Fabio Dassan dos Santos

Utilizacao de DSPs e FPGAs em
Unidades Eletronicas Automotivas

Trabalho de Conclusao de Curso
apresentado a Escola de Engenharia de S&o
Carlos, da Universidade de Sdo Paulo

Curso de Engenharia de Computacdo com
énfase em Sistemas Embarcados

ORIENTADOR: Prof. Dr. Carlos Dias Maciel

Sao Carlos
2008

Aos meus pais.

Agradecimentos

A Deus, por me permitir chegar até esta etapa tdo importante da minha vida.

A meus pais, grandes companheiros e exemplos, e que nunca deixaram que eu
desanimasse.

Aos meus irmaos, que mesmo nao me entendendo as vezes, sempre me acolhiam
com carinho.

Aos meus companheiros de turma, aos mais préximos e aos mais distantes — todos
tiveram sua contribuicdo na formacé&o de futuro engenheiro que tenho.

Aos amigos com quem morei na faculdade, Elias Arbex e Breno Pelizer, Anderson
Maia e Guilherme Buzo, por serem tdo humanamente fortes.

Aos tantos outros amigos da moradia estudantil e de minha cidade natal, que sempre
estiveram comigo quando precisei.

Ao meu orientador, professor Dr. Carlos Maciel, por ser mais que apenas um docente,

mas um amigo presente.

Sumario

10110 1 o T RSP 4
(IS vz o [T U = L 5
RESUIMO L.t e ettt ettt e e e e et e et e bt e e e e e e e e eee bt e e eeaaaennnes 6
Y 011 1 = V! F PRSP PRPPP PP 7
IO [] 10 Lo |8 [ox- Lo PP PPPPPPPPPPPPPN 8
I I 1 o 1 11 7= U= o 8
1.2, ODJELIVOS . uutiitiiiiiiitiiit e ———— 9
1.3. Organizagao da MONOGIafiacouiiuuriiiiiiiee e 9

2 SV ol F- g g 1= T g r= o= To T I =To 4 ox- WP 10
2.1. Controle EletrdnicO AUtOMOLIVOooiiiiiiiiiiieee et 10
2.1.1. EVOIUGAO NiStOrICA......cceeeieeiieeeeeeeccee e 10
2.1.2. PriNCIPIOS DASICOS ...ttt 12
2.1.3. Descricao dos subsistemas de controle do motorccccevvii. 13
2.1.3.1. Controle eletrdnico da igniCaO0ccvvvvviieiiiiiiiiiiiieceeeeeeeeeee e, 13
2.1.3.2. Controle da recirculacdo dos gases de escape (EGR)............ccevveeeee. 14
2.0.3.3. SBNSOMES ... ittt ettt ettt e e e e e et ettt e e e e e e et teba e e e aaeeanan 14

P G B0 S AN (U= Vo [0 =2 ST PPRPTTP 15
2.1.3.5. SeNSOr Iambda.........ccovvviiiiiiiii e 16

2.1.4. Sistema de Injeg&o de CombUSEIVElcoooiiiiiiiiiii e 17
2.1.4.1. Esquema de funcionamentouuuiiiiiieiieieiiiiiie e e e e e e ee e 19

2.2. Dispositivos de ProCESSAMENTO.....ccciiiiiieeiiee et 21
2.2.1. Processador de Sinais DigitaiS (DSP)covviiiiiiiiiiiiiiiiieiee e 21
2.2.2. Field Programmable Gate Array (FPGA) ... iiiiiiiiin e 23

3. MAtEriaIS € MELOUOScceeiiiiiiiiiiiiiiie ettt e e e e e e e e e e e naneeees 25
3.1. DESCrIGAO AO SISTEMI@....ciieiiiiiiiiiiiiiie ettt e e a e e e e et r e e e e e e e aann 25
3.2 Materiais e softwares utilizados..............ooooiiiiii 26
3.3. Caracteristicas de implementaGaocccuuvvieiieeeiiiiiiiieee e 29
3.3.1. MOtor SIMUIAAO.........covviiiiiiiiie e 29

3.4. Unidade Eletrénica de CoNntrole.............ooooiiiiiiiiie e, 32
3.4.1. Implementacdo do Sistema em FPGA..........cccciiiiiiie 32
3.4.2. Implementacado do Sistema em DSPcccccc 34

4. ResUltados € AISCUSSOESccceieiie e 36
4.1. Vantagens e Desvantagens de cada dispositivo (neste projeto).........ccccvvennn... 36
4.2. Sugestdes de proximos trabalhoscccccccv 38

Eo TR 0] T 111 Vo 39
6. Referéncias BiblIografiCascooouiiiiiiiiiiii e 40
7. Bibliografia CONSUIATA............coiiiiiiiieeiii e e e e e e e e eeeaees 42
B ANEXO . ..t e et e e et e e e e e e e e e e e n s 44
8.1 Cddigos de implementacado de alguns blocos em FPGAccccviveveeeeeeiiienns 44
8.2 Cdodigos de implementacdo em C para 0 DSPoooiiiiiiiiiie e 54

Lista de figuras

Figura 1: Divisdo didatica de um sistema de controle automotivo............c.cccccvveeeennnee. 13
Figura 2: Diagrama de Blocos de uma ECU [6]..........ccovvviiiiiiiiiiiiiiiiiiieeeeeeeeeee e 17
Figura 3: Sistema de Injecao de Combustivel Single-Point.............cc.ccccccc. 18
Figura 4: Sistema de Injecao de Combustivel Multipoint..............ccccccceviiviiiinnn, 19
Figura 5: Sensor Hall com abertura entre 0 SENSOr € 0 IM&........cceeeeeiiiiiiiiiiiieeeeenninens 19
Figura 6: Sensor Hall posicionado entre 0 IM& € 0 SENSO...........vveeiieeeereeeiiiiieiieeeeeeenns 20
Figura 7: Representacdo do sensor Hall e da onda gerada............c.ccccoovvvvvviinninnnnnn.. 20
Figura 8: Exemplo de trés janelas iguais e uma maior, no sensor Hall........................ 21
Figura 9: Distribuicdo das principais aplicacdes que utilizam FPGAS [17]................... 24
Figura 10: Diagrama de blocos do simulador de motor...........c.eeuceeiiieerieeiiiienin e 25
Figura 11: Diagrama de blocos do sistema de controle eletrénico...............ccccccceeee. 26
Figura 12: Tela do programa COdECOMPOSETuuiiiiieeeiiiiiitierieeeee e e aiiereree e e e e e e 27
Figura 13: Tela do programa ISEooooiiiiiiii e e e 27
Figura 14: Diagrama de blocos do TMS320F2812, da Texas Instruments 28
Figura 15: Simulagdo do contador de aceleracéo feita no ISE Simulator 29
Figura 16: Curva que relaciona a aceleracado com os indices da tabela de rotagéo.... 31
Figura 17: Simulacéo do controle de injecdo a partir da deteccéo do duty cycle......... 33
Figura 18: Identificacdo do duty cycle diferente de 50%, e conseqlente acionamento

0OS SINAUS U8 INJEGEODveeeeeeeeeeiiiitt ettt e et e e e e e s s e e e e e e e e s r e e e e e e e e e nnnneees 34

Figura 19: Osciloscopio indicando os sinais de rotagdo e acionamento da injecéo..... 35
Figura 20: Deteccao do duty cycle diferente de 50% no osciloscépio, conectado ao
3 1] SRR 35

Resumo

A demanda por sistemas embarcados tem crescido significativamente nos ultimos
anos. Conseqguentemente, aumentou o interesse por dispositivos que oferecam
estabilidade, seguranca e confiabilidade no desenvolvimento destes projetos.
Especificamente na area automotiva, a rigorosidade das leis ambientais e a busca por
sistemas que associem consumo baixo com desempenho satisfatério implicaram na
evolucéo dos sistemas de controle. O ambiente agressivo no qual estes sistemas de
controle sé@o inseridos sugere uma necessidade grande de pesquisas no sentido de
buscar uma alternativa eficiente e de baixo custo. Esta possivel solugdo deve ser
capaz de atuar de maneira tolerante a falha dentro do sistema automotivo, oferecendo
um tempo de resposta bastante baixo, caracteristica dos sistemas chamados de
tempo real. Este trabalho tem como objetivo implementar um circuito de deteccéo de
ciclos de motor, analisando a forma de onda gerada por este, de maneira a atuar
através de um sinal de controle enviado a uma unidade injetora de combustivel a partir
da constatacdo do estado de funcionamento do motor. Para a andlise do ciclo de
rotacdo do motor, foram feitas duas implementacdes, em DSP e FPGA, com o intuito
de verificar quais os pontos favoraveis e desfavoraveis de cada dispositivo dentro

desta aplicacdo especifica.

Abstract

Demand for embedded systems has grown significantly in recent years. Therefore, the
interest in devices that provide stability, security and reliability in the development of
these projects increased. Specifically in the automotive area, the environmental laws
and the search for systems involving consumption down with satisfactory performance
involved in the evolution of systems of control. The aggressive environment in which
these control systems are inserted suggests a great need for research to seek an
efficient and low cost alternative. This possible solution must be able to be fault-tolerant
system in the automotive, offering a very low time response, so called real time. This
work intend to implement a circuit for detecting the engine cycles, examining the
waveform generated by this in order to send a signal to a control unit fuel injector from
the observation of the state of the engine. For the analysis of the engine cycle of
rotation, two deployments were made in DSP and FPGA in order to find the favorable

and unfavorable points of each device within this specific application.

1. Introducéo

1.1. Motivacéao

A demanda por sistemas embarcados tem crescido significativamente nos ultimos
anos. Conseqguentemente, aumentou o interesse por dispositivos que oferecam
estabilidade, seguranca e confiabilidade no desenvolvimento destes projetos.
Especificamente na area automotiva, a rigorosidade das leis ambientais e a busca por
sistemas que associem consumo baixo com desempenho satisfatério implicaram na
evolucéo dos sistemas de controle.

Além disso, o ambiente agressivo no qual estes sistemas de controle séo
inseridos (sujeitos a interferéncias de temperatura e vibracdo, entre outras) sugere
uma necessidade grande de pesquisas no sentido de buscar uma alternativa eficiente
e de baixo custo. Esta possivel solucdo deve ser capaz de atuar de maneira tolerante
a falha dentro do sistema automotivo, oferecendo um tempo de resposta bastante
baixo, caracteristica dos sistemas chamados de tempo real.

Inicialmente mecanicos, atualmente estes sistemas sdo implementados
eletronicamente, utilizando dispositivos como microprocessadores e
microcontroladores. Em meados dos anos 80, uma unidade de controle hibrida
utilizava técnicas de andlise analégica e digital de sinais. Estas técnicas eram
utilizadas para medir parametros de entrada do motor, compara-los com informacdes
armazenadas em tabelas digitais para entdo gerarem saidas pré-determinadas.

Mais tarde, os sistemas passaram a computar as saidas dinamicamente.
Atualmente, os controles séo tao sofisticados a ponto de receberem informacdes de
varias partes do motor, tomar decisGes e atuar sobre eles. Por exemplo, tanto o
controle da aceleracdo de um veiculo quanto do antitravamento das rodas numa
frenagem podem ser gerenciados por unidades de controle.

As aplicacbes deste tipo de sistema em outras areas que ndo a automotiva
também servem como motivagdo para pesquisa. Alguns equipamentos agricolas de
fertilizacdo e controle de agrotoxicos, por exemplo, utilizam o mesmo principio de
funcionamento de uma unidade de controle automotiva. Estas maquinas devem
controlar a quantidade de produto quimico que deve ser pulverizado por area,
utilizando como referéncia a rotacdo do motor que as impulsiona, e o tempo que levam

para realizar uma volta completa do eixo de transmisséo.

1.2. Objetivos

A partir da constatacdo da crescente demanda por sistemas embarcados de controle
de motores (especialmente os sistemas automotivos), este trabalho tem como objetivo
implementar um circuito de detecc¢édo de ciclos de motor, analisando a forma de onda
gerada por este, de maneira a atuar através de um sinal de controle enviado a uma
unidade injetora de combustivel a partir da constatacdo do estado de funcionamento
do motor.

Este ambiente pode ser encontrado no contexto das Unidades de Controle
Automotivas, também conhecidas como ECUs (do inglés Engine Control Unit). Por
isso, além da andlise deste sinal de rotacdo do motor, foi também implementado um
pequeno circuito que descreve de maneira ndo-linear a aceleracdo de um veiculo. A
partir desta, pode-se obter um valor de rotagao.

Para a implementacdo destes sistemas, realizou-se uma revisao bibliografica
sobre Unidades de Controle Automotivas, desde sua concepc¢ao até os dias atuais. Foi
estudado seu principio de funcionamento, e suas interacdes com outros subsistemas
que existem em um veiculo.

Para a andlise do ciclo de rotagdo do motor, foram feitas duas implementacoes,
em DSP e FPGA, com o intuito de verificar quais os pontos favoraveis e desfavoraveis
de cada dispositivo dentro desta aplicacdo especifica. Esta constatagéo leva em conta
principalmente as facilidades e dificuldades encontradas pelo aluno durante a
execucdo do projeto de conclusao de curso.

1.3. Organizagéo da monografia

O segundo capitulo apresenta uma explicagdo dos conceitos tedéricos relacionados aos
sistemas de controle automotivos, além do historico e dos principios de funcionamento
dos dispositivos considerados neste trabalho.

O terceiro capitulo apresenta os softwares utilizados para a construcdo do
sistema proposto, assim como sua modelagem propriamente dita. Além disso, relata
0s pontos implementados sobre cada tecnologia, apresentando graficos com
demonstracfes das atividades.

O quarto capitulo é reservado para a discusséo sobre os resultados obtidos,
além de sugestbes de trabalhos futuros. No quinto capitulo tecem-se as conclusdes

deste projeto, seguidas pelas referéncias bibliogréaficas e pela bibliografia consultada.

No fim, encontra-se o anexo com parte dos codigos utilizados na elaboragéo

deste projeto.

2. Fundamentacéao Teérica

2.1. Controle Eletronico Automotivo

2.1.1. Evolucéao historica

A aplicacdo dos conceitos de eletrdnica em sistemas automotivos era um processo
natural, e até mesmo inevitavel. O constante aumento do preco dos combustiveis
associado as praticas empregadas para a diminuicdo da poluicdo gerada pelos
veiculos certamente aceleraram o processo. Entretanto, antes mesmo da producéo
dos sistemas de controle modernos, ja existiam dispositivos digitais que atuavam nos
motores dos automéveis [1].

O primeiro controle eletrénico aplicado a um motor automotivo surgiu em 1978,
e foi chamado de carburador de “ciclo fechado” (tradugéo livre de closed loop) [1]. Foi
uma resposta a crise mundial do petréleo, além de representar a primeira acao direta
no combate a emissao de gases poluentes na atmosfera.

N&o demorou para que este dispositivo evoluisse. No ano seguinte houve a
producdo em série do primeiro dispositivo de controle automotivo de natureza
puramente eletrdnica [2]. Antes dele, outros dispositivos ja atuavam no motor com o
intuito de controla-lo, porém eram mistos — parte mecanicos, parte eletrdnicos [3].

J& era de conhecimento da ciéncia que o resultado da combustdo (tanto a
energia quanto a producdo de gases) era diretamente influenciado pela precisdo na
mistura ar-combustivel. Para se obter o maximo do processo, deveria obedecer-se a
razdo estequiométrica de 14:1. Além disso, a faisca gerada para causar a explosédo
deveria ocorrer no instante exato desta propor¢do. Obviamente, estes fatores
dependiam de outras variaveis tais como a velocidade, a carga de trabalho,
temperatura [1].

A partir de entdo, comecou-se a avaliar quais eram as informacfes mais
importantes que uma unidade de controle deveria ter para que pudesse executar um
trabalho eficiente. Basicamente, era importante saber a rotacdo do motor, as posi¢cdes
do crankshaft (conhecido como virabrequim) e camshaft (eixo responsével por acionar

0 movimento de subida e descida do pistdo), e a massa de ar admitida. A posi¢do do

10

acelerador e a razdo de aceleracdo (para o sistema de transmissao) também foram
consideradas.

Até entdo, eram utilizados microprocessadores de 8 bits para o controle das
funcdes basicas do motor (determinacdo da razdo ar-combustivel, temporizagdo da
ignigc&o) [4] feito a partir das informagdes acima citadas.

Com o tempo, varios sensores e atuadores foram inseridos nos motores, em
subsistemas especificos, tais como o de injecdo de combustivel e o de controle do
tempo de explosdo do motor (controle da faisca). Curiosamente, chegou-se a
conclusdo de que a maior parte dos sinais adquiridos do motor necessita apenas de
quatro amostras a cada 360°. Ou seja, a cada giro do motor sdo realizadas quatro
medi¢cBes simétricas sendo que, a partir delas, pode-se calcular o comportamento do
sinal durante todo o periodo matematicamente, prevendo ndo somente a posicao do
motor, mas também se este esta acelerando ou desacelerando [1].

Conforme a necessidade surgia, apareciam também os equipamentos que
possibilitavam o avancgo na construcdo das unidades eletrbnicas de controle. Entre os
anos de 1980 e 1982 surgiram elementos muito importantes para a aquisicdo de sinais
do motor: sensores de rotacdo fotoelétricos, sensores de massa de ar, sensores de
medi¢ao de rotagdo, e o controle de regime de trabalho livre do motor [2].

Posteriormente, conforme o0s estudos avancavam, outras variaveis foram
identificadas e a obtencao de seus valores se fez necessaria. A temperatura da agua
(para identificar a temperatura do motor), a quantidade de combustivel injetado
proporcionalmente a velocidade desenvolvida, a densidade do ar (para o célculo da
raz&o estequiométrica) foram algumas delas [1].

No inicio da década de 90, comecaram a surgir os primeiros dispositivos de
controle com microprocessadores de 16 bits, para atender a demanda de tratamento
dos novos sinais que eram agregados ao controle automotivo. Durante os anos
seguintes, foram desenvolvidos modelos cada vez mais complexos e eficientes até
que, gracas ao avanco na area de hardware, foi possivel utilizar processadores de 32
bits. Estes tém uma capacidade muito grande de processamento, permitindo executar
algoritmos sofisticados de tratamento de informacdes e controle de sistemas [4].

Atualmente, as unidades eletrbnicas de controle automotivo estdo bastante
avancadas, e sdo capazes de executarem fungdes consideradas complexas para um
dispositivo embarcado, como interface com o usuario, por exemplo [1]. Além disso,
sdo capazes de identificar configuracdes pessoais de cada usuéario, como a utilizagédo
de transmissdo de marchas automética ou manual, ou mesmo a funcao de pilotagem

automética (na realidade, apenas o controle automatico da aceleragao).

11

2.1.2. Principios béasicos

Basicamente, uma unidade eletrénica de controle é constituida de alguns elementos
principais. O mais importante deles é o controlador, responsavel pela tomada de
decisbes sobre os estados de funcionamento do motor. Ele trabalha com sinais
digitais. Sensores de dados (tensdo, temperatura, velocidade angular e linear, entre
outros) devem ser convertidos de informacdo continua ou analdgica para o formato
digital exigido por microcontroladores. Esta conversédo pode ou néo ser realizada pelo
préprio controlador, dependendo das funcionalidades implementadas nele.

Outra caracteristica critica € a capacidade de captura e tratamento de eventos
assim que eles acontecem. Nesse ponto, faz diferenca a velocidade na qual o
controlador consegue trabalhar com os sinais de entrada e saida de informag&o. Com
todas as informag@es disponiveis, € possivel identificar o estado de funcionamento do
motor e, a partir dele, tomar uma deciséo sobre como atuar nos subsistemas [1].

O sistema de controle da maioria dos motores utilizados atualmente € dividido
em um conjunto de subsistemas. Estes interagem entre si € com 0s sensores e
atuadores, auxiliando a unidade de controle a tomar a melhor decisdo sobre a
operacdo do motor em um dado instante de andlise [5].

O principal destes é o de injecdo de combustivel, responsavel por controlar a
guantidade ideal de combustivel para determinada condicdo de operacdo do motor.
Além deste, existem o0s sistemas de controle da igni¢do, recirculacdo de gases e
outros que variam de acordo com cada fabricante.

A precisdo no controle destes sistemas visa atingir o ponto ideal de
funcionamento do motor. Neste, o consumo de combustivel é minimizado, assim como
a emissdo de poluentes. Estas duas metas tém sido fortemente buscadas pelos
projetistas, pressionados principalmente por trés fatores: a natural busca por
minimizacdo de custos; a alta nos precos dos combustiveis nos ultimos 30 anos; e
pelas rigorosas leis ambientais relacionadas a emissdo de gases na atmosfera por
veiculos automotores.

O sistema de controle interpreta os sinais recebidos e, através de valores
contidos em tabelas, conclui sobre uma determinada agéo a ser desempenhada pelo
motor. Estas tabelas sdo obtidas em laboratério através de um processo chamado
calibracdo. A partir de medicdes obtém-se curvas de torque do motor, poténcia,
consumo especifico e niveis de emissbes, e sdo construidas tabelas (como carga
versus rotagdo versus ponto de ignicdo, carga versus rotagdo versus tempo de

ignicdo, temperatura do motor versus tempo de injecdo, entre outras). Estas sdo

12

armazenadas na memodria interna da unidade de controle, e sdo recuperadas ponto a
ponto de acordo com a condig¢éo de operacdo do motor [6].

Para cada condicdo do motor, define-se um modo de controle. Cada modo
corresponde a uma rotina realizada pelo programa, e que € ativada a partir dos sinais
recebidos dos sensores. Apesar do sistema de gerenciamento atuar de maneira
integrada, os mddulos de controle sdo representados separadamente para fins

didaticos, seguindo a literatura da area, conforme indicado na Figura 1.

" Injecdo * Atuadores
Sensores *» ECM " Ignigdo * Atuadores
2 EGR » Atuadores

Figura 1: Divisao didatica de um sistema de controle automotivo.

ECM = Engine Control Module, ou Médulo de Controle do Motor;
EGR = Exhaust Gas Recirculation, ou Controle de Recirculacdo de Gases.

A ECU deve possuir uma interface de comunicacdo com 0S sensores e
atuadores, incluindo ai todas as questdes relacionadas a protocolos e drivers. Um dos
protocolos de comunicacdo mais utilizados na industria automobilistica € o Controller
Area Network (CAN). Ele foi desenvolvido pela Bosch em 1986 para resolver
problemas de comunicagéo entre dispositivos eletrdnicos em automoveis [7].

Quase a totalidade das empresas de automoveis utiliza este padrdo para
comunicac@o entre os sensores e atuadores localizados no veiculo e as unidades
eletrbnicas de controle. Também é utilizado na comunicacdo entre ECUs. Entre as

razdes para tal fato estdo sua seguranga e o custo baixo de implementacao.

2.1.3. Descrigéo dos subsistemas de controle do motor

2.1.3.1. Controle eletrénico da ignicao

O controle eletrénico de ignicdo trabalha a partir do mapa de avancgo da igni¢cdo do

motor. Uma vez detectada a condicdo de operacéo, as informacdes armazenadas em

13

tabelas na memoria da unidade de controle sdo recuperadas, para corrigir o ponto de
ignicdo em fungéo de alguns fatores. Dentre eles estéo a rotacdo do motor, a pressao
no coletor de admissédo e a temperatura do motor.

Além de corrigir o ponto de ignigéo, a unidade eletrénica controla a ocorréncia
de knocking, de modo a atrasar o ponto de ignicdo quando o knock aparece. Knocking
€ o termo utilizado para descrever a combustdo com caracteristicas muito proximas a
combustao detonante, quando comparado com o processo normal de combustéo. Este

fendbmeno pode causar danos ao motor dependendo de sua intensidade e ocorréncia.

2.1.3.2. Controle da recirculacéo dos gases de escape (EGR)

O sistema de recirculacdo de gases de escape tem por funcdo desviar uma parte dos
gases queimados da tubulacdo de exaustdo de volta para a admissdo do motor. O
principal intuito desta medida é diminuir a emissdo de gases na atmosfera,
especialmente 0s que possuem nitrogénio em sua composicao.

A gquantidade de gés recirculado para a admissao varia em funcao da rotacao
do motor, pressdo no coletor de admissdo e temperatura do motor [8]. Estas
informacdes sdo avaliadas pela unidade de controle, que atua de acordo com as

condi¢cdes momentaneas de funcionamento.

2.1.3.3. Sensores

Os sensores sao responsaveis por obter as condi¢cdes de funcionamento do motor em
um determinado instante, e envia-las a unidade de controle. Existem diversos
sensores espalhados pelo motor, com o intuito de levantar o maximo de informacdes
possivel. Estas auxiliam nas decisdes sobre qual acdo tomar com relacdo a

determinado estado de funcionamento. Entre todos, pode-se destacar como principais:

e Sensores de pressdo no coletor de admissao - tém a fungao de informar as
variagbes de pressao no coletor de admissdo. Em alguns casos, esta pressao
€ utilizada para determinar qual a carga de trabalho na qual o motor se
encontra, definindo o avanco da ignicao;

e Sensores massicos - sdo responsaveis pela medida da massa de ar admitida

pelo motor. Outra maneira de fazer isso & a utlizagdo de sensores

volumétricos, que medem o fluxo volumétrico de ar;

14

Sensores de posicdo da borboleta de aceleragdo - informam a posi¢cédo
angular da borboleta de aceleracdo a unidade eletrénica. Isto permite adotar
estratégias de controle de liberacdo de combustivel e momento de detonacgéo
da centelha de acordo com as tabelas armazenadas em sua memoria;
Sensores de temperatura - responsaveis por informar a temperatura do ar
aspirado pelo motor e da agua do sistema de arrefecimento. A temperatura do
ar é necesséaria para se determinar sua densidade, utilizada para o célculo da
massa de ar que esta sendo admitida pelo motor. A temperatura da agua é
utilizada como indicativo da temperatura do motor, servindo como parametro
para que estratégias especificas possam ser realizadas, tais como:
o Enriquecimento da mistura ar-combustivel no momento da partida,
quando o motor ainda esté frio;
o Cut-off com o motor frio (diminui¢cdo ou corte da inje¢cdo de combustivel
quando o carro nao esta acelerado);
0 Substituicdo do sensor de temperatura do ar, caso este ndo seja
empregado;
0 Sensor de rotacdo do motor/PMS - tem por finalidade gerar o sinal de
rotagdo do motor, e a posi¢ao da arvore de manivelas;
0 Sensor de fase - combinado com o sinal de rotacdo, permite que a

unidade de controle identifique o cilindro em ignig&o.

2.1.3.4. Atuadores

Atuadores sdo todos os componentes do sistema de controle responsaveis por gerar

uma acdo sobre a planta — no caso, motores de combustéo interna —, a partir de um

sinal de controle. Nos sistemas de injecdo eletrdnica, este sinal € de natureza elétrica,

resultado do processamento realizado pela unidade de controle.

Dentre os principais atuadores, pode-se destacar:

Vélvulas injetoras de combustivel - dispositivos dosadores de combustivel.
Outros componentes podem realizar sua funcéo (antigamente, essa funcéo era
exercida por carburadores mecanicos);

Bobina de ignicdo - responsavel por gerar a alta tensdo requerida para
provocar o centelhamento da vela de ignicdo. A centelha inicia o processo de

combustao da mistura ar-combustivel;

15

e Corretor da marcha lenta — tem como objetivo manter a rotacdo do motor o
mais estavel possivel, quando o pedal do acelerador ndo estd acionado e a

rotacdo do motor é baixa.

2.1.3.5. Sensor lambda

A realimentacdo da malha fechada do sistema é feita pela sonda lambda, trabalhando
em parceria com o conversor catalitico (dispositivo usado para reduzir a toxicidade das
emissbes dos gases de escape de um motor de combustdo interna). Hoje, este
conversor € o meétodo mais eficiente de purificagdo dos gases de exaustdo dos
motores de combustdo interna. Operando juntos, os sistemas de ignicdo e injecéo
permitem obter niveis muito baixos de emissdo de gases poluentes. Com a utilizacédo
de um catalisador, estes niveis podem ser realmente bastante baixos, pois um
catalisador (de trés niveis) tem o poder de reduzir os indices de emissdo dos gases
prejudiciais em até 90%.

Este nimero s6 pode ser alcancado se o motor operar muito proximo da
proporcao estequiométrica ideal de funcionamento (A = 1 £ 0.05). Este pequeno desvio
s6 pode ser mantido com o auxilio de sistemas de injecdo de combustivel controlados
eletronicamente. Por essa razdo, utiliza-se o controle em malha fechada com sonda
lambda, ou seja, a composicao da mistura ar-combustivel € mantida dentro da faixa
Otima através de agBes de controle.

Em outras palavras, a sonda lambda funciona como um sensor de
realimentacdo que indica se a mistura estd acima ou abaixo da proporgado
estequiométrica [6].

Este e todos os outros subsistemas descritos podem ser vistos

esquematicamente na figura 2.

16

1 Sensor de massa de ar
2 Sensor de Posigdo do Acelerador
Cantroladar 3 Sensor de Tem_peﬂratura _
4 Sensor de Posigdo Angular e Ciclos do Motor
S Controle do %olume de Combustivel
B bedicdo do Wolume de Combustivel
Cantrole df AAAA 7 Sensor de Exaustdo de Cxigénio
recirculagéo YYYY g =ensor de Pressdo
de gases P, |
> Entradas/
> Saidas 3 4
YY)
2 —
5
’ ® 5 Mistura Energia
-_ ;
0N Exaustéo
Aceleradar hotar > 7 g 3
Controle de
recirculagio
Wilwula - de gases

Figura 2: Diagrama de Blocos de uma ECU [6]

2.1.4. Sistema de Injecdo de Combustivel

O propésito do sistema de inje¢cdo de combustivel é controlar a quantidade exata de
combustivel no tempo exato para a obtencdo da razdo estequiométrica [9]. Baseado
nos sinais de entrada, a unidade de controle o instante em que cada bico injetor é
ativado ou ndo. Este sistema sera descrito com mais detalhes, devido a sua
caracterizacdo pela aplicacdo pratica deste trabalho.

Para que o motor tenha um funcionamento suave, econémico e ndo contamine
0 ambiente, ele necessita receber a perfeita mistura ar/combustivel em todas as faixas
de rotacdo. Um carburador, por melhor que seja e por melhor que esteja sua
regulagem, ndo consegue alimentar o motor na proporcdo ideal de mistura em
qualquer regime de funcionamento. Os sistemas de injecdo eletrbnica tém essa
caracteristica de permitir que o motor receba somente o volume de combustivel que
ele necessita.

Mais do que isto, 0os conversores cataliticos - ou simplesmente catalisadores -
tiveram papel decisivo no desenvolvimento de sistemas de injecédo eletronicos. Para
que sua eficiéncia fosse plena, seria necessario medir a quantidade de oxigénio

presente no sistema de exaustdo e alimentar o sistema com esta informacdo para

17

corrigir a proporcdo da mistura. O primeiro passo neste sentido foram os carburadores
eletrénicos, mas cuja dificil requlagem e problemas que apresentaram, levaram ao seu
pouco uso.

Surgiram entdo os primeiros sistemas de injecdo monoponto (ou single-point),
consistindo de uma valvula injetora ou bico, que fazia a pulverizacdo do combustivel
junto ao corpo da borboleta do acelerador. Toda vez que o pedal do acelerador é
acionado, esta valvula (borboleta) se abre, admitindo mais ar. Um sensor no eixo da
borboleta indica o0 quanto de ar é admitido. Esta informacéo é reconhecida pela central
de gerenciamento, que fornece o combustivel proporcionalmente.

Para que o sistema possa suprir 0 motor com maiores quantidades de
combustivel de acordo com a necessidade, a linha de alimentacdo dos bicos injetores
€ pressurizada e alimentada por uma bomba de combustivel elétrica, a qual envia
doses maiores que as necessarias para que sempre 0 sistema possa alimentar
adequadamente o motor em qualquer regime em que ele funcione. O excedente
retorna ao tanque. Nos sistemas single point a alimentagéo é direta ao bico Unico. No
sistema multi-point, em que existe um bico para cada cilindro, existe uma linha de
alimentag&o Unica para fornecer combustivel para todos os injetores, localizada antes
da vélvula de admissao.

Seja no caso de sistemas single-point ou multi-point, os bicos injetores dosam
a quantidade de combustivel liberada para o motor pelo tempo em que permanecem
abertos. As vélvulas de injecdo sdo acionadas eletromagneticamente, abrindo e
fechando através de impulsos elétricos provenientes da unidade de comando. Estes

tipos de injecéo estdo ilustrados nas figuras 3 e 4.

) Entrada de combusiivel ﬂ ‘,',

e ar

€) Borbolets de aceleracho 'n_' a
@) Cotetor de admissio

€ Vilvula de injecio

Q Motor

Figura 3: Sistema de Injecdo de Combustivel Single-Point

18

@) Galeria do gisiribuicio a‘
{enirada de combuslivel}
Q o
€) Borbolets de aceleracio ﬂ’
@ Coletor de admissdo o
@ vauias deinjecio — e —
0

Molor

Figura 4: Sistema de Injecdo de Combustivel Multipoint

2.1.4.1. Esquema de funcionamento

O instante no qual o injetor atuara no sistema é determinado pela unidade eletrdnica
de controle. Esta informagdo € obtida através de um sensor de fundamental
importancia chamado sensor Hall. Seu principio de funcionamento consiste em gerar
diferencas de potencial de voltagem a partir de efeitos eletromagnéticos [10].

O sensor Hall é constituido basicamente por uma pastilha semicondutora
alimentada eletricamente. Esta pastilha fica associada ao eixo de rotacdo do motor,
que transmite seu movimento a um disco giratério com quatro janelas (Figura 5).
Quando a abertura do disco giratério estd posicionada entre o sensor e 0 ima
permanente, o primeiro fica imerso no campo magnético do ima. Esta situacao gera no

interior da Unidade de Comando uma tensdo de aproximadamente 12 Volts.

disco giratdrio
com 4 janelas

ima permanente \

o LED verde aceso do \
analisador de polaridade
(sinal negativo do sensor HALL)

Figura 5: Sensor Hall com abertura entre o sensor e 0 imé

19

Quando o disco esta posicionado entre o ima e o sensor, ndo ha contato do

sensor HALL com o campo magnético e a tensé@o gerada € de zero Volt (Figura 6).

disco giratarnio
T com 4 janelas

.1 ".". \
- sensor HALL ¥\
ima permanente

03 dois LEDS acesos do
analisador de polaridade
(sem sinal do sensor H.-‘-'&LL]I.'

Figura 6: Sensor Hall posicionado entre o imé& e o sensor

O disco giratério pode ter 4 janelas igualmente espacadas, ou 3 janelas
igualmente espacadas entre si e uma maior (dependendo do sistema em questdo). No
disco de 4 janelas simétricas, o inicio das janelas indica quantos graus estdo 2 dos
cilindros do ponto morto superior (esta angulacdo varia de acordo com o sistema de
injecdo — Figura 7). No disco de 3 janelas iguais e uma maior, o inicio da janela maior
indica quantos graus esta o 1° cilindro do ponto morto superior.

Especificamente neste segundo caso, 0 sensor acaba gerando uma onda
quadrada com um periodo constante, mas com o duty cycle' da janela maior diferente
de 50% (Figura 8). Esta diferenca, associada a analise do sinal de rotacdo do motor,
permite inferir o momento exato que a sequéncia de injecdo de combustivel nos

cilindros deve ser iniciada.

[HALL EFFECT SENSOR

+5V
IKOHM | |
L — ovd

> SIGNAL

W

Figura 7: Representacdo do sensor Hall e da onda gerada

! Raz#o entre o periodo do pico e o periodo total de uma onda quadrada.

20

I [EIREEE -1 <IN =l[oc=]jom ~|Hom =]ac =]jon = |

— e e e —— s T T —— —

an beed L (9 — - (- | R A s
120
o & FrequessyfHa] 4523
e hadt Sennee - Hal

Camahat Se, il Etect
Pica Techaalogy Libeary ol Wavelorms o1 wiw plcolech comfautel

||:| Walting lar ADC Trigges |Nene =) | | | T T o= |

Figura 8: Exemplo de trés janelas iguais e uma maior, no sensor Hall

Existem algumas estratégias que a ECU pode adotar para realizar a injecdo de
combustivel. Como a injecdo é determinada pela posicdo angular do virabrequim, é
considerada uma injecé@o sincrona. Dependendo da aplicagdo, os trés principais tipos
de injecdo sincrona sdo: simultadnea, por grupo ou sequencial [11].

Na injecdo simultanea, todos os bicos sdo acionados ao mesmo tempo por um
circuito em comum. A admissdo de combustivel é feita uma vez por ciclo do motor. Ja
na inje¢cado por grupo, os bicos s&o divididos em partes, sendo que a entrada de
combustivel ocorre de maneira alternada entre estes grupos (em um motor com quatro
cilindros, geralmente se divide em dois grupos de dois cilindros, sendo o primeiro e o
terceiro cilindros acionados simultaneamente, e a seguir o segundo e o quarto). A
injecdo sequencial, como o proprio nome diz, ocorre de maneira a ativar um bico por
vez, ordenadamente, de maneira que todos os bicos injetem combustivel pelo menos

uma vez durante um ciclo do motor [11].

2.2. Dispositivos de Processamento

2.2.1. Processador de Sinais Digitais (DSP)

Sinais na vida real sdo analégicos por natureza. Entretanto, para que se possa
trabalhar computacionalmente com eles, é preciso que estes sejam representados de

maneira digital. Este é o conceito do processamento digital de sinais, no qual o

Processador Digital de Sinais (DSPs, do inglés Digital Signal Processor) esta inserido.

21

Os DSPs sédo microprocessadores especializados em processamento digital de
sinais. A utilizacdo destes dispositivos tem crescido significativamente nos ultimos
anos, tendo no mercado de dispositivos portateis (celulares, handhelds) o principal
destaque [12].

Os Processadores de Sinais Digitais sdo dispositivos especializados em
processamento digital de sinais das mais diversas naturezas (audio, video, dados),
quer em tempo real quer off-line. Possui uma alta velocidade de processamento, se
comparado com a maioria dos microcontroladores disponiveis no mercado, medida em
MIPS (Million Instruction Per Second) [13].

Recentemente, estes microprocessadores tém sido utilizados em projetos
presentes no mercado envolvendo controle digital. Sdo capazes de prover de maneira
rapida e eficaz solugcbes para diversos problemas deste tipo de sistema
(processamento em tempo real). Podem ser usados tanto sozinhos quanto em unido
com outros elementos computacionais (periféricos, microcontroladores, FPGAS).

Os DSPs podem ser divididos em duas categorias principais, baseadas na
maneira que representam valores numéricos e operagdes numéricas. Estes dois
formatos principais s&o ponto fixo e ponto flutuante. As diferengas entre processadores
de ponto fixo e flutuante s&o t&o significativas que requerem implementagdes (internas
e de algoritmos) distintas, além de um conjunto especifico de instrugdes [14].

Os processadores de ponto fixo representam e manipulam ndameros como
inteiros. Os processadores de ponto flutuante representam primeiramente nimeros no
formato do ponto flutuante, embora possam também suportar a representacdo e o0s
célculos de numeros inteiros. O ponto flutuante é representado como uma combinacao
da mantissa (ou parte fracionaria) com um expoente.

Os processadores de ponto flutuante podem executar as operacdes tanto de
ponto flutuante como de inteiros, tornando-os mais flexiveis. A potencialidade deste
tipo de DSP é apropriada nos sistemas onde os coeficientes do ganho mudam com
tempo, ou os coeficientes tém escalas dindmicas grandes. Em contrapartida,
apresentam custos mais elevados.

Por estas razdes, geralmente os DSPs de ponto fixo sdo mais baratos, e
costumam realizar tarefas mais simples com maior velocidade. Todavia, os DSPs de
ponto flutuante permitem maior precisdo na representacdo numérica, além de um ciclo
de desenvolvimento mais rapido (os programadores nao precisam se preocupar com
problemas como overflow ou underflow de variaveis, por exemplo) [12].

As principais caracteristicas que diferem um DSP de um microprocessador

comum séo [15]:

22

e Paralelismo na execucao das instrucdes;

e Otimizagéo da operagéo produto/acumulacdo (enderecamento circular);

e Otimizacédo da arquitetura para operacdes matematicas repetitivas (ciclos);
¢ Comutacao consciente de contexto nas interrupcdes;

e Separacao entre dados, dados secundarios e instru¢cdes do programa;

2.2.2. Field Programmable Gate Array (FPGA)

O Field Programmable Gate Array (FPGA) é um dos dispositivos semicondutores mais
utilizados para o processamento de informac¢des digitais. Foi criado pela Xilinx Inc., e
teve o0 seu lancamento no ano de 1985 como um dispositivo que poderia ser
configurado de acordo com as aplicagbes do usuério (programador) [16].

Esta, por sinal, € uma das suas principais vantagens. Apesar de outros
dispositivos também serem maleéveis, nenhum deles permite que se fagca uma
reconfiguracdo completa do sistema. A esta caracteristica dad-se o nome de
reconfigurabilidade. Através das ferramentas de desenvolvimento, é possivel
especificar o dispositivo para funcionar conforme os interesses do seu projeto.

Os FPGAs tém sido bastante utilizados para o controle de sistemas digitais.
Uma das &reas de atuacdo € a de controle de motores, controle de dispositivos
eletronicos voltados ao controle elétrico, e controle de movimento, conforme pode ser
observado na figura 9. A parte de controle de motores se refere a manipulacéo direta
de motores AC (corrente alternada) e DC (corrente continua) para se obter velocidade,
posicao ou torque especifico [17].

O controle elétrico estad relacionado diretamente com estratégias para a
conversao de sistemas DC-AC, AC-DC ou DC-DC. J4& a parte de controle de
movimento se refere a implementacdo de algoritmos para desvio de obstaculos,
controle do perfil de aceleracdo e rota, usualmente relacionados com a area de
robética ou das chamadas maquinas CNCs (Computerized Numerically Control).
Outras aplicacdes que se pode citar sdo implementagfes de conceitos de Idgica fuzzy
para controle de temperatura, e constru¢cdo de sistemas de controle eletrénicos

automotivos [17].

23

Motor Control Industrial Control

- 105 Others
54

Sensol
Monitoring .
g Power Electronics
25%

MMotion Control
224

Figura 9: Distribuicé@o das principais aplica¢gdes que utilizam FPGAs [17]

Basicamente, sdo constituidos por blocos l6gicos, blocos de entrada e saida, e
chaves de interconexdo. Os blocos légicos formam uma matriz bidimensional, e as
chaves de interconexdo sdo organizadas como canais de roteamento horizontal e
vertical entre as linhas e colunas dos blocos légicos. Os canais de roteamento
possuem chaves de interligacdo programaveis, que permitem conectar os blocos
I6gicos de maneira conveniente em funcao das necessidades de cada projeto [16].

No interior de cada bloco légico do FPGA existem varios modos possiveis para
implementacdo de fungbes logicas. O mais utilizado pelos fabricantes de FPGA é o
bloco de memdéria LUT (Look-Up Table). Esse tipo de bloco Iégico contém células de
armazenamento que sdo utilizadas para implementar pequenas funcdes logicas.
Quando um circuito loégico é implementado em um FPGA, os blocos ldgicos séo
programados para realizar as funcbes necesséarias. Os canais de roteamento sao
estruturados de forma a realizar a interconexao necessaria entre os blocos légicos.

A arquitetura de roteamento de um FPGA é a forma pela qual seus
barramentos e as chaves de comutac&o sdo posicionados para permitir a interconexao
entre as células légicas. Essa arquitetura deve permitir que se obtenha um roteamento
completo e, ao mesmo tempo, uma alta densidade de portas logicas [17].

As chaves programaveis de roteamento apresentam algumas propriedades que
afetam principalmente a velocidade e o tempo de propagacdo dos sinais. Tais
caracteristicas (tamanho, resisténcia, capacitancia e tecnologia de fabricacao) definem
itens como volatilidade e capacidade de reprogramacdo. Na escolha de um dispositivo

reconfiguravel, esses fatores devem ser considerados diante do sistema proposto.

24

3. Materiais e Métodos

3.1. Descricao do Sistema

A partir da revisdo bibliografica sobre o principio de funcionamento das unidades
eletrbnicas de controle automotivo, e das principais caracteristicas que as compdem,
foi proposta a construcdo de um pequeno sistema que pudesse simular de maneira
simplificada algumas funcionalidades de um motor. Este sistema esta representado
através do diagrama de blocos da figura 10.

Entenda-se por funcionalidades algumas informagdes presentes em um motor
real, tais como aceleracéo e rotacdo. Para este projeto, foi estipulado que a rotacéo
pudesse variar entre 240 rpm (rotacdes por minuto) e 1200 rpm. Este valor é apenas
uma representacdo de um possivel sinal de rotagdo encontrado em sistemas

automotivos reais.

Cloclk
I
Acelerador
Contadaor
Fasso
Rotagao (valor)
Indice . atacda (valor

Controlador Memdria
Memoria RO

o —>

Figura 10: Diagrama de blocos do simulador de motor

Na outra ponta do sistema, foi construido um médulo de controle destes sinais
gerados a partir do bloco anteriormente descrito. Este médulo pode ser considerado
como uma unidade de controle simplificada, de acordo com as especificacbes do
motor simulado. Esta unidade de controle é responsavel por detectar, no sinal de

rotacdo, um periodo que contenha um duty cycle diferente de 50%. Esta condi¢éo é

25

necessaria para ativar o sistema de inje¢cdo de combustivel nos cilindros (considerou-
se um motor de quatro cilindros, com estratégia de injecdo em grupo, ou seja, 0S
injetores impares sdo acionados simultaneamente, assim como 0s pares na
sequéncia).

Além disso, esta unidade de controle é responsavel por atuar no sistema de
admisséo de ar. Ele faz isso a partir do mapeamento dos estados de funcionamento
do motor. Uma vez identificado o valor de rotacdo, este € utilizado para calcular o
angulo de abertura da borboleta de admisséo de ar.

Um esquematico desta unidade simplificada de controle pode ser visto na

figura 11.

Angulo da baorbaleta de admisséo de ar

Injecao
atuador i -
, () Controlador |ﬂd|CE| Mermoria | o
Injecao RO
Fotacao Clock

Figura 11: Diagrama de blocos do sistema de controle eletrdnico

3.2 Materiais e softwares utilizados

Neste trabalho, algumas ferramentas e dispositivos foram utilizados para a elaboragéo
do sistema. Basicamente, foram utilizados softwares de programacdo para DSPs e
FPGAs. No caso dos primeiros, o programa utilizado foi o CodeComposer Studio, em

sua versao 3.1; ja para os ultimos, o ambiente de desenvolvimento foi o Xilinx ISE 9.2i.

26

‘F2812 XDS510 Emulator/CPU_1 - TMS320C28xx - Code Composer Studio - Mot Connected - [fabio.c] - IEIIiI

QFiIe Edit Wiew Project Debug GEL Option Profile Tools DSPIBIOS ‘Window Help _|ﬁl|5|
BEHE| ¥ BB o ClE R aB @N eEaig [CE 4%

[Labapit ~1[Debug &k
Fleo e DBEHEL | 2|

|-@Jﬂ\o&\

?} Q Files - - - j
o l:l EL files ‘E'old main(void)
=43 Prajects . .
¥ Eﬁ Lab4.pjt {Debug) :!'nt Countl s
i int Count2 = 0:
™l - [_1 Dependent Projects int i. Frro = 10:
= B-[_] Documents ’ ’
L0 18] I |2 DsRyBIOS Config
— | . |2 Generated Files . . Ber e e T
= ; : o the SRR s o
o -] Include InitSystem(]; fnitisiize the OFF s o
i []---D Libraries
{E 488 Surce Gpio_select(); o Retup the GFTG Multipd
& DSP2atx_CpuTimers.c PLo_ ’ R S e
3 DSP2E1x_Defaultlsr.c . .) . - L
g: DSP2aLx_GlobalvariableDefs.c InitPieCtrl(); st Funetion Sald to imit .
E DSPZiE1x_Piectrl.c - - PR ; T
1 DSP2aLx Pievect.c InmitPieVectTable(): .- Fusction caid to 1nit .
Easbﬁjilxﬁyscm'c o pE-map FIE - entry for Timer F fnterrupt
ET .H 4 e EALLOW; .o F¥is i5 nesded to write to FE000W
= bt ber mih R PisVectTable . TINTO = &Scpu_timer0O_isr:
- - EDIG: o This I8 needed o disebhie write @
A
@l InitCpuTimers():
o Copfigure CF-Timar 0 to interrupt evary 5
e JREMEE OFU Freg, SH000 fiseconds intarrupt |
[File “iew]/‘Bookmarks I . ConfigCpuTimer(&fCpuTimer0, 150, 10007 ; _>|LI
',,g D_;|DISCONNECTED CLUIMKMOM) | | File: C:\Documents and Settings'AdministradoriDeskiopiTrat Ln 1, Col 1 v

Figura 12: Tela do programa CodeComposer

E Xilinx - ISE - C:,Documents and Settings', Administrador',Desktop', Trabalho Final'Pratica',FPGA" ProjetoTCC', Projeto = | Ellil
File Edit ¥iew Project Source Process Window Help =]
= T, Y] = j = (9]
IDPEA[L]sREX[2eRIPLPHXA[RA[[AB S 0[] L K[@] =S
EEEECEL =Y. Y. ¥ ok
= 14 architecture Behavioral of Contador is ;I
Sources for:l Behavioral Simulation hd g
i . 16 signal Count : integer range 0 to Z050;
'CﬂF'rmetoTEDl = 17 = = =
& Eﬂ #c3:200-4f256 18 begin
Contador - Behavioral [Contador. vhd) — 19
Cunlluladur_Memuria - Behavioral [Controlador_pe zZ0 process (clock, acelerador, reset)
Divisor_Clack - Behavioral [Divizor_Clock. vhd] 21 hegin
; mECU_Displa}l-Bahaviolal[ECU_Display.vhd] hd iz if reset = '1' then Count <= 0O:
« | » 23 elsif (clock='1' and clock'event) then
o 24 —-— =22 0 botao de aceleracao estiver pressionado
5
Ed Sources | 1P Snapshats I |E Libraries I 25 R e e PR o
= Z6 Count <= Count + 1;
27 elsif (Count /= 0 and acelerador = '0'] then
Processes for: Contador - Behavioral I 28 Count <= Count - 1;:
[Add Existing Source 29 end if;
[Create New Source 30 end if;
-9 Xiing ISE Simulator 91 EDURDESCEs
@) Check Spntas g)
. 33 passo <= conv std logic wector (Count, 12): —
I Simulate Behavioral Model - - -
34 -
4 I I .3
E“—I: Processes I
Contadar. vhd I

|

Started : "Launching Design Suntoarvy™.

Started : "Launching ISE Text Editor to edit Contador.vhd™.

| of

2l
Canszale I_oEerrs I 1\ Wamings I_ﬂ Tl Shell I |34, Find in Files I

[[tnvcoly [Caps [uomschc[vhol
Figura 13: Tela do programa ISE

Sobre os dispositivos utilizados, o DSP escolhido para os trabalhos foi o

modelo TMS320F2812 da Texas Instruments. Este modelo é conhecido por combinar

27

a facilidade de uso de um microcontrolador com o poder de processamento de um
DSP, além de ter a facilidade de programacdao e eficiéncia da linguagem C. Segundo o
fabricante, € recomendado para aplicag6es embarcadas em ambientes industriais, tais
como controle digital de motores, por exemplo.

Este chip faz parte de um kit de desenvolvimento fornecido pela Spectrum

Digital Incorporated Inc., e tem como caracteristicas principais:

e Clock de 150MHz;

e 18 Kb de memoéria RAM;

e 128Kb de meméria ROM (embutida no chip);
e 64Kb de memdria RAM (embutida no chip);

Especificamente, o microcontrolador possui caracteristicas importantes para o
controle automotivo, como suporte ao protocolo de comunicacdo CAN, timers e
conversores analdgico-digitais [19].

i I Advanced timer A |
128-kW Flash 18-kW 4-kW boot |
+2-kW OTP RAM ROM | Advanced timer B |
' | 12bitAD |
EMFI ¥ |
| Memory bus | Watchdog |
[
Peripheral [| LI |
[Interrupt management e
I Serial port |
|
€28x 32-bit | CANZ20B |
[
| 32 x 32-bit multiplier | it i, | SCl-A |
| 32-bit timers (3) | } SCI-B |
‘ Real-time JTAG | 32-bit register file I SPI |
Source: Texas Instruments

Figura 14: Diagrama de blocos do TMS320F2812, da Texas Instruments (fonte: Texas
Instruments)

No caso do FPGA, este trabalho utilizou o kit de desenvolvimento fornecido
pela Xilinx Inc. denominado Spartan3, revisdo E. Este kit contém o dispositivo

XC3S200, que contém as seguintes caracteristicas principais [20]:

28

e 50 MHz de clock (embutido na placa);

e 200K de portas programaveis;

e 12 multiplicadores dedicados, que auxiliam na velocidade do processamento;
¢ 4 DCMs (Digital Clock Managers);

e 173 portas de entrada e saida (maximo);

o Interface serial e VGA (no Kkit);

e 4 Displays de 7 segmentos, e expansao para inclusédo de display de LCD 16x2.

3.3. Caracteristicas de implementacao

3.3.1. Motor Simulado

Basicamente, o sistema é constituido de um mddulo que verifica se 0 usudrio esta
acelerando ou néo — neste caso, representado como um botdo que pode ser apertado
ou nado. Caso este sinal de aceleracdo seja positivo, o bloco fica responsavel por
contar quanto tempo este sinal fica ativo no sistema (acelerando), através de um
contador. Assim que este sinal deixa de ser positivo (volta para zero), o contador é

decrementado unitariamente até que atinja o valor inicial.

1000

14'h0000

Figura 15: Simulac&o do contador de aceleracao feita no ISE Simulator

Este valor do contador é transmitido para outro bloco, responsavel por acessar
uma tabela de dados que contém o mapeamento de todos os valores possiveis de
rotacdo dentro dos valores maximo e minimo estipulados no projeto. Em outras
palavras, o resultado do contador € utilizado como indice para acessar cada posi¢ao
desta tabela gravada em uma memaéria ROM.

A relacdo entre o valor obtido da aceleracéo e o valor da rotacdo encontrado na
tabela ndo é linear, mesmo porque em sistemas reais essa prerrogativa é verdadeira.
Assim, foi elaborada uma regra simples para discretizacdo de uma curva de

aceleracdo. Esta regra consiste nas seguintes regras:

Parameétrico = Namero — MaxJanela
Passo = Paramétrico / FatorDiscretiza¢éo

indice = Passo + (n*10)

Onde Numero é o valor recebido do bloco contador; Paramétrico € o valor
parametrizado do Numero, ou seja, o valor entre zero e 0 maximo da janela de
discretizacdo para aquele intervalo; FatorDiscretizacdo € o numero pelo qual este valor
parametrizado sera dividido, ou seja, quantos passos 0 contador precisa dar para que
o valor do indice na tabela de dados seja incrementado; indice é o valor propriamente
dito que sera utilizado para referenciar as posi¢cdes na memaéria ROM; e n é 0 nimero
do intervalo de discretizacdo — no caso deste sistema, foram considerados 16
intervalos.

Um exemplo pratico auxilia no entendimento destas regras:

if (Numero >= 0 and Numero <= 160) then
Parametrico <= Numero;
IndiceParcial <= Divisao (Parametrico, 16);
Indice <= IndiceParcial;

elsift (Numero > 160 and Numero <= 310) then
Parametrico <= Numero — 160;
IndiceParcial <= Divisao (Parametrico, 15);
Indice <= IndiceParcial + 10;

Considere, por exemplo, o valor 35 como resultado do contador de aceleracéo.
Este niumero cai no primeiro intervalo de condi¢cdo. Ele seréd simplesmente dividido por
16, e o resultado (2) sera considerado como o indice da tabela ROM. Este calculo tem
o efeito pratico de forcar que, a cada 16 passos do contador de aceleragéo, o indice

da tabela que contém valor de rotacdo seja incrementado uma vez.

30

Agora, considere o numero 210. Este valor satisfaz a segunda condi¢do de
parametrizacéo. Por isso, é retirado deste valor o maximo do intervalo de discretizagédo
anterior (neste caso, 160) — resultando sempre em um valor entre 0 e 150. Dai, este
valor parametrizado € dividido por 15, para se obter o mesmo efeito do caso anterior —
a cada 15 passos do contador, um passo do indice da tabela € dado. Assim,
sucessivamente sdo feitas parametrizacbes até que, em determinado valor, a
proporcéo entre o valor lido do contador e o utilizado como indice da tabela é de 1:1.

Esta conta acaba por criar o grafico da figura 16:

Fy
=l Aceleracao

100

ﬁ

Index

a:|mlmmmmmmmm%mmrmrmmmmm|-:-:-:|."

Figura 16: Curva que relaciona a aceleragdo com os indices da tabela de rotagéo

O efeito prético desta medida € a de que, nos primeiros instantes da
aceleracdo, o motor simulado responda com mais suavidade ao estimulo dado,

oferecendo uma resposta mais rapida em termos de rotacdo a partir de valores
maiores de aceleracao.

31

Pela facilidade de implementar sistemas modelados em blocos, esta parte do

trabalho foi feita em VHDL para FPGA, utilizando o dispositivo Spartan3, da Xilinx Inc.

3.4. Unidade Eletronica de Controle

3.4.1. Implementag&o do Sistema em FPGA

Com as especificagBes do projeto disponiveis, a implementacdo para FPGA ocorreu
sem grandes problemas. Devido a maneira natural de arquitetar um sistema através
de blocos, este tipo de representacéo facilita deveras a execucéo do projeto em VHDL.

Mesmo depois da divisdo em blocos, o sistema em FPGA pbde ser mais
descentralizado ainda, ja que o dispositivo permite processamento paralelo nativo,
através dos chamados process dentro da descricdo do comportamento das
arquiteturas de cada bloco. Por isso, é exigida por parte do projetista uma visdo
paralela do comportamento do sistema, jA que varias tarefas podem ser executadas
simultaneamente.

Assim, a implementacdo em VHDL foi muito semelhante a jA mencionada
estrutura de blocos do sistema. Ao todo, quatro blocos foram implementados e

interconectados entre si, a saber:

e Divisor_Clock = bloco responsavel por gerar frequiéncias de operagdo mais
baixas para o sistema. Segundo a especificacdo, a rotacdo mais rapida
encontrada na tabela é de 1200 rpm. Isso implica em uma onda com periodo
igual a 50 ms, ou seja, freqiiéncia de 20Hz, conforme indica as equacdes (1) e

).

f=1200/60 =20 Hz (1)
T=1/20=0,05s=50ms (2)

Para o processo de detecgdo do duty cycle, é necessario realizar amostragens
nesse sinal de entrada. Pelo Critério de Nyquist, o dobro da freqiiéncia ja era
suficiente para se ter uma boa precisédo sobre o sistema — 0 que torna o clock da
placa (de 50MHz) muito alto para realizar tal tarefa. Assim, através deste bloco é
possivel obter freqiiéncias de 2MHz, 2KHz e 500Hz.

32

e ECU_Display = bloco que recebe o valor da rotagdo como entrada, e fica
encarregado de formaté-lo e exibi-lo nos displays de 7 segmentos do kit de

desenvolvimento.

e Control_Injecao = mdodulo responsavel pela detecgcédo do duty cycle diferente
de 50% no sinal de rotacdo. Para cada periodo do sinal, sdo realizadas
amostragens seqlienciais e armazenadas quantas destas sdo em nivel l6gico
alto, e quantas tém nivel légico baixo. Entdo, ao fim do periodo o controlador
compara quantas amostras existem de cada tipo, e se a diferenca entre elas for
maior que um determinado erro estipulado (por definicdo de projeto, o erro de
amostragem é de 10%), o sinal de injecdo é enviado aos cilindros,

alternadamente.

Current Simulation
Time: 2000 ns

1E00

Figura 17: Simulacdo do controle de injecdo a partir da deteccéo do duty cycle

33

Current Simulation

Figura 18: Identificacdo do duty cycle diferente de 50%, e conseqiiente acionamento dos
sinais de injecéo
Por uma questdo de espaco, a unidade de controle foi implementada no

mesmo dispositivo que o simulador do motor.

3.4.2. Implementacao do Sistema em DSP

A programacdo do DSP foi realizada em linguagem C, que por um lado facilita muito
na implementacdo propriamente dita do sistema, mas prejudica a nocdo de
processamento paralelo. Assim como no caso da FPGA, no controlador foram
implementadas rotinas que permitiam identificar um periodo que tivesse um duty cycle
diferente de 50%.

O programa em si, em linguagem C, é relativamente simples. Basicamente,
dentro de um lago do tamanho do periodo do sinal a ser analisado (no caso, da
rotacdo do motor), e a cada intervalo de tempo definido realizar uma amostragem
deste sinal, verificando se est4 em nivel logico alto ou baixo. A seguir, comparar o
namero de amostras de cada tipo: se a diferenca entre elas for maior que um erro

estipulado, o sinal de ativacéo da injecéo é enviado.

34

Neste caso, assim como na implementacdo com FPGA, foi necessério realizar uma
diminuicdo do clock para efetuar as amostragens. Entretanto, devido a presenca de
timers e suporte a interrupgéo, esse processo foi bem mais simples (a cada medicéo,

esperava-se um tempo determinado, que era contado pelo timer).

AR R R AR AR R R RN R R R R NRRRRET] llll'l’l!;'lll;llll;'.ll

Desfazer
config. auto,

215V

LM
i
HEdm\

L1
Pieo & Peo
KT

1 Destarer
1 0OnTia, auto,

A x"ﬂ'ﬂ\‘t Mz ‘I.-‘F]i‘ L8 l‘h s B 1 .-_i.i-:.b.--i-..\..-.\.--t_.-# ek i_"] ‘ ib b*‘ __‘I Tr.\'
10K

Figura 20: Deteccdo do duty cycle diferente de 50% no osciloscdpio, conectado ao DSP

35

4. Resultados e discussoes

4.1. Vantagens e Desvantagens de cada dispositivo (neste projeto)

Tanto a utilizacdo de DSPs quanto FPGAs para a construcdo de sistemas de controle
automotivo é viavel e eficiente, desde que implementada da maneira correta. No caso
especifico do projeto deste trabalho, ambos os dispositivos tiveram um comportamento
muito satisfatério no que diz respeito a velocidade de processamento e capacidade de
controle do sistema proposto.

Todavia, de acordo com o0s objetivos estabelecidos inicialmente para a
execuc¢do deste trabalho de conclusao de curso, foi possivel perceber de maneira sutil
algumas diferencas entre as duas abordagens propostas, que n&o implicam
necessariamente nos resultados finais de cada dispositivo, mas que podem influenciar
na fase de projeto envolvendo cada um deles.

A partir da revisdo bibliografica, uma arquitetura de sistema foi criada e
representada através de blocos, que executavam tarefas simultaneamente. Esse tipo
de pensamento facilita bastante o trabalho com FPGAs, jA que a tarefa da
implementacdo acaba se tornando apenas uma codificacdo em VHDL das idéias que
ja se teve sobre o sistema. Essa facilidade € um pouco menor com um projeto
sequencial, como é a programacao em C para DSPs — ainda que isso nao represente
uma dificuldade, apenas uma diferenca.

Outro ponto interessante entre as duas abordagens é a diferenca de
preocupacdo que se tem com relacdo a cada um deles. Enquanto no FPGA o
projetista tem controle total sobre o sistema, e sabe 0 que existe ou ndo existe nele,
com o DSP é necesséario um pouco de atengdo com as configuracdes necessarias
para que ele funcione perfeitamente. Em outras palavras, antes de se programar
propriamente dito o sistema, € necessario voltar um pouco de atencdo as
configuracdes de uma série de registradores, que interferem no comportamento do
sistema, tais como tipos de porta (entrada ou saida), habilitagdo ou desabilitagdo de
alguns controles, tais como watchdog e interrup¢des, entre outros.

Por outro lado, esses mesmos dispositivos que ndo estéo presentes em FPGA
ajudam bastante o programador de DSP na hora de realizar algumas tarefas, como
atraso na medicdo do sinal de entrada, por exemplo. Enquanto que no primeiro foi
necessario construir um bloco que dividia o sinal de clock em sinais de frequéncia

mais baixa, no DSP esta operacao foi feita apenas com a configuracao relativamente

36

simples de uma interrupcdo e de um timer, que realizava a contagem do tempo e
retornava assim que este findava.

As ferramentas de desenvolvimento também apresentaram algumas diferencas
importantes entre si, além das ja esperadas — afinal, se tratam de ferramentas distintas
para linguagens de programagdo distintas. Porém, uma sensagéo que ficou bastante
acentuada é a de que o CodeComposer (para trabalhar com DSP) € bem mais robusto
em termos de problemas (travamento) do que o ISE, embora este Ultimo seja um
pouco mais intuitivo (comandos mais acessiveis ao usuario, interface mais clara e
organizada) que o primeiro. Ainda assim, ambientacdo com a ferramenta de
desenvolvimento pode ser resolvida com treinamentos e cursos; problemas como
simulagcdes que travam ou estouros de memoria por parte do ambiente de
desenvolvimento ja sdo questdes mais complexas.

Um ponto a se destacar é o tempo total de desenvolvimento do projeto tanto
para DSP quanto para FPGA — incluindo aqui projeto do sistema, documentacédo e
codificacdo propriamente dita. Destacando apenas a parte de codificacdo, entre as
primeiras versdes elaboradas e as finais de cada dispositivo, houve uma diferenca
perceptivel em dias de trabalho. Para o projeto em DSP, foram gastos
aproximadamente 15 dias (de trabalho para codificacdo) enquanto que para FPGA
foram 40 dias (somente codificagcéo).

Isso pode se explicado por duas razdes: primeiro, porque a linguagem de
programacdo C é bem mais conhecida e de uso cotidiano do aluno do que VHDL.
Durante a graduagédo, foram desenvolvidos muito mais aplicativos em C para varias
disciplinas do que trabalhos em VHDL. Mesmo no estagio do aluno, o trabalho com C
foi rotineiro, enquanto que VHDL ficou apenas durante a graduacdo. Segundo, a
quantidade de disciplinas voltadas para o desenvolvimento com microcontroladores é
bem maior na grade disciplinar do curso do que as que envolvem VHDL. Isso implica
em um maior condicionamento ao trabalho com registradores e instrucdes
previamente programadas (como nos microcontroladores) do que no desenvolvimento
de processos que trabalham em paralelo no sistema (FPGAS).

Ainda sobre as caracteristicas particulares de cada tecnologia,
experimentalmente tentou-se quantificar a portabilidade do cddigo produzido para
ambos os dispositivos. Observou-se que, no caso do DSP, haveria certo trabalho para
adaptar o codigo produzido para o chip de outro fabricante, devido a todo o
mapeamento de portas de entrada e saida e fungBes internas, como timers, por
exemplo. J& no caso de FPGA, o codigo poderia ser recompilado tranquilamente para
outro fabricante, com adaptac6es minimas (inclusive este teste foi feito, quando o

projeto desenvolvido para um dispositivo Xilinx no software ISE foi recompilado no

37

ambiente de desenvolvimento Quartus 1l, da Altera Corporation, outra grande
fabricante de FPGAS). Assim, notou-se que a portabilidade de um cédigo em VHDL é
maior do que a de um cdodigo em C para um DSP especifico.

Sobre o sistema proposto, este procurou ser o mais fiel possivel a realidade de
um sistema automotivo, e a unidade de controle foi desenvolvida pensando justamente
em uma aplicagdo de natureza real, e ndo somente simulada. Obviamente, este
modelo precisa ser aperfeicoado para que testes em ambientes reais possam ser
feitos. Entretanto, acredita-se que um primeiro passo foi dado na dire¢do de construir
um sistema que possa atender as necessidades atuais de controle de motores de

combustao, e outros nos quais esta tecnologia possa ser aplicada.

4.2. Sugestdes de préximos trabalhos

Como foi dito, o primeiro passo foi dado ao construir este sistema de deteccdo de
ciclos de motor, que pode ser aplicado diretamente no controle de sistemas
automotivos e outros que utilizem o mesmo conceito. Entretanto, muito pode ser feito
para que este sistema se transforme de fato em algo concreto, e que possa ser
testado em uma bancada de motores, por exemplo.

Algumas das funcionalidades deste trabalho, por exemplo, como a exibicdo da
rotacdo ou mesmo o sinal de controle da borboleta de admissdo de ar, ndo foram
implementadas em DSP, devido a pouca disponibilidade do kit de desenvolvimento.
Por isso, um dos primeiros passos € a aquisicdo de mais materiais para teste dos
sistemas que podem ser implementados tanto em DSP quando em FPGA — e néo
apenas um kit de cada dispositivo. Até mesmo para que se testem outras abordagens
dentro da mesma tecnologia.

Assim, € possivel dar prosseguimento a pesquisa iniciada com este trabalho de
concluséo de curso, com o intuito de aprimorar este sistema, através de um mestrado

ou especializacao.

38

5. Concluséao

O mapeamento das funcionalidades de um controlador eletrbnico automotivo permitiu
elaborar um sistema que simulasse de maneira simplificada seu funcionamento, assim
como um conjunto de blocos que trabalharam como um motor virtual.

Através deste modelo, verificou-se que tanto a utilizacdo de um processador
digital de sinais quanto de um FPGA é possivel para a aplicagdo em questédo, desde
que sejam consideradas as caracteristicas particulares do projeto. Obviamente, cada
dispositivo possui fatores que facilitam ou dificultam a construcdo do sistema.
Entretanto, mesmo os pontos negativos podem ser contornados sem que haja grandes
problemas.

Além disso, foi possivel perceber que é bem possivel aplicar a mesma
arquitetura de controle estudada neste trabalho em outras areas que, aparentemente,
ndo tém muita relagdo com a automotiva. Como no exemplo citado no inicio do
trabalho, agricultura de preciséo e controle de maquinas de usinagem, por exemplo,
podem ser realizados com 0 emprego dos mesmos principios das unidades eletrénicas
de controle automotivo.

Sendo assim, conclui-se que o trabalho foi bem aproveitado por parte do aluno,
absorvendo os conselhos dados por seu orientador, e colocando em pratica os

conceitos absorvidos durante toda a graduacéo.

39

6. Referéncias Bibliograficas

[1] Internet. Intel.com Engine Control Overview. http://www.intel.com/design/
auto/engback.htm Acessado em Janeiro de 2008.

[2] Internet. Hitachi Automotive Systems History http://www.hitachi.co.jp/

Div/apd/en/vision/vision 002.html Acessado em Janeiro de 2008.
[3] Internet. Wikipedia.

Engine Control Unit.

http://en.wikipedia.org/wiki/
Engine Control Unit#History Acessado em Janeiro de 2008.

[4] ALONSO, GCMB. Simulador de Ambiente Automotivo para Injecdes

Eletronicas. 2004, Dissertacdo de Mestrado. Faculdade de Engenharia
Elétrica e Computacdo. Universidade de Campinas, Campinas, SP.
[5] DESARKAR, M. S. et al. Case Study of Design of an Engine Control

Unit. Department of Computer Science and Engineering, Indian Institute
of Technology Kanpur, 2004.

[6] MILHOR, C.E. Sistema de Desenvolvimento para Controle Eletrénico

dos Motores de Combustdo Interna Ciclo Otto. 2002, 72 p,
Dissertacdo (Mestrado) SP — Escola de Engenharia de Séo Carlos,
Universidade de Sao Paulo, Sao Carlos (SP).

[7] BOSCH, R. GmbH. Gasoline-Engine Management. 1st Edition, Stuttgart,
Germany, 1999.

[8] RIBBENS, W.B. Understanding Automotive Electronics. 5th Edition,
Sams Publishing, 1995, 434p.

[9] TOYOTA, Fuel Systems Overview. 2001, Toyota Motor Sales, USA, Inc.
[10] Internet. Wikipedia, Hall Effect,

http://en.wikipedia.org/wiki/Hall_effect
Acessado em janeiro de 2008.

[11] TOYOTA, Fuel Systems: Injection Duration Controls, 2001, Toyota
Motor Sales, USA, Inc.

[12] SMITH, S.W. The Scientist and Engineer's Guide to Digital Signal
Processing, 2001, Chapter 28.

[13] EYRE, J.; BIER, J. The Evolution of DSP Processors. Berkeley Design
Technology Inc. White Paper, 2000.

[14] LERNER, B. Fixed vs. Floating Point: A Surprisingly Hard Choice.
Analog Devices, 2007.
[15] Internet,

Wikipedia, http://en.wikipedia.org/wiki/Digital_signal_processor
Acessado em janeiro de 2008.

40

http://www.intel.com/design/%0Bauto/engback.htm
http://www.intel.com/design/%0Bauto/engback.htm
http://www.hitachi.co.jp/%0BDiv/apd/en/vision/vision_002.html
http://www.hitachi.co.jp/%0BDiv/apd/en/vision/vision_002.html
http://en.wikipedia.org/wiki/�Engine_Control_Unit#History
http://en.wikipedia.org/wiki/�Engine_Control_Unit#History
http://en.wikipedia.org/wiki/Hall_effect
http://en.wikipedia.org/wiki/Digital_signal_processor

[16] MENDONCA, A., ZELENOVSKY, R. Projetos com FPGA: Familias
Modernas. Internet. Disponivel em <http://mzeditora.com.br/artigos/
fpga_fam.htm> Acessado em junho de 2007.

[17] PORRMANN, M; PAIZ, C. The Utilization of Reconfigurable Hardware
to Implement Digital Controllers: a Review, 2007, Heinz Nixdorf
Institute, University of Paderborn.

[18] FPGA. Internet, Wikipedia. <http://pt.wikipedia.org/wiki/lFPGA> Acessado
em janeiro de 2007.

[19] TEXAS Instruments. TMS320F2812 Tutorial, 2004.

[20] XILINX, Spartan-3 FPGA Family: Complete Data Sheet, 2007, Xilinx Inc.

41

7. Bibliografia Consultada

CHUJO, N Fail-Safe ECU System Using Dynamic Reconfiguration of
FPGA. R&D Review of Toyota CRLD, Vol. 37, N° 2, 2002, p. 54-60.
GAMBIER, A. Real-Time Control Systems: A Tutorial. Automation

Laboratory, University of Mannhein, Alemanha, 2004.

OLIVEIRA, R. S. Sistemas de Tempo Real. Departamento de Automacgéo e
Sistemas, Universidade Federal de Santa Catarina, Florianopolis, 2000.

SIMON, D.E. An Embedded Software Primer, Addison Wesley, 1999, 448 p.

ALTERA Corporation. FPGA vs. DSP Design Reliability and Maintenance.
White Paper, 2007.

ALTERA. Internet. Disponivel em <http://www.altera.com/end-
markets/auto/network/aut-network.html> Acessado em junho de 2007.
ANALOG Devices. Internet. Disponivel em <http://www.analog.com/processors/

index.html> Acessado em junho de 2007.

BALLUCHI, A. et al. Automotive Engine Control and Hybrid Systems:
Challenges and Opportunities. Proceedings of the IEEE, vol. 88,
"Special Issue on Hybrid Systems" (invited paper), no. 7, July 2000, p.
888-912.

COSTA, C. Projetando Controladores Digitais com FPGA. Editora Novatec,
2006, 159 p.

CUATTO, T. et al. A Case Study in Embedded System Design: an Engine
Control Unit. Dep. of Electrical Engineering and Computer Science,
University of California at Berkeley, San Francisco, USA, 1998, p. 804-
807.

DASE, C. et al. Motorcycle Control Prototyping Using an FPGA-Based
Embedded Control System. IEEE Control Systems Magazine, October
2006.

DSP. Internet (Wikipedia). Disponivel em <http://pt.wikipedia.org/wiki/DSP>
Acessado em janeiro de 2007.

HANSELMANN, H. DSP in Control: The Total Development Environment.
IEEE IECON 22nd International Conference on Industrial Electronics,
Control, and Instrumentation, DSPACE GmbH, Paderborn, Germany,
1996, p. 1647-1654.

42

HUNT Engineering. Choosing DSP or FPGA for your Application. Press
Release, 2002.

KALLSTRON, F.J. Embedded Software for New Engine Controller.
Department of Electrical Engineering, Linkdping, 2005.

MARTINO, J.P. Technological Forecasting for Decision Making. 3rd Edition,
McGraw-Hill Engineering and Technology Management Series, 1993, 462
p.

NUNES, R.A.A et al. Introducdo a Processadores de Sinais Digitais - DSP.
Nota Técnica CBPF-NT-001/2006.

PAPAIOANNOU, I.N.; MOSCATO, L. Automotive Electronics in Brazil:
Facts, Trends and Proposals. 18th International Congress of

Mechanical Engineering, Ouro Preto, MG, 2005.

43

8. Anexo

8.1 Cbdigos de implementacédo de alguns blocos em FPGA

Control_Injecao.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity Control_Injecao is
Port (Clock .in STD_LOGIC;
-- clock de 2KHz
Reset : in STD_LOGIC;
Rotacao : in STD_LOGIC;
Atuador : out STD_LOGIC_VECTOR(3 downto 0);

Saida3 : out std_logic_vector(3 downto 0);
Saidal : out std_logic_vector(2 downto 0);
Saida2 . out std_logic_vector(2 downto 0));

end Control_Injecao;

architecture Behavioral of Control_Injecao is

signal Numero :integer;
signal Countl : integer;

signal Count2 . integer;

signal CountClock : integer;

signal Periodo : integer;

signal Threshold . integer;

signal Inj . std_logic;

-- funcao de divisao de dois numeros
function Div (Numl : integer) return integer is
variable quoc, rest : integer := 0;

begin
rest := Numi;
while (rest >= 10) loop
rest :=rest - 10;
guoc := quoc + 1;
end loop;
return quoc;
end Div;
begin
Periodo <= 10; -- para 12000 rpm, quando clock for 50Mhz

process(Clock, Reset)
begin
-- 10% de tolerancia de erro

44

Threshold <= Div(Periodo);

if (Reset ='1") then
Countl <= 0;
Count2 <= 0;
CountClock <= 0;
Inj <="0"
elsif (Clock'event and Clock ='1") then
if (CountClock < Periodo) then
if (Rotacao ='1") then Countl <= Countl + 1; end if;
if (Rotacao ='0") then Count2 <= Count2 + 1; end if;
CountClock <= CountClock + 1;
Atuador <= "0000";
end if;
if (CountClock = Periodo) then
CountClock <= 1;
Countl <=1;
Count2 <= 0;
if (abs(Countl - Count2) > 2 * Threshold) then
Atuador <= "0101";
Inj <="1"
end if;
end if;
if ((Inj ='1") and (CountClock = Periodo - CountClock)) then
Atuador <="1010";
Inj <="'0";
end if;
end if;
end process;

Saidal <= conv_std_logic_vector(Countl, 3);
Saida2 <= conv_std_logic_vector(Count2, 3);
Saida3 <= conv_std_logic_vector(CountClock, 4);

end Behavioral;

ECU_Display.vhd

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC _UNSIGNED.ALL,;

entity ECU_Display is
port (CLKIN :in std_logic;
Rotacao : in std_logic_vector(10 downto 0);

AN3 :inout std_logic;
AN2 :inout std_logic;
AN1 :inout std_logic;
ANO > inout std_logic;
LED :out std_logic_vector(6 downto 0));

end ECU_Display;

architecture Behavioral of ECU_Display is

45

begin

signal CTR : STD_LOGIC_VECTOR(12 downto 0);
signal Valor . integer;

signal quoc :integer;

signal rest :integer;

signal unid, dez, cent, mil : integer;

-- funcao que converte um numero decimal para BCD, para mostrar no display
function Conv_BCD (Numl : integer) return std_logic_vector is
variable LED : std_logic_vector(6 downto 0);

begin
case Numl is
when 1 =>LED :="1111001";
when 2 => LED :="0100100";
when 3 => LED :="0110000";
when 4 => LED :="0011001";
when 5 => LED :="0010010";
when 6 => LED :="0000010";
when 7 => LED :="1111000";
when 8 => LED := "0000000";
when 9 => LED :="0010000";

when OTHERS => LED := "1000000";
end case;
return LED;
end Conv_BCD;

Valor <= conv_integer(Rotacao);

-- encontra 0s humeros que serao exibidos
process (CLKIN)
begin

rest <= Valor;
while (rest >= 10) loop -- captura a unidade
rest <=rest - 10;
guoc <= quoc + 1;
end loop;
unid <= rest; -- seta a unidade do numero

if (quoc > 0) then
rest <= quoc;
quoc <= 0;
while (rest >= 10) loop -- captura a dezena
rest <=rest - 10;
quoc <= quoc + 1;
end loop;
dez <= rest; -- seta a dezena do numero
end if;

if (quoc > 0) then
rest <= quoc;
quoc <= 0;
while (rest >= 10) loop -- captura a centena

46

rest <=rest - 10;
quoc <= quoc + 1;

end loop;
cent <= rest; -- seta a centena do numero
end if;
if (quoc > 0) then -- se ainda tiver numero para ser
dividido
rest <= quoc;
quoc <= 0;
while (rest >=10) loop -- captura o milhar

rest <=rest - 10;
quoc <= quoc + 1;

end loop;

mil <= rest; -- seta o milhar do numero
else mil <= 0; -- senao o milhar eh zero
end if;

end process;

-- exibe os numeros no display
Process (CLKIN)
begin
if CLKIN'event and CLKIN ="1' then
if (CTR ="0000000000000") then
if (ANO="0") then
ANO <="1"
LED <= Conv_BCD(unid); -- unidade
AN1 <="0}
elsif (AN1="0") then
AN1 <="1"
LED <= Conv_BCD(dez); --dezena
AN2 <="0"
elsif (AN2="0") then
AN2 <="1"
LED <= Conv_BCD(cent); -- centena
AN3 <="0"
elsif (AN3='0") then
AN3 <="1"
LED <= Conv_BCD(mil); -- milhar
ANO <="0"
end if;
end if;

CTR <= CTR + "0000000000001";
if (CTR > "1000000000000") then

CTR <="0000000000000";
end if;

end if;
End Process;

End Behavioral;

47

Divisor_Clock.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all ;

entity Divisor_Clock is port (

50Mhz

500Hz

clock :in std_logic;

clock_2M : out std_logic;
-- 02Mhz

clock 2K : out std_logic;
-- 02Khz

clock 500 . out std_logic);

end Divisor_Clock;

architecture Behavioral of Divisor_Clock is

begin

signal Aux1 : std_logic;

signal Count : integer range 0 to 24999;
signal Count2: integer range 0 to 999;
signal Count3: integer range 0 to 3999;

-- generates a 2 Mhz signal from a 50 Mhz signal
process (clock)
begin
if clock'event and clock ='1' then
Count <= Count + 1;
if Count < 12500 then
clock_2M <="1"
Auxl <="'1";
else
clock_2M <="0"
Auxl <="'0"
end if ;
if Count = 24999 then Count <= 0;
end if;
end if;
end process;

-- generates a 2 Khz signal from a 2 Mhz signal
process (Auxl)
begin
if Aux1'event and Aux1 ='1' then
Count2 <= Count2 + 1;
if Count2 < 500 then

clock 2K <="1"
else
clock_2K <="0";
end if ;
if Count2 = 999 then Count2 <= 0;
end if;

48

end if;
end process;

-- generates a 500Hz signal from a 2 Mhz signal
process (Auxl)
begin
if Auxl'event and Auxl1 ='1' then
Count3 <= Count3 + 1;
if Count3 < 2000 then

clock 500 <="1";
else
clock 500 <=0
end if ;
if Count3 = 3999 then Count3 <= 0;
end if;

end if;
end process;

end architecture;

Controlador_Memoria.vhd

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC _ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity Controlador_Memoria is
Port (Clock : in STD_LOGIC;
Passo:in STD_LOGIC VECTOR (11 downto 0);
Index : out STD_LOGIC_VECTOR (9 downto 0));
end Controlador_Memoria;

architecture Behavioral of Controlador_Memoria is

signal Numero : integer;
signal Indice : integer;

signal IndiceParcial : integer;
signal Parametrico : integer;

-- funcao de divisao de dois numeros
function Divisao (Num1, Num2 : integer) return integer is
variable quoc, rest : integer := 0;

begin
rest := Numi;
while (rest >= Num2) loop
rest := rest - Num2;
quoc :=quoc + 1;
end loop;
return quoc;
end Divisao;

begin

49

Numero <= conv_integer(Passo);

process(Clock)
begin
if (Clock'event and Clock ='1") then

if (Numero >= 0 and Numero <= 160) then
Parametrico <= Numero;
IndiceParcial <= Divisao (Parametrico, 16);
Indice <= IndiceParcial;
elsif (Numero > 160 and Numero <= 310) then
Parametrico <= Numero - 160;
IndiceParcial <= Divisao (Parametrico, 15);
Indice <= IndiceParcial + 10;
elsif (Numero > 310 and Numero <= 450) then
Parametrico <= Numero - 310;
IndiceParcial <= Divisao (Parametrico, 14);
Indice <= IndiceParcial + 20;
elsif (Numero > 450 and Numero <= 580) then
Parametrico <= Numero - 450;
IndiceParcial <= Divisao (Parametrico, 13);
Indice <= IndiceParcial + 30;
elsif (Numero > 580 and Numero <= 700) then
Parametrico <= Numero - 580;
IndiceParcial <= Divisao (Parametrico, 12);
Indice <= IndiceParcial + 40;
elsif (Numero > 700 and Numero <= 810) then
Parametrico <= Numero - 700;
IndiceParcial <= Divisao (Parametrico, 11);
Indice <= IndiceParcial + 50;
elsif (Numero > 810 and Numero <= 910) then
Parametrico <= Numero - 810;
IndiceParcial <= Divisao (Parametrico, 10);
Indice <= IndiceParcial + 60;
elsif (Numero > 910 and Numero <= 1000) then
Parametrico <= Numero - 910;
IndiceParcial <= Divisao (Parametrico, 9);
Indice <= IndiceParcial + 70;
elsif (Numero > 1000 and Numero <= 1080) then
Parametrico <= Numero - 1000;
IndiceParcial <= Divisao (Parametrico, 8);
Indice <= IndiceParcial + 80;
elsif (Numero > 1080 and Numero <= 1150) then
Parametrico <= Numero - 1080;
IndiceParcial <= Divisao (Parametrico, 7);
Indice <= IndiceParcial + 90;
elsif (Numero > 1150 and Numero <= 1210) then
Parametrico <= Numero - 1150;
IndiceParcial <= Divisao (Parametrico, 6);
Indice <= IndiceParcial + 100;
elsif (Numero > 1210 and Numero <= 1260) then
Parametrico <= Numero - 1210;
IndiceParcial <= Divisao (Parametrico, 5);
Indice <= IndiceParcial + 110;

50

elsif (Numero > 1260 and Numero <= 1300) then
Parametrico <= Numero - 1260;
IndiceParcial <= Divisao (Parametrico, 4);
Indice <= IndiceParcial + 120;
elsif (Numero > 1300 and Numero <= 1330) then
Parametrico <= Numero - 1300;
IndiceParcial <= Divisao (Parametrico, 3);
Indice <= IndiceParcial + 130;
elsif (Numero > 1330 and Numero <= 1350) then
Parametrico <= Numero - 1330;
IndiceParcial <= Divisao (Parametrico, 2);
Indice <= IndiceParcial + 140;
elsif (Numero > 1350 and Numero < 2200) then
Indice <= Numero - 1200;
end if;

end if;
end process;

Index <= conv_std_logic_vector(Indice, 10);

end Behavioral;

Contador.vhd

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC _UNSIGNED.ALL,;
use ieee.numeric_std.ALL;

entity Contador is

Port (clock :in STD_LOGIC;
-- clock de 500Hz
reset ;in STD_LOGIC,;
passo :out STD_LOGIC_VECTOR (11 downto 0);

acelerador : in STD_LOGIC);

end Contador;

architecture Behavioral of Contador is

begin

signal Count : integer range 0 to 2050;

process(clock, acelerador, reset)

begin

if reset = '1' then Count <= 0;
elsif (clock="1" and clock'event) then
-- se 0 botao de aceleracao estiver pressionado
if acelerador = '1' then
Count <= Count + 1;
elsif (Count /= 0 and acelerador = '0") then
Count <= Count - 1;
end if;

51

end if;
end process;

passo <= conv_std_logic_vector(Count, 12);

end Behavioral;

ECU_ROM.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC _ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity ECU_ROM is
Port (Clock : in STD_LOGIC;
Reset:in STD_LOGIC;
Enable : in STD_LOGIC;
Address :in STD_LOGIC_VECTOR (4 downto 0);
Frequencia : out STD_LOGIC_VECTOR (5 downto 0));
end ECU_ROM,;

architecture Behavioral of ECU_ROM is
type ECU_ROM_Array is array (0 to 31) of std_logic_vector(5 downto 0);

-- vetor que armazena os valores que sao utilizados pelo controlador da injecao
constant Content: ECU_ROM_Array := (
0 =>"000010", 1 =>"000100", 2 => "000110",
3 =>"001000", 4 =>"001010", 5 => "001100",
6 =>"001110", 7 =>"010000", 8 => "010010",
9 =>"010100", 10 =>"010110", 11 =>"011000",
12 =>"011010", 13 =>"011100", 14 =>"011110",
15 =>"100000", 16 =>"100010", 17 => "100100",
18 =>"100110", 19 =>"101000", 20 => "101010",
21 =>"101100", 22 =>"101110", 23 =>"110000",
24 =>"110010", 25 =>"110100", 26 =>"110110",
27 =>"111000", 28 =>"111010", 29 =>"111100",
30=>"111110", OTHERS =>"111111"

begin

process(Clock, Reset, Address)
begin
if (Reset ='1") then
Frequencia <= "000000";
elsif (Clock'event and Clock ='1") then
if (Enable ='1") then
Frequencia <= Content(conv_integer(Address));
else
Frequencia <= "000000";
end if;
end if;
end process;

52

end Behavioral;

Gera_Frequencia.vhd

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity Gera_Frequencia is

Port (Clock 2in std_logic;
Reset 1in std_logic;
Teste : out std_logic_vector(3 downto 0);
Periodo 2in std_logic_vector(9 downto 0);
Saida cout std_logic);

end Gera_Frequencia;
architecture Behavioral of Gera_Frequencia is

signal Max : integer;
signal Duty : integer;
signal Count : integer;

signal Control : boolean;

-- funcao de divisao de dois numeros
function Divisao (Numl : integer) return integer is
variable quoc, rest : integer := 0;
begin
rest := Numi;
while (rest >= 2) loop
rest :=rest - 2;
guoc :=quoc + 1;
end loop;

return quoc;
end Divisao;

begin

process(Clock)
begin
if (Reset ='1") then
Count <= 0;
Saida <=0}
Duty <= 0;
elsif (Clock'event and Clock ='1") then
-- converte o valor do periodo para inteiro
Max <= conv_integer(Periodo);

-- enquanto for menor que o Duty, parte alta do periodo

if (Count < Periodo) then
if (Count < Periodo - Count) then
Saida <="'1";
else Saida <="0"

53

end if;
Count <= Count + 1;
end if;
-- zera 0 contador e permite que uma nova leitura de periodo
seja feita
if (Count = Periodo) then
Count <= 0;
end if;

Teste <= conv_std_logic_vector(Max, 4);
end if;
end process;

end Behavioral;

8.2 Codigos de implementacdo em C para o DSP

Main.c

#include "DSP281x_Device.h"

#include "square.h"

/I Prototype statements for functions found within this file.
void Gpio_select(void);

void SpeedUpRevA(void);

void InitSystem(void);

interrupt void cpu_timer0_isr(void); // Prototype for Timer O Interrupt Service Routine

void main(void)

{
int Countl = 0O;
int Count2 = 0;
inti, Erro = 10;
InitSystem(); /I Initialize the DSP's core Registers
Gpio_select(); /I Setup the GPIO Multiplex Registers
InitPieCtrl(); /[Function Call to init PIE-unit (code

DSP281x_PieCtrl.c)

InitPieVectTable(); // Function call to init PIE vector table (code
DSP281x_PieVect.c)

54

/I re-map PIE - entry for Timer O Interrupt

EALLOW; /I This is needed to write to EALLOW protected registers
PieVectTable.TINTO = &cpu_timerQ_isr;

EDIS; /I This is needed to disable write to EALLOW protected registers

InitCpuTimers();

/I Configure CPU-Timer 0 to interrupt every 50 ms:
// 150MHz CPU Freq, 50000 pseconds interrupt period
ConfigCpuTimer(&CpuTimer0, 150, 1000);

// Enable TINTO in the PIE: Group 1 interrupt 7
PieCtrIRegs.PIEIERL.bit.INTX7 = 1;

/I Enable CPU INT1 which is connected to CPU-Timer O:
IER =1;

/I Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM

CpuTimerORegs.TCR.bit. TSS = 0;

EALLOW;
SysCtrIRegs.WDCR=0x0068;
EDIS;

while(1)

{
for(i=0;i<50;i++){

if(duty60[i]==0)

Countl++,
if(duty60[i]==1)

Count2++;
GpioDataRegs.GPBDAT.bit. GPIOB1=duty60[i];
while (CpuTimer0.InterruptCount<1);
CpuTimerOQ.InterruptCount=0;

}

if (abs(Count2 - Countl) > Erro)
GpioDataRegs.GPBDAT.bit. GPIOBO =1;

else GpioDataRegs.GPBDAT.bit. GPIOB0O =0;

Countl = 0;
Count2 = 0;

for(i=0;i<50;i++){

if(duty60[i+50]==0)
Countl++;
if(duty60[i+50]==1)
Count2++,
GpioDataRegs.GPBDAT.bit. GPIOB1=duty60][i+50];

55

while (CpuTimerO.InterruptCount<1);
CpuTimerO.InterruptCount=0;

if (abs(Count2 - Countl) > Erro)
GpioDataRegs.GPBDAT.bit. GPIOBO =1;
else GpioDataRegs.GPBDAT.bit. GPIOB0O =0;

Countl = 0;
Count2 = 0;

for(i=0;i<50;i++){

if(duty60[i+100]==0)

Countl++;

if(duty60[i+100]==1)

Count2++;
GpioDataRegs.GPBDAT.bit. GPIOB1=duty60[i+100];
while (CpuTimerO.InterruptCount<1);
CpuTimerO.InterruptCount=0;

}

if (abs(Count2 - Countl) > Erro)
GpioDataRegs.GPBDAT.bit. GPIOBO =1;

else GpioDataRegs.GPBDAT.bit. GPIOB0O =0;

Countl = 0;
Count2 = 0;

for(i=0;i<50;i++){

if(duty60[i+150]==0)

Countl++;

if(duty60[i+150]==1)

Count2++;
GpioDataRegs.GPBDAT.bit. GPIOB1=duty60[i+150];
while (CpuTimerO.InterruptCount<1);
CpuTimerO.InterruptCount=0;

}

if (abs(Count2 - Countl) > Erro)
GpioDataRegs.GPBDAT.bit. GPIOBO =1;

else GpioDataRegs.GPBDAT.bit. GPIOB0O =0;

Countl = 0;
Count2 = 0;
I/EALLOW;
1 SysCtrIRegs.WDKEY = OxAA,; /l and serve watchdog #2
/IEDIS;
}
}

void Gpio_select(void)
{
EALLOW;
GpioMuxRegs.GPAMUX.all = 0x0; // all GPIO port Pin's to /O
GpioMuxRegs.GPBMUX.all = 0x0;

56

GpioMuxRegs.GPDMUX.all = 0x0;
GpioMuxRegs.GPFMUX.all = 0x0;
GpioMuxRegs.GPEMUX.all = 0x0;
GpioMuxRegs.GPGMUX.all = 0x0;

GpioMuxRegs.GPADIR.all = 0x0; // GPIO PORT as input
GpioMuxRegs.GPBDIR.all = Ox00FF; // GPIO Port B15-B8 input , B7-B0 output
GpioMuxRegs.GPDDIR.all = 0x0;// GPIO PORT as input
GpioMuxRegs.GPEDIR.all = 0x0; // GPIO PORT as input
GpioMuxRegs.GPFDIR.all = 0x0; // GPIO PORT as input
GpioMuxRegs.GPGDIR.all = 0x0;// GPIO PORT as input

GpioMuxRegs.GPAQUAL.all = 0x0; /I Set GPIO input qualifier values to zero
GpioMuxRegs.GPBQUAL.all = 0x0;

GpioMuxRegs.GPDQUAL.all = 0x0;

GpioMuxRegs.GPEQUAL.all = 0x0;

EDIS;

}

void InitSystem(void)
{
EALLOW;
SysCtrIRegs.WDCR= 0x00AF; /I Setup the watchdog
/l OXO0E8 to disable
the Watchdog , Prescaler =1
/I OXO0AF to NOT
disable the Watchdog, Prescaler = 64
SysCtrIRegs.SCSR = 0; /l Watchdog generates a RESET
SysCtrIRegs.PLLCR.bit.DIV = 10; // Setup the Clock PLL to multiply by 5

SysCitrIRegs.HISPCP.all = 0x1; // Setup Highspeed Clock Prescaler to divide by

SysCtrIRegs.LOSPCP.all = 0x2; // Setup Lowspeed CLock Prescaler to divide
by 4

/I Peripheral clock enables set for the selected peripherals.
SysCitrIRegs.PCLKCR.bit. EVAENCLK=0;
SysCtrIRegs.PCLKCR.bit. EVBENCLK=0;
SysCtrIRegs.PCLKCR.bit. SCIAENCLK=0;
SysCtrIRegs.PCLKCR.bit. SCIBENCLK=0;
SysCtrIRegs.PCLKCR.bit. MCBSPENCLK=0;
SysCtrIRegs.PCLKCR.bit. SPIENCLK=0;
SysCtrIRegs.PCLKCR.bit. ECANENCLK=0;
SysCitrIRegs.PCLKCR.bit. ADCENCLK=0;

EDIS;

}

interrupt void cpu_timer0Q_isr(void)
{
CpuTimerO.InterruptCount++;
/I Serve the watchdog every Timer O interrupt
/IEALLOW;
1 SysCtrIRegs.WDKEY = 0x55; /I Serve watchdog #1
/IEDIS;

57

/I Acknowledge this interrupt to receive more interrupts from group 1
PieCtrIRegs.PIEACK.all = PIEACK_GROUP1;

}

Square.c

#include <stdio.h>
#include <conio.h>
#include <math.h>

int main() {
/la variavel utilizada pelo programa do TURBOC
int duty[200],i;
double m=0.95; /lo indice de modulacao em amplitude da onda
PWM p/ modular em amplitude O<m<1
int PWMmax=50; /lresolucao maxima (numero de pontos por

periodo em determinada frequencia) do timer2
PWMmax/=2;
FILE *ofp;

ofp=fopen("square.h","w"); //gera o arquivo

fprintf(ofp,"\n//duty p/ m = %d",m); /limprime no arquivo
fprintf(ofp,"\nconst int duty60[200] = {"); //imprime no arquivo

for(i=0;i<50;i++){
/limprime no arquivo
if(i<=24)
fprintf(ofp,”1,\n",duty[i]); //imprime no arquivo
if(i>24)
fprintf(ofp,"0,\n",duty[i]); //imprime no arquivo
}

for(i=0;i<50;i++){
/limprime no arquivo
if(i<=24)
fprintf(ofp,"1,\n",duty[i+50]); //imprime no arquivo
if(i>24)
fprintf(ofp,”0,\n",duty[i+50]); //imprime no arquivo
}

for(i=0;i<50;i++){
/limprime no arquivo
if(i<=24)
fprintf(ofp,"1,\n",duty[i+100]); //imprime no arquivo
if(i>24)
fprintf(ofp,"0,\n",duty[i+100]); //imprime no arquivo
}

for(i=0;i<50;i++){
if(i==49)
fprintf(ofp,"0};",duty[i+150]); //imprime no arquivo

58

if(i<=24)
fprintf(ofp,"1,\n",duty[i+150]); //imprime no arquivo
if(i>24 && i'=49)
fprintf(ofp,"0,\n",duty[i+150]); //imprime no arquivo
}

fprintf(ofp,"\nconst int duty50[200] = {"); //imprime no arquivo

for(i=0;i<200;i++){
duty[i]=(int)(m*PWMmax*sin(0.0314159265%*)+PWMmax);
if(i==199)
fprintf(ofp,"%d};",duty[i]); //imprime no arquivo
else

fprintf(ofp,"%d,\n",duty[i]); //imprime no arquivo

fclose(ofp);

return O;

}

ROM.vhd

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC _UNSIGNED.ALL,;

entity ROM is
Port (Clock :in STD_LOGIC;
Reset :in STD_LOGIC;
Enable :in STD_LOGIC;
Address :in STD_LOGIC_VECTOR (9 downto 0);

Data_out: out STD_LOGIC_VECTOR (9 downto 0));
end ROM;

architecture Behavioral of ROM is

type ROM_Array is array (0 to 999) of std_logic_vector(9 downto 0);

-- vetor com 1000 posicoes, que armazena os valores discretos de rotacao do
motor

constant Content: ROM_Array := (

0 =>"0000000000", 1 => "0000000001", 2 => "0000000010",

3 =>"0000000011", 4 =>"0000000100", 5 => "0000000101",

6 =>"0000000110", 7 =>"0000000111", 8 => "0000001000",

9 =>"0000001001", 10 => "0000001010", 11 => "0000001011",
12 =>"0000001100", 13 =>"0000001101", 14 => "0000001110",
15 =>"0000001111", 16 =>"0000010000", 17 => "0000010001",
18 =>"0000010010", 19 =>"0000010011", 20 => "0000010100",
21 =>"0000010101", 22 =>"0000010110", 23 => "0000010111",
24 =>"0000011000", 25 =>"0000011001", 26 => "0000011010",

59

27 =>"0000011011", 28 => "0000011100", 29 => "0000011101",

30 =>"0000011110", 31 =>"0000011111", 32 => "0000100000",

33 =>"0000100001", 34 => "0000100010", 35 =>"0000100011",

36 =>"0000100100", 37 =>"0000100101", 38 => "0000100110",

39 =>"0000100111", 40 => "0000101000", 41 => "0000101001",

42 =>"0000101010", 43 => "0000101011", 44 => "0000101100",

45 =>"0000101101", 46 =>"0000101110", 47 =>"0000101111",

48 =>"0000110000", 49 => "0000110001", 50 => "0000110010",

51 =>"0000110011", 52 =>"0000110100", 53 => "0000110101",

54 =>"0000110110", 55 =>"0000110111", 56 => "0000111000",

57 =>"0000111001", 58 =>"0000111010", 59 => "0000111011",

60 =>"0000111100", 61 =>"0000111101", 62 => "0000111110",

63 =>"0000111111", 64 => "0001000000", 65 => "0001000001",

66 =>"0001000010", 67 => "0001000011", 68 => "0001000100",

69 =>"0001000101", 70 =>"0001000110", 71 => "0001000111",

72 =>"0001001000", 73 =>"0001001001", 74 => "0001001010",

75 =>"0001001011", 76 =>"0001001100", 77 =>"0001001101",

78 =>"0001001110", 79 =>"0001001111", 80 => "0001010000",

81 =>"0001010001", 82 =>"0001010010", 83 => "0001010011",

84 =>"0001010100", 85 =>"0001010101", 86 =>"0001010110",

87 =>"0001010111", 88 =>"0001011000", 89 => "0001011001",

90 =>"0001011010", 91 =>"0001011011", 92 => "0001011100",

93 =>"0001011101", 94 =>"0001011110", 95 =>"0001011111",

96 => "0001100000", 97 => "0001100001", 98 => "0001100010",

99 =>"0001100011", 100 => "0001100100", 101 => "0001100101",
102 =>"0001100110", 103 =>"0001100111", 104 => "0001101000",
105 =>"0001101001", 106 =>"0001101010", 107 =>"0001101011",
108 =>"0001101100", 109 =>"0001101101", 110 => "0001101110",
111 =>"0001101111", 112 =>"0001110000", 113 => "0001110001",
114 =>"0001110010", 115 =>"0001110011", 116 =>"0001110100",
117 =>"0001110101", 118 =>"0001110110", 119 =>"0001110111",
120 =>"0001111000", 121 =>"0001111001", 122 =>"0001111010",
123 =>"0001111011", 124 =>"0001111100", 125 =>"0001111101",
126 =>"0001111110", 127 =>"0001111111", 128 => "0010000000",
129 =>"0010000001", 130 => "0010000010", 131 => "0010000011",
132 =>"0010000100", 133 =>"0010000101", 134 => "0010000110",
135 =>"0010000111", 136 => "0010001000", 137 => "0010001001",
138 =>"0010001010", 139 =>"0010001011", 140 => "0010001100",
141 =>"0010001101", 142 =>"0010001110", 143 =>"0010001111",
144 =>"0010010000", 145 =>"0010010001", 146 => "0010010010",
147 =>"0010010011", 148 =>"0010010100", 149 => "0010010101",
150 =>"0010010110", 151 =>"0010010111", 152 =>"0010011000",
153 =>"0010011001", 154 =>"0010011010", 155 =>"0010011011",
156 =>"0010011100", 157 =>"0010011101", 158 =>"0010011110",
159 =>"0010011111", 160 => "0010100000", 161 => "0010100001",
162 =>"0010100010", 163 =>"0010100011", 164 => "0010100100",
165 =>"0010100101", 166 =>"0010100110", 167 => "0010100111",
168 =>"0010101000", 169 =>"0010101001", 170 => "0010101010",
171 =>"0010101011", 172 =>"0010101100", 173 =>"0010101101",
174 =>"0010101110", 175 =>"0010101111", 176 => "0010110000",
177 =>"0010110001", 178 =>"0010110010", 179 =>"0010110011",
180 =>"0010110100", 181 =>"0010110101", 182 =>"0010110110",
183 =>"0010110111", 184 =>"0010111000", 185 =>"0010111001",
186 =>"0010111010", 187 =>"0010111011", 188 =>"0010111100",
189 =>"0010111101", 190 =>"0010111110", 191 =>"0010111111",

60

192 =>"0011000000", 193 =>"0011000001", 194 => "0011000010",
195 =>"0011000011", 196 =>"0011000100", 197 => "0011000101",
198 =>"0011000110", 199 =>"0011000111", 200 => "0011001000",
201 =>"0011001001" 202 =>"0011001010", 203 => "0011001011",
204 =>"0011001100" 205 =>"0011001101", 206 => "0011001110",
207 =>"0011001111", 208 =>"0011010000", 209 => "0011010001",
210 =>"0011010010", 211 =>"0011010011", 212 => "0011010100",
213 =>"0011010101" 214 =>"0011010110", 215 => "0011010111",
216 =>"0011011000" 217 =>"0011011001", 218 => "0011011010",
219 =>"0011011011", 220 => "0011011100", 221 => "0011011101",
222 =>"0011011110" 223 =>"0011011111", 224 => "0011100000",
225 =>"0011100001" 226 =>"0011100010", 227 => "0011100011",
228 =>"0011100100" 229 =>"0011100101", 230 => "0011100110",
231 =>"0011100111" 232 =>"0011101000", 233 => "0011101001",
234 =>"0011101010" 235 =>"0011101011", 236 => "0011101100",
237 =>"0011101101" 238 =>"0011101110", 239 =>"0011101111",
240 =>"0011110000", 241 =>"0011110001", 242 => "0011110010",
243 =>"0011110011", 244 =>"0011110100", 245 =>"0011110101",
246 =>"0011110110", 247 =>"0011110111", 248 =>"0011111000",
249 =>"0011111001", 250 =>"0011111010", 251 =>"0011111011",
252 =>"0011111100" 253 =>"0011111101", 254 =>"0011111110",
255=>"0011111111", 256 => "0100000000", 257 => "0100000001",
258 =>"0100000010", 259 =>"0100000011", 260 => "0100000100",
261 =>"0100000101", 262 => "0100000110", 263 => "0100000111",
264 =>"0100001000", 265 =>"0100001001", 266 => "0100001010",
267 =>"0100001011", 268 => "0100001100", 269 => "0100001101",
270 =>"0100001110", 271 =>"0100001111", 272 => "0100010000",
273 =>"0100010001", 274 => "0100010010", 275 => "0100010011",
276 =>"0100010100" 277 =>"0100010101", 278 => "0100010110",
279 =>"0100010111", 280 => "0100011000", 281 => "0100011001",
282 =>"0100011010" 283 =>"0100011011", 284 => "0100011100",
285 =>"0100011101", 286 =>"0100011110", 287 => "0100011111",
288 =>"0100100000", 289 =>"0100100001", 290 => "0100100010",
291 =>"0100100011", 292 => "0100100100", 293 => "0100100101",
294 =>"0100100110" 295 =>"0100100111", 296 => "0100101000",
297 =>"0100101001", 298 =>"0100101010", 299 => "0100101011",
300 =>"0100101100", 301 =>"0100101101", 302 => "0100101110",
303 =>"0100101111", 304 =>"0100110000", 305 => "0100110001",
306 =>"0100110010", 307 =>"0100110011", 308 => "0100110100",
309 =>"0100110101", 310 =>"0100110110", 311 =>"0100110111",
312 =>"0100111000" 313 =>"0100111001", 314 =>"0100111010",
315 =>"0100111011" 316 =>"0100111100", 317 =>"0100111101",
318 =>"0100111110" 319 =>"0100111111", 320 => "0101000000",
321 =>"0101000001", 322 => "0101000010", 323 => "0101000011",
324 =>"0101000100", 325 =>"0101000101", 326 => "0101000110",
327 =>"0101000111", 328 =>"0101001000", 329 => "0101001001",
330 =>"0101001010", 331 =>"0101001011", 332 => "0101001100",
333 =>"0101001101", 334 =>"0101001110", 335 => "0101001111",
336 =>"0101010000", 337 =>"0101010001", 338 => "0101010010",
339 =>"0101010011", 340 =>"0101010100", 341 => "0101010101",
342 =>"0101010110", 343 =>"0101010111", 344 =>"0101011000",
345 =>"0101011001", 346 =>"0101011010", 347 =>"0101011011",
348 =>"0101011100", 349 =>"0101011101", 350 => "0101011110",
351 =>"0101011111", 352 => "0101100000", 353 => "0101100001",
354 =>"0101100010", 355 => "0101100011", 356 => "0101100100",

61

357 =>"0101100101", 358 =>"0101100110", 359 => "0101100111",
360 =>"0101101000" 361 =>"0101101001", 362 => "0101101010",
363 =>"0101101011", 364 => "0101101100", 365 => "0101101101",
366 =>"0101101110" 367 =>"0101101111", 368 => "0101110000",
369 =>"0101110001", 370 =>"0101110010", 371 => "0101110011",
372 =>"0101110100" 373 =>"0101110101", 374 =>"0101110110",
375=>"0101110111", 376 => "0101111000", 377 => "0101111001",
378 =>"0101111010" 379 =>"0101111011", 380 => "0101111100",
381 =>"0101111101", 382 =>"0101111110", 383 =>"0101111111",
384 =>"0110000000", 385 => "0110000001", 386 => "0110000010",
387 =>"0110000011", 388 => "0110000100", 389 => "0110000101",
390 =>"0110000110", 391 =>"0110000111", 392 => "0110001000",
393 =>"0110001001", 394 =>"0110001010", 395 =>"0110001011",
396 =>"0110001100", 397 =>"0110001101", 398 => "0110001110",
399 =>"0110001111", 400 =>"0110010000", 401 => "0110010001",
402 =>"0110010010", 403 =>"0110010011", 404 => "0110010100",
405 =>"0110010101", 406 =>"0110010110", 407 =>"0110010111",
408 =>"0110011000", 409 =>"0110011001", 410 => "0110011010",
411 =>"0110011011", 412 =>"0110011100", 413 =>"0110011101",
414 =>"0110011110", 415 =>"0110011111", 416 =>"0110100000",
417 =>"0110100001", 418 => "0110100010", 419 => "0110100011",
420 =>"0110100100", 421 => "0110100101", 422 => "0110100110",
423 =>"0110100111", 424 =>"0110101000", 425 => "0110101001",
426 =>"0110101010", 427 =>"0110101011", 428 =>"0110101100",
429 =>"0110101101", 430 =>"0110101110", 431 =>"0110101111",
432 =>"0110110000", 433 =>"0110110001", 434 =>"0110110010",
435 =>"0110110011", 436 =>"0110110100", 437 =>"0110110101",
438 =>"0110110110", 439 =>"0110110111", 440 =>"0110111000",
441 =>"0110111001", 442 =>"0110111010", 443 =>"0110111011",
444 =>"0110111100", 445 =>"0110111101", 446 =>"0110111110",
447 =>"0110111111", 448 =>"0111000000", 449 => "0111000001",
450 =>"0111000010", 451 => "0111000011", 452 => "0111000100",
453 =>"0111000101", 454 =>"0111000110", 455 =>"0111000111",
456 =>"0111001000", 457 =>"0111001001", 458 =>"0111001010",
459 =>"0111001011", 460 =>"0111001100", 461 =>"0111001101",
462 =>"0111001110", 463 =>"0111001111", 464 =>"0111010000",
465 =>"0111010001", 466 =>"0111010010", 467 =>"0111010011",
468 =>"0111010100", 469 =>"0111010101", 470 =>"0111010110",
471 =>"0111010111", 472 =>"0111011000", 473 =>"0111011001",
474 =>"0111011010" 475 =>"0111011011", 476 =>"0111011100",
477 =>"0111011101", 478 =>"0111011110", 479 =>"0111011111",
480 =>"0111100000", 481 =>"0111100001", 482 =>"0111100010",
483 =>"0111100011", 484 =>"0111100100", 485 =>"0111100101",
486 =>"0111100110", 487 =>"0111100111", 488 =>"0111101000",
489 =>"0111101001", 490 =>"0111101010", 491 =>"0111101011",
492 =>"0111101100", 493 =>"0111101101", 494 =>"0111101110",
495 =>"0111101111", 496 =>"0111110000", 497 =>"0111110001",
498 =>"0111110010", 499 =>"0111110011", 500 => "0111110100",
501 =>"0111110101" 502 =>"0111110110", 503 =>"0111110111",
504 =>"0111111000" 505 =>"0111111001", 506 =>"0111111010",
507 =>"0111111011", 508 =>"0111111100", 509 =>"0111111101",
510 =>"0111111110" 511 =>"0111111111" 512 => "1000000000",
513 =>"1000000001", 514 => "1000000010", 515 => "1000000011",
516 =>"1000000100", 517 => "1000000101", 518 => "1000000110",
519 =>"1000000111", 520 => "1000001000", 521 => "1000001001",

62

522 =>"1000001010", 523 => "1000001011", 524 => "1000001100",
525 =>"1000001101", 526 => "1000001110", 527 => "1000001111",
528 =>"1000010000", 529 => "1000010001", 530 => "1000010010",
531 =>"1000010011", 532 => "1000010100", 533 => "1000010101",
534 =>"1000010110", 535 =>"1000010111", 536 => "1000011000",
537 =>"1000011001", 538 => "1000011010", 539 => "1000011011",
540 =>"1000011100", 541 =>"1000011101", 542 => "1000011110",
543 =>"1000011111", 544 => "1000100000", 545 => "1000100001",
546 =>"1000100010", 547 =>"1000100011", 548 => "1000100100",
549 =>"1000100101", 550 => "1000100110", 551 => "1000100111",
552 =>"1000101000", 553 =>"1000101001", 554 => "1000101010",
555 =>"1000101011", 556 =>"1000101100", 557 => "1000101101",
558 =>"1000101110", 559 =>"1000101111", 560 => "1000110000",
561 =>"1000110001", 562 => "1000110010", 563 => "1000110011",
564 =>"1000110100", 565 =>"1000110101", 566 => "1000110110",
567 =>"1000110111", 568 =>"1000111000", 569 => "1000111001",
570 =>"1000111010", 571 =>"1000111011", 572 => "1000111100",
573 =>"1000111101", 574 =>"1000111110", 575 => "1000111111",
576 =>"1001000000", 577 => "1001000001", 578 => "1001000010",
579 =>"1001000011", 580 => "1001000100", 581 => "1001000101",
582 =>"1001000110", 583 =>"1001000111", 584 => "1001001000",
585 =>"1001001001", 586 => "1001001010", 587 => "1001001011",
588 =>"1001001100", 589 =>"1001001101", 590 => "1001001110",
591 =>"1001001111", 592 => "1001010000", 593 => "1001010001",
594 =>"1001010010", 595 =>"1001010011", 596 => "1001010100",
597 =>"1001010101", 598 =>"1001010110", 599 => "1001010111",
600 =>"1001011000", 601 => "1001011001", 602 => "1001011010",
603 =>"1001011011", 604 =>"1001011100", 605 => "1001011101",
606 =>"1001011110", 607 =>"1001011111", 608 => "1001100000",
609 =>"1001100001", 610 => "1001100010", 611 => "1001100011",
612 =>"1001100100" 613 =>"1001100101", 614 => "1001100110",
615 =>"1001100111", 616 =>"1001101000", 617 => "1001101001",
618 =>"1001101010" 619 =>"1001101011", 620 => "1001101100",
621 =>"1001101101", 622 =>"1001101110", 623 => "1001101111",
624 =>"1001110000", 625 =>"1001110001", 626 => "1001110010",
627 =>"1001110011", 628 =>"1001110100", 629 => "1001110101",
630 =>"1001110110", 631 =>"1001110111", 632 => "1001111000",
633 =>"1001111001", 634 =>"1001111010", 635 =>"1001111011",
636 =>"1001111100", 637 =>"1001111101", 638 => "1001111110",
639 =>"1001111111", 640 =>"1010000000", 641 => "1010000001",
642 =>"1010000010", 643 =>"1010000011", 644 => "1010000100",
645 =>"1010000101", 646 =>"1010000110", 647 => "1010000111",
648 =>"1010001000", 649 =>"1010001001", 650 => "1010001010",
651 =>"1010001011", 652 => "1010001100", 653 => "1010001101",
654 =>"1010001110", 655 =>"1010001111", 656 => "1010010000",
657 =>"1010010001", 658 =>"1010010010", 659 => "1010010011",
660 =>"1010010100", 661 => "1010010101", 662 => "1010010110",
663 =>"1010010111", 664 =>"1010011000", 665 => "1010011001",
666 =>"1010011010", 667 =>"1010011011", 668 => "1010011100",
669 =>"1010011101", 670 =>"1010011110", 671 =>"1010011111",
672 =>"1010100000", 673 => "1010100001", 674 => "1010100010",
675 =>"1010100011", 676 =>"1010100100", 677 => "1010100101",
678 =>"1010100110", 679 =>"1010100111", 680 => "1010101000",
681 =>"1010101001", 682 => "1010101010", 683 => "1010101011",
684 =>"1010101100", 685 =>"1010101101", 686 => "1010101110",

63

687 =>"1010101111", 688 =>"1010110000", 689 => "1010110001",
690 =>"1010110010", 691 =>"1010110011", 692 => "1010110100",
693 =>"1010110101", 694 =>"1010110110", 695 =>"1010110111",
696 =>"1010111000", 697 =>"1010111001", 698 => "1010111010",
699 =>"1010111011", 700 =>"1010111100", 701 => "1010111101",
702 =>"1010111110" 703 =>"1010111111", 704 => "1011000000",
705 =>"1011000001", 706 => "1011000010", 707 => "1011000011",
708 =>"1011000100", 709 =>"1011000101", 710 => "1011000110",
711 =>"1011000111" 712 =>"1011001000", 713 => "1011001001",
714 =>"1011001010", 715 =>"1011001011", 716 => "1011001100",
717 =>"1011001101", 718 =>"1011001110", 719 => "1011001111",
720 =>"1011010000", 721 =>"1011010001", 722 => "1011010010",
723 =>"1011010011", 724 =>"1011010100", 725 =>"1011010101",
726 =>"1011010110" 727 =>"1011010111", 728 => "1011011000",
729 =>"1011011001", 730 =>"1011011010", 731 =>"1011011011",
732 =>"1011011100", 733 =>"1011011101", 734 =>"1011011110",
735=>"1011011111", 736 => "1011100000", 737 => "1011100001",
738 =>"1011100010", 739 =>"1011100011", 740 => "1011100100",
741 =>"1011100101", 742 =>"1011100110", 743 =>"1011100111",
744 =>"1011101000", 745 =>"1011101001", 746 => "1011101010",
747 =>"1011101011", 748 =>"1011101100", 749 =>"1011101101",
750 =>"1011101110" 751 =>"1011101111", 752 => "1011110000",
753 =>"1011110001", 754 =>"1011110010", 755 =>"1011110011",
756 =>"1011110100", 757 =>"1011110101", 758 =>"1011110110",
759 =>"1011110111", 760 =>"1011111000", 761 =>"1011111001",
762 =>"1011111010", 763 =>"1011111011", 764 =>"1011111100",
765=>"1011111101", 766 =>"1011111110", 767 =>"1011111111",
768 =>"1100000000", 769 => "1100000001", 770 => "1100000010",
771 =>"1100000011", 772 =>"1100000100", 773 => "1100000101",
774 =>"1100000110", 775 =>"1100000111", 776 => "1100001000",
777 =>"1100001001", 778 =>"1100001010", 779 => "1100001011",
780 =>"1100001100", 781 =>"1100001101", 782 => "1100001110",
783 =>"1100001111", 784 =>"1100010000", 785 => "1100010001",
786 =>"1100010010", 787 => "1100010011", 788 => "1100010100",
789 =>"1100010101", 790 =>"1100010110", 791 => "1100010111",
792 =>"1100011000", 793 =>"1100011001", 794 =>"1100011010",
795 =>"1100011011", 796 => "1100011100", 797 => "1100011101",
798 =>"1100011110" 799 =>"1100011111", 800 => "1100100000",
801 =>"1100100001", 802 =>"1100100010", 803 => "1100100011",
804 =>"1100100100", 805 =>"1100100101", 806 => "1100100110",
807 =>"1100100111", 808 =>"1100101000", 809 => "1100101001",
810 =>"1100101010", 811 =>"1100101011", 812 => "1100101100",
813 =>"1100101101", 814 =>"1100101110", 815 =>"1100101111",
816 =>"1100110000", 817 =>"1100110001", 818 => "1100110010",
819 =>"1100110011", 820 =>"1100110100", 821 => "1100110101",
822 =>"1100110110", 823 =>"1100110111", 824 => "1100111000",
825=>"1100111001", 826 =>"1100111010", 827 => "1100111011",
828 =>"1100111100" 829 =>"1100111101", 830 => "1100111110",
831 =>"1100111111", 832 =>"1101000000", 833 => "1101000001",
834 =>"1101000010", 835 =>"1101000011", 836 => "1101000100",
837 =>"1101000101", 838 => "1101000110", 839 => "1101000111",
840 =>"1101001000", 841 =>"1101001001", 842 => "1101001010",
843 =>"1101001011", 844 =>"1101001100", 845 =>"1101001101",
846 =>"1101001110", 847 =>"1101001111", 848 => "1101010000",
849 =>"1101010001", 850 =>"1101010010", 851 => "1101010011",

64

852 =>"1101010100", 853 =>"1101010101", 854 => "1101010110",
855 =>"1101010111", 856 =>"1101011000", 857 => "1101011001",
858 =>"1101011010", 859 =>"1101011011", 860 => "1101011100",
861 =>"1101011101", 862 =>"1101011110", 863 => "1101011111",
864 =>"1101100000", 865 =>"1101100001", 866 => "1101100010",
867 =>"1101100011", 868 =>"1101100100", 869 => "1101100101",
870 =>"1101100110", 871 =>"1101100111", 872 =>"1101101000",
873 =>"1101101001", 874 =>"1101101010", 875 => "1101101011",
876 =>"1101101100", 877 =>"1101101101", 878 =>"1101101110",
879 =>"1101101111", 880 =>"1101110000", 881 => "1101110001",
882 =>"1101110010", 883 =>"1101110011", 884 =>"1101110100",
885 =>"1101110101", 886 =>"1101110110", 887 =>"1101110111",
888 =>"1101111000", 889 =>"1101111001", 890 =>"1101111010",
891 =>"1101111011", 892 =>"1101111100", 893 => "1101111101",
894 =>"1101111110", 895 =>"1101111111", 896 => "1110000000",
897 =>"1110000001", 898 => "1110000010", 899 => "1110000011",
900 =>"1110000100", 901 =>"1110000101", 902 => "1110000110",
903 =>"1110000111", 904 =>"1110001000", 905 => "1110001001",
906 =>"1110001010", 907 =>"1110001011", 908 => "1110001100",
909 =>"1110001101", 910 =>"1110001110", 911 =>"1110001111",
912 =>"1110010000", 913 =>"1110010001", 914 => "1110010010",
915 =>"1110010011", 916 =>"1110010100", 917 => "1110010101",
918 =>"1110010110", 919 =>"1110010111", 920 => "1110011000",
921 =>"1110011001", 922 =>"1110011010", 923 =>"1110011011",
924 =>"1110011100", 925 =>"1110011101", 926 => "1110011110",
927 =>"1110011111", 928 =>"1110100000", 929 => "1110100001",
930 =>"1110100010", 931 =>"1110100011", 932 => "1110100100",
933 =>"1110100101", 934 =>"1110100110", 935 => "1110100111",
936 =>"1110101000", 937 =>"1110101001", 938 => "1110101010",
939 =>"1110101011", 940 =>"1110101100", 941 =>"1110101101",
942 =>"1110101110", 943 =>"1110101111", 944 =>"1110110000",
945 =>"1110110001", 946 =>"1110110010", 947 =>"1110110011",
948 =>"1110110100", 949 =>"1110110101", 950 => "1110110110",
951 =>"1110110111", 952 =>"1110111000", 953 =>"1110111001",
954 =>"1110111010", 955 =>"1110111011", 956 => "1110111100",
957 =>"1110111101", 958 =>"1110111110", 959 =>"1110111111",
960 =>"1111000000", 961 =>"1111000001", 962 => "1111000010",
963 =>"1111000011", 964 =>"1111000100", 965 => "1111000101",
966 =>"1111000110", 967 =>"1111000111", 968 => "1111001000",
969 =>"1111001001", 970 =>"1111001010", 971 =>"1111001011",
972 =>"1111001100", 973 =>"1111001101", 974 =>"1111001110",
975=>"1111001111", 976 =>"1111010000", 977 => "1111010001",
978 =>"1111010010", 979 =>"1111010011", 980 =>"1111010100",
981 =>"1111010101", 982 =>"1111010110", 983 =>"1111010111",
984 =>"1111011000", 985 =>"1111011001", 986 => "1111011010",
987 =>"1111011011", 988 =>"1111011100", 989 =>"1111011101",
990 =>"1111011110", 991 =>"1111011111", 992 =>"1111100000",
993 =>"1111100001", 994 =>"1111100010", 995 =>"1111100011",
996 =>"1111100100", 997 =>"1111100101", 998 =>"1111100110",
999 =>"1111100111");

begin

process(Clock, Reset, Address)
begin

65

if (Reset ='1") then
Data_out <= "0000000000";
elsif (Clock'event and Clock = '1") then
if (Enable ='1") then
Data_out <= Content(conv_integer(Address));
else
Data_out <= "0000000000";
end if;
end if;
end process;

end Behavioral;

66

