domains)

ccTLDs (Country Code Top Level Domains)

DDNS (Dynamic Domain Name System)

DHCP (Dynamic Host Configuration Protocol)

MIT (Massachusetts Institute of Technology)

USB (Universal Serial Bus)

PIR (Passive Infrared)

PIC (Peripherical Interface Controller)

SMS (Short Message Service)

IDE (Integrated Development Environment)

SMTP (Simple Mail Transfer Protocol)

TLS (Transport Layer Security)

SSL (Security Sockets Layer)

GSM (Global System for Mobile Communications)

Sumário

1.Introdução .. 17

1.1 Objetivos ... 20

2. Embasamento Teórico .. 21

2.1 Arduino.. 21

2.2 Ethernet Shield .. 23

2.3 Interface de Programação ... 25

2.4 Acesso externo ao Arduino ... 26

 2.4.1 Intranet e Internet ... 26

 2.4.2 DNS e DDNS .. 27

2.5 App Inventor .. 31

2.6 Sensor PIR .. 34

2.7 Motores de passo .. 35

3.Metodologia ... 39

3.1 Configuração para acesso via internet .. 39

3.2 Controle de lâmpadas ... 42

3.3 Alarme residencial ... 44

3.4 - Alimentação de animais de estimação .. 47

3.5 Criação do aplicativo ... 50

4. Resultados e Discussões .. 55

5.Conclusões .. 61

5.1 Trabalhos Futuros ... 61

Referências .. 63

Apêndice A -Código Arduino ... 66

Apêndice B - Projeto no App Inventor ... 71

Anexo A - Datasheet W5100 ... 75

17

1.Introdução

A automação residencial, também conhecida como domótica, corresponde a

utilização das inovações tecnológicas para satisfazer as necessidades e,

principalmente, o conforto dos integrantes de determinada habitação. A palavra

domótica tem origem na palavra latina "Domus" que significa "Casa", unida a palavra

"Robótica", que é a automatização e controle de qualquer processo. A área está em

crescente evolução nas últimas décadas, auxilada pelo avanço da tecnologia e

aproximação da mesma com atividades ligadas ao cotidiano. Tem como principal

origem a automação industrial, enriquecida com o surgimento dos CLPs

(Controladores Lógicos Programáveis) durante a década de 60. Dessa maneira, a

domótica permite ao usuário controlar dispositivos eletrônicos de sua residência

através de interfaces de controle (EUZÉBIO, M. V.M. & MELLO, E. R., 2013).

Algumas empresas de tecnologia buscaram transferir o crescente

desenvolvimento da microeletrônica para aplicações em residências de modo a

oferecer soluções para automatização de processos afetos a área. Contudo,

perceberam que para a implementação da automação residencial é imprescindível que

todo o sistema funcione com bom nível de robustez, principalmente com relação a

segurança, além de oferecer uma interface simples e objetiva de comunicação com o

usuário, considerando que este não possui necessariamente conhecimento técnico

para operar um sistema mais complexo. Devido a estes motivos, a área da automação

residencial não acompanhou a evolução da automação industrial, que acabou

desenvolvendo-se mais rapidamente. Segundo Bortoluzzi (2013), "a década de 70

pode ser considerada o marco inicial da automação residencial, quando foram

lançados nos EUA os primeiros módulos inteligentes chamados X-10". O protocolo X-

10 foi desenvolvido para controle remoto de dispositivos utilizando a própria rede

elétrica como canal de comunicação. Particularmente, esta era uma característica

interessante do sistema, pois permitia o controle de dispositivos remotos sem que

fosse necessária uma alteração na infraestrutura elétrica da residência.

Mais adiante, na década de 80, com a popularização dos computadores

pessoais (PCs), pôde-se pensar em um PC como central de automação. Entretanto, a

grande desvantagem desse sistema é o elevado consumo, devido a necessidade de

manter o PC sempre ligado. A partir desse problema, partiu-se para o

desenvolvimento de dispositivos embarcados que os substituíssem, através da

utilização de microprocessadores e microcontroladores.

18

Desde então, foram sendo incorporados alguns meios de comunicação com a

central de automação, constituída por um microcontrolador atuando em um sistema

embarcado. Com a popularização da internet de banda larga, essa tecnologia passou

a ser altamente explorada, possibilitando também técnicas de monitoramento não só

presenciais, mas também à distância, sendo possível dessa forma controlar a

residência através de uma Web page (CRUZ,2009). Outros meios, como por exemplo

o Bluetooth, padrão de comunicação desenvolvido para integração entre celulares e

periféricos, também foram incorporados, com o objetivo de, por exemplo, controlar

lâmpadas à pequena distância (SILVA, B.C.R & CÂNDIDO, L.A.A, 2011).

Atualmente é possível compor sistemas para automação residencial com bom

nível de controle, intermediado por sistemas embarcados cada vez mais poderosos,

com acesso remoto via internet ou via sistema de telefonia móvel. Com a crescente

popularização de smartphones, é cada vez mais estimulante a criação de aplicativos,

através de ferramentas acessíveis ao usuário, para se controlar os processos

residenciais sem a necessidade da utilização de um navegador para abertura de uma

Web page.

Além disso, a integração entre os processos a serem controlados e o

aproveitamento total da central de automação, em questão de capacidade do sistema,

são fatores importantes a serem considerados, visto que é necessário apenas uma

central para controlar várias aplicações, o que determina um melhor custo-benefício do

que implementá-las separadamente.

Neste contexto, a proposta deste trabalho é o controle de alguns processos

residenciais escolhidos que estão presentes no dia-a-dia dos habitantes de uma

residência, como por exemplo: controle de lâmpadas, alarme e alimentação de

animais de estimação, tudo por meio de um smartphone.

O controle de lâmpadas tem como principal objetivo satisfazer o conforto dos

integrantes de determinada habitação, eliminando a necessidade de se utilizar o

interruptor para tal tarefa. Ademais, pode ser utilizado também por questões de

segurança, acendendo a lâmpada em determinada ocasião onde essa ação se faça

necessária, principalmente quando o morador se encontra ausente.

Já o sistema de alarme para segurança de residências vem ganhando bastante

mercado nos últimos tempos devido ao aumento da violência, principalmente nos

grandes centros urbanos. Desta forma, este trabalho propõe o desenvolvimento de um

sistema de alarme residencial de baixo custo, funcionando em conjunto com as outras

19

aplicações, e que informe ao usuário, imediatamente, em seu celular, quando houver

algum movimento suspeito no momento em que o alarme estiver ativado, além de

disparar uma sirene de segurança.Também é possível ativar ou desativar este mesmo

alarme de qualquer lugar do mundo, via internet.

A terceira e última aplicação desenvolvida para esta monografia é um sistema

de alimentação canina, ou de qualquer outro animal de estimação, via internet. A

motivação para o desenvolvimento desse sistema é permitir ao dono do animal em

questão, monitorá-lo a distância e alimentá-lo de acordo com a necessidade após a

verificação, em tempo real, da quantidade de comida que ainda resta no recipiente

através de uma câmera.

 Em Março do ano de 2012 o americano Nat Morris criou um mecanismo de

alimentação canina via internet por intermédio do Twitter (DAILYMAIL,2012). O

sistema era composto por um microprocessador Nanode (um microprocessador de

código aberto com conexão com a internet integrada, da mesma família do Arduino e

que utiliza também o ATMega328 como microcontrolador) e um motor de passo de

uma impressora HP Deskjet 500. Para que o cão fosse alimentado era necessário

apenas enviar um comando para a conta @FeedToby noTwitter. Porém, como tal

comando poderia ser enviado por qualquer pessoa, rapidamente o americano passou

a ter problemas com quantidades ilimitadas de comida, o que o obrigou a limitar as

porções em duas vezes ao dia. Há também no mercado alimentadores baseados em

temporizadores, que, de tempo em tempo, alimentam o animal. Eles tem como

desvantagem a ausência de um sistema de monitoramento que informe o usuário se

há comida disponível, ou se o cão está de fato se alimentando, além de serem

alternativas de alto custo.

 Portanto, a idéia deste trabalho é integrar o módulo de alimentação canina à

central de automação, funcionando em conjunto com as outras aplicações, e acionado

por meio de um aplicativo próprio, controlado somente pelo seu dono e monitorado por

uma câmera que se mantém todo o tempo conectada à internet. A aplicação citada, no

entanto, não foi construída, foi desenvolvida apenas a idéia para a solução.

20

1.1 Objetivos

Aproveitando a popularização dos smartphones e tablets e as facilidades a eles

agregadas, como acesso a internet e suporte de aplicativos, o objetivo do projeto é o

controle de processos residenciais, tais como: iluminação, alarme e alimentação de

animais, com baixo custo de implementação, por meio de dispositivos móveis que

utilizem o sistema operacional Android. O sistema em questão foi desenvolvido pela

Google e tem como principal vantagem o acesso livre do usuário a hardware e

software, permitindo a criação de aplicativos que atendam a uma necessidade

específica. Tal característica foi aproveitada no projeto com a criação de um aplicativo,

através de uma ferramenta de fácil acesso ao usuário, o App Inventor, que, em

comunicação com uma plataforma de hardware e atuadores, controle determinados

processos de uma residência, de acordo com as necessidades do habitante.

21

2. Embasamento Teórico

 Neste capítulo será apresentada toda a fundamentação teórica necessária para

o desenvolvimento desta monografia, bem como alguns componentes que foram

utilizados e que merecem um maior aprofundamento teórico a respeito de sua

composição e funcionamento. O diagrama de blocos do sistema completo pode ser

verificado na Figura 2.1.

Figura 2.1 - O projeto

2.1 Arduino

Segundo McRoberts (2011,p.22), "O Arduino é o que chamamos de plataforma

de computação física ou embarcada, ou seja, um sistema que pode interagir com seu

ambiente por meio de hardware e software."

Graças a esta característica, sua aplicabilidade no mundo eletrônico é muito

vasta, sendo possível o controle de uma série de dispositivos, os quais podemos citar:

sensores, motores elétricos, LEDS, displays LCD, chaveamento de transistores, dentre

outros.

22

 O Arduino surgiu em 2005, na Itália, criado por um professor chamado

Massimo Banzi, que desejava ensinar a seus alunos um pouco de eletrônica e

programação de dispositivos. Como seus alunos eram de um curso de Design, ensiná-

los eletrônica sem uma base construída não era uma tarefa simples. A inexistência de

algo barato no mercado e que tivesse ferramentas poderosas, também dificultavam as

idéias de Massimo. Devido a esses fatores, o professor, com auxílio de David

Cuartielles, decidiram criar sua própria placa, com a ajuda do aluno de Massimo,

David Mellis, que ficou responsável por criar a linguagem de programação do Arduino

(BOEIRA, 2013). Assim, apareceu para o mundo uma das mais populares aplicações

de eletrônica de hoje em dia e que tem se espalhado rapidamente pelo planeta.

 O fato que mais chama atenção em relação ao Arduino é a liberdade dada ao

usuário. Tanto o software quanto o hardware são livres, de modo que qualquer pessoa

tenha acesso. Inclusive qualquer usuário pode desenvolver seu próprio Arduino,com a

ressalva de que não use este mesmo nome em sua placa de circuito impresso.

 A Figura 2.2 mostra o Arduino Uno, um dos modelos mais simples de Arduino

existentes no mercado e utilizado neste trabalho.

Figura 2.2 - Arduino Uno (McROBERTS,2011)

23

As características do sistema são as seguintes, seguindo o site oficial do

produto (ARDUINO-1, 2013).

-Microcontrolador: ATmega328

-Tensão de operação: 5V

-Tensão de entrada(recomendada): 7-12V

-Tensão de entrada (limites): 6-20V

-Pinos de entrada/saída digitais: 14 (6 podem fornecer saída PWM (Modulação por

Largura de Pulso))

-Pinos de entrada analogica: 6

-Corrente DC por pino de E/S: 40 mA

-Memória Flash: 32 KB

-SRAM: 2 KB

-EEPROM: 1 KB

-Frequência de clock : 16 MHz

 Embora seja limitado para aplicações consideradas de grande porte, devido a

pouca capacidade de processamento e o baixo número de portas digitais e analógicas

disponíveis, o Arduino Uno ainda é uma ferramenta poderosa para vários tipos de

aplicações, além de se tratar de uma opção viável no mercado em termos financeiros.

2.2 Ethernet Shield

Outra vantagem do Arduino é a existência de vários shields que permitem ao

usuário estender a capacidade do sistema ou especificar uma aplicação desejada. Os

shields são placas de circuito impresso que são encaixados à placa principal e

cumprem função específica no sistema.

 Dentro desse contexto, o Ethernet Shield, compatível com Arduino Uno, é

responsável por fazer a conexão do Arduino com a internet, através de um cabo de

rede. Segundo o site oficial (ARDUINO-2, 2013), a forma de comunicação com a placa

principal é feita utilizando o barramento SPI (Serial Peripheral Interface), através dos

pinos 10, 11, 12 e 13. No pino 10 é feita a seleção do W5100, chip da WIZnet. Ele

24

fornece o protocolo TCP/IP para o Arduino na rede, possibilitando toda a comunicação

com outro dispositivo via internet (para mais detalhes ver datasheet no Anexo A).

 O protocolo TCP/IP é o principal protocolo de envio e recebimento de dados via

internet. Por se tratar na verdade de um conjunto de protocolos integrados, pode

também ser conhecido como "Pilha de Protocolos". É dividido em 4 camadas distintas,

de forma a garantir a integridade dos dados que trafegam pela rede (TECHMUNDO,

2013). São as seguintes:

Camada de Aplicação: Trata-se da camada mais próxima ao usuário. Essa

camada é utilizada para enviar ou receber informações de outros programas através

da rede. Nesta mesma, é possível encontrar outros tipos de protocolos como SMTP

(para email), FTP (transferência de arquivos) e o mais conhecido, HTTP (para navegar

na internet). Uma vez que os dados tenham sido processados pela camada de

aplicação, eles são enviados para a camada de transporte.

Camada de transporte: Tem por função principal receber os dados

provenientes da camada anterior e dividi-los em blocos de dados, também conhecidos

como pacotes.

Camada de rede: Feita a divisão, os dados empacotados são recebidos e

anexados ao endereço virtual (IP) do dispositivo remetente e do destinatário.

Camada de Interface: Tem por função especificar os detalhes de como os

dados são enviados fisicamente pela rede.Os protocolos utilizados nessa camada

dependem do tipo de rede que está sendo utilizada. O tipo mais comum utilizado

atualmente é o Ethernet.

Em suma, estes são os processos que ocorrem no W5100 para se receber ou

enviar um dado via internet.

Para montagem do sistema, basta encaixar o Ethernet Shield no Arduino Uno,

nos terminais correspondentes, e ligar o cabo de rede proveniente do roteador na

entrada RJ45 do shield. A Figura 2.3 ilustra o sistema já montado:

25

Figura 2.3 - Arduino Uno e Ethernet Shield (ARDUINOECIA,2013)

 Pode-se observar na Figura 2.3 o Ethernet Shield encaixado sobre a placa de

Arduino Uno. Cabe ressaltar que este encaixe, conforme visto anteriormente, acaba

ocupando 4 pinos digitais do Arduino, diminuindo para 10 portas digitais disponíveis a

capacidade do sistema, no caso do Arduino Uno.

O restante do processo é feito via software. É necessário a inclusão da

biblioteca Ethernet no código e a configuração do IP que o Arduino terá na rede.

2.3 Interface de Programação

Mais uma vantagem do Arduino é a interface amigável de programação e

comunicação com o microcontrolador. A conexão é feita do computador com o Arduino

via USB, permitindo o upload de programas para o AtMega328. A interface disponível

pode ser verificada na Figura 2.4.

26

Figura 2.4 - Interface de Programação

A interface da Figura 2.4, além das características já citadas, permite a

compilação do programa, inclusão de bibliotecas e alguns exemplos de aplicações.

Ademais, também permite um monitoramento da comunicação serial (Serial Monitor),

muito útil para identificação de erros no código, observação do comportamento do

sistema e até mesmo envio de comandos por este meio em determinada aplicação. A

linguagem de programação utilizada é a linguagem C.

2.4 Acesso externo ao Arduino

 A forma de acesso externo ao Arduino não é um processo simples e requer

alguns conhecimentos que serão expostos a seguir.

2.4.1 Intranet e Internet

Intranet é uma rede privada de uso exclusivo em determinado local, ou seja, de

acesso restrito. Pode ser usada em empresas e em residências. Constituem a

tradicional rede local e portanto não permite acesso externo.

27

 Internet é a rede mundial de computadores e portanto um conglomerado de

redes locais. Não possui acesso restrito e é possível acessá-la externamente de

qualquer lugar do mundo.

 Portanto, acessar qualquer dispositivo pela intranet ou pela internet são

processos totalmente distintos. A Figura 2.5 ilustra o processo.

Figura 2.5 - Intranet e Internet

 O acesso pela Intranet é exemplificado na cor vermelha, ou seja, a partir de um

computador ou dispositivo móvel, acessa-se a rede local conectando-se ao roteador,

que por sua vez envia o comando ao Arduino.

Já o exemplo destacado na cor verde, é um acesso pela Internet. De qualquer

lugar do mundo é possível acessar o roteador, que por sua vez envia os comandos

dados ao Arduino. Entretanto, é necessário saber qual IP o roteador e o servidor ou

domínio ligado a ele possui na rede. Esta será uma questão abordada nos próximos

tópicos.

2.4.2 DNS e DDNS

O serviço DNS (Domain Name System) é utilizado para a conversão de

endereços IP a partir de nomes de domínio que possuem formato numérico. Ele

elimina a necessidade de se ter que lembrar um determinado número para o endereço

de um site, basta lembrar o endereço tradicional, com letras do alfabeto. Em outras

palavras, há duas formas de acessar uma página na internet: pelo nome de domínio

ou pelo endereço IP dos servidores nos quais ela está hospedada. Para tornar

28

desnecessária a digitalização da sequência numérica no navegador sempre que se

quiser visitar um site, o DNS realiza a tarefa de traduzir as palavras que compõem a

URL para o endereço IP do servidor, direcionando assim, o usuário para o local

desejado.

A forma de se implementar este serviço ocorre por meio de vários bancos de

dados espalhados ao redor do mundo, de forma que, quando se digita algum endereço

no navegador, solicita-se aos servidores de DNS do respectivo provedor de internet

(ou outros que se tenha especificado) que encontre o endereço IP associado ao

referido domínio. Caso estes servidores não tenham esta informação, eles se

comunicam com outros que possam ter.

Com o objetivo de tornar esse processo de busca mais prático, foram criados

níveis hierárquicos para os domínios. O primeiro nível, e mais importante, é o

chamado Servidor Raiz (Root Server). A sua função é responder diretamente às

requisições de registros da zona raiz, retornando uma lista dos servidores de nome

designados para o domínio apropriado. Atualmente, existem 13 servidores deste tipo

no mundo inteiro, sendo que 10 deles estão nos Estados Unidos (2 na Europa e 1 na

Ásia). Em caso de falha de algum deles, os outros garantem a integridade do sistema.

A hierarquia é seguida com domínios que apresentam extensões grafadas como:

.com, .net, .org, .info, .edu e outros. Estas são chamadas de gTLDs (Generic Top

Level Domains).Há também terminações relacionadas a países, chamadas de ccTLDs

(Country Code Top Level Domains)I, como por exemplo: .br para o Brasil, .ar para a

Argentina, .fr para a França e assim por diante (INFOWESTER,2013). A Figura 2.6

ilustra o nível hierárquico mencionado e o exemplo da posição no organograma do site

(REGISTRO, 2013).

29

Figura 2.6 - Hierarquia de domínios (REGISTRO, 2013)

Dessa forma, caso o serviço de DNS do provedor de internet não encontre o

domínio desejado, ele direcionará a busca a um Servidor Raiz que, por sua vez,

direcionará ao nível hierárquico imediatamente inferior, e assim sucessivamente até

encontrar o domínio especificado. O serviço do provedor de internet então armazena

esse endereço em um cache de DNS. Assim não é necessário fazer uma nova busca

caso solicitado novamente o mesmo domínio.

 Um outro fator a ser considerado é que, geralmente, clientes de provedores de

internet não possuem IP fixo. Essa é uma exclusividade de empresas,instituições de

ensino ou de outras entidades que necessitam deste fator. O problema é que sem um

IP fixo, é impossível o acesso externo (via internet), já que o servidor DNS aponta para

um IP específico e se este mudar constantemente, os dados DNS deixam de ser

válidos. A solução para este impasse é o uso do DDNS (Dynamic Domain Name

System).

30

 O funcionamento do DDNS ocorre da mesma forma que o servidor

DNS,fornecendo um banco de dados contendo as relações entre o domínio e os

endereços numéricos. A diferença é que agora este banco de dados pode ser

atualizado a pedido do proprietário do domínio. O proprietário do domínio acessa o

servidor DDNS que por sua vez envia informações do IP do domínio ao servidor DNS.

Analisando sob outro ponto de vista, o servidor DDNS é uma ponte entre o

cliente e o domínio a ser acessado, no caso deste trabalho, gerado pelo Arduino, que

viabiliza o acesso pela internet a esse dispositivo. A Figura 2.7, retirada do site

(DIPOL, 2013), ilustra bem o processo.

Figura 2.7 - Funcionamento do servidor DDNS (DIPOL,2013)

 O DHCP (Dynamic Host Configuration Protocol) é um protocolo cliente/servidor

que fornece automaticamente um host de IP com seu endereço IP e outras

informações de configuração relacionados, como o gateway padrão e máscara de sub-

31

rede. Em redes domésticas, é configurado no roteador e fornece um endereço de IP

exclusivo para acessar aquela rede específica.Neste trabalho, assim como no exemplo

da Figura 2.6, o servidor DDNS usado é proveniente do no-ip.

 O no-ip é um site onde é possível alocar servidores DDNS gratuitamente. Basta

fazer o cadastro e configurar o servidor de maneira que atenda as necessidades do

usuário. Feito isso, basta acessar no navegador o endereço configurado para o

servidor criado no site e o tráfego será direcionado ao domínio gerado pela sua rede

doméstica, que neste caso é contemplada pelo Arduino e o Ethernet Shield.

2.5 App Inventor

O App Inventor é uma ferramenta para criação de aplicativos que possui uma

interface gráfica de programação, possibilitando ao usuário sem experiência com

programação em linguagem Java, desenvolver aplicações para dispositivos com

sistema operacional Android. Foi originalmente colocado a disposição pela Google em

Dezembro de 2010 e repassada ao MIT (Massachusetts Institute of Technology), que

é responsável por manter o sistema ativo desde Dezembro de 2011.

 A interface utiliza a biblioteca Java de código aberto Open Blocks para criação

de um ambiente visual de programação, semelhante a um diagrama de blocos. A

biblioteca citada acima é distribuída pelo MIT e proveniente das teses de mestrado de

Ricarose Roque, Professor Eric Klopfer e Daniel Wendel. O compilador que traduz a

linguagem de blocos visual para aplicação em Android utiliza a estrutura de linguagem

Kawa (linguagem de programação para plataforma Java), dentre outros dialetos da

mesma (APPINVENTOR, 2013).

 Seguindo Wolber et al. (2011) o objetivo do usuário é unir esses blocos em

uma espécie de "quebra-cabeças", de modo a satisfazer sua necessidade de

aplicação. Essa é uma característica importante do sistema, pois não permite a

alocação de determinados blocos onde não seria possível alocá-los. A justificativa dos

criadores para o desenvolvimento da ferramenta é a utilização do sistema para se

engajar idéias poderosas através da aprendizagem rápida e contínua.

Embora pareça intuitivo, a utilização do App Inventor ainda requer

conhecimentos básicos de lógica de programação e um estudo detalhado dos blocos

que compõem o sistema, principalmente para aplicações com elevado grau de

complexidade.

32

Para dar início a criação de um novo aplicativo basta acessar o site

(APPINVENTOR) e clicar na aba "Invent". Os projetos ficam hospedados na nuvem e

podem ser acessados de qualquer lugar, sendo apenas necessário fazer login em sua

conta do Google. Na mesma página, pode-se ainda acessar tutoriais de

desenvolvimento, guias de iniciação, além de um fórum entre os usuários, todos estes

disponíveis somente na língua inglesa.

Após a criação de um novo projeto, a tela inicial de desenvolvimento aparece

como na Figura 2.8. É nesta onde se começa a criação do aplicativo. É possível

customizar o seu app de acordo com sua criatividade incluindo botões, imagens,

cores, telas secundárias e outros recursos que desejar. Além disso, é necessário

incluir elementos que não estão diretamente ligados ao design do aplicativo, mas que

serão utilizados futuramente na montagem do diagrama de blocos do sistema, como

por exemplo, para o caso deste trabalho, o componente "Web" (que fornece funções

para HTTP GET) e o "TinyWebDb" (componente que se comunica com um servidor

Web para armezenar,transferir ou recuperar informações). Só é possível tratar todos

esses elementos não-visíveis na montagem do diagrama de blocos, se os mesmos

tiverem sido incluídos nesta tela de desenvolvimento.

Figura 2.8 - Tela de desenvolvimento do aplicativo

33

Após desenvolvida a primeira parte é preciso construir o diagrama de blocos do

aplicativo, através da aba "Open Blocks Editor". Cada tela de desenvolvimento criada,

corresponde a uma aplicação que precisa ser desenvolvida no Editor de Blocos. É

necessário que o programa Java esteja instalado no computador. A Figura 2.9 ilustra o

ambiente de desenvolvimento.

Figura 2.9 - Editor de blocos do App Inventor

 Na aba "Built-in" encontram-se todos os elementos genéricos para criação da

aplicação, separados por cores de acordo com o tipo de dado para facilitar o

entendimento do usuário. Na aba "MyBlocks" estão todos os blocos referentes aos

elementos que o usuário incluiu na tela inicial de desenvolvimento. Cabe ao usuário

montar esses blocos, respeitando suas funcionalidades, para concluir a aplicação.

 Após construída a aplicação, o usuário tem duas opções para testá-la. A

primeira é a utilização do emulador disponível no próprio programa. A segunda é fazer

a comunicação com o celular via USB. Neste último caso, é necessário fazer o

download do aplicativo MIT AICompanion, disponível gratuitamente na Play Store, e

pareá-lo, através de um código de segurança, com o computador.Uma vez

estabelecida a comunicação, é possível alterar o aplicativo criado no computador e

este será modificado em tempo real no celular, otimizando os processos de testes.

34

 Realizados os testes, o usuário tem mais uma vez duas opções para transferir

a aplicação definitivamente para seu smartphone. Ambas ocorrem através da aba

"Package for Phone" na tela inicial de desenvolvimento (Figura 2.8). A primeira é

mediante a utilização da porta USB do PC diretamente, sendo necessário, neste caso,

estabelecer a conexão com o aplicativo MIT AICompanion, conforme descrito no

parágrafo anterior. A outra é fazer o download para o computador do arquivo com

extensão ".apk" e transferir ao smartphone via Bluetooth, Email ou qualquer outro meio

de comunicação possível entre os dois. Cabe ressaltar que ao instalar no celular o

aplicativo é possível que as configurações de segurança do celular o bloqueiem, visto

que ele não é um aplicativo proveniente da Play Store. Neste caso, será necessário

alterar as configurações de segurança do celular, permitindo a instalação de

aplicativos que não são do Android Market.

De fato, o App Inventor é uma ferramenta poderosa para criação de aplicativos

dos mais variados tipos. O editor de blocos contempla quase todas as características

necessárias para criação de aplicativos dos mais simples aos mais complexos. Além

disso, a interface amigável com o usuário constitui uma importante característica do

sistema, principalmente para usuários sem experiência com programação em

linguagem Java.

2.6 Sensor PIR

 O Sensor PIR (Passive Infrared Sensor) é um sensor de movimento capaz de

detectar níveis de radiação infravermelha. A radiação infravermelha existe no espectro

eletromagnético com um comprimento de onda maior do que a luz visível ao ser

humano. Portanto ela não pode ser vista, mas pode ser detectada. Objetos que geram

calor também geram radiação infravermelha e a estes objetos pode-se incluir animais

e o próprio corpo humano. O termo "passivo" refere-se ao fato do sensor não gerar e

nem irradiar alguma energia para o propósito de detecção.

O Sensor PIR possui um circuito integrado que tem por função amplificar os

sinais analógicos de detecção e modular, a partir dele, um sinal de saída em nível

digital. Assim, quando detectada a presença de um intruso, este sinal de saída

permanece em nível alto por um determinado tempo. Caso contrário, ele permanece

em nível baixo. Este mesmo sinal vai para a entrada do microcontrolador, que vai

interpretá-lo adequadamente. As Figuras 2.10 a) e 2.10 b) ilustram, respectivamente, o

35

encapsulamento do sensor e o circuito mencionado acima, representado pelo chip

BISS0001.

 Figura 2.10 a) Encapsulamento b) Circuito integrado

(LADYADA,2013)

 Trata-se de um componente de baixo custo e alta eficiência, possuindo um

alcance de até 7 metros e um ângulo de abrangência para detecção de movimento

superior a 100°. Além disso, por não necessitar de uma alta tensão de alimentação (de

3 a 5V) é ideal para utilização com microcontroladores PIC ou outros dispositivos do

gênero, que trabalham com tensão de aproximadamente 5V, assim como o Arduino.

2.7 Motores de passo

O motor de passo pode ser definido como um transdutor, que converte pulsos

elétricos em movimento mecânico de rotação. A rotação do eixo do motor é

caracterizada por um ângulo incremental de passo, para cada pulso de excitação.

Esse ângulo incremental (que corresponde a um passo) é geralmente especificado na

folha de dados do motor e repetido precisamente a cada pulso, que, por sua vez, pode

ser gerado por um circuito externo ou por um microcontrolador. O erro que possa

existir num determinado ângulo incremental, é geralmente menor que 5%, e não

acumulativo.

Motores deste tipo são comumente utilizados quando a aplicação requer uma

grande precisão de posição do eixo do motor.O motor de passo possibilita um controle

de velocidade, direção e distância, podendo em certas ocasiões, dispensar-se o

controle em malha fechada (ou realimentação), bastando para tal que o torque

36

produzido pelo motor seja suficiente para movimentar a carga acoplada. O circuito

responsável pela atuação é constituído por um circuito sequencial (controlador) e um

estágio amplificador de saída (driver).

 De acordo com Jones (1998), motores de passo podem ser classificados em

dois tipos, em relação à existência ou não de derivação central nas bobinas que

compõem seu enrolamento:

 Unipolar : Os motores de passo unipolares são reconhecidos pela derivação central

em cada uma das bobinas que o constituem. O número de fases corresponde a duas

vezes o número de bobinas, uma vez que cada bobina se encontra dividida em duas.

Na Figura 2.11, encontra-se a representação de um motor de passo unipolar de 4

fases (1a, 2a, 1b e 2b).

Figura 2.11 - Representação do motor de passo unipolar (JONES,1998)

Normalmente, a derivação central das bobinas é ligada ao positivo da fonte de

alimentação e os extremos de cada bobina são ligados seqüencialmente ao terra por

um circuito apropriado (controlador mais driver), conforme o modo de acionamento

adotado, para se produzir um movimento contínuo de rotação.

 Bipolar : Os motores bipolares são constituídos por bobinas sem derivação central.

Por este fato, estas bobinas devem ser energizadas de tal forma que a corrente

elétrica flua na direção inversa a cada dois passos para permitir o movimento contínuo

do rotor.Em outras palavras, a polaridade deve ser invertida durante o funcionamento

do motor, o que requer um controle apropriado e um pouco mais complexo,

geralmente realizado através de um circuito conhecido como Ponte H. De forma geral,

este circuito eletrônico é constituído por 4 chaves que são acionadas de modo

alternado, com a finalidade de permitir que haja a inversão de polaridade.

37

Na Figura 2.12, representa a configuração das bobinas nos motores bipolares.

Nota-se que agora tem-se o número de fases igual ao número de bobinas que

compõem o enrolamento do motor.

Figura 2.12 - Representação do motor de passo bipolar (JONES,1998)

Os motores de passo bipolares são conhecidos por sua relação

tamanho/torque: eles proporcionam um maior torque (aproximadamente 40% a mais),

comparativamente a um motor unipolar de mesmas dimensões. Tal questão se deve

ao fato de que quando se energiza uma fase, magnetiza-se ambos os pólos em que a

fase (ou bobina) está instalada. Assim, o rotor sofre a ação de forças magnéticas de

ambos os pólos, ao invés de apenas um, como acontece no motor unipolar.

O funcionamento básico de um motor de passo de ímã permanente, dispositivo

de baixo custo altamente utilizado em aplicações não industriais, é condicionado à

energização sequencial das bobinas que o constituem, conforme mencionado

anteriormente. Na Figura 2.13, observa-se a constituição de motores deste tipo.

Figura 2.13 - Constituição de motores de imã permanente (KEMPER, 2013)

38

Ao energizar-se uma bobina, cria-se um campo magnético que atrai o pólo

magnético contrário do imã localizado no rotor. Quando se desliga essa primeira

bobina e energiza-se a próxima, o imã do rotor segue esse campo magnético e dá um

passo no sentido desejado. Há ainda outras alternativas de controle, ao invés de

apenas se energizar uma bobina por vez, como por exemplo a técnica de meio passo

(Half Step). Na Figura 2.14, ilustra-se a sequência de acionamento por meio passo e

passo inteiro para motores bipolares e unipolares.

Figura 2.14 - Sequências de acionamento (BRITES, F.G & SANTOS, V.P.A, 2008)

Existem também outros tipos de motores de passo diferentes do motor de imã

permanente, como o motor de relutância variável e o motor de passo híbrido, que não

serão abordados nesta monografia.

39

3.Metodologia

 Para as aplicações descritas nessa seção, foi inicialmente construída uma

página, desenvolvida diretamente na interface de programação do Arduino, em

linguagem HTML, para ilustrar e implementar a aplicação de um controle de lâmpadas,

com botões de controle, de forma a ligar/desligar cada uma delas por meio da intranet

e, posteriormente, da internet. O intuito principal da criação desta página foi obter uma

maior familiarização com o Arduino e compreender as dificuldades envolvidas no

processo de execução de comandos e respostas por meio da internet. Entretanto, este

não é o objetivo principal desta monografia, e, após validadas as questões já citadas,

foi desenvolvido um aplicativo para Android objetivando não somente o controle de

lâmpadas, já implementado anteriormente, como também o controle de outros dois

processos de uma residência: alarme e alimentação de animais de estimação, de

acordo com a necessidade do usuário.

O conceito principal de funcionalidade do sistema, de forma geral, é simples:

cada botão de controle, inserido no aplicativo, controla, de qualquer lugar do mundo,

uma ou mais saídas digitais do Arduino que, com auxílio de circuitos auxiliares,

realizam a ação desejada. Além disso, o Arduino envia feedbacks ao usuário,

informando qual o estado atual de cada aplicação.

Nesta seção, serão aprofundados estes conceitos, descrevendo e detalhando os

métodos utilizados para realização das aplicações mencionadas, bem como a forma

de configuração do no-ip e roteador para o acesso externo, além da criação do

aplicativo com auxílio do App Inventor.

O software desenvolvido no Arduino e o projeto no App Inventor, encontram-se

nos Apêndices A e B, respectivamente.

3.1 Configuração para acesso via internet

 Para o acesso ao Arduino via internet com auxílio do no-ip é necessária a

realização de alguns passos que serão descritos a seguir. Primeiramente,é importante

frisar que a porta recomendada pelo no-ip é a porta 80, a padrão de comunicação.

Contudo, alguns provedores de internet bloqueiam esta porta, justamente para que

não se possa armazenar sites em casa. Assim, caso esta não esteja disponível, é

necessário redirecionar o fluxo de informações para uma outra porta, que esteja

40

disponível pelo provedor de internet. Para descobrir se uma porta está disponível ou

não, pode-se acessar o site (CONYOUSEEME,2013) e testar a porta no espaço

correspondente. O serviço tentará então "enxergar" o seu IP público através da porta

escolhida. Caso consiga, a porta está aberta pelo seu provedor de internet, caso

contrário será necessário tentar uma outra porta, até que se obtenha sucesso. Após

descoberta uma porta que esteja acessível, executa-se o processo exemplificado na

Figura 3.1, onde o fluxo foi redirecionado para porta 8888 através da configuração no

site do no-ip.

Figura 3.1 - Redirecionamento de fluxo pelo no-ip

O "IP Address" é o IP atual da rede doméstica, descoberto automaticamente

pelo próprio site.

 Após a configuração do servidor como desejado, é necessário criar

manualmente uma regra de roteamento nas configurações do roteador,através da

opção "Virtual Server". Toda informação que vier através da porta 8888, é

redirecionada para o endereço de IP que foi configurado para o Arduino via software.

Na Figura 3.2 pode-se observar o ocorrido. O roteador utilizado foi o D-Link-524.

41

Figura 3.2 - Regra de roteamento

O endereço de IP 192.168.0.199 foi configurado no Arduino via software com

auxílio da biblioteca do Ethernet Shield, como pode ser observado no Apêndice A.

 Por último, é necessário configurar o roteador como na Figura 3.3, para

atualizar o no-ip com o endereço de IP da rede onde se encontra o Arduino, evitando

que o acesso a ele seja bloqueado mesmo que este IP se altere.

Figura 3.3 - Atualização do DDNS

42

 Desta maneira, o roteador atualiza o no-ip periodicamente, informando qual o

IP necessário para acessá-lo.

3.2 Controle de lâmpadas

 Para o controle de lâmpadas utilizou-se o circuito da Figura 3.4.

Figura 3.4 - Circuito para controle de lâmpadas

 Na base de Q1 encontra-se uma saída digital do Arduino, acionada por um

botão via internet. Caso haja corrente na base do transistor (saída do Arduino em nível

alto), este funciona como uma chave, ativando a bobina do relê U1, fechando o

contato auxiliar e, consequentemente, acendendo a lâmpada. Caso contrário, ela

permanece apagada. O diodo D1 protege o sistema contra força-eletromotriz reversa.

 O circuito da Figura 3.4 é bastante comum em aplicações envolvendo

microcontroladores. Ele permite que se controle dispositivos que demandem uma

corrente da ordem de 100 a 500 vezes maior (dependendo do ganho do transistor

utilizado) do que a corrente máxima de saída de uma porta digital do microcontrolador.

Para o caso do Arduino, por exemplo, e do BC547A, utilizado nesta monografia, é

possível controlar uma corrente de até aproximadamente 4A no coletor do transistor,

visto que cada porta digital demanda no máximo 40mA de corrente e o transistor

citado possui um ganho de corrente próximo a 100. Este fator aumenta muito a

quantidade e a variedade de aplicações que o sistema pode suportar. Além disso,o

43

uso deste circuito constitui também um importante fator de segurança, que impede um

possível dano ao sistema. Como a tensão instantânea em uma bobina qualquer é

dada pela indutância da mesma multiplicada pela variação da corrente em função do

tempo, e como a corrente varia muito rapidamente no indutor, esta tensão instantânea

pode assumir um valor muito grande, o que pode ocasionar os chamados surtos de

tensão, que por sua vez podem queimar o transistor ou afetar o microcontrolador. Por

isso, a utilização do diodo D1, que impede que estes surtos cheguem ao circuito de

aplicação, mantendo sempre uma tensão de no máximo 0,7V (queda de tensão no

diodo) a mais que a fonte de alimentação na bobina, valor que o transistor suporta

sem maiores problemas.

 Na prática, é recomendável a utilização do relê substituindo um interruptor

paralelo de forma que, ou um, ou outro, liguem ou desliguem o sistema quando for

desejado. Assim, é possível controlar as lâmpadas pela internet ou da forma

convencional. O esquema de ligação proposto encontra-se na Figura 3.5.

Figura 3.5 - Interruptor paralelo e relê

 Para este trabalho, foi construído um circuito para apenas uma lâmpada

independente. Contudo, o conceito é extensível a várias lâmpadas, caso este seja o

intuito do projeto.

44

3.3 Alarme residencial

 O circuito utilizado para implementação do alarme pode ser observado na

Figura 3.6.

Figura 3.6 - Circuito de implementação do alarme

Para simulação de uma sirene utilizou-se um disco piezoelétrico. Trata-se de

um dispositivo simples, feito de uma fina camada de cerâmica, envolta por um disco

metálico. Materiais piezoelétricos, tem a capacidade produzir eletricidade quando a

eles é aplicada alguma pressão mecânica. O efeito contrário também é verdadeiro. Ao

se aplicar um campo elétrico em um material deste tipo, o mesmo muda de forma,

provocando um efeito sonoro audível conforme o disco se deforma. Portanto, ao ser

aplicada uma tensão nos terminais de um objeto deste tipo,por meio de uma das

saídas digitais do Arduino, o disco passará a vibrar em uma única frequência,

produzindo sons.

 Após ter sido desenvolvido o circuito de aplicação e a parte de software para

comandar a leitura do sensor de movimento e ativação da sirene quando for detectada

a presença de intrusos, implementou-se as notificações ao usuário quando o alarme é

disparado. A priori, a intenção era utilizar as próprias notificações do aplicativo, da

mesma forma que outros aplicativos conhecidos utilizam, como o Facebook e o

45

Whatsapp, por exemplo. Porém, embora seja uma requisição constante dos usuários

nos fóruns especializados, o App Inventor ainda não possui uma forma de gerar

notificações em tempo real. Ele não tem a capacidade de manter as aplicações "vivas"

enquanto o celular não está sendo utilizado. Dessa forma, caso o usuário não esteja

utilizando o aparelho móvel, ele não verificaria o disparo do alarme em tempo real,

mas somente quando voltasse a utilizá-lo. Partiu-se então para uma outra solução que

resolvesse este impasse e o método escolhido foi a utilização do Twitter.

 O Twitter é uma rede social e servidor para microblogging, que permite aos

usuários o envio e recebimento das atualizações pessoais de outros contatos (em

textos de até 140 caracteres, conhecidos como "tweets"), por meio do website do

serviço, por SMS e por softwares específicos de gerenciamento. O serviço é gratuito

pela internet e qualquer usuário com acesso a rede ou a algum dispositivo móvel com

essa funcionalidade pode criar uma conta e usufruir do sistema sem ônus financeiro.

Estima-se que atualmente cerca de 500 milhões de pessoas ao redor do mundo

utilizem a rede social.

 No segundo semestre deste ano de 2013 o Twitter atualizou seu sistema para

aplicações de celular implementando as "Notificações Push" (em tempo real), assim

como outros aplicativos já utilizavam. Ademais, ele possui a interessante característica

de poder enviar SMS do servidor diretamente para celulares também de forma gratuita

(por enquanto somente para as operadoras TIM e Nextel, pois as outras só permitem o

envio do SMS do celular para o Twitter, e não ao contrário), em situações específicas

que o usuário pode configurar dentro do próprio microblog (como menções ou tweet de

algum amigo específico). Particularmente, esta é uma característica importante para a

aplicação desejada, pois elimina a necessidade de estar em um local com acesso a

internet para receber a notificação proveniente do alarme, visto que ela pode ser feita

via mensagem SMS.

 Embora seja uma ferramenta interessante, o acesso ao Twitter por meio do

Arduino não é um processo fácil e foi mudado recentemente. Segundo McRoberts

(2011,p.420),

A partir de 31 de agosto de 2010, o Twitter alterou sua política no que

se refere ao acesso ao site utilizando aplicativos de terceiros. Um

método de autenticação, conhecido como OAuth, agora é utilizado,

tornando muito mais difícil "twittar" diretamente a partir de um

Arduino; antes dessa alteração, esse processo era muito mais fácil.

Enviar mensagens pelo Twitter, neste momento, só é possível

46

utilizando um recurso externo. Em outras palavras, é necessário

enviar o tweet para um site, ou proxy, que twittará em seu nome,

utilizando o token OAuth (código de acesso).

O protocolo OAuth fornece uma forma padronizada de acessar dados

protegidos. De fato, a biblioteca do Twitter e o código exemplo, que vem inseridos com

a IDE (interface de programação) ao baixá-la, não funcionam mais por esse motivo.

Assim, utilizou-se um servidor proxy para tornar possível as postagens por meio do

Twitter.

 Servidor proxy é um servidor que atende a requisições repassando os dados

do cliente a frente. Um usuário conecta-se a ele, requisitando algum serviço (neste

caso o acesso ao servidor do Twitter) e este repassa a requisição para o servidor

destinatário. Um servidor proxy pode, opcionalmente, alterar a requisição do cliente ou

a resposta do servidor e, algumas vezes, pode disponibilizar este recurso sem nem

mesmo se conectar ao servidor especificado. Em redes de computadores, pode

também atuar como um servidor que armazena dados em forma de cache, guardando

informações para melhorar a rapidez de conexão a servidores que já foram acessados

anteriormente.

 O servidor citado como proxy é o (ARDUINOTWEET,2013). O site foi

desenvolvido por um usuário do Arduino, denominado Neocat, e que utiliza seu

domínio para enviar o tweet com o protocolo de autenticação OAuth. Para enviar um

"tweet" é necessário instalar a biblioteca Twitter.h, desenvolvida por ele, substituir a

anterior e obter um token (versão criptografada do seu nome de usuário e senha),

ambos disponíveis em seu site. Ainda há um exemplo de código a se implementar

para "twittar". Embora dezenas de usuários utilizem este mesmo caminho para

"twittar", recomenda-se, por questões de segurança ao utilizar um servidor proxy, a

criação de um novo perfil anônimo no Twitter apenas com o intuito de monitoramento

de sua residência, assim como foi feito neste trabalho.

 Realizada a conexão, configurou-se dentro do próprio Twitter a obtenção de

notificações toda vez que o perfil casamonitor, criado exclusivamente para este

projeto, mencionar o perfil pessoal do autor desta monografia. Assim, basta configurar,

via software, na IDE do Arduino, a mensagem a ser "twittada" como uma menção ao

perfil que se deseja notificar. A forma de fazer isso através do Twitter é "@ + nome do

usuário".

47

 Finalmente, é necessário baixar o aplicativo do Twitter em seu celular Android,

cadastrar sua conta pessoal no mesmo e ativar a sincronização de conta para permitir

também as notificações em tempo real.

3.4 - Alimentação de animais de estimação

 Para viabilizar o desenvolvimento do sistema de alimentação via internet,

simulou-se o uso do motor de passo unipolar Mitsumi M42SP-5 (ou similar),controlado

pelo Arduino, que é responsável por abrir e fechar o compartimento onde fica

armazenada a comida do animal, despejando a mesma no recipiente adequado, a

partir de um comando dado pelo usuário ao aplicativo instalado em seu celular. Um

outro comando é dado para fechar o compartimento e interromper a alimentação. Além

disso, utilizou-se uma Câmera IP para se obter imagens do recipiente de comida,

indicando se há ou não algum alimento no mesmo. O fluxograma é representado na

Figura 3.7.

Figura 3.7 - Fluxograma para alimentação via internet

Uma Câmera IP é um dispositivo capaz de transmitir imagens e receber

informações através da internet. Ela é conectada ao roteador via Wireless (existem

também modelos que são conectadas por cabo de rede) e portanto também possui um

48

IP na rede. Conforme já foi discutido na Seção 2.4, para acessá-la externamente é

necessário a utilização de um servidor DDNS, que pode ser disponibilizado pelo no-ip.

Dessa forma, utilizou-se para acesso a câmera o mesmo procedimento descrito na

Seção 3.1, criando-se um novo Host denominado (cameracanil.zapto.org) e utilizando-

se, desta vez, a porta 8080 de comunicação. Portanto é possível acessar as imagens

do local onde a câmera se encontra de qualquer dispositivo que tenha conexão com a

internet, como por exemplo um smartphone, bastando acessar o domínio descrito

acima através do navegador. O modelo de câmera utilizado foi a Edimax IC-3110W,

semelhante à ilustrada na Figura 3.8.

Figura 3.8 - Câmera IP (STARDOT,2013)

Para simulação do motor de passo, foi selecionado um motor com configuração

unipolar, que possui um controle mais fácil de ser implementado, por não necessitar

de inversão de polaridade das bobinas, conforme explicado na Seção 2.7. Foram

ligados 4 Leds, cada um a uma saída digital do Arduino, simulando as 4 bobinas de

um motor de passo, que, energizadas sequencialmente, são responsáveis pelo

movimento do mesmo. Quando for necessária a troca de sentido, basta inverter a

sequência. Entretanto, cabe ressaltar que na prática não é possível ligar os 4 fios

provenientes das bobinas do motor direto na saída do microprocessador por questões

já apontadas anteriormente. É necessário um circuito de acionamento semelhante ao

da Figura 3.4 para cada bobina ou senão um driver que o substitua, como por exemplo

o CI ULN2003. A Figura 3.9 mostra a ligação do motor de passo Mitsumi M42SP-5

juntamente com o ULN2003. Também é necessária uma fonte de alimentação externa

para alimentar o motor de 12 a 24VDC.

49

Figura 3.9 - Esquema de ligação motor de passo

Já a Figura 3.10, representa um desenho ilustrativo (fora de escala) do sistema

de alimentação, feito a mão livre e digitalizado posteriormente, onde a central de

automação corresponde ao Arduino e o Ethernet Shield.

Figura 3.10 - Desenho ilustrativo do sistema de alimentação

50

3.5 Criação do aplicativo

 Por fim, desenvolveu-se um aplicativo capaz de comandar todas as aplicações

descritas anteriormente. Utilizou-se neste processo o App Inventor, detalhado na

Seção 2.5. As 3 telas de interação com o usuário e os respectivos componentes

utilizados para posterior tratamento no Editor de Blocos, estão representados na

Figura 3.11

Figura 3.11 - Telas de interação com o usuário

 A primeira tela é a tela inicial, onde será necessário inserir a senha do usuário

para permitir o acesso às outras telas. Dessa forma, em caso de furto do celular ou em

outra circunstância onde o smartphone possa ficar exposto a outros indivíduos,

ninguém estará apto a acessar a tela principal de controle da residência, a menos que

possua a senha do aplicativo. A senha para acesso é definida no Editor de Blocos, e

para o caso desta monografia foi definida como "tcc". Em caso de senha incorreta,

exibi-se uma notificação alertando para este fato. O botão "Sair" fecha a aplicação.

A tela "Config" é a tela onde será necessário incluir o IP público da rede que

hospeda o Arduino. Inicialmente, tentou-se fazer esse acesso através dos métodos já

citados nesta monografia, com auxílio do no-ip. Alguns problemas, que serão

discutidos no próximo o capítulo, ocorreram e foi necessário o desenvolvimento de um

outro método para substituir o serviço de DDNS fornecido pelo no-ip.

Para solução deste impasse, foi elaborada uma solução através do próprio

Arduino. A nova função designada a este consiste em acessar um site especializado

51

em descobrir IP's, periodicamente, interpretar esse dado fornecido pelo site e verificar

se o mesmo é igual ou diferente do dado armazenado na memória. Se for diferente,

significa que o IP da rede mudou, e então novamente utiliza-se o Twitter para notificar

o usuário que o IP foi modificado e qual é esse novo número. O usuário então,

obtendo essa informação, acessa a tela de configurações do aplicativo a atualiza o IP

da sua rede para esse novo número, inserindo-o e clicando em "Submit".

O site escolhido foi o (CHECKIP,2013). Ao acessá-lo, obtêm-se o seguinte

cabeçalho no formato HTML:

<html><head><title>CurrentIP Check</title></head><body>Current IP Address:

177.34.170.35</body></html>

que pode ser decifrado de modo a se obter somente o endereço numérico do IP. O

trecho de código correspondente a esta função foi adaptado do blog

(JOSEMATM,2013).

Interpretado o IP da rede, esse dado é armazenado na memória de programa

do microcontrolador do Arduino, verificando, a cada acesso ao site, se o novo valor

obtido é igual ou diferente do armazenado. Em caso de diferença, esse novo valor

será armazenado na memória de programa, mas será ainda necessária uma

conversão de tipos de dados para transmiti-lo ao Twitter. O número de IP devolvido

pela função é um numéro de 32 bits ou do tipo uint_32 . Portanto,será necessário

transformá-lo em 4 vetores de 8 bits (ou uint_8) e depois imprimí-lo em um vetor de

caracteres (através da função sprintf) antes de transmití-lo com auxílio da biblioteca

Twitter.h.

Realizada a conversão de dados e a transmissão, o usuário é notificado e cabe

a ele acessar o aplicativo e atualizar esta informação. Não é necessário colocar este

número todas as vezes que abrir o aplicativo. Este número de IP fica armazenado no

celular, a menos que se exclua os dados do aplicativo nas configurações do aparelho

ou que se instale o mesmo novamente. Uma vez colocado o dado e em caso de não

se ter recebido notificações, basta teclar "ok" quando acessar a tela "Config" que o

usuário será direcionado à tela principal.

Na tela principal, encontram-se todos os comandos para as 3 aplicações

desenvolvidas. Os botões interpretam se as saídas do Arduino estão em nível alto ou

baixo, indicando ao usuário, por meio de cores (verde para ligado e vermelho para

desligado), qual o status de determinada aplicação. O botão "Desligar" é não somente

o botão que desliga a sirene do alarme, mas também um indicador de status se o

52

alarme está disparado ou se está desligado, mudando de cor e indicando visualmente

ambos os casos. Por fim, para a alimentação canina, é possível acessar a câmera

localizada no canil e visualizar se há comida ou não no recipiente ou também se não

há nada de errado com o animal. Caso o usuário necessitar alimentar o cão, basta o

mesmo clicar na imagem indicada. Se o compartimento estiver fechado, o texto da

imagem permanecerá pedindo por comida. Em contrapartida, se o mesmo estiver

aberto, o cão exibe uma mensagem de agradecimento. O botão de configurações

retorna para a tela "Config" caso seja necessária alguma alteração na mesma.

Segue abaixo uma descrição de todos os componentes do App Inventor

utilizados e suas funções dentro do sistema:

Notifier: Os blocos que estão presentes nesse componente são capazes de

exibir vários tipos de notificações ao usuário do aplicativo, incluindo mensagens SMS

ou simples alertas na forma de texto.Foi utilizado neste projeto com a finalidade de

notificar o usuário na tela inicial, no caso deste ter inserido uma senha incorreta para

tentar acessar o aplicativo.

Tiny DB: Permite que o usuário armazene informações dentro do próprio

aplicativo e as recupere a qualquer momento. Este recurso foi utilizado para

armazenar a IP pública do usuário na rede e repassá-la à variável "ip", utilizada na

Tela Principal. Para utilização deste componente em telas diferentes, como aconteceu

neste estudo, foi necessário incluí-lo em ambas, conforme observado na Figura 3.11.

Clock: Fornece ao usuário a opção de criar eventos que executem

determinada ação em intervalos regulares de tempo definidos pelo usuário. Para este

trabalho, sua função foi prover um intervalo de tempo de 1s para se acessar o domínio

onde se encontra o Arduino (com auxílio do componente Web), de forma a permitir a

obtenção da resposta das portas digitais, fornecendo o feedback para o aplicativo

periodicamente. Esse componente só funciona quando o celular está ativo, e esta é

justamente a questão determinante que inviabilizou as notificações em tempo real pelo

App Inventor.

Web: Componente que fornece funções para requisição HTTP GET e HTTP

POST. Esse foi o componente utilizado para se fazer uma requisição e acessar o

domínio gerado pelo Arduino a partir da variável "ip".

TinyWebDB: Componente que se comunica com um domínio na internet e tem

por função transmitir, armazenar e recuperar informações. Foi utilizado para passar as

intruções ao Arduino, via internet com auxílio do componente Web.

53

Activity Starter: Contém funções que conseguem iniciar atividades dentro do

aplicativo, como abertura de novos ícones, acionamento da câmera do aparelho,

dentre outras. Foi utilizado como um botão com o link necessário para se acessar a

Câmera IP a partir do navegador por meio do endereço que ela possui na internet,

gerado pelo no-ip.

O projeto para cada uma das telas, com as funções fornecidas pelos

componentes citados, encontra-se no Apêndice B.

54

55

4. Resultados e Discussões

 Uma amostra da página HTML construída para testes de comandos ao Arduino

através da internet, pode ser visualizada na Figura 4.1.

Figura 4.1 - Amostra da página

O acesso ao Arduino através dos botões da página HTML foi realizado com

sucesso, sendo testado na Intranet e também na Internet, esta última forma de acesso

realizada com auxílio do no-ip, através do domínio (tcclucas.zapto.org), após todo o

procedimento descrito na seção 3.1. Implementou-se também o circuito da Figura 3.4

para testes do acionamento de lâmpadas via internet, também realizado com sucesso.

A respeito da confecção da página, esta questão não foi aprofundada por não ser o

objetivo deste trabalho. Uma vez testada a conexão com o Arduino via internet para o

acionamento de lâmpadas, foi dado prosseguimento ao trabalho com a criação do

aplicativo, este sim objetivo principal do mesmo.

A respeito da criação do aplicativo, o principal problema apresentado foi

justamente o acesso externo ao Arduino. Inicialmente, foi feita a tentativa de realizá-lo

através do acesso ao domínio gerado pelo no-ip, de maneira análoga à realizada

através da página HTML. Dessa maneira, não seria necessário saber qual o IP do

Arduino na rede, bastava decorar o endereço do domínio, mesmo que este mudasse

com decorrer do tempo, conforme foi exposto na Seção 2.4.2. Definiu-se então uma

variável "ip" no Editor de Blocos da Tela Principal do App Inventor e atribuiu-se a ela o

endereço do domínio (com letras do alfabeto). Toda vez que se precisasse fazer uma

requisição ao servidor (HTTP GET), essa variável seria chamada. Todavia, não foi

56

possível realizar a requisição desta forma, através do componente Web. O indicativo

do app era de que era impossível a obtenção de uma resposta do servidor requisitado,

embora o domínio apontasse para o endereço numérico do IP público da rede onde se

encontra a central de automação. No entanto, quando a variável "ip" foi colocada

diretamente na forma numérica, com o IP da rede, a requisição foi feita com

sucesso.Tratou-se portanto de um problema de DNS, onde não foi possível traduzir o

endereço com letras do alfabeto para o formato numérico, utilizando os blocos

disponíveis no App Inventor. Após muitas pesquisas, estudo de todos os componentes

do App Inventor e contato via internet com fóruns e blogs especializados no assunto,

não foi possível solucionar essa questão.

Foi implementada uma outra solução, já descrita na Seção 3.5, para substituir o

serviço de DDNS fornecido pelo no-ip. Inicialmente, essa solução sobrecarregou o

sistema, pois agora o Arduino teria que acessar o site que identifica o IP público da

rede a cada execução do código, que fica em um loop infinito, o que acarretava em

uma requisição a cada 2 segundos, aproximadamente. Dessa forma, o tempo de

resposta do sistema para qualquer requisição proveniente do aplicativo, aumentou

cerca de alguns segundos para ser processada. A solução para este caso foi inserir

uma variável contadora ("cont") no código do programa, de modo que o site só fosse

acessado após esta atingir um valor determinado. Assim, a requisição agora é feita de

cerca de 5 em 5 minutos, evitando a sobrecarga do sistema. Um outro problema

encontrado foi que, se em alguma requisição ao site, ocorresse algum problema, ou de

origem do provedor de internet ou do próprio servidor que hospeda o site, o valor

obtido para variável que identifica o IP da rede ("ipAtual") era 0.0.0.0. Como essa

variável é diferente daquela que estava armazenada na memória de programa, era

postada uma notificação ao usuário, através do Twitter, informando que o IP havia

mudado e que o novo valor era 0.0.0.0, o que obviamente não se tratava se uma

informação verdadeira. Esse problema foi solucionado criando-se uma variável

"ipnulo" e atribuindo-se a ela o valor do IP com os zeros, de forma a só enviar a

notificação ao usuário se a variável obtida através do site fosse, não somente diferente

da variável contida na memória de programa, mas também diferente da variável

"ipnulo". Ademais, a solução de notificação ao usuário funcionou corretamente, assim

como todas as outras funcionalidades do aplicativo. Na Figura 4.2, pode-se observar o

funcionamento do mesmo.

57

 Figura 4.2 - Aplicativo em funcionamento

A respeito das aplicações desenvolvidas, cabem algumas considerações. Em

relação ao alarme, a solução implementada por meio de notificações via Twitter

mostrou-se eficaz, apontando todas as vezes que o alarme foi disparado,

imediatamente. Foi feita também a tentativa de fazer o sistema de notificações via

email, através do protocolo SMTP (Simple Mail Transfer Protocol). Trata-se de um

protocolo padrão de envios de emails através da internet, relativamente simples, onde

um ou vários destinatários são especificados e depois transfere-se a mensagem. A

conexão com o servidor de email destinatário foi realizada com sucesso, mas a

mensagem não foi transferida. Isso ocorreu devido aos servidores de email usarem

atualmente o protocolo de autenticação TLS (Transport Layer Security) ou o seu

antecessor, o SSL (Security Sockets Layer) para receber e transmitir mensagens.

Os protocolos TLS/SSL são protocolos baseados em criptografia, que

estabelecem segurança de comunicação via internet para alguns serviços específicos,

como email (SMTP), por exemplo. São protocolos complexos que, por serem

58

criptográficos, exigem uma grande capacidade de processamento e, portanto, são de

impossível realização em um Arduino Uno ou em qualquer outro microcontrolador de 8

bits. Contudo, cabe ressaltar que a solução por meio do Twitter atendeu

completamente às solicitações e que é também possível configurar, dentro da própria

rede social, o envio de emails toda vez que houver uma menção de perfil, se o usuário

julgar necessário este recurso, além das notificações em tempo real através do

aplicativo.

Tratando-se ainda da questão das notificações, o Twitter também é capaz de

enviar mensagens SMS gratuitamente para o número de celular especificado nas

configurações da rede social, conforme mencionado na Seção 3.3. Dentro desse

contexto, o Arduino também possui um shield específico para enviar SMS para

celulares.Trata-se do Shield GSM. Para o envio de mensagens, é necessário o uso de

um chip para celulares, o que acarreta custos adicionais de acordo com a operadora

escolhida. Entretanto, o uso deste shield é uma alternativa interessante, pois pode

funcionar como redundância ao sistema, em caso de alguma falha proveniente do

Twitter ou do servidor proxy que faz a requisição a este serviço para o envio das

notificações,ou para simples envio de SMS, para usuários que não possuem celulares

das operadoras TIM ou Nextel (as únicas que suportam o serviço de mensagens SMS

através do Twitter neste momento).Já para os usuários que não possuem acesso a

internet pelo seu smartphone em tempo integral, este shield é de fundamental

importância, pois as notificações não dependerão mais do acesso à rede.

Finalizando a discussão a respeito do alarme residencial, cabe ressaltar que o

disco piezoelétrico para produção de sons foi escolhido apenas para efeito de

simulação, não dispondo de uma capacidade sonora suficiente para ser aplicado a um

alarme residencial. Para um melhor desempenho deste tipo de dispositivo recomenda-

se o uso de uma outra sirene mais potente, sendo necessário o uso de circuitos

auxiliares para sua ativação, semelhantes ao da Figura 3.4, utilizado para controle de

lâmpadas.

Em relação à alimentação de animais de estimação, também é importante fazer

algumas considerações. A escolha da Câmera IP, deveu-se, sobretudo, a substituição

de todos os sensores que seriam necessários para monitoramento da aplicação.

Graças a sua versatilidade, é possível monitorar não somente o animal, mas também

se há comida no recipiente de ração e se há comida no compartimento de

alimentação, substituindo eventuais sensores que teriam que ser utilizados para essas

finalidades.O modelo de câmera descrito neste trabalho não dispõe de movimento

59

mecânico e rotativo controlado via internet, mas existem determinados modelos que

possuem essa funcionalidade, essencial para monitoramento dessa aplicação.

Ademais, é também necessária uma atenção especial ao local onde a câmera está

instalada, pois ela não possui uma resolução adequada à longa distância,

impossibilitando uma visão nítida do sistema como um todo nessa ocasião. Se não for

possível instalá-la em local adequado para suprir essa necessidade, será necessário

fazer um tratamento de imagem antes da mesma chegar a seu destino final, que é o

celular. Mais uma vez, esbarra-se nas limitações de capacidade do Arduino Uno para

realizar esta tarefa, impossibilitando o usuário de realizá-la através deste dispositivo.

Também foi considerada a possibilidade de fazer um monitoramento do

recipiente de comida por meio de um sensor de força resistivo, que identificaria, a

partir da massa total do recipiente, se seria necessário, ou não, a alimentação do

animal. Particularmente, seria um artifício proveitoso, pois forneceria a possibilidade

de notificar o usuário na falta de alimento. Contudo, por necessitar de testes com um

protótipo construído, este sistema não foi implementado. Ainda assim, seria

necessária sua atuação em conjunto com a câmera, para comprovar que a notificação

não estava sendo mascarada por um peso extra no recipiente, que pode ser inclusive

o próprio corpo do animal.

Por fim, é importante destacar o papel do Arduino no sistema como um

componente totalmente passivo em relação ao aplicativo que o comanda. Embora o

mesmo identifique se as portas do Arduino estão em nível alto ou baixo, informando ao

usuário qual o estado atual das aplicações, a requisição é sempre feita a partir do

celular e nunca da central de automação. Para o Arduino fazer uma requisição ao

aparelho, é necessário um servidor intermediário, como no caso deste trabalho, o

Twitter. Isso se deve ao fato da inexistência de um servidor presente no celular, que

possibilitaria a comunicação direta entre ambos. Já existem alguns servidores para

Android desenvolvidos, e futuramente podem ser tornar alternativas interessantes na

questão da automação residencial.

60

61

5.Conclusões

 A partir dos fatos relatados e resultados expostos, conclui-se que foi possível

realizar o objetivo deste projeto através dos métodos propostos. No contexto atual do

controle de residências através de sistemas embarcados, utilizando

microprocessadores como central de automação, o Arduino Uno mostrou ser uma

ferramenta de fácil implementação e com uma boa relação custo-benefício para o

controle de alguns processos residenciais, embora limitado em alguns aspectos, como

capacidade de processamento de dados e portas de saída disponíveis. Além disso, a

utilização do App Inventor para criação de aplicativos mostrou ser uma alternativa

viável para aproximar os usuários do sistema operacional Android, que não tem

experiência em programação Java, com a criação de aplicativos, área cada vez mais

explorada com a popularização de smartphones e tablets.

 Ademais, a área ligada a automação residencial está em crescente evolução, e

a tendência é a utilização de sistemas mais robustos e com maior capacidade de

processamento de dados, integrando o maior número possível de aplicações e

fazendo com que o binômio custo-benefício tenha cada vez mais importância.

 Em linhas gerais pode-se concluir que os benefícios gerados pelo aplicativo

com baixo custo de investimentos apontam um cenário de possibilidades que pode ser

extendido a outros segmentos, usando sistemas similares, como por exemplo o setor

de saúde: monitoramento de pacientes, de crianças e idosos, adequando-os às

necessidades de cada usuário.

5.1 Trabalhos Futuros

Para trabalhos futuros, sugere-se a utilização de uma ferramenta com mais

recursos que o Arduino Uno, como por exemplo o Arduino Mega, que possui mais

capacidade para processamento de dados e portas de saída, a fim de que se possa

controlar mais processos residenciais. Também para aplicações consideradas de

grande porte, recomenda-se o uso do Wi-fi shield, onde não é necessário a conexão

diretamente com o cabo de rede, já que a mesma é feita via Wireless. A conexão via

cabo de rede pode inviabilizar aplicações onde o Arduino necessita ficar em uma

distância muito grande do roteador.

62

Contudo, também merecem ser analisadas outras plataformas de hardware e

software atuando em sistemas embarcados, como por exemplo a RaspBerryPi,

principalmente atuando em conjunto com o Arduino na central de automação.

Entretanto, essa plataforma, embora seja uma ferramenta muito mais poderosa, exige

do desenvolvedor um pouco mais de experiência em programação e um conhecimento

de Linux.

 Pode-se também construir o sistema de alimentação canina, verificando a

questão do sensoriamento por sensores de força resistivos e implementando

notificações ao usuário na ausência de comida no recipiente.

63

Referências

APPINVENTOR. Site oficial do App Inventor. Disponível em:
<http://appinventor.mit.edu/ > Acesso em 20.Out. 2013

ARDUINOECIA. Arduino Uno e Ethernet Shield. Disponível em:
<http://www.arduinoecia.com.br/2013/06/ethernet-shield-wiznet-w5100-parte-1.html>
Acesso em 10 Ago. 2013

ARDUINOTWEET. Post messages from Arduino and Ethernet Shield. Disponível
em:
<http://arduino-tweet.appspot.com/> Acesso em: 20.Out.2013

ARDUINO-1. Arduino Uno. Disponível
em:<http://arduino.cc/en/Main/ArduinoBoardUno> Acesso em 20 Out. 2013

ARDUINO-2. Arduino Ethernet Shiled. Disponível em:
<http://arduino.cc/en/Main/ArduinoEthernetShield> Acesso em 20 Out. 2013

BOEIRA, Marcelo. 2013. O que é Arduino? Disponível em:
< http://blog.marceloboeira.com/arduino/o-que-e/> Acesso em: 22 Out .2013

BORTOLUZZI, Matias. Blog SRA Engenharia, Histórico da automação
residencial,2013 Disponível
em:<http://sraengenharia.blogspot.com.br/2013/01/historico-da-automacao-
residencial_10.html>. Acesso em: 10 Set. 2013

BRITES, F.G & SANTOS, V.P.A,. Motores de Passo. Universidade Federal
Fluminense.Curso de engenharia de Telecomunicações. Programa de Educação
Tutorial.Niterói,RJ,2008.

CANYOUSEEME. Open Port Check Tool. Disponível em:
<http://www.canyouseeme.org/> Acesso em 20.Out.2013

CHECKIP. Indentify IP Adress. Disponível em: <http://checkip.dyndns.com/>.
Acesso em: 20.Out. 2013.

CRUZ, Renan Pontes. Desenvolvimento de um Sistema de Supervisão Via Web
Aplicado à Automação Residencial. Universidade Federal do Rio Grande do Norte.
Trabalho de Conclusão de Curso.Natal, RN, 2009.

DAILYMAIL, 2012. Meet the dog fed his 'Tweet Treats' by contraption controlled
remotely by Twitter. Disponível em: <http://www.dailymail.co.uk/sciencetech/article-
2110427/IT-geek-invents-feeds-dog-Twitter.html#ixzz2jKP3OGDR> Acesso em:
03.Ago.2013

DATASHEET W5100. Disponível em:
(<https://www.sparkfun.com/datasheets/DevTools/Arduino/W5100_Datasheet_v1_1_6.
pdf>). Acesso em 20.Out.2013

DIPOL. Funcionamento do DDNS. Disponível em:
<http://www.dipol.pt/o_que_e_ddns_dynamic_domain_name_system_e_como_usa-
lo__bib93.htm> Acesso em 15. Jun. 2013

64

EUZÉBIO, M. V.M. & MELLO, E. R. Droidlar- Automação Residencial através do
celular Android. Sistemas de Telecomunicações, Instituto Federal de Santa
Catarina.São José, SC, 2011.

INFOWESTER,2013. O que é DNS?. Disponível em: <
http://www.infowester.com/dns.php>. Acesso em: 15 Out. 2013

JONES, Douglas W. Control of Stepping Motors – A Tutorial.The University Of Iowa
.Department Of Computer Science, 1998. Disponível em
:<,http://homepage.cs.uiowa.edu/~jones/step/types.html>Acesso em 05.Out.2013

JOSEMATM. Actualiza tu DDNS desde Arduino. Disponível em:
<http://www.josematm.com/actualiza-tu-ddns-desde-arduino-dyndns/> Acesso em: 09
Set.2013

KEMPER. Entendendo motores de robôs. Disponível em:
<http://www.kemper.com.br/wordpress/2011/06/30/red-%E2%80%93-entendo-os-
motores-do-robo-parte-3/> Acesso em: 12.Out.2013

LADYADA. Sensor Pir. Disponível em:<http://www.ladyada.net/learn/sensors/pir.html>
Acesso em 20. Out. 2013

MCROBERTS, Michael. Arduino Básico. Edição original em Inglês publicada pela
Apress Inc., Copyright © 2010 pela Apress, Inc.. Edição em Português para o Brasil
copyright © 2011 pela Novatec Editora.

NO-IP. Alocação de servidores DDNS. Disponível em: <www.noip.com> Acesso em
13 Abr. 2013

REGISTRO. Hierarquia de Domínios. Disponível em:
<www.registrodedominios.net.br> Acesso em 07 Set. 2013

SILVA, B.C.R & CÂNDIDO, L.A.A. Sistema de Controle Residencial baseado na
plataforma Arduino. Trabalho de Conclusão de Curso (Bacharelado em Ciência da
Computação) – Instituto Unificado de Ensino Superior Objetivo, Goiânia,
2011.Disponível em: <http://pt.scribd.com/doc/80802432/Sistema-de-Controle-
Residencial-Baseado-Na-Plataforma-Arduino> Acesso em: 15 Out. 2013

STARDOT. Câmera IP. Disponível em:
<http://www.stardot.com.au/accessories/webcams/ipcams.html> Acesso em:
13.Ago.2013

TECHMUNDO, 2013. O que é TCP/IP?. Disponível
em:<http://www.tecmundo.com.br/o-que-e/780-o-que-e-tcp-ip-.html> Acesso em:
13.Ago. 2013

WOLBER et al. App Inventor- Create Your Own Android App. Published by O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. First Edition,
2011.

65

66

Apêndice A -

Código Arduino

#include <SPI.h>

#include <Ethernet.h>

#include <Twitter.h>

#include <EEPROM.h>

byte mac[] = { 0xDE, 0xAD,

0xBE, 0xEF, 0xFE, 0xED };

IPAddress ip(192,168,0,199);

//ip que o Arduino terá na

Intranet

IPAddress

gateway(192,168,0,1); //ip do

roteador

EthernetServer server(8888);

//porta de acesso ao servidor

EthernetClient client;

// Token para Tweetar (

http://arduino-

tweet.appspot.com/)

Twitter twitter("1673941976-

xQI9XicACAYPxMMX3g9jJdV8X

5dWQSzxmfXVT");

char msg[] = "@LucasBeghini o

alarme foi disparado"; //

mensagem quando se dispara o

alarme

char msg2[]="@LucasBeghini,

atualize o ip no aplicativo!";

char servidorIP[] =

"checkip.dyndns.org"; // site de

deteccão do ip publico

IPAddress ipAtual;

IPAddress ipUltimo;

IPAddress ipnulo (0,0,0,0);

int buffalarme=0; // controla se

alarme está ligado ou desligado

int buffdog=0; //controla se o

compartimento está aberto ou

fechado

int i=0,j=0,passos=10;

long int cont=1000000; // variavel

contadora para requisição de ip

publico

int motor[]= {3,7,8,9}; // vetor que

controla saídas para o motor de

passo

union IPAddressConverter { //

conversor para uint8 do ip

 uint32_t ipInteger;

 uint8_t ipArray[4];

};

void setup()

{

 pinMode(2,INPUT); //sensor

alarme

 pinMode(4, OUTPUT); // saída

lâmpada

 pinMode(5, OUTPUT);//

alimentação alarme

 pinMode(6, OUTPUT);//sirene

alarme

 pinMode(3, OUTPUT);// saídas

motor de passo

 pinMode(7, OUTPUT);

 pinMode(8, OUTPUT);

 pinMode(9, OUTPUT);

 digitalWrite(2, LOW);//Funciona

como resistor de pull-down para

o PIR

 Serial.begin(9600);

 Ethernet.begin(mac, ip,

gateway);

 server.begin();

 delay(1000);

 for (byte n = 0; n <= 3; n++)

ipUltimo[n] = EEPROM.read(n);

// leitura da EEPROM

 Serial.print("O IP armazenado

na EEPROM eh: ");

 Serial.println(ipUltimo);

}

void loop()

67

{

 int sensorpir = digitalRead(2);//

leitura do sensor de movimento

 if (sensorpir==HIGH){

 Serial.println("alarme

disparado");

 Serial.println(buffalarme);

 if(buffalarme==0){

 digitalWrite(6, HIGH); // dispara

sirene

 if (twitter.post(msg)) { // posta

notificação no Twitter de

disparado

 int status = twitter.wait();

 if (status == 200) {

 Serial.println("OK.");

 } else {

 Serial.print("failed : code ");

 Serial.println(status);

 }

 } else {

 Serial.println("connection

failed.");

 }

 buffalarme=1;

}

 delay(2000);

 }

 if(cont==0) {

 cont=1000000;

ipAtual = descobreIP(); //

descobre o ip publico da rede

onde esta o Arduino

if (ipAtual!=ipnulo){ // se o IP não

for nulo

if (ipAtual != ipUltimo) { // se o ip

mudar

 for (byte n = 0; n <= 3; n++) {

 EEPROM.write(n,

ipAtual[n]);}

 ipUltimo = ipAtual;

 IPAddressConverter

ipAddress; // transforma uint32

para uint8 para enviar por Twitter

 ipAddress.ipInteger = ipAtual;

 char buf[16];

 sprintf(buf, "%d.%d.%d.%d",

ipAddress.ipArray[0],

ipAddress.ipArray[1],

ipAddress.ipArray[2],

ipAddress.ipArray[3]);// imprime

o IP em uma string

 if (twitter.post(msg2)) { // posta

no Twitter a msg2

 int status = twitter.wait();

 if (status == 200) {

 Serial.println("OK.");

 } else {

 Serial.print("failed : code ");

 Serial.println(status);

 }

 } else {

 Serial.println("connection

failed.");

 }

 delay(10000);

 if (twitter.post(buf)) { // posta

no Twitter o novo Ip

 int status = twitter.wait();

 if (status == 200) {

 Serial.println("OK.");

 } else {

 Serial.print("failed : code ");

 Serial.println(status);

 }

 } else {

 Serial.println("connection

failed.");

 }

 Serial.print(ipAtual);

 }

 else {

 Serial.println("O IP não

mudou");

68

 Serial.println(ipUltimo);

 Serial.println(ipAtual);

 }

}

 }

 Principal();

 }

void Principal()

{

 cont--;

 EthernetClient client =

server.available();

 if (client) {

 boolean newLine = true;

 String line = "";

while (client.connected() &&

client.available()) {

 char c = client.read();

 if (c == '\n' && newLine) {

 client.println("HTTP/1.1

200 OK");

 client.println("Content-

Type: text/html");

 client.println();

client.println(digitalRead(4)); // lê

as portas do Arduino ou

variaveis para feedback do

aplicativo

client.println(digitalRead(5));

client.println(digitalRead(6));

 client.println(buffdog)

 }

 if (c == '\n') {

 newLine = true;

 evaluateLine(line);

 line = "";

 }

 else if (c != '\r') {

 newLine = false;

 line += c;

 }

 }

 evaluateLine(line);

 delay(1);

 client.stop();

 }

}

void evaluateLine(String line)

{

 if (line.startsWith("tag", 0)) {

 String instrucao =

line.substring(4, 11); // Pega as 7

letras da instrução vinda do App

 Serial.print (line);

 if (instrucao == "liglamp") {

//liga lampada

 digitalWrite(4, HIGH);

 }

 if (instrucao == "deslamp") {

//desliga lampada

 digitalWrite(4, LOW);

 }

 if (instrucao == "ativala") {

//ativa alarme

 digitalWrite(5, HIGH);

 delay(3000);

 digitalWrite(6, LOW);

 }

 if (instrucao == "desaala") {

//desativa alarme

 digitalWrite(5, LOW);

 delay(3000);

 }

 if (instrucao == "deslala") {

//desliga alarme

 digitalWrite(6, LOW);

 buffalarme=0;

 }

 if (instrucao == "aliment") { //

abre/fecha compartimento de

ração

 if (buffdog==0){

 abrir();

 buffdog=1;

 }

 else {

 fechar();

 buffdog=0;

69

 }

 j=0;

 }

 }

}

 void abrir() // abre

compartimento

 {

 while (j<passos) {

 for(i=0;i<4;i++){

 digitalWrite(motor[i], HIGH);

 delay(500);

 digitalWrite(motor[i], LOW);

 }

 j++;

 }

 }

 void fechar() //fecha

compartimento

 {

 while (j<passos) {

 for(i=3;i>=0;i--){

 digitalWrite(motor[i], HIGH);

 delay(500);

 digitalWrite(motor[i], LOW);

 }

 j++;

 }

 }

 IPAddress descobreIP() { //

descobre o ip da rede do

Arduino

 EthernetClient client;

 String webIP;

 int desde, ateh;

 if (client.connect(servidorIP,

80)) {

 client.println("GET /

HTTP/1.0");

 client.println();

 webIP = "";

 } else {

 Serial.println("Falha");

 }

 while (client.connected()) {

 while (client.available()) {

webIP.concat((char)client.read())

;

 }

 }

 client.stop();

 desde =

webIP.indexOf("Address: ") + 9;

 ateh =

webIP.indexOf("</body>");

 return

ipAIPAddress(webIP.substring(d

esde, ateh));

}

IPAddress ipAIPAddress(String

ipEnCadena){ // Interpreta o

HTML recebido e devolve

somente o numero do IP

 IPAddress ipBytes;

 char digitoIP[4];

 byte cursorDigito = 0;

 byte cursorIP = 0;

 for (byte n = 0; n <

ipEnCadena.length(); n++){

 if (ipEnCadena.charAt(n) != '.')

{

 digitoIP[cursorDigito] =

ipEnCadena.charAt(n);

 cursorDigito++;

 } else {

 digitoIP[cursorDigito +1] =

'\n';

 ipBytes[cursorIP] =

atoi(digitoIP); // converte string

em numero inteiros

70

 cursorDigito = 0;

 memset(digitoIP, 0,

sizeof(digitoIP));

 cursorIP++;

 }

 }

 digitoIP[cursorDigito +1] = '\n';

 ipBytes[cursorIP] =

atoi(digitoIP);

 return ipBytes; //devolve IP em

Bytes

}

71

Apêndice B - Projeto no App Inventor

Tela inicial:

Tela Config:

72

Tela Principal:

73

74

75

Anexo A - Datasheet W5100

76

