UNIVERSIDADE DE SAO PAULO

ESCOLA DE ENGENHARIA DE SAO CARLOS

Controle de robds moveis utilizando
Kinect

MARCOS VINICIUS DA CRUZ CORREA

Orientador: Maximilian Luppe

Sao Carlos
2014

Marcos Vinicius da Cruz Correa

Controle de robdos modveis utilizando
Kinect

Trabalho de Conclusédo de Curso apresentado
a Escola de Engenharia de Séo Carlos, da
Universidade de Séo Paulo

Curso de Engenharia Elétrica com énfase em
eletrbnica

ORIENTADOR: Maximillian Luppe

Séao Carlos
2014

AUTORIZO A REPRODUCAD TOTAL OU PARCIAL QESTE TRABALHO,
POR QUALGQUER MEIQ CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDD E FESQUISA, DESDE QUE CITADA A FOMTE.

da Cruz Corrsa, Marcos Vinicius

DaZdc Controle de robés mévei= utilizando Einect 7 Marcos
Vinicius da Crus Correar orientador Mawimilian Luppe.
Sado Carlo=, Z2014.

Honografia {Graduaclio == Engenharia Elétrica com
infase =m Eletr&nical -— Escola d= Engenhariz de= 2ico
Carlo=s da Tniver=idade d= S8o Paulo, 2014.

i

1. Fimect. Z. Bob#. 2. Arduino. I. Titulo.

Aos meus pais Marcelo e Joana, aos
meus irmdos Mauricio e Izabela e aos
meus amigos de Rep Tocaia.

Agradecimentos

A minha familia pelo apoio e forca que me ajudaram a conquistar esse
sonho.

Aos amigos pelo companheirismo e lealdade.

Ao Departamento de Engenharia Elétrica da Escola de Engenharia Elétrica
de S&o Carlos (EESC) — Universidade de S&o Paulo.

Ao professor doutor Maximilian Luppe por toda ajuda, orientacdo e
dedicagao durante a minha formagao.

Resumo

CORREA, M. V. C. Controle de robds méveis utilizando Kinect. 2014. 77f. Trabalho de
Conclusao de Curso — Departamento de Engenharia Elétrica da escola de Engenharia de
S&o Carlos, Sao Carlos: Universidade de Séao Paulo, 2014.

A alta velocidade de avanco da tecnologia, seja na criacdo de novos recursos ou
no método de producéo, possibilita que tecnologias, que antes eram utilizadas apenas por
grandes companhias ou grandes centros tecnoldgicos, possam ser aplicadas em projetos
mais simples. O controle de robds de forma remota é um exemplo, essa aplicagéo € de
grande impacto em automacéo e pode ser utilizada desde controle de bragos mecanicos a
controle de robds moveis. Este trabalho introduz algumas plataformas roboéticas simples
que sao controladas de formas diferentes e possuem distintos propésitos, demonstrando
a facilidade de criacdo desse tipo de tecnologia e como ela esta se difundindo facilmente,
entretanto é dado um maior foco na utilizacdo do sensor Kinect para controle remoto de
um robd construido utilizando um Arduino UNO. Esse projeto € composto em montagem
do robd, aprendizado da utilizagdo da comunicacdo sem fio Bluetooth, utilizacdo do
sensor Kinect para captura de gestos, criacdo dos controles entre usuario e rob6 e
comunicagdo entre as plataformas Kinect e Arduino. Por fim foi possivel controlar
remotamente o rob6 utilizando duas formas distintas de controle relacionadas a gestos
capturados pelo Kinect, o resultado foi satisfatério com respostas rapidas e eficientes do
robé permitindo uma interface dindmica entre o sistema e o usudario, mas com algumas

limitagces a movimentos bruscos.

Abstract

CORREA, M. V. C. Control of mobile robots using Kinect. 2014. 77f. Course Conclusion
Work — Electrical Engineering — S&o Carlos Engineering School, Sdo Carlos: University of
S&o Paulo, 2014.

The high speed of advancement of technology, on the creation of new resources or
on production methods, enables technologies, that were previously used only by large
companies or large technology centers, can be applied to simpler designs. The controlling
robots remotely is an example, this application is of great impact in automation and can be
used from control of mechanical arms to control of mobile robots. This paper introduces
some simple robotic platforms that are controlled in different ways and have different
purposes, demonstrating the facility of creating this type of technology and how it is
spreading easily, however is given a greater focus on the use of the Kinect sensor for
control remotely a robot built using an Arduino UNO. This project consists in assembling
the robot, the learn of the use of wireless Bluetooth, utilization of the Kinect sensor to
capture gestures, creation of the controls between user and robot and communication
between the Kinect and Arduino platforms. Finally was possible to remotely control the
robot using two different forms of control related to gestures captured by Kinect, the result
was satisfactory with quick and efficient responses from the robot allowing a dynamic
interface between the system and the user, but with some limitations to sudden

movements .

Sumario

I [0] 1o To [1 o> Lo 1SS 21
2. MateriaisS € MEIOUOSccueiviiieieieiee ettt sre e ne e 25
2.1, RODO ettt re e 26
2.2, KINEBCT .ottt 27
JZC T AN {0 (U] 0T T U N [ST RRS 31
2.4, BlUEBTOON. ..ottt 35
2.4.1. Bluetooth eSPeCIfiCACOES........ccccviiieiieie e 36

2.5. Linguagem de programacaio CHccccoveieiieesieeie i se e 37
2.5.1. Programagao orientada & 0bJetOcccoeiiiriiiiiiieeee e 37
2.5.2. VISUAI STUAIO.....cciiiiiieiiee ettt 38

2.6, Eletronica 0O MOTOF.........ooerieiiieiieiicisee et 38

F G O 0] =) (o 1 ST S 41

P T Yo 11112 1= USRS 44
2.8.1. Fluxograma ArdUiNOc.ccceeiieiieiie i 44
2.8.2. Fluxograma KINECL..........cccooieiiiieiie i 46

P2 TR O] o1 1 £0] [PSS 48
3. IMPIEMENTAGAOD. ..o 51
3.1. Implementacao software ArduiNo.ccccoeiieiieiiiiiie e 51

I 200 00t I 1o [[SRR 51
3.1.2. Inicializa configuragao BIUEtOOth..............cccooiiiiiiiiic e 52
3.1.3. ConfiguraGao das POMaS.........ccccueieeieerieiieie e 52
3.1.4. Bluetooth diSPONIVEI?cceeiiiice e 53
3.1.5. Armazena controle enviado pelo Kinect...........c.ccoovvviiiiiiiiniiiniine 53
3.1.6. ALUA NO MOTOT ..ottt s be e 54

3.2. Implementacao SOftWare CH........ccooeiiiiice e 55
0t N O0 o |1 0] [0t SR 55
I 0] o1 1 10 [SR 57
3.2.3. COMUNICAGAOD SEHAIcccveivieiiieie et 61

. RESUIATOSccovenieieiecie ettt ettt st be b reene e 63
4.1. Resultado CoNtrole L. ... 64
4.2. ResUultado CONrOlE 2.......c.ocieiieeiieee et 67
D ANALISE ...ttt ettt st reene e 73
5.1. TrabalNOs fULUIOSccooeiieece et 74
T @] 1] 11 1= Lo 1SR 75
Referéncias BiblIOGrafiCas..........cccoviiiiiiiiice et 77
Apéndice 1: Arduine CONLIOIE L.......ccoocoiiiiiiieiecic et 79
Apéndice 2: Arduing CONLIOIE 2.......c..oiiiiiiiiiiie e 81
ApPENdiCe 3: SOftWAre KINECT ..o 83

Apéndice 4 : Configuracéo da tela de apliCaCanccooeviieiiiiinieieie e 90

Lista de figuras

Figura 1 - Plataforma robotica MOVEl [1]......ccooiiiiiiiiiceeeee e 21
Figura 2 - Plataforma robdtica controlada remotamente [2]cccccvevvvievieiciiccece e 22
Figura 3 - Controle da plataforma robotica [2]ccoeoeveieinenie e 22
Figura 4 - Rob6 participante da competicdo LARC 2014c.ccoevveieieeie e 23
Figura 5 - Controle do Robd Utilizando um Sensor Kinectc.cocvvvvvienencne s 25
FIQUIA 6 = RODO.....cuiiiecc et re e nas 26
Figura 7 - Rede de pontos captados pelo detector infravermelho[4]........ccccovvviiiiiiinnnnn. 28
Figura 8 - Mecanismo de deteccao de profundidade[4]ccccoovveeiiiiiiieie e 28
FIQUIa 9 - KINECE [5] ..ot 29
Figura 10 - Campo de Visdo do sensor Kinect [6]cccvvveveiiieiieiiiic e 29
Figura 11 - Esquematico da Arquitetura do Sistema do Kinect [7]ccccoovvvivienennicnennnn. 30
Figura 12 - Rastreamento do eSQUEIETO [5]....ccveiveiieieiie e 31
Figura 13 - Arquitetura da Placa Arduino Uno [11].....cccccooeiiiiiinininieeeeese s 33
Figura 14 - ATMEGASB28 [L12]....ccviiiieiiieiesie ettt st 34
Figura 15 - Shield Bluetooth para Arduingcoceeeeiiiineneseeeseee s 36
Figura 16 - Circuito L298N [18]ccveviiieiieie ettt 40
Figura 17 - Shield Ponte H para Arduino[19].........coouririiiiiiieseneseesee s 40
Figura 18 - Esquematico de ligagdes COm 0S COMPONENLESccccveereieerieeiesieireeie e 42
Figura 19 - ESQUEMALICO de HHGACOEScivveeeirieiieeie ettt 43
Figura 20 - Fluxograma do Software do Arduingccceeeiereninineninee s 45
Figura 21 - FIuXograma KINECLccoiiiiiieieiie et 48
Figura 22 - Juntas de CONIOIE.........ciiiiiiieee s 48
FIQUIA 23 - CONIOIE L ..ottt e re e e sne e 49
FIQUIA 24 - CONLIOIE 2 ... b 50
Figura 25 - CoNeXa0 TEra TEIMMcccuieiiiie ettt re e nas 56
Figura 26 - Tela de envio e recebimento de dados Tera Termccceovvveierenenenenenienn 57
Figura 27 - Equacéo de velocidade de rotaG8o para trdscceceveeereeeeienene e 58
Figura 28 - Equacéo de velocidade de rotacdo para frente...........ccocovvvevieieiene e 58
Figura 29 - Velocidade d0S MOTOIEScceeiuieiiieiee ittt 59
Figura 30 - Tela da apliCAGAODcoiiiiiiie e 63
Figura 31 - Aplicag8o em fUNCIONAMENTOcoeiiieieiie e 64
Figura 32 - Controle 1- rob0 Parado.........ccceoeiiiiiiiiiieeie s 65
Figura 33 - Controle 1 - robd vira para €SQUEITAc.ccvevveeieieeiiecie e 65
Figura 34 - Controle 1 - rob0 vira para a direita...........ceoeveererenenenesieeese s 66
Figura 35 - Controle 1 - robd se movimenta para frentecccceevveeeiecii e, 66
Figura 36 - Controle 1 - robd se movimenta para trazZ............ccoceeereneninienenese s 67
Figura 37 - Controle 2 - robd Parado...........c.ccveiieiieeieiie et 68
Figura 38 - Controle 2 - robd para frente com velocidade minima.........c.ccccooceeveviviieinenee. 68
Figura 39 - Controle 2 - rob6 para frente com velocidade Maximaccoceoverennenennnn. 69
Figura 40 - Controle 2 - robd para traz com velocidade minimacccccvevevieiiciecnenne. 69

Figura 41 - Controle 2 - rob0 para traz com velocidade Maxima............ccoceverienennenenen. 70

file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445786
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445792
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445801
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445803
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445804
file:///C:/Users/Vinicius%20Correa/Documents/Faculdade%20USP/TCC/TCC-Final_V2.doc%23_Toc405445805

Figura 42 - Controle 2 - roda direita para traz, roda esquerda para frentecc.coovveenne. 70

Figura 43 - Controle 2 - roda direita para frente, roda esquerda paratrazc.cccoeueee.. 71
Figura 44 - PWM COM dULY CYCIE 00ouvieiiiiiiiieiiieiieeee s 71
Figura 45 - PWM comM AUty CYCIE 39%0c.ecviiieiieie et 72
Figura 46 - PWM com dUty CYCIE 940c.ooeiiiecieee e 72

FIGUIA AT - PWIM ..ottt ettt et e s e sta e teane e naenaeeneenneennas 73

Lista de tabelas

Tabela 1 - LOQICa PONIE H....ocoooieee e 39
TADEIA 2 - CONBXOES ...ttt sttt sttt e st ete st e s be et e aneesreenteenee e 41
Tabela 3 - String de velocidade do CONLrole 2...........coveiiiieiiece e 53
Tabela 4 - RelaGao grafiCo € JUNTAScveveieiiie e 58

Tabela 5 - Valores Correspondentes @ StriNgcccevvereeieiiere e 59

1. Introducao

A robética € um tema de repercussdo na atualidade, que gera grandes
expectativas para um futuro proximo e libera a imaginagdo do homem que extrapola do
mundo teorico da engenharia e computagdo para 0 mundo dos filmes e livros que
imaginam as utiliza¢des e consequéncias dessa tecnologia.

Inicialmente a robotica foi idealizada para fins de automatizacdo de processos
industriais, em que as empresas procuravam se equipar com maquinas que fossem
OOcapazes de produzir, automaticamente, determinadas tarefas. E assim foi por muito
tempo a Unica utilizacdo dessa forma de tecnologia, com alto custo de implementacéo e
de manutencdo. No entanto o desenvolvimento e melhoria da tecnologia, como um todo,
se expandiu rapidamente, seus principais componentes de fabricagdo se tornaram
baratos e surgiu diversificacdo de seu uso ganhando expresséo significativa no dia a dia
das pessoas. Hoje qualquer pessoa pode ter conhecimentos minimos, acesso facil a
informacéao e condigdes de se “aventurar” com a robdtica.

E possivel encontrar varios projetos que utilizam a robética com diversas
funcionalidades distintas, a Figura 1 ilustra uma plataforma robética que se movimenta de

forma autbnoma e evita colisdes utilizando um sonatr.

Figura 1 - Plataforma robética movel [1]

A Figura 2 apresenta um robd que utiliza um Arduino para controle e um sonar
para evitar colisdes frontais, no entanto essa plataforma se diferencia do exemplo anterior
por ser controlada remotamente, para controle é utilizado um controle do videogame
PlayStation ou WII (Figura 3).

Figura 2 - Plataforma robética controlada remotamente [2]

Figura 3 - Controle da plataforma robdtica [2]

Existem varios competicbes que agrupam pessoas de diversas idades que visam
disseminar e ampliar o conhecimento sobre a robética, um exemplo desse tipo de evento
€ 0 LARC (Latin American Robotics Competition), o rob6 da Figura 4 foi um dos
participantes da edi¢cdo da competicdo de 2014 e € um robd autbnomo que utiliza um
Ardunio e uma Raspberry Pi para controle, diversos sensores e uma camera, o objetivo
desse rob06 € identificar cubos de uma determinada cor em um ambiente, recolher o

méaximo possivel e posicionar em um outo rob6 aquético para fazer o transporte.

Figura 4 - Rob6 participante da competi¢do LARC 2014

Esse tipo de iniciativa e a diversidade de projetos que se pode encontrar que
utilizam robdtica demonstra como essa pratica se expandiu para além das areas
comerciais e conquistou as universidades, escolas e a qualquer individuo que se
interesse.

Esse projeto tem como intuito o controle de um robé madvel utilizando o sensor
Kinect da Microsoft, criado para utilizacdo em jogos com movimentos pelo console
Xbox360, 0 sensor capta 0s movimentos do usuario e passa para o computador por cabo
USB, este por sua vez possui um programa com alguns movimentos pré-estabelecidos
gue se relacionam com comandos que devem ser enviados ao rob6, dessa forma, quando
um movimento € reconhecido o seu comando correspondente € enviado via Bluetooth
para o controlador do robd, este controlador € um Arduino UNO, ele recebe os comandos
e identifica qual deve ser a acdo aplicada no rob6 e entdo atua nos motores fazendo com

que ele se movimente, relacionando assim o movimento do usuario com o movimento do
robd, todo o processo de funcionamento esta ilustrado na figura 5.

No capitulo 2 serdo apresentados os materiais e métodos utilizados no projeto,
definindo as caracteristicas e fungdes dos componentes utilizados e conexdes feitas entre
eles. Serdo apresentados também os fluxogramas dos softwares criados introduzindo o
funcionamento dos programas.

No capitulo 3 sera demonstrado toda a implementagcédo dos softwares de controle
que foram feitas para atingir o resultado pretendido, explicando toda a l6gica e sequéncia
de criacao.

No capitulo 4 serdo apresentados os resultados, demonstrando que o objetivo foi
alcangado e que todo o sistema tem boa resposta aos estimulos do usuario.

No capitulo 5 foi feita uma analise de todo o projeto, expondo os pontos em que foi
necessario executar algumas mudancas inesperadas ao decorrer da criacdo do sistema e
qual foram essas mudancgas. Nessa sec¢do também s&o citados pequenos erros que
podem ocorrer no sistema implementado e idealiza algumas formas de correcao.

No capitulo 6 foi feita uma conclusédo sobre o projeto, discutindo os conhecimentos
adquiridos e utilizados durante o trabalho. Foi confirmado que o objetivo foi atingido
satisfatoriamente tendo como resultado final um sistema que possui 0 funcionamento

pretendido.

2. Materiais e Métodos

Conforme foi dito na introducdo esse projeto tem como intuito utilizar o sensor
Kinect da Microsoft para capturar e reconhecer movimentos de um usuario e atribuir a
eles comandos, os quais serdo enviados via comunica¢ao Bluetooth para o controlador do
rob6d, um Arduino UNO, que traduz os comandos recebidos e atua nos motores do robd
fazendo com que ele se movimente, criando assim um sistema que controla um robd

movel através de gestos feitos por um usuario.

Computador

L 4

) =

Controlador do Robod
robo

Figura 5 - Controle do Rob6 Utilizando um Sensor Kinect

Para criar a l6gica de reconhecimento de movimentos do usuario serd utilizado o
software Microsoft Visual C#, no qual sera usada a linguagem de programacéao orientada
a objeto C#, e o cédigo que interpretara o comando enviado remotamente a fim de

controlar o rob6 sera escrito na linguagem e plataforma prépria do Arduino.

2.1. Robbd

Para a montagem da plataforma € necessario as pecas que correspondem a sua
movimentacao e for¢ca, como as rodas e os motores, além disso, é necessario o circuito
de controle que nesse caso serd um Arduino UNO e ainda do circuito de transmissao e
recepcado de dados, ou seja, o shield do Bluetooth, também se deve utilizar uma eletrbnica
de controle para os motores, para isso foi escolhida uma ponte H e por fim como
alimentagcdo havera quatro pilhas do tipo AA de 1,5V. Todos esses componentes serao
integrados em um chassi e corretamente interligados, de acordo com a Figural7 e Figura

18, para criar a plataforma robotica mével.

e Arduino UNO e 1 Chassi

e 2 Motores DC e Shield Ponte H
e 2 Rodas e Shield Bluetooth
e 1 Roda de rolamento e 4 Pilhas

3

.0
Xy

< i <
- 3

Figura 6 - Rob6

27

2.2. Kinect

O Kinect[3] tem mudado a forma como as pessoas interagem com a tecnologia,
criando uma forma mais natural e espontanea com a utilizacdo de simples movimentos ou
por comandos de voz.

O baixo custo ligado ao alto desempenho do sensor Kinect fez com que esse
dispositivo, criado pela Microsoft para fins de entretenimento com o videogame Xbox360,
ganhasse espago nas areas de computacdo, eletrdbnica e engenharia, onde
desenvolvedores tem utilizado os seus muitos recursos para criar interagdes entre homem
e maquina de uma forma mais direta.

O Kinect é composto por diversos sensores que trabalham em conjunto
recolhendo dados do usuario e processando por diversos algoritmos robustos como o de
rastreamento do esqueleto. Ele possui um sistema de imageamento 3D que € composto
por dois dispositivos, um projetor infravermelho e um detector infravermelho. O
funcionamento deles em conjunto permite a criagcdo de imagens com informacfes de
posicdo e profundidade da seguinte forma, o projetor emite uma rede de pontos
infravermelho que sai do Kinect em projecao cénica (Figura 7) eles incidem na superficie
dos objetos presentes no ambiente e refletem parte da luz, o detector capta essas
reflexdes e um processamento no Kinect calcula o tempo que cada ponto levou para
retornar ao dispositivo (Figura 8), com essa medida é possivel entdo estimar a distancia
do sensor referente a cada ponto criando um vetor de dados tridimensional que vai de 40
a 2000 pontos, o valor de cada ponto se relaciona diretamente com a distancia em
milimetros[4]. Cada distancia corresponde a uma valor na escala de cinzas, o preto
representa que ndo ha valor valido de distancia para o pixel, isso pode ocorrer por trés
motivos, primeiro, o ponto esta muito distante e ndo se pode determinar com precisdo a
distancia, segundo, 0 ponto est4 muito perto o que se caracterizaria por um ponto cego da
camera e do projetor devido a suas limitacdes, ou terceiro, houve pouca reflexdo oriunda

desse ponto, 0 que pode ocorrer devido a superficies polidas [5].

28

Figura 8 - Mecanismo de deteccdo de profundidade[4]

O Kinect possui também uma camera colorida responsavel por captar as imagens
coloridas que séo utilizadas para reconhecimento de movimentos e para projecao em tela
e ainda é composto por quatro arrays de microfones, os quais captam o audio para
utilizacdo nos comandos de voz, utilizando os dados de imagens ele também é capaz de
fazer reconhecimento facial [5]. O Kinect possui também um motor que possibilita o

sensor mudar sua inclinacéo, utilizado para fins de calibragéo (Figura 9).

!(INECT
(a)

Projeto Camera Camera
Infravermelho RGB infravermelho

—

.

Figura 9 - Kinect [5]

Algumas caracteristicas importantes do Kinect estao listadas na sequéncia:
e Campo de visao (Figura 10)
» Horizontal: 57°.
» Vertical: 43°.
» Inclinagdo: 27°.
» Sensor de profundidade: 1,2m — 3,5m.

Figura 10 - Campo de Visdo do sensor Kinect [6]

e Fluxo de dados
» 320 x 240, 16-bits, sensor profundidade, 30 frames/sec.
> 640 x 480, 32-bits, camera colorida, 30 frames/sec.
> 16-bit dudio, 16KHz.

29

30

o “Skeletal Traking System”
» Detecta até 6 pessoas, somente duas ficam ativas.
» Detecta 20 juntas por pessoa ativa.

O Kinect possui seu proprio processamento de imagem conhecido como o
Primesense’s PS1080-A2 System on Chip (SoC), processador que trabalha com as
imagens capturadas pela camera RGB e infravermelha [7] (Figura 11).

magem 3D Irr'agerr Colorida B corigatario
4 B cocione

Laser IR mazem 30 CMOS Imagem Colorida CMOS

@ @
L

2 Microfones ({(#)) —"'_.;

Audio 4 ;
4fontes

externas de
. audio digital

usez.o

Cristal 12MHz "U'“l,L

Figura 11 - Esquematico da Arquitetura do Sistema do Kinect [7]

A grande inovacdo por traz do sensor Kinect estd no seu algoritmo de
rastreamento de esqueleto, em que o corpo de uma pessoa é representado por um
namero de juntas as quais representam partes do corpo como cabeca, mado, ombro e
bracos. Para conseguir chegar a um algoritmo eficaz e eficiente a equipe da Microsoft,
liderada por Jamie Shotton, escolheu fazer um reconhecimento das partes do corpo por
pixel como um passo intermediario. Eles consideraram a segmentacédo das imagens de
profundidade como uma classificacdo por pixel. Aavaliar cada pixel separadamente evitou
a procura por combinagbes entre diferentes juntas do corpo. A equipe gerou diversas
imagens de profundidade de pessoas de diversos portes e tamanhos em diversas poses
elas foram amostradas para um banco de dados de captura de movimentos o qual foi
utiizado como dados de treinamento, em seguida foi realizado um treino de decisdo de

classificagdo aleatoéria, 0 que evita super ajuste por utilizagdo de muitas imagens de

31

treino. Por fim, modelos espaciais inferidas pela distribuicdo por pixel sdo calculadas
utilizando variacdo média resultando em um plano composto pelas juntas em 3D. A
sequéncia do rastreamento do esqueleto pelo Kinect esta ilustrada na Figura 12,
primeiramente se realiza a classificacdo das partes do corpo por pixel, depois se supdem
as juntas do corpo achando um centroide global de probabilidade de massa através de
variagdo média, em seguida se mapeia as juntas do esqueleto para entédo tracar a forma
de um esqueleto considerando continuidade temporal e conhecimento prévio de um

banco de dados de traino [5].

Figura 12 - Rastreamento do esqueleto [5]

2.3. Arduino UNO

O Arduino[8] é uma plataforma de software aberto (open-core) utilizado
amplamente para prototipagem, cujo objetivo é a flexibilidade, é de facil aprendizado,
com muitas referéncias e exemplos online e em livros, possui diversas bibliotecas ja
implementadas pela equipe Arduino ou por usuarios que as disponibilizam de forma
gratuita, isso acelera a criacdo de novos projetos e evita o retrabalho.

O microcontrolador da plataforma é programado utilizando uma linguagem padrao
do Arduino que é baseada em Wiring[9] e a plataforma de desenvolvimento é baseada em

Processing[10]. Ambos os sistemas tem em comum 0s seguintes aspectos:

e Sao funcionais em Linux/ GNU/ Mac OS/ Windows.
e Mais de 100 bibliotecas.

e Boa documentacéo.

32

O Wiring € uma linguagem de programacdo open-source para framework para
microcontroladores, ele permite criar programas com o intuito de controlar diversos
periféricos e gerar experiéncias fisicas ou iterativas. Foi criada por designers com a ideia
de encorajar os iniciantes a interagir com experts e trocarem ideias e conhecimentos. Os
microcontroladores da Atmel [11] sdo compativeis com o Wiring e eles que sé&o utilizados
nas placas Arduino.

O Processing € uma linguagem de programacdo e uma plataforma de
desenvolvimento. Foi idealizado para facilitar o aprendizado de software com artes visuais
e também do aprendizado da arte visual utilizando tecnologia. Inicialmente criado como
um programa que funcionava como um caderno de desenho para ensinar fundamentos de
linguagem de programacéo de forma visual.

Utilizando esses dois sistemas, juntamente com microcontroladores da Atmel, foi
criado o sistema do Arduino.

Nesse projeto sera utilizada a placa Arduino UNO (Figura 13) que possui as

seguintes especificacdes:

e Microcontrolador ATmega328. e Um Botdo de Reset.
e 14 pinos de entrada/saida digitais, o Tenséo de operacéo de 5V.
no qual 6 podem ser usados o Tenséo de alimentacéo de 7-12V.
como saidas PWM. e Flash Memory (ATmega328)
e 6 pinos de entradas analdgicas. 32Kb.
e Gerador de clock de 16MHz. e SRAM (ATmega328) 2Kb.

e Conexdo USB. e EEPROM (ATmega328) 1Kb.

33

Regulatensdo (conector USB tipo B
DC para 5V.

Impede que a USB do
computador seja danificada em
caso de sobrecorrente.
{ acima de 500 mA)

Botdo de

Conjunto microcontrolador e
Reset

cristal que faz a interface USB com
o computador

Conector
DC

Compara se a tensdo DC esta presente,
Se ndo estiver, deixa que a tensdo da

USB Alimente o circuito. Conector para gravagao ICSP,

do ATMEGA16U2

Regula a tensdo DC
para3,3V.

Led conectado ao pino 13
" do arduino

-~ Leds de status da comunicagdo seria

Conjunto microcontrolador e Entre placa e computador

cristal, responsavel pelo controle
e leitura de todos os pinos
da placa .

Os sinais em amarelo e vermelho
== Indicam dois pinos que estio em
curto

Caso utilize esses sinais no projeto,
i~ tome cuidado pois estdo conectados
ao outro microcontrolador para
gravagao
Conector para gravagdo ICSP do ATMEGA328

Figura 13 - Arquitetura da Placa Arduino Uno [11]

Diferentes microcontroladores séo utilizados para as diversas plataformas Arduino,
nesse projeto onde sera utilizado o Arduino UNO o microcontrolador € o ATmega328
(Figura 14), é um componente que trabalha com 8 bits com arquitetura RISC e
encapsulamento DIP28. Ele possui uma memoéria Flash de 32Kb (512 bytes séo utilizados
pro bootloader), 2Kb de Ram e 1Kb de EEPROM, ele pode operar em até 20MHz, no
entanto o Arduino UNO funciona com 16Mhz. Possui 28 pinos, nos quais 23 podem ser
utilizados como 1/0. Esse microcontrolador pode operar com tensfes baixas, como 1,8V,
no entanto com o limitante de clock de 4MHz, tem como periféricos uma USART de
250kbps, uma SPI que vai até 5MHz e uma 12C que pode ir até 400KHz. E composto
ainda por um comparador analogico interno, timers e 6PWMs. A corrente maxima por
pino é 40mA, todavia a soma da corrente no Cl ndo pode ser superior a 200mA [12]. A
placa possui também um ATmega16U2 que serve como “ponte” entre a porta USB do
computador e a porta serial principal do processador. A seguir estdo listadas suas

caracteristicas:

34

THE
UNOFFICIAL

ARDUINO
&
ATMEGA328
FINCUT DIACRAM

| RESET == PONTS == P(6 —o

EB S o — o0 —
- o - o

EE- w0~ PONTIS | P02 e

oc28 INTL = PCINTIS (= PD2 —e

o rcs oy -
o e — o2 — NGRS
o—{ P03 — ponTn — OG-
o 7z pemo —E-7

1
2
3
R
5
6
7
8
9

o [N R
0 - XX —{ FCNT20 - P04 e §
(oo B8,
0SC1 — XTALl — PONTE — PBS —e E
052 — XTAL2 — PONTT - PaT —e <
0<08 T~ PONTZ - PDS —
0C0A ANO I POINT22 - PD6 —o

AIN1 == POINTZ3 = PD7 —e

BB
k1~ <0~ PONTO |~ PBO e

Figura 14 - ATMEGA328 [12]

e Arquitetura Harvard e 3 temporizadores/contadores

e 8bhits e USART

e RISC e Comunicagéo SPI

e Flash Memory 32Kb e 6 conversores AD de 10 bits

e SRAM 2Kb e Tensdo de operagdo entre 1,8 -
e EEPROM 1Kb 5,5V

e 32 registradores de uso geral

35

2.4. Bluetooth

O Bluetooth (Figura 15) é uma tecnologia de comunicagdo sem fio, foi criado em
1994 por um grupo de engenheiros da empresa sueca Ericsson, essa ideia foi idealizada
como alternativa aos cabos de dados serial RS-232. Ela tornou possivel a troca de dados
entre pequenas distancias usando transmisséo a radio. Ele opera em uma banda de 2,4 a
2,485 GHz, usando espectro de dispersao, sinal full-duplex a uma velocidade de 1600
hops/sec [13].

Em 1998 as companhias Ericsson, Intel, Nokia, Toshiba e IBM se juntaram para
formar o Grupo de Interesse Especial Bluetooth (Bluetooth Special Interest Group - SIG),
dessa forma o Bluetooth pertence a todas as empresas que trabalham em conjunto para
preservar e melhorar a tecnologia.

Alguns outros dispositivos também utilizam as ondas de radio para transmisséo de
dados, exemplos sdo a Televisdo, radio FM e celulares, a diferenca é que esses
dispositivos transmitem para longas distancias, enquanto que o Bluetooth trabalha
somente na Rede de Area Pessoal (Personal Area Network - PAN) [14].

Essa tecnologia foi criada para facilitar a utilizagdo de alguns periféricos a fim de
substituir os cabos, como em fone de ouvido e teclado, no entanto com a sua
popularidade, baixo custo e bom desempenho ganhou o mercado em diversas areas
como a automobilistica, onde é possivel realizar ligag6es telefénicas através do veiculo, e
saude com monitoramento e aquisicao de dados para uso médico.

Conexdes entre dispositivos eletrbnicos com Bluetooth ativo permite a
comunicacdo em pequenas distancias, essas conexdes sdo conhecidas como Piconets.
Piconets séo estabelecidos dinamicamente e automaticamente quando dispositivos com a
tecnologia ativa estdo dentro do raio de alcance.

Os dispositivos em um Piconet podem se comunicar simultaneamente com até
sete dispositivos dentro de um Unico Piconet, e ainda, cada dispositivo também pode
pertencer a varios Piconets ao mesmo tempo, o que significa que existem diversas formas

de conexdes entre os dispositivos Bluetooth [15].

36

2.4.1. Bluetooth especificacdes

e Espectro: a tecnologia Bluetooth opera na industria, ciéncia e area médica em uma
banda de 2,4 a 2,485GHz, usando espectro de dispersao, sinal full-duplex e
velocidade de 1600 hops/sec [15].

o Interferéncia: a capacidade de salto de frequéncia adaptativa da tecnologia
Bluetooth (Adaptative frequency hopping - AFH) foi criada para minimizar a
interferéncia entre dispositivos que utilizam a banda de 2,4GHz. Isso funciona da
seguinte maneira, a tecnologia detecta outros dispositivos que estdo utilizando o
espectro e evita as frequéncias que eles estdo utilizando. Esse pulo adaptativo
entre 79 frequéncias com intervalos de 1 MHz gera uma grande imunidade a
interferéncias, para 0s usuarios isso mantem a performance mesmo se outras

tecnologias estéo sendo utilizadas ao mesmo tempo do Bluetooth [15].

e Alcance: o alcance varia de acordo com a classe sendo utilizada, existem trés [15].

> Classe 3 : alcance de 1 metro a 3 metros
> Classe 2: alcance de até 10 metros — mais comum e utilizado em celulares

> Classe 1: alcance de até 100 metros — utilizado na industria

e Poténcia: A classe mais utilizada é a classe 2 a qual utiliza 2,5mW de poténcia,

uma das principais caracteristicas da tecnologia é o baixo consumo [15].

Figura 15 - Shield Bluetooth para Arduino

37
2.5. Linguagem de programacao C#

A medida que houve um avanco na computagdo, com o passar dos anos, tanto o
hardware como o software foram sofrendo mudancas e adaptacbes. No caso da
programacéo as linguagens de alto nivel ganharam grande atencao por facilitar a criagéo
e implementacdo de softwares. A linguagem C € um grande exemplo de linguagem de
alto-nivel muito utilizada na atualidade.

No entanto a alta demanda de softwares mais robustos gerou a necessidade de
acelerar a construcdo de programas, a alternativa encontrada foi um novo tipo de
programacdo, que deixaria de ser estruturada e passaria a ser orientada a objeto,
exemplos sdo o C++ e 0 Java.

Sem muita demora surgiram novas variaveis no cotidiano dos programadores, a
primeira foi a Word Wide Web, devido a isso se tornou necessério a criagdo de softwares
que funcionassem nos PCs e também de aplicativos baseados na web para serem
acessados e usados via internet, a segunda variavel foi o aparecimento dos dispositivos
moveis. Para tratar dessas necessidades a Microsoft criou a iniciativa .NET e a linguagem
de programacgéao C#.

A plataforma .NET possibilita que aplicativos baseados na web possam ser
distribuidos para uma grande variedade de dispositivos e para PCs, a linguagem de
programacdo C# foi desenvolvida por uma equipe liderada por Anders Hejlsberg e Scott
Wiltamuth, projetada especificamente para a plataforma .NET, ela tem raizes em C, C++ e
Java.

O C# é uma linguagem de programacao visual dirigida por eventos e orientada a
objeto, onde os programas sdo criados usando-se uma IDE (Integrated Development
Enviroment - ambiente de desenvolvimento integrado). Utilizando a IDE o desenvolvedor
cria, executa, testa e depura os programas, 0 que acelera e facilita a criacdo dos
softwares. O processo de criacao rapida de aplicativos usando uma IDE é denominado

RAD (Rapid Application Development — desenvolvimento rapido de aplicativos) [16].

2.5.1. Programacdao orientada a objeto

A programacéo orientada a objeto é um esquema de empacotamento que facilita a
criacdo de unidades de software significativa. Essas unidades séo grandes e focalizadas

em areas de aplicacdo especifica. Os objetos tém propriedades, ou seja, atributos (cor,

38

tamanho e peso) e executam acdes, isto €, possuem comportamentos (comer, dormir e
correr). As “Classes” representam grupos de objetos relacionados, um exemplo seria a
“Classe” carro, mesmo que carros individuais variem de marca ou modelo todos
pertencem a mesma “Classe”. Uma “Classe” especifica o formato geral de seus objetos,
as propriedades e acdes de um objeto dependem de sua classe.

Um grande problema observado pelos desenvolvedores foi a perda de tempo
criando e recriando softwares com caracteristicas semelhantes para projetos distintos.
Com a tecnologia de objetos, as entidades de software (objetos) podem ser reutilizadas
em futuros projetos, dessa forma, trabalhar com bibliotecas de componentes reutilizaveis
reduz a quantidade de trabalho na criacdo de programas. A linguagem C# utiliza a
biblioteca de classe da plataforma .NET, conhecida como FLC (.NET Framework Class
Library) [16].

2.5.2. Visual Studio

O Visual Studio . NET é o IDE da Microsoft para criagdo, documentag¢ao, execucao
e depuracdo de programas escritos em diversas linguagens de programacdo .NET. O
Visual Studio .NET também oferece ferramentas de edicdo para manipular varios tipos de
arquivos.

A versao utilizada nesse projeto é o Visual Studio Express 2010 que utiliza a
linguagem C#, é importante ressaltar esse ultimo detalhe, pois existe o software para
linguagem C e Basic também, que igualmente podem ser utilizados para criacdo dessa
aplicacdo, no entanto foi optado pela utilizacdo da linguagem C# por maior facilidade de
compreensédo e implementagdo. A IDE pode ser obtida de forma gratuita no enderecgo
eltrénico [17].

2.6. Eletrénica do motor

Para Controle dos motores DC é necessario a construcdo de um hardware que
possibilite o direcionamento (rotagdo horaria e anti-horaria) dos motores, para que assim
se possa movimentar o rob6 no sentido desejado (frente, atras, esquerda e direita). Para
isso foi escolhido um circuito simples e bem conhecido para essa aplicacdo, a ponte H
(Figura 17) [18].

A ponte H é composta pelo driver L298N cujo circuito est4 na Figura 16. Para

controlar a direcdo do motor se deve manipular a dire¢cdo da corrente que passa por ele,

39

para isso basta chavear corretamente os transistores para modificar como a corrente

passa através do motor DC.

O circuito controla dois motores, assim ele se espelha, ou seja, s&o dois circuitos

idénticos, um para cada motor, para efeito de entendimento vamos analisar somente o

lado esquerdo composto pelas entradas EnA, Inl e In2 e saidas OUT1 e OUT2.

A entrada Ena é o enable, utilizado para ativar ou desativar o controle do motor,

ela se conecta diretamente com as portas l6gicas AND, assim se o0 seu sinal analégico for

“0” o sistema esta inativo e se “1” o sistema esta ativo para manipulacao, as entradas In1

e In2 determinam a direcdo da corrente pelo motor, a Tabela 1 relaciona os valores

l6gicos com a direcdo do motor, os transistores ativos e inativos e a dire¢do da corrente

nas saidas OUT1 e OUT2.

EnA In1 In2 T1 T2 T3 T4 ouT1 ouUT2 Motor
0 X X Inativo Inativo Inativo | Inativo X X Parado
1 1 0 Ativo Inativo Inativo Ativo + - >
1 0 1 Inativo Ativo Ativo Inativo - + <
1 1 1 Ativo Ativo Inativo Inativo + + Parado
1 0 0 Inativo Inativo Ativo Ativo - - Parado

Tabela 1 - Ldgica Ponte H

40

ouT1 ogz “a 100nF m(:f'u mrrd
&

>

Daaan@ -
1 2 3 &
Int Ins
5 3 P > 2 O
_ = — —
EnA EnB
O n
1 8 15 ©
SENSE AO——9¢) _L p—OSENSE B S-3981/2
Rsa Rsp

Figura 16 - Circuito L298N [18]

Motor A ::imenta;ﬁodo Saida

Motor B
otor 5V

. ss MOTONB
- = i

O

@
D
3
]m
o
]3‘
o
= Nz

LED indicador da

diregdo do motor
LED indicador da

alimentagdo 5V

Pull-up resistor
jumper
Chip regulador de
tensdo 5V

J ti "
u[nper quea I\!a o Porta que ativa o Pf)rta_de Controle da Saida
chip de ragulagdo da direcao do motor 5v
2 motor
tensdo 5V

Figura 17 - Shield Ponte H para Arduino[19]

41

2.7. Conexdes

Para ilustrar as conexdes foi utilizado o software Fritzing [21], com ele é possivel
criar as ligacdes entre os componentes (Figura 18) de forma ilustrativa e juntamente com
isso € gerado um esquematico com as interligacdes dos Cls (Figura 19) o que facilita o
entendimento de como todo o circuito se comunica e funciona.

Todo sistema € alimentado pelas 4 baterias AAA, sendo que cada uma delas
possui 1,5V, criando uma tensao total de 6V. A bateria alimenta diretamente os motores
através da ponte H, essa por sua vez possui uma saida de tensdo de 5V que alimenta o
Arduino UNO pelo pino Vin, e por fim a saida de 5V do Arduino é utilizada para alimentar
0 modulo Bluetooth.

Como j& foi dito na segéo 2.5 a ponte H possui trés sinais de controle para cada
motor, nesse esquematico os motores estdo separados entre motorl e motor2, sendo os
sinais de controle INA1, INB1 e PWM1 o do primeiro motor e o INA2, INB2 e PWM2 o do
segundo.

O mobdulo Bluetooth possui apenas quatro ligagbes, sendo duas delas a
alimentacéo e o terra e as outras duas a comunicacgao serial, ou seja, um canal de leitura
RX e um canal de escrita TX.

Os motores séo ligados diretamente a ponte H, sendo o motorl colocado nas
saidas Al, B1 e o motor2 nas saidas A2, B2.

A Tabela 2 abaixo resume as ligacdes entre o Arduino e seus médulos, sendo o

GND comum a todos eles.

Cor Conexao | Pino Arduino | Ponte H | Bluethooth | Motor 1 | Motor2
Azul Escuro 10~ PWM2
Roxo 9~ PWM1
8 INB2
Verde 7 INA2
Laranja 6 INB1
Marrom 5 INA1
Azul Claro 4 TX
Cinza 3 RX
Vermelho Vin 5V
Vermelho 5V VCC
Preto Al -
Preto B1 +
Vermelho A2 -
Vermelho B2 +

Tabela 2 - Conexdes

42

AL LR S IEL a2 LE LN |ED

Arduing

= L=

= I=
8 o W F
E B E RS
] g [T
o = m =
L= L
) i
=1 L

— e i
e — — ——

Figura 18 - Esquematico de ligacfes com 0s componentes

/
/

i,

8.9

II("TH'”

=

fr2
i]

=83

Figura 19 - Esquematico de ligacbes

43

44

2.8. Softwares

Para controle do rob6 foram criados dois softwares que se comunicam via
Bluetooth. O primeiro software criado na linguagem C# (Figura 21) reconhece 0 usuario
via sensor Kinect e mapeia as juncfes das maos, cabeca, cintura e ombro, utilizando suas
posicdes cartesianas em um plano (X,Y) o software processa qual comando o usuario
esta executando e o envia para o Arduino. Ao receber essa instrucdo o software no
controlador do Arduino (Figura 20) atua no motor de acordo com o requerido e aguarda
nova instrucao.

Dessa forma foi construido um controle iterativo entre o usuéario e o robd, em que

este responde sempre que o primeiro muda o seu comando.

2.8.1. Fluxograma Arduino

A Figura 20 representa o funcionamento do programa criado para a plataforma
Arduino, todo software utiliza para o seu funcionamento bibliotecas e variaveis, dessa
forma inicialmente se adiciona as bibliotecas e se cria as devidas variaveis definindo seus
nomes e tipos, em seguida € necessario fazer algumas configuracdes de hardware,
Primeiramente foi configurado o shield Bluetooth, definindo quais as portas do Arduino
serdo responsaveis pela transmissdo e recepcao dos dados seriais, em seguida se
configura as demais portas a serem utilizadas, definindo se elas seréo inputs ou outputs.
Com todas as configuracdes prontas se inicia a légica do software. Esse programa tem
como funcionalidade receber dados, processa-los e atuar nos motores, por iSso 0 primeiro
passo é receber o dado via canal serial, no entanto o Bluetooth pode estar com
transmissao ou recepcdo em andamento o que impossibilita o recebimento ou o envio de
novos dados, portanto antes de qualquer agéo € verificado se o Bluetooth esta disponivel,
caso nao esteja significa que o canal serial est4 sendo utilizado e se deve esperar até que
ele seja liberado, mas se estiver disponivel entdo o software esta pronto para receber um
dado e este é entdo armazenado em uma variavel. Cada dado recebido representa uma
ordem a ser executado no robd, dessa forma a variavel de comando recebida é entao
processada e se verifica qual a instrugdo a ser passada para 0S motores, ou seja,
velocidade, direcdo e sentido. Por fim € entdo aguardado um novo comando a ser

executado e por isso 0 programa retorna a espera de um novo dado.

45

INICIO

BLUETOOTH
DISPONIVEL?

Figura 20 - Fluxograma do Software do Arduino

46
2.8.2. Fluxograma Kinect

A Figura 21 representa o funcionamento do programa criado para utilizacdo do
sensor Kinect. Assim como para o software explicado anteriormente € necessario a
utilizacdo de bibliotecas e varidveis, por isso no inicio sdo adicionadas as bibliotecas e
sdo criadas as variaveis utilizadas no decorrer da légica definindo seus nome e tipos.

Essa aplicacdo necessita do sensor Kinect, caso ele ndo esteja conectado o
funcionamento do software fica comprometido e por isso é necessério verificar se ha um
sensor conectado e caso ndao haja um aviso € mostrado e a aplicacdo encerrada, no
entanto se um Kinect estiver em funcionamento ele é inicializado e configurado. E ativada
entdo a captura da imagem colorida com resolucéo de 320 x 240 e velocidade de 30 Fps.

O préximo passo é verificar o recebimento dessa imagem, caso nenhuma imagem
seja recebida entdo a funcdo de imagem colorida retorna nulo e o software continua
verificando o processamento do esqueleto, mas se ha uma imagem é conferido se 0s bits
da imagem colorida ja foram capturados, se ndo foram ou caso houve mudanga entdo a
variavel referente aos bits coloridos é atualizada.

Por fim essa imagem deve ser colocada na tela da aplicacdo e para isso séo
configuradas as caracteristicas do bitmap que serd enviado, como tamanho, resolucéo,
pontos por polegadas e formato do pixel.

Com a imagem colorida pronta é entao verificado se ha dados de “esqueleto”, caso
ndo haja a funcgdo retorna nulo e o software retorna ao inicio, mas se houver dados
referentes ao esqueleto de um usuario é entao conferido se eles ja foram capturados, se
nao foram ou houve mudanca a variavel é entdo atualizada.

O sensor pode captar mais de um esqueleto e como nessa aplicacdo a interacéo é
apenas com um usuario por vez se captura somente os dados de esqueleto do usuario
mais préximo, com esses dados € possivel mapear uma série de juntas e manipula-las,
nesse projeto serdo utilizados cinco juntas, sendo elas, a cabega, as méo direita e
esquerda, o centro do ombro e o centro do quadril.

Para visualizacdo de controle uma elipse é colocada para acompanhar os
movimentos das méaos.

Depois de adquirir os dados das juntas do esqueleto eles sdo processados de forma a
verificar, de acordo com as suas coordenadas, qual o comando que O usuario esta
aplicando, essa ordem é entdo enviada via Bluetooth para o software do Arduino para

atuar no motor do rob6o.

| INICIO |

<
«

47

Y

Ha um Kinect
Ativo ?

SIM

Imagem
Recebida?

Imagem NAO
Colorida?

SIM

Frame
Esqueleto

Recebido?

Ha Dados de
Esqueletos?

NAO Esqueleto SIM

48

Figura 21 - Fluxograma Kinect

2.9. Controle

Foram criados dois controles para o robd e verificado qual apresenta uma melhor
resposta para a aplicacdo. Os dois possuem 0 mesmo intuito, que € movimentar o robd
utilizando os movimentos através do Kinect, o que os diferencia é a l6gica do que se
refere a atuacdo dos motores que resultam na dire¢cdo e velocidade. Para ambos, as

juntas para controle utilizadas sdo as mesmas e estédo ilustradas na Figura 22

Juntas para controle
Cabeca - A
Ombro - B

Mao Direita - C
Mao Esquerda - D
Cintura - E

X3

%

X3

%

X3

%

X3

%

0.0

Figura 22 - Juntas de Controle

49

O primeiro controle (Figura 23) possui quatro movimentos, cada um dos
movimentos é equivalente & movimentagao do rob6 (para frente, para traz, para a direita e
para a esquerda), nesse ndo ha controle da velocidade. A figura 23 ilustra as regifes que
correspondem a cada controle. Para parar o robd, o controle é deixar as duas maos
abaixo da cintura.

No segundo controle (Figura 24) cada méo corresponde a uma roda, assim sendo
a mao direita controla a roda da direita e a m&o esquerda a roda da esquerda, para
controle da direcdo o limiar fica sendo a posi¢cdo do ombro, acima do ombro a dire¢éo é
para frente e abaixo para traz. Esse controle possui controle de velocidade, para cada
direcao a forma de aceleracao é diferente.

-)

Rob6 para esquerda Robd para direita Rob6 para frente Robb para traz

Figura 23 - Controle 1

50

Max Vel Frente

L g
c \

o ©
— -
L <
o o
> >
£ £
= =

-Max Vel Atras

Figura 24 - Controle 2

51

3. Implementacao.

Nessa parte estardo presentes os resultados de uma forma mais detalhada, o que
foi feito para alcancar o objetivo desejado e, além disso, sera verificando se o atingido foi

0 esperado e caso ndo a possivel razdo sera apresentada.

3.1. Implementacéo software Arduino.

O fluxograma do software criado para o Arduino UNO ja foi apresentado na secao
2.8. Software, na Figura 20, agora sera apresentado os comandos utilizados para efetuar

cada etapa do programa.

3.1.1. Inicio

Todo software utiliza bibliotecas que possuem as fungbes que serdo utilizadas
para a logica do programa, nessa aplicacao sera utilizado a comunicacao serial e por isso
€ necessario adicionar a biblioteca responsavel para esse fim, ela é adicionada através do
comando:

#include <SoftwareSerial.h>

Além disso, foram criadas algumas variaveis que serdo manipuladas no decorrer
do software, cada uma delas possui um tipo e um nome e estéo listadas abaixo com os
comentarios que ddo uma breve ideia da sua utilizacdo. Como existem dois controles

cada um deles possuem suas préprias variaveis e ndo sao necessariamente as mesmas.

e Controle 1:
caractere; //Variavel que recebe o valor do comando enviado pelo Kinect
INL=5; //Pino de controle de direcdo do motor da direita
IN2=6; //Pino de controle de direcdo do motor da direita
IN3=7; //Pino de controle de direcdo do motor da esquerda
INA =8; //Pino de controle de direcdo do motor da esquerda
ENA =9; //Pino enable motor direita

ENB = 10; //Pino enable motor esquerda

e Controle 2;

52

IN1 =5; //Pino de controle de dire¢cdo do motor da direita
IN2 = 6; //Pino de controle de dire¢cdo do motor da direita
IN3=7; //Pino de controle de direcdo do motor da esquerda
IN4 = 8; //Pino de controle de direcdo do motor da esquerda
ENA =09; /IPino enable motor direita
ENB =10; /IPino enable motor esquerda

crtl; /1 [0] a [2] direcdo, [3] sentido, [4] a [6] valor PWM

velocR, velocL; // Recebe o valor da velocidade de cada motor

sentiR, sentiL; // Recebe o sentido de cada motor

direcR, direcL; // Recebe a identificacdo de que motor esta sendo ativado
velR, vell; /I Recebe o valor da velocidade no tipo inteiro

/| Estas variaveis sao inicializadas com o valor 150

No Controle 2, com a utilizagdo do PWM, foi constatado a necessidade de
modificar a configuracdo do PWM utilizado, isso sera analisado mais a frente na secao
3.3.Andlise, o comando para isso esta abaixo.

TCCR1B = TCCR1B & 0b11111000 | 0x05;

3.1.2. Inicializa configuracao Bluetooth

E necessério configurar e ativar a comunicacdo serial do Bluetooth, para isso
primeiramente se identifica quais seréo os pinos que serdo o TX e o0 RX no Arduino e um

nome é atribuido para a comunicagao, nesse caso o nome dado foi “blue”.

blue (11,12) // Pino 11 RX, Pino 12 TX
blue (9600) //Baud rate em 9600

3.1.3. Configuracéo das portas

E necesséario também configurar o sentido de cada porta digital utilizada do
Arduino, ou seja, se ela é uma saida (OUTPUT) ou entrada de dados (IMPUT), nesse

caso todas as portas utilizadas serdo saidas e o comando utilizado para a configuragao é:

(Nome do Pino, OUTPUT);

53

3.1.4. Bluetooth disponivel?

O programa deve ficar aguardando um comando vindo do Kinect para entdo atuar
no motor, para isso é utilizado uma légica condicional que verifica se a comunicacao esta

disponivel.

(blue. 0)
{

/I Recebe commando do Kinect

3.1.5. Armazena controle enviado pelo Kinect

Cada controle envia um comando diferente por Bluetooth, o Controle 1 envia um
valor hexadecimal que se refere a direcdo a ser aplicada no robd (Frente, Atras, Esquerda
ou Direita), ja o Controle 2 envia uma string que possui trés tipos de informagéo, o motor a

ser ativado, o sentido dele e a velocidade.

e Controle 1:

caractere = blue. 0; /I A variavel caractere armazena o controle enviado pelo
Kinect

e Controle 2:

crtl = blue. 0; Il A variavel crtl recebe a String de comando
enviado pelo Knect
A String de controle é composta por 10 caracteres (Tabela 3) e a cada 5 deles
corresponde a um motor, sendo assim 0s cinco primeiros correspondem ao motor direito
e 0s cinco ultimos ao motor esquerdo. Se utiliza entdo o comando “.substring()” para

desmembrar o comando enviado e atribuir para a variavel de cada motor os valores.

o | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Motor Sentido Velocidade Motor Motor Sentido Velocidade Motor

- Motor g Motor

Direito " Direito Esquerdo Esquerdo
Direito Esquerdo

Tabela 3 - String de velocidade do controle 2

54

direcR = crtl. (0,2);

sentiR = crtl. (1,2);

velocR = crtl. (2,5);

velR= velocR. 0; //Converte o valor da velocidade em inteiro
direcL = crtl. (5,6);

sentiL = crtl. (6,7);

velocL = crtl. (7,20);

velL = velocL 0; //Converte o valor da velocidade em inteiro

3.1.6. Atua no motor

Para atuar no motor deve-se enviar comando de controle para os pinos da ponte H

(IN1, IN2, IN3, IN4, ENA e ENB), primeiro se verifica o controle enviado pelo Kinect e a

partir desse valor se atua nas saidas.

Controle 1:

Nesse caso o controle enviado foi para o rob6 se movimentar para frente, o que ira
variar sdo os valores enviados para as portas, para cada movimento ha uma
combinacdo especifica, esses valores ja foram estabelecido na se¢édo 2.5. Ponte
H.

(caractere =='w") //Verifica qual comando que foi enviado
{
(ENA,HIGH); /lativa motor da direita
(ENB,HIGH); /lativa motor da esquerda
(IN1,LOW); /Imotor A e B a frente
(IN2,HIGH);
(IN3,LOW);
(IN4,HIGH);
(25); //delay para manter a movimentacéo ativa por 25ms
caractere ='q'; /limpa a variavel caractere para que 0 movimento

ndo seja continuo e sim a cada comando

55

e Controle 2:
Esse caso se refere a roda da direita, para a roda da esquerda a logica é a
mesma, 0 que ira variar € o valor da String que identifica a roda da esquerda e as
saidas a serem atuadas (IN3 e IN4);

(direcR == "D"){ /IVerifica se roda direita foi ativada

(ENA,velR);
(sentiR =="F") { /IVerifica se sentido escolhido foi para frente

(IN1,LOW);
(IN2,HIGH);}

(sentiR =="A") { /IVerifica se sentido escolhido foi para atras
(IN1,HIGH);
(IN2,LOW);}

}
{

(ENA,LOW);} //Se roda néo foi ativada a mantém desligada

3.2. Implementacéo software C#.

O funcionamento desse software esta ilustrado na Figura 21, nessa secdo sera
aprofundada somente a logica dos controles que foram criados, as partes de inicializacao
e configuragéo podem ser encontradas no Apéndice, nele esta disponibilizado o codigo na

sua integra com comentarios para ajudar no entendimento.

3.2.1. Controle 1

O Controle 1 foi constituido para identificar movimentos pré-determinados e gerar
comandos correspondentes a cada um deles, dessa forma foram criados cinco, onde
guatro deles para movimentagéo (frente, tras, esquerda e direita) ja ilustrados na Figura
23 e um de parada. Cada movimento é determinado identificando as posi¢des das juntas
e comparando-as em conjunto em uma légica condicional, quando um movimento é entdo

reconhecido o controle correspondente é enviado via Bluetooth para o Arduino.

56

//ldentifica 0 movimento, se verdadeiro envia 0 comando correspondente via Bluetooth,

nesse exemplo o movimento reconhecido foi o que movimenta o rob6 para frente.

if (rightHand.Position.Y > centerShoulder.Position.Y &

leftHand.Position.Y < centerShoulder.Position.Y)
{
rightHandactive = true; //Ativa a elipse referente a mado direita.
Usado para verificar que foi reconhecido o
movimento.

System.Windows.Forms.SendKeys.SendWait("{d}");//Robd para a direita.

Para envio do comando via Bluetooth inicialmente foi utilizado um software de
comunicacao serial chamado Tera Term (Figura 25 e Figura 26), quando um movimento
era identificado o software aplicava a fungao “SendKeys(comando)”, ou seja, ela aplicava
o valor do comando na janela ativa no PC, nesse caso a janela do Tera Term, o qual
estava conectado com o Bluetooth do rob6 e por isso o comando era enviado.

Ap6s verificar o funcionamento correto da légica o software Tera Term foi
substituido por uma comunicacado serial criada em C#, dessa forma o proprio software
criado para utilizar o Kinect ficou responsavel pela comunicagéo serial, isso sera mais
bem explicado na secdo 3.2.3 Comunicacdo Serial. Dessa forma ao reconhecer o

movimento o software chama a fung¢ao “SerialCmdSend()” a qual envia o comando.

SerialCmdSend(comando); //Fun¢dao que recebe o comando referente ao movimento e o
envia para a serial

e

) TCPAIP myhost.example.com

History

Telnet L

@ 55H coH?
Other
UNSPEC
@ Serial Port: [COMd: Standard Serial over Bluetootl ~
[OK l [Cancel I ’ Help]

Figura 25 - Conexdo Tera Term

57

4 Tera Term - [disconnected] VT =

File Edit Setup Contrel Window Help

Figura 26 - Tela de envio e recebimento de dados Tera Term

3.2.2. Controle 2

O Controle 2 foi criado para ser mais intuitivo, ou seja, cada mao seria referente a
um motor (Mao Direita -> Motor Direito / Mao Esquerda -> Motor esquerdo) e a escolha do
sentido e velocidade seria referente a posicdo das méos (Figura 24). Assim como a légica
anterior o comando a ser enviado depende da posi¢do das juntas comparadas entre si em
uma légica condicional, o comando de cada motor € uma String composta de cinco
elementos (Tabela 3), entdo ao identificar 0 que o usuario pretende uma String com o
comando correspondente € criada e armazenada em uma varidvel, ao se obter o
comando de ambos os motores as Strings de cada um deles sédo agrupadas, sendo a do
motor direito a frente da do motor esquerdo, por fim se verifica se houve mudancga do
comando a ser enviado em relacdo ao anterior e se caso houve esse novo comando é
entdo enviado, isso foi necessario para que 0os motores recebam somente uma vez um
certo comando, pois se varios comandos sao enviado sucessivamente a uma velocidade
muito rapida os motores ndo conseguiam responder a tempo e por isso permaneciam
parados, assim caso ndo haja mudanca do comando ele permanece o mesmo, o robd
mantem o seu movimento mas ndo é enviado o comando novamente.

Abaixo serdo apresentadas e brevemente explicadas particbes do controle 2 do
motor da direita, para o motor da esquerda a l6gica é a mesma variando somente a String
a ser gerada.

Primeiramente, é verificado se 0 movimento executado é referente a parar o motor,

caso seja, é entdo criado uma String de parada.

58

if (rightHand.Position.X <= (centerShoulder.Position.X + 0.3))
{

RodaDireita = "DX000"; //Para o motor direito

rightHandactive = false; //Desativa a elipse referente a mao direita.
Usado para verificar que foi reconhecido o
movimento.

Se o movimento ndo for de parada o proximo passo é identificar o sentido que o
motor deve girar, para frente ou para tras, nesse caso sera explicado para quando o
motor deve se movimenta para frente, no outro caso a légica € a mesma mudando
apenas a condi¢cao do comando “IF” e a String a ser gerada.

Ao verificar o movimento referente ao sentido o préximo passo é calcular a
velocidade, na Figura 24 € possivel verificar as regibes em que a velocidade €
considerada maxima e minima para cada sentido, a velocidade foi considerada linear a
posicdo da mé&o na regido, com esse pensamento foi entdo calculado uma equacéo de
reta que determina todos os valores possiveis para 0 PWM de acordo com a posicao da
m&o na regido, para essa equacao foram colocadas como maximo do PWM o valor 255 e
o0 minimo 100, as equacdes de reta para cada sentido do motor podem ser visualizadas
na Figura 27 e Figura 28 e o gréfico das retas esta ilustrado na Figura 29.

As relagbes do gréfico referente as juntas da Cintura, Ombro e Cabeca no eixo Y,

estao relacionadas na Tabela 4.

Cintura.Y
2 | Ombro.Y
3 | Cabega.Y

Tabela 4 - Relacao grafico e juntas

—155
Vel Atras = . * (M3o.Y — Cintura.Y) + 255
Ombro.Y — Cintura. Y

Figura 27 - Equacao de velocidade de rotacao para tras

155
Vel Frente = * (M3o.Y — Ombro.Y) + 100
Cabeca.¥Y — Ombro.¥Y

Figura 28 - Equacao de velocidade de rotacdo para frente

59

250
200
=4=vye| Atrds
150
Vel Frente
100 -
50 T T 1
1 2 3

Figura 29 - Velocidade dos Motores

No entanto devido a sensibilidade do sistema os valores de velocidade aplicada ao
motor ficaram limitados em dois, velocidade minima de 100 e velocidade maxima de 240,
o limiar ficou sendo o valor de 180, ou seja, quando a equacéo de velocidade atingia
valores inferiores a 180 a velocidade aplicada ao motor era de 100 e quando superior a
velocidade ficaria sendo de 240.

Para finalizar é entdo criada a String do motor com a identificagdo do motor, do

sentido e velocidade (Tabela 5).

Motor D E
Sentido F A
Velocidade | Veloc Max | Veloc Min

Tabela 5 - Valores Correspondentes a String

60

else

{
if (rightHand.Position.Y < head.Position.Y & rightHand.Position.Y >
centerShoulder.Position.Y)
{

//equa¢ao de reta para obten¢ao do valor da velocidade de acordo com a posi¢ao da
mao [conversao de float para int]
VelRodaDireita = (int)Math.Ceiling((155 / (head.Position.Y -
centerShoulder.Position.Y)) * (rightHand.Position.Y -
centerShoulder.Position.Y) + 100);

if (VelRodaDireita < 180) //Verifica valor calculado da velocidade e aplica
velocidade maxima ou minima

{

VelDireita = "100";

}

else
{

VelDireita = "240";
}
RodaDireita = "DF" + VelDireita; //Liga motor DIREITO para FRENTE com

velocidade 100 Ex: DF100
rightHandactive = true;

}

Com os valores de String de cada motor é entéo criado o controle concatenado as
duas Strings, entdo se verifica se houve mudanca no controle enviado com o valor do
ultimo comando enviado, e se houve o valor é entdo impresso em tela, apenas para

verificacdo, enviado para a serial e se atualiza a variavel referente ao dltimo valor
enviado.

Roda = RodaDireita + RodaEsquerda; //concatenacao dos comandos de cada motor

if (Roda != Roda0ld) //verifica se houve variag¢ao no comando
{
Verify.AppendText(Roda); //Imprime o valor do comando em tela
SerialCmdSend(Roda); //Envia para a serial o comando
Roda0ld = Roda; //Atualiza a variavel

}

61

3.2.3. Comunicagao Serial

A comunicagdo entre os softwares do Arduino e o software C# € serial via
Bluetooth, para que isso ocorra € necessario configurar uma porta serial e conecta-la
entre o PC e o modulo ligado ao Arduino, para fazer isso foi criado um codigo em C#, nele
séo escolhidas todas as caracteristicas da porta serial e gerado os comando de envio e
recebimento de dados.

O nome da variavel referente a comunicacgéo é “serial’, e a ela foi atribuido cada
caracteristica listada abaixo, como por exemplo, nome da porta a ser conectado, baud
rate, se ha handshake e paridade, tamanho do dado e numero de bits de parada, e por
fim ela é aberta.

serial.PortName = Comm_Port_Names.Text; //Nome da porta serial
serial.BaudRate = Convert.ToInt32(9600); //Baud rate
serial.Handshake = System.IO.Ports.Handshake.None; //Handshake
serial.Parity = Parity.None; //Bit de paridade
serial.DataBits = 8; //Numero de bits de dado
serial.StopBits = StopBits.One; //Nimero de stop bits
serial.ReadTimeout = 200; //temporizacao
serial.WriteTimeout = 50;

serial.Open(); //Conecta porta serial

Com a serial conectada ela ja estd apta a enviar os comandos para o robd, para
isso primeiramente ela verifica se a serial esta realmente aberta e se sim envia o dado
passado para a fungao “SerialCmdSend(data)", se durante o processo houver um erro o

envio é entdo parado e um aviso é escrito em tela.

public void SerialCmdSend(string data) //Funcao de envoi de dados via serial

{
if (serial.IsOpen) //verifica se serial estd aberta
{
try
{
serial.Write(data); //Envia dado
}
catch (Exception ex) //Se houver erro interrompe o processo e
envia um aviso
{
para.Inlines.Add("Failed to SEND" + data + "\n" + ex + "\n");
mcFlowDoc.Blocks.Add(para);
Commdata.Document = mcFlowDoc;
}
}

}

62

63

4. Resultados

Nessa secdo serdo apresentados os resultados atingidos apés toda a
implementacao do projeto, demonstrando o funcionamento do sistema dos controles e a
interface entre o usuario e o robd.

A Figura 30 e Figura 31 ilustra a tela de aplica¢do utilizada pelo PC como interface
para ativar a comunicacdo Bluetooth, para visualizar a imagem captada pelo sensor
Kinect, para aplicar comandos a serem enviado para o robd e verifica-los em caso de

testes.

Elipse que referencia as juntas Tela de imagen do Kinect

Botdo que conecta a serial

Campo que recebe 0s
Botio envia dados dados de controle enviados

/ Campo que recebe

| coneetar | [znviar_| e da:jo s igr enviado
| pelo botdo

‘| coma ||

Figura 30 - Tela da aplicagéo

Campo que recebe os dados enviados pelo

Nome porta serial)
P Arduino ou o erro em caso de falha

64

 covs

Y §

|
"

0DA240EA240250DA100EA100164DA240EA100206DA100EA100161DA24
O | LN
Figura 31 - Aplicacdo em funcionamento

Nessa imagem é possivel verificar a aplicagdo em funcionamento com o Bluetooth
ja conectado e os movimentos sendo reconhecidos pelo Kinect. As elipses marcam as
juntas que foram escolhidas para serem combinadas e definir os movimento referente a

cada controle.

4.1. Resultado Controle 1.

A seguir se poderd verificar o funcionamento do Controle 1 explicado na secao 2.9.
Controle e Figura 23.

A Figura 32 demonstra o movimento para manter o robd parado, nessa condi¢cao
as elipses referente as méos se mantem em um tamanho menor para verificar que

nenhum comando esta sendo enviado para o robd.

65

s |
COM4 Trocar Controle
CONTROLE 1

Figura 32 - Controle 1- rob6 parado

A figura 33 demonstra o movimento referente ao controle de virar o robd para a
esquerda, o funcionamento ocorre da seguinte forma, ao se reconhecer esse movimento
a roda da esquerda se mantém parada e a da direita é ligada o que resulta no robd

virando para a esquerda.

oecoreall” i |

COM4 [b Trocar Controle
CONTROLE 1
y

e A W\ P
Figura 33 - Controle 1 - robd vira para esquerda

66

ool ia % |
=
- Trocar Controle
1 ™

t

k . CONTROLE 1

Figura 34 - Controle 1 - robd vira para a direita

A figura 34 demonstra o0 movimento referente ao controle de virar o robo para a
direita, o funcionamento ocorre da seguinte forma, ao se reconhecer esse movimento a
roda da direita se mantém parada e a da esquerda é ligada o que resulta no robd virando
para a direita.

=

b - .

sl e | ls
-y =

|
|

S Trocar Controle
‘ CONTROLE 1

COM4

Figura 35 - Controle 1 - rob6 se movimenta para frente

A figura 35 ilustra 0 movimento para controlar o robé para frente, o que ocorre € a
execucao dos dois motores, motor direito e motor esquerdo, com a mesma velocidade, no

caso do Controle 1 a velocidade é a maxima, pois ndo ha variacdo de velocidade e

mesmo sentido.

67

ool | -

) l

comd ‘ N Trocar Controle
| CONTROLE 1
4‘

1s

Figura 36 - Controle 1 - robd se movimenta para traz

A figura 36 ilustra 0 movimento para controlar o rob6 para traz, o funcionamento é
idéntico ao do movimento ilustrado na figura 35, a diferenca nesse controle € o sentido

dos motores, que agora giram no sentido contrario

4.2. Resultado Controle 2.

A seguir se poderé verificar o funcionamento do Controle 2 explicado na secao 2.9.
Controle e Figura 24.

A Figura 37 demonstra o movimento para manter o rob6 parado, nessa condigdo
as elipses referente as maos se mantem em um tamanho menor para verificar que
nenhum comando esté sendo enviado para o rob0.

A figura 38 demonstra o0 movimento para controlar o robd para frente na regido de
velocidade minima do robd, nesse controle, como cada méo é referente a uma roda o que
se vé sdo as duas mao acima do limiar do ombro, o qual se refere a regido de movimento
para frente e ao mesmo tempo as duas maos se encontra na mesma altura, logo mesma

velocidade e por isso o rob6é se movimenta para frente.

68

- Trocar Controle

CONTROLE 2
- 7 B

2DX000EX000

i wr B y

Figura 37 - Controle 2 - robd parado

¥

g _P .
|

1
oecoscl_evir | ‘ |
d |

cowa] ‘
| - CONTROLE 2
2DF100EF100

i 1

Figura 38 - Controle 2 - robd para frente com velocidade minima

O movimento da figura 39 é anélogo ao da figura 38, a diferenca esta na altura das
maos, dessa forma o que ocorre € um aumento da velocidade do robé.

69

osmecll_evi |

A J e
. 7|
2DF240EF240

Figura 39 - Controle 2 - robd para frente com velocidade maxima

A figura 40 demonstra o0 movimento para controlar o robd para traz na regido de
velocidade minima do robé, nesse controle, como ja foi dito, cada mao é referente a uma
roda o que se vé séo as duas mao abaixo do limiar do ombro, o qual se refere a regido de
movimento para traz e ao mesmo tempo as duas maos se encontra na mesma altura, logo

mesma velocidade e por isso 0 robd se movimenta para traz.

oecore | i |
coms_| "_ . Trocar Controle
CONTROLE 2

2DA100EA100

Figura 40 - Controle 2 - robd para traz com velocidade minima

O movimento da figura 41 é analogo ao da figura 40, a diferenca esta na altura das

maos, dessa forma o que ocorre € um aumento da velocidade do robd.

70

\ <
i come | h e Controle

|
CONTROLE 2
2DA240EA240

A |
Figura 41 - Controle 2 - rob6 para traz com velocidade maxima

Na figura 42 e figura 43 o que se ilustra € uma diferenca entre as posi¢cdes das
maos direita e esquerda, o que ndo havia ocorrido até 0 momento. No caso da figura 42 a
mao direita esta abaixo do limiar do ombro o que leva a roda direita a ter um movimento
para traz, ja a mao esquerda esta acima do limiar do ombro, assim a roda esquerda se
movimenta para frente, essa combinacdo faz com que o robd vire para a direita. Na figura
43 j& se verifica 0 oposto, entdo nesse caso a roda direita possui movimento para frente e

a roda esquerda para traz, entdo o rob0 vira para a esquerda.

~ Trocar Controle

CONTROLE 2

Figura 42 - Controle 2 - roda direita para traz, roda esquerda para frente

71

ecorec]l_envr_|
‘ ‘ ! - rocar Controle
| CONTROLE 2

u o B [contRoe2 |

2DF100EA240

3

Figura 43 - Controle 2 - roda direita para frente, roda esquerda para traz

Para verificar o funcionamento da variagdo da velocidade no Controle 2 foi
utilizado um osciloscopio e visualizado a variagdo do duty cycle do PWM. Quando o motor

se encontra parado foi verificado uma tensdo nula, como se ilustra na figura 44.

10.0 ms/div realtime
frequencyc 1) not found duty cycleC 1) not found

Figura 44 - PWM com duty cycle 0%

Ao iniciar um movimento em um sentido o PWM comeca a responder e foi

encontrado o resultado da figura 45, onde se tem um duty cycle de 39%.

72

=50.0000 as
10.0 ms/div realtinme
frequency(1) 30.5488 &k duty cycle(1) 39.024&

Figura 45 - PWM com duty cycle 39%

Variando o movimento tendendo a aumentar a velocidade o PWM aumenta o seu
duty cycle, isso € notado na figura 46, nela é possivel identificar um duty cycle de
aproximadamente 94%. A frequéncia do PWM foi ajustada para 30,5 Hz,

aproximadamente.

=50.0000 us 0,00000 s 50,0000 ms
p 10,0 ms/div realtime
squencyc4) 30,7362 duty cycle(1) 93,865

Figura 46 - PWM com duty cycle 94%

73

5. Analise

O Atmega328 tem trés timers para PWM que controlam seis saidas PWM (Figura
47). E possivel manipular os registradores dos timers diretamente e dessa forma é
possivel obter mais controle sobre os PWMs. Nesse caso o que foi buscado foi diminuir a
frequéncia do PWM utilizado (Pinos 9 e 10), que é de 500Hz, o méximo possivel
(30,52Hz). Isso foi necessario devido as caracteristicas do motor (120 RPM). Foi
verificado que para velocidades baixas, ou seja, valores a baixo de 130 no comando
analogWrite(Pin,PWM) o motor n&o respondia bem, dessa forma para aumentar a faixa
possivel de velocidades do motor a frequéncia do PWM foi reduzida. A causa desse
problema é que para valores menores de PWM o duty cycle é menor e como a frequéncia
era alta ndo gerava tensao suficiente para tirar o motor da sua inércia, entdo diminuindo a

frequéncia do PWM significa aumentar o duty cycle.

0% duty cycle

[[[[M | 10% duty cycle
100% []]]] | 25% duty cycle
| L | L | | [[[| 50%dutycycle
| L] L] || || | | 80% duty cycle

100% duty cycle

Figura 47 - PWM

O Atmega328 possui trés timers, sendo eles, Timer 0, Timer 1 e Timer 2, o timer
correspondente aos pinos 9 e 10 é o Timer 1, para modifica-lo se deve manipular o
registrador TCCRnB (Timer/Counter Control Register) em que “n” € o numero do timer. O
que deve ser manipulado sao os Ultimos trés bits desse registrador, assim é feito um
“AND” com o valor 0bx11111000 para zerar esses bits e entao é aplicada uma légica “OU”

com o valor correspondente a frequéncia requerida, que nesse caso é 0x05 [22].

TCCR1B = TCCR1B & 0b11111000 | 0x05;

74

Os dois controles implementados funcionam e deixa o usuario capaz de controlar o
robd, no entanto cada um deles possui as suas vantagens e desvantagens. No Controle 1
ndo h& controle da velocidade, o que o torna mais simples e com menos recursos, no
entanto na prética ele se mostrou mais facil de ser utilizado e gerou um controle melhor e
mais estavel. O controle 2 ndo possui movimento fixo para gerar um comando, cada mao
se refere a um motor (M&o direita -> Motor direito / Mao esquerda -> Motor esquerdo) o
que torna esse tipo de interagdo mais intuitiva, ele também possui controle da velocidade,
mas estd possui apenas duas variac6es devido a sensibilidade encontrada no método
utilizado, o qual gera variagcbes muito rapidas da velocidade e o robd ndo era capaz de
interpretar, a solugédo encontrada foi limitar essa variagéo a apenas dois valores.

Uma outra andlise € em relagdo aos motores que mesmo ativando ambos a
mesma velocidade o robd ndo se movimenta em linha reta, foram encontradas duas
causas desse efeito. A primeira é o mau alinhamento das rodas, uma roda desalinhada
em relagdo a outra pode gerar um deslocamento em curva. O segundo € a diferenca de
reducdo entre os motores, apesar de serem do mesmo modelo e possuirem as mesmas
especificagbes ndo necessariamente eles séo idénticos devido a fabricacdo, para corrigir
isso se deve descobrir empiricamente a diferenca entre os motores e aplica-las em
software ou criar um controle em hardware que monitore a rotagdo de cada motor e

através de um software atuar com corregoes.

5.1. Trabalhos futuros

O Kinect possui um grande recurso que nao foi explorado nesse projeto, as quatro
arrays de microfones. Com esses sensores € possivel criar reconhecer comandos por
voz, seria assim mais uma possibilidade para controlar o rob6 moével criado.

Outro trabalho interessante seria criar um sistema escalonado de velocidades ao
invés de linear (Figura 29), esse sistema pode evitar os erros em relacdo a variacdo da
velocidade discutidos na analise, deixando o sistema mais robusto e com mais variacfes

possiveis da velocidade.

75

6. Conclusao

A criacdo de uma plataforma robdtica de baixo custo que pode ser controlada
remotamente é uma boa demonstracdo dos conhecimentos adquiridos em um curso de
engenharia elétrica, pois é requerido compreender o funcionamento da eletrbnica, de
l6gica digital, de linguagem de programacdo, de métodos de comunicacdo e seus
protocolos.

A montagem da plataforma na prética gera a oportunidade de verificar as
dificuldades encontradas para a implementacdo do sistema como um todo e
principalmente em como lidar e identificar erros inesperados e como corrigi-los, essa
pratica gera experiéncia que na eletrbnica é de fato muito importante, pois como em
muitos casos ndo se é possivel, literalmente, ver o erro e sim somente perceber o mau
funcionamento a experiéncia limita as possibilidades do que pode ser o problema levando
a uma rapida solucéo ou até aperfeicoamento.

A utilizacdo do sensor Kinect € uma experiéncia muito interessante, pois esse
dispositivo foi criado por uma empresa mundialmente conhecida com o intuito
simplesmente de entretenimento, mas por sua versatilidade, bom desempenho e baixo
custo foi identificado nele um grande potencial para diversas aplicacdes que necessitam
de um bom processamento em visdo computacional, percebendo isso a criadora do
sensor tornou livre a utilizacdo do seu proprio software para que desenvolvedores
autbnomos se aventurassem nas possibilidades oferecidas pelo Kinect e por isso é
possivel facilmente encontrar diversas aplicagfes que usufruem do dispositivo.

O resultado obtido ao final desse trabalho foi satisfatério, foi conseguido controlar
o robd por meio de dois controles utilizando o reconhecimento de gestos pelo Kinect, no
entanto um problema encontrado foi referente a movimentos bruscos, 0s quais podem
causar mal entendimento pelo robé e ele pode responder de forma errada ou néo

responder.

76

77

Referéncias Bibliograficas

[1] http://luckylarry.co.uk/arduino-projects/obstacle-avoidance-robot-build-your.own-larrybot/

[2] André Crepaldi Geiger Smidt, “Implemetacdo de uma plataforma robdtica controlada
remotamente utilizando o Arduino”, EESC — USP, 2013.

[3] http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx

[4] Tanner Bryce Blair, Chad Eric Daves. “Innovate Engineering Outreach: A Special Application
of the Xbox 360 Kinect Sensor”, School of Electrical and Computer Engineering ,University of
Oklahoma.

[5] Z.Zhang. “Microsoft Kinect Sensor and Its Effect”,IEEE MultiMedia, 27 Abril 2012

[6] Microsoft Corporation, “Kinect foe Windows — Human Interface Guidelines V1.8.0

[7] El-laithy, R.A. ;”Study on the Use of Microsoft Kinect for Robotics Applications” California
State Univ., Fullerton, CA, USA ; Jidong Huang ; Yeh, M.

[8] http://arduino.cc/

[9] http://wiring.org.co/

[10] http://www.processing.org/

[11] http://www.atmel.com/pt/br/devicess/ ATMEGA328.aspx

[12] http://www.embarcados.com.br/arduino-uno/

[13] http://www.bluetooth.com/Pages/Fast-Facts.aspx

[14] McDermott-Wells, P. “What is Bluethooth?” ; Mega-Data Services Inc., FL, USA

[15] http://www.bluetooth.com/Pages/Basics.aspx

[16] Deitel, H. M. ; C# - Como Programar ; P. J. Deitel; J. Listfield; T. R. Nieto; C. Yager; M.
Zlatnika. S&o Paulo, Pearson Makron Books, 2003.

[17] http://www.visualstudio.com/downloads/download-visual-studio-vs

[18] Vibhor Grupta. “Working and Analysis of the H-Bridge Motor Driver Circuit Designed for
Wheeled Mobile Robots”

[19] https://www.sparkfun.com/datasheets/Robotics/L298 H_Bridge.pdf

[20] _http://softwaresouls.com/softwaresouls/category/arduino/

[21] http://fritzing.org/home/

[22] http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM

http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.El-laithy,%20R.A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jidong%20Huang.QT.&searchWithin=p_Author_Ids:38262618400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yeh,%20M..QT.&searchWithin=p_Author_Ids:38259843900&newsearch=true
http://wiring.org.co/
http://www.processing.org/
http://www.atmel.com/pt/br/devices/ATMEGA328.aspx
http://www.embarcados.com.br/arduino-uno/
http://www.bluetooth.com/Pages/Fast-Facts.aspx
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.McDermott-Wells,%20P..QT.&searchWithin=p_Author_Ids:37265804700&newsearch=true
http://www.bluetooth.com/Pages/Basics.aspx
http://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
http://fritzing.org/home/

78

79

Apéndice 1: Arduino Controle 1

#include <SoftwareSerial.h>

SoftwareSerial blue(11,12); //RX TX

int
int
int
int
int
int

int

caractere;
IN1 = 5;

IN2 =
IN3 =

ENA =

6
7
IN4 = 8;
9; //motor direita
1

ENB = 10; //motor esquerda

void setup ()

{

blue.begin (9600) ;

pinMode (IN1,OUTPUT) ;

pinMode (IN2,OUTPUT) ;

pinMode (IN3,OUTPUT) ;

pinMode (IN4,OUTPUT) ;

void loop () {

if

{

}

(blue.available())

caractere = blue.read();

if (caractere == 'w')

{

blue.println("Robo a frente");

digitalWrite (ENA,HIGH); //ativa os dois motores
digitalWrite (ENB, HIGH) ;

digitalWrite (IN1,LOW) ; //motor A e B a frente
digitalWrite (IN2,HIGH) ;

digitalWrite (IN3, LOW) ;

digitalWrite (IN4,HIGH) ;

delay (25);

caractere = 'q'; //limpa a variavel caractere para g o movimento nao seja continuo

e sim a cada comando

}

if (caractere == 's'")

{

blue.println("Robo para traz");

digitalWrite (ENA,HIGH); //ativa os dois motores
digitalWrite (ENB,HIGH) ;

digitalWrite (IN1,HIGH) ; //motor A e B para traz
digitalWrite (IN2,LOW) ;

}

digitalWrite (IN3,HIGH) ;
digitalWrite (IN4, LOW) ;
delay (25);

caractere = 'q';

if (caractere == 'a')

{

blue.println ("Robo para esquerda <---");

digitalWrite (ENA, HIGH) ;
digitalWrite (ENB, LOW) ;
digitalWrite (IN1, LOW) ;
digitalWrite (IN2, HIGH) ;
digitalWrite (IN3, LOW) ;
digitalWrite (IN4, LOW) ;
delay (25);

//ativa motor A
//desliga motor B

//motor A para frente

caractere = 'q';
}
if (caractere == 'd")
{
blue.println("Robo para direita --->");

}

digitalWrite (ENA, LOW) ;
digitalWrite (ENB, HIGH) ;
digitalWrite (IN1, LOW) ;
digitalWrite (IN2,LOW) ;
digitalWrite (IN3, LOW) ;
digitalWrite (IN4,HIGH) ;
delay (25);

caractere = 'q';

if (caractere == 'q')

{

//desliga motor A

//ativa motor B

//motor B para frente

blue.println("Robo freio ---");

digitalWrite (IN1, LOW) ;
digitalWrite (IN2, LOW) ;
digitalWrite (IN3,LOW) ;
digitalWrite (IN4, LOW) ;

caractere = 0;

80

Apéndice 2: Arduino Controle 2

#include <SoftwareSerial.h>

SoftwareSerial blue(11,12); //RX TX

String crtl; // [0] a [2] direc, [3] sentido, [4] a [6] valor PWM
String velocR, velocL;

String sentiR, sentil;

String direcR, direcL;

int velR, vell;

boolean StringComplete = false;

int IN1 = 5;
int IN2 = 6;
int IN3 = 7;
int IN4 = 8;

int ENA =

5
6
7
8
9; //motor direita
1

int ENB = 10; //motor esquerda

//‘k********

void setup ()

{
blue.begin (9600) ;
//Serial.begin (9600) ;
pinMode (IN1,OQUTPUT) ;
pinMode (IN2,OUTPUT) ;
pinMode (IN3, OUTPUT) ;
pinMode (IN4,OQUTPUT) ;
pinMode (ENA, OUTPUT) ;
pinMode (ENB, OUTPUT) ;
velR = 150;
vellL = 150;
TCCR1B = TCCRI1B & 0b11111000 | 0x05;

}

//***********************************

void loop () {

crtl="";
if (blue.available())
{
crtl = blue.readString();

direcR = crtl.substring(0,1);

sentiR = crtl.substring(1l,2);

velocR = crtl.substring(2,5);
velR = velocR.toInt();

direcL = crtl.substring(5,6);
sentil. = crtl.substring(6,7);
velocL = crtl.substring(7,10);
vell, = velocL.toInt();

//‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k************************

if (direcR == "D"){ //ativa roda da direita
analogWrite (ENA,velR);
if (sentiR == "F") { //escolhe sentido do motor
digitalWrite (IN1,LOW) ;
digitalWrite (IN2,HIGH) ;}
if (sentiR == "A") {
digitalWrite (IN1,HIGH) ; //motor A e B a frente
digitalWrite (IN2, LOW) ; }
}
elsef

digitalWrite (ENA, LOW) ; }

if (direcL == "E"){ //ativa roda da esquerda
analogWrite (ENB,vell) ;
if (sentil == "F") { //escolhe sentido do motor
digitalWrite (IN3, LOW) ;
digitalWrite (IN4,HIGH) ;}
if (sentil, == "A") {
digitalWrite (IN3,HIGH) ;
digitalWrite (IN4,LOW); }
}
else{
digitalWrite (ENB, LOW) ; }
//direcR = "";
//direcL = "";

//‘k********

}

82

Apéndice 3: Software Kinect

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using Microsoft.Kinect;

using Microsoft.Speech.Recognition;
using System.Threading;

using System.IO;

using Microsoft.Speech.AudioFormat;
using System.Diagnostics;

using System.Windows.Threading;
using System.IO.Ports; //biblioteca para comunicagao serial

namespace KinectPowerPointControl
{
public partial class MainWindow : Window
{
#region Variaveis
KinectSensor sensor;
SpeechRecognitionEngine speechRecognizer;

DispatcherTimer readyTimer;

byte[] colorBytes;
Skeleton[] skeletons;

bool isCirclesVisible = true;

bool rightHandactive = false;

bool leftHandactive = false;

string RodaDireita;

string RodaEsquerda;

string Roda;

string RodaOld;

int VelRodaDireita;

int VelRodaEsquerda;

string VelDireita;

string VelEsquerda;

SolidColorBrush activeBrush = new SolidColorBrush (Colors.Yellow);
SolidColorBrush inactiveBrush = new SolidColorBrush (Colors.Red);

//Variaveis da serial

SerialPort serial = new SerialPort();

string recieved data;

FlowDocument mcFlowDoc = new FlowDocument () ;
Paragraph para = new Paragraph();

#endregion
public MainWindow ()
{

InitializeComponent () ;
Conectar.Content = "Conectar";

this.Loaded += new RoutedEventHandler (MainWindow Loaded) ;

83

this.KeyDown += new KeyEventHandler (MainWindow KeyDown) ;

}

#region Conectar Serial
private void Conectar Click_1(object sender, RoutedEventArgs e)
{
if (serial.IsOpen == false)
{
try
{
serial.PortName = Comm Port Names.Text;
serial.BaudRate = Convert.ToInt32(9600);
serial.Handshake = System.IO.Ports.Handshake.None;
serial.Parity = Parity.None;
serial.DataBits = 8;
serial.StopBits = StopBits.One;
serial.ReadTimeout = 200;
serial .WriteTimeout = 50;
serial.Open();
}
catch { return; }
if (serial.IsOpen)
{
Conectar.Content = "Desconectar";
serial.DataReceived += new
System.IO.Ports.SerialDataReceivedEventHandler (Recieve);
}
}
else
{
try
{
serial.Close();
Conectar.Content = "Conectar";
}
catch { return; }
}
}

#endregion

#region Reading
private delegate void UpdateUiTextDelegate (string text);

84

private void Recieve (object sender, System.IO.Ports.SerialDataReceivedEventArgs e)

{

recieved data = serial.ReadExisting();

Dispatcher.Invoke (DispatcherPriority.Send, new UpdateUiTextDelegate (WriteData),

recieved data);
}

private void WriteData (string text)

{

para.Inlines.Add (text);

mcFlowDoc.Blocks.Add (para) ;

Commdata.Document = mcFlowDoc;
}

#endregion

#region Sending
private void Enviar Click_1(object sender, RoutedEventArgs e)
{

SerialCmdSend (SerialData.Text) ;

SerialData.Text = "";

}

public void SerialCmdSend(string data)
{

if (serial.IsOpen)

{
try
{

serial.Write (data);

}

catch (Exception ex)

{
para.Inlines.Add ("Failed to SEND" + data + "\n" + ex + "\n");

mcFlowDoc.Blocks.Add (para) ;
Commdata.Document = mcFlowDoc;

#endregion

void MainWindow Loaded(object sender, RoutedEventArgs e)
{

sensor = KinectSensor.KinectSensors.FirstOrDefault () ;

if (sensor == null)
{

MessageBox.Show ("This application requires a Kinect sensor.");
this.Close () ;
}

sensor.Start () ;

sensor.ColorStream.Enable (ColorImageFormat .RgbResolution640x480Fps30) ;
sensor.ColorFrameReady += new
EventHandler<ColorImageFrameReadyEventArgs>(sensor ColorFrameReady) ;

sensor.DepthStream.Enable (DepthlImageFormat . .Resolution320x240Fps30) ;

sensor.SkeletonStream.Enable () ;
sensor.SkeletonFrameReady += new
EventHandler<SkeletonFrameReadyEventArgs>(sensor SkeletonFrameReady) ;

//sensor.ElevationAngle = 10;
Application.Current.Exit += new ExitEventHandler (Current Exit);

InitializeSpeechRecognition();

}

void Current Exit (object sender, ExitEventArgs e)
{
if (speechRecognizer != null)
{
speechRecognizer.RecognizeAsyncCancel () ;
speechRecognizer.RecognizeAsyncStop () ;
}
if (sensor != null)
{
sensor.AudioSource.Stop () ;
sensor.Stop () ;
sensor.Dispose () ;
sensor = null;

}

void MainWindow KeyDown (object sender, KeyEventArgs e)

{
if (e.Key == Key.C)
{
ToggleCircles () ;

}

void sensor ColorFrameReady (object sender, ColorImageFrameReadyEventArgs e)

{

using (var image = e.OpenColorImageFrame ())

85

}

if (image == null)
return;
if (colorBytes == null ||
colorBytes.Length != image.PixelDatalength)
{
colorBytes = new byte[image.PixelDatalength];

}

image.CopyPixelDataTo (colorBytes) ;

int length = colorBytes.Length;
for (int i = 0;

{

i < length; 1 += 4)

colorBytes[i + 3] = 255;

BitmapSource source = BitmapSource.Create (image.Width,
image.Height,

96,

96,

PixelFormats.Bgra32,

null,

colorBytes,

image.Width * image.BytesPerPixel);
videoImage.Source = source;

void sensor SkeletonFrameReady (object sender, SkeletonFrameReadyEventArgs

{

using

{

}

(var skeletonFrame = e.OpenSkeletonFrame())

if (skeletonFrame == null)

return;

if (skeletons
skeletons

skeletons

.Le

null ||
ngth != skeletonFrame.SkeletonArrayLength)

new Skeleton[skeletonFrame.SkeletonArrayLength];

skeletonFrame.CopySkeletonDataTo (skeletons) ;

Skeleton closestSkeleton = skeletons.Where(s => s.TrackingState ==
SkeletonTrackingState.Tracked)

Math.Abs (s.Position.X))

if

var
var
var
var
var

if

return;

(closestSkeleton

.OrderBy (s => s.Position.zZ *

.FirstOrDefault () ;

== null)

head = closestSkeleton.Joints[JointType.Head];

rightHand = closestSkeleton.Joints[JointType.HandRight];
leftHand = closestSkeleton.Joints[JointType.HandLeft];
centerHip = closestSkeleton.Joints[JointType.HipCenter];

centerShoulder

closestSkeleton.Joints[JointType.ShoulderCenter];

(head.TrackingState == JointTrackingState.NotTracked ||

rightHand.TrackingState == JointTrackingState.NotTracked ||
leftHand.TrackingState == JointTrackingState.NotTracked ||
centerHip.TrackingState == JointTrackingState.NotTracked ||
centerShoulder.TrackingState == JointTrackingState.NotTracked)

return;

86

87

SetEllipsePosition(ellipseHead, head, false);
SetEllipsePosition(ellipseleftHand, leftHand, leftHandactive);
SetEllipsePosition(ellipseRightHand, rightHand, rightHandactive);
SetEllipsePosition(ellipsecenterShoulder, centerShoulder, false);
SetEllipsePosition(ellipsecenterHip, centerHip, false);

Controle2 (head, rightHand, leftHand, centerHip, centerShoulder);
}

private void SetEllipsePosition(Ellipse ellipse, Joint joint, bool isHighlighted)
{
if (isHighlighted)
{
ellipse.Width = 50;
ellipse.Height = 50;
ellipse.Fill = activeBrush;
}
else
{
ellipse.Width = 20;
ellipse.Height = 20;
ellipse.Fill = inactiveBrush;

}
CoordinateMapper mapper = sensor.CoordinateMapper;

var point = mapper.MapSkeletonPointToColorPoint (joint.Position,
sensor.ColorStream.Format) ;

Canvas.SetLeft (ellipse, point.X - ellipse.ActualWidth / 2);
Canvas.SetTop(ellipse, point.Y - ellipse.ActualHeight / 2);
}

#region Controle2
private void Controle2 (Joint head, Joint rightHand, Joint LeftHand, Joint
centerHip, Joint centerShoulder)

{

//~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k************************ MOtOIDIREITO khkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkkkk
if (rightHand.Position.X <= (centerShoulder.Position.X + 0.3))
{
RodaDireita = "DX000"; //Para o motor direito
rightHandactive = false;
}
else
{
if (rightHand.Position.Y < head.Position.Y & rightHand.Position.Y >
centerShoulder.Position.Y)
{
//equacao de reta para obtencao do valor da velocidade de acordo com a
posicao da mao [conversao de float para int]
VelRodaDireita = (int)Math.Ceiling((155 / (head.Position.Y -
centerShoulder.Position.Y)) * (rightHand.Position.Y - centerShoulder.Position.Y) + 100);
if (VelRodaDireita < 180)
{

VelDireita = "100";
}
else
{
VelDireita = "240";
}
//VelDireita = Convert.ToString(VelRodaDireita); //converte o valor da
velocidade em string
RodaDireita = "DE" + VelDireita; //Liga motor dieito para frente

rightHandactive = true;

}

if (rightHand.Position.Y < centerShoulder.Position.Y & rightHand.Position.Y
> centerHip.Position.Y)

{
VelRodaDireita = (int)Math.Ceiling((-155 / (centerShoulder.Position.Y-

centerHip.Position.Y)) * (rightHand.Position.Y - centerHip.Position.Y) + 255);

}

if (VelRodaDireita <
{

VelDireita =
}
else
{

VelDireita =
}
RodaDireita = "DA"
rightHandactive =

}

180)

"100";

"o40m;

+ VelDireita;
true;

[] KKK KKK K Kk kKK Kk Kk R A Kk kK ok R KAk kK kR A Xk kK kA X XMotor ESQUERDQ % % % % % ok % o ok & ok ok & ok ok & ok ok & ok ok & %

if (LeftHand.Position.X >=
{
RodaEsquerda = "EX000
leftHandactive = fals
}
else

{

(centerShoulder.Position.X -

".
’

ey

//Para o motor esquerdo

0.3))

if (LeftHand.Position.Y < head.Position.Y & LeftHand.Position.Y >
centerShoulder.Position.Y)

{
RodaEsquerda =
leftHandactive =

}

if (LeftHand.Position.Y < centerShoulder.Position.Y & LeftHand.Position.

centerHip.Position.Y)

}

Roda = RodaDireita + RodaEsquerda;

if
{

}
}

{
RodaEsquerda =
leftHandactive =

(Roda != Roda0Old)

Verify.AppendText (Roda) ;

"EF100";

true;

"EA100";
true;

//Liga motor dieito para frente

//Liga motor direito para traz

Verify.AppendText (Convert.ToString(VelRodaDireita));

SerialCmdSend (Roda) ;

//SerialCmdSend (SerialData.Text) ;

//SerialData.Text = "";
RodaOld = Roda;

#endregion

#region

Controlel

private void Controlel (Joint head,

centerHip,

{

if (rightHand.Position.Y > centerShoulder.Position.¥Y & leftHand.Position.Y <

Joint centerShoulder)

centerShoulder.Position.Y)

{

System.Windows.Forms.SendKeys.SendWait ("{d}");

//if (!rightHandactive)
/ /4
rightHandactive = true;
direita

//}
}
//else
/ /4
// rightHandactive = false;
//}
else if

< centerShoulder.Position.Y)

{

leftHandactive = true;

Joint rightHand,

Joint leftHand,

Joint

// carro anda para a

//Liga motor direito para traz

Y

88

(leftHand.Position.Y > centerShoulder.Position.Y & rightHand.Position.Y

89

System.Windows.Forms.SendKeys.SendWait ("{a}"); //carro anda para a
esquerda

else if (leftHand.Position.Y > centerShoulder.Position.Y & rightHand.Position.Y
> centerShoulder.Position.Y &
rightHand.Position.X > centerHip.Position.X + 0.3 & leftHand.Position.X <
centerHip.Position.X - 0.3)

{

leftHandactive = true;
rightHandactive = true;
System.Windows.Forms.SendKeys.SendWait ("{w}"); //carro anda para frente

else if (rightHand.Position.Y > centerHip.Position.Y & leftHand.Position.Y >
centerHip.Position.Y &
rightHand.Position.Y < centerShoulder.Position.Y & leftHand.Position.Y <
centerShoulder.Position.Y &
rightHand.Position.X > centerHip.Position.X + 0.3 & leftHand.Position.X <
centerHip.Position.X - 0.3)
{
leftHandactive = true;
rightHandactive = true;
System.Windows.Forms.SendKeys.SendWait ("{s}"); //carro anda para traz

else if (rightHand.Position.Y < centerHip.Position.Y & leftHand.Position.Y <
centerHip.Position.Y &
rightHand.Position.X > centerHip.Position.X + 0.3 & leftHand.Position.X <
centerHip.Position.X - 0.3)

{

leftHandactive = true;
rightHandactive = true;
System.Windows.Forms.SendKeys.SendWait ("{qg}"); //carro para

}

else

{
leftHandactive = false;
rightHandactive = false;

#endregion

Apéndice 4 : Configuracao da tela de aplicacéao

<Window x:Class="KinectPowerPointControl.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Kinect Car Control"
Height="480"
Width="640"
WindowState="Maximized">
<Viewbox Stretch="Uniform">
<Grid>
<Image Name="videoImage"
Width="640"
Height="480"></Image>
<Canvas Background="Transparent">
<Ellipse Fill="Red"
Height="20"
Width="20"
Name="ellipseLeftHand"
Stroke="White" />
<Ellipse Fill="Red"
Height="20"
Width="20"
Name="ellipseRightHand"
Stroke="White" />
<Ellipse Fill="Red"
Height="20"
Width="20"
Name="ellipseHead"
Stroke="White" />
<Ellipse Fill="Yellow"
Height="20"
Width="20"
Name="ellipsecenterShoulder"
Stroke="Black" />
<Ellipse Fill="Yellow"
Height="20"
Width="20"
Name="ellipsecenterHip"
Stroke="Black" />
<RichTextBox Height="47" Name="Commdata" Width="216" Canvas.Left="7"
Canvas.Top="421" Background="White" BorderBrush="Black" />
<Button Content="Conectar" Height="24" Name="Conectar" Width="62"
Canvas.Left="7" Canvas.Top="368" Click="Conectar Click 1" />
<TextBox Height="20" Name="Comm Port Names" Width="63" Text="COM4"
Canvas.Left="7" Canvas.Top="397" BorderBrush="Black" HorizontalContentAlignment="Center
VerticalContentAlignment="Center" />
<Button Content="Enviar" Height="24" Name="Enviar" Width="67"
Canvas.Left="76" Canvas.Top="369" Click="Enviar Click_ 1" />
<TextBox Height="20" Name="SerialData" Width="146" Canvas.Left="76"
Canvas.Top="397" BorderBrush="Black"/>
<TextBox Canvas.Left="237" Canvas.Top="420" Height="47" Name="Verify"
Width="394" BorderBrush="Black" />
</Canvas>
</Grid>
</Viewbox>

</Window>

"

90

