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Resumo 
 

A demanda por sistemas embarcados tem crescido significativamente nos últimos 

anos. Conseqüentemente, aumentou o interesse por dispositivos que ofereçam 

estabilidade, segurança e confiabilidade no desenvolvimento destes projetos. 

Especificamente na área automotiva, a rigorosidade das leis ambientais e a busca por 

sistemas que associem consumo baixo com desempenho satisfatório implicaram na 

evolução dos sistemas de controle. O ambiente agressivo no qual estes sistemas de 

controle são inseridos sugere uma necessidade grande de pesquisas no sentido de 

buscar uma alternativa eficiente e de baixo custo. Esta possível solução deve ser 

capaz de atuar de maneira tolerante a falha dentro do sistema automotivo, oferecendo 

um tempo de resposta bastante baixo, característica dos sistemas chamados de 

tempo real. Este trabalho tem como objetivo implementar um circuito de detecção de 

ciclos de motor, analisando a forma de onda gerada por este, de maneira a atuar 

através de um sinal de controle enviado a uma unidade injetora de combustível a partir 

da constatação do estado de funcionamento do motor. Para a análise do ciclo de 

rotação do motor, foram feitas duas implementações, em DSP e FPGA, com o intuito 

de verificar quais os pontos favoráveis e desfavoráveis de cada dispositivo dentro 

desta aplicação específica.  
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Abstract 
 

Demand for embedded systems has grown significantly in recent years. Therefore, the 

interest in devices that provide stability, security and reliability in the development of 

these projects increased. Specifically in the automotive area, the environmental laws 

and the search for systems involving consumption down with satisfactory performance 

involved in the evolution of systems of control. The aggressive environment in which 

these control systems are inserted suggests a great need for research to seek an 

efficient and low cost alternative. This possible solution must be able to be fault-tolerant 

system in the automotive, offering a very low time response, so called real time. This 

work intend to implement a circuit for detecting the engine cycles, examining the 

waveform generated by this in order to send a signal to a control unit fuel injector from 

the observation of the state of the engine. For the analysis of the engine cycle of 

rotation, two deployments were made in DSP and FPGA in order to find the favorable 

and unfavorable points of each device within this specific application. 

 

 

 

 

 7



1. Introdução 
 

1.1. Motivação 
 

A demanda por sistemas embarcados tem crescido significativamente nos últimos 

anos. Conseqüentemente, aumentou o interesse por dispositivos que ofereçam 

estabilidade, segurança e confiabilidade no desenvolvimento destes projetos. 

Especificamente na área automotiva, a rigorosidade das leis ambientais e a busca por 

sistemas que associem consumo baixo com desempenho satisfatório implicaram na 

evolução dos sistemas de controle.  

Além disso, o ambiente agressivo no qual estes sistemas de controle são 

inseridos (sujeitos a interferências de temperatura e vibração, entre outras) sugere 

uma necessidade grande de pesquisas no sentido de buscar uma alternativa eficiente 

e de baixo custo. Esta possível solução deve ser capaz de atuar de maneira tolerante 

a falha dentro do sistema automotivo, oferecendo um tempo de resposta bastante 

baixo, característica dos sistemas chamados de tempo real. 

Inicialmente mecânicos, atualmente estes sistemas são implementados 

eletronicamente, utilizando dispositivos como microprocessadores e 

microcontroladores. Em meados dos anos 80, uma unidade de controle híbrida 

utilizava técnicas de análise analógica e digital de sinais. Estas técnicas eram 

utilizadas para medir parâmetros de entrada do motor, compará-los com informações 

armazenadas em tabelas digitais para então gerarem saídas pré-determinadas.  

Mais tarde, os sistemas passaram a computar as saídas dinamicamente. 

Atualmente, os controles são tão sofisticados a ponto de receberem informações de 

várias partes do motor, tomar decisões e atuar sobre eles. Por exemplo, tanto o 

controle da aceleração de um veículo quanto do antitravamento das rodas numa 

frenagem podem ser gerenciados por unidades de controle. 

As aplicações deste tipo de sistema em outras áreas que não a automotiva 

também servem como motivação para pesquisa. Alguns equipamentos agrícolas de 

fertilização e controle de agrotóxicos, por exemplo, utilizam o mesmo princípio de 

funcionamento de uma unidade de controle automotiva. Estas máquinas devem 

controlar a quantidade de produto químico que deve ser pulverizado por área, 

utilizando como referência a rotação do motor que as impulsiona, e o tempo que levam 

para realizar uma volta completa do eixo de transmissão.  
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1.2. Objetivos 
 

A partir da constatação da crescente demanda por sistemas embarcados de controle 

de motores (especialmente os sistemas automotivos), este trabalho tem como objetivo 

implementar um circuito de detecção de ciclos de motor, analisando a forma de onda 

gerada por este, de maneira a atuar através de um sinal de controle enviado a uma 

unidade injetora de combustível a partir da constatação do estado de funcionamento 

do motor. 

Este ambiente pode ser encontrado no contexto das Unidades de Controle 

Automotivas, também conhecidas como ECUs (do inglês Engine Control Unit). Por 

isso, além da análise deste sinal de rotação do motor, foi também implementado um 

pequeno circuito que descreve de maneira não-linear a aceleração de um veículo. A 

partir desta, pode-se obter um valor de rotação. 

Para a implementação destes sistemas, realizou-se uma revisão bibliográfica 

sobre Unidades de Controle Automotivas, desde sua concepção até os dias atuais. Foi 

estudado seu princípio de funcionamento, e suas interações com outros subsistemas 

que existem em um veículo. 

Para a análise do ciclo de rotação do motor, foram feitas duas implementações, 

em DSP e FPGA, com o intuito de verificar quais os pontos favoráveis e desfavoráveis 

de cada dispositivo dentro desta aplicação específica. Esta constatação leva em conta 

principalmente as facilidades e dificuldades encontradas pelo aluno durante a 

execução do projeto de conclusão de curso. 

 

1.3. Organização da monografia 
 

O segundo capítulo apresenta uma explicação dos conceitos teóricos relacionados aos 

sistemas de controle automotivos, além do histórico e dos princípios de funcionamento 

dos dispositivos considerados neste trabalho. 

O terceiro capítulo apresenta os softwares utilizados para a construção do 

sistema proposto, assim como sua modelagem propriamente dita. Além disso, relata 

os pontos implementados sobre cada tecnologia, apresentando gráficos com 

demonstrações das atividades. 

O quarto capítulo é reservado para a discussão sobre os resultados obtidos, 

além de sugestões de trabalhos futuros. No quinto capítulo tecem-se as conclusões 

deste projeto, seguidas pelas referências bibliográficas e pela bibliografia consultada. 
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No fim, encontra-se o anexo com parte dos códigos utilizados na elaboração 

deste projeto. 

 

2. Fundamentação Teórica 
 

2.1. Controle Eletrônico Automotivo 
 

2.1.1. Evolução histórica 

 

A aplicação dos conceitos de eletrônica em sistemas automotivos era um processo 

natural, e até mesmo inevitável. O constante aumento do preço dos combustíveis 

associado às práticas empregadas para a diminuição da poluição gerada pelos 

veículos certamente aceleraram o processo. Entretanto, antes mesmo da produção 

dos sistemas de controle modernos, já existiam dispositivos digitais que atuavam nos 

motores dos automóveis [1]. 

O primeiro controle eletrônico aplicado a um motor automotivo surgiu em 1978, 

e foi chamado de carburador de “ciclo fechado” (tradução livre de closed loop) [1]. Foi 

uma resposta à crise mundial do petróleo, além de representar a primeira ação direta 

no combate à emissão de gases poluentes na atmosfera. 

Não demorou para que este dispositivo evoluísse. No ano seguinte houve a 

produção em série do primeiro dispositivo de controle automotivo de natureza 

puramente eletrônica [2]. Antes dele, outros dispositivos já atuavam no motor com o 

intuito de controlá-lo, porém eram mistos – parte mecânicos, parte eletrônicos [3]. 

Já era de conhecimento da ciência que o resultado da combustão (tanto a 

energia quanto a produção de gases) era diretamente influenciado pela precisão na 

mistura ar-combustível. Para se obter o máximo do processo, deveria obedecer-se a 

razão estequiométrica de 14:1. Além disso, a faísca gerada para causar a explosão 

deveria ocorrer no instante exato desta proporção. Obviamente, estes fatores 

dependiam de outras variáveis tais como a velocidade, a carga de trabalho, 

temperatura [1]. 

A partir de então, começou-se a avaliar quais eram as informações mais 

importantes que uma unidade de controle deveria ter para que pudesse executar um 

trabalho eficiente. Basicamente, era importante saber a rotação do motor, as posições 

do crankshaft (conhecido como virabrequim) e camshaft (eixo responsável por acionar 

o movimento de subida e descida do pistão), e a massa de ar admitida. A posição do 
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acelerador e a razão de aceleração (para o sistema de transmissão) também foram 

consideradas. 

Até então, eram utilizados microprocessadores de 8 bits para o controle das 

funções básicas do motor (determinação da razão ar-combustível, temporização da 

ignição) [4] feito a partir das informações acima citadas.  

Com o tempo, vários sensores e atuadores foram inseridos nos motores, em 

subsistemas específicos, tais como o de injeção de combustível e o de controle do 

tempo de explosão do motor (controle da faísca). Curiosamente, chegou-se à 

conclusão de que a maior parte dos sinais adquiridos do motor necessita apenas de 

quatro amostras a cada 360º. Ou seja, a cada giro do motor são realizadas quatro 

medições simétricas sendo que, a partir delas, pode-se calcular o comportamento do 

sinal durante todo o período matematicamente, prevendo não somente a posição do 

motor, mas também se este está acelerando ou desacelerando [1]. 

Conforme a necessidade surgia, apareciam também os equipamentos que 

possibilitavam o avanço na construção das unidades eletrônicas de controle. Entre os 

anos de 1980 e 1982 surgiram elementos muito importantes para a aquisição de sinais 

do motor: sensores de rotação fotoelétricos, sensores de massa de ar, sensores de 

medição de rotação, e o controle de regime de trabalho livre do motor [2]. 

Posteriormente, conforme os estudos avançavam, outras variáveis foram 

identificadas e a obtenção de seus valores se fez necessária. A temperatura da água 

(para identificar a temperatura do motor), a quantidade de combustível injetado 

proporcionalmente à velocidade desenvolvida, a densidade do ar (para o cálculo da 

razão estequiométrica) foram algumas delas [1]. 

No início da década de 90, começaram a surgir os primeiros dispositivos de 

controle com microprocessadores de 16 bits, para atender à demanda de tratamento 

dos novos sinais que eram agregados ao controle automotivo. Durante os anos 

seguintes, foram desenvolvidos modelos cada vez mais complexos e eficientes até 

que, graças ao avanço na área de hardware, foi possível utilizar processadores de 32 

bits. Estes têm uma capacidade muito grande de processamento, permitindo executar 

algoritmos sofisticados de tratamento de informações e controle de sistemas [4]. 

Atualmente, as unidades eletrônicas de controle automotivo estão bastante 

avançadas, e são capazes de executarem funções consideradas complexas para um 

dispositivo embarcado, como interface com o usuário, por exemplo [1]. Além disso, 

são capazes de identificar configurações pessoais de cada usuário, como a utilização 

de transmissão de marchas automática ou manual, ou mesmo a função de pilotagem 

automática (na realidade, apenas o controle automático da aceleração). 
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2.1.2. Princípios básicos 

 

Basicamente, uma unidade eletrônica de controle é constituída de alguns elementos 

principais. O mais importante deles é o controlador, responsável pela tomada de 

decisões sobre os estados de funcionamento do motor. Ele trabalha com sinais 

digitais. Sensores de dados (tensão, temperatura, velocidade angular e linear, entre 

outros) devem ser convertidos de informação contínua ou analógica para o formato 

digital exigido por microcontroladores. Esta conversão pode ou não ser realizada pelo 

próprio controlador, dependendo das funcionalidades implementadas nele. 

Outra característica crítica é a capacidade de captura e tratamento de eventos 

assim que eles acontecem. Nesse ponto, faz diferença a velocidade na qual o 

controlador consegue trabalhar com os sinais de entrada e saída de informação. Com 

todas as informações disponíveis, é possível identificar o estado de funcionamento do 

motor e, a partir dele, tomar uma decisão sobre como atuar nos subsistemas [1]. 

O sistema de controle da maioria dos motores utilizados atualmente é dividido 

em um conjunto de subsistemas. Estes interagem entre si e com os sensores e 

atuadores, auxiliando a unidade de controle a tomar a melhor decisão sobre a 

operação do motor em um dado instante de análise [5]. 

O principal destes é o de injeção de combustível, responsável por controlar a 

quantidade ideal de combustível para determinada condição de operação do motor. 

Além deste, existem os sistemas de controle da ignição, recirculação de gases e 

outros que variam de acordo com cada fabricante.  

A precisão no controle destes sistemas visa atingir o ponto ideal de 

funcionamento do motor. Neste, o consumo de combustível é minimizado, assim como 

a emissão de poluentes. Estas duas metas têm sido fortemente buscadas pelos 

projetistas, pressionados principalmente por três fatores: a natural busca por 

minimização de custos; a alta nos preços dos combustíveis nos últimos 30 anos; e 

pelas rigorosas leis ambientais relacionadas à emissão de gases na atmosfera por 

veículos automotores.  

O sistema de controle interpreta os sinais recebidos e, através de valores 

contidos em tabelas, conclui sobre uma determinada ação a ser desempenhada pelo 

motor. Estas tabelas são obtidas em laboratório através de um processo chamado 

calibração. A partir de medições obtêm-se curvas de torque do motor, potência, 

consumo específico e níveis de emissões, e são construídas tabelas (como carga 

versus rotação versus ponto de ignição, carga versus rotação versus tempo de 

ignição, temperatura do motor versus tempo de injeção, entre outras). Estas são 
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armazenadas na memória interna da unidade de controle, e são recuperadas ponto a 

ponto de acordo com a condição de operação do motor [6]. 

Para cada condição do motor, define-se um modo de controle. Cada modo 

corresponde a uma rotina realizada pelo programa, e que é ativada a partir dos sinais 

recebidos dos sensores. Apesar do sistema de gerenciamento atuar de maneira 

integrada, os módulos de controle são representados separadamente para fins 

didáticos, seguindo a literatura da área, conforme indicado na Figura 1. 

 

 
Figura 1: Divisão didática de um sistema de controle automotivo. 

 

 

 

ECM = Engine Control Module, ou Módulo de Controle do Motor;  
EGR = Exhaust Gas Recirculation, ou Controle de Recirculação de Gases. 

A ECU deve possuir uma interface de comunicação com os sensores e 

atuadores, incluindo aí todas as questões relacionadas a protocolos e drivers. Um dos 

protocolos de comunicação mais utilizados na indústria automobilística é o Controller 

Area Network (CAN). Ele foi desenvolvido pela Bosch em 1986 para resolver 

problemas de comunicação entre dispositivos eletrônicos em automóveis [7].  

Quase a totalidade das empresas de automóveis utiliza este padrão para 

comunicação entre os sensores e atuadores localizados no veículo e as unidades 

eletrônicas de controle. Também é utilizado na comunicação entre ECUs. Entre as 

razões para tal fato estão sua segurança e o custo baixo de implementação. 

 

2.1.3. Descrição dos subsistemas de controle do motor 

 

2.1.3.1. Controle eletrônico da ignição 

 

O controle eletrônico de ignição trabalha a partir do mapa de avanço da ignição do 

motor. Uma vez detectada a condição de operação, as informações armazenadas em 
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tabelas na memória da unidade de controle são recuperadas, para corrigir o ponto de 

ignição em função de alguns fatores. Dentre eles estão a rotação do motor, a pressão 

no coletor de admissão e a temperatura do motor.  

Além de corrigir o ponto de ignição, a unidade eletrônica controla a ocorrência 

de knocking, de modo a atrasar o ponto de ignição quando o knock aparece. Knocking 

é o termo utilizado para descrever a combustão com características muito próximas à 

combustão detonante, quando comparado com o processo normal de combustão. Este 

fenômeno pode causar danos ao motor dependendo de sua intensidade e ocorrência. 

 

2.1.3.2. Controle da recirculação dos gases de escape (EGR) 

 

O sistema de recirculação de gases de escape tem por função desviar uma parte dos 

gases queimados da tubulação de exaustão de volta para a admissão do motor. O 

principal intuito desta medida é diminuir a emissão de gases na atmosfera, 

especialmente os que possuem nitrogênio em sua composição.  

A quantidade de gás recirculado para a admissão varia em função da rotação 

do motor, pressão no coletor de admissão e temperatura do motor [8]. Estas 

informações são avaliadas pela unidade de controle, que atua de acordo com as 

condições momentâneas de funcionamento. 

 

2.1.3.3. Sensores 

 

Os sensores são responsáveis por obter as condições de funcionamento do motor em 

um determinado instante, e enviá-las à unidade de controle. Existem diversos 

sensores espalhados pelo motor, com o intuito de levantar o máximo de informações 

possível. Estas auxiliam nas decisões sobre qual ação tomar com relação a 

determinado estado de funcionamento. Entre todos, pode-se destacar como principais: 

 

• Sensores de pressão no coletor de admissão - têm a função de informar as 

variações de pressão no coletor de admissão. Em alguns casos, esta pressão 

é utilizada para determinar qual a carga de trabalho na qual o motor se 

encontra, definindo o avanço da ignição; 

• Sensores mássicos - são responsáveis pela medida da massa de ar admitida 

pelo motor. Outra maneira de fazer isso é a utilização de sensores 

volumétricos, que medem o fluxo volumétrico de ar; 
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• Sensores de posição da borboleta de aceleração - informam a posição 

angular da borboleta de aceleração à unidade eletrônica. Isto permite adotar 

estratégias de controle de liberação de combustível e momento de detonação 

da centelha de acordo com as tabelas armazenadas em sua memória; 

• Sensores de temperatura - responsáveis por informar a temperatura do ar 

aspirado pelo motor e da água do sistema de arrefecimento. A temperatura do 

ar é necessária para se determinar sua densidade, utilizada para o cálculo da 

massa de ar que está sendo admitida pelo motor. A temperatura da água é 

utilizada como indicativo da temperatura do motor, servindo como parâmetro 

para que estratégias específicas possam ser realizadas, tais como: 

o Enriquecimento da mistura ar-combustível no momento da partida, 

quando o motor ainda está frio; 

o Cut-off com o motor frio (diminuição ou corte da injeção de combustível 

quando o carro não está acelerado); 

o Substituição do sensor de temperatura do ar, caso este não seja 

empregado; 

o Sensor de rotação do motor/PMS - tem por finalidade gerar o sinal de 

rotação do motor, e a posição da árvore de manivelas; 

o Sensor de fase - combinado com o sinal de rotação, permite que a 

unidade de controle identifique o cilindro em ignição. 

 

2.1.3.4. Atuadores 

 

Atuadores são todos os componentes do sistema de controle responsáveis por gerar 

uma ação sobre a planta – no caso, motores de combustão interna –, a partir de um 

sinal de controle. Nos sistemas de injeção eletrônica, este sinal é de natureza elétrica, 

resultado do processamento realizado pela unidade de controle. 

Dentre os principais atuadores, pode-se destacar: 

 

• Válvulas injetoras de combustível - dispositivos dosadores de combustível. 

Outros componentes podem realizar sua função (antigamente, essa função era 

exercida por carburadores mecânicos); 

• Bobina de ignição - responsável por gerar a alta tensão requerida para 

provocar o centelhamento da vela de ignição. A centelha inicia o processo de 

combustão da mistura ar-combustível; 
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• Corretor da marcha lenta – tem como objetivo manter a rotação do motor o 

mais estável possível, quando o pedal do acelerador não está acionado e a 

rotação do motor é baixa. 

 

2.1.3.5. Sensor lambda 

 

A realimentação da malha fechada do sistema é feita pela sonda lambda, trabalhando 

em parceria com o conversor catalítico (dispositivo usado para reduzir a toxicidade das 

emissões dos gases de escape de um motor de combustão interna). Hoje, este 

conversor é o método mais eficiente de purificação dos gases de exaustão dos 

motores de combustão interna. Operando juntos, os sistemas de ignição e injeção 

permitem obter níveis muito baixos de emissão de gases poluentes. Com a utilização 

de um catalisador, estes níveis podem ser realmente bastante baixos, pois um 

catalisador (de três níveis) tem o poder de reduzir os índices de emissão dos gases 

prejudiciais em até 90%. 

Este número só pode ser alcançado se o motor operar muito próximo da 

proporção estequiométrica ideal de funcionamento (λ = 1 ± 0.05). Este pequeno desvio 

só pode ser mantido com o auxílio de sistemas de injeção de combustível controlados 

eletronicamente. Por essa razão, utiliza-se o controle em malha fechada com sonda 

lambda, ou seja, a composição da mistura ar-combustível é mantida dentro da faixa 

ótima através de ações de controle. 

Em outras palavras, a sonda lambda funciona como um sensor de 

realimentação que indica se a mistura está acima ou abaixo da proporção 

estequiométrica [6]. 

Este e todos os outros subsistemas descritos podem ser vistos 

esquematicamente na figura 2. 
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Figura 2: Diagrama de Blocos de uma ECU [6] 

 

2.1.4. Sistema de Injeção de Combustível 

 

O propósito do sistema de injeção de combustível é controlar a quantidade exata de 

combustível no tempo exato para a obtenção da razão estequiométrica [9]. Baseado 

nos sinais de entrada, a unidade de controle o instante em que cada bico injetor é 

ativado ou não. Este sistema será descrito com mais detalhes, devido à sua 

caracterização pela aplicação prática deste trabalho. 

Para que o motor tenha um funcionamento suave, econômico e não contamine 

o ambiente, ele necessita receber a perfeita mistura ar/combustível em todas as faixas 

de rotação. Um carburador, por melhor que seja e por melhor que esteja sua 

regulagem, não consegue alimentar o motor na proporção ideal de mistura em 

qualquer regime de funcionamento. Os sistemas de injeção eletrônica têm essa 

característica de permitir que o motor receba somente o volume de combustível que 

ele necessita. 

Mais do que isto, os conversores catalíticos - ou simplesmente catalisadores - 

tiveram papel decisivo no desenvolvimento de sistemas de injeção eletrônicos. Para 

que sua eficiência fosse plena, seria necessário medir a quantidade de oxigênio 

presente no sistema de exaustão e alimentar o sistema com esta informação para 
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corrigir a proporção da mistura. O primeiro passo neste sentido foram os carburadores 

eletrônicos, mas cuja difícil regulagem e problemas que apresentaram, levaram ao seu 

pouco uso. 

Surgiram então os primeiros sistemas de injeção monoponto (ou single-point), 

consistindo de uma válvula injetora ou bico, que fazia a pulverização do combustível 

junto ao corpo da borboleta do acelerador. Toda vez que o pedal do acelerador é 

acionado, esta válvula (borboleta) se abre, admitindo mais ar. Um sensor no eixo da 

borboleta indica o quanto de ar é admitido. Esta informação é reconhecida pela central 

de gerenciamento, que fornece o combustível proporcionalmente. 

Para que o sistema possa suprir o motor com maiores quantidades de 

combustível de acordo com a necessidade, a linha de alimentação dos bicos injetores 

é pressurizada e alimentada por uma bomba de combustível elétrica, a qual envia 

doses maiores que as necessárias para que sempre o sistema possa alimentar 

adequadamente o motor em qualquer regime em que ele funcione. O excedente 

retorna ao tanque. Nos sistemas single point a alimentação é direta ao bico único. No 

sistema multi-point, em que existe um bico para cada cilindro, existe uma linha de 

alimentação única para fornecer combustível para todos os injetores, localizada antes 

da válvula de admissão. 

Seja no caso de sistemas single-point ou multi-point, os bicos injetores dosam 

a quantidade de combustível liberada para o motor pelo tempo em que permanecem 

abertos. As válvulas de injeção são acionadas eletromagneticamente, abrindo e 

fechando através de impulsos elétricos provenientes da unidade de comando. Estes 

tipos de injeção estão ilustrados nas figuras 3 e 4. 

 

 
Figura 3: Sistema de Injeção de Combustível Single-Point 
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Figura 4: Sistema de Injeção de Combustível Multipoint 

 

2.1.4.1. Esquema de funcionamento 

 

O instante no qual o injetor atuará no sistema é determinado pela unidade eletrônica 

de controle. Esta informação é obtida através de um sensor de fundamental 

importância chamado sensor Hall. Seu princípio de funcionamento consiste em gerar 

diferenças de potencial de voltagem a partir de efeitos eletromagnéticos [10]. 

O sensor Hall é constituído basicamente por uma pastilha semicondutora 

alimentada eletricamente. Esta pastilha fica associada ao eixo de rotação do motor, 

que transmite seu movimento a um disco giratório com quatro janelas (Figura 5). 

Quando a abertura do disco giratório está posicionada entre o sensor e o imã 

permanente, o primeiro fica imerso no campo magnético do imã. Esta situação gera no 

interior da Unidade de Comando uma tensão de aproximadamente 12 Volts. 

 
Figura 5: Sensor Hall com abertura entre o sensor e o imã 
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Quando o disco está posicionado entre o imã e o sensor, não há contato do 

sensor HALL com o campo magnético e a tensão gerada é de zero Volt (Figura 6). 

 

 
Figura 6: Sensor Hall posicionado entre o imã e o sensor 

 

O disco giratório pode ter 4 janelas igualmente espaçadas, ou 3 janelas 

igualmente espaçadas entre si e uma maior (dependendo do sistema em questão). No 

disco de 4 janelas simétricas, o início das janelas indica quantos graus estão 2 dos 

cilindros do ponto morto superior (esta angulação varia de acordo com o sistema de 

injeção – Figura 7). No disco de 3 janelas iguais e uma maior, o início da janela maior 

indica quantos graus está o 1º cilindro do ponto morto superior. 

Especificamente neste segundo caso, o sensor acaba gerando uma onda 

quadrada com um período constante, mas com o duty cycle1 da janela maior diferente 

de 50% (Figura 8). Esta diferença, associada à análise do sinal de rotação do motor, 

permite inferir o momento exato que a seqüência de injeção de combustível nos 

cilindros deve ser iniciada. 

 
Figura 7: Representação do sensor Hall e da onda gerada 

                                                 
1 Razão entre o período do pico e o período total de uma onda quadrada. 

 20



 
Figura 8: Exemplo de três janelas iguais e uma maior, no sensor Hall 

 

Existem algumas estratégias que a ECU pode adotar para realizar a injeção de 

combustível. Como a injeção é determinada pela posição angular do virabrequim, é 

considerada uma injeção síncrona. Dependendo da aplicação, os três principais tipos 

de injeção síncrona são: simultânea, por grupo ou seqüencial [11]. 

Na injeção simultânea, todos os bicos são acionados ao mesmo tempo por um 

circuito em comum. A admissão de combustível é feita uma vez por ciclo do motor. Já 

na injeção por grupo, os bicos são divididos em partes, sendo que a entrada de 

combustível ocorre de maneira alternada entre estes grupos (em um motor com quatro 

cilindros, geralmente se divide em dois grupos de dois cilindros, sendo o primeiro e o 

terceiro cilindros acionados simultaneamente, e a seguir o segundo e o quarto). A 

injeção seqüencial, como o próprio nome diz, ocorre de maneira a ativar um bico por 

vez, ordenadamente, de maneira que todos os bicos injetem combustível pelo menos 

uma vez durante um ciclo do motor [11]. 

 

2.2. Dispositivos de Processamento 
 

2.2.1. Processador de Sinais Digitais (DSP) 

 

Sinais na vida real são analógicos por natureza. Entretanto, para que se possa 

trabalhar computacionalmente com eles, é preciso que estes sejam representados de 

maneira digital. Este é o conceito do processamento digital de sinais, no qual o 

Processador Digital de Sinais (DSPs, do inglês Digital Signal Processor) está inserido. 

 21



Os DSPs são microprocessadores especializados em processamento digital de 

sinais. A utilização destes dispositivos tem crescido significativamente nos últimos 

anos, tendo no mercado de dispositivos portáteis (celulares, handhelds) o principal 

destaque [12].  

Os Processadores de Sinais Digitais são dispositivos especializados em 

processamento digital de sinais das mais diversas naturezas (áudio, vídeo, dados), 

quer em tempo real quer off-line. Possui uma alta velocidade de processamento, se 

comparado com a maioria dos microcontroladores disponíveis no mercado, medida em 

MIPS (Million Instruction Per Second) [13]. 

Recentemente, estes microprocessadores têm sido utilizados em projetos 

presentes no mercado envolvendo controle digital. São capazes de prover de maneira 

rápida e eficaz soluções para diversos problemas deste tipo de sistema 

(processamento em tempo real). Podem ser usados tanto sozinhos quanto em união 

com outros elementos computacionais (periféricos, microcontroladores, FPGAs). 

Os DSPs podem ser divididos em duas categorias principais, baseadas na 

maneira que representam valores numéricos e operações numéricas. Estes dois 

formatos principais são ponto fixo e ponto flutuante. As diferenças entre processadores 

de ponto fixo e flutuante são tão significativas que requerem implementações (internas 

e de algoritmos) distintas, além de um conjunto específico de instruções [14]. 

Os processadores de ponto fixo representam e manipulam números como 

inteiros. Os processadores de ponto flutuante representam primeiramente números no 

formato do ponto flutuante, embora possam também suportar a representação e os 

cálculos de números inteiros. O ponto flutuante é representado como uma combinação 

da mantissa (ou parte fracionária) com um expoente. 

Os processadores de ponto flutuante podem executar as operações tanto de 

ponto flutuante como de inteiros, tornando-os mais flexíveis. A potencialidade deste 

tipo de DSP é apropriada nos sistemas onde os coeficientes do ganho mudam com 

tempo, ou os coeficientes têm escalas dinâmicas grandes. Em contrapartida, 

apresentam custos mais elevados. 

Por estas razões, geralmente os DSPs de ponto fixo são mais baratos, e 

costumam realizar tarefas mais simples com maior velocidade. Todavia, os DSPs de 

ponto flutuante permitem maior precisão na representação numérica, além de um ciclo 

de desenvolvimento mais rápido (os programadores não precisam se preocupar com 

problemas como overflow ou underflow de variáveis, por exemplo) [12]. 

As principais características que diferem um DSP de um microprocessador 

comum são [15]: 
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• Paralelismo na execução das instruções; 

• Otimização da operação produto/acumulação (endereçamento circular); 

• Otimização da arquitetura para operações matemáticas repetitivas (ciclos); 

• Comutação consciente de contexto nas interrupções; 

• Separação entre dados, dados secundários e instruções do programa; 

 

2.2.2. Field Programmable Gate Array (FPGA) 

 

O Field Programmable Gate Array (FPGA) é um dos dispositivos semicondutores mais 

utilizados para o processamento de informações digitais. Foi criado pela Xilinx Inc., e 

teve o seu lançamento no ano de 1985 como um dispositivo que poderia ser 

configurado de acordo com as aplicações do usuário (programador) [16].  

Esta, por sinal, é uma das suas principais vantagens. Apesar de outros 

dispositivos também serem maleáveis, nenhum deles permite que se faça uma 

reconfiguração completa do sistema. A esta característica dá-se o nome de 

reconfigurabilidade. Através das ferramentas de desenvolvimento, é possível 

especificar o dispositivo para funcionar conforme os interesses do seu projeto.  

Os FPGAs têm sido bastante utilizados para o controle de sistemas digitais. 

Uma das áreas de atuação é a de controle de motores, controle de dispositivos 

eletrônicos voltados ao controle elétrico, e controle de movimento, conforme pode ser 

observado na figura 9. A parte de controle de motores se refere à manipulação direta 

de motores AC (corrente alternada) e DC (corrente contínua) para se obter velocidade, 

posição ou torque específico [17]. 

O controle elétrico está relacionado diretamente com estratégias para a 

conversão de sistemas DC-AC, AC-DC ou DC-DC. Já a parte de controle de 

movimento se refere à implementação de algoritmos para desvio de obstáculos, 

controle do perfil de aceleração e rota, usualmente relacionados com a área de 

robótica ou das chamadas máquinas CNCs (Computerized Numerically Control). 

Outras aplicações que se pode citar são implementações de conceitos de lógica fuzzy 

para controle de temperatura, e construção de sistemas de controle eletrônicos 

automotivos [17]. 
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Figura 9: Distribuição das principais aplicações que utilizam FPGAs [17] 

 

Basicamente, são constituídos por blocos lógicos, blocos de entrada e saída, e 

chaves de interconexão. Os blocos lógicos formam uma matriz bidimensional, e as 

chaves de interconexão são organizadas como canais de roteamento horizontal e 

vertical entre as linhas e colunas dos blocos lógicos. Os canais de roteamento 

possuem chaves de interligação programáveis, que permitem conectar os blocos 

lógicos de maneira conveniente em função das necessidades de cada projeto [16]. 

No interior de cada bloco lógico do FPGA existem vários modos possíveis para 

implementação de funções lógicas. O mais utilizado pelos fabricantes de FPGA é o 

bloco de memória LUT (Look-Up Table). Esse tipo de bloco lógico contém células de 

armazenamento que são utilizadas para implementar pequenas funções lógicas. 

Quando um circuito lógico é implementado em um FPGA, os blocos lógicos são 

programados para realizar as funções necessárias. Os canais de roteamento são 

estruturados de forma a realizar a interconexão necessária entre os blocos lógicos. 

A arquitetura de roteamento de um FPGA é a forma pela qual seus 

barramentos e as chaves de comutação são posicionados para permitir a interconexão 

entre as células lógicas. Essa arquitetura deve permitir que se obtenha um roteamento 

completo e, ao mesmo tempo, uma alta densidade de portas lógicas [17].  

As chaves programáveis de roteamento apresentam algumas propriedades que 

afetam principalmente a velocidade e o tempo de propagação dos sinais. Tais 

características (tamanho, resistência, capacitância e tecnologia de fabricação) definem 

itens como volatilidade e capacidade de reprogramação. Na escolha de um dispositivo 

reconfigurável, esses fatores devem ser considerados diante do sistema proposto. 
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3. Materiais e Métodos 
 

3.1. Descrição do Sistema 
 

A partir da revisão bibliográfica sobre o princípio de funcionamento das unidades 

eletrônicas de controle automotivo, e das principais características que as compõem, 

foi proposta a construção de um pequeno sistema que pudesse simular de maneira 

simplificada algumas funcionalidades de um motor. Este sistema está representado 

através do diagrama de blocos da figura 10. 

Entenda-se por funcionalidades algumas informações presentes em um motor 

real, tais como aceleração e rotação. Para este projeto, foi estipulado que a rotação 

pudesse variar entre 240 rpm (rotações por minuto) e 1200 rpm. Este valor é apenas 

uma representação de um possível sinal de rotação encontrado em sistemas 

automotivos reais. 

 

 
Figura 10: Diagrama de blocos do simulador de motor 

 

Na outra ponta do sistema, foi construído um módulo de controle destes sinais 

gerados a partir do bloco anteriormente descrito. Este módulo pode ser considerado 

como uma unidade de controle simplificada, de acordo com as especificações do 

motor simulado. Esta unidade de controle é responsável por detectar, no sinal de 

rotação, um período que contenha um duty cycle diferente de 50%. Esta condição é 
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necessária para ativar o sistema de injeção de combustível nos cilindros (considerou-

se um motor de quatro cilindros, com estratégia de injeção em grupo, ou seja, os 

injetores ímpares são acionados simultaneamente, assim como os pares na 

seqüência). 

Além disso, esta unidade de controle é responsável por atuar no sistema de 

admissão de ar. Ele faz isso a partir do mapeamento dos estados de funcionamento 

do motor. Uma vez identificado o valor de rotação, este é utilizado para calcular o 

ângulo de abertura da borboleta de admissão de ar.  

Um esquemático desta unidade simplificada de controle pode ser visto na 

figura 11. 

 

 
Figura 11: Diagrama de blocos do sistema de controle eletrônico 

 

3.2 Materiais e softwares utilizados 
 

Neste trabalho, algumas ferramentas e dispositivos foram utilizados para a elaboração 

do sistema. Basicamente, foram utilizados softwares de programação para DSPs e 

FPGAs. No caso dos primeiros, o programa utilizado foi o CodeComposer Studio, em 

sua versão 3.1; já para os últimos, o ambiente de desenvolvimento foi o Xilinx ISE 9.2i.  
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Figura 12: Tela do programa CodeComposer 

 

 
Figura 13: Tela do programa ISE 

 

Sobre os dispositivos utilizados, o DSP escolhido para os trabalhos foi o 

modelo TMS320F2812 da Texas Instruments. Este modelo é conhecido por combinar 
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a facilidade de uso de um microcontrolador com o poder de processamento de um 

DSP, além de ter a facilidade de programação e eficiência da linguagem C. Segundo o 

fabricante, é recomendado para aplicações embarcadas em ambientes industriais, tais 

como controle digital de motores, por exemplo. 

Este chip faz parte de um kit de desenvolvimento fornecido pela Spectrum 

Digital Incorporated Inc., e tem como características principais: 

 

• Clock de 150MHz; 

• 18 Kb de memória RAM; 

• 128Kb de memória ROM (embutida no chip); 

• 64Kb de memória RAM (embutida no chip); 

 

Especificamente, o microcontrolador possui características importantes para o 

controle automotivo, como suporte ao protocolo de comunicação CAN, timers e 

conversores analógico-digitais [19]. 

 

 
Figura 14: Diagrama de blocos do TMS320F2812, da Texas Instruments (fonte: Texas 

Instruments) 
 

No caso do FPGA, este trabalho utilizou o kit de desenvolvimento fornecido 

pela Xilinx Inc. denominado Spartan3, revisão E. Este kit contém o dispositivo 

XC3S200, que contém as seguintes características principais [20]: 
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• 50 MHz de clock (embutido na placa); 

• 200K de portas programáveis; 

• 12 multiplicadores dedicados, que auxiliam na velocidade do processamento; 

• 4 DCMs (Digital Clock Managers); 

• 173 portas de entrada e saída (máximo); 

• Interface serial e VGA (no kit); 

• 4 Displays de 7 segmentos, e expansão para inclusão de display de LCD 16x2. 

 

3.3. Características de implementação 
 

3.3.1. Motor Simulado 

 

Basicamente, o sistema é constituído de um módulo que verifica se o usuário está 

acelerando ou não – neste caso, representado como um botão que pode ser apertado 

ou não. Caso este sinal de aceleração seja positivo, o bloco fica responsável por 

contar quanto tempo este sinal fica ativo no sistema (acelerando), através de um 

contador. Assim que este sinal deixa de ser positivo (volta para zero), o contador é 

decrementado unitariamente até que atinja o valor inicial.  

 
Figura 15: Simulação do contador de aceleração feita no ISE Simulator 
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Este valor do contador é transmitido para outro bloco, responsável por acessar 

uma tabela de dados que contém o mapeamento de todos os valores possíveis de 

rotação dentro dos valores máximo e mínimo estipulados no projeto. Em outras 

palavras, o resultado do contador é utilizado como índice para acessar cada posição 

desta tabela gravada em uma memória ROM. 

A relação entre o valor obtido da aceleração e o valor da rotação encontrado na 

tabela não é linear, mesmo porque em sistemas reais essa prerrogativa é verdadeira. 

Assim, foi elaborada uma regra simples para discretização de uma curva de 

aceleração. Esta regra consiste nas seguintes regras: 

 

Paramétrico = Número – MaxJanela 

Passo = Paramétrico / FatorDiscretização 

Índice = Passo + (n*10) 

 

Onde Número é o valor recebido do bloco contador; Paramétrico é o valor 

parametrizado do Número, ou seja, o valor entre zero e o máximo da janela de 

discretização para aquele intervalo; FatorDiscretização é o número pelo qual este valor 

parametrizado será dividido, ou seja, quantos passos o contador precisa dar para que 

o valor do índice na tabela de dados seja incrementado; Índice é o valor propriamente 

dito que será utilizado para referenciar as posições na memória ROM; e n é o número 

do intervalo de discretização – no caso deste sistema, foram considerados 16 

intervalos. 

Um exemplo prático auxilia no entendimento destas regras: 

 

if (Numero >= 0 and Numero <= 160) then 
 Parametrico <= Numero; 

IndiceParcial <= Divisao (Parametrico, 16); 
Indice <= IndiceParcial; 

elsif (Numero > 160 and Numero <= 310) then 
 Parametrico <= Numero – 160; 
 IndiceParcial <= Divisao (Parametrico, 15); 
 Índice <= IndiceParcial + 10; 
 

Considere, por exemplo, o valor 35 como resultado do contador de aceleração. 

Este número cai no primeiro intervalo de condição. Ele será simplesmente dividido por 

16, e o resultado (2) será considerado como o índice da tabela ROM. Este cálculo tem 

o efeito prático de forçar que, a cada 16 passos do contador de aceleração, o índice 

da tabela que contém valor de rotação seja incrementado uma vez. 
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Agora, considere o número 210. Este valor satisfaz a segunda condição de 

parametrização. Por isso, é retirado deste valor o máximo do intervalo de discretização 

anterior (neste caso, 160) – resultando sempre em um valor entre 0 e 150. Daí, este 

valor parametrizado é dividido por 15, para se obter o mesmo efeito do caso anterior – 

a cada 15 passos do contador, um passo do índice da tabela é dado. Assim, 

sucessivamente são feitas parametrizações até que, em determinado valor, a 

proporção entre o valor lido do contador e o utilizado como índice da tabela é de 1:1. 

Esta conta acaba por criar o gráfico da figura 16: 

 

 
Figura 16: Curva que relaciona a aceleração com os índices da tabela de rotação 

 

O efeito prático desta medida é a de que, nos primeiros instantes da 

aceleração, o motor simulado responda com mais suavidade ao estímulo dado, 

oferecendo uma resposta mais rápida em termos de rotação a partir de valores 

maiores de aceleração. 
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Pela facilidade de implementar sistemas modelados em blocos, esta parte do 

trabalho foi feita em VHDL para FPGA, utilizando o dispositivo Spartan3, da Xilinx Inc. 

 

3.4. Unidade Eletrônica de Controle 
 

3.4.1. Implementação do Sistema em FPGA 

 

Com as especificações do projeto disponíveis, a implementação para FPGA ocorreu 

sem grandes problemas. Devido à maneira natural de arquitetar um sistema através 

de blocos, este tipo de representação facilita deveras a execução do projeto em VHDL. 

Mesmo depois da divisão em blocos, o sistema em FPGA pôde ser mais 

descentralizado ainda, já que o dispositivo permite processamento paralelo nativo, 

através dos chamados process dentro da descrição do comportamento das 

arquiteturas de cada bloco. Por isso, é exigida por parte do projetista uma visão 

paralela do comportamento do sistema, já que várias tarefas podem ser executadas 

simultaneamente. 

Assim, a implementação em VHDL foi muito semelhante à já mencionada 

estrutura de blocos do sistema. Ao todo, quatro blocos foram implementados e 

interconectados entre si, a saber: 

 

• Divisor_Clock = bloco responsável por gerar freqüências de operação mais 

baixas para o sistema. Segundo a especificação, a rotação mais rápida 

encontrada na tabela é de 1200 rpm. Isso implica em uma onda com período 

igual a 50 ms, ou seja, freqüência de 20Hz, conforme indica as equações (1) e 

(2). 

 

f = 1200 / 60 = 20 Hz  (1) 

T = 1 / 20 = 0,05 s = 50 ms (2) 

 

Para o processo de detecção do duty cycle, é necessário realizar amostragens 

nesse sinal de entrada. Pelo Critério de Nyquist, o dobro da freqüência já era 

suficiente para se ter uma boa precisão sobre o sistema – o que torna o clock da 

placa (de 50MHz) muito alto para realizar tal tarefa. Assim, através deste bloco é 

possível obter freqüências de 2MHz, 2KHz e 500Hz. 
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• ECU_Display = bloco que recebe o valor da rotação como entrada, e fica 

encarregado de formatá-lo e exibi-lo nos displays de 7 segmentos do kit de 

desenvolvimento. 

 

• Control_Injecao = módulo responsável pela detecção do duty cycle diferente 

de 50% no sinal de rotação. Para cada período do sinal, são realizadas 

amostragens seqüenciais e armazenadas quantas destas são em nível lógico 

alto, e quantas têm nível lógico baixo. Então, ao fim do período o controlador 

compara quantas amostras existem de cada tipo, e se a diferença entre elas for 

maior que um determinado erro estipulado (por definição de projeto, o erro de 

amostragem é de 10%), o sinal de injeção é enviado aos cilindros, 

alternadamente. 

 
Figura 17: Simulação do controle de injeção a partir da detecção do duty cycle 
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Figura 18: Identificação do duty cycle diferente de 50%, e conseqüente acionamento dos 

sinais de injeção 
 

Por uma questão de espaço, a unidade de controle foi implementada no 

mesmo dispositivo que o simulador do motor. 

 

3.4.2. Implementação do Sistema em DSP 

 

A programação do DSP foi realizada em linguagem C, que por um lado facilita muito 

na implementação propriamente dita do sistema, mas prejudica a noção de 

processamento paralelo. Assim como no caso da FPGA, no controlador foram 

implementadas rotinas que permitiam identificar um período que tivesse um duty cycle 

diferente de 50%. 

O programa em si, em linguagem C, é relativamente simples. Basicamente, 

dentro de um laço do tamanho do período do sinal a ser analisado (no caso, da 

rotação do motor), e a cada intervalo de tempo definido realizar uma amostragem 

deste sinal, verificando se está em nível lógico alto ou baixo. A seguir, comparar o 

número de amostras de cada tipo: se a diferença entre elas for maior que um erro 

estipulado, o sinal de ativação da injeção é enviado. 

 34



Neste caso, assim como na implementação com FPGA, foi necessário realizar uma 

diminuição do clock para efetuar as amostragens. Entretanto, devido à presença de 

timers e suporte a interrupção, esse processo foi bem mais simples (a cada medição, 

esperava-se um tempo determinado, que era contado pelo timer). 

 
Figura 19: Osciloscópio indicando os sinais de rotação e acionamento da injeção 

 

 
Figura 20: Detecção do duty cycle diferente de 50% no osciloscópio, conectado ao DSP 

 35



4. Resultados e discussões 
 

4.1. Vantagens e Desvantagens de cada dispositivo (neste projeto) 
 

Tanto a utilização de DSPs quanto FPGAs para a construção de sistemas de controle 

automotivo é viável e eficiente, desde que implementada da maneira correta. No caso 

específico do projeto deste trabalho, ambos os dispositivos tiveram um comportamento 

muito satisfatório no que diz respeito à velocidade de processamento e capacidade de 

controle do sistema proposto. 

Todavia, de acordo com os objetivos estabelecidos inicialmente para a 

execução deste trabalho de conclusão de curso, foi possível perceber de maneira sutil 

algumas diferenças entre as duas abordagens propostas, que não implicam 

necessariamente nos resultados finais de cada dispositivo, mas que podem influenciar 

na fase de projeto envolvendo cada um deles. 

A partir da revisão bibliográfica, uma arquitetura de sistema foi criada e 

representada através de blocos, que executavam tarefas simultaneamente. Esse tipo 

de pensamento facilita bastante o trabalho com FPGAs, já que a tarefa da 

implementação acaba se tornando apenas uma codificação em VHDL das idéias que 

já se teve sobre o sistema. Essa facilidade é um pouco menor com um projeto 

seqüencial, como é a programação em C para DSPs – ainda que isso não represente 

uma dificuldade, apenas uma diferença. 

Outro ponto interessante entre as duas abordagens é a diferença de 

preocupação que se tem com relação a cada um deles. Enquanto no FPGA o 

projetista tem controle total sobre o sistema, e sabe o que existe ou não existe nele, 

com o DSP é necessário um pouco de atenção com as configurações necessárias 

para que ele funcione perfeitamente. Em outras palavras, antes de se programar 

propriamente dito o sistema, é necessário voltar um pouco de atenção às 

configurações de uma série de registradores, que interferem no comportamento do 

sistema, tais como tipos de porta (entrada ou saída), habilitação ou desabilitação de 

alguns controles, tais como watchdog e interrupções, entre outros. 

Por outro lado, esses mesmos dispositivos que não estão presentes em FPGA 

ajudam bastante o programador de DSP na hora de realizar algumas tarefas, como 

atraso na medição do sinal de entrada, por exemplo. Enquanto que no primeiro foi 

necessário construir um bloco que dividia o sinal de clock em sinais de freqüência 

mais baixa, no DSP esta operação foi feita apenas com a configuração relativamente 
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simples de uma interrupção e de um timer, que realizava a contagem do tempo e 

retornava assim que este findava. 

As ferramentas de desenvolvimento também apresentaram algumas diferenças 

importantes entre si, além das já esperadas – afinal, se tratam de ferramentas distintas 

para linguagens de programação distintas. Porém, uma sensação que ficou bastante 

acentuada é a de que o CodeComposer (para trabalhar com DSP) é bem mais robusto 

em termos de problemas (travamento) do que o ISE, embora este último seja um 

pouco mais intuitivo (comandos mais acessíveis ao usuário, interface mais clara e 

organizada) que o primeiro. Ainda assim, ambientação com a ferramenta de 

desenvolvimento pode ser resolvida com treinamentos e cursos; problemas como 

simulações que travam ou estouros de memória por parte do ambiente de 

desenvolvimento já são questões mais complexas. 

Um ponto a se destacar é o tempo total de desenvolvimento do projeto tanto 

para DSP quanto para FPGA – incluindo aqui projeto do sistema, documentação e 

codificação propriamente dita. Destacando apenas a parte de codificação, entre as 

primeiras versões elaboradas e as finais de cada dispositivo, houve uma diferença 

perceptível em dias de trabalho. Para o projeto em DSP, foram gastos 

aproximadamente 15 dias (de trabalho para codificação) enquanto que para FPGA 

foram 40 dias (somente codificação).  

Isso pode se explicado por duas razões: primeiro, porque a linguagem de 

programação C é bem mais conhecida e de uso cotidiano do aluno do que VHDL. 

Durante a graduação, foram desenvolvidos muito mais aplicativos em C para várias 

disciplinas do que trabalhos em VHDL. Mesmo no estágio do aluno, o trabalho com C 

foi rotineiro, enquanto que VHDL ficou apenas durante a graduação. Segundo, a 

quantidade de disciplinas voltadas para o desenvolvimento com microcontroladores é 

bem maior na grade disciplinar do curso do que as que envolvem VHDL. Isso implica 

em um maior condicionamento ao trabalho com registradores e instruções 

previamente programadas (como nos microcontroladores) do que no desenvolvimento 

de processos que trabalham em paralelo no sistema (FPGAs). 

Ainda sobre as características particulares de cada tecnologia, 

experimentalmente tentou-se quantificar a portabilidade do código produzido para 

ambos os dispositivos. Observou-se que, no caso do DSP, haveria certo trabalho para 

adaptar o código produzido para o chip de outro fabricante, devido a todo o 

mapeamento de portas de entrada e saída e funções internas, como timers, por 

exemplo. Já no caso de FPGA, o código poderia ser recompilado tranquilamente para 

outro fabricante, com adaptações mínimas (inclusive este teste foi feito, quando o 

projeto desenvolvido para um dispositivo Xilinx no software ISE foi recompilado no 

 37



ambiente de desenvolvimento Quartus II, da Altera Corporation, outra grande 

fabricante de FPGAs). Assim, notou-se que a portabilidade de um código em VHDL é 

maior do que a de um código em C para um DSP específico. 

Sobre o sistema proposto, este procurou ser o mais fiel possível à realidade de 

um sistema automotivo, e a unidade de controle foi desenvolvida pensando justamente 

em uma aplicação de natureza real, e não somente simulada. Obviamente, este 

modelo precisa ser aperfeiçoado para que testes em ambientes reais possam ser 

feitos. Entretanto, acredita-se que um primeiro passo foi dado na direção de construir 

um sistema que possa atender às necessidades atuais de controle de motores de 

combustão, e outros nos quais esta tecnologia possa ser aplicada. 

 

4.2. Sugestões de próximos trabalhos 
 

Como foi dito, o primeiro passo foi dado ao construir este sistema de detecção de 

ciclos de motor, que pode ser aplicado diretamente no controle de sistemas 

automotivos e outros que utilizem o mesmo conceito. Entretanto, muito pode ser feito 

para que este sistema se transforme de fato em algo concreto, e que possa ser 

testado em uma bancada de motores, por exemplo. 

 Algumas das funcionalidades deste trabalho, por exemplo, como a exibição da 

rotação ou mesmo o sinal de controle da borboleta de admissão de ar, não foram 

implementadas em DSP, devido a pouca disponibilidade do kit de desenvolvimento. 

Por isso, um dos primeiros passos é a aquisição de mais materiais para teste dos 

sistemas que podem ser implementados tanto em DSP quando em FPGA – e não 

apenas um kit de cada dispositivo. Até mesmo para que se testem outras abordagens 

dentro da mesma tecnologia. 

Assim, é possível dar prosseguimento à pesquisa iniciada com este trabalho de 

conclusão de curso, com o intuito de aprimorar este sistema, através de um mestrado 

ou especialização.  
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5. Conclusão  
 

O mapeamento das funcionalidades de um controlador eletrônico automotivo permitiu 

elaborar um sistema que simulasse de maneira simplificada seu funcionamento, assim 

como um conjunto de blocos que trabalharam como um motor virtual. 

 Através deste modelo, verificou-se que tanto a utilização de um processador 

digital de sinais quanto de um FPGA é possível para a aplicação em questão, desde 

que sejam consideradas as características particulares do projeto. Obviamente, cada 

dispositivo possui fatores que facilitam ou dificultam a construção do sistema. 

Entretanto, mesmo os pontos negativos podem ser contornados sem que haja grandes 

problemas. 

 Além disso, foi possível perceber que é bem possível aplicar a mesma 

arquitetura de controle estudada neste trabalho em outras áreas que, aparentemente, 

não têm muita relação com a automotiva. Como no exemplo citado no início do 

trabalho, agricultura de precisão e controle de máquinas de usinagem, por exemplo, 

podem ser realizados com o emprego dos mesmos princípios das unidades eletrônicas 

de controle automotivo. 

 Sendo assim, conclui-se que o trabalho foi bem aproveitado por parte do aluno, 

absorvendo os conselhos dados por seu orientador, e colocando em prática os 

conceitos absorvidos durante toda a graduação. 
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8. Anexo 
 

8.1 Códigos de implementação de alguns blocos em FPGA 
 

Control_Injecao.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity Control_Injecao is 
    Port ( Clock   : in  STD_LOGIC;      
 -- clock de 2KHz 
     Reset  : in  STD_LOGIC; 
           Rotacao : in  STD_LOGIC; 
           Atuador : out STD_LOGIC_VECTOR(3 downto 0); 
     Saida3  : out std_logic_vector(3 downto 0); 
     Saida1  : out std_logic_vector(2 downto 0); 
     Saida2  : out std_logic_vector(2 downto 0)); 
end Control_Injecao; 
 
architecture Behavioral of Control_Injecao is 
 
 signal Numero   : integer; 
 signal Count1   : integer; 
 signal Count2   : integer; 
 signal CountClock : integer; 
 signal Periodo  : integer; 
 signal Threshold : integer; 
 signal Inj   : std_logic; 
  
 -- funcao de divisao de dois numeros 
 function Div (Num1 : integer) return integer is 
  variable quoc, rest : integer := 0; 
 begin 
  rest := Num1; 
  while (rest >= 10) loop 
   rest := rest - 10; 
   quoc := quoc + 1; 
  end loop; 
   
  return quoc; 
 end Div;  
  
begin 
  
 Periodo <= 10;   -- para 12000 rpm, quando clock for 50Mhz 
 
 process(Clock, Reset) 
   begin 
  -- 10% de tolerancia de erro 
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  Threshold <= Div(Periodo); 
 
  if (Reset = '1') then 
   Count1 <= 0; 
   Count2 <= 0; 
   CountClock <= 0; 
   Inj <= '0'; 
  elsif (Clock'event and Clock = '1') then  
   if (CountClock < Periodo) then 
    if (Rotacao = '1') then Count1 <= Count1 + 1; end if; 
    if (Rotacao = '0') then Count2 <= Count2 + 1; end if; 
    CountClock <= CountClock + 1; 
    Atuador <= "0000"; 
   end if; 
   if (CountClock = Periodo) then 
    CountClock <= 1; 
    Count1 <= 1; 
    Count2 <= 0; 
    if (abs(Count1 - Count2) > 2 * Threshold) then 
     Atuador <= "0101"; 
     Inj <= '1'; 
    end if;   
   end if; 
   if ((Inj = '1') and (CountClock = Periodo - CountClock)) then 
    Atuador <= "1010"; 
    Inj <= '0'; 
   end if; 
  end if; 
 end process; 
  
 Saida1 <= conv_std_logic_vector(Count1, 3); 
 Saida2 <= conv_std_logic_vector(Count2, 3); 
 Saida3 <= conv_std_logic_vector(CountClock, 4); 
  
end Behavioral; 
 

ECU_Display.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity ECU_Display is  
 port (CLKIN  : in std_logic; 
         Rotacao : in std_logic_vector(10 downto 0); 
   AN3   : inout std_logic; 
         AN2   : inout std_logic; 
         AN1   : inout std_logic; 
         AN0   : inout std_logic; 
         LED   : out std_logic_vector(6 downto 0)); 
end ECU_Display; 
 
architecture Behavioral of ECU_Display is 
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 signal CTR    : STD_LOGIC_VECTOR(12 downto 0); 
 signal Valor   : integer; 
 signal quoc    : integer; 
 signal rest   : integer; 
 signal unid, dez, cent, mil : integer; 
  
 -- funcao que converte um numero decimal para BCD, para mostrar no display 
 function Conv_BCD (Num1 : integer) return std_logic_vector is 
  variable LED : std_logic_vector(6 downto 0); 
 begin 
  case Num1 is 
   when 1 => LED := "1111001"; 
   when 2 => LED := "0100100"; 
   when 3 => LED := "0110000"; 
   when 4 => LED := "0011001"; 
   when 5 => LED := "0010010"; 
   when 6 => LED := "0000010"; 
   when 7 => LED := "1111000"; 
   when 8 => LED := "0000000"; 
   when 9 => LED := "0010000"; 
   when OTHERS => LED := "1000000"; 
  end case; 
  return LED; 
 end Conv_BCD; 
  
 
begin 
  
 Valor <= conv_integer(Rotacao); 
  
 -- encontra os numeros que serao exibidos 
 process (CLKIN) 
 begin 
   
  rest <= Valor; 
  while (rest >= 10) loop  -- captura a unidade 
   rest <= rest - 10; 
   quoc <= quoc + 1; 
  end loop; 
  unid <= rest;    -- seta a unidade do numero 
   
  if (quoc > 0) then     
   rest <= quoc; 
   quoc <= 0; 
   while (rest >= 10) loop -- captura a dezena 
    rest <= rest - 10; 
    quoc <= quoc + 1; 
   end loop; 
   dez <= rest;   -- seta a dezena do numero 
  end if; 
   
  if (quoc > 0) then 
   rest <= quoc; 
   quoc <= 0; 
   while (rest >= 10) loop -- captura a centena 
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    rest <= rest - 10; 
    quoc <= quoc + 1; 
   end loop; 
   cent <= rest;   -- seta a centena do numero 
  end if; 
   
  if (quoc > 0) then   -- se ainda tiver numero para ser 
dividido 
   rest <= quoc; 
   quoc <= 0; 
   while (rest >= 10) loop -- captura o milhar 
    rest <= rest - 10; 
    quoc <= quoc + 1; 
   end loop; 
   mil <= rest;   -- seta o milhar do numero 
  else mil <= 0;    -- senao o milhar eh zero 
  end if; 
 
 end process; 
 
 -- exibe os numeros no display 
 Process (CLKIN) 
 begin 
  if CLKIN'event and CLKIN = '1' then 
   if (CTR = "0000000000000") then 
    if (AN0='0') then  
     AN0 <= '1';   
     LED <= Conv_BCD(unid);    -- unidade 
     AN1 <= '0'; 
    elsif (AN1='0') then  
     AN1 <= '1';     
     LED <= Conv_BCD(dez);     -- dezena 
     AN2 <= '0'; 
    elsif (AN2='0') then  
     AN2 <= '1';   
     LED <= Conv_BCD(cent);    -- centena 
     AN3 <= '0'; 
    elsif (AN3='0') then  
     AN3 <= '1'; 
     LED <= Conv_BCD(mil);     -- milhar 
     AN0 <= '0';  
    end if; 
   end if; 
    
   CTR <= CTR + "0000000000001"; 
   if (CTR > "1000000000000") then    
    CTR <= "0000000000000"; 
   end if; 
   
  end if;  
 End Process; 
  
End Behavioral; 
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Divisor_Clock.vhd 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_unsigned.all ; 
 
entity Divisor_Clock is port ( 
     clock   : in  std_logic;   -- 
50Mhz 
     clock_2M  : out std_logic; 
 -- 02Mhz 
     clock_2K  : out std_logic; 
 -- 02Khz 
     clock_500 : out std_logic);  -- 
500Hz 
end Divisor_Clock; 
 
architecture Behavioral of Divisor_Clock is 
 
 signal Aux1  : std_logic; 
 signal Count : integer range 0 to 24999; 
 signal Count2: integer range 0 to 999; 
 signal Count3: integer range 0 to 3999; 
 
begin 
 
 -- generates a 2 Mhz signal from a 50 Mhz signal 
 process (clock) 
 begin 
 if clock'event and clock = '1' then 
  Count <= Count + 1; 
  if Count < 12500 then 
   clock_2M <= '1'; 
   Aux1 <= '1'; 
  else  
   clock_2M <= '0'; 
   Aux1 <= '0'; 
  end if ; 
  if Count = 24999 then Count <= 0; 
  end if; 
 end if; 
 end process; 
 
 -- generates a 2 Khz signal from a 2 Mhz signal 
 process (Aux1) 
 begin 
 if Aux1'event and Aux1 = '1' then 
  Count2 <= Count2 + 1; 
  if Count2 < 500 then 
   clock_2K <= '1'; 
  else  
   clock_2K <= '0'; 
  end if ; 
  if Count2 = 999 then Count2 <= 0; 
  end if; 
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 end if; 
 end process; 
 
 -- generates a 500Hz signal from a 2 Mhz signal 
 process (Aux1) 
 begin 
 if Aux1'event and Aux1 = '1' then 
  Count3 <= Count3 + 1; 
  if Count3 < 2000 then 
   clock_500 <= '1'; 
  else  
   clock_500 <= '0'; 
  end if ; 
  if Count3 = 3999 then Count3 <= 0; 
  end if; 
 end if; 
 end process; 
 
end architecture; 
 

Controlador_Memoria.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity Controlador_Memoria is 
    Port ( Clock : in  STD_LOGIC; 
           Passo : in  STD_LOGIC_VECTOR (11 downto 0); 
           Index : out  STD_LOGIC_VECTOR (9 downto 0)); 
end Controlador_Memoria; 
 
architecture Behavioral of Controlador_Memoria is 
 
 signal Numero : integer; 
 signal Indice : integer; 
 signal IndiceParcial : integer; 
 signal Parametrico : integer; 
  
 -- funcao de divisao de dois numeros 
 function Divisao (Num1, Num2 : integer) return integer is 
  variable quoc, rest : integer := 0; 
 begin 
  rest := Num1; 
  while (rest >= Num2) loop 
   rest := rest - Num2; 
   quoc := quoc + 1; 
  end loop; 
   
  return quoc; 
 end Divisao; 
 
 
begin 

 49



 
 Numero <= conv_integer(Passo); 
  
 process(Clock) 
   begin 
  if (Clock'event and Clock = '1') then 
    
   if (Numero >= 0 and Numero <= 160) then    
   Parametrico <= Numero; 
    IndiceParcial <= Divisao (Parametrico, 16); 
    Indice <= IndiceParcial; 
   elsif (Numero > 160 and Numero <= 310) then   
   Parametrico <= Numero - 160; 
    IndiceParcial <= Divisao (Parametrico, 15); 
    Indice <= IndiceParcial + 10; 
   elsif (Numero > 310 and Numero <= 450) then   
   Parametrico <= Numero - 310; 
    IndiceParcial <= Divisao (Parametrico, 14); 
    Indice <= IndiceParcial + 20; 
   elsif (Numero > 450 and Numero <= 580) then   
   Parametrico <= Numero - 450; 
    IndiceParcial <= Divisao (Parametrico, 13); 
    Indice <= IndiceParcial + 30; 
   elsif (Numero > 580 and Numero <= 700) then   
   Parametrico <= Numero - 580; 
    IndiceParcial <= Divisao (Parametrico, 12); 
    Indice <= IndiceParcial + 40; 
   elsif (Numero > 700 and Numero <= 810) then   
   Parametrico <= Numero - 700; 
    IndiceParcial <= Divisao (Parametrico, 11); 
    Indice <= IndiceParcial + 50; 
   elsif (Numero > 810 and Numero <= 910) then   
   Parametrico <= Numero - 810; 
    IndiceParcial <= Divisao (Parametrico, 10); 
    Indice <= IndiceParcial + 60; 
   elsif (Numero > 910 and Numero <= 1000) then   
   Parametrico <= Numero - 910; 
    IndiceParcial <= Divisao (Parametrico, 9); 
    Indice <= IndiceParcial + 70; 
   elsif (Numero > 1000 and Numero <= 1080) then   
   Parametrico <= Numero - 1000; 
    IndiceParcial <= Divisao (Parametrico, 8); 
    Indice <= IndiceParcial + 80; 
   elsif (Numero > 1080 and Numero <= 1150) then      
  Parametrico <= Numero - 1080; 
    IndiceParcial <= Divisao (Parametrico, 7); 
    Indice <= IndiceParcial + 90; 
   elsif (Numero > 1150 and Numero <= 1210) then   
  Parametrico <= Numero - 1150; 
    IndiceParcial <= Divisao (Parametrico, 6); 
    Indice <= IndiceParcial + 100; 
   elsif (Numero > 1210 and Numero <= 1260) then   
  Parametrico <= Numero - 1210; 
    IndiceParcial <= Divisao (Parametrico, 5); 
    Indice <= IndiceParcial + 110; 
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   elsif (Numero > 1260 and Numero <= 1300) then   
  Parametrico <= Numero - 1260; 
    IndiceParcial <= Divisao (Parametrico, 4); 
    Indice <= IndiceParcial + 120; 
   elsif (Numero > 1300 and Numero <= 1330) then   
  Parametrico <= Numero - 1300; 
    IndiceParcial <= Divisao (Parametrico, 3); 
    Indice <= IndiceParcial + 130; 
   elsif (Numero > 1330 and Numero <= 1350) then   
  Parametrico <= Numero - 1330; 
    IndiceParcial <= Divisao (Parametrico, 2); 
    Indice <= IndiceParcial + 140; 
   elsif (Numero > 1350 and Numero < 2200) then   
    Indice <= Numero - 1200; 
   end if;    
    
  end if; 
 end process; 
  
 Index <= conv_std_logic_vector(Indice, 10); 
 
end Behavioral; 
 

Contador.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use ieee.numeric_std.ALL; 
 
entity Contador is 
 Port ( clock   : in  STD_LOGIC;      
 -- clock de 500Hz 
    reset  : in  STD_LOGIC; 
          passo   : out STD_LOGIC_VECTOR (11 downto 0); 
          acelerador : in  STD_LOGIC); 
end Contador; 
 
architecture Behavioral of Contador is 
 
 signal Count : integer range 0 to 2050; 
   
begin 
 
 process(clock, acelerador, reset) 
   begin 
 if reset = '1' then Count <= 0; 
 elsif (clock='1' and clock'event) then 
  -- se o botao de aceleracao estiver pressionado 
  if acelerador = '1' then  
   Count <= Count + 1;    
  elsif (Count /= 0 and acelerador = '0') then  
   Count <= Count - 1; 
  end if; 
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 end if; 
 end process;  
  
 passo <= conv_std_logic_vector(Count, 12); 
  
end Behavioral; 
 

ECU_ROM.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity ECU_ROM is 
    Port ( Clock : in  STD_LOGIC; 
           Reset : in  STD_LOGIC; 
           Enable : in  STD_LOGIC; 
           Address : in  STD_LOGIC_VECTOR (4 downto 0); 
           Frequencia : out  STD_LOGIC_VECTOR (5 downto 0)); 
end ECU_ROM; 
 
architecture Behavioral of ECU_ROM is 
 
 type ECU_ROM_Array is array (0 to 31) of std_logic_vector(5 downto 0); 
 
 -- vetor que armazena os valores que sao utilizados pelo controlador da injecao 
   constant Content: ECU_ROM_Array := ( 
  0 => "000010", 1 => "000100", 2 => "000110", 
  3 => "001000", 4 => "001010", 5 => "001100",  
  6 => "001110", 7 => "010000", 8 => "010010",  
  9 => "010100", 10 => "010110", 11 => "011000",  
  12 => "011010", 13 => "011100", 14 => "011110",  
  15 => "100000", 16 => "100010", 17 => "100100",  
  18 => "100110", 19 => "101000", 20 => "101010",  
  21 => "101100", 22 => "101110", 23 => "110000",  
  24 => "110010", 25 => "110100", 26 => "110110",  
  27 => "111000", 28 => "111010", 29 => "111100",  
  30 => "111110", OTHERS => "111111"  
 );        
 
begin 
 
 process(Clock, Reset, Address) 
   begin 
  if (Reset = '1') then 
   Frequencia <= "000000"; 
      elsif (Clock'event and Clock = '1') then 
   if (Enable = '1') then 
    Frequencia <= Content(conv_integer(Address)); 
         else 
            Frequencia <= "000000"; 
         end if; 
  end if; 
 end process; 
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end Behavioral; 
 

Gera_Frequencia.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity Gera_Frequencia is 
 Port (Clock  : in  std_logic; 
   Reset  : in  std_logic; 
   Teste  : out std_logic_vector(3 downto 0); 
   Periodo : in  std_logic_vector(9 downto 0); 
   Saida  : out std_logic); 
end Gera_Frequencia; 
 
architecture Behavioral of Gera_Frequencia is 
 
 signal Max   : integer; 
 signal Duty  : integer; 
 signal Count : integer; 
 signal Control : boolean; 
  
 -- funcao de divisao de dois numeros 
 function Divisao (Num1 : integer) return integer is 
  variable quoc, rest : integer := 0; 
 begin 
  rest := Num1; 
  while (rest >= 2) loop 
   rest := rest - 2; 
   quoc := quoc + 1; 
  end loop; 
   
  return quoc; 
 end Divisao; 
 
begin 
 
 process(Clock) 
 begin 
  if (Reset = '1') then 
   Count <= 0; 
   Saida <= '0'; 
   Duty <= 0; 
  elsif (Clock'event and Clock = '1') then 
   -- converte o valor do periodo para inteiro 
   Max <= conv_integer(Periodo); 
 
   -- enquanto for menor que o Duty, parte alta do periodo 
   if (Count < Periodo) then 
    if (Count < Periodo - Count) then  
     Saida <= '1'; 
    else Saida <= '0'; 
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    end if; 
    Count <= Count + 1; 
   end if; 
   -- zera o contador e permite que uma nova leitura de periodo 
seja feita 
   if (Count = Periodo) then 
    Count <= 0; 
   end if; 
    
   Teste <= conv_std_logic_vector(Max, 4); 
    
  end if; 
   
 end process; 
 
end Behavioral; 
 

 

 

8.2 Códigos de implementação em C para o DSP 
 

Main.c 

#include "DSP281x_Device.h" 
#include "square.h" 
 
 
// Prototype statements for functions found within this file. 
 
void Gpio_select(void); 
void SpeedUpRevA(void); 
void InitSystem(void); 
 
interrupt void cpu_timer0_isr(void); // Prototype for Timer 0 Interrupt Service Routine 
 
void main(void) 
{ 
 int Count1 = 0; 
 int Count2 = 0; 
 int i, Erro = 10; 
  
  
 InitSystem();  // Initialize the DSP's core Registers 
  
  
 Gpio_select();  // Setup the GPIO Multiplex Registers 
  
 InitPieCtrl();  // Function Call to init PIE-unit ( code : 
DSP281x_PieCtrl.c) 
  
 InitPieVectTable(); // Function call to init PIE vector table ( code : 
DSP281x_PieVect.c ) 
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 // re-map PIE - entry for Timer 0 Interrupt  
 EALLOW;  // This is needed to write to EALLOW protected registers 
    PieVectTable.TINT0 = &cpu_timer0_isr; 
    EDIS;    // This is needed to disable write to EALLOW protected registers 
  
 InitCpuTimers(); 
  
 // Configure CPU-Timer 0 to interrupt every 50 ms: 
 // 150MHz CPU Freq, 50000 µseconds interrupt period 
    ConfigCpuTimer(&CpuTimer0, 150, 1000); 
     
    // Enable TINT0 in the PIE: Group 1 interrupt 7 
    PieCtrlRegs.PIEIER1.bit.INTx7 = 1; 
 
 // Enable CPU INT1 which is connected to CPU-Timer 0: 
    IER = 1; 
     
 // Enable global Interrupts and higher priority real-time debug events: 
    EINT;   // Enable Global interrupt INTM 
    ERTM;   // Enable Global realtime interrupt DBGM 
     
    CpuTimer0Regs.TCR.bit.TSS = 0; 
 
 EALLOW; 
 SysCtrlRegs.WDCR=0x0068; 
    EDIS; 
 
 while(1) 
 { 
  for(i=0;i<50;i++){ 
     
     if(duty60[i]==0) 
     Count1++; 
    if(duty60[i]==1) 
     Count2++; 
    GpioDataRegs.GPBDAT.bit.GPIOB1=duty60[i]; 
    while (CpuTimer0.InterruptCount<1); 
    CpuTimer0.InterruptCount=0; 
  } 
  if (abs(Count2 - Count1) > Erro) 
   GpioDataRegs.GPBDAT.bit.GPIOB0  =1; 
  else GpioDataRegs.GPBDAT.bit.GPIOB0  =0; 
   
  
  Count1 = 0; 
  Count2 = 0; 
 
  for(i=0;i<50;i++){ 
     
     if(duty60[i+50]==0) 
     Count1++; 
    if(duty60[i+50]==1) 
     Count2++; 
   GpioDataRegs.GPBDAT.bit.GPIOB1=duty60[i+50]; 
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   while (CpuTimer0.InterruptCount<1); 
   CpuTimer0.InterruptCount=0; 
  } 
  if (abs(Count2 - Count1) > Erro) 
   GpioDataRegs.GPBDAT.bit.GPIOB0  =1; 
  else GpioDataRegs.GPBDAT.bit.GPIOB0  =0; 
 
  Count1 = 0; 
  Count2 = 0; 
 
 for(i=0;i<50;i++){ 
     
     if(duty60[i+100]==0) 
     Count1++; 
    if(duty60[i+100]==1) 
     Count2++; 
   GpioDataRegs.GPBDAT.bit.GPIOB1=duty60[i+100]; 
   while (CpuTimer0.InterruptCount<1); 
   CpuTimer0.InterruptCount=0; 
  } 
  if (abs(Count2 - Count1) > Erro) 
   GpioDataRegs.GPBDAT.bit.GPIOB0  =1; 
  else GpioDataRegs.GPBDAT.bit.GPIOB0  =0; 
 
  Count1 = 0; 
  Count2 = 0; 
 
 for(i=0;i<50;i++){ 
     
     if(duty60[i+150]==0) 
     Count1++; 
    if(duty60[i+150]==1) 
     Count2++; 
   GpioDataRegs.GPBDAT.bit.GPIOB1=duty60[i+150]; 
   while (CpuTimer0.InterruptCount<1); 
   CpuTimer0.InterruptCount=0; 
  } 
  if (abs(Count2 - Count1) > Erro) 
   GpioDataRegs.GPBDAT.bit.GPIOB0  =1; 
  else GpioDataRegs.GPBDAT.bit.GPIOB0  =0; 
   
  Count1 = 0; 
  Count2 = 0; 
   //EALLOW; 
 // SysCtrlRegs.WDKEY = 0xAA;  // and serve watchdog #2 
  
     //EDIS; 
    } 
}   
 
void Gpio_select(void) 
{ 
 EALLOW; 
 GpioMuxRegs.GPAMUX.all = 0x0; // all GPIO port Pin's to I/O 
    GpioMuxRegs.GPBMUX.all = 0x0;    

 56



    GpioMuxRegs.GPDMUX.all = 0x0; 
    GpioMuxRegs.GPFMUX.all = 0x0;    
    GpioMuxRegs.GPEMUX.all = 0x0;  
    GpioMuxRegs.GPGMUX.all = 0x0;    
           
    GpioMuxRegs.GPADIR.all = 0x0; // GPIO PORT  as input 
    GpioMuxRegs.GPBDIR.all = 0x00FF; // GPIO Port B15-B8 input , B7-B0 output 
    GpioMuxRegs.GPDDIR.all = 0x0; // GPIO PORT  as input 
    GpioMuxRegs.GPEDIR.all = 0x0; // GPIO PORT  as input 
    GpioMuxRegs.GPFDIR.all = 0x0; // GPIO PORT  as input 
    GpioMuxRegs.GPGDIR.all = 0x0; // GPIO PORT  as input 
 
    GpioMuxRegs.GPAQUAL.all = 0x0; // Set GPIO input qualifier values to zero 
    GpioMuxRegs.GPBQUAL.all = 0x0; 
    GpioMuxRegs.GPDQUAL.all = 0x0; 
    GpioMuxRegs.GPEQUAL.all = 0x0; 
    EDIS; 
}      
 
void InitSystem(void) 
{ 
    EALLOW; 
    SysCtrlRegs.WDCR= 0x00AF;  // Setup the watchdog  
            // 0x00E8  to disable 
the Watchdog , Prescaler = 1 
            // 0x00AF  to NOT 
disable the Watchdog, Prescaler = 64 
    SysCtrlRegs.SCSR = 0;    // Watchdog generates a RESET  
    SysCtrlRegs.PLLCR.bit.DIV = 10; // Setup the Clock PLL to multiply by 5 
     
    SysCtrlRegs.HISPCP.all = 0x1; // Setup Highspeed Clock Prescaler to divide by 
2 
    SysCtrlRegs.LOSPCP.all = 0x2; // Setup Lowspeed CLock Prescaler to divide 
by 4 
        
    // Peripheral clock enables set for the selected peripherals.    
    SysCtrlRegs.PCLKCR.bit.EVAENCLK=0; 
    SysCtrlRegs.PCLKCR.bit.EVBENCLK=0; 
    SysCtrlRegs.PCLKCR.bit.SCIAENCLK=0; 
    SysCtrlRegs.PCLKCR.bit.SCIBENCLK=0; 
    SysCtrlRegs.PCLKCR.bit.MCBSPENCLK=0; 
    SysCtrlRegs.PCLKCR.bit.SPIENCLK=0; 
    SysCtrlRegs.PCLKCR.bit.ECANENCLK=0; 
    SysCtrlRegs.PCLKCR.bit.ADCENCLK=0; 
    EDIS; 
} 
 
interrupt void cpu_timer0_isr(void) 
{ 
    CpuTimer0.InterruptCount++; 
    // Serve the watchdog every Timer 0 interrupt 
    //EALLOW; 
// SysCtrlRegs.WDKEY = 0x55;  // Serve watchdog #1 
 //EDIS; 
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   // Acknowledge this interrupt to receive more interrupts from group 1 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 
} 
 

Square.c 

#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
 
int main() { 
    //a variavel utilizada pelo programa do TURBOC 
int duty[200],i; 
double m=0.95;   //o indice de modulacao em amplitude da onda 
PWM p/ modular em amplitude   0<m<1 
int PWMmax=50;   //resolucao maxima (numero de pontos por 
periodo em determinada frequencia) do timer2 
 
PWMmax/=2; 
 
FILE *ofp; 
 
ofp=fopen("square.h","w"); //gera o arquivo 
 
 
fprintf(ofp,"\n//duty p/ m = %d",m);  //imprime no arquivo 
fprintf(ofp,"\nconst int duty60[200] = {");     //imprime no arquivo 
 
for(i=0;i<50;i++){ 
    //imprime no arquivo 
 if(i<=24) 
  fprintf(ofp,"1,\n",duty[i]); //imprime no arquivo 
    if(i>24) 
            fprintf(ofp,"0,\n",duty[i]); //imprime no arquivo  
} 
 
for(i=0;i<50;i++){ 
    //imprime no arquivo 
 if(i<=24) 
  fprintf(ofp,"1,\n",duty[i+50]); //imprime no arquivo 
    if(i>24) 
            fprintf(ofp,"0,\n",duty[i+50]); //imprime no arquivo  
} 
 
for(i=0;i<50;i++){ 
    //imprime no arquivo 
 if(i<=24) 
  fprintf(ofp,"1,\n",duty[i+100]); //imprime no arquivo 
    if(i>24) 
            fprintf(ofp,"0,\n",duty[i+100]); //imprime no arquivo  
} 
 
for(i=0;i<50;i++){ 
 if(i==49) 
  fprintf(ofp,"0};",duty[i+150]);    //imprime no arquivo 
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 if(i<=24) 
  fprintf(ofp,"1,\n",duty[i+150]); //imprime no arquivo 
    if(i>24 && i!=49) 
            fprintf(ofp,"0,\n",duty[i+150]); //imprime no arquivo  
} 
 
fprintf(ofp,"\nconst int duty50[200] = {");     //imprime no arquivo 
 
for(i=0;i<200;i++){ 
 duty[i]=(int)(m*PWMmax*sin(0.0314159265*i)+PWMmax); 
 if(i==199) 
  fprintf(ofp,"%d};",duty[i]);    //imprime no arquivo 
 else 
  fprintf(ofp,"%d,\n",duty[i]);   //imprime no arquivo 
 
} 
 
 
fclose(ofp); 
 
return 0; 
} 
 

ROM.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
 
entity ROM is 
 Port ( Clock   : in  STD_LOGIC; 
          Reset   : in  STD_LOGIC; 
          Enable   : in  STD_LOGIC; 
          Address  : in  STD_LOGIC_VECTOR (9 downto 0); 
          Data_out : out STD_LOGIC_VECTOR (9 downto 0)); 
end ROM; 
 
architecture Behavioral of ROM is 
 
 type ROM_Array is array (0 to 999) of std_logic_vector(9 downto 0); 
 
 -- vetor com 1000 posicoes, que armazena os valores discretos de rotacao do 
motor 
   constant Content: ROM_Array := ( 
 0 => "0000000000", 1 => "0000000001", 2 => "0000000010", 
 3 => "0000000011", 4 => "0000000100", 5 => "0000000101", 
 6 => "0000000110", 7 => "0000000111", 8 => "0000001000", 
 9 => "0000001001", 10 => "0000001010", 11 => "0000001011", 
 12 => "0000001100", 13 => "0000001101", 14 => "0000001110", 
 15 => "0000001111", 16 => "0000010000", 17 => "0000010001", 
 18 => "0000010010", 19 => "0000010011", 20 => "0000010100", 
 21 => "0000010101", 22 => "0000010110", 23 => "0000010111", 
 24 => "0000011000", 25 => "0000011001", 26 => "0000011010", 
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 27 => "0000011011", 28 => "0000011100", 29 => "0000011101", 
 30 => "0000011110", 31 => "0000011111", 32 => "0000100000", 
 33 => "0000100001", 34 => "0000100010", 35 => "0000100011", 
 36 => "0000100100", 37 => "0000100101", 38 => "0000100110", 
 39 => "0000100111", 40 => "0000101000", 41 => "0000101001", 
 42 => "0000101010", 43 => "0000101011", 44 => "0000101100", 
 45 => "0000101101", 46 => "0000101110", 47 => "0000101111", 
 48 => "0000110000", 49 => "0000110001", 50 => "0000110010", 
 51 => "0000110011", 52 => "0000110100", 53 => "0000110101", 
 54 => "0000110110", 55 => "0000110111", 56 => "0000111000", 
 57 => "0000111001", 58 => "0000111010", 59 => "0000111011", 
 60 => "0000111100", 61 => "0000111101", 62 => "0000111110", 
 63 => "0000111111", 64 => "0001000000", 65 => "0001000001", 
 66 => "0001000010", 67 => "0001000011", 68 => "0001000100", 
 69 => "0001000101", 70 => "0001000110", 71 => "0001000111", 
 72 => "0001001000", 73 => "0001001001", 74 => "0001001010", 
 75 => "0001001011", 76 => "0001001100", 77 => "0001001101", 
 78 => "0001001110", 79 => "0001001111", 80 => "0001010000", 
 81 => "0001010001", 82 => "0001010010", 83 => "0001010011", 
 84 => "0001010100", 85 => "0001010101", 86 => "0001010110", 
 87 => "0001010111", 88 => "0001011000", 89 => "0001011001", 
 90 => "0001011010", 91 => "0001011011", 92 => "0001011100", 
 93 => "0001011101", 94 => "0001011110", 95 => "0001011111", 
 96 => "0001100000", 97 => "0001100001", 98 => "0001100010", 
 99 => "0001100011", 100 => "0001100100", 101 => "0001100101", 
 102 => "0001100110", 103 => "0001100111", 104 => "0001101000", 
 105 => "0001101001", 106 => "0001101010", 107 => "0001101011", 
 108 => "0001101100", 109 => "0001101101", 110 => "0001101110", 
 111 => "0001101111", 112 => "0001110000", 113 => "0001110001", 
 114 => "0001110010", 115 => "0001110011", 116 => "0001110100", 
 117 => "0001110101", 118 => "0001110110", 119 => "0001110111", 
 120 => "0001111000", 121 => "0001111001", 122 => "0001111010", 
 123 => "0001111011", 124 => "0001111100", 125 => "0001111101", 
 126 => "0001111110", 127 => "0001111111", 128 => "0010000000", 
 129 => "0010000001", 130 => "0010000010", 131 => "0010000011", 
 132 => "0010000100", 133 => "0010000101", 134 => "0010000110", 
 135 => "0010000111", 136 => "0010001000", 137 => "0010001001", 
 138 => "0010001010", 139 => "0010001011", 140 => "0010001100", 
 141 => "0010001101", 142 => "0010001110", 143 => "0010001111", 
 144 => "0010010000", 145 => "0010010001", 146 => "0010010010", 
 147 => "0010010011", 148 => "0010010100", 149 => "0010010101", 
 150 => "0010010110", 151 => "0010010111", 152 => "0010011000", 
 153 => "0010011001", 154 => "0010011010", 155 => "0010011011", 
 156 => "0010011100", 157 => "0010011101", 158 => "0010011110", 
 159 => "0010011111", 160 => "0010100000", 161 => "0010100001", 
 162 => "0010100010", 163 => "0010100011", 164 => "0010100100", 
 165 => "0010100101", 166 => "0010100110", 167 => "0010100111", 
 168 => "0010101000", 169 => "0010101001", 170 => "0010101010", 
 171 => "0010101011", 172 => "0010101100", 173 => "0010101101", 
 174 => "0010101110", 175 => "0010101111", 176 => "0010110000", 
 177 => "0010110001", 178 => "0010110010", 179 => "0010110011", 
 180 => "0010110100", 181 => "0010110101", 182 => "0010110110", 
 183 => "0010110111", 184 => "0010111000", 185 => "0010111001", 
 186 => "0010111010", 187 => "0010111011", 188 => "0010111100", 
 189 => "0010111101", 190 => "0010111110", 191 => "0010111111", 
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 192 => "0011000000", 193 => "0011000001", 194 => "0011000010", 
 195 => "0011000011", 196 => "0011000100", 197 => "0011000101", 
 198 => "0011000110", 199 => "0011000111", 200 => "0011001000", 
 201 => "0011001001", 202 => "0011001010", 203 => "0011001011", 
 204 => "0011001100", 205 => "0011001101", 206 => "0011001110", 
 207 => "0011001111", 208 => "0011010000", 209 => "0011010001", 
 210 => "0011010010", 211 => "0011010011", 212 => "0011010100", 
 213 => "0011010101", 214 => "0011010110", 215 => "0011010111", 
 216 => "0011011000", 217 => "0011011001", 218 => "0011011010", 
 219 => "0011011011", 220 => "0011011100", 221 => "0011011101", 
 222 => "0011011110", 223 => "0011011111", 224 => "0011100000", 
 225 => "0011100001", 226 => "0011100010", 227 => "0011100011", 
 228 => "0011100100", 229 => "0011100101", 230 => "0011100110", 
 231 => "0011100111", 232 => "0011101000", 233 => "0011101001", 
 234 => "0011101010", 235 => "0011101011", 236 => "0011101100", 
 237 => "0011101101", 238 => "0011101110", 239 => "0011101111", 
 240 => "0011110000", 241 => "0011110001", 242 => "0011110010", 
 243 => "0011110011", 244 => "0011110100", 245 => "0011110101", 
 246 => "0011110110", 247 => "0011110111", 248 => "0011111000", 
 249 => "0011111001", 250 => "0011111010", 251 => "0011111011", 
 252 => "0011111100", 253 => "0011111101", 254 => "0011111110", 
 255 => "0011111111", 256 => "0100000000", 257 => "0100000001", 
 258 => "0100000010", 259 => "0100000011", 260 => "0100000100", 
 261 => "0100000101", 262 => "0100000110", 263 => "0100000111", 
 264 => "0100001000", 265 => "0100001001", 266 => "0100001010", 
 267 => "0100001011", 268 => "0100001100", 269 => "0100001101", 
 270 => "0100001110", 271 => "0100001111", 272 => "0100010000", 
 273 => "0100010001", 274 => "0100010010", 275 => "0100010011", 
 276 => "0100010100", 277 => "0100010101", 278 => "0100010110", 
 279 => "0100010111", 280 => "0100011000", 281 => "0100011001", 
 282 => "0100011010", 283 => "0100011011", 284 => "0100011100", 
 285 => "0100011101", 286 => "0100011110", 287 => "0100011111", 
 288 => "0100100000", 289 => "0100100001", 290 => "0100100010", 
 291 => "0100100011", 292 => "0100100100", 293 => "0100100101", 
 294 => "0100100110", 295 => "0100100111", 296 => "0100101000", 
 297 => "0100101001", 298 => "0100101010", 299 => "0100101011", 
 300 => "0100101100", 301 => "0100101101", 302 => "0100101110", 
 303 => "0100101111", 304 => "0100110000", 305 => "0100110001", 
 306 => "0100110010", 307 => "0100110011", 308 => "0100110100", 
 309 => "0100110101", 310 => "0100110110", 311 => "0100110111", 
 312 => "0100111000", 313 => "0100111001", 314 => "0100111010", 
 315 => "0100111011", 316 => "0100111100", 317 => "0100111101", 
 318 => "0100111110", 319 => "0100111111", 320 => "0101000000", 
 321 => "0101000001", 322 => "0101000010", 323 => "0101000011", 
 324 => "0101000100", 325 => "0101000101", 326 => "0101000110", 
 327 => "0101000111", 328 => "0101001000", 329 => "0101001001", 
 330 => "0101001010", 331 => "0101001011", 332 => "0101001100", 
 333 => "0101001101", 334 => "0101001110", 335 => "0101001111", 
 336 => "0101010000", 337 => "0101010001", 338 => "0101010010", 
 339 => "0101010011", 340 => "0101010100", 341 => "0101010101", 
 342 => "0101010110", 343 => "0101010111", 344 => "0101011000", 
 345 => "0101011001", 346 => "0101011010", 347 => "0101011011", 
 348 => "0101011100", 349 => "0101011101", 350 => "0101011110", 
 351 => "0101011111", 352 => "0101100000", 353 => "0101100001", 
 354 => "0101100010", 355 => "0101100011", 356 => "0101100100", 
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 357 => "0101100101", 358 => "0101100110", 359 => "0101100111", 
 360 => "0101101000", 361 => "0101101001", 362 => "0101101010", 
 363 => "0101101011", 364 => "0101101100", 365 => "0101101101", 
 366 => "0101101110", 367 => "0101101111", 368 => "0101110000", 
 369 => "0101110001", 370 => "0101110010", 371 => "0101110011", 
 372 => "0101110100", 373 => "0101110101", 374 => "0101110110", 
 375 => "0101110111", 376 => "0101111000", 377 => "0101111001", 
 378 => "0101111010", 379 => "0101111011", 380 => "0101111100", 
 381 => "0101111101", 382 => "0101111110", 383 => "0101111111", 
 384 => "0110000000", 385 => "0110000001", 386 => "0110000010", 
 387 => "0110000011", 388 => "0110000100", 389 => "0110000101", 
 390 => "0110000110", 391 => "0110000111", 392 => "0110001000", 
 393 => "0110001001", 394 => "0110001010", 395 => "0110001011", 
 396 => "0110001100", 397 => "0110001101", 398 => "0110001110", 
 399 => "0110001111", 400 => "0110010000", 401 => "0110010001", 
 402 => "0110010010", 403 => "0110010011", 404 => "0110010100", 
 405 => "0110010101", 406 => "0110010110", 407 => "0110010111", 
 408 => "0110011000", 409 => "0110011001", 410 => "0110011010", 
 411 => "0110011011", 412 => "0110011100", 413 => "0110011101", 
 414 => "0110011110", 415 => "0110011111", 416 => "0110100000", 
 417 => "0110100001", 418 => "0110100010", 419 => "0110100011", 
 420 => "0110100100", 421 => "0110100101", 422 => "0110100110", 
 423 => "0110100111", 424 => "0110101000", 425 => "0110101001", 
 426 => "0110101010", 427 => "0110101011", 428 => "0110101100", 
 429 => "0110101101", 430 => "0110101110", 431 => "0110101111", 
 432 => "0110110000", 433 => "0110110001", 434 => "0110110010", 
 435 => "0110110011", 436 => "0110110100", 437 => "0110110101", 
 438 => "0110110110", 439 => "0110110111", 440 => "0110111000", 
 441 => "0110111001", 442 => "0110111010", 443 => "0110111011", 
 444 => "0110111100", 445 => "0110111101", 446 => "0110111110", 
 447 => "0110111111", 448 => "0111000000", 449 => "0111000001", 
 450 => "0111000010", 451 => "0111000011", 452 => "0111000100", 
 453 => "0111000101", 454 => "0111000110", 455 => "0111000111", 
 456 => "0111001000", 457 => "0111001001", 458 => "0111001010", 
 459 => "0111001011", 460 => "0111001100", 461 => "0111001101", 
 462 => "0111001110", 463 => "0111001111", 464 => "0111010000", 
 465 => "0111010001", 466 => "0111010010", 467 => "0111010011", 
 468 => "0111010100", 469 => "0111010101", 470 => "0111010110", 
 471 => "0111010111", 472 => "0111011000", 473 => "0111011001", 
 474 => "0111011010", 475 => "0111011011", 476 => "0111011100", 
 477 => "0111011101", 478 => "0111011110", 479 => "0111011111", 
 480 => "0111100000", 481 => "0111100001", 482 => "0111100010", 
 483 => "0111100011", 484 => "0111100100", 485 => "0111100101", 
 486 => "0111100110", 487 => "0111100111", 488 => "0111101000", 
 489 => "0111101001", 490 => "0111101010", 491 => "0111101011", 
 492 => "0111101100", 493 => "0111101101", 494 => "0111101110", 
 495 => "0111101111", 496 => "0111110000", 497 => "0111110001", 
 498 => "0111110010", 499 => "0111110011", 500 => "0111110100", 
 501 => "0111110101", 502 => "0111110110", 503 => "0111110111", 
 504 => "0111111000", 505 => "0111111001", 506 => "0111111010", 
 507 => "0111111011", 508 => "0111111100", 509 => "0111111101", 
 510 => "0111111110", 511 => "0111111111", 512 => "1000000000", 
 513 => "1000000001", 514 => "1000000010", 515 => "1000000011", 
 516 => "1000000100", 517 => "1000000101", 518 => "1000000110", 
 519 => "1000000111", 520 => "1000001000", 521 => "1000001001", 
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 522 => "1000001010", 523 => "1000001011", 524 => "1000001100", 
 525 => "1000001101", 526 => "1000001110", 527 => "1000001111", 
 528 => "1000010000", 529 => "1000010001", 530 => "1000010010", 
 531 => "1000010011", 532 => "1000010100", 533 => "1000010101", 
 534 => "1000010110", 535 => "1000010111", 536 => "1000011000", 
 537 => "1000011001", 538 => "1000011010", 539 => "1000011011", 
 540 => "1000011100", 541 => "1000011101", 542 => "1000011110", 
 543 => "1000011111", 544 => "1000100000", 545 => "1000100001", 
 546 => "1000100010", 547 => "1000100011", 548 => "1000100100", 
 549 => "1000100101", 550 => "1000100110", 551 => "1000100111", 
 552 => "1000101000", 553 => "1000101001", 554 => "1000101010", 
 555 => "1000101011", 556 => "1000101100", 557 => "1000101101", 
 558 => "1000101110", 559 => "1000101111", 560 => "1000110000", 
 561 => "1000110001", 562 => "1000110010", 563 => "1000110011", 
 564 => "1000110100", 565 => "1000110101", 566 => "1000110110", 
 567 => "1000110111", 568 => "1000111000", 569 => "1000111001", 
 570 => "1000111010", 571 => "1000111011", 572 => "1000111100", 
 573 => "1000111101", 574 => "1000111110", 575 => "1000111111", 
 576 => "1001000000", 577 => "1001000001", 578 => "1001000010", 
 579 => "1001000011", 580 => "1001000100", 581 => "1001000101", 
 582 => "1001000110", 583 => "1001000111", 584 => "1001001000", 
 585 => "1001001001", 586 => "1001001010", 587 => "1001001011", 
 588 => "1001001100", 589 => "1001001101", 590 => "1001001110", 
 591 => "1001001111", 592 => "1001010000", 593 => "1001010001", 
 594 => "1001010010", 595 => "1001010011", 596 => "1001010100", 
 597 => "1001010101", 598 => "1001010110", 599 => "1001010111", 
 600 => "1001011000", 601 => "1001011001", 602 => "1001011010", 
 603 => "1001011011", 604 => "1001011100", 605 => "1001011101", 
 606 => "1001011110", 607 => "1001011111", 608 => "1001100000", 
 609 => "1001100001", 610 => "1001100010", 611 => "1001100011", 
 612 => "1001100100", 613 => "1001100101", 614 => "1001100110", 
 615 => "1001100111", 616 => "1001101000", 617 => "1001101001", 
 618 => "1001101010", 619 => "1001101011", 620 => "1001101100", 
 621 => "1001101101", 622 => "1001101110", 623 => "1001101111", 
 624 => "1001110000", 625 => "1001110001", 626 => "1001110010", 
 627 => "1001110011", 628 => "1001110100", 629 => "1001110101", 
 630 => "1001110110", 631 => "1001110111", 632 => "1001111000", 
 633 => "1001111001", 634 => "1001111010", 635 => "1001111011", 
 636 => "1001111100", 637 => "1001111101", 638 => "1001111110", 
 639 => "1001111111", 640 => "1010000000", 641 => "1010000001", 
 642 => "1010000010", 643 => "1010000011", 644 => "1010000100", 
 645 => "1010000101", 646 => "1010000110", 647 => "1010000111", 
 648 => "1010001000", 649 => "1010001001", 650 => "1010001010", 
 651 => "1010001011", 652 => "1010001100", 653 => "1010001101", 
 654 => "1010001110", 655 => "1010001111", 656 => "1010010000", 
 657 => "1010010001", 658 => "1010010010", 659 => "1010010011", 
 660 => "1010010100", 661 => "1010010101", 662 => "1010010110", 
 663 => "1010010111", 664 => "1010011000", 665 => "1010011001", 
 666 => "1010011010", 667 => "1010011011", 668 => "1010011100", 
 669 => "1010011101", 670 => "1010011110", 671 => "1010011111", 
 672 => "1010100000", 673 => "1010100001", 674 => "1010100010", 
 675 => "1010100011", 676 => "1010100100", 677 => "1010100101", 
 678 => "1010100110", 679 => "1010100111", 680 => "1010101000", 
 681 => "1010101001", 682 => "1010101010", 683 => "1010101011", 
 684 => "1010101100", 685 => "1010101101", 686 => "1010101110", 
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 687 => "1010101111", 688 => "1010110000", 689 => "1010110001", 
 690 => "1010110010", 691 => "1010110011", 692 => "1010110100", 
 693 => "1010110101", 694 => "1010110110", 695 => "1010110111", 
 696 => "1010111000", 697 => "1010111001", 698 => "1010111010", 
 699 => "1010111011", 700 => "1010111100", 701 => "1010111101", 
 702 => "1010111110", 703 => "1010111111", 704 => "1011000000", 
 705 => "1011000001", 706 => "1011000010", 707 => "1011000011", 
 708 => "1011000100", 709 => "1011000101", 710 => "1011000110", 
 711 => "1011000111", 712 => "1011001000", 713 => "1011001001", 
 714 => "1011001010", 715 => "1011001011", 716 => "1011001100", 
 717 => "1011001101", 718 => "1011001110", 719 => "1011001111", 
 720 => "1011010000", 721 => "1011010001", 722 => "1011010010", 
 723 => "1011010011", 724 => "1011010100", 725 => "1011010101", 
 726 => "1011010110", 727 => "1011010111", 728 => "1011011000", 
 729 => "1011011001", 730 => "1011011010", 731 => "1011011011", 
 732 => "1011011100", 733 => "1011011101", 734 => "1011011110", 
 735 => "1011011111", 736 => "1011100000", 737 => "1011100001", 
 738 => "1011100010", 739 => "1011100011", 740 => "1011100100", 
 741 => "1011100101", 742 => "1011100110", 743 => "1011100111", 
 744 => "1011101000", 745 => "1011101001", 746 => "1011101010", 
 747 => "1011101011", 748 => "1011101100", 749 => "1011101101", 
 750 => "1011101110", 751 => "1011101111", 752 => "1011110000", 
 753 => "1011110001", 754 => "1011110010", 755 => "1011110011", 
 756 => "1011110100", 757 => "1011110101", 758 => "1011110110", 
 759 => "1011110111", 760 => "1011111000", 761 => "1011111001", 
 762 => "1011111010", 763 => "1011111011", 764 => "1011111100", 
 765 => "1011111101", 766 => "1011111110", 767 => "1011111111", 
 768 => "1100000000", 769 => "1100000001", 770 => "1100000010", 
 771 => "1100000011", 772 => "1100000100", 773 => "1100000101", 
 774 => "1100000110", 775 => "1100000111", 776 => "1100001000", 
 777 => "1100001001", 778 => "1100001010", 779 => "1100001011", 
 780 => "1100001100", 781 => "1100001101", 782 => "1100001110", 
 783 => "1100001111", 784 => "1100010000", 785 => "1100010001", 
 786 => "1100010010", 787 => "1100010011", 788 => "1100010100", 
 789 => "1100010101", 790 => "1100010110", 791 => "1100010111", 
 792 => "1100011000", 793 => "1100011001", 794 => "1100011010", 
 795 => "1100011011", 796 => "1100011100", 797 => "1100011101", 
 798 => "1100011110", 799 => "1100011111", 800 => "1100100000", 
 801 => "1100100001", 802 => "1100100010", 803 => "1100100011", 
 804 => "1100100100", 805 => "1100100101", 806 => "1100100110", 
 807 => "1100100111", 808 => "1100101000", 809 => "1100101001", 
 810 => "1100101010", 811 => "1100101011", 812 => "1100101100", 
 813 => "1100101101", 814 => "1100101110", 815 => "1100101111", 
 816 => "1100110000", 817 => "1100110001", 818 => "1100110010", 
 819 => "1100110011", 820 => "1100110100", 821 => "1100110101", 
 822 => "1100110110", 823 => "1100110111", 824 => "1100111000", 
 825 => "1100111001", 826 => "1100111010", 827 => "1100111011", 
 828 => "1100111100", 829 => "1100111101", 830 => "1100111110", 
 831 => "1100111111", 832 => "1101000000", 833 => "1101000001", 
 834 => "1101000010", 835 => "1101000011", 836 => "1101000100", 
 837 => "1101000101", 838 => "1101000110", 839 => "1101000111", 
 840 => "1101001000", 841 => "1101001001", 842 => "1101001010", 
 843 => "1101001011", 844 => "1101001100", 845 => "1101001101", 
 846 => "1101001110", 847 => "1101001111", 848 => "1101010000", 
 849 => "1101010001", 850 => "1101010010", 851 => "1101010011", 
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 852 => "1101010100", 853 => "1101010101", 854 => "1101010110", 
 855 => "1101010111", 856 => "1101011000", 857 => "1101011001", 
 858 => "1101011010", 859 => "1101011011", 860 => "1101011100", 
 861 => "1101011101", 862 => "1101011110", 863 => "1101011111", 
 864 => "1101100000", 865 => "1101100001", 866 => "1101100010", 
 867 => "1101100011", 868 => "1101100100", 869 => "1101100101", 
 870 => "1101100110", 871 => "1101100111", 872 => "1101101000", 
 873 => "1101101001", 874 => "1101101010", 875 => "1101101011", 
 876 => "1101101100", 877 => "1101101101", 878 => "1101101110", 
 879 => "1101101111", 880 => "1101110000", 881 => "1101110001", 
 882 => "1101110010", 883 => "1101110011", 884 => "1101110100", 
 885 => "1101110101", 886 => "1101110110", 887 => "1101110111", 
 888 => "1101111000", 889 => "1101111001", 890 => "1101111010", 
 891 => "1101111011", 892 => "1101111100", 893 => "1101111101", 
 894 => "1101111110", 895 => "1101111111", 896 => "1110000000", 
 897 => "1110000001", 898 => "1110000010", 899 => "1110000011", 
 900 => "1110000100", 901 => "1110000101", 902 => "1110000110", 
 903 => "1110000111", 904 => "1110001000", 905 => "1110001001", 
 906 => "1110001010", 907 => "1110001011", 908 => "1110001100", 
 909 => "1110001101", 910 => "1110001110", 911 => "1110001111", 
 912 => "1110010000", 913 => "1110010001", 914 => "1110010010", 
 915 => "1110010011", 916 => "1110010100", 917 => "1110010101", 
 918 => "1110010110", 919 => "1110010111", 920 => "1110011000", 
 921 => "1110011001", 922 => "1110011010", 923 => "1110011011", 
 924 => "1110011100", 925 => "1110011101", 926 => "1110011110", 
 927 => "1110011111", 928 => "1110100000", 929 => "1110100001", 
 930 => "1110100010", 931 => "1110100011", 932 => "1110100100", 
 933 => "1110100101", 934 => "1110100110", 935 => "1110100111", 
 936 => "1110101000", 937 => "1110101001", 938 => "1110101010", 
 939 => "1110101011", 940 => "1110101100", 941 => "1110101101", 
 942 => "1110101110", 943 => "1110101111", 944 => "1110110000", 
 945 => "1110110001", 946 => "1110110010", 947 => "1110110011", 
 948 => "1110110100", 949 => "1110110101", 950 => "1110110110", 
 951 => "1110110111", 952 => "1110111000", 953 => "1110111001", 
 954 => "1110111010", 955 => "1110111011", 956 => "1110111100", 
 957 => "1110111101", 958 => "1110111110", 959 => "1110111111", 
 960 => "1111000000", 961 => "1111000001", 962 => "1111000010", 
 963 => "1111000011", 964 => "1111000100", 965 => "1111000101", 
 966 => "1111000110", 967 => "1111000111", 968 => "1111001000", 
 969 => "1111001001", 970 => "1111001010", 971 => "1111001011", 
 972 => "1111001100", 973 => "1111001101", 974 => "1111001110", 
 975 => "1111001111", 976 => "1111010000", 977 => "1111010001", 
 978 => "1111010010", 979 => "1111010011", 980 => "1111010100", 
 981 => "1111010101", 982 => "1111010110", 983 => "1111010111", 
 984 => "1111011000", 985 => "1111011001", 986 => "1111011010", 
 987 => "1111011011", 988 => "1111011100", 989 => "1111011101", 
 990 => "1111011110", 991 => "1111011111", 992 => "1111100000", 
 993 => "1111100001", 994 => "1111100010", 995 => "1111100011", 
 996 => "1111100100", 997 => "1111100101", 998 => "1111100110", 
 999 => "1111100111"); 
 
begin 
 
 process(Clock, Reset, Address) 
   begin 
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  if (Reset = '1') then 
   Data_out <= "0000000000"; 
      elsif (Clock'event and Clock = '1') then 
   if (Enable = '1') then 
    Data_out <= Content(conv_integer(Address)); 
         else 
            Data_out <= "0000000000"; 
         end if; 
       end if; 
 end process; 
 
end Behavioral; 
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