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RESUMO 

CODOGNOTTO, J. G.  Projeto e Prototipação de Bracelete Inteligente para Auxílio e 
Monitoramento de Idosos.   2017.   Monografia (Trabalho de Conclusão de Curso) – Escola de 
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2017. 

 

Acidentes são uma das maiores causas de morte em idosos e este trabalho foi motivado pela 

utilização de tecnologias vestíveis na mitigação deste problema. Neste documento é 

detalhado o desenvolvimento e implementação do projeto de um protótipo de um dispositivo 

vestível, também conhecido pela expressão da língua inglesa: wearable. Este dispositivo é 

voltado ao público idoso e possibilita uma comunicação quase instantânea com um contato 

de emergência pré-definido. Outras funcionalidades, como a detecção de queda e a medição 

de frequência de batimentos cardíacos são implementadas. O projeto utiliza Bluetooth Low 

Energy para a comunicação do dispositivo com um aplicativo para smartphone Android. O 

desenvolvimento do protótipo foi feito numa placa LightBlue Bean+, que conta com um 

microcontrolador ATmega 328p além de um SoC Bluetooth responsável por realizar a 

comunicação. O envio do pedido de emergência é feito por meio de envio de uma mensagem 

SMS a partir do smartphone previamente conectado no dispositivo. O projeto foi bem-

sucedido pois implementou as funcionalidades requeridas, de forma eficiente, que 

possibilitam a evolução para um produto real vestível para o monitoramento de segurança de 

idosos. 

 

Palavras-chave: Wearable, LightBlue Bean+, Bluetooth Low Energy (BLE), Android, 

Monitoramento de Idosos 
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ABSTRACT 

Accidents are one of the biggest causes of death with the elderly and this work was motivated 

by the use of wearable technology on the mitigation of this problem. On this document, the 

development and implementation of a wearable device prototype is detailed. This wearable 

is meant especially for the elderly public and enables an almost instantaneous communication 

with a pre-defined emergency contact. Other functionalities, like fall detection and heartbeat 

rate measuring are also implemented. The project uses Bluetooth Low Energy for the 

communication between the device and an Android application. The development of the 

prototype was made on a LightBlue Bean+ development board, that has a microcontroller 

ATmega 328p, besides an SoC Bluetooth responsible to accomplish communication. The 

emergency request sending is done through an SMS sent from the smartphone that was 

previously connected to the device. The project was successful, once it efficiently 

implemented the required functionalities, which enables its evolution to a final product of a 

wearable for elderly safety monitoring. 

 

Keywords: Wearable, LightBlue Bean+, Bluetooth Low Energy (BLE), Android, Monitoring 

System for Seniors. 
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1 INTRODUÇÃO 

1.1 OBJETIVO 

O objetivo deste trabalho é desenvolver um protótipo de um dispositivo wearable de 

auxílio a idosos e um aplicativo Android que se comunique com esse dispositivo. O sistema 

deve ser capaz de notificar um contato pré-definido quando o dispositivo entra em estado de 

emergência. O dispositivo deve poder entrar em modo de emergência manualmente ou 

automaticamente, quando é detectada uma queda. Outra funcionalidade que deve ser 

implementada é a medição de batimentos cardíacos. O dispositivo criado deve ser eficiente 

energeticamente, possibilitar a mobilidade, além de ser de fácil uso, para aderência do uso 

pelo seu público alvo: idosos.  

O projeto deve ser desenvolvido utilizando materiais que possibilitem uma evolução do 

protótipo para um futuro projeto de produção em massa. Além disso, há foco no uso de 

tecnologias que já se encontram presentes no mercado, e na utilização de uma rede de 

telecomunicação já existente cuja cobertura seja alta. 

 

1.2 MOTIVAÇÃO 

Um fato imutável é que o ser humano envelhece e novas limitações físicas e mentais 

surgem. Tais limitações causam preocupação em famílias e amigos que, contra a vontade dos 

mais velhos, forçam uma rotina monótona com a necessidade de cuidadores, visitas 

constantes e asilos. Essas atitudes não são exageradas, uma vez que uma das maiores causas 

de mortes em idosos é relacionada a acidentes (BROOKS, 2015), que poderiam ter suas 

consequências mitigadas com um socorro imediato. Uma comunicação amigável, fácil e 

rápida, entre o idoso e pessoas de confiança, tem o potencial de beneficiar e salvar a vida de 

muitos idosos.   
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1.3 ORGANIZAÇÃO DO TRABALHO 

Este documento está dividido nas seguintes seções: 

1. Introdução, em que o leitor é contextualizado do propósito geral do projeto, e 

uma visão geral do escopo desde documento é apresentada, assim como uma 

explanação do estado da Arte para dispositivos similares no momento da 

composição deste documento.  

2. Embasamento teórico, em que alguns conceitos necessários para o 

entendimento do funcionamento do projeto, bem como sua implementação 

são explicados e detalhados. 

3. Materiais, em que todos os materiais e tecnologias utilizados são relacionados, 

com uma descrição detalhada dos seus funcionamentos e especificações 

técnicas. 

4. Métodos, em que o desenvolvimento do projeto é finalmente detalhado, com 

explicações de alguns trechos de códigos, decisões de projeto, e da arquitetura 

final geral do sistema. 

5. Resultados. Nessa seção, o funcionamento do protótipo é demonstrado, com 

casos de teste que cobrem as funcionalidades implementadas. 

6. Conclusão. Na última seção, são sumarizados alguns pontos relevantes 

observados durante o desenvolvimento deste protótipo e são feitas algumas 

sugestões de prováveis trabalhos futuros. 

 

1.4 ESTADO DA ARTE 

O crescimento do uso de tecnologias vestíveis e da internet das coisas influencia 

diretamente o crescimento da quantidade de dispositivos para monitoramento de idosos. As 

soluções atuais contam com o uso de telefonia para a comunicação com uma central de 

atendimento que, ao receber um pedido de emergência ativado por um simples e grande 

botão de emergência, entra em contato com o idoso ou familiares. Esses serviços contam com 

assinaturas mensais, como o serviço americano EverThere, da empresa americana AT&T 

(AT&T, 2016) e o serviço disponível no Brasil HelpCare (HELPCARE, 2017). O Everthere é 
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independente, enquanto o HelpCare funciona apenas em residências, por depender de uma 

base para comunicação por linha de telefone fixo. Também existe no Mercado comunicadores 

dependentes de smartphones para a comunicação e funcionamento como, por exemplo, o 

GreatCall (GREATCALL, 2017).  

Figura 1: (a)Everthere (b)CarePredict (c)GreatCall  (d)HelpCare 

 

 
  FONTES: (a) (AT&T, 2016)   (b) (CAREPREDICT, 2017)   (c) (GREATCALL, 2017)   (d) (HELPCARE, 2017) 

Não foram encontrados projetos e produtos relevantes que implementavam uma solução 

livre de assinatura mensal. Além disso, o reconhecimento automático de emergência é 

limitado nos aparelhos já citados.  O mais evoluído neste aspecto é o CarePredict Tempo 

(CAREPREDICT, 2017), que busca padrões e os processa com inteligência artificial. 
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2 EMBASAMENTO TEÓRICO 

2.1 TECNOLOGIAS VESTÍVEIS – WEARABLE TECHNOLOGY  

 Uma tecnologia em expansão e que recebe grandes investimentos, esses dispositivos 

têm previsão de atingir um mercado de 25 bilhões de dólares, na próxima decada (LAMKIN, 

2015). Consiste em uma das maiores vertentes da Internet das Coisas, conceito que conecta 

elementos comuns do cotidiano, como eletrodomésticos e a computadores à Rede, o que 

resulta em uma comunicação e um monitoramento constantes.  

Os Wearables, como são popularmente chamados no Brasil e no mundo, consistem 

em aparelhos inteligentes, que podem substituir tarefas de computadores e Smartphones, 

entretanto eles tendem a ser integradas com o usuário, podendo por meio de sensoriamento 

avançado receber e enviar informações em tempo real (TEHRANI e MICHAEL, 2014). 

 Segundo Tehrani e Michael (2014), o propósito de um wearable é criar uma conexão 

constante, conveniente, transparente, portátil e quase independente dos usuários com seus 

diversos eletrônicos. Sendo assim, o dispositivo deve focar no sensoriamento, na comunicação 

com outros dispositivos, e na sua praticidade para o usuário. 

 

2.2 BLUETOOTH LOW ENERGY – BLE 

 Criado para unificar a comunicação de curta distância entre dispositivos (BLUETOOTH 

SIG, 2017), o Bluetooth consiste em um conjunto de protocolos aplicados em diversas 

camadas de comunicação (BRAY e STURMAN, 2002) e é muito utilizado para a criação de uma 

rede PAN (Personal Area Network). 

 Já sendo quase omnipresente em dispositivos móveis, a tecnologia continua em 

evolução conforme a necessidade de adaptação e em 2011 foi lançada uma nova vertente da 

tecnologia: o Bluetooth Low Energy, também chamado de BLE ou Bluetooth Smart. Com o 

objetivo de ser utilizado amplamente por dispositivos no contexto da Internet das Coisas, o 

BLE facilita sua implementação por constituir Perfil de Acesso Genérico (GAP) e Perfil de 

Atributo Genérico (GATT). 
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O Generic Access Profile (GAP) é o perfil no qual o dispositivo Bluetooth se baseia para 

estabelecer e gerenciar conexões e varia, principalmente, conforme a topologia da rede do 

sistema. O Generic Attribute Profile (GATT) define o modo pelo qual os dispositivos BLE se 

comunicam. O GATT utiliza Serviços (services) e Características (Characteristics) para a 

comunicação, podendo esses ser configurações predefinidas e padronizadas ou configurações 

personalizadas criadas pelo desenvolvedor do dispositivo. Como pode ser observado na Figura 

2, um serviço possui diversas características, que correspondem aos dados que devem ser 

sincronizados entre os dispositivos para uma certa aplicação. Um exemplo simples de GATT é 

um serviço UART, em que uma das características é o canal RX, que pode ser escrito apenas 

por outro dispositivo e outra é o canal TX, que deve ser configurado para apenas o dispositivo 

local ser capaz de escrever (ADAFRUIT, 2014).  

Figura 2: Organização do GATT contendo Serviços e, subsequentemente, Características. 

 
FONTE: (ADAFRUIT, 2014) 

 O diferencial mais relevante do Bluetooth Low Energy comparado ao Bluetooth Classic 

é que no primeiro a economia de energia está inerente em todas as camadas de comunicação. 

O BLE possui dois tipos de transmissão. A primeira é a de Anúncio (Advertising) que consiste 

na troca de informações para a Descoberta de Dispositivos, Estabelecimento de Conexões e 

Transmissões Broadcast, enquanto a segunda é a de Dados, que cria uma conexão Duplex com 

uma boa taxa de transmissão. 

Dos 40 canais de 2MHz disponíveis na camada física, 3 são utilizados para a 

transmissão do tipo Anúncio (Advertising) e 37 são utilizados para a transmissão de dados 

(WARNE, 2017). O padrão das transmissões em ambos é o mesmo, entretanto os 37 canais de 

dados ficam desligados quando inativos (geralmente a maior parte do tempo), aumentado 
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significativamente a economia de energia. Portanto, os módulos BLE dos dispositivos têm a 

capacidade de permanecer ociosos ao mesmo tempo em que conseguem ter uma conexão 

iniciada ou receber dados Broadcast.  

Utilizando seus diversos canais, a tecnologia também diminui o consumo energético 

ao necessitar de menos potência para apaziguar efeitos de ruído, que são significativos, uma 

vez que toda a banda utilizada pelo Bluetooth é compartilhada com outras tecnologias, como 

o WiFi. O BLE implementa a Adaptative Frequency Hopping, ou Salto Adaptativo de 

Frequência, em que ao detectar muita interferência em um canal de dado, simplesmente 

‘salta’ para o próximo até encontrar um canal com nível de ruído aceitável. O mesmo não 

ocorre com os canais de Advertising, portanto eles são especialmente selecionados para 

serem os que menos sofrem de interferência, uma vez que ficam posicionados nas bordas dos 

canais do WiFi (MICROCHIP TECHNOLOGY, INC., 2017).  Este efeito pode ser observado na 

Figura 3, que compara os canais utilizados por ambas as tecnologias no espectro de 

frequência. 

Figura 3: Espectro de Frequência comparando bandas do BLE com WiFi. 

 

 
FONTE: (MICROCHIP TECHNOLOGY, INC., 2017) 
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2.3 SISTEMAS EMBARCADOS: MCUS E SOCS 

Projetos de Sistemas Embarcados possuem os requisitos de serem eficientes e 

confiáveis (MARWEDEL, 2006), conceitos os quais são relativos, pois podem referenciar 

diferentes tipos de requisitos do sistema. Um sistema confiável que é protegido contra 

alterações de dados mal-intencionadas é diferente de um sistema confiável protegido contra 

erros em temperaturas baixas; de modo similar que um sistema eficiente energeticamente 

não obrigatoriamente será eficiente em seu custo/benefício. Para alcançar os requisitos do 

sistema que está sendo projetado, os desenvolvedores devem escolher com cuidado as partes 

que o compõem, sem esquecer ainda de levar em consideração como elas influenciam no 

tempo de desenvolvimento do produto final.  Um sistema embarcado compreende de um 

conjunto de Hardware, a parte física do sistema, e de Software, a parte lógica programável 

que será executada no Hardware. O projetista deve, então, ponderar quais partes, tanto de 

Hardware quanto Software, serão desenvolvidas internamente e quais serão adquiridas e 

então integradas ao sistema, considerando que a configuração e integração dessas partes 

também correspondem ao desenvolvimento do projeto. Quando partes já estão totalmente 

integradas e funcionais e já foram testadas, o projetista deve abstrair esse conjunto gerado, 

enxergando-o como uma única parte (ou bloco). 

O essencial de qualquer aplicação de um sistema embarcado costuma ser a aquisição 

de dados e o subsequente processamento destes, que serão feitos por interfaces de Entrada 

e Saída (Input/Output ou I/O) e uma ou mais unidades de processamento, respectivamente.  

As entradas e saídas se conectam a periféricos que são blocos abstraídos, os quais, por meio 

de sua própria lógica e implementação, interagem com outros sistemas computacionais ou 

realizam medições de grandezas físicas, possibilitando sensoriamentos e interações com 

humanos. Com o objetivo de abstrair o essencial para o projetista, foram criados os 

Microcontroladores (MicroController Unit ou MCU). 

Os Microcontroladores encapsulam (ou seja, pré-conectam e abstraem os blocos 

responsáveis por tarefas) um microprocessador juntamente com blocos de Entrada e Saída e 

outros blocos essenciais para a realização de processamentos, como cristais osciladores, 

contadores, temporizadores, memórias  (VAHID e GIVAGIS, 2001). Alguns blocos mais 

complexos e não essenciais, que atualmente são utilizados comumente, também podem ser 
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integrados, como por exemplo os responsáveis por entradas e saídas seriais (como UART, 

entre outros).  

Andrews (2004) explica que apesar de não possuir uma definição absoluta e formal, o 

termo SoC (System on Chip ou Sistema em Chip) geralmente se refere ao componente que 

encapsula uma ou mais unidades de processamento, blocos que gerenciam entradas e saídas, 

blocos de aplicações básicas, além de um ou mais blocos específicos e complexos, que são 

orientados a aplicações, como por exemplo os que gerenciam Wi-Fi ou Bluetooth; Esse nível 

de abstração gera facilidade na integração e no tempo de desenvolvimento de um sistema 

embarcado. 

Portanto, apesar de nebulosa e não formal, a diferença entre um microcontrolador e 

um SoC é, resumidamente, que os microcontroladores são mais simples, porém mais gerais, 

enquanto os SoCs são mais complexos e criados para aplicações mais especificas, como por 

exemplo o uso de Rede ou aplicações que demandam mais memória do que é tipicamente 

encontrado em MCUs.  

 

2.3.1 Firmware e Bootloader 

Firmware são software que controlam hardware. Embarcado em microcontroladores 

ou SoCs, o firmware é eternamente executado com o objetivo de controlar o dispositivo no 

qual está presente. Um firmware pode ser complexo ou simples, independente ou 

dependente de outros software (OSHANA e KRAELING, 2013). 

Bootloader é um conjunto de instruções que é executado durante a inicialização de um 

hardware. Esse software é responsável por diferentes tarefas, dependendo do hardware que 

é executado. Exemplos de tarefas são: inicialização de registros, inicialização da memória, 

configurações de clocks e, principalmente, a chamada de firmware e/ou Sistemas 

Operacionais (OSHANA e KRAELING, 2013).  
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2.4 SISTEMA OPERACIONAL ANDROID 

O Android é um sistema operacional com Kernel Linux que pode ser executado em 

diversas plataformas, principalmente em telefones celulares e tablets. Fundado em 2003 e 

posteriormente adquirido pela Google, hoje é o sistema operacional mais utilizado do mundo 

(ZURIARRAIN, 2017). 

Esse sistema operacional OpenSource administra os recursos do dispositivo com 

objetivo de criar uma plataforma responsiva para o usuário; eficiente, principalmente na área 

energética e na de alocação de recursos; segura e que possibilite uma relativa facilidade de 

desenvolver aplicações. 

Para promover o desenvolvimento de aplicações, que são escritas principalmente em 

Java, o Google disponibiliza o ambiente de desenvolvimento Android Studio e o Android SDK 

(Software Development Kit ou Kit de desenvolvimento de Software). Este pacote de 

desenvolvimento disponibiliza ferramentas de simulação, ferramentas para Debbugging, 

bibliotecas/APIs, além de códigos fonte e ferramentas geradoras de códigos automáticos.  

Está disponível aos desenvolvedores também o Java API Framework, que consiste, 

simplificadamente, em um conjunto de APIs. Essas APIs facilitam o desenvolvimento de 

aplicativos, uma vez que possibilitam o reuso de alguns componentes do Sistema Android, 

como, por exemplo, o View System ou Sistema de Visualização (responsável pelo desenho de 

estruturas básicas como caixas de texto, tabelas ou botões) e Administradores (Managers) de 

Notificação, Localização, Janela, entre outros, que abstraem a implementação desses recursos 

na plataforma.  

Para atingir tais funcionalidades, esse framework se utiliza de uma máquina virtual, 

chamada Android Runtime (ART), e de bibliotecas em C/C++, que devem ser executadas 

diretamente na máquina real, não na virtual. O ART e as bibliotecas em C/C++, por sua vez, 

fazem uso de códigos específicos para cada periférico do dispositivo. Esses códigos compõem 

o HAL (Hardware Abstraction Layer ou Camada de Abstração de Hardware), que possibilita 

que o mesmo código seja compatível com diversos modelos de, por exemplo, câmeras, apenas 

variando os códigos do HAL para seus respectivos hardware, o que deve ser feito, 

naturalmente, pelo fabricante do dispositivo, não das aplicações. A Figura 4, abaixo, ilustra de 
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forma simples e de fácil legibilidade o relacionamento de todos esses componentes 

(ANDROID, 2017). 

Figura 4: Diagrama que mostra os principais componentes da plataforma Android. Organização com maior nível de 
abstração conforme mais alto na pilha de blocos exibida. 

 

 
FONTE: (ANDROID, 2017) 
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3 MATERIAIS 

3.1 PLACA DE PROTOTIPAÇÃO LIGHTBLUE BEAN+ 

A placa utilizada para o desenvolvimento do projeto foi fabricada pela empresa 

americana PunchThrough Design. A jovem empresa criada em 2009 é especializada em 

projetos com Bluetooth e têm produtos e projetos sendo utilizados por empresas como 

Google e organizações como a NASA (PUNCHTHROUGH DESIGN, 2017a).  

Figura 5: Página da Internet da desenvolvedora de projetos e produtos com Bluetooth PunchThrough Design. 

 

FONTE: Autoria Própria. 

Com quase 100mil unidades vendidas, a família de placas de desenvolvimento 

LightBlue Bean tem o objetivo de criar plataformas simples, porém potentes para 

desenvolvimento de produtos com Bluetooth Low Energy. Existem duas versões na família, a 

mais simples, menor e com baixo custo é a versão Bean, que pode ser utilizada no produto 

final de pequenos projetos pessoais e industriais, e a versão Bean+, que é maior, mais robusta 

e possui mais pinos e conexões. Essa última versão é a utilizada neste projeto. As placas dessa 

família também contam com bibliotecas e APIs Android/IOS pré-desenvolvidos que agilizam o 

tempo de desenvolvimento.  

A família de placas tem suporte de “Prototipação para Produção em Massa”. Esse é o 

suporte dado pela empresa PunchThrough ao disponibilizar todos os arquivos e dados 
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necessários para a transformação do protótipo em um produto final de baixo custo. Para isso, 

é disponibilizado todo o esquemático da placa com todos os componentes especificados, além 

do Bootloader e Firmware necessários, e de suporte pago para consultoria (PUNCH THROUGH 

DESIGN, 2017b). 

Figura 6: Placa de desenvolvimento LightBlue Bean+ 

 

 
FONTE: (PUNCHTHROUGH DESIGN, 2017a) 

A arquitetura do sistema, como mostrado na Figura 7, consiste principalmente de um 

SoC Bluetooth CC254x, feito pela Texas Instruments e de um Microcontrolador ATmega328p, 

produzido pela Atmel. O sistema foca em abstrair detalhes de baixo nível da utilização do 

Bluetooth, utilizando o SoC para a sua administração. Para alcançar essa abstração, a parte 

programada pelo usuário da placa (na Figura 7 representada como User Code) é feita apenas 

para o ATmega328p e, utilizando bibliotecas especificas, esse MCU se comunica 

transparentemente com o SoC para utilização do Bluetooth. Essa comunicação é feita 

utilizando UART (Universal Asynchronous Receiver-Transmitter), um barramento simples de 

dois fios, que por ser assíncrono, necessita pré-configuração pelas duas partes envolvidas. 
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Figura 7 Arquitetura do Sistema da placa LightBlue Bean+. 

 

FONTE: (PUNCHTHROUGH DESIGN, 2017c) 

 Além da abstração do Bluetooth, também é abstraído do desenvolvedor um LED RGB 

e um Acelerômetro. Esses periféricos são conectados diretamente com o SoC Bluetooth. A 

conexão do acelerômetro, implementada com SPI ou I2C, é transparente e, por esse motivo, 

não deve ser administrada pelo usuário. A conexão do LED RGB é feita com uma porta PWM 

(Pulse Width Modulator), que significa que o LED tem a capacidade de brilhar em diversas 

intensidades por receber uma entrada digital que, na prática, atua como uma entrada 

analógica. Essa conexão também é transparente para o usuário, por meio de bibliotecas 

específicas. 

O microcontrolador Atmega 328p é o mesmo utilizado pela conhecida placa Arduino 

Uno. Arduino é uma plataforma Open-Source para desenvolvimento de projetos eletrônicos. 

Essa plataforma conta com uma grande quantidade de documentação além de diversas 

ferramentas que ajudam no desenvolvimento de projetos (ARDUINO, 2017). Uma dessas 

ferramentas é o conjunto de bibliotecas que abstrai diversas funções do microcontrolador 
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utilizado e essas bibliotecas são compatíveis com a placa LightBlue Bean+ pela utilização do 

mesmo microcontrolador além de um Bootloader compatível.  

O acelerômetro utilizado no LightBlue Bean+ e, consequentemente, no projeto é o 

BMA250E, feito pela BOSCH (PUNCHTHROUGH DESIGN, 2017c).  Esse é um acelerômetro de 

3 eixos, que significa que aceleração é medida nos eixos X, Y e Z, como pode ser observado na 

Figura 8. A medição é feita utilizando microssistemas Eletromecânicos (MEMS ou micro 

electro-mechanical system), que são sistemas que utilizam grandezas mecânicas e grandezas 

elétricas. Neste caso, converte aceleração (uma grandeza mecânica) em capacitância (uma 

grandeza elétrica). Esse sensor de baixo consumo energético possui vários modos de uso e 

sua saída é digital. 

Figura 8: Eixos ‘x’, ‘y’ e ‘z’ mostrados em relação ao eixo da terra ‘g’. 

 

FONTE: (BOSCH, 2011) 

O BMA250E é altamente configurável e possui modos que detectam padrões ou que 

geram uma saída conforme a quantidade de [g]s observados. O [g] é uma medida de 

aceleração e corresponde a uma gravitação da terra, ou 9.6[m/s2]. A acurácia do sensor é fixa 

em 10bits, porém sua escala pode ser selecionada entre ±2g, ±4g, ±8g e ±16g. Isso significa 

que, por exemplo, na escala de ±4g os valores entre -4 [g] e + 4 [g] serão mapeados com 

valores entre -512 e +511, que são os valores limites com sinal que podem ser representados 

por esse número fixo de bits, calculado utilizando a equação A com o valor total deslocado 
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para representar também números negativos. O passo da medição e sua precisão será, neste 

caso, de 0.0078125 [g] e de 0.0068125 [g/bit], podendo ser calculado utilizando a equação B.  

 

 (2−𝑛) = número máximo de valores representados por n bits. (1) 

2 ∗ 𝑃/(2−𝑛) = precisão                                                               (2) 

Os modos que detectam padrões geram saída ALTA em pinos específicos caso o padrão 

seja detectado e BAIXO caso contrário, e não foram utilizados no projeto.  

O LED RGB (Red/Green/Blue ou Vermelho/Verde/Azul) é um LED que é capaz de brilhar 

em todas as cores compostas por vermelho, verde e azul.  Foi utilizado o modelo CL-SF687RGB, 

feito pela CIEL Light (CIEL LIGHT, 2012) que é composto por 3 LEDS nas respectivas cores 

supracitadas, além de apresentar grande intensidade de brilho e uma superfície quase plana. 

O Bean+ também possui uma bateria recarregável de Lithium-Ion(LIPO). Essa bateria 

possui uma carga completa de 600[mAh] e, conforme a completude da carga, fornece de 

2.5[V] até 4.2[V] de tensão. O Bean+ é capaz de calcular a porcentagem da carga total 

carregada a partir desta propriedade, isto é, a propriedade em que a tensão de saída da 

bateria varia conforme a completude da carga. 

 

3.2  SENSOR DE CHOQUE KY-031 

Esse simples sensor detecta vibrações e, consequentemente, choques físicos ao 

dispositivo. Também é conhecido como Knock Sensor por ser utilizado em detecção de Batidas 

em portas e similares. Constituído de um Knock Switch e um resistor de Pull-Up, a saída é ALTA 

quando não detectada nenhuma vibração e BAIXA caso contrário. O Knock Switch é formado 

por dois terminais, sendo um em forma de mola, como pode ser visto na Figura 9. A vibração, 

quando grande o suficiente, causa a conexão de ambos os terminais resultando uma saída em 

baixo (UDOO NEO, 2017).  
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Figura 9: Funcionamento do Knock Switch 

 

FONTE: (UDOO NEO, 2017) 

 

3.3  SENSOR DE TOQUE TTP223 

O sensor de toque capacitivo tem o objetivo de disponibilizar uma entrada analógica, 

como a de um botão, porém mais agradável ao usuário e mais durável para o dispositivo, por 

não possuir partes mecânicas. Sua saída é digital, ALTA quando sentido um toque, BAIXA, caso 

contrário. 

O sensor é constituído por um TTP223, o CI principal, um capacitor C1 de 22[pF], que 

determina a sensibilidade base da capacitância sentida pelo CI e por outros componentes mais 

simples, que podem ser vistos na  

 

 

                                                Figura 10. Esse sensor possui a capacidade de configuração, por meio 

de suas portas de entrada, entre saída ALTA e BAIXA, além do modo Toggle ou Direto. Além 

disso, possui modo automático de economia de energia quando não detecta toques por 12 

segundos e ajuste automático de entrada, que possibilita mais precisão com diferentes 

capacitâncias de entrada. A capacitância de entrada é gerada por um SensePad, que consiste 

apenas em uma grande área de material condutor que, ao ser pressionada, gera uma 

capacitância entre o objeto (I.E. o dedo de um operador) e o circuito. (TONTOUCH, 2008) 
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                                                Figura 10: Esquemático de um TouchSensor 

 

FONTE: (TONTOUCH, 2008) 

 

3.4  SENSOR DE BATIMENTOS CARDÍACOS – SEN11574 

O Sensor de Batimentos Cardíacos tem o objetivo de analogicamente ler, utilizando 

luz, a densidade de células de sangue do usuário, formando assim uma curva que se 

correlaciona com a frequência de batimentos cardíacos. 

Essa técnica é chamada de Fotopletismografia (Photoplethysmography ou PPG) e 

funciona da seguinte maneira: um emissor de luz e um receptor de luz são posicionados 

próximos. A luz é direcionada para a pele humana quando em contato e parte desta luz é 

absorvida enquanto outra parte é refletida. A porção refletida é medida pelo receptor. A 

quantidade de luz absorvida pela pele, ossos e carne é quase constante enquanto a 

quantidade absorvida por células do sangue varia devido ao fluxo sanguíneo cardiovascular. 

Sendo assim, é possível observar picos na absorção de luz que correspondem aos batimentos 
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cardíacos (NAKAJIMA, TAMURA e H.MIIKE, 1994).  A curva formada pode ser observada na 

Figura 11. 

 

Figura 11: Curva gerada pela técnica de Fotopletismografia. 

 

FONTE: (NAKAJIMA, TAMURA e H.MIIKE, 1994) 

No sensor SEN11574, a emissão de luz é realizada por um forte LED de cor verde, pois 

é utilizado um fotorresistor com o pico de absorção coincidente com comprimentos de onda 

da luz nessa cor, como é possível observar na curva de absorção do componente, mostrada 

na Figura 12. A saída do sensor de luz é amplificada, como mostrado no esquemático da Figura 

13 ,com o objetivo de facilitar a leitura do sinal. A saída do amplificador corresponde à saída 

do SEN11574.  

Figura 12: Curva de Absorção Relativa do Fotoresistor APDS-9008 utilizado pelo sensor de batimento cardíaco. 

 

FONTE: (AVAGO TECHNOLOGIES) 
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Figura 13: Esquemático do Sensor de Batimentos Cardíacos SENS-11574 utilizado.   

 

FONTE: (JOEL MURPHY, 2017) 
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4 MÉTODOS 

Esse projeto, que tem como objetivo geral uma comunicação rápida e fácil em momentos 

de emergência, possui duas principais partes. A primeira parte é a do sistema embarcado, isto 

é, o hardware e seu software embarcado, que representa o maior volume de desenvolvimento 

do projeto e será utilizado para a principal interação e controle do usuário. A segunda parte é 

a do aplicativo Android, que é responsável pela comunicação com externos (ou seja, o contato 

de emergência definido). A comunicação entre o Wearable e o Aplicativo Android deve ser 

transparente para o usuário, rápida e eficiente energeticamente. Ambos os software foram 

desenvolvidos com uma metodologia incremental, com execução de testes funcionais durante 

cada iteração incremental. Os códigos podem ser encontrados integralmente no GitHub do 

projeto: github.com/jgobbic/TCCWearableGobbi . 

 

4.1 DECISÕES DE PROJETO 

Um projeto de um dispositivo vestível (wearable) deve considerar o gasto energético, 

além de, normalmente, uma comunicação prática com smartphones. Por esses motivos, foi 

decidido a utilização do Bluetooth Low Energy no projeto, para realizar eficientemente a 

comunicação com o smartphone. 

A placa de desenvolvimento LightBlue Bean+ foi escolhida por dois principais motivos. 

Primeiramente, ela foi desenvolvida por um grupo especializado em Bluetooth, que possui 

projetos executados para grandes empresas. Além disso, a placa abstrai detalhes trabalhosos 

do Bluetooth, que passa uma maior confiabilidade da comunicação enquanto aumenta a 

velocidade de desenvolvimento do projeto. A placa, contudo, não seria utilizada se não 

oferecesse suporte para a transformação do protótipo em produto final. Com detalhes, e 

esquemáticos, dos circuitos internos da placa, componentes que podem ser encontrados no 

mercado e firmware/bootloaders disponíveis, a criação de um módulo pequeno e de baixo 

custo compatível com o software e hardware desenvolvidos neste projeto seria facilitada.  

Para a realização da interface do sistema com o usuário, foram escolhidos dois tipos de 

botões: um físico e um touch. O físico, que possui maior resposta tátil, ou seja, é mais 
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responsivo para o usuário, é utilizado para a ativação do modo de emergência, de forma que 

o usuário possa ter considerável conforto de que o botão foi de fato pressionado e o pedido 

de socorro foi enviado. O botão touch foi escolhido por ser mais agradável para o toque 

contínuo, além de ter maior durabilidade de uso constante, e é utilizado para entrar em modo 

de batimentos cardíacos. A interface de apenas dois botões foi escolhida para facilitar o uso 

por idosos, que tendem a ter dificuldades na utilização de novas tecnologias. 

Foi escolhido desenvolver o aplicativo compatível com o sistema Android pois, além de 

ser o sistema mais utilizado no mundo, é o sistema mais acessível pois existe uma grande 

variedade de smartphones de baixo custo com esse sistema operacional disponíveis. 

Por último, foi escolhido o envio de mensagens por SMS, ao invés de mensagens por 

meio de uso da internet, pela maior cobertura do serviço (PRADO, 2017).  

 

4.2 ARQUITETURA GERAL DO SISTEMA 

A comunicação entre as duas partes principais é o ponto chave do projeto criado. Essa 

comunicação, que foi implementada em BLE, funciona por meio de characteristics 

implementadas por um service genérico, seguindo a estrutura mostrada na Figura 2, do 

Capítulo 1. Essas characteristics são, para o sistema, como dados compartilhados entre os 

dispositivos conectados, ou seja, na prática, são variáveis compartilhadas entre o dispositivo 

embarcado e o aplicativo Android. 

 A implementação destas characteristcs é feita por meio de um dos 5 banks 

disponibilizados pelo firmware do SoC Bluetooth do LBB+. Esses bancos são characteristics de 

um service genérico. Toda vez que algum dado desse serviço é alterado, por qualquer uma das 

partes, a outra parte é notificada e é feita a aquisição dos dados. Os services e characteristics  

podem ser vistos em detalhes no aplicativo BLE SCANNER (BLUEPIXEL TECHNOLOGY LLP, 

2017), como mostrado na Figura 14.  
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Figura 14: Serviços e Caracteristicas do Bean+ mostrados num aplicativo de analise BLE. 

 

FONTE: Autoria Própria. 

 Um diagrama de sequência que representa todo o fluxo de comunicação para o caso 
de detecção de queda pode ser visto na  

 

 

 

 

Figura 15. 

O sistema foi implementado de maneira modular com o objetivo de facilitar a 

implementação de novas funcionalidades no futuro. A transmissão de dados entre os 

dispositivos é feita de maneira que, caso seja desejado a inserção de funcionalidades, é 
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necessário apenas a utilização de um dos 5 bancos para a transmissão dos dados. Cada banco 

suporta até 20 bytes de dados e a leitura de cada um é feita separadamente.  

 

 

 

 

 

Figura 15: diagrama de sequência exibindo o funcionamento no caso de detecção de queda.  

 

FONTE: Autoria Própria. 

4.3 IMPLEMENTAÇÃO DO SISTEMA EMBARCADO 

Para a implementação do sistema, o primeiro passo é o processo de preparação do 

ambiente para a gravação do código que será executado no microcontrolador, que pode ser 

chamado de firmware do MCU. Esse passo não é trivial, pois, no LightBlue Bean+ a 

programação deve ser feita de modo wireless, por meio do Bluetooth Low Energy. A 

programação é feita desse modo pois o real responsável pela gravação no microcontrolador 

é o SoC Bluetooth (é importante lembrar a diferença entre ambos, tratada na seção Sistemas 

Embarcados: MCUs e SOCs).  

Existem diferentes abordagens para fazer essa programação, e duas delas foram 

utilizadas no projeto: Uma por meio de um aplicativo Android, chamado de Bean Loader for 

Android e outra por meio de uma aplicação de linha de comando em ambiente Linux, chamada 
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de CLI Loader (Client Line Interface Loader). A abordagem utilizando o ambiente Android é 

mais simples e intuitiva e foi a mais utilizada, uma vez que o acesso a um computador com 

suporte ao Bluetooth Low Energy foi restrito durante a execução do projeto. Sendo mais 

simples, a robustez e o detalhamento da compilação por meio do aplicativo Android são mais 

baixos, tornando mais difícil o processo de debugging do código. A programação em um 

ambiente Linux é, portanto, mais completa e facilita o debug, porém, envolve uma pré-

configuração do ambiente mais trabalhosa. Além disso, apenas o CLI Loader é capaz de 

atualizar o firmware do SoC Bluetooth.  A abordagem com Linux foi utilizada quando era 

necessário maior nível de detalhes para debuging.  

No ambiente Linux, a compilação do código é feita a partir do Arduino IDE e a 

transmissão para a placa de desenvolvimento a partir do CLI Loader. 

 

4.3.1 Configuração do ambiente em Linux 

A configuração e programação desta placa é diferente do habitual, e por esse motivo, 

será mostrada em detalhes nesta seção. 

Para ser feita a configuração, é necessário ter Python 2.7 instalado no sistema, além 

de bibliotecas específicas para a manipulação do Bluetooth. A instalação de ambos pode ser 

feita com a execução dos dois comandos abaixo em um terminal bash: 

$ sudo apt-get install python 2.7.1 
$ sudo sudo apt-get install bluetooth bluez libbluetooth-dev libudev-dev 

Deve-se instalar também o Node.js, framework que é utilizado pelo CLI Loader. Isso 

pode ser feito executando os comandos abaixo, que fazem download do instalador, extraem 

o arquivo baixado e, por último, instalam o framework na pasta adequada.  

$ curl -O https://nodejs.org/dist/v6.11.5/node-v6.11.5-linux-x64.tar.xz 
$ tar -xf node-v6.11.5-linux-x64.tar.xz 
$ cp -R node-v6.11.5-linux-x64/* /usr/local/ 

Por último, deve-se instalar o administrador de pacotes JavaScript chamado npm, e, 

finalmente, o CLI Loader. 

$ sudo install npm -g  
$ sudo npm install -g –unsafe-perm bean-sdk 

Para a compilação do código, é necessário o Arduino IDE, que pode ser baixado, 

extraído e instalado com os seguintes comandos: 
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$ curl -o http://downloads.arduino.cc/arduino-1.8.5-linux64.tar.xz 
$ tar -xf arduino-1.8.5-linux64.tar.xz 
$ cd arduino-1.8.5-linux64 
$ ./install.sh 

Com o Arduino IDE e o CLI Loader instalados, é necessário, então, fazer a instalação das 

bibliotecas personalizadas do LBB+ na IDE.  O comando e uma mensagem de sucesso para 

toda a execução do processo pode ser visto no código abaixo e na Figura 16 abaixo. 

$ sudo bean install_bean_arduino_core 

 

 

Figura 16: Processo de instalação do CLI Loader e dependências concluído. 

FONTE: Autoria Própria. 

 

4.3.2 Configuração no Ambiente Android 

No ambiente Android, a compilação é feita na Nuvem e apenas o arquivo compilado é 

automaticamente baixado e transmitido para a placa de desenvolvimento. 

Para a instalação do Bean Loader for Android, é apenas necessário o download do 

aplicativo a partir da loja do Google Play, que pode ser visto na Figura 17. 

Figura 17: Aplicativo Bean Loader que deve ser descarregado da PlayStore. 
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FONTE: Autoria Própria. 

Para facilitar a transferência de arquivos entre o computador e o Smartphone Android, 

além da utilização mais ágil do aplicativo, foi instalado no computador em que o projeto estava 

sendo desenvolvido o programa SideSync, da Samsung, que possibilita a transferência de 

arquivos ao estilo Drag’n’Drop (arrastar e soltar), além do controle total do smartphone pelo 

computador.  

Figura 18: Software SideSync sendo utilizado para controlar e transferir arquivos para o Smartphone, que aumenta a 
produtividade utilizando o Bean Loader for Android. 
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FONTE: Autoria Própria. 

 

4.3.3 Atualização do Firmware em ambiente Linux 

 A atualização do firmware do SoC do Bean deve ser feita. Como explicado 

anteriormente, isso pode ser feito somente pelo CLI Loader, pois o aplicativo Android ainda 

não possui suporte para isso. Esse firmware é o que administra toda a utilização do Bluetooth, 

além de tratar de tarefas críticas como, por exemplo, a gravação do software criado no 

microcontrolador. Para realizar tal atualização, deve-se encontrar o Bean+ desejado na lista 

de dispositivos BLE identificados, encontrar o seu endereço Bluetooth e posteriormente 

executar a atualização. Esse endereço é único e fixo para cada dispositivo Bluetooth existente. 

Os comandos que devem ser executados são: 

$ sudo bean scan 
$ sudo bean program_firmware -a 987bf359283c 

A chave ‘-a’ no comando bean program_firmware especifica o endereço do Bean a 

ser atualizado. O endereço é encontrado com o comando bean scan. 
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A atualização deve ser realizada, e será bem-sucedida quando o firmware encontrado 

no Bean+ é o mesmo que se tenta instalar, como pode ser visto na Figura 19 abaixo.  

Figura 19: Processo de atualização de firmware concluído. 

 

  

FONTE: Autoria Própria. 

 

4.3.4 Programação do MCU em ambiente Linux 

A gravação de código no microcontrolador, como foi dito anteriormente, pode ser feita 

por ambos os ambientes. Para a realização no ambiente Linux, o código deve ser compilado 

no Arduino IDE e transmitido para o Bean por meio do CLI Loader. 

Para o código ser compilado corretamente, compatível com o Bean+, deve-se 

selecionar a placa de desenvolvimento no menu Tools -> Board -> LightBlue Bean+, como pode 

ser visto na Figura 20. 
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Figura 20: Selecionando a placa de desenvolvimento LightBlue Bean+ no Arduino IDE. 

FONTE: Autoria Própria. 

Após a seleção, deve-se clicar em verify e em seguinda upload. O botão de upload, ao 

contrário do que se pode imaginar, não transmite para o Bean+ o código compilado, apenas 

o prepara para ser enviado manualmente pelo CLI Loader. Os botões são exibidos na Figura 

21. 

Figura 21: Botões de Verificação e Upload no Arduino IDE 

 

FONTE: Autoria Própria. 

Após preparado para o envio, deve-se executar os comandos: 

$ sudo bean list_compiled_sketches 
$ sudo bean program_sketch LittleRun -a 987bf359283c 

O primeiro comando lista os códigos compilados e prontos para ser enviados, e o 

segundo efetivamente transmite o sketch, isto é, o código selecionado LittleRun para o Bean+ 

com endereço Bluetooth 987bf359283c. 
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4.3.5 Programação do MCU no ambiente Android 

A programação utilizando o Bean Loader for Android é um pouco mais simples e direta, 

feita da seguinte forma. Após enviar o arquivo que contém o código fonte para o smartphone, 

deve-se selecioná-lo no menu “Choose Sketch” ("Selecionar Sketch"), no aplicativo do Bean, e 

então, após selecionado o Bean+ alvo, deve-se selecionar “Upload to Bean”. Uma mensagem 

apontando o sucesso da operação deve ser exibida, como mostrado na Figura 22. 

Figura 22: Mensagem de Upload bem-sucedido no Bean Loader for Android. 

 

FONTE: Autoria Própria. 

 

4.3.6 Implementação do código embarcado 

O conjunto de materiais foi integrado como mostra o esquemático da Figura 23. Como 

podemos observar, o Touch Sensor, o Botão, o Buzzer e o Shock Sensor foram conectados a 

portas digitais, enquanto o Sensor de Batimentos Cardíacos foi conectado a uma porta 

analógica. Além disso, como foi dito, o LED RGB e o Acelerômetro estão pré-integrados dentro 

do LightBlue Bean+. 

Figura 23: Esquemático do sistema implementado. 
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FONTE: Autoria Própria. 

Pino Periférico 

A0 Sensor de batimentos cardíacos 

D1 Buzzer 

D6 Sensor de choque 

D8 Sensor de toque 

D9 Botão físico 

Tabela 1: Conexões do LightBlue Bean+ com sensores. 

O funcionamento do software que é executado pelo microcontrolador é dividido em 

três partes: setup(), loop() e interrupções. O setup() é executado apenas uma vez, inicialmente 

no código, e faz configurações iniciais. O loop() é executado continuamente, ou seja, recomeça 

quando sua execução termina (análogo a estrutura while(True) { }). As interrupções são trechos 

especiais que são executados quando certos eventos ocorrem. Quando finalizadas, a execução 
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retorna ao loop(). Também existe o escopo global, onde são declaradas diretivas de 

compilação, além da declaração de variáveis globais. As variáveis globais, diferentes das locais, 

podem ser lidas e modificadas em todas as partes do código. 

 

4.3.7 Funcionamento da máquina de estados que define o funcionamento geral 

O funcionamento do firmware do microcontrolador é sumarizado por uma máquina 

de estados que, conforme a leitura feita dos sensores integrados, transaciona entre os 

estados. A FSM (Finite State Machine ou Máquina de Estados Finito) pode ser observada na 

Figura 24. 

Figura 24: Maquina de estados finita que define o funcionamento do sistema embarcado. 

 

FONTE: Autoria Própria. 

A implementação da máquina de estados foi feita com a estrutura switch/case padrão 

da linguagem C e é executado continuamente, em todos os ciclos da função loop(). Dentro de 

cada case (STATE_NORMAL, STATE_SOS e STATE_HRTBIT) é executada uma função 

correspondente (normalState(), sosState() e hrtbitState()) que define as rotinas 

correspondentes para cada estado. Essas funções serão apresentadas e explicadas 

posteriormente nesta seção. 

 

#define STATE_NORMAL 0 
#define STATE_HRTBIT 1 
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#define STATE_SOS    2 
[…] 
void loop(){ 

[…] 
switch(State){ 
   case STATE_NORMAL: 
   {   normalState(); //Execução do Estado Normal 
        break; } 
   case STATE_SOS: 
   {    sosState(); //Execução do Estado de Emergencia 
        break; } 
   case STATE_HRTBIT: 
   {    hrtbitState(); //Execução do Estado de Leitura de Batimentos 
        break; } 
} 
} 

 

4.3.8 Estado Normal 

O estado normal, definido por STATE_NORMAL e caracterizado pela rotina 

normalState(), é o estado em que o dispositivo normalmente se encontra. Esse é o estado 

inicial da máquina, e é o estado sucessor de todos os outros. Nesse estado não é executada 

nenhuma tarefa especial, apenas alguns procedimentos básicos para cálculo de transição de 

estados. Esses procedimentos são: accelRead(), updateScratch(), CheckTimers(), 

checkLongPress() e checkLongPressTouch().  

 

4.3.9  Estado de Emergência 

O estado de emergência, definido por STATE_SOS e caracterizado pela rotina 

sosState(), é o estado que indica que ocorreu uma emergência. Esse estado é alcançado 

quando um dos seguintes casos ocorrem: é detectada uma queda do usuário (modo 

automático) ou é detectado o pressionamento por 3 segundos do botão de emergência (modo 

manual). Para sair desse estado, deve-se pressionar novamente o botão de emergência, por 6 

segundos.  

Nesse estado o microcontrolador apenas é responsável por acionar o buzzer e piscar a 

cor azul do LED RGB, mantendo a cor vermelha. Essas duas ações são executadas nas linhas 

de código abaixo: 

 

void sosState(){ 
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  checkLongPress();   
  if(quarterSecond%2) {Bean.setLed(255,0,255); } //liga o led azul 
  else                {Bean.setLed(255,0,0); }   //desliga led azul 
  digitalWrite(LED_PORT,HIGH);                   //aciona o buzzer 
      } 

 O LED pisca em diferentes cores pois a variável quarterSecond é continuamente 

incrementada, a cada 250[ms] aproximadamente. Isso é feito utilizando interrupções por 

timer, o funcionamento detalhado será explicado futuramente neste documento na seção 

Interrupções de Transição de Pino e Aquisição dos Dados dos Sensores. Como um número par 

é sempre seguido de um número ímpar, e vice-versa, a expressão quarterSecond%2 sempre 

resultará intercaladamente em true e false.  

A função Bean.setLed(r,g,b) é uma função padrão da biblioteca do Bean, assim como 

todas da classe Bean. Essa função faz com que o MCU comunique o SoC para configurar o LED 

RGB para brilhar nas cores definidas pelos argumentos que, sequencialmente, indicam a 

intensidade de vermelho, verde e azul. Esses argumentos são do tipo uint8_t, que define um 

valor de 8 bits entre 0 e 255. Quando especificado 0 para os três parâmetros, o LED é apagado 

e esse valor pode ser incrementado até 255, que define o brilho máximo da respectiva cor. 

Também pode ser observado na rotina sosState(), que apenas a função que checa o 

pressionamento do botão de emergência é chamada (checkLongPress()), ou seja, o botão 

touch será ignorado enquanto o sistema permanecer nesse estado e assim é impossível a 

transição para o estado de leitura de batimentos cardíacos neste momento. Todas as outras 

funções básicas são executadas. 

A partir da leitura do código acima, aparentemente não é executada nenhuma rotina 

que notificará o aplicativo Android do estado de emergência. Isso ocorre porque a notificação 

é feita durante a transição do estado, e não no interior do estado. Isso é feito atribuindo o 

valor ‘1’ (True, Verdadeiro) para a variavel global “st_emergency” sempre que o valor da 

variável State tiver seu valor atribuído para STATE_SOS. A variável st_emergency, que indica 

que a FSM está no Estado de Emergência, é continuamente enviada para o dispositivo Android, 

mantendo seu valor sempre sincronizado nos dois ambientes, como será demonstrado 

adiante. 

 

[…] 
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st_emergency = 1; 
State = STATE_SOS; 
[…] 

  
 
 

4.3.10 Estado de medição de batimentos cardíacos 

O estado de medição de batimentos cardíacos é definido por STATE_SOS e tratado pela 

rotina hrtbitState(). Esse estado é ativado por ação do usuário, e pode ser alcançado de duas 

maneiras: a primeira mantendo “pressionado” o touch sensor por 3 segundos e a segunda por 

meio do aplicativo Android. Para sair desse estado, deve-se “pressionar” o touch sensor por 6 

segundos. 

Esse estado é um estado orientado por interrupções, isto é, a principal lógica 

implementada no estado se encontra dentro de uma interrupção. Interrupções são rotinas 

especiais que são chamas quando algum certo evento ocorre. Essa rotina interrompe a 

execução normal do código, quebrando seu fluxo natural e é executada imediatamente.  A 

interrupção que governa a lógica desse estado é a interrupção TIMER2_COMPA_vect que é 

executada quando um timer específico, no caso o TIMER2 tem seu valor igual a um valor pré-

definido, o que explica o termo "COMPA", de comparação, no nome da interrupção. Quando 

o valor do timer é igual ao pré-definido, ocorre um Match. Normalmente, tenta-se executar o 

mínimo possível em interrupções, para evitar o mal funcionamento de outras interrupções 

além de pausas muito longas na execução normal do código (OSHANA e KRAELING, 2013), 

entretanto, nesta interrupção isso não se trata de um problema, uma vez que no estado de 

aquisição de batimentos cardíacos não há processamento que demande muito tempo no 

código principal e, como explicado anteriormente, a FSM não permite alterações entre 

estados sem passar pelo Estado Normal. 

 Para a configuração da interrupção, foi criada a rotina hrtBeatInterruptSetup() que tem 

seu corpo mostrado no código abaixo e é chamada na rotina setup() do firmware, definida no 

início deste capítulo. Essa rotina é responsável pela configuração do TIMER2 utilizado e 

ativação da interrupção por comparação deste temporizador. 
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void setup(){ 
[…] 
   hrtBeatInterruptSetup(); 
[…] 
} 
 
[…] 
 
void hrtBeatInterruptSetup(){ 
        TCCR2A = 0x02; 
        TCCR2B = 0x06; 
        OCR2A = 0X7C; 
        TIMSK2 = 0x02; 
        sei(); 
      } 

 

Os termos TCCR2A, TCCR2B, OCR2A e TIMSK2 são registradores de configuração que 

têm seus detalhes explicados no manual do usuário do microcontrolador ATmega 328p. Suas 

configurações e significados serão sumarizados nas tabelas a seguir. Registradores de 

configuração deste microcontrolador têm 8bits e a configuração é feita escrevendo em bits 

específicos. Algumas vezes, um conjunto de bits do mesmo ou de diferentes registradores 

podem, juntos, fazer parte da configuração do mesmo recurso. 

 

 

 

 

 

 

 

Tabela 2: Configuração do registrador TCCR2A 

TCCR2A B
it 7

 

B
it 6

 

B
it 5

 

B
it 4

 

B
it 3

 

B
it 2

 

B
it 1

 

B
it 0

 

Nome do bit COM2A1 COM2A0 COM2B1 COM2B0   WGM21 WGM20 
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Significado Configura saída 

em uma porta no 

evento de match. 

Modo normal, 

que não gera 

saída, 

configurado. 

 Configura saída em 

outra porta no evento 

de match. Modo normal, 

que não gera saída, 

configurado. 
N

ão
 u

tilizad
o

 

N
ão

 u
tilizad

o
 

Justamente com o 

WGM22 encontrado 

no registrador 

TCCR2B, configura o 

modo de operação 

CTC. 

Valor 

configurado: 

0x02 

0 0 0 0 0 0 1 0 

 

Tabela 3: Configuração do registrador TCCR2B 

TCCR2B B
it 7

 

B
it 6

 

B
it 5

 

B
it 4

 

B
it 3

 

B
it 2

 

B
it 1

 

B
it 0

 

Nome do bit FOC2A FOC2B   WGM22 CS22 CS21 CS20 

Significado Configura saída 

em uma porta no 

evento de 

match. Modo 

normal, que não 

gera saída, 

configurado. 

N
ão

 u
tilizad

o
 

N
ão

 u
tilizad

o
 

Configura, 

juntamente com 

o WGM21 e 

WGM20 do 

registrador 

TCCR2A o modo 

de operação CTC. 

Define a fonte de clock 

(ClockSource). 

Configuração de valor ‘2’ 

define a fonte como o 

clk_v/256 onde clk_y é o 

clock do microcontrolador 

de 8MHz resultando numa 

fonte de clock de 31.25kHz 

para o timer. 

Valor 

configurado: 

0x06 

0 0 0 0 0 1 1 0 

 

Tabela 4: Configuração da tabela OCR2A 
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OCR2A B
it 7

 

B
it 6

 

B
it 5

 

B
it 4

 

B
it 3

 

B
it 2

 

B
it 1

 

B
it 0

 

Nome do 

bit 

 

Significado O valor do OCR2A configura o valor que, quando comparado com o valor 

atual do contador (regido pelo clock configurado com os bits CSxx do TCCR2B) 

gerará a interrupção. O valor 0x7C hexadecimal configurado corresponde ao 

valor 124 decimal.  

Valor 

configurad

o 0x7C 

0 1 1 1 1 1 0 0 

 

 

Tabela 5: Configuração do TCCR2B 

TCCR2B B
it 7

 

B
it 6

 

B
it 5

 

B
it 4

 

B
it 3

 

B
it 2

 

B
it 1

 

B
it 0

 

Nome do bit      OCIE2B OCIE2A TOIE2 

Significado N
ão

 u
tilizad

o
 

N
ão

 u
tilizad

o
 

N
ão

 u
tilizad

o
 

N
ão

 u
tilizad

o
 

N
ão

 u
tilizad

o
 

Ativa a geração de uma 

interrupção quando o match 

do registrador OCR2x 

correspondente ocorre. 

Apenas configurado a geração 

para o OCR2A.  

Ativa geração de 

interrupção no 

overflow. 

Configurado para 

não ocorrer. 

Valor 

configurado: 

0x02 

0 0 0 0 0 0 1 0 

Portanto, resumindo o funcionamento gerido pelos registradores: o registrador 

TCCR2B configura que ocorrerá uma interrupção no match com o valor do registrador OCR2A. 

Além disso, o TCCR2B configura uma fonte de clock de 31.25kHz para o incremento do timer 
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e, finalmente, os bits WGM dos registradores TCCR2A e TCCR2B configuram o modo de 

operação para CTC, que significa Clear on Time Compare (limpar na comparação do timer), 

que faz que o valor do timer seja resetado para 0 sempre que ocorrer o match. 

Para calcular o valor correto para o registrador ORC2A, foi utilizada a lógica abaixo. 

A rotina de interrupção, é responsável pela leitura da saída do sensor de batimento 

cardíaco, ou seja, pela amostragem desse sinal analógico. Portanto, para definir uma 

frequência ideal de amostragem, foi levada em consideração a condição de frequência de 

amostragem mínima de Nyquist, que é dada pela equação: 

faminima = 2*fmaxsinal 

A fmaxsinal corresponde à frequência máxima de batimento cardíaco, que é:  

A fmaxsinal = 220bpm = 3.67Hz 

Portanto, a faminima = 3.67Hz * 2 = 7.33Hz 

Esse valor corresponde à frequência mínima de interrupções para obter-se uma 

amostragem livre de serrilhamento. No entando, não é necessario se prender a esse valor, 

quanto maior a frequência de amostragem, melhor será a digitalização do sinal. Por esse 

motivo, foi escolhido um valor 34 vezes superior: 250Hz, que não somente atende ao teorema 

de Nyquist, como vai proporcionar um sinal digital muito mais fiel ao original, sem causar 

muitos problemas de execução. Além disso, essa frequência de interrupções também será 

utilizada para o cálculo do pressionamento dos botões por 3[s] ou 6[s], o que será detalhado 

mais adiante nesta seção. Portanto, o valor correto para o registrador OCR2A é: 

finterrupção = frecebida/val_ocr2a 

250 = 31.25k/val_ocr2a 

val_ocr2a = 124 

frecebida corresponde à frequência de incremento do timer. 

A rotina de cálculo de batimentos por segundo, que é executada dentro da 

interrupção, é uma modificação da indicada pelo fabricante do sensor de batimentos 
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cardíacos utilizado SENS1574 (WORLD FAMOUS ELECTRONICS LLC) e pode ser vista com mais 

detalhes na referência. Os principais pontos serão abordados a seguir. 

Primeiramente, externo à interrupção e dentro da função hrtbitState() existe a 

estrutura:  

void hrtbitState(){ 
[...] 

if (QS == true){ QS = false; } 
[...] 
} 

Em que QS é uma variável que indica que foi detectado um batimento. Essa variável 

precisa ser limpa continuamente a cada execução do loop() e por isso se encontra na rotina 

do estado, não na interrupção.  

Dentro da interrupção, há a condição de apenas executar o código de aquisição de 

batimentos cardíacos se o estado da FSM for o de batimentos cardíacos, como pode ser visto 

no código da próxima página. 

A primeira parte do código busca os pontos mais altos e baixos de uma curva, com o 

objetivo de reconhecer batimentos cardíacos. Observando a Figura 11, do Capítulo 1, é 

possível observar que a partir de pontos altos e baixos da curva é possível fazer esse 

reconhecimento. 

ISR(TIMER2_COMPA_vect){ 
[…] 
 
  if(State == STATE_HRTBIT) 
  { 
    cli(); 
    Signal = analogRead(HRTBIT_PORT);          //realiza a leitura do sensor 
    sampleCounter += 2; 
    int N = sampleCounter - lastBeatTime;//calcula o tempo entre as leituras 
       
//  Procura o ponto mais baixo da curva  
    if(Signal < thresh && N > (IBI/5)*3){ 
      if (Signal < T){ 
        T = Signal; 
      } 
    } 
   
  //procura o ponto mais alto da curva 
    if(Signal > thresh && Signal > P){ 
      P = Signal; 
    } 
 
   
    if (N > 250){ //Evita ruído de alta frequência 
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//detecta um batimento 
      if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ){ 
        Pulse = true; 
        digitalWrite(LED_PORT,HIGH); 
        IBI = sampleCounter - lastBeatTime; 
        lastBeatTime = sampleCounter; 

[…]   
   
        } 

   

Um ciclo cardíaco possui na verdade dois batimentos: o maior é a sístole e o menor a 

diástole (NAKAJIMA, TAMURA e H.MIIKE, 1994). Para o menor, sístole, não ser confundido 

com um novo batimento, é adicionada a condição (N > (IBI/5)*3) no if de detecção de 

batimentos. Essa condição evita o reconhecimento de um novo batimento cardíaco em um 

curto espaço de tempo relativo aos batimentos já calculados. De maneira similar, a condição 

(N > 250) evita ruídos de alta frequência, ignorando "batimentos" muito próximos 

temporalmente (ou seja, funciona como um Filtro Passa Baixa). A variável IBI é calculada como 

o tempo entre os dois últimos batimentos, e N representa a diferença entre o tempo "atual" 

e tempo em que foi detectado o último batimento.  

Em seguida, a rotina calcula a frequência do pulso cardíaco, além de recalcular valores 

limites (threshold) para ser reconhecido o batimento. Também, ao reconhecer que o sinal está 

declinando, apontando a queda da curva Fotopletismografia, os dados necessários são 

resetados para que se inicie um novo reconhecimento de pulsação. 

[…]  
     //media de tempo dos ultimos 10 batimentos cardiacos. 
        for(int i=0; i<=8; i++){ 
          rate[i] = rate[i+1]; 
          runningTotal += rate[i]; 
        }  
        rate[9] = IBI; 
        runningTotal += rate[9]; 
        runningTotal /= 10; 
 
 

      // Tempo de 2 minutos em microsegundos dividido pela media de tempo 
      //dos ultimos 10 batimentos da quantidade de batimentos por minuto 
        BPM = 120000/runningTotal;            
        toScratchBPM = (uint8_t) BPM; 
        QS = true; 

         […] 

Também é possível observar a expressão toScratchBPM = (uint8_t) BPM em que a 

variável toScratchBPM, que será utilizada para fazer a transmissão do dado da frequência 
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cardíaca para o aplicativo Android é atribuída com esse valor. Detalhes de como a transmissão 

é feita serão explanados na seção abaixo Atualização das Bluetooth Characteristics. 

 

4.3.11 Interrupções de Transição de Pino e Aquisição dos Dados dos Sensores 

 A leitura dos dados do sensor de choque, do botão e do sensor de toque é feita 

utilizando interrupções. Como o ATmega328p tem suporte para apenas 2 interrupções por 

pinos, foi necessário utilizar a interrupção por porta, chamada portchange. Essa interrupção é 

executada sempre que algum dos pinos que compõem uma porta é alterado.  

 Para ativar essa interrupção, também chamada PCINT0_vect, é necessário configurar 

o registrador PCICR, selecionando a interrupção da porta0 (também chamada de PORTB), e 

do registrador PCMSK0, que configura quais pinos da porta0 são capazes de engatilhar a 

interrupção. O funcionamento detalhado dos registradores é mostrado no manual do 

microcontrolador (ATMEL, 2015). Os pinos pertencentes a porta0 são D9, D8, D7 e D6 do 

LightBlue Bean+. 

 A configuração desses dois registradores é feita na rotina setup(), por meio do código 

abaixo: 

[…] 
Setup(){ 
  […] 
  PCICR |= (1<<0); 
  PCMSK0 |= (0x3C); 
  […] 
} 
[…] 

 

Os três periféricos foram conectados a pinos dessa porta, conforme a tabela abaixo, e 

esses três pinos foram os habilitados para poderem engatilhar a interrupção por porta. 

Tabela 6: Pinos detectados pela interrupção de mudança de estado. 

Pino Periférico conectado 

D6 Sensor de choque 
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D8 Sensor de toque 

D9 Botão físico 

  

Como a mesma interrupção é executada quando qualquer um dos três pinos troca de 

estado, é necessário fazer o reconhecimento de qual deles foi alterado por software. Para isso, 

sempre que houver uma interrupção é feita uma comparação entre o estado da porta0 com 

o estado dessa porta na última execução da interrupção (pré-armazenado em uma variável 

global last_PINB). Naturalmente, o bit que estiver diferente representará o pino que foi 

alterado e que necessita ser tratado. Essa comparação é feita utilizando a operação binaria 

ou-exclusivo, como pode ser visto no código abaixo. 

ISR(PCINT0_vect) { 
  uint8_t changed_bits; 
  changed_bits = PINB ^ last_PINB; //compara os valores antigos com novos 
  last_PINB = PINB; //salva o valor para ser comparado na prox. execução 
[…] 
if (changed_bits & (1 << PINB5)) //BUTTON //se o valor do pino do botão mudou 
  { 
     
    readButtom = digitalRead(BUTTON_PORT); 
     
    if(readButtom == 1) //READBUTTON 1 = NOT PRESSING IT 
    { 
       […] 
    } 
    else 
    { 
       [...]     
    } 
  } 
} 

Essa estrutura é utilizada nos 3 sensores conectados à porta. 

 

4.3.12 Temporizador nos botões 

 Para realizar a temporização do botão e do sensor de toque, isto é, reconhecer o 

pressionamento por 3 ou 6 segundos consecutivos, foi aproveitada a interrupção já 

implementada do TIMER2 apresentada na seção Estado de medição de batimentos cardíacos. 

 Esta interrupção, como foi explicado anteriormente, acontece a cada 4ms. Durante a 

execução dessa interrupção, uma variável chamada counting4ms é incrementada, portanto, 
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essa variável conta a quantidade de ‘4ms’ executados.  Quando counting4ms chega na 

contagem de 250, totalizando a contagem de 1 segundo, seu valor é restaurado para 0 e uma 

nova variável, chamada oneSecond, é incrementada. Essa variável expressa a quantidade de 

segundos passados e ela é a utilizada na temporização dos 3 e 6 segundos.  

 
ISR(TIMER2_COMPA_vect){ 
static uint8_t counting4ms = 0; //variavel estática é compartilhada com todas as 
                                //instancias da rotina. 
  counting4ms++; 
  if(counting4ms==250){ 
    counting4ms=0; 
    oneSecond++; } 
[…] 

} 

Após a implementação dessa estrutura, as funções básicas para checagem de botão 

checkLongPress e checkLongPressTouch precisam apenas checar a diferença do valor da 

variável OneSecond no instante em que o botão começou a ser pressionado e no instante 

"atual" de execução do código, levando em consideração a possibilidade de ter ocorrido 

overflow nesse meio tempo. A amostragem do valor no início do pressionamento do botão 

(ou sensor) é feita na rotina de interrupção, enquanto a comparação e a amostragem do 

instante corrente são feitas quando checkLongPress ou checkLongPressTouch são chamadas. 

É importante entender que a variável OneSecond é continuamente atualizada pela 

interrupção do timer2, enquanto a pressingTouchStartTime (e correspondentes), é atualizada 

quando o botão é pressionado. É possível observar essas características no código abaixo.  

ISR(PCINT0_vect) { 
[…] 
if (changed_bits & (1 << PINB4))  //TOUCH 
  { 
    readTouch = digitalRead(TOUCH_PORT); 
    if(readTouch == 0){ //READTOUCH 0 = botão não pressionado 
      releasingTouchTime = OneSecond; 
    } 
    else 
    { 
      updatedTouch = 1; 
      handled_3secPushTouch = 0; 
      handled_6secPushTouch = 0; 
      pressingTouchStartTime = OneSecond; 
    } 
 
  } 
[…] 
} 
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void checkLongPressTouch(){  
[…] 
if( readTouch == 1 ){ 
     pressingStartTime = pressingTouchStartTime; 
     delta_pressing = OneSecond - pressingStartTime; 
  } 
  […] 
  if(delta_pressing>6 && delta_pressing<10  && !handled_3secPushTouch ){  
    handled_3secPushTouch = 1; 

    […] 
  } 
[…] 
} 

Foi adicionada a variável handled_3secPushTouch (e outras correspondentes para 

diferentes tempos e para o botão mecânico) como uma flag que indica que a devida ação já 

foi tomada, para evitar que o mesmo código seja executado repetidamente enquanto o 

touch/botão se matem pressionado. 

4.3.13 Função de Detecção de Queda  

A checagem do acelerômetro é feita em todos os ciclos de execução da rotina loop() 

por meio da rotina accelRead(). Essa rotina reconhece momentos de queda livre do 

dispositivo, que podem ou não significar uma queda do usuário.  Ela acusa que houve de fato 

uma queda do usuário de duas diferentes maneiras: a primeira é com diversas medidas 

consecutivas que apontam a queda livre do dispositivo; a segunda é medindo uma queda livre 

do dispositivo e um impacto. 

 Essas medidas são feitas por meio da rotina incluída na biblioteca do LightBlue Bean+ 

Bean.getAcceleration(), que retorna as acelerações medidas pelo acelerômetro e as armazena 

em uma estrutura (struct) que possui um campo para cada eixo cartesiano: x, y e z. Quando a 

soma dessas três medidas é menor que um certo valor de limite, obtido 

empiricamentedefinido no código por FALLINGSIZE_threshold, significa que houve um 

momento de queda livre do dispositivo. 

 Quando é detectado um momento de queda livre, são realizadas mais leituras do 

acelerômetro para verificar se essa detecção se tratou de somente um movimento brusco ou 

se de fato o usuário caiu, caso seja detectado um mínimo de leituras consecutivas que 

apontam queda livre, definido no código como FALLINGTIMES_threshold, houve uma queda 

do usuário e as rotinas correspondentes de tratamento são chamadas.  

Figura 25: Fluxo de execução da rotina de detecção de queda. 
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FONTE: Autoria Própria. 

Caso esse mínimo não tenha sido atingido, mas pelo menos um momento de queda 

livre tiver sido detectado, ainda é possível que tenha havido uma queda do usuário. Para esses 

casos, é verificado se houve impacto do dispositivo. O impacto é detectado pelo shock sensor, 

que tem seu valor copiado para a variável global st_shock na rotina de interrupção. 

Ambas as condições, assim como a leitura de dados correspondente podem ser 

observadas no código a seguir: 

void accelRead(){ 
  dvcAccel = Bean.getAcceleration(); 
  magnetude = abs(dvcAccel.xAxis) + abs(dvcAccel.yAxis) + abs(dvcAccel.zAxis); 
 
  if(magnetude<FALLINGSIZE_threshold){ //detectado queda livre 
    times_that_fell++; 
    for(uint8_t i = 0; i<=(FALLINGTIMES_threshold-1) ; i++){ 
      dvcAccel = Bean.getAcceleration(); //novas leituras 
      magnetude = abs(dvcAccel.xAxis) + abs(dvcAccel.yAxis) + 
abs(dvcAccel.zAxis); 
       
      if(magnetude<FALLINGSIZE_threshold) times_that_fell++; 
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//primeira condição para detecção de queda 

      if(times_that_fell==FALLINGTIMES_threshold){  
        st_emergency = 1; 
        State = STATE_SOS;                  ///Entra em modo emergência 
        Bean.setLed(255,0,0); 
      }  
    } 
 

    //segunda condição para detecção de quedas 
    if(times_that_fell>0 && st_shock==1 ){ 
        st_emergency = 1; 
        State = STATE_SOS;              //Entra em modo de emergência 
        Bean.setLed(255,0,0); 
      } 
    times_that_fell = 0; 
  } 
} 

 

4.3.14 Atualização das Bluetooth Characteristics  

A verificação da necessidade de envio de dados por Bluetooth é feita em todos os ciclos 

da rotina loop() no interior da rotina updateScratch(), que é responsável por administrar os 

dados que estão sendo compartilhados. Caso eles tenham sido alterados, devem ser 

atualizados e enviados. 

Isso é feito mantendo sempre uma cópia do último dado enviado e comparando com 

o atual estado dos dados. Se não forem iguais, os dados atualizados devem ser enviados para 

o aplicativo Android, o que é feito por meio da rotina disponível da biblioteca do LBB+,como 

demonstrado no código a seguir: 

 

 

 

void updateScratch() 
{ 
[…] 
 if(oldScratchBuffer[0] != toScratchBuffer[0] || oldScratchBuffer[1] != 
toScratchBuffer[1]) 
  { 
    Bean.setScratchData(2,toScratchBuffer,2); 
  } 
[…] 
} 
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A função Bean.setScratchData(uint8_t bank, uint8_t* data, uint8_t size) escreve em 

um dos 5 bancos (banks) que define as Bluetooth characteristics do Bean+ para ser lido pelo 

aplicativo Android. O parâmetro bank indica em qual banco o dado será escrito, o parâmetro 

data contém os dados a serem escritos e size é a quantidade de bytes a ser escrita. O dado 

enviado é o vetor toScratchBuffer, que possui dois bytes: o primeiro contendo os dados de 

queda, de emergência e de alguns sensores concatenados e o segundo contendo a última 

medição de batimentos cardíacos. 

Tabela 7: Organização dos dados a serem enviados para as BLE Characteristics 

Byte/Bit 7 6 5 4 3 2 1 0 

1-Sinais Emergency   HearthBeat 
     

2-hrtbit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

A estrutura que concatena as flags em um byte e a estrutura que concatena o bit de 

batimentos cardíacos e os que contêm as flags é mostrada no código abaixo. 

void updateScratch() 
{   
[…] 
toScratchByteWrite = ((readShock & 0x01)<<1 | (st_fell & 0x01)<<2 | 
                          (st_hrtbit & 0x01)<<5 | (st_emergency & 0x01)<<7); 
 
[…] 
  toScratchBuffer[0] = toScratchByteWrite; 
  toScratchBuffer[1] = toScratchBPM; 
[…] 
 
      } 

 

Além de ser enviar dados, essa rotina também é responsável por tratar o recebimento 

de dados.  Isso é feito lendo o banco de memórias e checando os campos que devem ser 

escritos pelo aplicativo Android.  A leitura dos dados é feita utilizando uma função simples, 

que retorna uma estrutura de vários bytes enfileirados. A leitura e, sequencialmente o 

tratamento do dado é exibido no código abaixo. 

ScratchData toScratchRead; 
[…] 
toScratchRead = Bean.readScratchData(2); //ler do banco 2 
scratchByte = toScratchRead.data[0]; 
[…] 
if(scratchByte & 0x4){  
      activateBuzzer2sec(); 
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      Bean.setLedBlue(255); 
    }else 
    { 
      Bean.setLedBlue(0); 
    } 

Neste código é feito o tratamento da informação que ativa o modo de leitura de 

batimentos cardíacos a partir do aplicativo Android.  

 

4.4 IMPLEMENTAÇÃO ANDROID 

 A aplicação Android foi desenvolvida utilizando o Android Studio e testada em um 

aparelho Samsung Galaxy s8 rodando Android 6.0. O desenvolvimento da aplicação teve foco 

em funcionalidades e por esse motivo não serão expostos detalhes do desenvolvimento da 

interface de usuário. 

 Primeiramente, é necessária a compreensão superficial de como um projeto Android 

é organizado. Existem arquivos .java que determinam as lógicas implementadas pela 

aplicação. Existem arquivos  .xml que determinam como serão desenhados os elementos de 

uma aplicação. Existem arquivos .gradle que determinam scripts  que regem a compilação do 

código e, finalmente, existe o arquivo AndroidManifest.xml, que determina configurações 

básicas para a execução do aplicativo. 

 Os arquivos .xml cosméticos são encontrados no GitHub do projeto, e sua confecção 

foi feita com o uso dos recursos visuais do Android Studio. 

 O arquivo build.gradle, que possui diretrizes de compilação, necessitou ser alterado 

para a importação da biblioteca do Bean SDK, que é a API criada pela PunchThrough para a 

utilização do Bean. A linha abaixo foi adicionada: 

 

dependencies { 
[…] 
    compile 'com.punchthrough.bean.sdk:sdk:2.1.1' 
[…] 
} 

Também é necessária a edição do arquivo AndroidManifest.xml, pois este arquivo 

controla as permissões do Sistema que o aplicativo pode ter quando executado. As permissões 

que necessitam ser adicionadas são as de leitura do estado do telefone, de recebimento e 
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envio de mensagens SMS, de Bluetooth, além de permissão de localização, necessária para a 

utilização do Bean SDK. As linhas abaixo são as que devem ser adicionadas  

<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
    package="com.example.gobbi.tccapp"> 
    <uses-permission android:name="android.permission.READ_PHONE_STATE" /> 
    <uses-permission android:name="android.permission.SEND_SMS" /> 
    <uses-permission android:name="android.permission.RECEIVE_SMS" /> 
    <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" /> 
    <uses-permission android:name="android.permission.BLUETOOTH" /> 
 
    <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" /> 
    <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" /> 
</manifest> 

Essas linhas indicam que o aplicativo pode requisitar essas permissões, porém ainda é 

necessária a aprovação futura do usuário quando o aplicativo é executado pela primeira vez. 

 Para compreender a implementação do aplicativo, é necessário compreender o 

conceito de callback. Callbacks são funções utilizadas por funções assíncronas, ou seja, que 

não têm seu resultado no momento do fim de sua execução. Ao invés disso, é necessário 

esperar algum processamento (ou resposta) que chegará após um tempo indeterminado. 

Quando o resultado estiver disponível, a função de callback é chamada. 

O arquivo MainActivity.java define a lógica que o aplicativo executará quando for 

aberto. Nesse arquivo ainda é necessário a importação de bibliotecas pois o arquivo .gradle 

apenas indica quais bibliotecas serão disponíveis para a importação, ao invés de realmente 

importá-las. 

A rotina onCreate define a execução que será feita quando o aplicativo é aberto, e é 

análogo à um main() da programação em C.  Nesta rotina é feito, primeiramente, a requisição 

das permissões necessárias para o usuário, por meio de rotinas como a mostrada abaixo.  

ActivityCompat.requestPermissions(this,  
                       New String[] {Manifest.permission.ACCESS_FINE_LOCATION}, 
                       8); 

           

Para fazer a busca de dispositivos, é necessária a declaração de uma variável do tipo 

BeanDiscoveryListener definido pela BeanSDK. Essa variável define uma classe que administra 

a busca por novos dispositivos LightBlue Bean+. Nesta classe, existem funções de callback, que 

serão assincronamente chamadas quando certos eventos ocorrem. Exemplos dessas call-

backs são: OnDiscoveryComplete() e OnBeanDiscovered(). Para definir, portanto, o que deve 
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ser executado quando um novo Bean é descoberto, deve-se sobrescrever a função 

onBeanDiscovered(), como foi feito no código abaixo. 

final BeanDiscoveryListener listener = new BeanDiscoveryListener() { 
            @Override 
            public void onBeanDiscovered(Bean bean, int rssi) { 
                beans.add(bean);} 

[…] 
  } 

         

O código acima é executado sempre que um Bean é encontrado e adiciona o 

dispositivo para uma lista de dispositivos encontrados chamada de bean.  

 Para começar a busca por dispositivos, é necessário executar uma função que notifica 

a classe BeanDiscoveryListener como é feito abaixo. 

 button1.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View v) { 
                BeanManager.getInstance().startDiscovery(listener); 
            } 
        }); 

A administração de um dispositivo conectado é feita por uma classe similar, chamada 

BeanListener. Essa classe tem o funcionamento ditado também sobrescrevendo funções de 

callback. As mais importantes são: onConnected() e onScratchValueChanged(). 
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A primeira serve apenas para exibir mensagens com informações sobre o dispositivo e 

é mostrada a seguir: 

final BeanListener beanListener = new BeanListener() { 
 
    @Override 
    public void onConnected() { 
        currentBean = beans.get(0); 
        bean.readDeviceInfo(new Callback<DeviceInfo>() { 
            @Override 
            public void onResult(final DeviceInfo deviceInfo) { 
                runOnUiThread(new Runnable() { 
                    @Override 
                    public void run() { 
                        mainConsole.addInfo("Connected to device!"); 
                        mainConsole.addInfo(deviceInfo.hardwareVersion()); 
                        mainConsole.addInfo(deviceInfo.firmwareVersion()); 
                        mainConsole.addInfo(deviceInfo.softwareVersion()); 
 
                    } 
                }); 
 
            } 
        }); 
[...] 
    } 

 A sintaxe confusa apresentada pela função ocorre devido a particularidades da 

linguagem. Basicamente, estão sendo definidos objetos durante a própria declaração dos 

mesmos.  

A função onScratchValueChanged() é chave para o sistema. Ela é a rotina que é 

automaticamente chamada quando o valor das charachteristcs é alterado pelo wearable. 

Nela, é feito o caminho inverso mostrado na seção Atualização das Bluetooth Characteristics. 

Os dados chegam, portanto, em bytes que devem ter seus dados extraídos. Depois da 

extração, deve ser feita uma comparação com os dados antigos, para averiguar quais sofreram 

alteração.  Esse processo é exibido no código a seguir: 
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final BeanListener beanListener = new BeanListener() { 
    […] 
    @Override 
    public void onScratchValueChanged(ScratchBank bank, byte[] value) { 
        int temp; 
 
        scratchData[0] = value[0]; 
        scratchData[1] = value[1]; 
 
        temp = value[1] & 0xFF; //transforma signed em unsigned 
 
         […] 
        int st_emergency = (scratchData[0] & 1<<7) >> 7; 
         […] 
        int st_emergencyOld = (scratchDataOld[0] & 1<<7) >> 7; 
         […] 
 
        if(st_emergency == 1 && st_emergencyOld == 0){ //entrou em emergencia 
            […] 
            String msg = name + ", preciso de ajuda! Me ligue"; 

      […] 
            sendSMS(phoneNumber,msg); 
        }else if(st_emergency == 0 && st_emergencyOld == 1){ //saiu de 
emergencia 
            […] 
            String msg = name + ", ja estou bem."; 

      […] 
            sendSMS(phoneNumber,msg); 
        }else{ 
            //nothing is done 
        } 
 
        scratchDataOld[0] = scratchData[0]; //mantem copias antigas 
        scratchDataOld[1] = scratchData[1]; 
 
    } 

Finalmente, é feito o envio da mensagem de texto. O envio e recebimento da 

mensagem de texto é administrado pelo mesmo objeto em todos os aplicativos Android. Por 

isso, não se deve declarar um novo administrador de mensagem de texto e sim obter o 

administrador padrão. Isso é feito com a chamada SmsMenager sms = 

Sms.Manager.getDefault(). Deve-se então enviar um pedido para esse administrador com a 

intenção de enviar a mensagem, com número e corpo definido. Esse procedimento pode ser 

visto no código da rotina abaixo: 

    private void sendSMS(String phoneNumber, String message) { 
 
        SmsManager sms = SmsManager.getDefault(); 
        PendingIntent sentPI; 
        String SENT = "SMS_SENT"; 
        sentPI = PendingIntent.getBroadcast(this, 0,new Intent(SENT), 0); 
        sms.sendTextMessage(phoneNumber, null, message, sentPI, null); 
    } 
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5 RESULTADOS 

 Nesta seção, serão demostrados os resultados obtidos neste projeto. Os diferentes 

recursos do funcionamento do protótipo serão exibidos sucintamente a seguir. Uma 

apresentação do protótipo criado é mostrada na Figura 26. 

Figura 26: Ilustração da montagem final do projeto. 

 

FONTE: Autoria Própria. 

 

Foi determinada a autonomia energética de 18 horas. Para uma bateria de 600mAh, isso 

determina o gasto energético de 33.3[mAh] por hora. Esse valor é aceitável para um protótipo 

criado em protoboard, entretanto deve ser melhor em um produto final. 
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5.1  ATIVAÇÃO DO MODO DE EMERGÊNCIA POR QUEDA 

A ativação da emergência por queda é funcional. O sistema detectou a queda, notificou 

por BLE para o aplicativo instalado no smartphone, que enviou automaticamente uma 

mensagem para um contato configurado. 

As Error! Reference source not found. mostram o estado do dispositivo antes e depois 

da queda, e o aplicativo conectando ao dispositivo e reconhecendo a mudança de estado.  

Figura 27: Teste da ativação por queda. 

 

FONTE: Autoria Própria. 

Para a validação do modo de emergência por queda, foram realizados testes em 

diversas circunstancias exibidos na tabela abaixo. 

Tabela 8: Testes de detecção de queda. 

Altura Superfície Resultado 

10cm Macia Não Detectou Queda 

30cm Dura  Detectou Queda 

60cm Dura Detectou Queda 

120cm Macia Detectou Queda 

170cm Dura  Detectou Queda 

170cm Macia  Detectou Queda 
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A Figura 28 todo mostra a mensagem que foi enviada para o contato selecionado na 

configuração do aplicativo. 

Figura 28: Captura de tela do smartphone que recebeu a mensagem SMS, a esquerda, e do que enviou o mensagem SMS, a 
direita.

 

FONTE: Autoria Própria. 

 

 

5.2  ATIVAÇÃO DO MODO DE EMERGÊNCIA MANUAL 

A ativação da emergência por meio do do botão é funcional. O sistema detectou o 

pressionamento do botão pelo tempo necessário e ativou o modo de emergência. Em seguida, 

o modo de emergência foi desativado de modo análogo. As mensagens de emergência e da 

saída do modo de emergência foram enviadas.  

 

5.3 MEDIÇÃO DE BATIMENTOS CARDÍACOS 

A medição de batimentos cardíacos é funcional. O sistema entra no estado de medição, 

mede corretamente e envia os dados para o smartphone para a exibição na tela. Na Figura 29, 

é possível observar as medições de batimento cardíaco sendo feitas e atualizadas em tempo 
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real.  Nota-se que inicialmente há um período de adaptação, onde são reconhecidos valores 

equivocados (como 19, 51, 38, entre outros), porém seguidamente, os valores se estabilizam 

em uma medição correta (com valores em torno de 70). 

Figura 29: Captura de tela do aplicativo desenvolvido recebendo dados de batimento cardíacos, que após um certo tempo 
de adaptação reconhece os valores corretos. 

 

FONTE: Autoria Própria. 
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6 CONCLUSÃO 

 O projeto criado apresentou funcionamento adequado como esperado, além de 

alcançar os objetivos desejados. 

 Os conceitos intrínsecos de programação de sistemas embarcados foram 

extensamente utilizados neste projeto. A compreensão de boas práticas para a confecção do 

código foi gradual durante a execução do projeto, sendo necessária diversas vezes a alteração 

de códigos já funcionais, com o objetivo de melhorar robustez e qualidade. 

 O Bluetooth Low Energy, assim como o próprio Bluetooth clássico, é uma tecnologia 

utilizada diariamente, mas cujos conceitos ainda são pouco conhecidos por desenvolvedores. 

A implementação da comunicação Bluetooth foi surpreendentemente simples, sendo o maior 

desafio entender como utilizar o BLE de maneira eficiente e eficaz no projeto. 

 O Android foi outra tecnologia totalmente nova para o desenvolvedor deste projeto. A 

linguagem de programação tem seu maior desafio na compreensão dos diversos conceitos 

utilizados para escrever poucas linhas de código. Além desses conceitos da própria linguagem, 

existem muitos conceitos de programação orientada a objetos utilizados pela linguagem, o 

que causou mais uma dificuldade para o desenvolvedor.  

 Finalmente, o LightBlue Bean+ é uma ótima ideia de placa de prototipação para 

wearables que utilizam BLE. Dito isso, o Bean+ se mostrou decepcionante. Mesmo sendo um 

projeto ativo para a PunchThrough, foi observado abandonado, não recebendo atualizações 

básicas há um tempo considerável. Atualizações essas que seriam essenciais, pois grande 

parte das funcionalidades não se mostravam robustas, falhando inesperadamente. Além 

disso, na documentação, que à primeira vista parecia promissora, faltavam dados essenciais 

que apenas são necessários quando é preciso debugar códigos.  Sendo assim, o desenvolvedor 

do projeto necessitou praticar diversas vezes “engenharia reversa” para obter informações 

úteis. Além disso, grande parte das funcionalidades, diversas vezes básicas, da família Bean 

foi implementada apenas para IOS, tendo a implementação para Android adiada 

indefinidamente. A comunidade quase nula da placa corroborou para os problemas causados 

pela falta de robustez e documentação. 
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Apesar dos problemas com a placa de desenvolvimento, tanto o planejamento quanto 

a execução do projeto foram um sucesso. Foram compreendidas, planejadas e executadas as 

partes necessárias para a criação de um protótipo funcional, que se assemelha 

consideravelmente a soluções existentes atualmente no mercado.  

 

 

 

 

6.1 TRABALHOS FUTUROS 

A execução deste projeto foi feita de forma modular para melhor receber melhorias 

em trabalhos futuros. Sendo assim, próximos passos para a melhoria do protótipo são: 

• Aprimoramento do algoritmo de detecção de queda, pois ainda é um campo 

em que diversas pesquisas estão sendo feitas; 

• Implementação de mais bio-sensores no wearable; 

• Implementação de sensores capazes de reconhecer um ambiente perigoso 

para o idoso, detectando incêndios ou incidências fortes de raio UV; 

• Recebimento e tratamento de mensagens SMS que realizam ações especificas 

no wearable; 

• Envio e recebimento de mensagens de voz por meio do dispositivo wearable; 

• Implementação e envio de geolocalização junto com a mensagem de 

emergência; 

• Melhoria do aplicativo, melhorando sua robustez e criando uma interface 

gráficas agradável ao usuário; 

• Criação de uma pulseira que capacite a utilização no pulso; 

• Envio de informações do nível de bateria para o aplicativo Android; 

• Transformar o projeto do protótipo em um projeto de produção em massa 

  



76 
 

REFERÊNCIAS 

 

ADAFRUIT. Introduction to Bluetooth Low Energy, 2014. Disponivel em: 

<https://learn.adafruit.com/introduction-to-bluetooth-low-energy>. Acesso em: 15 out. 

2017. 

ANDREWS, J. R. Co-verification of Hardware and Software for ARM SoC Design. [S.l.]: 

Newnes, 2004. 

ANDROID. Android Reference. Android for Developers, 2017. Disponivel em: 

<https://developer.android.com/index.html>. Acesso em: 30 nov. 2017. 

ARDUINO. Arduino, 2017. Disponivel em: <https://www.arduino.cc/>. Acesso em: 23 nov. 

2017. 

AT&T. EverThere. AT&T, 2016. Disponivel em: <https://www.att.com/gen/press-

room?pid=25140&cdvn=news&newsarticleid=37328>. Acesso em: 28 nov. 2017. 

ATMEL. ATMEL 8BIT 328p USER MANUAL, 2015. 

AVAGO TECHNOLOGIES. APDS-9008 Miniature Surface-Mount Ambient Light Photo Sensor. 

BLUEPIXEL TECHNOLOGY LLP. BLE Scanner Playstore Page. Play Store, 2017. Disponivel em: 

<https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=pt_BR>. 

Acesso em: 29 out. 2017. 

BLUETOOTH SIG, 2017. Disponivel em: <https://www.bluetooth.com/what-is-bluetooth-

technology/bluetooth-origin>. Acesso em: 16 set. 2017. 

BOSCH. BMA Digital, triaxial acceleration sensor Data Sheet, 2011. Disponivel em: 

<http://www1.futureelectronics.com/doc/BOSCH/BMA250-0273141121.pdf>. 

BRAY, J.; STURMAN, C. F. Bluetooth: Unifying the Telecommunications and Computing 

Industries, 2002. Disponivel em: <http://www.informit.com/articles/article.aspx?p=27591>. 

Acesso em: 16 set. 2017. 



77 
 

BROOKS, M. Falls Cause Most Accidental Deaths in Elderly Americans. Medscape, 2015. 

Disponivel em: <https://www.medscape.com/viewarticle/844322>. Acesso em: 27 nov. 2017. 

CAREPREDICT, 2017. Disponivel em: <https://www.carepredict.com/assisted-living-memory-

care/>. Acesso em: 28 out. 2017. 

CIEL LIGHT. CL-SF687 DataSheet, 2012. Disponivel em: 

<http://www.ciellight.com/pdf/smdled/3528full/CL-SF687RGB.pdf>. Acesso em: 25 nov. 

2017. 

GREATCALL. GreatCall, 2017. Disponivel em: <https://www.greatcall.com/devices/lively-

wearable-senior-activity-tracker?kbid=62750>. Acesso em: 28 out. 2017. 

HELPCARE. HelpCare, 2017. Disponivel em: 

<http://www.helpcarebrasil.com.br/monitoramento-de-idosos>. Acesso em: 28 out. 2017. 

IMAGE. Wikipedia: The Free Encyclopedia. Disponivel em: 

<http://commons.wikimedia.org/wiki/File:Fitbit_Charge_HR.jpg>. Acesso em: 16 set. 2017. 

JOEL MURPHY. Pulse Sensor Amplified. TAPR Open Hardware, 2017. Disponivel em: 

<http://tapr.org/OHL>. Acesso em: 30 out. 2017. 

LAMKIN, P., 2015. Disponivel em: 

<https://www.forbes.com/sites/paullamkin/2015/10/29/wearable-tech-market-to-treble-in-

next-five-years/#1bde62b82c77>. Acesso em: 16 set. 2017. 

MARWEDEL, P. Embedded System Design. [S.l.]: [s.n.], 2006. 

MICROCHIP TECHNOLOGY, INC. Bluetooth Low Energy Channels, 2017. Disponivel em: 

<http://microchipdeveloper.com/wireless:ble-link-layer-channels#toc1>. Acesso em: 16 set. 

2107. 

NAKAJIMA, K.; TAMURA, T.; H.MIIKE. Monitoring of heart and respiratory rates by 

photoplethysmography using digital filtering technique, 1994. 

OPEN HANDSET ALLIANCE. Platform Architecture. Android for Developers, 2017. Disponivel 

em: <https://developer.android.com/guide/platform/index.html>. Acesso em: 26 nov. 2017. 



78 
 

OSHANA, R.; KRAELING, M. Software Engineering for Embedded Systems. [S.l.]: [s.n.], 2013. 

PRADO, J. Qual operadora tem a melhor cobertura do brasil? tecnoblog, 2017. Disponivel em: 

<https://tecnoblog.net/211938/qual-operadora-melhor-cobertura-sinal-4g-3g-2g/>. Acesso 

em: 04 dez. 2017. 

PUNCH THROUGH DESIGN. Prototype to Production. Bean, 2017b. Disponivel em: 

<https://punchthrough.com/bean/docs/guides/everything-else/proto-to-prod/>. Acesso em: 

22 out. 2017. 

PUNCHTHROUGH DESIGN. PunchThrough About. PunchThrough, 2017a. Disponivel em: 

<https://punchthrough.com/>. Acesso em: 22 out. 2017. 

PUNCHTHROUGH DESIGN. Accelerometers. Bean, 2017c. Disponivel em: 

<https://punchthrough.com/bean/docs/guides/features/accelerometer/>. 

PUNCHTHROUGH DESIGN. Technical Specs. Bean, 2017c. Disponivel em: 

<https://punchthrough.com/bean/docs/guides/getting-started/tech-specs/>. Acesso em: 22 

out. 2017. 

TEHRANI, K.; MICHAEL, A., 2014. Disponivel em: <http://www.wearabledevices.com/what-is-

a-wearable-device/>. Acesso em: 16 set. 2017. 

TONTOUCH. 1 KEY TOUCH PAD DETECTOR IC - TTP223-BA6, 2008. Disponivel em: 

<https://radiokot.ru/konkursCatDay2014/53/01.pdf>. Acesso em: 2017. 

UDOO NEO. KY-031 Knock Sensor. UDOO Neo Documentation, 2017. Disponivel em: 

<https://www.udoo.org/docs-neo/Cookbook_Arduino_M4/Knock_sensor.html>. Acesso em: 

2017 out. 15. 

VAHID, F.; GIVAGIS, T. Embedded System Deisgn: A Unified Hardware/Software Approach. 

[S.l.]: [s.n.], 2001. 

WARNE, W. Bluetooth Low Energy - It starts with Advertising. Bluetooth, 2017. Disponivel em: 

<https://blog.bluetooth.com/bluetooth-low-energy-it-starts-with-advertising>. Acesso em: 

16 set. 2017. 



79 
 

WORLD FAMOUS ELECTRONICS LLC. Pulse Sensor GitHub. Pulse Sensor. Disponivel em: 

<https://github.com/WorldFamousElectronics>. Acesso em: 29 nov. 2017. 

ZURIARRAIN, J. Android já é o sistema operacional mais usado do mundo. El Pais Brasil, 2017. 

Disponivel em: 

<https://brasil.elpais.com/brasil/2017/04/04/tecnologia/1491296467_396232.html>. Acesso 

em: 26 out. 2017. 

 

 


