UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

LUCAS JOSE DOS SANTOS SOUZA

Controle de computadores utilizando

Interface natural

Sao Carlos
2014

LUCAS JOSE DOS SANTOS SOUZA

CONTROLE DE COMPUTADORES
UTILIZANDO INTERFACE NATURAL

Trabalho de Conclusao de Curso
apresentado a Escola de Engenharia de
Sao Carlos, da Universidade de Sao

Paulo

Curso de Engenharia de Computacao
com énfase em Sistemas Computacionais

Avancados

ORIENTADOR: Prof. Dr. Adilson Gonzaga

Sao Carlos
2014

AUTORIZO A REPRODUCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Souza, Lucas José dos Santos

S764c Controle de computadores utilizando interface

natural / Lucas José dos Santos Souza; orientador
Adilson Gonzaga. Sdo Carlos, 2014.

Monografia (Graduacdo em Engenharia de Computacéo)

-- Escola de Engenharia de Sdo Carlos da Universidade
de Sdo Paulo, 2014.

1. Interface natural. 2. Kinect. 3. Processamento

de imagens. 4. Interacdo humano-computador. I. Titulo.

FOLHA DE APROVACAO

Nome: Lucas José dos Santos Souza

Titulo: “Controle de computadores utilizando interface natural”

Trabalho de Conclusio de Curso defendido em A7 / 44 /704 .

Comissio Julgadora: Resultado:

Prof. Associado Adilson Gonzaga -
(Orientador) - SEL/EESC/USP KTRCVWD o

Prof. Assistente Carlos Goldenberg / k i: 0 /i D O
SEL/EESC/USP

Mestre Raissa Tavares Vieira AProv 50

Doutoranda - SEL/EESC/USP

Coordenador do Curso Interunidades - Engenharia de Computacio:

Prof. Associado Evandro Luis Linhari Rodrigues

Ainda que eu tenha o dom de profecia e saiba
todos os mistérios e todo o conhecimento, e
tenha uma fé capaz de mover montanhas,

mas nao tiver amor, nada serei.

Primeira carta de Paulo aos Corintios,

cap.13,v.2

DEDICATORIA

Dedico este trabalho aos meus pais, José Pereira e Luzia, pelo apoio e orientacdes
gue me deram ao longo de toda a vida. Sem eles, nao teria chegado aonde estou.

Também a todos 0s meus amigos que me acompanharam ao longo desta carreira,
me dando apoios e alegrias durante os anos de curso e durante os dias em que passei
trabalhando neste projeto. Em especial, a Alice, que mais ansiosamente esperava por este
trabalho.

A Alex Fernando Orlando, chefe e amigo, grande contribuicdo para minha carreira.

Ao professor que me deu as oportunidades de iniciacdo cientifica e trabalho de
concluséo de curso e me orientou no desenvolvimento desses trabalhos, Prof. Dr. Adilson
Gonzaga.

Aos professores que me orientaram ao longo do curso e me deram grandes
oportunidades, em especial, Prof. Dr. Carlos Dias Maciel, que desde antes de eu estar na

universidade me esperava e apoiava em meus projetos.

AGRADECIMENTOS

A Deus, por ter me guiado até mesmo através dos momentos mais dificeis da vida
até aqui. Gracgas a Ele, venci esses obstaculos e ndo desisti.

A Caio César Viel, pela ajuda no desenvolvimento do projeto e pelas boas sugestdes,
gue realmente me ajudaram.

Mais uma vez, a meus pais e a todos 0s meus amigos que me apoiaram € me

ajudaram a chegar aonde estou na vida.

RESUMO

SOUZA, L. J. dos S. Controle de computadores utilizando interface natural. 2014. 73 p.
Trabalho de concluséo de curso — Escola de Engenharia de Sdo Carlos, Universidade de
S&o Paulo, Sdo Carlos, 2014.

Quando se trata de computacdo, um dos principais objetivos para os desenvolvedores e
usuarios é tornar a interacao entre o usuario e o sistema mais facil e intuitiva. Ao longo dos
anos, foram sendo desenvolvidos diversos tipos de interacdo. Uma das tecnologias com
esse objetivo foi lancada em 2010 para jogos eletrénicos da empresa Microsoft, o Microsoft
Kinect. A tecnologia, que se baseia no rastreamento das partes do corpo humano e a
deteccdo de movimentos e gestos do usudrio, gerou um grande interesse de empresas,
institutos e desenvolvedores independentes. Vendo esse interesse, a Microsoft langou um
dispositivo Kinect voltado especialmente para computadores com o sistema operacional
Microsoft Windows e também um Software Development Kit (SDK) para que pessoas de
fora da Microsoft também possam desenvolver aplicacbes [1]. Neste projeto, foram
utilizados o SDK e o Kinect para desenvolver uma forma de intera¢do usuario-computador
gue possa substituir o mouse e o teclado, permitindo que o usuario controle o cursor e suas
acles de cliqgue com as maos e também digite caracteres como com um teclado. Os

resultados se mostraram satisfatorios e bem funcionais.

Palavras-chave: Interface natural, Kinect, processamento de imagens, interagdo humano-

computador.

ABSTRACT

SOUZA, L. J. dos S. Computers control using natural interface. 2014. 73 p. Trabalho de
concluséo de curso — Escola de Engenharia de Sdo Carlos, Universidade de S&o Paulo,
S&o Carlos, 2014.

When it comes to computers, one of the main objectives for developers and users is to make
the interaction between the user and the system easier and more intuitive. Over the years,
many kinds of interactions were developed. One of the technologies with that objective was
released in 2010 for Microsoft’s video games, Microsoft Kinect. The technology, which is
based on tracking human body parts and the detection of movements and gestures from the
user, has aroused a great interest from companies, institutes and independent developers.
Seeing that interest, Microsoft released a Kinect device made especially for computers with
Microsoft Windows operating systems and also a Software Development Kit (SDK) so that
people outside Microsoft could also develop applications [1]. In this project, the SDK and the
Kinect were used to develop a way of user-computer interaction that can replace the mouse
and the keyboard, allowing that users control the cursor and its click actions with their hands
and type characters as with a keyboard. The results showed themselves to be satisfactory

and well functional.

Key words: Natural interface, Kinect, image processing, human-computer interaction.

Sumario

1 INTRODUGAO ...ttt 23
1.1 CONEXIUAIIZAGEOD ...oevveeeeeeeeiiiiiee ettt eeeeeees 23
1.2 MICrOSOft KINECTeiiiiiiiiiiiiiii ittt eeeees 24
(G B O o] 1=] ()Y o PP P PP PPPPPPPPPPPPPPPPPIN 25
i {1 (0 | = PP PP T UPPTR PRI 25
1.5 ObServagao SODIE O PrOJEIO.......uuiiiiiiiiiiiiiiiiiiiii ittt e e e e eeeeeeeeeeeees 26

2 FUNDAMENTACAO TEORICAooi ettt 27
S R O -2 | PP 27
A (1 U=Tox] I PR 27
2.3 CoNSIAEragdes fINAIS.uuuuiiiiiii e 30

3 MATERIAIS E METODOS.ottt ettt na e 31
3.l MAEEIIAIS ..ottt 31
K F0Z A |V = (o o [o] (oo | = USSP 32
3.2.1 TTEINAMENTO ...ttt e ettt e e e e e e e e e e e e e e e 32
T 1] o] (=T 4 1T o] = Tor= o TSP 32
G T0C TN |V = o 7= Mo [T T Yo Lo o R0 USPRT 39
3.4 CoNnSIideracles fiNAIS......coiiiciiiiieiie e 39

4 RESULTADOS E DISCUSSAO.......cocotiteiteceeeiee ettt 41
4.1 Testes de fuNCIONAMENTO..........uuiiiiiiiiiiiiiii e 41
4.2 TESIES COM USUBAIIOSceeeiiiiiiiiieeeee e e ettt e e e e e ekttt e e e e e et e e e e e e e e 42
4.3 DISCUSSEOD ...ccceeiiuiiitiee et e ettt e ettt e e e e e ettt e e e e e e e e e e 45
4.4 ConsSideragles fiNAIS........coooe e 47

5 CONCLUSAO.cotiiiiiteteirietett ettt 49

REFERENCIAS BIBLIOGRAFICASciiieiee ettt 51

APENDICE — IMPLEMENTANDO O PROJETOoviiiiieiecieieeeteee e 53

Lista de Figuras

Figura 1 — MiICroSoft KINECE [6]ooieeeeeeeeeeeee e 24
Figura 2 - Mapeamento das Joints do esqueleto [16]..........coovvveiiiiiiiiiiieiieeeeeeee 29
Figura 3 - Sistema de coordenadas euclidianas do Kinect [17]ccccoeeeiiiiiiiiiiieeeeen. 30
Figura 4 — Materiais utilizados no desenvolvimento do Projetocccceeeeeeeeiieeeeeeeeeenn. 31

Figura 5 - Mensagens de notificacdo ao usuario. a) Mensagem de inicializagcdo; b)

Mensagem indicando que 0 Sistema €Sta PrONTOcceviiiiiiiiiiiiee e 33
Figura 6 - MENU 08 OPGOEScooeeieieeeeeeee e 33

Figura 7 - Distancias para eventos de clique. a) Clique com o botéo direito; b) e c) Clique

com o botdo do meio; d) Cliqgue com 0 botao eSqQUErdocccvvvviiiiiiiieeeeeiece e, 35
Figura 8 - Janela de opgOes dO SISTEMA........ccoeeiiiiiiee e 36
Figura 9 - Janela com a imagem da cAmera do Kinect ..., 37
Figura 10 - Programa Free Virtual Keyboard................ccovvviiiiiiiiii e 38
Figura 11 - Autorizacdo de uso do programa Free Virtual Keyboard no projeto 38
Figura 12 - Mapa de cOdigo dO SISLEM@ccccviiiiiiiiiii e e 39
Figura 13 - Gréfico de distancias (m) em relacdo a altura (M)..........ccccvveeieiie e, 46
Figura 14 - Raios de ViSA0 dO KINECEciiii i 46

Figura 15 - Registro de eventos da classe MainWindow...............coovvvvviiiiiiiieeeceeeeiiinn. 53

SDK
CLI
GUI
NUI
RGB
CLR
API

Lista de Siglas

Software Development Kit (Kit de desenvolvimento de software)
Command-Line Interface (Interface de linha de comando)

Graphical User Interface (Interface gréafica de usuario)

Natural User Interface (Interface natural de usuario)

Red-Green-Blue (Vermelho-Verde-Azul, referente as cores de imagens)
Common Language Runtime

Application Programming Interface

1 INTRODUCAO

1.1 Contextualizagao

Define-se interacdo humano-computador como “uma disciplina preocupada com o
projeto, avaliagdo e implementacdo de sistemas computacionais interativos para uso
humano e com o estudo dos principais fenbmenos que os cercam” [2]. Isto €, o estudo que
busca o desenvolvimento de formas de um ser humano participar da execugdo de um
programa de computador através de dispositivos de entrada (como teclados, mouse,
cameras, microfones...) e de visualizar seus resultados através de dispositivos de saida
(telas, caixas de som...).

Existem diversos tipos de interacdo, dentre as quais podem-se citar a interface de
linha de comando (CLI), a interface grafica (GUI) e a interface natural (NUI).

Na interface de linha de comando, o papel do usuario depende de instrucbes de
texto que devem ser digitadas e processadas pelo sistema, que como resposta pode ou
nao retornar alguma informacédo que pode ser visualizada via texto. Esse tipo de interface
foi muito utilizado até os anos 1980 como a principal forma de interacdo com 0 usuario no
inicio do uso dos computadores. Seu uso exige certo conhecimento e experiéncia por parte
do usuario, sendo preferido mais por usuarios avancados para ter um controle maior das
funcdes do sistema operacional. Para um usuario casual, isto é, alguém gue ndo tem um
profundo conhecimento do funcionamento dos sistemas operacionais e suas utilidades, em
geral é preferido o uso de interfaces gréficas. [3]

Como uma alternativa a linha de comando, foi criada a interface grafica de usuario,
através dos trabalhos de diversos inovadores. Esse tipo de interface permite que o usuario
se comunique com o computador através de simbolos, metaforas visuais e dispositivos de
apontamento (mouse, por exemplo). [4] Isso tornou o uso dos computadores mais facil e
intuitivo mesmo por usuarios casuais, como pode ser observado hoje na grande maioria
dos sistemas operacionais € em seus usuarios, sendo destaques de sua utilizacdo os
sistemas Microsoft Windows, Apple Mac OS X e diversas distribuicbes de Linux, como
Ubuntu, Fedora e OpenSUSE, além de dispositivos mdveis, como 0s smartphones com 0s
sistemas iOS (Apple), Android e Microsoft Windows Phone.

E importante que a interacdo do usuario com o computador seja to simples, intuitiva

e poderosa quanto possivel. A interface natural de usuario surge como uma potencial

23

evolucdo da interface grafica [5], buscando ser capaz de fazer um usuério iniciante se tornar
experiente em um curto periodo de tempo. Uma de suas possiveis aplicacdes se da em
gestos de um usuario sendo transmitidos ao sistema para, por exemplo, animar um objeto
3D. Esse tipo de aplicagdo é utilizado em consoles de videogame como o Nintendo Wii
(através de um controle com sensor de movimentos) e Microsoft Xbox 360 (através do
sensor Kinect).

1.2 Microsoft Kinect

Lancado em 2010, o sensor Kinect (Figura 1) foi desenvolvido inicialmente para o
console de videogame Microsoft Xbox 360 como uma interface alternativa aos controles
fisicos. Através de diversos sensores como uma camera RGB, um sensor de profundidade
infravermelho e um arranjo de microfones [7], o Kinect permite deteccao de audio com
supressao de ruido, deteccao de jogadores e rastreamento de suas partes do corpo, além
de informacgBes como posicdes em trés dimensbes. O aparelho conta ainda com um motor
de inclinagéo vertical, que pode ser ajustada via software conforme o necessario. Isso é Util,
por exemplo, para encontrar a melhor posicédo para o rastreamento do corpo do jogador.
Como exemplos de jogos que utilizam a tecnologia, podem-se citar “Kinect Adventures”,

“Kinect Sports” e “Dance Central’”.

XBOX 360

Figura 1 — Microsoft Kinect [6]

A tecnologia despertou interesse ndo sé dos jogadores como também de empresas,
pesquisadores e desenvolvedores independentes, e muitos comecaram a tentar descobrir
como o sensor funciona através de engenharia reversa. A Microsoft inicialmente

desaprovou essas agdes, mas vendo o potencial que a tecnologia oferecia, permitiu que o

24

sensor fosse usado para outras funcbes além de entretenimento, desde que isso ndo
caracterizasse hack do aparelho, isto €, modificagdo no dispositivo ou no console, e sim
desenvolvimento baseado no USB e em seus recursos [8].

Foram criados drivers para o uso da camera RGB e do sensor de profundidade para
o0 sistema Linux e, mais tarde, foram desenvolvidas ferramentas para esses drivers, como
o middleware NITE e o framework OpenNI [9]. Mais tarde, a Microsoft desenvolveu um
Software Development Kit (SDK) e um aparelho voltados especificamente para
computadores com o sistema operacional Microsoft Windows e o framework .NET, podendo
ser utilizadas as linguagens C++, C# e Visual Basic [10, 11].

1.3 Objetivos

O projeto proposto teve como objetivo a implementacdo de uma interface natural
utilizando o Kinect para Windows e 0 SDK apresentados e testar suas capacidades de uso
em computadores, possivelmente como substituto das formas atuais de interacdo com o
computador, como 0 mouse e o teclado.

Essa interface deve servir como um controlador do cursor do mouse no computador
e possuir algum processamento para se simularem as teclas do teclado, de forma a ser
uma camada intermedidria entre as a¢des do usuario e a interface gréfica ja existente.

Espera-se também, com esse projeto, aprender um pouco mais sobre interfaces
naturais e se ter uma ideia melhor de quais sao algumas possiveis aplicacdes do Kinect

nessa area, bem como saber quais sdo suas capacidades e limitacées.

1.4 Estrutura

O capitulo 2 descreve os conceitos teéricos ja conhecidos e pesquisados para o
desenvolvimento do trabalho. O capitulo 3 descreve a forma como o sistema foi planejado
e implementado. O capitulo 4 apresenta e discute os resultados obtidos e se o sistema foi
projetado e funciona de forma satisfat6ria. O capitulo 5, por fim, apresenta uma conclusao

geral sobre o trabalho desenvolvido, o que foi aprendido e possiveis trabalhos futuros.

25

1.5 Observacédo sobre o projeto

Esse projeto deve servir como continuacéo ao de iniciacao cientifica realizado pelo
mesmo autor do presente trabalho de conclusdo de curso entre agosto de 2013 e julho de
2014 pelo CNPq, sob orientacdo do professor Dr. Adilson Gonzaga [12].

26

2 FUNDAMENTACAO TEORICA

O projeto desenvolvido envolvia dois principais conceitos tedricos: conhecimento da
linguagem de programagéo C# com o framework .NET 4.5 e da programag¢&o com o Kinect
SDK. N&o havia conhecimentos prévios em nenhuma dessas tecnologias, portanto, alguns

materiais tiveram que ser consultados.
2.1 C# .NET

Para o aprendizado da linguagem C#, foi utilizada principalmente a especificacdo
da linguagem da Microsoft. [13] Devido ao paradigma orientado a objetos e a grande
semelhanca com a linguagem Java, com a qual ja havia familiaridade e experiéncia, néo foi
dificil encontrar respostas as duvidas que surgiam e se familiarizar com a linguagem e sua
forma de criar interfaces gréficas e tratar seus eventos.

Quando se usa o framework .NET para aplicacbes que contém janelas, o
gerenciamento de seus eventos e do loop principal do sistema ficam sob responsabilidade
da classe Application, que é gerenciada em background pelo Common Language Runtime
(CLR), uma espécie de maquina virtual que também gerencia seguranca, memoria, threads,
excec¢bes e uma linguagem de bytecode comum para a plataforma .NET (criando cédigos
compativeis entre as linguagens C#, Visual Basic entre outas). Com isso, cabe ao
programador apenas descrever as janelas e classes de controle do sistema, contando com
0 auxilio do construtor de interfaces graficas da IDE Microsoft Visual Studio.

Uma dificuldade encontrada foi descobrir como modificar a posi¢cdo do cursor do
mouse e executar os eventos de cligues através de software, pois isso necessitava de um
acesso as APIs de baixo nivel do sistema operacional. A resposta foi encontrada em um
forum de programacéo [14] que continha um exemplo de uma classe, implementada pelo
usuario Keith, que executava essas operacgfes através da importacdo de uma biblioteca

(DLL) do sistema e entéo criava métodos de acesso a suas fungoes.

2.2 Kinect SDK

Por se tratar de uma tecnologia nova, ndo foram encontradas muitas referéncias que

ensinassem a utilizar o Kinect SDK, sendo que no comeco das pesquisas pelo

27

desenvolvedor do projeto sobre o assunto (final de 2012 e comego de 2013) os guias na
Internet ainda utilizavam uma verséo beta do SDK, e ndo as versfes mais novas (a época,
1.5 e 1.6), que introduziram diferengas realmente significantes.

Outros exemplos, que utilizavam as versdes mais recentes, se focavam mais no uso
do sensor apenas dentro de uma janela ou de foco especifico em alguma area (como exibir
a imagem da camera RGB na tela, gerar imagens cuja cor varia conforme a profundidade,
entre outras), e ndo em um aplicativo para uso em todo o sistema do computador. Para
tanto, foi utilizado um site [15] com um tutorial basico de utiliza¢éo dos sensores do aparelho,
0 que permitiu o aprendizado de forma rapida e simples e permitindo que o projeto fosse
implementado da forma como era desejado.

O SDK providencia um nivel de abstracéo alto para o programador. Toda a parte de
processamento de imagens fica por conta das bibliotecas oferecidas pela Microsoft, ficando
disponiveis ao programador informacdes tais como: quantos e quais jogadores foram
detectados pelo sensor, as localizacbes em trés dimensfes de cada parte do corpo do
jogador, quais streams estao disponiveis, entre outras.

Com os sensores presentes no Kinect, € possivel utilizar quatro streams: de cores,
de profundidade, de esqueleto e de audio.

O de cores é responsavel por utilizar a camera RGB do Kinect e obter seus dados
assim que estiverem prontos na forma de bytes. Estes podem entdo ser convertidos em
uma imagem Bitmap de 32 bits com um método disponivel na classe Bitmaplmage.

O stream de profundidade permite que, para uma determinada resolucao escolhida,
seja obtido um array de dados do tipo short, contendo informacdes sobre a profundidade
do ponto verificado em 13 bits e, caso pertenga ao corpo de algum jogador, o numero desse
jogador nos 3 bits restantes. Esse stream néo foi utilizado diretamente no projeto.

J& o stream de esqueleto prové uma importante abstracdo, que pode-se dizer que
€ a base do funcionamento do Kinect: através do processamento das imagens do sensor,
ele consegue informar qual € o jogador que foi detectado e quais séo as posi¢fes de suas
Joints. As Joints sdo pontos do esqueleto que representam partes relevantes do corpo
humano, tais como a cabeg¢a, ombros, maos, pés, entre outras. Um mapa completo das
Joints detectadas pelo aparelho pode ser visto na Figura 2. O Kinect por padrdo possui um
array fixo de 6 esqueletos, podendo identificar todas as Joints de 2 deles e apenas inferir a

posicao dos outros 4, se existirem.

28

O stream de 4udio prové métodos para captura dos dados dos microfones em bytes,
semelhante ao funcionamento dos streams de cores e de profundidade. Esse stream
também néo foi utilizado no projeto.

Cada um desses streams possui métodos para ser iniciado, parado e lido. As
informacgbes podem ser obtidas via poll, mandando ser lido o préximo frame (conjunto de
dados obtidos periodicamente) e checando se esses dados séo validos, ou via eventos,
registrando uma funcédo de call-back que sera executada quando um novo frame estiver

pronto.

HAND_RIGHT HEAD SHOULDER CENTER HAND_LEFT
wmtmm@ — \q 5 WRIST LEFT
ELBOW RIGHT 9 ELBOW LEFT
SHOULDER RIGHT) %" ([} SHOULDER LEFT
|
SPINE
HIP_CENTER
HIP_RIGHT o O HIP_LEFT
IVI .\
J \
KNEE_RIGHT () (0 KNEE_LEFT
/ ‘»‘
: QQANKLE RIGHT ~ ANKLE LEFT{)
FOOT RIGHT FOOT LEFT

Figura 2 - Mapeamento das Joints do esqueleto [16]

O Kinect utiliza um sistema de coordenadas euclidiano em 3 dimensbes para
mapear 0 espago que seus sensores “enxergam”. Seus eixos positivos sdo tais como vistos

na Figura 3.

29

Z

Figura 3 - Sistema de coordenadas euclidianas do Kinect [17]

2.3 Consideracg0es finais

Conhecidos a linguagem e o SDK, restou apenas o planejamento e modelo do
sistema para, enfim, fazer sua implementacédo. Para isso, foram utilizados conceitos basicos
ja conhecidos de programacéo orientada a objetos, como a separagao entre a interface de
usuario e os controladores e a especializacdo de cada componente do programa. Detalhes

do desenvolvimento do projeto podem ser encontrados no capitulo 3.

30

3 MATERIAIS E METODOS

3.1 Materiais

Para o desenvolvimento do projeto, foram utilizados:

e Aparelho Microsoft Kinect for Windows, ja obtido anteriormente pelo
orientador do projeto no laboratério

e Microsoft Kinect SDK versdo 1.7, a mais recente no momento em que 0
projeto comecou a ser implementado [18]

e Microsoft Visual Studio 2012 Ultimate, [19] com licenca obtida pelo programa
MSDNAA da Microsoft com o Instituto de Ciéncias Matematicas e de
Computacdo — ICMC, da USP Sao Carlos

e Notebook Acer Aspire 4736Z com o sistema operacional Microsoft Windows
7, 3 GB de memdria RAM e processador Intel Pentium T4300 de 2,1 GHz, ja

pertencente ao aluno.

O projeto e as experiéncias foram realizados no Laboratdrio de Visdo Computacional
(LAVI) da Escola de Engenharia de Sédo Carlos, na USP Séo Carlos. Uma foto dos materiais

utilizados pode ser vista na Figura 4.

Figura 4 — Materiais utilizados no desenvolvimento do projeto

31

3.2 Metodologia

3.2.1 Treinamento

Antes do desenvolvimento do projeto propriamente dito, foram desenvolvidos alguns
exemplos mais simples para treinar as tecnologias disponiveis na linguagem C# e no Kinect
SDK. N&do é necessario entrar em detalhes sobre esses exemplos, pois o aprendizado
obtido com eles foi utilizado no desenvolvimento do projeto final.

Para a linguagem C#, esses exemplos consistiam basicamente em aprender como
funciona a construcdo da janela e suas propriedades, como tamanho, localizag&o e cores,
e também de seus componentes, como botdes, checkboxes e icones.

Para o SDK, os exemplos consistiam em utilizar os streams de cor e de esqueleto,
ver os tipos de informacdes que eram disponibilizadas, os erros que podiam ser gerados e
como obter dados relevantes dessas informacdes, como as posicdes das Joints, o sistema
de coordenadas utilizado pelo Kinect e como capturar os dados da cAmera RGB para exibi-

los ao usuario, tal como descrito na secdo 2.2.

3.2.2 Implementacéao

Tendo o conhecimento necessario, foi planejado fazer uma aplicacdo que fosse
executada em background, com a parte principal sem interfaces graficas, apenas com o
controle do sensor, contando com janelas apenas para fungbes auxiliares, como modificar
opgdes ou exibirimagens da cAmera. Porém, ndo foi encontrado um meio simples de fazer
isso, pois o sistema ficava sem controle sobre quais tarefas deveriam ser executadas e
guando deveria ser encerrado.

A solugdo encontrada para esse problema [20] foi criar uma aplicacdo do tipo
Windows Forms Application contendo uma janela principal invisivel, a partir da qual o
programa era gerenciado através de um icone de bandeja do sistema. Se o0 usuario
desejasse encerrar o programa, deveria selecionar a op¢ao de encerrar em um menu desse
icone, o que fazia que a janela principal fosse fechada e um evento do tipo FormClosed
encerrasse 0s recursos alocados pelo sistema (icone de bandeja, streams habilitados do

Kinect, janelas entre outros).

32

Essa janela principal ficou sendo a classe responsével por gerenciar as instancias
de todos os outros componentes do sistema. Esses outros componentes incluem: uma
janela de opcdes, uma classe responsavel por gerenciar o Kinect e uma janela responséavel
por exibir a imagem da camera RGB.

Quando o programa € iniciado, a classe Application instancia a janela principal, que
por sua vez exibe uma mensagem de notificacdo ao usuéario de que o sistema esta sendo
iniciado (Figura 5.a). Se todos os componentes puderem ser inicializados corretamente,
outra mensagem de notificacdo é exibida informando que o sistema esta pronto para ser
utilizado (Figura 5.b). Também é criado um menu com quatro opcdes neste icone para que

0 usuério interaja com o sistema (Figura 6).

s

© Iniciando... N X
O sensor esta sendo iniciado. Por favor, aguarde,

© Pronto! % X
O sensor esta pronto para uso.

10:01

¥ 500004

a)

Figura 5 - Mensagens de notificacdo ao usuario. a) Mensagem de inicializacao; b) Mensagem
indicando que o sistema esta pronto

Opgdes..
Yer cdrmera
Mastrar teclado virtual

Encerrar
Figura 6 - Menu de opcdes

Quando os componentes do sistema ficam prontos, a classe KinectController
recolhe informag8es como a largura e a altura da tela virtual e verifica se ha algum Kinect
conectado (pode haver mais de um). Caso pelo menos um seja detectado, a lista de
sensores € percorrida até encontrar um sensor que possua o status “Connected”
(conectado) ou “Initializing” (inicializando).

Um possivel erro é que o sensor seja detectado mas nao seja possivel estabelecer
a conexdo devido a, por exemplo, pouca energia na porta USB. Nesse caso, uma
mensagem de erro é exibida pedindo que o usuario verifiqgue a conexao.

Se o0 sensor for detectado e a conexao estabelecida, o sistema cria um temporizador
(Timer) com taxa de atualizacdo de 15 quadros por segundo, habilita o stream de esqueleto

e coloca o angulo do Kinect em 10 graus.

33

Também sé&o definidos alguns conceitos importantes no projeto: mao padrdo, mao
secundaria, ombro padrdo e ombro secundério. Os membros padrBes representam
inicialmente os que ficam do lado direito do corpo, enquanto que 0s secundarios séo os que
ficam do lado esquerdo. Essa configuragdo pode ser mudada através do menu de opcoes,
conforme a Figura 6.

Quando o temporizador conclui seu tempo, € disparado um evento que abre o
proximo quadro de esqueleto, verificando se esta disponivel (portanto, as informacgdes sao
obtidas via poll. Essa abordagem foi escolhida porque assim é possivel mudar a taxa de
atualizacdo dos quadros). Em seguida, a lista de 6 esqueletos € percorrida até encontrar o
primeiro esqueleto que esteja disponivel. Se algum for encontrado, o sensor verifica as
posicBes X e Y da mao principal, conforme descrito na Figura 3, salvando-as nas variaveis
“rightX” e “rightY”. Essas variaveis sdo multiplicadas por um valor de escala, obtendo os

valores “nextX” e “nextY” conforme as equacdes (1) e (2).

screenWidth . .
nextX = (f + rightX * screenWidth * 2.0) 1)
screenHeight]] 5
nextY = (f — rightY = screenHeight * 1.5) (2)

Os valores “screenWidth” e “screenHeight” representam a largura e a altura da tela,
respectivamente, valores obtidos na instanciacdo da classe KinectController. O cursor do
mouse pode, entdo, ser atualizado para essas posicdes calculadas.

Depois de modificada a posicao, o proximo passo consiste em verificar as acdes de
clique, que dependem das coordenadas da méo secundaria. O planejamento inicial envolvia
a utilizacdo apenas da méo principal também para os cliques, apenas movendo-a para a
frente, porém, foi encontrada uma grande dificuldade: era dificil manter a mao na mesma
posicao em X e Y enquanto ela se movia para a frente. Muitas vezes, o brago “girava” nesse
movimento, fazendo com que o cligue fosse executado em um local diferente do planejado.
Para corrigir esse problema, foi adotada a méo secundaria.

Para que um evento de botdo de mouse pressionado seja enviado, é preciso que a
mao secundaria esteja a uma distancia (no eixo Z) maior que um valor determinado do
ombro secundario, enquanto que para que um evento de botao solto seja enviado, é preciso
gue a mao esteja a uma distancia menor que esse valor.

Esse valor de distancia, por sua vez, depende da altura (coordenada Y) da méao
secundaria em relacdo a altura do ombro secundério, conforme esquematizado na Figura

7. Se a méo estiver a mais de 20 cm acima do ombro, a distancia em Z que a mao deve

34

estar € de 30 cm (Figura 7.a). Neste caso, considera-se que o usuario deseja utilizar o botao
direito do mouse. Se a méao estiver entre 20 cm acima (Figura 7.b) e 10 cm abaixo (Figura
7.c) do ombro secundario, a distancia em Z deve ser de 45 cm e considera-se que esta
sendo utilizado o botdo do meio. Se a méo estiver abaixo de 10 cm do ombro, a distancia
deve ser também de 45 cm e considera-se que esta sendo utilizado o botdo esquerdo
(Figura 7.d).

No menu associado ao icone (Figura 6), € possivel executar outros trés médulos do
sistema. O primeiro deles é uma janela de op¢des (Figura 8) onde o usuario pode modificar
algumas configuracdes do projeto, como qual deve ser a mao padrio, a taxa de atualizacdo
do cursor (isto &, a frequéncia com que os quadros do esqueleto devem ser lidos), o angulo
de inclinacdo do Kinect (que pode variar entre -27° e +27°, sendo que angulos positivos
indicam que o aparelho aponta para cima e 0° indica que a linha de visdo do aparelho esta
paralela ao chdo) e o modo de precisao.

secHand
secHand
> 20 ecm Head <20 cm Head
secShoulder » 45 om secShoulder
—_— —
= 30 cm
(a) (b)
Head Head
= 45 em > 45 cm
secShoulder secShoulder
<10 crnI
> 10 em
secHand
secHand
(e} (d)

Figura 7 - Distancias para eventos de clique. a) Cligue com o botéo direito; b) e ¢) Cliqgue com o
botédo do meio; d) Clique com o botéo esquerdo

35

Opghes do Kinect
Mao padrao
(®) Dirsita
(") Esquerda
Modo de precisdo

Taxa de atualizacdo do cursor: 15 guadros/s

Angulo de inclinacdo:

Testar Angulo

Figura 8 - Janela de opc¢des do sistema

O modo de precisdo é uma opc¢ao que faz com que o sistema s6 atualize a posicao
do cursor do mouse se a posicao calculada para a tela tiver uma distancia de mais de 20
pixels na horizontal ou vertical em relagéo a posigao anterior. Caso esta op¢ao ndo esteja
selecionada, o cursor sempre sera atualizado. Esse modo serve como uma forma de manter
0 cursor parado enquanto 0 usudrio tenta executar um movimento de clique, pois, caso a
mao principal se mexa, o0 que geralmente acontece, € executada uma agéo de arrastar.

A opc¢éo seguinte do menu é a de exibir a janela de camera (Figura 9). Ela consiste
em uma janela com apenas uma area para a imagem capturada do Kinect e um botéo para
ser fechada. Quando essa janela é aberta, ela ativa o stream de cores do Kinect e, quando
os dados do stream estiverem prontos, € disparado um evento. Esse evento abre o quadro
do stream, copia os dados de seus pixels para um array de bytes e cria uma imagem Bitmap

de 640x480 pixels, que é entdo exibida ao usuario.

36

1

!
g
FE |
o 2

Figura 9 - Janela com a imagem da camera do Kinect

A terceira opgéo, por sua vez, inicia um teclado virtual para que seja possivel digitar
textos com o projeto.

Inicialmente, foi considerado utilizar o teclado virtual nativo do Windows por ser
simples e presente em todos os sistemas. Porém, quando isso foi testado, foi visto que o
sensor do Kinect ndo funcionava quando a janela do teclado virtual obtinha o foco do
sistema operacional, como se o programa ficasse travado.

N&o se sabe ao certo por que isso ocorre; supde-se que a implementacao do teclado
utiliza fungdes de baixo nivel que, de alguma forma, impedem que os dados do esqueleto
sejam lidos e processados. O mesmo efeito € observado, por exemplo, se o0 usuario
pressiona as teclas Ctrl + Alt + Del enquanto usa o programa.

Para contornar esse problema, é utilizado um programa externo chamado Free
Virtual Keyboard (Figura 10), [21] que também implementa um teclado virtual e ndo possui
o problema descrito. Os desenvolvedores desse programa autorizaram seu uso no projeto
(Figura 11). O fato de ser um programa externo ndo implica em problemas de
compatibilidade; ele ser4d executado sem problemas desde que seu executavel,
“‘FreeVK.exe”, seja mantido na mesma pasta do executavel do projeto.

37

Figura 10 - Programa Free Virtual Keyboard

Comfort Software Group (public@comfort-software.com)

Para: 'Lucas Souza' ¥

Hello Lucas,

Yes, YOou Can use our software.

hitp:/fwww.freevirtualkeyboard.com/virtualkeyboard. html

Best regards,
Sergey Koshkin

Comfort Software Group

Figura 11 - Autorizacéo de uso do programa Free Virtual Keyboard no projeto

A quarta op¢éo do menu, por fim, encerra o programa, desabilitando os streams que
estdo ativos e liberando os recursos alocados pelo programa.

E importante citar que um problema semelhante ao que acontecia com o teclado
virtual do Windows também acontecia a algumas janelas, como a de op¢des e a de camera.
Neste caso, o processamento de dados do esqueleto cessava de repente quando os botdes
de fechar, maximizar e minimizar a janela eram pressionados, executando um “clique pela
metade” e travando o sistema. Isto €, o sistema entendia que o evento de botdo de mouse
pressionado foi executado, mas ndo conseguia executar o evento de botdo de mouse solto.
Uma solucéo para esse problema foi modificar a forma como as janelas eram criadas para
impedir que esses botbes ficassem disponiveis ao usuario, sendo possivel fechar as janelas

apenas atraves de botdes dentro delas.

38

3.3 Mapade cbdigo

Utilizando o proprio Visual Studio, foi criado um arquivo que gera um mapeamento
gréafico do codigo e das dependéncias entre classes, como um diagrama de componentes
de UML. Com esse diagrama, pode-se ter uma visualizacdo mais intuitiva de quais sdo
essas classes e como se relacionam. O diagrama pode ser visto na Figura 12. Detalhes
dos cédigos-fonte do projeto podem ser vistos no apéndice, no final do documento.

{3 KinectApp

6@ KinectController

\ }/
% MouseOperations

Figura 12 - Mapa de cddigo do sistema

3.4 Consideracdes finais

O capitulo 3 descreveu as funcionalidades do projeto. Em resumo: é possivel utilizar
as maos para simular os movimentos e a¢cdes de um mouse como com um dispositivo real,
e, através do teclado virtual presente no sistema, simular o uso de um teclado, tornando
disponiveis todas as fun¢des basicas de uma interface grafica de usuério através de uma
interface natural, a do Kinect.

O capitulo 4 descreve os testes que foram realizados para avaliar se 0 projeto
implementado funciona conforme o esperado e encontrar possiveis erros, discutindo esses

resultados em seguida.

39

40

4 RESULTADOS E DISCUSSAO

4.1 Testes de funcionamento

Com o projeto planejado e implementado, foi necessério primeiramente testar seu
funcionamento para encontrar possiveis defeitos e realizar possiveis melhorias.

Esta fase de testes foi de certo modo realizada junto com a implementacéo (secdo
3.2.2), pois a cada ideia era necessario testar os novos trechos de cddigo para garantir que
0 projeto funcionaria corretamente.

Esses testes envolviam apenas o desenvolvedor do projeto e permitiram ter uma
estimativa sobre, por exemplo, as melhores distancias entre a mao secundaria e o ombro
secundario para as acoes de clique, as melhores escalas para converter as informacdes do
Kinect em coordenadas da tela (equacfes 1 e 2) e as possiveis excecdes de software que
poderiam ocorrer por falhas na implementacéo.

Para as distancias entre a mao e o ombro, inicialmente considerava-se que, para 0s
trés tipos de clique, as distancias deveriam ser as mesmas. Foi suposto que deveriam ser
de 45 cm, comprimento aproximado do braco do desenvolvedor. As diferencas de altura
entre a mao secundaria e o ombro secundario eram as mesmas descritas na Figura 7,
exceto para o clique com o botao direito, cuja altura deveria ser de 30 cm.

Para os eventos de cliqgue com os botBes esquerdo e do meio, essa distancia se
mostrou boa; para cliques com o botéo direito, porém, era muito dificil conseguir manter a
mao secundaria a mais de 30 cm acima do ombro e a mais de 45 cm a frente. Portanto, a
altura foi diminuida para 20 cm e a distancia para 30 cm, o que facilitou bastante o uso dos
trés tipos de cligue. Distancias menores do que essas faziam os cliques serem executados
com apenas movimentos simples, sem se ter a intencéo.

Também foi determinado que, para um aparelho Kinect localizado sobre uma mesa
de aproximadamente 75 cm de altura, o melhor angulo para que os movimentos sejam bem
detectados é de +10°. A altura da mesa e esse angulo foram entdo mantidos fixos no
desenvolvimento do projeto.

Outro fator relevante é a distancia que o usuario deve ficar do sensor. O documento
oficial [22] informa que o sensor de profundidade abrange entre 0,8 m e 4,0 m; os testes
determinaram que uma boa distancia (isto €, em que o sensor consegue determinar

precisamente as posi¢des das maos) deve estar entre 1,0 m e 3,0 m. Distancias fora desse

41

intervalo podem causar imprecisdes, fazendo, por exemplo, com que o cursor do mouse
apareca em posicoes muito diferentes das que deveria estar, problema causado por algum
erro de processamento nas imagens capturadas e no célculo das posi¢des das Joints.

4.2 Testes com usuarios

Com os testes anteriores, foi obtida uma boa estimativa sobre quais devem ser os
valores das variaveis de controle do sistema, sendo possivel implementar um sistema que
funcione bem e seja de certa forma confortavel de ser utilizado.

Porém, como o projeto se trata de uma forma de interacdo humano-computador,
testes simples ndo sdo suficientes para se dar um resultado final, pois esse resultado
depende de diversos fatores, como quem s&@o 0s usudarios que irdo utilizar o projeto, quais
sdo suas caracteristicas fisicas (como altura e comprimento dos bracos), possiveis
dificuldades motoras, preferéncias pessoais de uso (como usar ou ndo o modo de precisao
e qual das maos deve ser a principal), entre outros.

Foram entéo realizados testes com nove voluntarios para avaliar a influéncia desses
fatores e compara-los aos testes realizados na secéo 4.1. Dessa forma, € possivel ver o
gue ainda é necessario ser mudado no projeto e obter no¢cdes melhores sobre como torna-
lo acessivel e confortavel ao maior nUmero possivel de usuarios, o que é um dos principais
objetivos de uma interface natural.

Para preservar a identidade dos voluntarios, eles foram identificados apenas como
“Usuario 17, “Usuario 2” etc.

Os fatores considerados relevantes para esses testes foram: altura do usudrio,
distancia minima em relacdo ao Kinect, distancia ideal, distdncia méaxima, dificuldade de
uso e observacoes.

Define-se a distancia minima como a menor distancia (eixo Z) em que 0 Usuario
pode ficar em relacdo ao Kinect de forma que o sistema funcione corretamente, isto é, o
cursor do mouse acompanhe corretamente a mao principal do usuario e seja possivel
executar as acdes de cliques corretamente.

A distancia ideal é a distancia em que o usuario tem o melhor conforto para utilizar
o sistema. O cursor acompanha fielmente as posi¢cdes da méo do usuario, todas as regides
da tela podem ser alcancadas e o usuério possui um conforto e facilidade para as agfes de

cliques.

42

De forma analoga a minima, a distancia maxima é a maior distancia em que o
usuario deve ficar em relacéo ao Kinect de forma que o sistema funcione corretamente.

A dificuldade de uso sdo os problemas de usabilidade que o usuéario encontrou
durante os testes do projeto. Essas dificuldades podem tanto serem informadas pelo
usudrio quanto observadas pelo desenvolvedor durante os testes. Esses problemas podem
ajudar a determinar formas de melhorar a interacdo do usuario com o sistema, e um
constante feedback apés a implementacéo do sistema pode ajudar a tornar o software cada
vez melhor.

Se houvesse algum detalhe que fosse julgado relevante mas ndo se encaixasse nos
fatores anteriores, este seria anotado como uma observagéao.

O notebook foi ligado a um projetor multimidia e sua imagem exibida no proprio
monitor e em uma tela na parede. Foi também utilizada uma trena para medir as distancias
em relacéo ao Kinect, marcando no chao distancias de 0,5 m utilizando fita adesiva.

As rotinas de testes consistiam em solicitar que os voluntarios primeiramente se
acostumassem com o sistema. Era explicado seu funcionamento e o que deveriam fazer
para usa-lo.

Quando entendiam corretamente, era solicitado que ficassem a diversas distancias
do Kinect para determinar a distancia minima, utilizando as fitas adesivas como referéncias.
O mesmo era feito para determinar as distancias recomendada e maxima.

Em seguida, era solicitado que o voluntario ficasse a distancia recomendada e
testasse algumas funcionalidades basicas: mover o cursor por toda a tela, abrir e fechar
alguns programas, executar os trés tipos de cliques, digitar um texto utilizando o teclado
virtual e o programa Microsoft Word e, por fim, conduzir uma apresentagéo de slides, que
j& estava pronta, executando as acdes de clique com as maos.

As dificuldades que o voluntario apresentava e que eram percebidas pelo
desenvolvedor eram anotadas e, ap0s os testes, o voluntario deveria dizer quais outras
dificuldades encontrou e quais observacdes tinha a fazer sobre o projeto, como possiveis
melhorias e como achava que outros usuarios reagiriam ao sistema.

A Tabela 1 indica os resultados obtidos para as distancias minima, ideal e maxima
de acordo com cada usuario e sua altura. A Tabela 2 indica as dificuldades que cada usuario
teve e suas observacdes sobre os testes e o projeto.

Além desses resultados, foi encontrado um defeito que ainda ndo foi possivel
corrigir: em determinados momentos, o programa ndo detecta que um clique esta sendo
realizado e também ndo reconhece que o cursor ficou sobre algum icone.

43

Tabela 1 - Resultados de distancias nos testes do projeto

Usuario Altura (m) Ql;tanC|a Distancia ideal Distancia maxima
minima (m) (m) (m)
Usuario 1 1,65 1,2 15 2,0
Usuario 2 1,62 1,2 15 1,8
Usuario 3 1,53 1,0 15 2,0
Usuario 4 1,77 1,7 2,0 2,8
Usuario 5 1,86 15 2,0 3,0
Usuario 6 1,70 15 1,7 2,5
Usuario 7 1,89 15 2,0 3,0
Usuario 8 1,52 1,2 15 1,7
Usuario 9 1,75 15 2,0 3,0
Tabela 2 - Resultados de dificuldades e observac@es
Usuario Dificuldade de uso Observac@es
USUArio 1 Medl_a; dificuldade para executar
cliques com o botéo direito
- Alta para cliques; baixa para Preferiu ndo usar o modo de
Usuario 2 ~ . -
apresentacao de slides preciséo
Usudrio3 para apresentaco de sides; alta para Dfculdade de ver o cursor do
P P &ao | ’ P mouse e uséa-lo
digitar
Alta no comec¢o, mas diminuiu com Afirmou que um usuario precisa
Usuério 4 treino; nas bordas da tela, a de um bom treino para usar bem o
dificuldade aumenta sistema
Baixa; apresentou grande facilidade Afirmou que interfaces como a
. » ap 9 ad desenvolvida exigem um tempo
Usuario 5 para comegcar, mover o cursor e digitar ~
PSR de adaptacéo, mas podem ser a
mesmo a distancia minima ~
evolugéo
Média no comeco. superada com Achou usar o sistema cansativo; a
Usuario 6 &0, Sup mao principal tinha que ficar muito
treino
alta
Média no comeco; o lado esquerdo da
USUArio 7 telg apresentou mais defgltos no
posicionamento do cursor; alta em
digitagcéo
Média, superada com treino; alta para O cursor do mouse tremia as
- » Sup S ' P vezes, mesmo na distancia ideal;
Usuéario 8 encontrar as distancias e usar o .
: ! achou o tempo para treino
sistema de forma estavel .
cansativo
USUArio 9 Baixa em geral; dificuldade em manter

o cursor parado durante um clique

44

Uma observacado importante a ser mencionada é que, devido a distancia a que o
usuério deve se manter do Kinect, a tela de um notebook (de 14 polegadas, como o utilizado
pelo desenvolvedor) se torna muito pequena para um bom uso do projeto. Para um uso
melhor, torna-se necessario o uso de um monitor grande (por exemplo, de 23 polegadas)
ou de dispositivos de visualizagdo maiores, como uma TV ou um projetor multimidia. Para

os testes com voluntarios, foi utilizado um projetor que estava disponivel no laboratério.

4.3 Discusséao

Inicialmente, havia-se suposto que os testes com voluntarios (secdo 4.2) teriam
resultados semelhantes aos testes de funcionamento com o desenvolvedor (se¢do 4.1),
com as mesmas distancias e as mesmas facilidades e dificuldades encontradas.

Essa suposicdo se mostrou errada, pois, como pode ser visto nas tabelas 1 e 2,
esses resultados variam bastante de acordo com o usuério. Os voluntarios com altura maior
gue 1,70 m apresentaram uma maior facilidade de uso do sistema, em especial nas acées
de clique, enquanto que os com altura menor que 1,70 m tiveram mais dificuldades.

As dificuldades envolvendo os cliques podem ser facilmente explicadas:
dependendo da altura e porte fisico do usuario, os comprimentos de seus bragos podem
ser muito diferentes. Como no projeto as distancias usadas para os cliques eram fixas, essa
provavelmente foi a maior causa dessas dificuldades.

Como melhoria futura para o projeto, uma solucdo que poderia diminuir essa
dificuldade seria a de, antes da execucao do projeto, utilizar-se o Kinect para analisar o
corpo da pessoa e determinar medidas relevantes, como sua altura e comprimento dos
bracos, e utilizar essas medidas como variaveis para os célculos das distancias de cliques.

Vale também observar que as distancias minima, ideal e maxima também parecem
ter uma relacdo com a altura do usuéario, como se pode ver no grafico da Figura 13.

E dificil determinar qual é exatamente essa relacéo, pois as variagdes de altura no
sdo muito significativas. A facilidade de uso também depende de fatores subjetivos, como

a experiéncia que o usuario tem com computadores e com interfaces alternativas a grafica.

45

3,3

2,8
E 3
©
e ° ° ®
<0
71,8
a
C C C
1,3
0,8
1,52 1,53 1,62 1,65 1,7 1,75 1,77 1,86 1,89
Altura do voluntario (m)
== Distancia minima =@=Distancia ideal Distancia maxima

Figura 13 - Grafico de distancias (m) em relacdo a altura (m)

Uma possivel resposta é que essa relacao seja linear. Considerando que o Kinect
possua um angulo de visao vertical de 43° [23], seus raios de visdo devem se expandir de
forma linear conforme a Figura 14. Deve, portanto, haver uma equacao semelhante a (3),
sendo y a distancia procurada (minima, ideal ou méaxima) e x a altura do usuario. Os
coeficientes a e b podem ser calculados pelas equacdes (4) e (5). Para uséa-las, porém, é
recomendado que haja uma quantidade maior de voluntarios de forma a tornar as

diferencas subjetivas menos influentes e diminuir os erros das equacoes.

y=ax+b 3)
i xi(i —y)
- uie xi(x; — X))
b=9y—ax (5)

Figura 14 - Raios de viséo do Kinect
46

Essas equacdes podem ser usadas para duas alternativas de melhoria para o
sistema: uma seria informar ao usuério quais séo as melhores distancias a se ficar; a outra,
alterar o angulo de inclinacdo do Kinect para acompanhar as posi¢cdes do usuario, por
exemplo, com relacdo a sua cabeca.

Sobre o defeito descrito sobre o0 sistema nao detectar cligues e que o cursor ficou
sobre algum icone, a causa mais provavel é que algum clique tenha sido realizado, mas
nao foi detectado o evento de botdo do mouse solto. Quando isso acontece, é necessario
realizar um clique com o botdo esquerdo ou direito de um mouse ou touchpad fisico para
gue o sistema operacional reconheca esse evento e 0 programa possa voltar ao normal.

Os conhecimentos até entdo possuidos e adquiridos pelo desenvolvedor néo
permitiram fazer um programa focado na usabilidade do usuario. Para um maior conforto e
praticidade, sugere-se que, em trabalhos futuros, sejam estudados mais conceitos de
interfaces humano-computador e estes sejam aplicados ao projeto.

Como pbde ser observado, a maior parte das dificuldades pode ser superada com
um certo treino que, nos testes, demorou apenas cerca de dez minutos. Com um maior
tempo de treinamento e um melhor desenvolvimento da interface com o usuario, € possivel
gue esse tipo de interface se torne tdo confortavel e utilizavel quanto as interfaces graficas

utilizadas atualmente.

4.4 Consideracdes finais

O capitulo 4 descreveu os testes realizados para avaliacdo do projeto e das
capacidades do Kinect para uso em computadores, bem como os resultados obtidos com
esses testes e a discusséo desses resultados.

No capitulo 5, sera feito um breve resumo do trabalho desenvolvido e seus
resultados. Serdo discutidas também possiveis aplicagdes do Kinect em trabalhos futuros,

além das implicagdes do projeto aqui apresentado para as pesquisas e trabalhos.

47

48

5 CONCLUSAO

O presente trabalho apresentou o desenvolvimento de uma interface natural de
usuério utilizando o dispositivo Microsoft Kinect para Windows.

Essa interface serve como uma camada intermediéria entre o usuério e a interface
graéfica do computador, baseando-se na movimentacdo das maos do usuario para
posicionar o cursor do mouse, executar acées de cliques e, através de um teclado virtual,
emular as teclas como os dispositivos fisicos.

No capitulo 3, foi descrita a implementacédo do sistema e de suas classes e métodos
principais.

O capitulo 4 apresenta e discute os testes realizados e os resultados obtidos para o
sistema implementado no presente trabalho. Apesar de, na atual fase de desenvolvimento,
ainda haver algumas melhorias a serem feitas para um uso confortavel do sistema e
tratamento de seus erros, 0s testes com voluntarios permitiram uma expectativa otimista de
0 que pode ser feito com o Kinect.

A maioria dos voluntarios utilizados nos testes ndo apresentou grandes dificuldades
para aprender a usa-lo, apenas no inicio dos testes, sendo essas dificuldades quase
totalmente superadas em apenas alguns minutos. E possivel, portanto, afirmar que a
interface desenvolvida néo é dificil de se aprender e, com as melhorias sugeridas na secéo
4.3, poderia ser utilizada no lugar dos dispositivos tradicionais, como teclado e mouse.

Do ponto de vista do aluno, o projeto foi um grande aprendizado.

Nao foi aprofundada a area de processamento de imagens, pois toda essa parte
ficou como responsabilidade da API do Kinect.

Por outro lado, foi aprendida uma linguagem de programacé&o nova e a como utilizar
o dispositivo Kinect para as mais diversas finalidades, o que, associado a linguagem C#,
de alto nivel, facilta muito o trabalho de captura de imagens, determinacdo de
profundidades, desenvolvimento das mais diversas estruturas de dados para armazenar
essas informacdes e, sobretudo, utilizacdo do corpo humano como forma de interacéo.
Considerando o interesse e 0 uso do Kinect tanto na area de jogos como de pesquisas,
esses conhecimentos podem ser de grande ajuda.

O dispositivo se mostrou uma ferramenta poderosa e pratica, devido ao conjunto de
sensores de diversos tipos reunidos em um Unico hardware e os diversos frameworks

existentes para as mais diversas linguagens de programacéao.

49

by

Ainda assim, possui algumas limitacbes no que diz respeito a estabilidade na
deteccao das Joints. E necessario as vezes ficar a uma distancia muito especifica e mover
0s membros com cuidado para que a deteccao fique estavel, o que prejudica um pouco o
conforto do usuario e torna o sistema cansativo. Uma solucao para essas dificuldades deve,
portanto, ser implementada por software.

Como trabalhos futuros, podem-se imaginar diversos tipos de aplicagdes.

Por exemplo, o uso do Kinect como uma ferramenta para criagdo e manipulagéo de
modelos 3D.

Como o projeto apresentado neste trabalho atuava como uma camada intermediaria
entre o usuario e a interface grafica ja existente nos sistemas operacionais, um outro
exemplo de trabalho futuro poderia ser criar algo novo, como iniciar aplicacdes especificas
e interagir com elas através de gestos.

O usuario 5 afirmou que interfaces como a desenvolvida tendem a ser a evolucao
das interfaces graficas atuais, o que também foi afirmado por August de los Reyes, gerente
de experiéncia de usuario da Microsoft [5]. Como o Kinect ainda € um produto recente e
novas versdes dos dispositivos e do SDK ainda estdo sendo lancadas, espera-se que o
presente trabalho possa servir como base para diversos futuros trabalhos que possam vir,
dando um ponto inicial as pesquisas da area de interfaces naturais envolvendo o Kinect.

Ao final deste trabalho, serdo apresentados como apéndices os codigos-fonte para
0s principais componentes do sistema. A maior parte desses componentes é gerada
automaticamente pelo Visual Studio, portanto, partes do cddigo serdo omitidas e serao

escritas observacdes sobre como modifica-las.

50

REFERENCIAS BIBLIOGRAFICAS

[1] VELOSO, Théssius. Microsoft lan¢a SDK do Kinect para Windows 7 [On-line]. Disponivel
em: <https://tecnoblog.net/68297/kinect-sdk-windows-7/>. Acesso em 05/10/2014.

[2] HEWETT, Thomas T., et al. ACM SIGCHI Curricula for Human-Computer Interaction
[On-line]. Disponivel em: <http://old.sigchi.org/cdg/cdg2.html#2_1>. Acesso em 05/10/2014.
[3] COMMAND-LINE interface. In: WIKIPEDIA: a enciclopédia livre. Disponivel em:
<http://en.wikipedia.org/wiki/Command-line_interface>. Acesso em 05/10/2014.

[4] LEVY Jr., Steven. Graphical user interface. In: Encyclopedia Britannica On-line.
Disponivel em: <http://global.britannica.com/EBchecked/topic/242033/graphical-user-
interface-GUI#t0c93007>. Acesso em 05/10/2014.

[5] RIEDER, David M. From GUI to NUI: Microsoft’s Kinect and the Politics of the (Body as)

Interface [On-line]. Disponivel em: <http://www.presenttensejournal.org/volume-3/from-gui-

to-nui-microsofts-kinect-and-the-politics-of-the-body-as-interface/>. Acesso em 07/10/2014.
[6] KINECT. In: WIKIPEDIA: a enciclopédia livre. Disponivel em:
<http://pt.wikipedia.org/wiki/Kinect>. Acesso em 10/10/2014.

[7] KINECT fact sheet. In: Microsoft. Disponivel em: <www.microsoft.com/en-

us/news/presskits/xbox/docs/KinectFS.docx>. Acesso em 07/10/2014.

[8] BISHOP, Todd. Microsoft: Kinect wasn't hacked, USB port left open 'by design' [On-line].
Disponivel em: <http://www.bizjournals.com/seattle/blog/techflash/2010/11/microsoft-
kinect-not-hacked-left.html>. Acesso em 07/10/2014.

[9] MITCHELL, Richard. PrimeSense releases open source drivers, middleware that work

with Kinect [On-line]. Disponivel em: <http://www.joystiq.com/2010/12/10/primesense-

releases-open-source-drivers-middleware-for-kinect/>. Acesso em 07/10/2014.

[10] BOYD, E. B. Microsoft legitimizes hacking of the Kinect [On-line]. Disponivel em:
<http://www.fastcompany.com/1760493/microsoft-legitimizes-hacking-kinect>. Acesso em
07/10/2014.

[11] GREENE, Jay. Microsoft debuts Kinect for Windows, commercial SDK [On-ling].

Disponivel em: <http://www.cnet.com/news/microsoft-debuts-kinect-for-windows-

commercial-sdk/>. Acesso em 07/10/2014.
[12] SOUZA, L. J. dos S. Controle de computadores utilizando interface natural. 2014. 9 f.

Projeto de Iniciacdo Cientifica (Graduacdo em Engenharia de Computagdo) — Escola de

Engenharia de Sdo Carlos, Universidade de S&o Paulo, Sdo Carlos. 2014.

51

https://tecnoblog.net/68297/kinect-sdk-windows-7/
http://old.sigchi.org/cdg/cdg2.html#2_1
http://en.wikipedia.org/wiki/Command-line_interface
http://global.britannica.com/EBchecked/topic/242033/graphical-user-interface-GUI#toc93007
http://global.britannica.com/EBchecked/topic/242033/graphical-user-interface-GUI#toc93007
http://www.presenttensejournal.org/volume-3/from-gui-to-nui-microsofts-kinect-and-the-politics-of-the-body-as-interface/
http://www.presenttensejournal.org/volume-3/from-gui-to-nui-microsofts-kinect-and-the-politics-of-the-body-as-interface/
http://pt.wikipedia.org/wiki/Kinect
http://www.microsoft.com/en-us/news/presskits/xbox/docs/KinectFS.docx
http://www.microsoft.com/en-us/news/presskits/xbox/docs/KinectFS.docx
http://www.bizjournals.com/seattle/blog/techflash/2010/11/microsoft-kinect-not-hacked-left.html
http://www.bizjournals.com/seattle/blog/techflash/2010/11/microsoft-kinect-not-hacked-left.html
http://www.joystiq.com/2010/12/10/primesense-releases-open-source-drivers-middleware-for-kinect/
http://www.joystiq.com/2010/12/10/primesense-releases-open-source-drivers-middleware-for-kinect/
http://www.fastcompany.com/1760493/microsoft-legitimizes-hacking-kinect
http://www.cnet.com/news/microsoft-debuts-kinect-for-windows-commercial-sdk/
http://www.cnet.com/news/microsoft-debuts-kinect-for-windows-commercial-sdk/

[13] C# Language Specification. In: Microsoft. Disponivel em:
<http://www.microsoft.com/en-us/download/details.aspx?id=7029>. Acesso em 09/10/2014.
[14] KEITH. How to simulate Mouse Click in C#? [On-line]. Disponivel em:

<http://stackoverflow.com/questions/2416748/how-to-simulate-mouse-click-in-c>. Acesso
em 09/10/2014.

[15] CASTRO, André. Kinect SDK 1.5 Parte 1 — Camera RGB [On-line]. Disponivel em: <
<http://www.100loop.com/destaque/kinect-sdk-1-5-parte-1-camera-rgb/>. Acesso em
09/10/2014.

[16] RAITEN, Shai. Kinect — Getting Started — Become The Incredible Hulk [On-line].
Disponivel em: <http://blogs.microsoft.co.il/shair/2011/06/17/kinect-getting-started-
become-the-incredible-hulk/>. Acesso em 10/10/2014.

[17] WILDMAN. Programming for Kinect 4 — Kinect App with Skeleton Tracking [On-line].

Disponivel em: <http://blog.3dsense.org/programming/programming-for-kinect-4-kinect-

app-with-skeleton-tracking/>. Acesso em 12/10/2014.

[18] Kinect for Windows SDK v1.7. In: Microsoft. Disponivel em:
<http://www.microsoft.com/en-us/download/details.aspx?id=36996>. Acesso em
30/10/2014.

[19] Visual Studio. In: Microsoft. Disponivel em: <http://www.visualstudio.com/>. Acesso em
11/10/2014.

[20] NAIR, Ajith R. Run a C# application in background [On-line]. Disponivel em:
<https://social.msdn.microsoft.com/Forums/vstudio/en-US/f4ad839c-82b5-4349-b6 11-
d7bf86f9580d/run-a-c-application-in-background?forum=csharpgeneral>. Acesso em
12/10/2014.

[21] Free Virtual Keyboard. In: Free Virtual Keyboard. Disponivel em:

<http://freevirtualkeyboard.com/>. Acesso em 16/10/2014.

[22] Kinect Sensor. In: Microsoft. Disponivel em: <http://msdn.microsoft.com/en-
us/library/hh438998.aspx>. Acesso em 19/10/2014.

[23] Kinect for Windows Sensor Components and Specifications. In: Microsoft. Disponivel

em: <http://msdn.microsoft.com/en-us/library/jj131033.aspx>. Acesso em 28/10/2014.

[24] ConvertICO. In: ConvertICO. Disponivel em: <http://www.convertico.com/>. Acesso em
29/10/2014.

[25] Windows Kinect Control. In: Github. Disponivel em:
<https://github.com/Hikarikun92/Windows-Kinect-Control>. Acesso em 19/11/2014.

52

http://www.microsoft.com/en-us/download/details.aspx?id=7029
http://stackoverflow.com/questions/2416748/how-to-simulate-mouse-click-in-c
http://www.100loop.com/destaque/kinect-sdk-1-5-parte-1-camera-rgb/
http://blogs.microsoft.co.il/shair/2011/06/17/kinect-getting-started-become-the-incredible-hulk/
http://blogs.microsoft.co.il/shair/2011/06/17/kinect-getting-started-become-the-incredible-hulk/
http://blog.3dsense.org/programming/programming-for-kinect-4-kinect-app-with-skeleton-tracking/
http://blog.3dsense.org/programming/programming-for-kinect-4-kinect-app-with-skeleton-tracking/
http://www.microsoft.com/en-us/download/details.aspx?id=36996
http://www.visualstudio.com/
https://social.msdn.microsoft.com/Forums/vstudio/en-US/f4ad839c-82b5-4349-b61f-d7bf86f9580d/run-a-c-application-in-background?forum=csharpgeneral
https://social.msdn.microsoft.com/Forums/vstudio/en-US/f4ad839c-82b5-4349-b61f-d7bf86f9580d/run-a-c-application-in-background?forum=csharpgeneral
http://freevirtualkeyboard.com/
http://msdn.microsoft.com/en-us/library/hh438998.aspx
http://msdn.microsoft.com/en-us/library/hh438998.aspx
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://www.convertico.com/
https://github.com/Hikarikun92/Windows-Kinect-Control

APENDICE — IMPLEMENTANDO O PROJETO

Para reproduzir os cédigos-fonte deste projeto, conta-se com a IDE Visual Studio
para a criacdo das janelas e classes do sistema. O projeto completo pode ser acessado no
Github [25]. E feita uma separacéo entre a interface gréfica, gerada automaticamente pelo
designer da IDE, e a funcional, que deve ser especificada pelo usuario.

O foco deste apéndice sera na parte funcional. Para as partes gréficas, sera
apresentado apenas um guia verbal sobre que componentes devem ser utilizados e alguma
modificacdo que possa ser necessaria.

Antes de comecar a desenvolver a aplicacdo, é necessario instalar o Kinect for
Windows SDK v1.7 [18] através de um instalador simples. Qualquer versao recente do
Visual Studio deve funcionar; recomenda-se a versao 2012 ou 2013 com o framework .NET
versao 4.5. A versao gratuita é a Express, que também deve funcionar.

Deve ser criado um novo projeto em C# do tipo Windows Forms Application, com
nome “KinectApp” e nome de solugdo “Kinect”. Do lado direito da tela, serd exibido o
Solution Explorer. Na parte de References, o usuario deve clicar com o botédo direito e
selecionar “Add Reference...”. No menu Assemblies, deve selecionar a op¢ao Extensions e
marcar “Microsoft.Kinect”, que deve estar disponivel apds a instalagdo do SDK.

Uma janela com nome “Form1” sera criada. Ela deve entao ser renomeada para
MainWindow. Do lado esquerdo, na Toolbox, deve ser arrastado para a janela um Notifylcon,
que deve ser renomeado para “Icone”. Nas propriedades da janela, no canto inferior direito,
deve ser acessada a parte de eventos e registrar (duplo clique) eventos nas linhas

FormClosed e Load, conforme a Figura 15.

Properties * 0 X
MainWindow System.Windows.Forms.Form -
o= B0 F
ControlRemoved -
FormClosed MainWindow_FormClosed

FormClosing

HelpButtonClicked

HelpRequested

ImeModeChanged

InputLanguageChanged

InputLanguageChanging

Load MainWindow_Load
CueryAccessibilityHelp

Shown hd

Figura 15 - Registro de eventos da classe MainWindow
53

O cdbdigo para a parte funcional da classe MainWindow fica:
[MainWindow.cs]

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Diagnostics;
using System.Drawing;

using System.IO;

using System.Lling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace KinectApp

{

public partial class MainWindow : Form
{

Opcoes op;

ContextMenu menu;

KinectController kc;

Camera cam;

public MainWindow()

{
InitializeComponent();
Icone.Text = Resource.AppTitle;

Icone.ShowBalloonTip (3000, "Iniciando...", "O sensor estd sendo

iniciado. Por favor, aguarde.", ToolTipIcon.Info);

op = new Opcoes(this);
kc = new KinectController(this);
cam = new Camera(kc.Sensor);

menu = new ContextMenu();

menu.MenuItems.Add(new MenuItem("Opg¢des..."™, mil_onClick));

menu.MenuItems.Add(new MenuItem("Ver camera", mi2_camera));

menu.MenuItems.Add(new MenuItem("Mostrar teclado virtual”,
mi3_teclado));

menu.MenuItems.Add(new MenuItem("Encerrar", mi4_encerrar));

Icone.ContextMenu = menu;

Icone.ShowBalloonTip(3000, "Pronto!", "O sensor estd pronto para uso.",

ToolTipIcon.Info);

}

public void mil_onClick(object sender, EventArgs e)

{
op.Show();

public void mi2_camera(object sender, EventArgs e)

{
if (!cam.IsVisible)

cam.Show();

54

public void mi3_teclado(object sender, EventArgs e)

Process.Start("FreeVK.exe");

}

{
try
{
}

catch (Win32Exception)

{

MessageBox.Show(

"Nao foi possivel encontrar o aplicativo FreeVK.exe. Certifique-

se de que o mesmo se encontra na pasta de instalacao do Windows Kinect Control e
tente novamente.",

"Erro ao iniciar o teclado virtual”

)s
}
}
public void mi4_encerrar(object sender, EventArgs e)
{
Close();
}
public void setDefHand(int hand)
{
if (hand == 0)
{
kc.DefHand = Microsoft.Kinect.JointType.HandRight;
kc.DefShoulder = Microsoft.Kinect.JointType.ShoulderRight;
kc.SecondaryHand = Microsoft.Kinect.JointType.HandLeft;
kc.SecondaryShoulder = Microsoft.Kinect.JointType.ShoulderLeft;
}
else
{
kc.DefHand = Microsoft.Kinect.JointType.HandLeft;
kc.DefShoulder = Microsoft.Kinect.JointType.ShoulderLeft;
kc.SecondaryHand = Microsoft.Kinect.JointType.HandRight;
kc.SecondaryShoulder = Microsoft.Kinect.JointType.ShoulderRight;
}
}
public void setPrecision(bool precision)
{
kc.Precision = precision;
}
public void setSkeletonRefreshRate(int rate)
{
kc.setSkeletonRefreshRate(rate);
}
public void setSensorAngle(int angle)
{
kc.Sensor.ElevationAngle = angle;
}

55

private void MainWindow_FormClosed(object sender, FormClosedEventArgs e)

¢ Icone.Dispose();
cam.Close();
op.Dispose();
if (kc != null) { kc.Dispose(); }
}
private void MainWindow_Load(object sender, EventArgs e)
¢ BeginInvoke(new MethodInvoker(delegate
{
Hide();
1)
}

Devem ser criadas em seguida duas outras classes: MouseOperations
KinectController. Seus c6digos séo de acordo com seus arquivos respectivos:

[MouseOperations.cs]

e

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Runtime.InteropServices;

namespace KinectApp

{
/**
* http://webdeveloperswall.com/dot-net/simulate-mouse-click-in-csharp
**/
public class MouseOperations
{
[Flags]
public enum MouseEventFlags
{
LeftDown = ©x00000002,
LeftUp = 0x00000004,
MiddleDown = ©x00000020,
MiddleUp = ©x00000040,
Move = 0x00000001,
Absolute = 0x00008000,
RightDown = 0x00000008,
RightUp = 0x00000010
}
[D11Import("user32.dll", EntryPoint = "SetCursorPos")]
[return: MarshalAs(UnmanagedType.Bool)]
private static extern bool SetCursorPos(int X, int Y);
[D11Import("user32.d1l1")]
[return: MarshalAs(UnmanagedType.Bool)]
private static extern bool GetCursorPos(out MousePoint lpMousePoint);

56

[D11Import("user32.dl1")]
private static extern void mouse_event(int dwFlags, int dx, int dy, int

dwData, int dwExtraInfo);
public static void SetCursorPosition(int X, int Y)
{
SetCursorPos(X, Y);
}
public static MousePoint GetCursorPosition()
{
MousePoint currentMousePoint;
var gotPoint = GetCursorPos(out currentMousePoint);
if (!gotPoint) { currentMousePoint = new MousePoint(@, @); }
return currentMousePoint;
}
public static void MouseEvent(MouseEventFlags value)
{
MousePoint position = GetCursorPosition();
mouse_event((int)value, position.X, position.Y, 0, 9);
}
public static void MouseClick()
{
MouseEvent(MouseEventFlags.LeftDown);
MouseEvent(MouseEventFlags.LeftUp);
}
[StructLayout(LayoutKind.Sequential)]
public struct MousePoint
{
public int X;
public int Y;
public MousePoint(int x, int y)
{
X = X;
Y = X;
}
}
}
}

[KinectController.cs]

using
using
using
using
using
using
using
using
using
using
using
using

Systenm;

System.Collections.Generic;
System.Ling;

System.Text;

System.Threading.Tasks;
Microsoft.Kinect;
Microsoft.Kinect.Toolkit.Interaction;
Microsoft.Kinect.Toolkit.Properties;
System.Runtime.InteropServices;
System.Windows.Forms;
System.Windows.Shapes;
System.Windows.Input;

57

namespace KinectApp

{

class KinectController
{
KinectSensor sensor;
int posX, posY, nextX, nextY;
double screenWidth, screenHeight;
JointType defHand, defShoulder, secondaryHand, secondaryShoulder;
bool clicked, isMouselDown, isMouseMDown, isMouseRDown, precision;
System.Timers.Timer timer;
int skeletonRefreshRate;

public KinectSensor Sensor

{
get

{
}

return sensor;

}
public JointType DefHand

{

}
public JointType DefShoulder

{
}

public JointType SecondaryHand

{

}
public JointType SecondaryShoulder

{
}

public bool Precision

{

}
[D11Import("User32.d11")]

private static extern bool SetCursorPos(int X, int Y);

set { defHand = value; }

set { defShoulder = value; }

set { secondaryHand = value; }

set { secondaryShoulder = value; }

set { precision = value; }

public KinectController(MainWindow mw)

{

bool sucesso = false;
sensor=null;

screenWidth = System.Windows.SystemParameters.VirtualScreenWidth;
screenHeight = System.Windows.SystemParameters.VirtualScreenHeight;

do
{

if (KinectSensor.KinectSensors.Count > 0)

{

sensor = KinectSensor.KinectSensors.FirstOrDefault(s => s.Status
== KinectStatus.Connected || s.Status == KinectStatus.Initializing);

58

if (sensor != null)
{

if (sensor.Status == KinectStatus.Connected)

{
sucesso = true;
sensor.SkeletonStream.Enable();
defHand = JointType.HandRight;
secondaryHand = JointType.HandLeft;
defShoulder = JointType.ShoulderRight;
secondaryShoulder = JointType.ShoulderLeft;
clicked = false;
isMouselLDown = false;
isMouseMDown = false;
isMouseRDown = false;
precision = true;
posX = 0;
posY = 0;
timer = new System.Timers.Timer(1000.0 / 15.0);
timer.Elapsed += timer_Elapsed;
sensor.Start();
sensor.ElevationAngle = 10;
timer.Start();

}

else

{

MessageBox.Show("0 sensor foi detectado, porém houve
algum problema ao estabelecer a comunica¢ao. Por favor, tente reconecta-lo e inicie
o programa novamente.\nStatus do sensor: " + sensor.Status.ToString(), "Erro",
MessageBoxButtons.0K, MessageBoxIcon.Error);

mw.Close();

Environment.Exit(-1);

}

else

{

DialogResult resultado = MessageBox.Show("Nenhum sensor
detectado. Tentar novamente?", "Erro", MessageBoxButtons.YesNo,
MessageBoxIcon.Error);

if (resultado == DialogResult.No)

mw.Close();
Environment.Exit(-1);

}

else

{

DialogResult resultado = MessageBox.Show("Nenhum sensor
detectado. Tentar novamente?", "Erro", MessageBoxButtons.YesNo,
MessageBoxIcon.Error);

if (resultado == DialogResult.No)

{

mw.Close();
Environment.Exit(-1);

59

} while (!sucesso);

}
public void setSkeletonRefreshRate(int rate)
{

timer.Interval = 1000.0 / (double) rate;
}

void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
SkeletonFrame skelframe = null;
skelframe = sensor.SkeletonStream.OpenNextFrame((int) timer.Interval);

try
if (skelframe != null)

Skeleton[] skeletonGroup = new
Skeleton[skelframe.SkeletonArraylLength];

skelframe.CopySkeletonDataTo(skeletonGroup);

Skeleton sk = (from s in skeletonGroup where s.TrackingState ==
SkeletonTrackingState.Tracked select s).FirstOrDefault();

if (sk == null) return;
float rightX, rightY;

rightX = sk.Joints[defHand].Position.X;

rightY = sk.Joints[defHand].Position.Y;

nextX = (int)(screenWidth / 2 + rightX * screenWidth * 2.9);
nextY = (int)(screenHeight / 2 - rightY * screenHeight * 1.5);

if (precision)

if ((Math.Abs(nextX - posX) > 20) || Math.Abs(nextY - posY)

> 20)
{
posX = nextX;
posY = nextY;
SetCursorPos(posX, posY);
}
}
else
{
posX = nextX;
posY = nextY;
SetCursorPos(posX, posY);
}
Joint secHand = sk.Joints[secondaryHand];
Joint secShoulder = sk.Joints[secondaryShoulder];
if (clicked)
{
if (secShoulder.Position.Z - secHand.Position.Z < 0.3 &&
isMouseRDown)

{

60

MouseOperations.MouseEvent(MouseOperations.MouseEventFlags.RightUp);
isMouseRDown = false;
clicked = false;

}

if (secShoulder.Position.Z - secHand.Position.Z < ©.45)

{

if (isMouselDown)

{

MouseOperations.MouseEvent (MouseOperations.MouseEventFlags.LeftUp);
isMouselLDown = false;

}

if (isMouseMDown)

{

MouseOperations.MouseEvent (MouseOperations.MouseEventFlags.MiddleUp);
isMouseMDown = false;

}
clicked = false;
}
}
else
{

if (secShoulder.Position.Z - secHand.Position.Z > 0.3 &&
secHand.Position.Y > secShoulder.Position.Y + 0.2)

{

MouseOperations.MouseEvent(MouseOperations.MouseEventFlags.RightDown);
isMouseRDown = true;
clicked = true;

else if (secShoulder.Position.Z - secHand.Position.Z > 0.45)

{

if (secHand.Position.Y < secShoulder.Position.Y - 0.1)

{

MouseOperations.MouseEvent(MouseOperations.MouseEventFlags.LeftDown);
isMouselDown = true;
}

else if (secHand.Position.Y < secShoulder.Position.Y +

{

0.2)

MouseOperations.MouseEvent(MouseOperations.MouseEventFlags.MiddleDown);
isMouseMDown = true;

}
clicked = true;
}
}
}
}
catch (Exception ex)
{

Console.WritelLine(ex.Message);

61

Console.WriteLine(ex.StackTrace);
Console.WriteLine();

}
finally
{
if (skelframe != null) skelframe.Dispose();
}
}
public void Dispose()
{
if (sensor != null)
{
timer.Stop();
sensor.SkeletonStream.Disable();
sensor.Stop();
sensor.Dispose();
}
}

Para a janela de cAmera, deve ser adicionado um “User Control (WPF)” com nome
Camera. Sdo gerados dois arquivos principais: Camera.xaml e Camera.xaml.cs, cujos

cbdigos se encontram nos arquivos respectivos abaixo.

[Camera.xaml]

<Window x:Class="KinectApp.Camera"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d" Width="648.955" ResizeMode="NoResize"

Closing="0OnClosing"
Loaded="0OnLoad" Activated="Window_Activated" Height="577.015"
WindowStartuplLocation="CenterScreen" SizeToContent="WidthAndHeight">

<Grid>
<Image Name="imgKinect" HorizontalAlignment="Left" Height="480"
VerticalAlignment="Top" Width="640"/>
<Border BorderBrush="Black" BorderThickness="1" HorizontalAlignment="Left"
Height="60" Margin="0,480,0,0" VerticalAlignment="Top" Width="640">
<Button x:Name="bFechar" Content="Fechar" Width="146" Margin="246,9"
FontSize="18" Click="Button_Click" IsDefault="True"/>
</Border>
</Grid>
</Window>

62

[Camera.xaml.cs]

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using System.Windows.Threading;
using Microsoft.Kinect;

using System.Runtime.InteropServices;
using System.Windows.Interop;

namespace KinectApp
{

public partial class Camera : Window

{

KinectSensor sensor;

public Camera(KinectSensor sensor)
{
InitializeComponent();
this.sensor = sensor;

}

//Tira os botdes de minimizar, maximizar e fechar da janela

private 63ons tint GWL_STYLE = -16;

private 63ons tint WS_SYSMENU = 0x80000;

[D11Import(“user32.dl1l”, SetLastError = true)]

private static extern int GetWindowLong(IntPtr hWnd, int nIndex);

[D11Import(“user32.d11”)]

private static extern int SetWindowLong(IntPtr hWnd, int nIndex, int
dwNewLong);

private void OnClosing(object sender, System.ComponentModel.CancelEventArgs

e)
{
sensor.ColorStream.Disable();
//Do not close application
e.Cancel = true;
Visibility = Visibility.Hidden;
}

private void OnLoad(object sender, RoutedEventArgs e)
{
sensor.ColorFrameReady += sensor_ColorFrameReady;
var hwnd = new WindowInteropHelper(this).Handle;
SetWindowLong(hwnd, GWL_STYLE, GetWindowLong(hwnd, GWL_STYLE) &
~WS_SYSMENU) ;

}

63

//Gera uma imagem 640x480 com os dados do stream de cores
void sensor_ColorFrameReady(object sender, ColorImageFrameReadyEventArgs e)

{
using (ColorImageFrame cif = e.OpenColorImageFrame())
if (cif == null) return;

byte[] cbytes = new byte[cif.PixelDatalLength];
cif.CopyPixelDataTo(cbytes);

int stride = cif.Width * 4;

imgKinect.Source = BitmapImage.Create(640, 480, 96, 96,
PixelFormats.Bgr32, null, cbytes, stride);

}
}
private void Window_Activated(object sender, EventArgs e)
{
sensor.ColorStream.Enable();
}
private void Button_Click(object sender, RoutedEventArgs e)
{
sensor.ColorStream.Disable();
Hide();
}

Deve agora ser adicionado um Windows Form de nome Opcoes. Sera exibida a
interface de criacao de janelas. Clicando com o botao direito, ha a opgao “View Code”, que
exibe o codigo da parte funcional da janela. Este deve ser como no arquivo Opcoes.cs. Em
seguida, deve ser aberto o arquivo Opcoes.Designer.cs e seu cédigo de acordo com o

respectivo arquivo abaixo.

[Opcoes.cs]

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace KinectApp

{

64

public partial class Opcoes : Form

{

MainWindow mw;
int previousAngle;

public Opcoes(MainWindow mw)

{
InitializeComponent();
this.mw = mw;
this.Icon = Resource.Icone;
this.trackAngle.Value = 10;
previousAngle = 10;

}

private void Opcoes_FormClosing(object sender, FormClosingEventArgs e)

{
Hide();
e.Cancel = true;

}

private void buttonConfirm_Click(object sender, EventArgs e)

{
if (radioDir.Checked)

{
}

else

{

mw.setDefHand(0);

mw.setDefHand(1);

Hide();
}

private void cbPrecisao_CheckedChanged(object sender, EventArgs e)

{
}

private void trackRate_Scroll(object sender, EventArgs e)

{

mw.setPrecision(cbPrecisao.Checked);

textRate.Text = trackRate.Value.ToString();
mw.setSkeletonRefreshRate(trackRate.Value);

}

private void bAngle_Click(object sender, EventArgs e)

{
int angle = trackAngle.Value;

if (angle != previousAngle)

{
previousAngle = angle;
mw.setSensorAngle(angle);

}

private void trackAngle Scroll(object sender, EventArgs e)

{
textAngle.Text = trackAngle.Value.ToString();

[Opcoes.Designer.cs]

using System.Windows.Forms;

namespace KinectApp
{
partial class Opcoes
{
/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.IContainer components = null;

/// <summary>

/// Clean up any resources being used.

/// </summary>

/// <param name="disposing">true if managed resources should be disposed;
otherwise, false.</param>

protected override void Dispose(bool disposing)

{
if (disposing && (components != null))
{
components.Dispose();
}
base.Dispose(disposing);
}

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{
this.groupBoxl = new System.Windows.Forms.GroupBox();
this.labeld4 = new System.Windows.Forms.Label();
this.textAngle = new System.Windows.Forms.TextBox();
this.label3 = new System.Windows.Forms.Label();
this.bAngle = new System.Windows.Forms.Button();
this.trackAngle = new System.Windows.Forms.TrackBar();
this.label2 = new System.Windows.Forms.Label();
this.textRate = new System.Windows.Forms.TextBox();
this.trackRate = new System.Windows.Forms.TrackBar();
this.labell = new System.Windows.Forms.Label();
this.cbPrecisao = new System.Windows.Forms.CheckBox();
this.buttonConfirm = new System.Windows.Forms.Button();
this.chooseDefHand = new System.Windows.Forms.GroupBox();
this.radioEsq = new System.Windows.Forms.RadioButton();
this.radioDir = new System.Windows.Forms.RadioButton();
this.groupBox1l.SuspendLayout();

((System.ComponentModel.ISupportInitialize)(this.trackAngle)).BeginInit();

66

((System.ComponentModel.ISupportInitialize)(this.trackRate)).BeginInit();
this.chooseDefHand.SuspendLayout();
this.SuspendLayout();

//

// groupBox1

//

this.groupBoxl.Controls.Add(this.label4d);

this.groupBox1.Controls.Add(this.textAngle);

this.groupBoxl.Controls.Add(this.label3);

this.groupBox1.Controls.Add(this.bAngle);

this.groupBox1.Controls.Add(this.trackAngle);

this.groupBox1.Controls.Add(this.label2);

this.groupBox1.Controls.Add(this.textRate);

this.groupBox1.Controls.Add(this.trackRate);

this.groupBox1.Controls.Add(this.labell);

this.groupBox1.Controls.Add(this.cbPrecisao);

this.groupBox1l.Controls.Add(this.buttonConfirm);

this.groupBox1l.Controls.Add(this.chooseDefHand);

this.groupBoxl.Location = new System.Drawing.Point(12, 12);

this.groupBox1.Name = "groupBox1";

this.groupBox1.Size = new System.Drawing.Size(289, 278);

this.groupBoxl.TabIndex = 0;

this.groupBox1.TabStop = false;

this.groupBox1l.Text = "Op¢des do Kinect";

//

// label4d

//

this.label4.AutoSize = true;

this.label4.Location = new System.Drawing.Point(223, 173);

this.label4.Name = "label4d";

this.label4.Size = new System.Drawing.Size(33, 13);

this.label4.TabIndex = 11;

this.label4.Text = "graus";

//

// textAngle

//

this.textAngle.Enabled = false;

this.textAngle.Location = new System.Drawing.Point(176, 170);

this.textAngle.Name = "textAngle";

this.textAngle.ReadOnly = true;

this.textAngle.Size = new System.Drawing.Size(37, 20);

this.textAngle.TabIndex = 10;

this.textAngle.Text = "10";

this.textAngle.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right;

//

// label3

//

this.label3.AutoSize = true;

this.label3.Location = new System.Drawing.Point(17, 173);

this.label3.Name = "label3";

this.label3.Size = new System.Drawing.Size(109, 13);

this.label3.TabIndex = 9;

this.label3.Text = "Angulo de inclinacdo:";

//

// bAngle

67

/!

this.

this

this.
this.
this.
this.
this.

!/

bAngle.
.bAngle.
bAngle.
bAngle.
bAngle.
bAngle.
bAngle.

Location = new System.Drawing.Point(134, 249);

Name = "bAngle";

Size = new System.Drawing.Size(86, 23);

TabIndex = 8;

Text = "Testar Angulo";

UseVisualStyleBackColor = true;

Click += new System.EventHandler(this.bAngle_Click);

// trackAngle

/!

this.
.trackAngle.Maximum = 27;
this.
.trackAngle.Name = "trackAngle";

.trackAngle.Size = new System.Drawing.Size(276, 45);
.trackAngle.TabIndex = 7;

.trackAngle.Scroll += new

this

this
this
this
this

trackAngle.Location = new System.Drawing.Point(7, 190);

trackAngle.Minimum = -27;

System.EventHandler(this.trackAngle_Scroll);

//

// label2

//

this.
this.
this.
this.
this.
this.

//

label2

// textRate

//

this.
.textRate.MaxLength = 2;

.textRate.Name = "textRate";

.textRate.ReadOnly = true;

.textRate.Size = new System.Drawing.Size(37, 20);
.textRate.TabIndex = 5;

.textRate.Text = "15";

.textRate.TextAlign =

this
this
this
this
this
this
this

.AutoSize
label2.
label2.
label2.
label2.
label2.

true;

Location = new System.Drawing.Point(220, 121);
Name = "label2";

Size = new System.Drawing.Size(55, 13);
TabIndex = 6;

Text = "quadros/s";

textRate.Location = new System.Drawing.Point(176, 117);

System.Windows.Forms.HorizontalAlignment.Right;

//

// trackRate

//

this
this
this
this

this
this
this
//

.trackRate.Location = new System.Drawing.Point(7, 138);
.trackRate.Maximum = 30;

.trackRate.Minimum = 1;

.trackRate.Name = "trackRate";

this.

trackRate.Size = new System.Drawing.Size(276, 45);

// labell

//

.trackRate.TabIndex = 4;
.trackRate.value = 15;
.trackRate.Scroll += new System.EventHandler(this.trackRate_Scroll);

this.labell.AutoSize = true;
this.labell.Location = new System.Drawing.Point(17, 121);
this.labell.Name = "labell";

68

this.labell.Size = new System.Drawing.Size(153, 13);

this.labell.TabIndex = 3;

this.labell.Text = "Taxa de atualizac¢do do cursor:";

//

// cbPrecisao

//

this.cbPrecisao.AutoSize = true;

this.cbPrecisao.Checked = true;

this.cbPrecisao.CheckState = System.Windows.Forms.CheckState.Checked;

this.cbPrecisao.Location = new System.Drawing.Point(17, 97);

this.cbPrecisao.Name = "cbPrecisao";

this.cbPrecisao.Size = new System.Drawing.Size(111, 17);

this.cbPrecisao.TabIndex = 2;

this.cbPrecisao.Text = "Modo de precisao";

this.cbPrecisao.UseVisualStyleBackColor = true;

this.cbPrecisao.CheckedChanged += new
System.EventHandler(this.cbPrecisao_CheckedChanged);

//

// buttonConfirm

//

this.buttonConfirm.Location = new System.Drawing.Point(53, 249);
this.buttonConfirm.Name = "buttonConfirm";

this.buttonConfirm.Size = new System.Drawing.Size(75, 23);

this.buttonConfirm.TabIndex = 1;

this.buttonConfirm.Text = "Confirmar";

this.buttonConfirm.UseVisualStyleBackColor = true;

this.buttonConfirm.Click += new
System.EventHandler(this.buttonConfirm_Click);

//

// chooseDefHand

//

this.chooseDefHand.Controls.Add(this.radioEsq);

this.chooseDefHand.Controls.Add(this.radioDir);

this.chooseDefHand.Location = new System.Drawing.Point(7, 20);

this.chooseDefHand.Name = "chooseDefHand";

this.chooseDefHand.Size = new System.Drawing.Size(276, 70);

this.chooseDefHand.TabIndex = 0;

this.chooseDefHand.TabStop = false;

this.chooseDefHand.Text = "Mao padrao";

//

// radioEsq

//

this.radioEsq.AutoSize = true;

this.radioEsq.Location = new System.Drawing.Point(10, 43);

this.radioEsq.Name = "radioEsq";

this.radioEsq.Size = new System.Drawing.Size(70, 17);

this.radioEsq.TabIndex = 1;

this.radioEsq.TabStop = true;

this.radioEsq.Text = "Esquerda";
this.radioEsq.UseVisualStyleBackColor = true;
/7

// radioDir

//

this.radioDir.AutoSize = true;

this.radioDir.Location = new System.Drawing.Point(10, 21);
this.radioDir.Name = "radioDir";

this.radioDir.Size = new System.Drawing.Size(55, 17);

69

this.radioDir.TabIndex = 0;
this.radioDir.TabStop = true;
this.radioDir.Text = "Direita";
this.radioDir.UseVisualStyleBackColor = true;
//

// Opcoes

//

this.AcceptButton = this.buttonConfirm;

this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.ClientSize = new System.Drawing.Size(313, 302);

this.Controls.Add(this.groupBox1);
this.MaximizeBox = false;
this.MinimizeBox = false;
this.Name = "Opcoes";
this.StartPosition =

System.Windows.Forms.FormStartPosition.CenterScreen;

this.Text = "Op¢des”;
this.FormClosing += new

System.Windows.Forms.FormClosingEventHandler(this.Opcoes_FormClosing);

}

this.groupBox1.ResumeLayout(false);
this.groupBox1.PerformLayout();
((System.ComponentModel.ISupportInitialize)(this
((System.ComponentModel.ISupportInitialize)(this
this.chooseDefHand.ResumeLayout(false);
this.chooseDefHand.PerformLayout();
this.ResumeLayout(false);

protected override CreateParams CreateParams

{

}

get

{
CreateParams myCp = base.CreateParams;
myCp.ClassStyle = myCp.ClassStyle | 0x200;
return myCp;

}

private System.Windows.Forms.GroupBox groupBox1;
private System.Windows.Forms.GroupBox chooseDefHand;
private System.Windows.Forms.RadioButton radioEsq;
private System.Windows.Forms.RadioButton radioDir;
private System.Windows.Forms.Button buttonConfirm;
private System.Windows.Forms.CheckBox cbPrecisao;
private Label label2;

private TextBox textRate;

private TrackBar trackRate;

private Label labell;

private Label label4;

private TextBox textAngle;

private Label label3;

private Button bAngle;

private TrackBar trackAngle;

#endregion

.trackAngle)).EndInit();
.trackRate)).EndInit();

70

Apoés isto, é necessaria a criagcao do arquivo de recursos. Deve ser adicionado um

item do tipo “Resources File” com 0 nome Resource.

Na pasta do projeto do Visual Studio (pelo Windows Explorer), deve ser criada uma

pasta chamada Resources e dentro dela deve haver um arquivo de icone, chamado

Icone.ico. Nas versbes Express do Visual Studio, ndo ha como criar esse tipo de arquivo.

Como alternativa, pode ser criada uma imagem 16x16 com extensdo png e esta pode ser

convertida para o formato ico utilizando o site ConvertICO [24].

Criado o arquivo, ele deve ser aberto pelo Windows Explorer utilizando algum editor

de texto (como o Bloco de Notas ou o Notepad++) e seu contetdo substituido pelo abaixo:

[Resource.resx]

<?xml version="1.0" encoding="utf-8"?>

<root>

<xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xsd:import namespace="http://www.w3.org/XML/1998/namespace" />
<xsd:element name="root" msdata:IsDataSet="true">

msdata:

msdata:

msdata:

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">
<xsd:element name="metadata">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="name" use="required" type="xsd:string" />
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="mimetype" type="xsd:string" />
<xsd:attribute ref="xml:space" />
</xsd:complexType>
</xsd:element>
<xsd:element name="assembly">
<xsd:complexType>
<xsd:attribute name="alias" type="xsd:string" />
<xsd:attribute name="name" type="xsd:string" />
</xsd:complexType>
</xsd:element>
<xsd:element name="data">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0"
Ordinal="1" />
<xsd:element name="comment" type="xsd:string" minOccurs="0"
Ordinal="2" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"
Ordinal="1" />
<xsd:attribute name="type" type="xsd:string" msdata:Ordinal="3" />

71

<xsd:attribute name="mimetype" type="xsd:string" msdata:Ordinal="4" />
<xsd:attribute ref="xml:space" />
</xsd:complexType>
</xsd:element>
<xsd:element name="resheader">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="0"
msdata:0Ordinal="1" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>
<resheader name="resmimetype">
<value>text/microsoft-resx</value>
</resheader>
<resheader name="version">
<value>2.0</value>
</resheader>
<resheader name="reader">
<value>System.Resources.ResXResourceReader, System.Windows.Forms,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
</resheader>
<resheader name="writer">
<value>System.Resources.ResXResourceWriter, System.Windows.Forms,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
</resheader>
<data name="AppTitle" xml:space="preserve">
<value>Windows Kinect Control</value>
</data>
<assembly alias="System.Windows.Forms" name="System.Windows.Forms,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />
<data name="Icone" type="System.Resources.ResXFileRef, System.Windows.Forms">
<value>Resources\Icone.ico;System.Drawing.Icon, System.Drawing, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b@3f5f7f11d50a3a</value>
</data>
</root>

No designer da janela MainWindow, o Notifylcon previamente criado deve ser

editado com a opcao “Choose Icon...”, o qual deve abrir o arquivo Icone.ico da pasta
Resources.
No fim do arquivo Resource.Designer.cs, ap0s a declaracdo do campo AppTitle,

deve ser colocado o seguinte trecho de cédigo:

72

[Resource.Designer.cs - trecho]

/// <summary>

/17 Looks up a localized resource of type System.Drawing.Icon similar to
(Icon).

/// </summary>
internal static System.Drawing.Icon Icone

{
get
{

object obj = ResourceManager.GetObject("Icone", resourceCulture);
return ((System.Drawing.Icon)(obj));

Por fim, deve ser baixado o arquivo executavel FreeVK.exe do site do Free Virtual
Keyboard [21]. Esse arquivo deve ficar presente na mesma pasta onde o executavel do
projeto sera gerado. Essa pasta € a “bin”, que possui as subpastas Debug e Release,
relacionados aos modos de compilagcéo do Visual Studio. O FreeVK.exe pode ser colocado
nessas duas pastas.

Com isso, todos 0s arquivos necessarios para o sistema devem estar criados. Se

nao houver nenhum problema, o projeto pode ser compilado e executado.

73

