

UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

Controle de robôs móveis utilizando
Kinect

MARCOS VINICIUS DA CRUZ CORREA

Orientador: Maximilian Luppe

São Carlos

2014

Marcos Vinicius da Cruz Correa

Controle de robôs móveis utilizando
Kinect

Trabalho de Conclusão de Curso apresentado

à Escola de Engenharia de São Carlos, da

Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em

eletrônica

ORIENTADOR: Maximillian Luppe

São Carlos

2014

Aos meus pais Marcelo e Joana, aos

meus irmãos Mauricio e Izabela e aos

 meus amigos de Rep Tocaia.

Agradecimentos

 A minha família pelo apoio e força que me ajudaram a conquistar esse
sonho.

 Aos amigos pelo companheirismo e lealdade.

 Ao Departamento de Engenharia Elétrica da Escola de Engenharia Elétrica
de São Carlos (EESC) – Universidade de São Paulo.

 Ao professor doutor Maximilian Luppe por toda ajuda, orientação e
dedicação durante a minha formação.

Resumo

CORREA, M. V. C. Controle de robôs móveis utilizando Kinect. 2014. 77f. Trabalho de

Conclusão de Curso – Departamento de Engenharia Elétrica da escola de Engenharia de

São Carlos, São Carlos: Universidade de São Paulo, 2014.

 A alta velocidade de avanço da tecnologia, seja na criação de novos recursos ou

no método de produção, possibilita que tecnologias, que antes eram utilizadas apenas por

grandes companhias ou grandes centros tecnológicos, possam ser aplicadas em projetos

mais simples. O controle de robôs de forma remota é um exemplo, essa aplicação é de

grande impacto em automação e pode ser utilizada desde controle de braços mecânicos a

controle de robôs móveis. Este trabalho introduz algumas plataformas robóticas simples

que são controladas de formas diferentes e possuem distintos propósitos, demonstrando

a facilidade de criação desse tipo de tecnologia e como ela está se difundindo facilmente,

entretanto é dado um maior foco na utilização do sensor Kinect para controle remoto de

um robô construído utilizando um Arduino UNO. Esse projeto é composto em montagem

do robô, aprendizado da utilização da comunicação sem fio Bluetooth, utilização do

sensor Kinect para captura de gestos, criação dos controles entre usuário e robô e

comunicação entre as plataformas Kinect e Arduino. Por fim foi possível controlar

remotamente o robô utilizando duas formas distintas de controle relacionadas a gestos

capturados pelo Kinect, o resultado foi satisfatório com respostas rápidas e eficientes do

robô permitindo uma interface dinâmica entre o sistema e o usuário, mas com algumas

limitações a movimentos bruscos.

Abstract

CORREA, M. V. C. Control of mobile robots using Kinect. 2014. 77f. Course Conclusion

Work – Electrical Engineering – São Carlos Engineering School, São Carlos: University of

São Paulo, 2014.

 The high speed of advancement of technology, on the creation of new resources or

on production methods, enables technologies, that were previously used only by large

companies or large technology centers, can be applied to simpler designs. The controlling

robots remotely is an example, this application is of great impact in automation and can be

used from control of mechanical arms to control of mobile robots. This paper introduces

some simple robotic platforms that are controlled in different ways and have different

purposes, demonstrating the facility of creating this type of technology and how it is

spreading easily, however is given a greater focus on the use of the Kinect sensor for

control remotely a robot built using an Arduino UNO. This project consists in assembling

the robot, the learn of the use of wireless Bluetooth, utilization of the Kinect sensor to

capture gestures, creation of the controls between user and robot and communication

between the Kinect and Arduino platforms. Finally was possible to remotely control the

robot using two different forms of control related to gestures captured by Kinect, the result

was satisfactory with quick and efficient responses from the robot allowing a dynamic

interface between the system and the user, but with some limitations to sudden

movements .

Sumário
1. Introdução ... 21
2. Materiais e Métodos .. 25

2.1. Robô .. 26
2.2. Kinect .. 27

2.3. Arduino UNO .. 31

2.4. Bluetooth ... 35
2.4.1. Bluetooth especificações .. 36

2.5. Linguagem de programação C# ... 37

2.5.1. Programação orientada a objeto ... 37

2.5.2. Visual Studio ... 38

2.6. Eletrônica do motor ... 38
2.7. Conexões ... 41

2.8. Softwares .. 44

2.8.1. Fluxograma Arduino .. 44

2.8.2. Fluxograma Kinect ... 46

2.9. Controle .. 48

3. Implementação. .. 51

3.1. Implementação software Arduino. .. 51
3.1.1. Inicio ... 51

3.1.2. Inicializa configuração Bluetooth ... 52

3.1.3. Configuração das portas ... 52

3.1.4. Bluetooth disponível? .. 53
3.1.5. Armazena controle enviado pelo Kinect ... 53

3.1.6. Atua no motor ... 54
3.2. Implementação software C#. ... 55

3.2.1. Controle 1 .. 55

3.2.2. Controle 2 .. 57

3.2.3. Comunicação Serial .. 61

4. Resultados .. 63

4.1. Resultado Controle 1. ... 64

4.2. Resultado Controle 2. ... 67

5. Análise ... 73
5.1. Trabalhos futuros .. 74

6. Conclusão ... 75

Referências Bibliográficas .. 77

Apêndice 1: Arduino Controle 1 ... 79
Apêndice 2: Arduino Controle 2 ... 81

Apêndice 3: Software Kinect .. 83
Apêndice 4 : Configuração da tela de aplicação .. 90

Lista de figuras

Figura 1 - Plataforma robótica móvel [1] ... 21
Figura 2 - Plataforma robótica controlada remotamente [2] .. 22
Figura 3 - Controle da plataforma robótica [2] .. 22
Figura 4 - Robô participante da competição LARC 2014 .. 23

Figura 5 - Controle do Robô Utilizando um Sensor Kinect ... 25
Figura 6 - Robô ... 26
Figura 7 - Rede de pontos captados pelo detector infravermelho[4] 28

Figura 8 - Mecanismo de detecção de profundidade[4] ... 28
Figura 9 - Kinect [5] ... 29
Figura 10 - Campo de Visão do sensor Kinect [6] ... 29
Figura 11 - Esquemático da Arquitetura do Sistema do Kinect [7] 30

Figura 12 - Rastreamento do esqueleto [5] ... 31
Figura 13 - Arquitetura da Placa Arduino Uno [11] ... 33

Figura 14 - ATMEGA328 [12] ... 34
Figura 15 - Shield Bluetooth para Arduino .. 36

Figura 16 - Circuito L298N [18] .. 40
Figura 17 - Shield Ponte H para Arduino[19]... 40
Figura 18 - Esquemático de ligações com os componentes ... 42
Figura 19 - Esquemático de ligações .. 43
Figura 20 - Fluxograma do Software do Arduino .. 45

Figura 21 - Fluxograma Kinect .. 48
Figura 22 - Juntas de Controle .. 48
Figura 23 - Controle 1 .. 49

Figura 24 - Controle 2 .. 50
Figura 25 - Conexão Tera Term ... 56

Figura 26 - Tela de envio e recebimento de dados Tera Term ... 57

Figura 27 - Equação de velocidade de rotação para trás .. 58

Figura 28 - Equação de velocidade de rotação para frente ... 58
Figura 29 - Velocidade dos Motores .. 59
Figura 30 - Tela da aplicação ... 63
Figura 31 - Aplicação em funcionamento .. 64
Figura 32 - Controle 1- robô parado ... 65

Figura 33 - Controle 1 - robô vira para esquerda ... 65
Figura 34 - Controle 1 - robô vira para a direita ... 66
Figura 35 - Controle 1 - robô se movimenta para frente .. 66
Figura 36 - Controle 1 - robô se movimenta para traz.. 67
Figura 37 - Controle 2 - robô parado .. 68

Figura 38 - Controle 2 - robô para frente com velocidade mínima 68
Figura 39 - Controle 2 - robô para frente com velocidade máxima 69

Figura 40 - Controle 2 - robô para traz com velocidade mínima ... 69
Figura 41 - Controle 2 - robô para traz com velocidade máxima ... 70

file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445786
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445792
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445801
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445803
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445804
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445805

Figura 42 - Controle 2 - roda direita para traz, roda esquerda para frente 70
Figura 43 - Controle 2 - roda direita para frente, roda esquerda para traz 71
Figura 44 - PWM com duty cycle 0% .. 71

Figura 45 - PWM com duty cycle 39% .. 72
Figura 46 - PWM com duty cycle 94% .. 72
Figura 47 - PWM .. 73

Lista de tabelas

Tabela 1 - Lógica Ponte H .. 39
Tabela 2 - Conexões ... 41
Tabela 3 - String de velocidade do controle 2 .. 53
Tabela 4 - Relação gráfico e juntas .. 58
Tabela 5 - Valores Correspondentes a String ... 59

1. Introdução

 A robótica é um tema de repercussão na atualidade, que gera grandes

expectativas para um futuro próximo e libera a imaginação do homem que extrapola do

mundo teórico da engenharia e computação para o mundo dos filmes e livros que

imaginam as utilizações e consequências dessa tecnologia.

 Inicialmente a robótica foi idealizada para fins de automatização de processos

industriais, em que as empresas procuravam se equipar com máquinas que fossem

00capazes de produzir, automaticamente, determinadas tarefas. E assim foi por muito

tempo à única utilização dessa forma de tecnologia, com alto custo de implementação e

de manutenção. No entanto o desenvolvimento e melhoria da tecnologia, como um todo,

se expandiu rapidamente, seus principais componentes de fabricação se tornaram

baratos e surgiu diversificação de seu uso ganhando expressão significativa no dia a dia

das pessoas. Hoje qualquer pessoa pode ter conhecimentos mínimos, acesso fácil à

informação e condições de se “aventurar“ com a robótica.

 É possível encontrar vários projetos que utilizam a robótica com diversas

funcionalidades distintas, a Figura 1 ilustra uma plataforma robótica que se movimenta de

forma autônoma e evita colisões utilizando um sonar.

Figura 1 - Plataforma robótica móvel [1]

 A Figura 2 apresenta um robô que utiliza um Arduino para controle e um sonar

para evitar colisões frontais, no entanto essa plataforma se diferencia do exemplo anterior

por ser controlada remotamente, para controle é utilizado um controle do videogame

PlayStation ou WII (Figura 3).

Figura 2 - Plataforma robótica controlada remotamente [2]

Figura 3 - Controle da plataforma robótica [2]

 Existem vários competições que agrupam pessoas de diversas idades que visam

disseminar e ampliar o conhecimento sobre a robótica, um exemplo desse tipo de evento

é o LARC (Latin American Robotics Competition), o robô da Figura 4 foi um dos

participantes da edição da competição de 2014 e é um robô autônomo que utiliza um

Ardunio e uma Raspberry Pi para controle, diversos sensores e uma câmera, o objetivo

desse robô é identificar cubos de uma determinada cor em um ambiente, recolher o

máximo possível e posicionar em um outo robô aquático para fazer o transporte.

Figura 4 - Robô participante da competição LARC 2014

 Esse tipo de iniciativa e a diversidade de projetos que se pode encontrar que

utilizam robótica demonstra como essa prática se expandiu para além das áreas

comerciais e conquistou as universidades, escolas e a qualquer individuo que se

interesse.

 Esse projeto tem como intuito o controle de um robô móvel utilizando o sensor

Kinect da Microsoft, criado para utilização em jogos com movimentos pelo console

Xbox360, o sensor capta os movimentos do usuário e passa para o computador por cabo

USB, este por sua vez possui um programa com alguns movimentos pré-estabelecidos

que se relacionam com comandos que devem ser enviados ao robô, dessa forma, quando

um movimento é reconhecido o seu comando correspondente é enviado via Bluetooth

para o controlador do robô, este controlador é um Arduino UNO, ele recebe os comandos

e identifica qual deve ser a ação aplicada no robô e então atua nos motores fazendo com

que ele se movimente, relacionando assim o movimento do usuário com o movimento do

robô, todo o processo de funcionamento está ilustrado na figura 5.

 No capítulo 2 serão apresentados os materiais e métodos utilizados no projeto,

definindo as características e funções dos componentes utilizados e conexões feitas entre

eles. Serão apresentados também os fluxogramas dos softwares criados introduzindo o

funcionamento dos programas.

 No capítulo 3 será demonstrado toda a implementação dos softwares de controle

que foram feitas para atingir o resultado pretendido, explicando toda a lógica e sequência

de criação.

 No capítulo 4 serão apresentados os resultados, demonstrando que o objetivo foi

alcançado e que todo o sistema tem boa resposta aos estímulos do usuário.

 No capítulo 5 foi feita uma análise de todo o projeto, expondo os pontos em que foi

necessário executar algumas mudanças inesperadas ao decorrer da criação do sistema e

qual foram essas mudanças. Nessa seção também são citados pequenos erros que

podem ocorrer no sistema implementado e idealiza algumas formas de correção.

 No capítulo 6 foi feita uma conclusão sobre o projeto, discutindo os conhecimentos

adquiridos e utilizados durante o trabalho. Foi confirmado que o objetivo foi atingido

satisfatoriamente tendo como resultado final um sistema que possui o funcionamento

pretendido.

2. Materiais e Métodos

 Conforme foi dito na introdução esse projeto tem como intuito utilizar o sensor

Kinect da Microsoft para capturar e reconhecer movimentos de um usuário e atribuir a

eles comandos, os quais serão enviados via comunicação Bluetooth para o controlador do

robô, um Arduino UNO, que traduz os comandos recebidos e atua nos motores do robô

fazendo com que ele se movimente, criando assim um sistema que controla um robô

móvel através de gestos feitos por um usuário.

 Para criar a lógica de reconhecimento de movimentos do usuário será utilizado o

software Microsoft Visual C#, no qual será usada a linguagem de programação orientada

a objeto C#, e o código que interpretará o comando enviado remotamente a fim de

controlar o robô será escrito na linguagem e plataforma própria do Arduino.

Figura 5 - Controle do Robô Utilizando um Sensor Kinect

Computador
Kinect

Controlador do

robô

Robô

2.1. Robô

 Para a montagem da plataforma é necessário as peças que correspondem a sua

movimentação e força, como as rodas e os motores, além disso, é necessário o circuito

de controle que nesse caso será um Arduino UNO e ainda do circuito de transmissão e

recepção de dados, ou seja, o shield do Bluetooth, também se deve utilizar uma eletrônica

de controle para os motores, para isso foi escolhida uma ponte H e por fim como

alimentação haverá quatro pilhas do tipo AA de 1,5V. Todos esses componentes serão

integrados em um chassi e corretamente interligados, de acordo com a Figura17 e Figura

18, para criar a plataforma robótica móvel.

 Arduino UNO

 2 Motores DC

 2 Rodas

 1 Roda de rolamento

 1 Chassi

 Shield Ponte H

 Shield Bluetooth

 4 Pilhas

Figura 6 - Robô

27

2.2. Kinect

 O Kinect[3] tem mudado a forma como as pessoas interagem com a tecnologia,

criando uma forma mais natural e espontânea com a utilização de simples movimentos ou

por comandos de voz.

 O baixo custo ligado ao alto desempenho do sensor Kinect fez com que esse

dispositivo, criado pela Microsoft para fins de entretenimento com o videogame Xbox360,

ganhasse espaço nas áreas de computação, eletrônica e engenharia, onde

desenvolvedores tem utilizado os seus muitos recursos para criar interações entre homem

e máquina de uma forma mais direta.

 O Kinect é composto por diversos sensores que trabalham em conjunto

recolhendo dados do usuário e processando por diversos algoritmos robustos como o de

rastreamento do esqueleto. Ele possui um sistema de imageamento 3D que é composto

por dois dispositivos, um projetor infravermelho e um detector infravermelho. O

funcionamento deles em conjunto permite a criação de imagens com informações de

posição e profundidade da seguinte forma, o projetor emite uma rede de pontos

infravermelho que sai do Kinect em projeção cônica (Figura 7) eles incidem na superfície

dos objetos presentes no ambiente e refletem parte da luz, o detector capta essas

reflexões e um processamento no Kinect calcula o tempo que cada ponto levou para

retornar ao dispositivo (Figura 8), com essa medida é possível então estimar a distância

do sensor referente a cada ponto criando um vetor de dados tridimensional que vai de 40

a 2000 pontos, o valor de cada ponto se relaciona diretamente com a distância em

milímetros[4]. Cada distância corresponde a uma valor na escala de cinzas, o preto

representa que não há valor válido de distância para o pixel, isso pode ocorrer por três

motivos, primeiro, o ponto está muito distante e não se pode determinar com precisão a

distância, segundo, o ponto está muito perto o que se caracterizaria por um ponto cego da

câmera e do projetor devido a suas limitações, ou terceiro, houve pouca reflexão oriunda

desse ponto, o que pode ocorrer devido a superfícies polidas [5].

28

Figura 7 - Rede de pontos captados pelo detector infravermelho[4]

Figura 8 - Mecanismo de detecção de profundidade[4]

 O Kinect possui também uma câmera colorida responsável por captar as imagens

coloridas que são utilizadas para reconhecimento de movimentos e para projeção em tela

e ainda é composto por quatro arrays de microfones, os quais captam o áudio para

utilização nos comandos de voz, utilizando os dados de imagens ele também é capaz de

fazer reconhecimento facial [5]. O Kinect possui também um motor que possibilita o

sensor mudar sua inclinação, utilizado para fins de calibração (Figura 9).

29

Figura 9 - Kinect [5]

 Algumas características importantes do Kinect estão listadas na sequência:

 Campo de visão (Figura 10)

 Horizontal: 57º.

 Vertical: 43º.

 Inclinação: 27º.

 Sensor de profundidade: 1,2m – 3,5m.

Figura 10 - Campo de Visão do sensor Kinect [6]

 Fluxo de dados

 320 x 240, 16-bits, sensor profundidade, 30 frames/sec.

 640 x 480, 32-bits, câmera colorida, 30 frames/sec.

 16-bit áudio, 16KHz.

30

 “Skeletal Traking System”

 Detecta até 6 pessoas, somente duas ficam ativas.

 Detecta 20 juntas por pessoa ativa.

 O Kinect possui seu próprio processamento de imagem conhecido como o

Primesense’s PS1080-A2 System on Chip (SoC), processador que trabalha com as

imagens capturadas pela câmera RGB e infravermelha [7] (Figura 11).

 A grande inovação por traz do sensor Kinect está no seu algoritmo de

rastreamento de esqueleto, em que o corpo de uma pessoa é representado por um

número de juntas às quais representam partes do corpo como cabeça, mão, ombro e

braços. Para conseguir chegar a um algoritmo eficaz e eficiente a equipe da Microsoft,

liderada por Jamie Shotton, escolheu fazer um reconhecimento das partes do corpo por

pixel como um passo intermediário. Eles consideraram a segmentação das imagens de

profundidade como uma classificação por pixel. Aavaliar cada pixel separadamente evitou

a procura por combinações entre diferentes juntas do corpo. A equipe gerou diversas

imagens de profundidade de pessoas de diversos portes e tamanhos em diversas poses

elas foram amostradas para um banco de dados de captura de movimentos o qual foi

utilizado como dados de treinamento, em seguida foi realizado um treino de decisão de

classificação aleatória, o que evita super ajuste por utilização de muitas imagens de

Figura 11 - Esquemático da Arquitetura do Sistema do Kinect [7]

31

treino. Por fim, modelos espaciais inferidas pela distribuição por pixel são calculadas

utilizando variação média resultando em um plano composto pelas juntas em 3D. A

sequência do rastreamento do esqueleto pelo Kinect está ilustrada na Figura 12,

primeiramente se realiza a classificação das partes do corpo por pixel, depois se supõem

as juntas do corpo achando um centroide global de probabilidade de massa através de

variação média, em seguida se mapeia as juntas do esqueleto para então traçar a forma

de um esqueleto considerando continuidade temporal e conhecimento prévio de um

banco de dados de traino [5].

Figura 12 - Rastreamento do esqueleto [5]

2.3. Arduino UNO

 O Arduino[8] é uma plataforma de software aberto (open-core) utilizado

amplamente para prototipagem, cujo objetivo é a flexibilidade, é de fácil aprendizado,

com muitas referências e exemplos online e em livros, possui diversas bibliotecas já

implementadas pela equipe Arduino ou por usuários que as disponibilizam de forma

gratuita, isso acelera a criação de novos projetos e evita o retrabalho.

 O microcontrolador da plataforma é programado utilizando uma linguagem padrão

do Arduino que é baseada em Wiring[9] e a plataforma de desenvolvimento é baseada em

Processing[10]. Ambos os sistemas tem em comum os seguintes aspectos:

 São funcionais em Linux/ GNU/ Mac OS/ Windows.

 Mais de 100 bibliotecas.

 Boa documentação.

32

 O Wiring é uma linguagem de programação open-source para framework para

microcontroladores, ele permite criar programas com o intuito de controlar diversos

periféricos e gerar experiências físicas ou iterativas. Foi criada por designers com a ideia

de encorajar os iniciantes a interagir com experts e trocarem ideias e conhecimentos. Os

microcontroladores da Atmel [11] são compatíveis com o Wiring e eles que são utilizados

nas placas Arduino.

 O Processing é uma linguagem de programação e uma plataforma de

desenvolvimento. Foi idealizado para facilitar o aprendizado de software com artes visuais

e também do aprendizado da arte visual utilizando tecnologia. Inicialmente criado como

um programa que funcionava como um caderno de desenho para ensinar fundamentos de

linguagem de programação de forma visual.

 Utilizando esses dois sistemas, juntamente com microcontroladores da Atmel, foi

criado o sistema do Arduino.

 Nesse projeto será utilizada a placa Arduino UNO (Figura 13) que possui as

seguintes especificações:

 Microcontrolador ATmega328.

 14 pinos de entrada/saída digitais,

 no qual 6 podem ser usados

 como saídas PWM.

 6 pinos de entradas analógicas.

 Gerador de clock de 16MHz.

 Conexão USB.

 Um Botão de Reset.

 Tensão de operação de 5V.

 Tensão de alimentação de 7-12V.

 Flash Memory (ATmega328)

32Kb.

 SRAM (ATmega328) 2Kb.

 EEPROM (ATmega328) 1Kb.

33

Figura 13 - Arquitetura da Placa Arduino Uno [11]

 Diferentes microcontroladores são utilizados para as diversas plataformas Arduino,

nesse projeto onde será utilizado o Arduino UNO o microcontrolador é o ATmega328

(Figura 14), é um componente que trabalha com 8 bits com arquitetura RISC e

encapsulamento DIP28. Ele possui uma memória Flash de 32Kb (512 bytes são utilizados

pro bootloader), 2Kb de Ram e 1Kb de EEPROM, ele pode operar em até 20MHz, no

entanto o Arduino UNO funciona com 16Mhz. Possui 28 pinos, nos quais 23 podem ser

utilizados como I/O. Esse microcontrolador pode operar com tensões baixas, como 1,8V,

no entanto com o limitante de clock de 4MHz, tem como periféricos uma USART de

250kbps, uma SPI que vai até 5MHz e uma I2C que pode ir até 400KHz. É composto

ainda por um comparador analógico interno, timers e 6PWMs. A corrente máxima por

pino é 40mA, todavia a soma da corrente no CI não pode ser superior a 200mA [12]. A

placa possui também um ATmega16U2 que serve como “ponte” entre a porta USB do

computador e a porta serial principal do processador. A seguir estão listadas suas

características:

34

Figura 14 - ATMEGA328 [12]

 Arquitetura Harvard

 8 bits

 RISC

 Flash Memory 32Kb

 SRAM 2Kb

 EEPROM 1Kb

 32 registradores de uso geral

 3 temporizadores/contadores

 USART

 Comunicação SPI

 6 conversores AD de 10 bits

 Tensão de operação entre 1,8 -

5,5V

35

2.4. Bluetooth

 O Bluetooth (Figura 15) é uma tecnologia de comunicação sem fio, foi criado em

1994 por um grupo de engenheiros da empresa sueca Ericsson, essa ideia foi idealizada

como alternativa aos cabos de dados serial RS-232. Ela tornou possível à troca de dados

entre pequenas distâncias usando transmissão a radio. Ele opera em uma banda de 2,4 a

2,485 GHz, usando espectro de dispersão, sinal full-duplex a uma velocidade de 1600

hops/sec [13].

 Em 1998 as companhias Ericsson, Intel, Nokia, Toshiba e IBM se juntaram para

formar o Grupo de Interesse Especial Bluetooth (Bluetooth Special Interest Group - SIG),

dessa forma o Bluetooth pertence a todas as empresas que trabalham em conjunto para

preservar e melhorar a tecnologia.

 Alguns outros dispositivos também utilizam as ondas de radio para transmissão de

dados, exemplos são a Televisão, radio FM e celulares, a diferença é que esses

dispositivos transmitem para longas distâncias, enquanto que o Bluetooth trabalha

somente na Rede de Área Pessoal (Personal Area Network - PAN) [14].

 Essa tecnologia foi criada para facilitar a utilização de alguns periféricos a fim de

substituir os cabos, como em fone de ouvido e teclado, no entanto com a sua

popularidade, baixo custo e bom desempenho ganhou o mercado em diversas áreas

como a automobilística, onde é possível realizar ligações telefônicas através do veículo, e

saúde com monitoramento e aquisição de dados para uso médico.

 Conexões entre dispositivos eletrônicos com Bluetooth ativo permite a

comunicação em pequenas distâncias, essas conexões são conhecidas como Piconets.

Piconets são estabelecidos dinamicamente e automaticamente quando dispositivos com a

tecnologia ativa estão dentro do raio de alcance.

 Os dispositivos em um Piconet podem se comunicar simultaneamente com até

sete dispositivos dentro de um único Piconet, e ainda, cada dispositivo também pode

pertencer a vários Piconets ao mesmo tempo, o que significa que existem diversas formas

de conexões entre os dispositivos Bluetooth [15].

36

2.4.1. Bluetooth especificações

 Espectro: a tecnologia Bluetooth opera na indústria, ciência e área médica em uma

banda de 2,4 a 2,485GHz, usando espectro de dispersão, sinal full-duplex e

velocidade de 1600 hops/sec [15].

 Interferência: a capacidade de salto de frequência adaptativa da tecnologia

Bluetooth (Adaptative frequency hopping - AFH) foi criada para minimizar a

interferência entre dispositivos que utilizam a banda de 2,4GHz. Isso funciona da

seguinte maneira, a tecnologia detecta outros dispositivos que estão utilizando o

espectro e evita as frequências que eles estão utilizando. Esse pulo adaptativo

entre 79 frequências com intervalos de 1 MHz gera uma grande imunidade a

interferências, para os usuários isso mantem a performance mesmo se outras

tecnologias estão sendo utilizadas ao mesmo tempo do Bluetooth [15].

 Alcance: o alcance varia de acordo com a classe sendo utilizada, existem três [15].

 Classe 3 : alcance de 1 metro a 3 metros

 Classe 2: alcance de até 10 metros – mais comum e utilizado em celulares

 Classe 1: alcance de até 100 metros – utilizado na indústria

 Potência: A classe mais utilizada é a classe 2 a qual utiliza 2,5mW de potência,

uma das principais características da tecnologia é o baixo consumo [15].

Figura 15 - Shield Bluetooth para Arduino

37

2.5. Linguagem de programação C#

 À medida que houve um avanço na computação, com o passar dos anos, tanto o

hardware como o software foram sofrendo mudanças e adaptações. No caso da

programação as linguagens de alto nível ganharam grande atenção por facilitar a criação

e implementação de softwares. A linguagem C é um grande exemplo de linguagem de

alto-nível muito utilizada na atualidade.

 No entanto a alta demanda de softwares mais robustos gerou a necessidade de

acelerar a construção de programas, a alternativa encontrada foi um novo tipo de

programação, que deixaria de ser estruturada e passaria a ser orientada a objeto,

exemplos são o C++ e o Java.

 Sem muita demora surgiram novas variáveis no cotidiano dos programadores, a

primeira foi a Word Wide Web, devido a isso se tornou necessário à criação de softwares

que funcionassem nos PCs e também de aplicativos baseados na web para serem

acessados e usados via internet, a segunda variável foi o aparecimento dos dispositivos

móveis. Para tratar dessas necessidades a Microsoft criou a iniciativa .NET e a linguagem

de programação C#.

 A plataforma .NET possibilita que aplicativos baseados na web possam ser

distribuídos para uma grande variedade de dispositivos e para PCs, a linguagem de

programação C# foi desenvolvida por uma equipe liderada por Anders Hejlsberg e Scott

Wiltamuth, projetada especificamente para a plataforma .NET, ela tem raízes em C, C++ e

Java.

 O C# é uma linguagem de programação visual dirigida por eventos e orientada a

objeto, onde os programas são criados usando-se uma IDE (Integrated Development

Enviroment - ambiente de desenvolvimento integrado). Utilizando a IDE o desenvolvedor

cria, executa, testa e depura os programas, o que acelera e facilita a criação dos

softwares. O processo de criação rápida de aplicativos usando uma IDE é denominado

RAD (Rapid Application Development – desenvolvimento rápido de aplicativos) [16].

2.5.1. Programação orientada a objeto

 A programação orientada a objeto é um esquema de empacotamento que facilita a

criação de unidades de software significativa. Essas unidades são grandes e focalizadas

em áreas de aplicação específica. Os objetos têm propriedades, ou seja, atributos (cor,

38

tamanho e peso) e executam ações, isto é, possuem comportamentos (comer, dormir e

correr). As “Classes” representam grupos de objetos relacionados, um exemplo seria a

“Classe” carro, mesmo que carros individuais variem de marca ou modelo todos

pertencem a mesma “Classe”. Uma “Classe” especifica o formato geral de seus objetos,

as propriedades e ações de um objeto dependem de sua classe.

 Um grande problema observado pelos desenvolvedores foi à perda de tempo

criando e recriando softwares com características semelhantes para projetos distintos.

Com a tecnologia de objetos, as entidades de software (objetos) podem ser reutilizadas

em futuros projetos, dessa forma, trabalhar com bibliotecas de componentes reutilizáveis

reduz a quantidade de trabalho na criação de programas. A linguagem C# utiliza a

biblioteca de classe da plataforma .NET, conhecida como FLC (.NET Framework Class

Library) [16].

2.5.2. Visual Studio

 O Visual Studio . NET é o IDE da Microsoft para criação, documentação, execução

e depuração de programas escritos em diversas linguagens de programação .NET. O

Visual Studio .NET também oferece ferramentas de edição para manipular vários tipos de

arquivos.

 A versão utilizada nesse projeto é o Visual Studio Express 2010 que utiliza a

linguagem C#, é importante ressaltar esse ultimo detalhe, pois existe o software para

linguagem C e Basic também, que igualmente podem ser utilizados para criação dessa

aplicação, no entanto foi optado pela utilização da linguagem C# por maior facilidade de

compreensão e implementação. A IDE pode ser obtida de forma gratuita no endereço

eltrônico [17].

2.6. Eletrônica do motor

 Para Controle dos motores DC é necessário à construção de um hardware que

possibilite o direcionamento (rotação horaria e anti-horária) dos motores, para que assim

se possa movimentar o robô no sentido desejado (frente, atrás, esquerda e direita). Para

isso foi escolhido um circuito simples e bem conhecido para essa aplicação, a ponte H

(Figura 17) [18].

 A ponte H é composta pelo driver L298N cujo circuito está na Figura 16. Para

controlar a direção do motor se deve manipular a direção da corrente que passa por ele,

39

para isso basta chavear corretamente os transistores para modificar como a corrente

passa através do motor DC.

 O circuito controla dois motores, assim ele se espelha, ou seja, são dois circuitos

idênticos, um para cada motor, para efeito de entendimento vamos analisar somente o

lado esquerdo composto pelas entradas EnA, In1 e In2 e saídas OUT1 e OUT2.

 A entrada Ena é o enable, utilizado para ativar ou desativar o controle do motor,

ela se conecta diretamente com as portas lógicas AND, assim se o seu sinal analógico for

“0” o sistema está inativo e se “1” o sistema está ativo para manipulação, as entradas In1

e In2 determinam a direção da corrente pelo motor, a Tabela 1 relaciona os valores

lógicos com a direção do motor, os transistores ativos e inativos e a direção da corrente

nas saídas OUT1 e OUT2.

EnA In1 In2 T1 T2 T3 T4 OUT1 OUT2 Motor

0 X X Inativo Inativo Inativo Inativo X X Parado

1 1 0 Ativo Inativo Inativo Ativo + - >

1 0 1 Inativo Ativo Ativo Inativo - + <

1 1 1 Ativo Ativo Inativo Inativo + + Parado

1 0 0 Inativo Inativo Ativo Ativo - - Parado

Tabela 1 - Lógica Ponte H

40

Figura 16 - Circuito L298N [18]

Figura 17 - Shield Ponte H para Arduino[19]

41

2.7. Conexões

 Para ilustrar as conexões foi utilizado o software Fritzing [21], com ele é possível

criar as ligações entre os componentes (Figura 18) de forma ilustrativa e juntamente com

isso é gerado um esquemático com as interligações dos CIs (Figura 19) o que facilita o

entendimento de como todo o circuito se comunica e funciona.

 Todo sistema é alimentado pelas 4 baterias AAA, sendo que cada uma delas

possui 1,5V, criando uma tensão total de 6V. A bateria alimenta diretamente os motores

através da ponte H, essa por sua vez possui uma saída de tensão de 5V que alimenta o

Arduino UNO pelo pino Vin, e por fim a saída de 5V do Arduino é utilizada para alimentar

o módulo Bluetooth.

 Como já foi dito na seção 2.5 a ponte H possui três sinais de controle para cada

motor, nesse esquemático os motores estão separados entre motor1 e motor2, sendo os

sinais de controle INA1, INB1 e PWM1 o do primeiro motor e o INA2, INB2 e PWM2 o do

segundo.

 O módulo Bluetooth possui apenas quatro ligações, sendo duas delas a

alimentação e o terra e as outras duas a comunicação serial, ou seja, um canal de leitura

RX e um canal de escrita TX.

 Os motores são ligados diretamente à ponte H, sendo o motor1 colocado nas

saídas A1, B1 e o motor2 nas saídas A2, B2.

 A Tabela 2 abaixo resume as ligações entre o Arduino e seus módulos, sendo o

GND comum a todos eles.

Cor Conexão Pino Arduino Ponte H Bluethooth Motor 1 Motor2

Azul Escuro 10~ PWM2

Roxo 9~ PWM1

Amarelo 8 INB2

Verde 7 INA2

Laranja 6 INB1

Marrom 5 INA1

Azul Claro 4 TX

Cinza 3 RX

Vermelho Vin 5V

Vermelho 5V VCC

Preto A1 -

Preto B1 +

Vermelho A2 -

Vermelho

B2 +

Tabela 2 - Conexões

42

Figura 18 - Esquemático de ligações com os componentes

43

Figura 19 - Esquemático de ligações

44

2.8. Softwares

 Para controle do robô foram criados dois softwares que se comunicam via

Bluetooth. O primeiro software criado na linguagem C# (Figura 21) reconhece o usuário

via sensor Kinect e mapeia as junções das mãos, cabeça, cintura e ombro, utilizando suas

posições cartesianas em um plano (X,Y) o software processa qual comando o usuário

está executando e o envia para o Arduino. Ao receber essa instrução o software no

controlador do Arduino (Figura 20) atua no motor de acordo com o requerido e aguarda

nova instrução.

 Dessa forma foi construído um controle iterativo entre o usuário e o robô, em que

este responde sempre que o primeiro muda o seu comando.

2.8.1. Fluxograma Arduino

 A Figura 20 representa o funcionamento do programa criado para a plataforma

Arduino, todo software utiliza para o seu funcionamento bibliotecas e variáveis, dessa

forma inicialmente se adiciona as bibliotecas e se cria as devidas variáveis definindo seus

nomes e tipos, em seguida é necessário fazer algumas configurações de hardware,

Primeiramente foi configurado o shield Bluetooth, definindo quais as portas do Arduino

serão responsáveis pela transmissão e recepção dos dados seriais, em seguida se

configura as demais portas a serem utilizadas, definindo se elas serão inputs ou outputs.

Com todas as configurações prontas se inicia a lógica do software. Esse programa tem

como funcionalidade receber dados, processa-los e atuar nos motores, por isso o primeiro

passo é receber o dado via canal serial, no entanto o Bluetooth pode estar com

transmissão ou recepção em andamento o que impossibilita o recebimento ou o envio de

novos dados, portanto antes de qualquer ação é verificado se o Bluetooth está disponível,

caso não esteja significa que o canal serial está sendo utilizado e se deve esperar até que

ele seja liberado, mas se estiver disponível então o software está pronto para receber um

dado e este é então armazenado em uma variável. Cada dado recebido representa uma

ordem a ser executado no robô, dessa forma a variável de comando recebida é então

processada e se verifica qual a instrução a ser passada para os motores, ou seja,

velocidade, direção e sentido. Por fim é então aguardado um novo comando a ser

executado e por isso o programa retorna a espera de um novo dado.

45

 NÃO

 SIM

 SIM

Figura 20 - Fluxograma do Software do Arduino

INICIO

INICIALIZA CONFIGURAÇÃO

BLUETOOTH

CONFIGURAÇÃO

DAS PORTAS

BLUETOOTH

DISPONÍVEL?

ARMAZENA CONTROLE

ENVIADO PELO KINECT

ATUA NO MOTOR

46

2.8.2. Fluxograma Kinect

 A Figura 21 representa o funcionamento do programa criado para utilização do

sensor Kinect. Assim como para o software explicado anteriormente é necessário à

utilização de bibliotecas e variáveis, por isso no inicio são adicionadas as bibliotecas e

são criadas as variáveis utilizadas no decorrer da lógica definindo seus nome e tipos.

 Essa aplicação necessita do sensor Kinect, caso ele não esteja conectado o

funcionamento do software fica comprometido e por isso é necessário verificar se há um

sensor conectado e caso não haja um aviso é mostrado e a aplicação encerrada, no

entanto se um Kinect estiver em funcionamento ele é inicializado e configurado. É ativada

então a captura da imagem colorida com resolução de 320 x 240 e velocidade de 30 Fps.

 O próximo passo é verificar o recebimento dessa imagem, caso nenhuma imagem

seja recebida então a função de imagem colorida retorna nulo e o software continua

verificando o processamento do esqueleto, mas se há uma imagem é conferido se os bits

da imagem colorida já foram capturados, se não foram ou caso houve mudança então a

variável referente aos bits coloridos é atualizada.

 Por fim essa imagem deve ser colocada na tela da aplicação e para isso são

configuradas as características do bitmap que será enviado, como tamanho, resolução,

pontos por polegadas e formato do pixel.

 Com a imagem colorida pronta é então verificado se há dados de “esqueleto”, caso

não haja a função retorna nulo e o software retorna ao inicio, mas se houver dados

referentes ao esqueleto de um usuário é então conferido se eles já foram capturados, se

não foram ou houve mudança a variável é então atualizada.

 O sensor pode captar mais de um esqueleto e como nessa aplicação a interação é

apenas com um usuário por vez se captura somente os dados de esqueleto do usuário

mais próximo, com esses dados é possível mapear uma série de juntas e manipula-las,

nesse projeto serão utilizados cinco juntas, sendo elas, a cabeça, as mão direita e

esquerda, o centro do ombro e o centro do quadril.

 Para visualização de controle uma elipse é colocada para acompanhar os

movimentos das mãos.

 Depois de adquirir os dados das juntas do esqueleto eles são processados de forma a

verificar, de acordo com as suas coordenadas, qual o comando que o usuário está

aplicando, essa ordem é então enviada via Bluetooth para o software do Arduino para

atuar no motor do robô.

47

NÃO

SIM

NÃO

SIM

NÃO

SIM

SIM

SIM

NÃO

Esqueleto

Nulo?

Pega os Dados do Esqueleto mais Próximo

Salva as Posições das Juntas Estabelecidas

Aplica a Elipse nas Juntas Aplica a Lógica de Controle

Frame

Esqueleto

Recebido?

Há Dados de

Esqueletos? Atualiza os Dados de

Esqueletos

NÃO

SIM

NÃO

Imagem

Recebida?

Imagem

Colorida?

Configura as Características da Imagem

Atualiza os Bytes de

Imagem Colorida

INICIO

Há um Kinect
Ativo ? Fecha Aplicativo, Gera Warning

Inicializa Sensor

Inicializa Stream da Imagem Colorida

Inicializa Stream do Esqueleto

Envia o Controle Via Serial

48

Figura 21 - Fluxograma Kinect

2.9. Controle

 Foram criados dois controles para o robô e verificado qual apresenta uma melhor

resposta para a aplicação. Os dois possuem o mesmo intuito, que é movimentar o robô

utilizando os movimentos através do Kinect, o que os diferencia é a lógica do que se

refere à atuação dos motores que resultam na direção e velocidade. Para ambos, as

juntas para controle utilizadas são as mesmas e estão ilustradas na Figura 22

Juntas para controle

 Cabeça - A

 Ombro - B

 Mão Direita - C

 Mão Esquerda - D

 Cintura - E

E

B

Figura 22 - Juntas de Controle

A

D C

49

 O primeiro controle (Figura 23) possui quatro movimentos, cada um dos

movimentos é equivalente à movimentação do robô (para frente, para traz, para a direita e

para a esquerda), nesse não há controle da velocidade. A figura 23 ilustra as regiões que

correspondem a cada controle. Para parar o robô, o controle é deixar as duas mãos

abaixo da cintura.

 No segundo controle (Figura 24) cada mão corresponde a uma roda, assim sendo

a mão direita controla a roda da direita e a mão esquerda a roda da esquerda, para

controle da direção o limiar fica sendo a posição do ombro, acima do ombro a direção é

para frente e abaixo para traz. Esse controle possui controle de velocidade, para cada

direção a forma de aceleração é diferente.

Robô para esquerda Robô para direita Robô para frente Robô para traz

Figura 23 - Controle 1

50

 Max Vel Frente

 Min Vel Frente

 Min Vel Atrás

 Max Vel Atrás

E
sq

u
er

d
a

P
ar

a

D
ir

ei
ta

 P
ar

a

Figura 24 - Controle 2

51

3. Implementação.

 Nessa parte estarão presentes os resultados de uma forma mais detalhada, o que

foi feito para alcançar o objetivo desejado e, além disso, será verificando se o atingido foi

o esperado e caso não a possível razão será apresentada.

3.1. Implementação software Arduino.

 O fluxograma do software criado para o Arduino UNO já foi apresentado na seção

2.8. Software, na Figura 20, agora será apresentado os comandos utilizados para efetuar

cada etapa do programa.

3.1.1. Inicio

 Todo software utiliza bibliotecas que possuem as funções que serão utilizadas

para a lógica do programa, nessa aplicação será utilizado à comunicação serial e por isso

é necessário adicionar a biblioteca responsável para esse fim, ela é adicionada através do

comando:

#include <SoftwareSerial.h>

 Além disso, foram criadas algumas variáveis que serão manipuladas no decorrer

do software, cada uma delas possui um tipo e um nome e estão listadas abaixo com os

comentários que dão uma breve ideia da sua utilização. Como existem dois controles

cada um deles possuem suas próprias variáveis e não são necessariamente as mesmas.

 Controle 1:

 int caractere; //Variável que recebe o valor do comando enviado pelo Kinect

 int IN1 = 5; //Pino de controle de direção do motor da direita

 int IN2 = 6; //Pino de controle de direção do motor da direita

 int IN3 = 7; //Pino de controle de direção do motor da esquerda

 int IN4 = 8; //Pino de controle de direção do motor da esquerda

 int ENA = 9; //Pino enable motor direita

 int ENB = 10; //Pino enable motor esquerda

 Controle 2:

52

 int IN1 = 5; //Pino de controle de direção do motor da direita

 int IN2 = 6; //Pino de controle de direção do motor da direita

 int IN3 = 7; //Pino de controle de direção do motor da esquerda

 int IN4 = 8; //Pino de controle de direção do motor da esquerda

 int ENA = 9; //Pino enable motor direita

 int ENB = 10; //Pino enable motor esquerda

 String crtl; // [0] a [2] direção, [3] sentido, [4] a [6] valor PWM

 String velocR, velocL; // Recebe o valor da velocidade de cada motor

 String sentiR, sentiL; // Recebe o sentido de cada motor

 String direcR, direcL; // Recebe a identificação de que motor está sendo ativado

 int velR, velL; // Recebe o valor da velocidade no tipo inteiro

 // Estas variáveis são inicializadas com o valor 150

 No Controle 2, com a utilização do PWM, foi constatado a necessidade de

modificar a configuração do PWM utilizado, isso será analisado mais a frente na seção

3.3.Análise, o comando para isso está abaixo.

TCCR1B = TCCR1B & 0b11111000 | 0x05;

3.1.2. Inicializa configuração Bluetooth

 É necessário configurar e ativar a comunicação serial do Bluetooth, para isso

primeiramente se identifica quais serão os pinos que serão o TX e o RX no Arduino e um

nome é atribuído para a comunicação, nesse caso o nome dado foi “blue”.

 SoftwareSerial blue (11,12) // Pino 11 RX, Pino 12 TX

 blue.begin(9600) //Baud rate em 9600

3.1.3. Configuração das portas

 É necessário também configurar o sentido de cada porta digital utilizada do

Arduino, ou seja, se ela é uma saída (OUTPUT) ou entrada de dados (IMPUT), nesse

caso todas as portas utilizadas serão saídas e o comando utilizado para a configuração é:

pinMode(Nome do Pino, OUTPUT);

53

3.1.4. Bluetooth disponível?

 O programa deve ficar aguardando um comando vindo do Kinect para então atuar

no motor, para isso é utilizado uma lógica condicional que verifica se a comunicação está

disponível.

 if(blue.available())

 {

 // Recebe commando do Kinect

 }

3.1.5. Armazena controle enviado pelo Kinect

 Cada controle envia um comando diferente por Bluetooth, o Controle 1 envia um

valor hexadecimal que se refere a direção a ser aplicada no robô (Frente, Atrás, Esquerda

ou Direita), já o Controle 2 envia uma string que possui três tipos de informação, o motor a

ser ativado, o sentido dele e a velocidade.

 Controle 1:

 caractere = blue.read(); // A variável caractere armazena o controle enviado pelo
 Kinect

 Controle 2:

 crtl = blue.readString(); // A variável crtl recebe a String de comando
 enviado pelo Knect

 A String de controle é composta por 10 caracteres (Tabela 3) e a cada 5 deles

corresponde a um motor, sendo assim os cinco primeiros correspondem ao motor direito

e os cinco últimos ao motor esquerdo. Se utiliza então o comando “.substring()” para

desmembrar o comando enviado e atribuir para a variável de cada motor os valores.

Motor
Direito

Sentido
Motor
Direito

Velocidade Motor
Direito

Motor
Esquerdo

Sentido
Motor

Esquerdo

Velocidade Motor
Esquerdo

Tabela 3 - String de velocidade do controle 2

0 1 2 3 4 5 6 7 8 9

54

 direcR = crtl.substring(0,1);
 sentiR = crtl.substring(1,2);
 velocR = crtl.substring(2,5);
 velR= velocR.toInt(); //Converte o valor da velocidade em inteiro

 direcL = crtl.substring(5,6);
 sentiL = crtl.substring(6,7);
 velocL = crtl.substring(7,10);
 velL = velocL.toInt(); //Converte o valor da velocidade em inteiro

3.1.6. Atua no motor

 Para atuar no motor deve-se enviar comando de controle para os pinos da ponte H

(IN1, IN2, IN3, IN4, ENA e ENB), primeiro se verifica o controle enviado pelo Kinect e a

partir desse valor se atua nas saídas.

 Controle 1:

 Nesse caso o controle enviado foi para o robô se movimentar para frente, o que irá

 variar são os valores enviados para as portas, para cada movimento há uma

 combinação específica, esses valores já foram estabelecido na seção 2.5. Ponte

 H.

 if(caractere == 'w') //Verifica qual comando que foi enviado

 {

 digitalWrite(ENA,HIGH); //ativa motor da direita

 digitalWrite(ENB,HIGH); //ativa motor da esquerda

 digitalWrite(IN1,LOW); //motor A e B a frente

 digitalWrite(IN2,HIGH);

 digitalWrite(IN3,LOW);

 digitalWrite(IN4,HIGH);

 delay(25); //delay para manter a movimentação ativa por 25ms

 caractere = 'q'; //limpa a variável caractere para que o movimento

 não seja continuo e sim a cada comando

 }

55

 Controle 2:

 Esse caso se refere à roda da direita, para a roda da esquerda a lógica é a

 mesma, o que irá variar é o valor da String que identifica a roda da esquerda e as

 saídas a serem atuadas (IN3 e IN4);

 if (direcR == "D"){ //Verifica se roda direita foi ativada

 analogWrite(ENA,velR);

 if (sentiR == "F") { //Verifica se sentido escolhido foi para frente

 digitalWrite(IN1,LOW);

 digitalWrite(IN2,HIGH);}

 if (sentiR == "A") { //Verifica se sentido escolhido foi para atrás

 digitalWrite(IN1,HIGH);

 digitalWrite(IN2,LOW);}

 }

 else{

 digitalWrite(ENA,LOW);} //Se roda não foi ativada a mantém desligada

3.2. Implementação software C#.

 O funcionamento desse software está ilustrado na Figura 21, nessa seção será

aprofundada somente a lógica dos controles que foram criados, as partes de inicialização

e configuração podem ser encontradas no Apêndice, nele está disponibilizado o código na

sua integra com comentários para ajudar no entendimento.

3.2.1. Controle 1

 O Controle 1 foi constituído para identificar movimentos pré-determinados e gerar

comandos correspondentes a cada um deles, dessa forma foram criados cinco, onde

quatro deles para movimentação (frente, trás, esquerda e direita) já ilustrados na Figura

23 e um de parada. Cada movimento é determinado identificando as posições das juntas

e comparando-as em conjunto em uma lógica condicional, quando um movimento é então

reconhecido o controle correspondente é enviado via Bluetooth para o Arduino.

56

//Identifica o movimento, se verdadeiro envia o comando correspondente via Bluetooth,

nesse exemplo o movimento reconhecido foi o que movimenta o robô para frente.

if (rightHand.Position.Y > centerShoulder.Position.Y &
 leftHand.Position.Y < centerShoulder.Position.Y)
 {
 rightHandactive = true; //Ativa a elipse referente a mão direita.
 Usado para verificar que foi reconhecido o
 movimento.
 System.Windows.Forms.SendKeys.SendWait("{d}");//Robô para a direita.
 }

 Para envio do comando via Bluetooth inicialmente foi utilizado um software de

comunicação serial chamado Tera Term (Figura 25 e Figura 26), quando um movimento

era identificado o software aplicava a função “SendKeys(comando)”, ou seja, ela aplicava

o valor do comando na janela ativa no PC, nesse caso a janela do Tera Term, o qual

estava conectado com o Bluetooth do robô e por isso o comando era enviado.

 Após verificar o funcionamento correto da lógica o software Tera Term foi

substituído por uma comunicação serial criada em C#, dessa forma o próprio software

criado para utilizar o Kinect ficou responsável pela comunicação serial, isso será mais

bem explicado na seção 3.2.3 Comunicação Serial. Dessa forma ao reconhecer o

movimento o software chama a função “SerialCmdSend()” a qual envia o comando.

SerialCmdSend(comando); //Função que recebe o comando referente ao movimento e o
 envia para a serial

Figura 25 - Conexão Tera Term

57

Figura 26 - Tela de envio e recebimento de dados Tera Term

3.2.2. Controle 2

 O Controle 2 foi criado para ser mais intuitivo, ou seja, cada mão seria referente a

um motor (Mão Direita -> Motor Direito / Mão Esquerda -> Motor esquerdo) e a escolha do

sentido e velocidade seria referente a posição das mãos (Figura 24). Assim como a lógica

anterior o comando a ser enviado depende da posição das juntas comparadas entre si em

uma lógica condicional, o comando de cada motor é uma String composta de cinco

elementos (Tabela 3), então ao identificar o que o usuário pretende uma String com o

comando correspondente é criada e armazenada em uma variável, ao se obter o

comando de ambos os motores as Strings de cada um deles são agrupadas, sendo a do

motor direito a frente da do motor esquerdo, por fim se verifica se houve mudança do

comando a ser enviado em relação ao anterior e se caso houve esse novo comando é

então enviado, isso foi necessário para que os motores recebam somente uma vez um

certo comando, pois se vários comandos são enviado sucessivamente a uma velocidade

muito rápida os motores não conseguiam responder a tempo e por isso permaneciam

parados, assim caso não haja mudança do comando ele permanece o mesmo, o robô

mantem o seu movimento mas não é enviado o comando novamente.

 Abaixo serão apresentadas e brevemente explicadas partições do controle 2 do

motor da direita, para o motor da esquerda a lógica é a mesma variando somente a String

a ser gerada.

 Primeiramente, é verificado se o movimento executado é referente a parar o motor,

caso seja, é então criado uma String de parada.

58

if (rightHand.Position.X <= (centerShoulder.Position.X + 0.3))
 {
 RodaDireita = "DX000"; //Para o motor direito
 rightHandactive = false; //Desativa a elipse referente a mão direita.
 Usado para verificar que foi reconhecido o
 movimento.
 }

 Se o movimento não for de parada o próximo passo é identificar o sentido que o

motor deve girar, para frente ou para trás, nesse caso será explicado para quando o

motor deve se movimenta para frente, no outro caso a lógica é a mesma mudando

apenas a condição do comando “IF” e a String a ser gerada.

 Ao verificar o movimento referente ao sentido o próximo passo é calcular a

velocidade, na Figura 24 é possível verificar as regiões em que a velocidade é

considerada máxima e mínima para cada sentido, a velocidade foi considerada linear à

posição da mão na região, com esse pensamento foi então calculado uma equação de

reta que determina todos os valores possíveis para o PWM de acordo com a posição da

mão na região, para essa equação foram colocadas como máximo do PWM o valor 255 e

o mínimo 100, as equações de reta para cada sentido do motor podem ser visualizadas

na Figura 27 e Figura 28 e o gráfico das retas está ilustrado na Figura 29.

 As relações do gráfico referente às juntas da Cintura, Ombro e Cabeça no eixo Y,

estão relacionadas na Tabela 4.

1 Cintura.Y

2 Ombro.Y

3 Cabeça.Y

Tabela 4 - Relação gráfico e juntas

Figura 27 - Equação de velocidade de rotação para trás

Figura 28 - Equação de velocidade de rotação para frente

59

Figura 29 - Velocidade dos Motores

 No entanto devido à sensibilidade do sistema os valores de velocidade aplicada ao

motor ficaram limitados em dois, velocidade mínima de 100 e velocidade máxima de 240,

o limiar ficou sendo o valor de 180, ou seja, quando a equação de velocidade atingia

valores inferiores a 180 a velocidade aplicada ao motor era de 100 e quando superior a

velocidade ficaria sendo de 240.

 Para finalizar é então criada a String do motor com a identificação do motor, do

sentido e velocidade (Tabela 5).

Motor D E

Sentido F A

Velocidade Veloc Max Veloc Min

Tabela 5 - Valores Correspondentes a String

60

else

 {
 if (rightHand.Position.Y < head.Position.Y & rightHand.Position.Y >
 centerShoulder.Position.Y)
 {
 //equação de reta para obtenção do valor da velocidade de acordo com a posição da
 mão [conversão de float para int]
 VelRodaDireita = (int)Math.Ceiling((155 / (head.Position.Y -
 centerShoulder.Position.Y)) * (rightHand.Position.Y -
 centerShoulder.Position.Y) + 100);

 if (VelRodaDireita < 180) //Verifica valor calculado da velocidade e aplica
 velocidade máxima ou mínima
 {
 VelDireita = "100";
 }
 else
 {
 VelDireita = "240";
 }

 RodaDireita = "DF" + VelDireita; //Liga motor DIREITO para FRENTE com
 velocidade 100 Ex: DF100
 rightHandactive = true;
 }

 Com os valores de String de cada motor é então criado o controle concatenado as

duas Strings, então se verifica se houve mudança no controle enviado com o valor do

ultimo comando enviado, e se houve o valor é então impresso em tela, apenas para

verificação, enviado para a serial e se atualiza a variável referente ao último valor

enviado.

Roda = RodaDireita + RodaEsquerda; //concatenação dos comandos de cada motor
if (Roda != RodaOld) //verifica se houve variação no comando
 {
 Verify.AppendText(Roda); //Imprime o valor do comando em tela
 SerialCmdSend(Roda); //Envia para a serial o comando
 RodaOld = Roda; //Atualiza a variavel
 }

61

3.2.3. Comunicação Serial

 A comunicação entre os softwares do Arduino e o software C# é serial via

Bluetooth, para que isso ocorra é necessário configurar uma porta serial e conecta-la

entre o PC e o modulo ligado ao Arduino, para fazer isso foi criado um código em C#, nele

são escolhidas todas as características da porta serial e gerado os comando de envio e

recebimento de dados.

 O nome da variável referente à comunicação é “serial”, e a ela foi atribuído cada

característica listada abaixo, como por exemplo, nome da porta a ser conectado, baud

rate, se há handshake e paridade, tamanho do dado e numero de bits de parada, e por

fim ela é aberta.

serial.PortName = Comm_Port_Names.Text; //Nome da porta serial
serial.BaudRate = Convert.ToInt32(9600); //Baud rate
serial.Handshake = System.IO.Ports.Handshake.None; //Handshake
serial.Parity = Parity.None; //Bit de paridade
serial.DataBits = 8; //Número de bits de dado
serial.StopBits = StopBits.One; //Número de stop bits
serial.ReadTimeout = 200; //temporização
serial.WriteTimeout = 50;
serial.Open(); //Conecta porta serial

 Com a serial conectada ela já está apta a enviar os comandos para o robô, para

isso primeiramente ela verifica se a serial está realmente aberta e se sim envia o dado

passado para a função “SerialCmdSend(data)”, se durante o processo houver um erro o

envio é então parado e um aviso é escrito em tela.

public void SerialCmdSend(string data) //Função de envoi de dados via serial
{
 if (serial.IsOpen) //verifica se serial está aberta
 {
 try
 {
 serial.Write(data); //Envia dado
 }
 catch (Exception ex) //Se houver erro interrompe o processo e
 envia um aviso
 {
 para.Inlines.Add("Failed to SEND" + data + "\n" + ex + "\n");
 mcFlowDoc.Blocks.Add(para);
 Commdata.Document = mcFlowDoc;
 }
 }
}

62

63

4. Resultados

 Nessa seção serão apresentados os resultados atingidos após toda a

implementação do projeto, demonstrando o funcionamento do sistema dos controles e a

interface entre o usuário e o robô.

 A Figura 30 e Figura 31 ilustra a tela de aplicação utilizada pelo PC como interface

para ativar a comunicação Bluetooth, para visualizar a imagem captada pelo sensor

Kinect, para aplicar comandos a serem enviado para o robô e verifica-los em caso de

testes.

Figura 30 - Tela da aplicação

Elipse que referencia as juntas Tela de imagen do Kinect

Campo que recebe os

dados de controle enviados

Botão que conecta a serial

Nome porta serial
Campo que recebe os dados enviados pelo

Arduino ou o erro em caso de falha

Botão envía dados

Campo que recebe

dado a ser enviado

pelo botão

64

Figura 31 - Aplicação em funcionamento

 Nessa imagem é possível verificar a aplicação em funcionamento com o Bluetooth

já conectado e os movimentos sendo reconhecidos pelo Kinect. As elipses marcam as

juntas que foram escolhidas para serem combinadas e definir os movimento referente a

cada controle.

4.1. Resultado Controle 1.

 A seguir se poderá verificar o funcionamento do Controle 1 explicado na seção 2.9.

Controle e Figura 23.

 A Figura 32 demonstra o movimento para manter o robô parado, nessa condição

as elipses referente as mãos se mantem em um tamanho menor para verificar que

nenhum comando está sendo enviado para o robô.

65

Figura 32 - Controle 1- robô parado

 A figura 33 demonstra o movimento referente ao controle de virar o robô para a

esquerda, o funcionamento ocorre da seguinte forma, ao se reconhecer esse movimento

a roda da esquerda se mantém parada e a da direita é ligada o que resulta no robô

virando para a esquerda.

Figura 33 - Controle 1 - robô vira para esquerda

66

Figura 34 - Controle 1 - robô vira para a direita

 A figura 34 demonstra o movimento referente ao controle de virar o robô para a

direita, o funcionamento ocorre da seguinte forma, ao se reconhecer esse movimento a

roda da direita se mantém parada e a da esquerda é ligada o que resulta no robô virando

para a direita.

Figura 35 - Controle 1 - robô se movimenta para frente

 A figura 35 ilustra o movimento para controlar o robô para frente, o que ocorre é a

execução dos dois motores, motor direito e motor esquerdo, com a mesma velocidade, no

caso do Controle 1 a velocidade é a máxima, pois não há variação de velocidade e

mesmo sentido.

67

Figura 36 - Controle 1 - robô se movimenta para traz

 A figura 36 ilustra o movimento para controlar o robô para traz, o funcionamento é

idêntico ao do movimento ilustrado na figura 35, a diferença nesse controle é o sentido

dos motores, que agora giram no sentido contrario

4.2. Resultado Controle 2.

 A seguir se poderá verificar o funcionamento do Controle 2 explicado na seção 2.9.

Controle e Figura 24.

 A Figura 37 demonstra o movimento para manter o robô parado, nessa condição

as elipses referente as mãos se mantem em um tamanho menor para verificar que

nenhum comando está sendo enviado para o robô.

 A figura 38 demonstra o movimento para controlar o robô para frente na região de

velocidade mínima do robô, nesse controle, como cada mão é referente a uma roda o que

se vê são as duas mão acima do limiar do ombro, o qual se refere à região de movimento

para frente e ao mesmo tempo as duas mãos se encontra na mesma altura, logo mesma

velocidade e por isso o robô se movimenta para frente.

68

Figura 37 - Controle 2 - robô parado

Figura 38 - Controle 2 - robô para frente com velocidade mínima

 O movimento da figura 39 é análogo ao da figura 38, a diferença está na altura das

mãos, dessa forma o que ocorre é um aumento da velocidade do robô.

69

Figura 39 - Controle 2 - robô para frente com velocidade máxima

 A figura 40 demonstra o movimento para controlar o robô para traz na região de

velocidade mínima do robô, nesse controle, como já foi dito, cada mão é referente a uma

roda o que se vê são as duas mão abaixo do limiar do ombro, o qual se refere à região de

movimento para traz e ao mesmo tempo as duas mãos se encontra na mesma altura, logo

mesma velocidade e por isso o robô se movimenta para traz.

Figura 40 - Controle 2 - robô para traz com velocidade mínima

 O movimento da figura 41 é análogo ao da figura 40, a diferença está na altura das

mãos, dessa forma o que ocorre é um aumento da velocidade do robô.

70

Figura 41 - Controle 2 - robô para traz com velocidade máxima

 Na figura 42 e figura 43 o que se ilustra é uma diferença entre as posições das

mãos direita e esquerda, o que não havia ocorrido até o momento. No caso da figura 42 a

mão direita está abaixo do limiar do ombro o que leva a roda direita a ter um movimento

para traz, já a mão esquerda está acima do limiar do ombro, assim a roda esquerda se

movimenta para frente, essa combinação faz com que o robô vire para a direita. Na figura

43 já se verifica o oposto, então nesse caso a roda direita possui movimento para frente e

a roda esquerda para traz, então o robô vira para a esquerda.

Figura 42 - Controle 2 - roda direita para traz, roda esquerda para frente

71

Figura 43 - Controle 2 - roda direita para frente, roda esquerda para traz

 Para verificar o funcionamento da variação da velocidade no Controle 2 foi

utilizado um osciloscópio e visualizado a variação do duty cycle do PWM. Quando o motor

se encontra parado foi verificado uma tensão nula, como se ilustra na figura 44.

Figura 44 - PWM com duty cycle 0%

 Ao iniciar um movimento em um sentido o PWM começa a responder e foi

encontrado o resultado da figura 45, onde se tem um duty cycle de 39%.

72

Figura 45 - PWM com duty cycle 39%

 Variando o movimento tendendo a aumentar a velocidade o PWM aumenta o seu

duty cycle, isso é notado na figura 46, nela é possível identificar um duty cycle de

aproximadamente 94%. A frequência do PWM foi ajustada para 30,5 Hz,

aproximadamente.

Figura 46 - PWM com duty cycle 94%

73

5. Análise

 O Atmega328 tem três timers para PWM que controlam seis saídas PWM (Figura

47). É possível manipular os registradores dos timers diretamente e dessa forma é

possível obter mais controle sobre os PWMs. Nesse caso o que foi buscado foi diminuir a

frequência do PWM utilizado (Pinos 9 e 10), que é de 500Hz, o máximo possível

(30,52Hz). Isso foi necessário devido as características do motor (120 RPM). Foi

verificado que para velocidades baixas, ou seja, valores a baixo de 130 no comando

analogWrite(Pin,PWM) o motor não respondia bem, dessa forma para aumentar a faixa

possível de velocidades do motor a frequência do PWM foi reduzida. A causa desse

problema é que para valores menores de PWM o duty cycle é menor e como a frequência

era alta não gerava tensão suficiente para tirar o motor da sua inércia, então diminuindo a

frequência do PWM significa aumentar o duty cycle.

Figura 47 - PWM

 O Atmega328 possui três timers, sendo eles, Timer 0, Timer 1 e Timer 2, o timer

correspondente aos pinos 9 e 10 é o Timer 1, para modifica-lo se deve manipular o

registrador TCCRnB (Timer/Counter Control Register) em que “n” é o número do timer. O

que deve ser manipulado são os últimos três bits desse registrador, assim é feito um

“AND” com o valor 0bx11111000 para zerar esses bits e então é aplicada uma lógica “OU”

com o valor correspondente a frequência requerida, que nesse caso é 0x05 [22].

TCCR1B = TCCR1B & 0b11111000 | 0x05;

74

 Os dois controles implementados funcionam e deixa o usuário capaz de controlar o

robô, no entanto cada um deles possui as suas vantagens e desvantagens. No Controle 1

não há controle da velocidade, o que o torna mais simples e com menos recursos, no

entanto na prática ele se mostrou mais fácil de ser utilizado e gerou um controle melhor e

mais estável. O controle 2 não possui movimento fixo para gerar um comando, cada mão

se refere a um motor (Mão direita -> Motor direito / Mão esquerda -> Motor esquerdo) o

que torna esse tipo de interação mais intuitiva, ele também possui controle da velocidade,

mas está possui apenas duas variações devido a sensibilidade encontrada no método

utilizado, o qual gera variações muito rápidas da velocidade e o robô não era capaz de

interpretar, a solução encontrada foi limitar essa variação a apenas dois valores.

 Uma outra análise é em relação aos motores que mesmo ativando ambos a

mesma velocidade o robô não se movimenta em linha reta, foram encontradas duas

causas desse efeito. A primeira é o mau alinhamento das rodas, uma roda desalinhada

em relação à outra pode gerar um deslocamento em curva. O segundo é a diferença de

redução entre os motores, apesar de serem do mesmo modelo e possuírem as mesmas

especificações não necessariamente eles são idênticos devido à fabricação, para corrigir

isso se deve descobrir empiricamente a diferença entre os motores e aplica-las em

software ou criar um controle em hardware que monitore a rotação de cada motor e

através de um software atuar com correções.

5.1. Trabalhos futuros

 O Kinect possui um grande recurso que não foi explorado nesse projeto, as quatro

arrays de microfones. Com esses sensores é possível criar reconhecer comandos por

voz, seria assim mais uma possibilidade para controlar o robô móvel criado.

 Outro trabalho interessante seria criar um sistema escalonado de velocidades ao

invés de linear (Figura 29), esse sistema pode evitar os erros em relação a variação da

velocidade discutidos na análise, deixando o sistema mais robusto e com mais variações

possíveis da velocidade.

75

6. Conclusão

 A criação de uma plataforma robótica de baixo custo que pode ser controlada

remotamente é uma boa demonstração dos conhecimentos adquiridos em um curso de

engenharia elétrica, pois é requerido compreender o funcionamento da eletrônica, de

lógica digital, de linguagem de programação, de métodos de comunicação e seus

protocolos.

 A montagem da plataforma na prática gera a oportunidade de verificar as

dificuldades encontradas para a implementação do sistema como um todo e

principalmente em como lidar e identificar erros inesperados e como corrigi-los, essa

prática gera experiência que na eletrônica é de fato muito importante, pois como em

muitos casos não se é possível, literalmente, ver o erro e sim somente perceber o mau

funcionamento a experiência limita as possibilidades do que pode ser o problema levando

a uma rápida solução ou até aperfeiçoamento.

 A utilização do sensor Kinect é uma experiência muito interessante, pois esse

dispositivo foi criado por uma empresa mundialmente conhecida com o intuito

simplesmente de entretenimento, mas por sua versatilidade, bom desempenho e baixo

custo foi identificado nele um grande potencial para diversas aplicações que necessitam

de um bom processamento em visão computacional, percebendo isso a criadora do

sensor tornou livre a utilização do seu próprio software para que desenvolvedores

autônomos se aventurassem nas possibilidades oferecidas pelo Kinect e por isso é

possível facilmente encontrar diversas aplicações que usufruem do dispositivo.

 O resultado obtido ao final desse trabalho foi satisfatório, foi conseguido controlar

o robô por meio de dois controles utilizando o reconhecimento de gestos pelo Kinect, no

entanto um problema encontrado foi referente a movimentos bruscos, os quais podem

causar mal entendimento pelo robô e ele pode responder de forma errada ou não

responder.

76

77

Referências Bibliográficas

[1] http://luckylarry.co.uk/arduino-projects/obstacle-avoidance-robot-build-your.own-larrybot/

[2] André Crepaldi Geiger Smidt, “Implemetação de uma plataforma robótica controlada

remotamente utilizando o Arduino”, EESC – USP, 2013.
[3] http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx

[4] Tanner Bryce Blair, Chad Eric Daves. “Innovate Engineering Outreach: A Special Application

of the Xbox 360 Kinect Sensor”, School of Electrical and Computer Engineering ,University of

Oklahoma.

[5] Z.Zhang. “Microsoft Kinect Sensor and Its Effect”,IEEE MultiMedia, 27 Abril 2012

[6] Microsoft Corporation, “Kinect foe Windows – Human Interface Guidelines V1.8.0

[7] El-laithy, R.A. ;”Study on the Use of Microsoft Kinect for Robotics Applications” California

State Univ., Fullerton, CA, USA ; Jidong Huang ; Yeh, M.

[8] http://arduino.cc/
[9] http://wiring.org.co/

[10] http://www.processing.org/

[11] http://www.atmel.com/pt/br/devices/ATMEGA328.aspx

[12] http://www.embarcados.com.br/arduino-uno/

[13] http://www.bluetooth.com/Pages/Fast-Facts.aspx

[14] McDermott-Wells, P. “What is Bluethooth?” ; Mega-Data Services Inc., FL, USA

[15] http://www.bluetooth.com/Pages/Basics.aspx

[16] Deitel, H. M. ; C# - Como Programar ; P. J. Deitel; J. Listfield; T. R. Nieto; C. Yager; M.

Zlatnika. São Paulo, Pearson Makron Books, 2003.

[17] http://www.visualstudio.com/downloads/download-visual-studio-vs

[18] Vibhor Grupta. “Working and Analysis of the H-Bridge Motor Driver Circuit Designed for

Wheeled Mobile Robots”

[19] https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf

[20] http://softwaresouls.com/softwaresouls/category/arduino/

[21] http://fritzing.org/home/

[22] http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM

http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.El-laithy,%20R.A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jidong%20Huang.QT.&searchWithin=p_Author_Ids:38262618400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yeh,%20M..QT.&searchWithin=p_Author_Ids:38259843900&newsearch=true
http://wiring.org.co/
http://www.processing.org/
http://www.atmel.com/pt/br/devices/ATMEGA328.aspx
http://www.embarcados.com.br/arduino-uno/
http://www.bluetooth.com/Pages/Fast-Facts.aspx
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.McDermott-Wells,%20P..QT.&searchWithin=p_Author_Ids:37265804700&newsearch=true
http://www.bluetooth.com/Pages/Basics.aspx
http://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
http://fritzing.org/home/

78

79

Apêndice 1: Arduino Controle 1

#include <SoftwareSerial.h>

SoftwareSerial blue(11,12); //RX TX

int caractere;

int IN1 = 5;

int IN2 = 6;

int IN3 = 7;

int IN4 = 8;

int ENA = 9; //motor direita

int ENB = 10; //motor esquerda

void setup ()

{

 blue.begin(9600);

 pinMode(IN1,OUTPUT);

 pinMode(IN2,OUTPUT);

 pinMode(IN3,OUTPUT);

 pinMode(IN4,OUTPUT);

}

void loop (){

 if(blue.available())

 {

 caractere = blue.read();

 }

 if(caractere == 'w')

 {

 blue.println("Robo a frente");

 digitalWrite(ENA,HIGH); //ativa os dois motores

 digitalWrite(ENB,HIGH);

 digitalWrite(IN1,LOW); //motor A e B a frente

 digitalWrite(IN2,HIGH);

 digitalWrite(IN3,LOW);

 digitalWrite(IN4,HIGH);

 delay(25);

 caractere = 'q'; //limpa a variavel caractere para q o movimento nao seja continuo

e sim a cada comando

 }

 if(caractere == 's')

 {

 blue.println("Robo para traz");

 digitalWrite(ENA,HIGH); //ativa os dois motores

 digitalWrite(ENB,HIGH);

 digitalWrite(IN1,HIGH); //motor A e B para traz

 digitalWrite(IN2,LOW);

80

 digitalWrite(IN3,HIGH);

 digitalWrite(IN4,LOW);

 delay(25);

 caractere = 'q';

 }

 if(caractere == 'a')

 {

 blue.println("Robo para esquerda <---");

 digitalWrite(ENA,HIGH); //ativa motor A

 digitalWrite(ENB,LOW); //desliga motor B

 digitalWrite(IN1,LOW); //motor A para frente

 digitalWrite(IN2,HIGH);

 digitalWrite(IN3,LOW);

 digitalWrite(IN4,LOW);

 delay(25);

 caractere = 'q';

 }

 if(caractere == 'd')

 {

 blue.println("Robo para direita --->");

 digitalWrite(ENA,LOW); //desliga motor A

 digitalWrite(ENB,HIGH); //ativa motor B

 digitalWrite(IN1,LOW);

 digitalWrite(IN2,LOW);

 digitalWrite(IN3,LOW); //motor B para frente

 digitalWrite(IN4,HIGH);

 delay(25);

 caractere = 'q';

 }

 if(caractere == 'q')

 {

 blue.println("Robo freio ---");

 digitalWrite(IN1,LOW);

 digitalWrite(IN2,LOW);

 digitalWrite(IN3,LOW);

 digitalWrite(IN4,LOW);

 caractere = 0;

 }

}

81

Apêndice 2: Arduino Controle 2

#include <SoftwareSerial.h>

SoftwareSerial blue(11,12); //RX TX

String crtl; // [0] a [2] direc, [3] sentido, [4] a [6] valor PWM

String velocR, velocL;

String sentiR, sentiL;

String direcR, direcL;

int velR, velL;

boolean StringComplete = false;

int IN1 = 5;

int IN2 = 6;

int IN3 = 7;

int IN4 = 8;

int ENA = 9; //motor direita

int ENB = 10; //motor esquerda

//***********************************

void setup ()

{

 blue.begin(9600);

 //Serial.begin(9600);

 pinMode(IN1,OUTPUT);

 pinMode(IN2,OUTPUT);

 pinMode(IN3,OUTPUT);

 pinMode(IN4,OUTPUT);

 pinMode(ENA,OUTPUT);

 pinMode(ENB,OUTPUT);

 velR = 150;

 velL = 150;

 TCCR1B = TCCR1B & 0b11111000 | 0x05;

}

//***********************************

void loop (){

 crtl="";

 if (blue.available())

 {

 crtl = blue.readString();

 direcR = crtl.substring(0,1);

 sentiR = crtl.substring(1,2);

 velocR = crtl.substring(2,5);

 velR = velocR.toInt();

82

 direcL = crtl.substring(5,6);

 sentiL = crtl.substring(6,7);

 velocL = crtl.substring(7,10);

 velL = velocL.toInt();

 }

//***********************************

 if (direcR == "D"){ //ativa roda da direita

 analogWrite(ENA,velR);

 if (sentiR == "F") { //escolhe sentido do motor

 digitalWrite(IN1,LOW);

 digitalWrite(IN2,HIGH);}

 if (sentiR == "A") {

 digitalWrite(IN1,HIGH); //motor A e B a frente

 digitalWrite(IN2,LOW);}

 }

 else{

 digitalWrite(ENA,LOW);}

 if (direcL == "E"){ //ativa roda da esquerda

 analogWrite(ENB,velL);

 if (sentiL == "F") { //escolhe sentido do motor

 digitalWrite(IN3,LOW);

 digitalWrite(IN4,HIGH);}

 if (sentiL == "A") {

 digitalWrite(IN3,HIGH);

 digitalWrite(IN4,LOW); }

 }

 else{

 digitalWrite(ENB,LOW);}

 //direcR = "";

 //direcL = "";

//***

}

83

Apêndice 3: Software Kinect

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;

using System.Windows.Navigation;

using System.Windows.Shapes;

using Microsoft.Kinect;

using Microsoft.Speech.Recognition;

using System.Threading;

using System.IO;

using Microsoft.Speech.AudioFormat;

using System.Diagnostics;

using System.Windows.Threading;

using System.IO.Ports; //biblioteca para comunicaçao serial

namespace KinectPowerPointControl

{

 public partial class MainWindow : Window

 {

 #region Variaveis

 KinectSensor sensor;

 SpeechRecognitionEngine speechRecognizer;

 DispatcherTimer readyTimer;

 byte[] colorBytes;

 Skeleton[] skeletons;

 bool isCirclesVisible = true;

 bool rightHandactive = false;

 bool leftHandactive = false;

 string RodaDireita;

 string RodaEsquerda;

 string Roda;

 string RodaOld;

 int VelRodaDireita;

 int VelRodaEsquerda;

 string VelDireita;

 string VelEsquerda;

 SolidColorBrush activeBrush = new SolidColorBrush(Colors.Yellow);

 SolidColorBrush inactiveBrush = new SolidColorBrush(Colors.Red);

 //Variaveis da serial

 SerialPort serial = new SerialPort();

 string recieved_data;

 FlowDocument mcFlowDoc = new FlowDocument();

 Paragraph para = new Paragraph();

 #endregion

 public MainWindow()

 {

 InitializeComponent();

 Conectar.Content = "Conectar";

 this.Loaded += new RoutedEventHandler(MainWindow_Loaded);

84

 this.KeyDown += new KeyEventHandler(MainWindow_KeyDown);

 }

 #region Conectar Serial

 private void Conectar_Click_1(object sender, RoutedEventArgs e)

 {

 if (serial.IsOpen == false)

 {

 try

 {

 serial.PortName = Comm_Port_Names.Text;

 serial.BaudRate = Convert.ToInt32(9600);

 serial.Handshake = System.IO.Ports.Handshake.None;

 serial.Parity = Parity.None;

 serial.DataBits = 8;

 serial.StopBits = StopBits.One;

 serial.ReadTimeout = 200;

 serial.WriteTimeout = 50;

 serial.Open();

 }

 catch { return; }

 if (serial.IsOpen)

 {

 Conectar.Content = "Desconectar";

 serial.DataReceived += new

System.IO.Ports.SerialDataReceivedEventHandler(Recieve);

 }

 }

 else

 {

 try

 {

 serial.Close();

 Conectar.Content = "Conectar";

 }

 catch { return; }

 }

 }

 #endregion

 #region Reading

 private delegate void UpdateUiTextDelegate(string text);

 private void Recieve(object sender, System.IO.Ports.SerialDataReceivedEventArgs e)

 {

 recieved_data = serial.ReadExisting();

 Dispatcher.Invoke(DispatcherPriority.Send, new UpdateUiTextDelegate(WriteData),

recieved_data);

 }

 private void WriteData(string text)

 {

 para.Inlines.Add(text);

 mcFlowDoc.Blocks.Add(para);

 Commdata.Document = mcFlowDoc;

 }

 #endregion

 #region Sending

 private void Enviar_Click_1(object sender, RoutedEventArgs e)

 {

 SerialCmdSend(SerialData.Text);

 SerialData.Text = "";

 }

 public void SerialCmdSend(string data)

 {

 if (serial.IsOpen)

 {

 try

 {

85

 serial.Write(data);

 }

 catch (Exception ex)

 {

 para.Inlines.Add("Failed to SEND" + data + "\n" + ex + "\n");

 mcFlowDoc.Blocks.Add(para);

 Commdata.Document = mcFlowDoc;

 }

 }

 else

 {

 }

 }

 #endregion

 void MainWindow_Loaded(object sender, RoutedEventArgs e)

 {

 sensor = KinectSensor.KinectSensors.FirstOrDefault();

 if (sensor == null)

 {

 MessageBox.Show("This application requires a Kinect sensor.");

 this.Close();

 }

 sensor.Start();

 sensor.ColorStream.Enable(ColorImageFormat.RgbResolution640x480Fps30);

 sensor.ColorFrameReady += new

EventHandler<ColorImageFrameReadyEventArgs>(sensor_ColorFrameReady);

 sensor.DepthStream.Enable(DepthImageFormat.Resolution320x240Fps30);

 sensor.SkeletonStream.Enable();

 sensor.SkeletonFrameReady += new

EventHandler<SkeletonFrameReadyEventArgs>(sensor_SkeletonFrameReady);

 //sensor.ElevationAngle = 10;

 Application.Current.Exit += new ExitEventHandler(Current_Exit);

 InitializeSpeechRecognition();

 }

 void Current_Exit(object sender, ExitEventArgs e)

 {

 if (speechRecognizer != null)

 {

 speechRecognizer.RecognizeAsyncCancel();

 speechRecognizer.RecognizeAsyncStop();

 }

 if (sensor != null)

 {

 sensor.AudioSource.Stop();

 sensor.Stop();

 sensor.Dispose();

 sensor = null;

 }

 }

 void MainWindow_KeyDown(object sender, KeyEventArgs e)

 {

 if (e.Key == Key.C)

 {

 ToggleCircles();

 }

 }

 void sensor_ColorFrameReady(object sender, ColorImageFrameReadyEventArgs e)

 {

 using (var image = e.OpenColorImageFrame())

86

 {

 if (image == null)

 return;

 if (colorBytes == null ||

 colorBytes.Length != image.PixelDataLength)

 {

 colorBytes = new byte[image.PixelDataLength];

 }

 image.CopyPixelDataTo(colorBytes);

 int length = colorBytes.Length;

 for (int i = 0; i < length; i += 4)

 {

 colorBytes[i + 3] = 255;

 }

 BitmapSource source = BitmapSource.Create(image.Width,

 image.Height,

 96,

 96,

 PixelFormats.Bgra32,

 null,

 colorBytes,

 image.Width * image.BytesPerPixel);

 videoImage.Source = source;

 }

 }

 void sensor_SkeletonFrameReady(object sender, SkeletonFrameReadyEventArgs e)

 {

 using (var skeletonFrame = e.OpenSkeletonFrame())

 {

 if (skeletonFrame == null)

 return;

 if (skeletons == null ||

 skeletons.Length != skeletonFrame.SkeletonArrayLength)

 {

 skeletons = new Skeleton[skeletonFrame.SkeletonArrayLength];

 }

 skeletonFrame.CopySkeletonDataTo(skeletons);

 }

 Skeleton closestSkeleton = skeletons.Where(s => s.TrackingState ==

SkeletonTrackingState.Tracked)

 .OrderBy(s => s.Position.Z *

Math.Abs(s.Position.X))

 .FirstOrDefault();

 if (closestSkeleton == null)

 return;

 var head = closestSkeleton.Joints[JointType.Head];

 var rightHand = closestSkeleton.Joints[JointType.HandRight];

 var leftHand = closestSkeleton.Joints[JointType.HandLeft];

 var centerHip = closestSkeleton.Joints[JointType.HipCenter];

 var centerShoulder = closestSkeleton.Joints[JointType.ShoulderCenter];

 if (head.TrackingState == JointTrackingState.NotTracked ||

 rightHand.TrackingState == JointTrackingState.NotTracked ||

 leftHand.TrackingState == JointTrackingState.NotTracked ||

 centerHip.TrackingState == JointTrackingState.NotTracked ||

 centerShoulder.TrackingState == JointTrackingState.NotTracked)

 {

 return;

 }

87

 SetEllipsePosition(ellipseHead, head, false);

 SetEllipsePosition(ellipseLeftHand, leftHand, leftHandactive);

 SetEllipsePosition(ellipseRightHand, rightHand, rightHandactive);

 SetEllipsePosition(ellipsecenterShoulder, centerShoulder, false);

 SetEllipsePosition(ellipsecenterHip, centerHip, false);

 Controle2(head, rightHand, leftHand, centerHip, centerShoulder);

 }

 private void SetEllipsePosition(Ellipse ellipse, Joint joint, bool isHighlighted)

 {

 if (isHighlighted)

 {

 ellipse.Width = 50;

 ellipse.Height = 50;

 ellipse.Fill = activeBrush;

 }

 else

 {

 ellipse.Width = 20;

 ellipse.Height = 20;

 ellipse.Fill = inactiveBrush;

 }

 CoordinateMapper mapper = sensor.CoordinateMapper;

 var point = mapper.MapSkeletonPointToColorPoint(joint.Position,

sensor.ColorStream.Format);

 Canvas.SetLeft(ellipse, point.X - ellipse.ActualWidth / 2);

 Canvas.SetTop(ellipse, point.Y - ellipse.ActualHeight / 2);

 }

 #region Controle2

 private void Controle2(Joint head, Joint rightHand, Joint LeftHand, Joint

centerHip, Joint centerShoulder)

 {

//** MotorDIREITO ************************

 if (rightHand.Position.X <= (centerShoulder.Position.X + 0.3))

 {

 RodaDireita = "DX000"; //Para o motor direito

 rightHandactive = false;

 }

 else

 {

 if (rightHand.Position.Y < head.Position.Y & rightHand.Position.Y >

centerShoulder.Position.Y)

 {

 //equaçao de reta para obtençao do valor da velocidade de acordo com a

posiçao da mao [conversao de float para int]

 VelRodaDireita = (int)Math.Ceiling((155 / (head.Position.Y -

centerShoulder.Position.Y)) * (rightHand.Position.Y - centerShoulder.Position.Y) + 100);

 if (VelRodaDireita < 180)

 {

 VelDireita = "100";

 }

 else

 {

 VelDireita = "240";

 }

 //VelDireita = Convert.ToString(VelRodaDireita); //converte o valor da

velocidade em string

 RodaDireita = "DF" + VelDireita; //Liga motor dieito para frente

 rightHandactive = true;

 }

 if (rightHand.Position.Y < centerShoulder.Position.Y & rightHand.Position.Y

> centerHip.Position.Y)

 {

 VelRodaDireita = (int)Math.Ceiling((-155 / (centerShoulder.Position.Y-

centerHip.Position.Y)) * (rightHand.Position.Y - centerHip.Position.Y) + 255);

88

 if (VelRodaDireita < 180)

 {

 VelDireita = "100";

 }

 else

 {

 VelDireita = "240";

 }

 RodaDireita = "DA" + VelDireita; //Liga motor direito para traz

 rightHandactive = true;

 }

 }

//**Motor ESQUERDO************************

 if (LeftHand.Position.X >= (centerShoulder.Position.X - 0.3))

 {

 RodaEsquerda = "EX000"; //Para o motor esquerdo

 leftHandactive = false;

 }

 else

 {

 if (LeftHand.Position.Y < head.Position.Y & LeftHand.Position.Y >

centerShoulder.Position.Y)

 {

 RodaEsquerda = "EF100"; //Liga motor dieito para frente

 leftHandactive = true;

 }

 if (LeftHand.Position.Y < centerShoulder.Position.Y & LeftHand.Position.Y >

centerHip.Position.Y)

 {

 RodaEsquerda = "EA100"; //Liga motor direito para traz

 leftHandactive = true;

 }

 }

 Roda = RodaDireita + RodaEsquerda;

 if (Roda != RodaOld)

 {

 Verify.AppendText(Roda);

 Verify.AppendText(Convert.ToString(VelRodaDireita));

 SerialCmdSend(Roda);

 //SerialCmdSend(SerialData.Text);

 //SerialData.Text = "";

 RodaOld = Roda;

 }

 }

 #endregion

 #region Controle1

 private void Controle1(Joint head, Joint rightHand, Joint leftHand, Joint

centerHip, Joint centerShoulder)

 {

 if (rightHand.Position.Y > centerShoulder.Position.Y & leftHand.Position.Y <

centerShoulder.Position.Y)

 {

 //if (!rightHandactive)

 //{

 rightHandactive = true;

 System.Windows.Forms.SendKeys.SendWait("{d}"); // carro anda para a

direita

 //}

 }

 //else

 //{

 // rightHandactive = false;

 //}

 //--

 else if (leftHand.Position.Y > centerShoulder.Position.Y & rightHand.Position.Y

< centerShoulder.Position.Y)

 {

 leftHandactive = true;

89

 System.Windows.Forms.SendKeys.SendWait("{a}"); //carro anda para a

esquerda

 }

 //--

 else if (leftHand.Position.Y > centerShoulder.Position.Y & rightHand.Position.Y

> centerShoulder.Position.Y &

 rightHand.Position.X > centerHip.Position.X + 0.3 & leftHand.Position.X <

centerHip.Position.X - 0.3)

 {

 leftHandactive = true;

 rightHandactive = true;

 System.Windows.Forms.SendKeys.SendWait("{w}"); //carro anda para frente

 }

 //--

 else if (rightHand.Position.Y > centerHip.Position.Y & leftHand.Position.Y >

centerHip.Position.Y &

 rightHand.Position.Y < centerShoulder.Position.Y & leftHand.Position.Y <

centerShoulder.Position.Y &

 rightHand.Position.X > centerHip.Position.X + 0.3 & leftHand.Position.X <

centerHip.Position.X - 0.3)

 {

 leftHandactive = true;

 rightHandactive = true;

 System.Windows.Forms.SendKeys.SendWait("{s}"); //carro anda para traz

 }

 //--

 else if (rightHand.Position.Y < centerHip.Position.Y & leftHand.Position.Y <

centerHip.Position.Y &

 rightHand.Position.X > centerHip.Position.X + 0.3 & leftHand.Position.X <

centerHip.Position.X - 0.3)

 {

 leftHandactive = true;

 rightHandactive = true;

 System.Windows.Forms.SendKeys.SendWait("{q}"); //carro para

 }

 else

 {

 leftHandactive = false;

 rightHandactive = false;

 }

 //--

 }

 #endregion

90

Apêndice 4 : Configuração da tela de aplicação

<Window x:Class="KinectPowerPointControl.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Kinect Car Control"

 Height="480"

 Width="640"

 WindowState="Maximized">

 <Viewbox Stretch="Uniform">

 <Grid>

 <Image Name="videoImage"

 Width="640"

 Height="480"></Image>

 <Canvas Background="Transparent">

 <Ellipse Fill="Red"

 Height="20"

 Width="20"

 Name="ellipseLeftHand"

 Stroke="White" />

 <Ellipse Fill="Red"

 Height="20"

 Width="20"

 Name="ellipseRightHand"

 Stroke="White" />

 <Ellipse Fill="Red"

 Height="20"

 Width="20"

 Name="ellipseHead"

 Stroke="White" />

 <Ellipse Fill="Yellow"

 Height="20"

 Width="20"

 Name="ellipsecenterShoulder"

 Stroke="Black" />

 <Ellipse Fill="Yellow"

 Height="20"

 Width="20"

 Name="ellipsecenterHip"

 Stroke="Black" />

 <RichTextBox Height="47" Name="Commdata" Width="216" Canvas.Left="7"

Canvas.Top="421" Background="White" BorderBrush="Black" />

 <Button Content="Conectar" Height="24" Name="Conectar" Width="62"

Canvas.Left="7" Canvas.Top="368" Click="Conectar_Click_1" />

 <TextBox Height="20" Name="Comm_Port_Names" Width="63" Text="COM4"

Canvas.Left="7" Canvas.Top="397" BorderBrush="Black" HorizontalContentAlignment="Center"

VerticalContentAlignment="Center" />

 <Button Content="Enviar" Height="24" Name="Enviar" Width="67"

Canvas.Left="76" Canvas.Top="369" Click="Enviar_Click_1" />

 <TextBox Height="20" Name="SerialData" Width="146" Canvas.Left="76"

Canvas.Top="397" BorderBrush="Black"/>

 <TextBox Canvas.Left="237" Canvas.Top="420" Height="47" Name="Verify"

Width="394" BorderBrush="Black" />

 </Canvas>

 </Grid>

 </Viewbox>
</Window>

