UNIVERSIDADE DE SAO PAULO

ESCOLA DE ENGENHARIA DE SAO CARLOS

JOAO PEDRO GOBBI CODOGNOTTO

Projeto e Prototipacao de Bracelete Inteligente para Auxilio e Monitoramento

de ldosos

Sao Carlos

2017

JOAO PEDRO GOBBI CODOGNOTTO

Projeto e Prototipacao de Bracelete Inteligente para Auxilio e Monitoramento

de ldosos

Monografia apresentada ao Curso de
Engenharia de Computacdo, da Escola de
Engenharia de Sao Carlos da Universidade de
S3o Paulo, como parte dos requisitos para
obtencdao do titulo de Engenheiro de

Computacao.

Orientador: Prof. Dr .Evandro L. L. Rodrigues

Sado Carlos

2017

AUTORIZO A REPRODUGAOD TOTAL OU PARGIAL QESTE TRABALHO,
POR QUALQUER MEID COMVENCIONMAL OU ELETROMICO, PARA FIMS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

CEESp

Codognotto, Jodo Fedro Gobbi

Erojeto = prototipacio de bracelete inteligente
para auxilic = monitoramento de idoscs / Jodo Pedro
Gobbi Codognotto:; orientador Evandro Luis Linhares
Rodrigues. S8o Carlos, Z017.

Monografia (Graduagio em Engenharia de Computagio]
—- Escola de Engenharia de 330 Carlos = Instituto de
Cidncias Matemdticas e de Computaglio da Universidade de
S33p Paulo, Z2017.

1. Monitoramento de Idosos. 2. Wearable. 2.
Blu=tooth Low Energy {BLE] . 4. Android. 5. LightElus=

Bean+. I. Titunlo.

FOLHA DE APROVACAO

Nome: Jodo Medro Gobhi Codosnotio

Titula: “Projete ¢ protolipacEo de broceletz ineligenle para auxtho ©
monitoramento de idosos™

L |
L

= P
Trabalhe de Conelusio de Curso defendido em =/ -1 i,

Comissao Julgadora; Resultudu:

Prof, Associade Lvandro Luds Linhan Rodriguss

(Orientador) - SEL/LESCUSP A DIZOVAST)
Mestra Alex Antonio AfTonso ke Lo Y P e
Doutoranda - SEL/EESCASP

Mestee André Tuis Martins LT a2 r,-{.i;{«t:"
Dovtarando - SELAERSCAISE f

Conrdenador do Cursa Inferanidndes Enpenharia de Compteeidn:

Fraof, D, Maeimiliam Luppe

Scanned by CamScanner

DEDICATORIA

Dedico esse trabalho as minhas avods, Dirce e Marisa.

AGRADECIMENTOS

Agradeco a meu Pai, Pedro, e a minha mae, Marisa, por todo suporte estrutural dado a mim

nos meus ultimos 22 anos de vida.
Agradec¢o ao meu irmao, Pedro Henrique, por sempre querer o melhor para mim.
Agradeco meus amigos, por terem feito meu periodo na universidade mais completo.

E finalmente, agradeco vigorosamente a minha namorada, amiga e parceira, Roberta Costa,

por ser uma parte essencial em todas as minhas conquistas recentes.

Sem vocés eu com certeza ndo teria chegado t3o longe, tao rapido.

“It's the questions we can't answer that
teach us the most. They teach us how to
think. If you give a man an answer, all he
gains is a little fact. But give him a question
and he'll look for his own answers.”

-Patrick Rothfuss

10

11

RESUMO

CODOGNOTTO, J. G. Projeto e Prototipacdo de Bracelete Inteligente para Auxilio e
Monitoramento de Idosos. 2017. Monografia (Trabalho de Conclusdao de Curso) — Escola de
Engenharia de S3o Carlos, Universidade de Sao Paulo, Sdo Carlos, 2017.

Acidentes sdao uma das maiores causas de morte em idosos e este trabalho foi motivado pela
utilizacdo de tecnologias vestiveis na mitigacdo deste problema. Neste documento é
detalhado o desenvolvimento e implementacdo do projeto de um protétipo de um dispositivo
vestivel, também conhecido pela expressao da lingua inglesa: wearable. Este dispositivo é
voltado ao publico idoso e possibilita uma comunicacdo quase instantdnea com um contato
de emergéncia pré-definido. Outras funcionalidades, como a detec¢do de queda e a medicao
de frequéncia de batimentos cardiacos sdo implementadas. O projeto utiliza Bluetooth Low
Energy para a comunicacdo do dispositivo com um aplicativo para smartphone Android. O
desenvolvimento do protdtipo foi feito numa placa LightBlue Bean+, que conta com um
microcontrolador ATmega 328p além de um SoC Bluetooth responsavel por realizar a
comunicacdo. O envio do pedido de emergéncia é feito por meio de envio de uma mensagem
SMS a partir do smartphone previamente conectado no dispositivo. O projeto foi bem-
sucedido pois implementou as funcionalidades requeridas, de forma eficiente, que
possibilitam a evolucdo para um produto real vestivel para o monitoramento de seguranca de

idosos.

Palavras-chave: Wearable, LightBlue Bean+, Bluetooth Low Energy (BLE), Android,

Monitoramento de Idosos

12

13

ABSTRACT

Accidents are one of the biggest causes of death with the elderly and this work was motivated
by the use of wearable technology on the mitigation of this problem. On this document, the
development and implementation of a wearable device prototype is detailed. This wearable
is meant especially for the elderly public and enables an almost instantaneous communication
with a pre-defined emergency contact. Other functionalities, like fall detection and heartbeat
rate measuring are also implemented. The project uses Bluetooth Low Energy for the
communication between the device and an Android application. The development of the
prototype was made on a LightBlue Bean+ development board, that has a microcontroller
ATmega 328p, besides an SoC Bluetooth responsible to accomplish communication. The
emergency request sending is done through an SMS sent from the smartphone that was
previously connected to the device. The project was successful, once it efficiently
implemented the required functionalities, which enables its evolution to a final product of a

wearable for elderly safety monitoring.

Keywords: Wearable, LightBlue Bean+, Bluetooth Low Energy (BLE), Android, Monitoring

System for Seniors.

14

15

SUMARIO
U1 [o PP U TSR PROPRRPRPRPRN 15
R [o Yo [0 o= o TR P UPPPORTPPP 17
00 R © oY 11 o 1Y/ o TSP 17
00 A |V o 4 VYot [NP 17
1.3 0rganizagdao do Trabalnoceiiiiiiii i e 18
1.4 ESTado da Arte... i 18
2 Embasamento TEOMICO.....ccuvieiriieeiiieeeee et Error! Bookmark not defined.
2.1 Tecnologias Vestiveis — Wearable Technologyccccccuveiiiiiiiieiccieee e 20
2.2 Bluetooth LOW ENErgy — BLEcoiiiiiiiiiiiiiiee ettt sae e s e ivee e e e saaaea e 20
2.3 Sistemas Embarcados: MCUS € SOCS.........ccoiiiiiiiiiiiiiiiiieeniie ettt 23
2.3.1 Firmware € BoOtloader.......c.coiiiiiiiiiieiiieie et 24
2.4 Sistema Operacional ANdroidoccciiiieiiee e e e e e e e 25
3 MATEIAIS it 27
3.1 Placa de Prototipacdo LightBlue BEan+.........cccoeiiiieiiiiiii et 27
3.2 Sensor de ChoquUE KY-031.......ceeeiieiiiiiiiirieeeeeeeeieciirreeeeeeeeeesntrrrereeeseeesesnrsanesesessennnns 31
3.3 Sensor de ToqUE TTP223 ... ittt e e e e e e e e e e e eenrrer e e e e e e e e e s nnrsareeeaaeeennns 32
3.4 Sensor de Batimentos Cardiacos — SENT11574ccccceiiiiiniiiiniieiniieenieeesiee e 33
N |V T=1 o T Lo LUV PR PRSPPI 36
o R B 1Yol Yo T e (I o o =] o TSR 36
4.2 Arquitetura geral do SISTEMAuueeiiiiiiiieiieeeee e 37
4.3 Implementacdo do Sistema Embarcado.......ccccceeiieiiiiiiiiiei e, 39
4.3.1 Configuracdo do ambiente €m LiNUX......cccceeeeeieiiiireeeeeeeeeeeiirrreeee e eeeennreeeeee e 40
4.3.2 Configuracdo no Ambiente ANdroid........ccccceeeiecciiiiiie e, 41
4.3.3 Atualizacdo do Firmware no ambiente LiNUX......ccccvveeeeeeieiicinireeeeeeeeeeeirreeeeeeen. 42
4.3.4 Programacdo do MCU no ambiente LiNUXcccvvurvreeeeerieiiiiinireeeeeeeeeeeinrreeeeeeenn 44
4.3.5 Programagao do MCU no ambiente Android........ccccoeveeeiiriieeeiniiieeeeniiieee e 45

4.3.6 Implementacdo do codigo embarcado........ccccoevvrrrreiiiiiiiiiiieee e 45

16

4.3.7 Funcionamento da maquina de estados que define o funcionamento geral....47
4.3.8 EStado NOIMaleoiiiiiiiiiiie e 48
4.3.9 Estado de EMErgENCiaccccceeiciiiieeeciiee ettt ettt e e e 48
4.3.10 Estado de medicdo de batimentos cardiacos........ccccceeeeeieicciiiiiieeee e, 50
4.3.11 Interrupgdes de Transicdao de Pino e Aquisi¢ao dos Dados dos Sensores 57
4.3.12 Temporizador NOS DOLOES......cccuuiieiiiiiiieeriiee ettt e e e 59
4.3.13 Fungdo de Detecgdo de QUEA.....ccciuuiieeeiiieeieiiee e crreee e e 60
4.3.14 Atualizacado das Bluetooth Characteristics.......cccovvvieeeiiiieicceeee e, 62

4.4 Implementagdo ANAroidccooiciiiieieiiiee e e e e e 64

5 RESUITAOS ...t 69
5.1 Ativacdao do modo de emergéncia por QUEMAeevevuvieeiiriieee e 70
5.2 Ativacdo do modo de emergéncia Manual........cccueeeeeiiieeieciieeeeeceee e e 71
5.3 Medigdao de batimentos cardiaCos........cccveuieiiiriiiieiirieee e 71

I e Tl [V 11 [O PP PP UP PP 73
6.1 Trabalhos FULUIOScccueiiiiiiiiiiie e s 74

7 R =LA =] oA = LT 75

17

1 INTRODUCAO

1.1 OBJETIVO

O objetivo deste trabalho é desenvolver um protétipo de um dispositivo wearable de
auxilio a idosos e um aplicativo Android que se comunique com esse dispositivo. O sistema
deve ser capaz de notificar um contato pré-definido quando o dispositivo entra em estado de
emergéncia. O dispositivo deve poder entrar em modo de emergéncia manualmente ou
automaticamente, quando é detectada uma queda. Outra funcionalidade que deve ser
implementada é a medicao de batimentos cardiacos. O dispositivo criado deve ser eficiente
energeticamente, possibilitar a mobilidade, além de ser de fécil uso, para aderéncia do uso

pelo seu publico alvo: idosos.

O projeto deve ser desenvolvido utilizando materiais que possibilitem uma evolugado do
protétipo para um futuro projeto de producdo em massa. Além disso, ha foco no uso de
tecnologias que ja se encontram presentes no mercado, e na utilizacdo de uma rede de

telecomunicacao ja existente cuja cobertura seja alta.

1.2 MOTIVACAO

Um fato imutdvel é que o ser humano envelhece e novas limitacdes fisicas e mentais
surgem. Tais limitacdes causam preocupac¢ao em familias e amigos que, contra a vontade dos
mais velhos, forcam uma rotina mondtona com a necessidade de cuidadores, visitas
constantes e asilos. Essas atitudes nao sdo exageradas, uma vez que uma das maiores causas
de mortes em idosos é relacionada a acidentes (BROOKS, 2015), que poderiam ter suas
consequéncias mitigadas com um socorro imediato. Uma comunicacdao amigdvel, facil e
rapida, entre o idoso e pessoas de confianca, tem o potencial de beneficiar e salvar a vida de

muitos idosos.

18

1.3 ORGANIZACAO DO TRABALHO

Este documento esta dividido nas seguintes sec¢oes:

Introdugao, em que o leitor é contextualizado do propésito geral do projeto, e
uma visdo geral do escopo desde documento é apresentada, assim como uma
explanagao do estado da Arte para dispositivos similares no momento da

composi¢ao deste documento.

Embasamento tedrico, em que alguns conceitos necessarios para o
entendimento do funcionamento do projeto, bem como sua implementacao

sao explicados e detalhados.

Materiais, em que todos os materiais e tecnologias utilizados sao relacionados,
com uma descricdo detalhada dos seus funcionamentos e especificagdes
técnicas.

Métodos, em que o desenvolvimento do projeto é finalmente detalhado, com
explicacOes de alguns trechos de cddigos, decisdes de projeto, e da arquitetura
final geral do sistema.

Resultados. Nessa secdo, o funcionamento do protétipo é demonstrado, com
casos de teste que cobrem as funcionalidades implementadas.

Conclusdao. Na ultima sec¢do, sdao sumarizados alguns pontos relevantes
observados durante o desenvolvimento deste protdtipo e sdo feitas algumas

sugestoes de provaveis trabalhos futuros.

1.4 ESTADO DA ARTE

O crescimento do uso de tecnologias vestiveis e da internet das coisas influencia

diretamente o crescimento da quantidade de dispositivos para monitoramento de idosos. As

solucdes atuais contam com o uso de telefonia para a comunicacdo com uma central de

atendimento que, ao receber um pedido de emergéncia ativado por um simples e grande

botdo de emergéncia, entra em contato com o idoso ou familiares. Esses servicos contam com

assinaturas mensais, como o servico americano EverThere, da empresa americana AT&T

(AT&T, 2016) e o servico disponivel no Brasil HelpCare (HELPCARE, 2017). O Everthere é

19

independente, enquanto o HelpCare funciona apenas em residéncias, por depender de uma
base para comunicag¢ado por linha de telefone fixo. Também existe no Mercado comunicadores
dependentes de smartphones para a comunicacao e funcionamento como, por exemplo, o

GreatCall (GREATCALL, 2017).

Figura 1: (a)Everthere (b)CarePredict (c)GreatCall (d)HelpCare

(a) (b)

\ b (7
s},@ ‘
< p g

(c) (d)

FONTES: (a) (AT&T, 2016) (b) (CAREPREDICT, 2017) (c) (GREATCALL, 2017) (d) (HELPCARE, 2017)
N3do foram encontrados projetos e produtos relevantes que implementavam uma solugdo
livre de assinatura mensal. Além disso, o reconhecimento automadtico de emergéncia é
limitado nos aparelhos ja citados. O mais evoluido neste aspecto é o CarePredict Tempo

(CAREPREDICT, 2017), que busca padr&es e os processa com inteligéncia artificial.

20

2 EMBASAMENTO TEORICO

2.1 TECNOLOGIAS VESTIVEIS — WEARABLE TECHNOLOGY

Uma tecnologia em expansdo e que recebe grandes investimentos, esses dispositivos
tém previsdo de atingir um mercado de 25 bilhdes de ddlares, na préoxima decada (LAMKIN,
2015). Consiste em uma das maiores vertentes da Internet das Coisas, conceito que conecta
elementos comuns do cotidiano, como eletrodomésticos e a computadores a Rede, o que

resulta em uma comunicagdao e um monitoramento constantes.

Os Wearables, como sdo popularmente chamados no Brasil e no mundo, consistem
em aparelhos inteligentes, que podem substituir tarefas de computadores e Smartphones,
entretanto eles tendem a ser integradas com o usuario, podendo por meio de sensoriamento

avancado receber e enviar informages em tempo real (TEHRANI e MICHAEL, 2014).

Segundo Tehrani e Michael (2014), o propdsito de um wearable é criar uma conexao
constante, conveniente, transparente, portatil e quase independente dos usudrios com seus
diversos eletronicos. Sendo assim, o dispositivo deve focar no sensoriamento, na comunicagao

com outros dispositivos, e na sua praticidade para o usuario.

2.2 BLUETOOTH Low ENERGY - BLE

Criado para unificar a comunicacdo de curta distancia entre dispositivos (BLUETOOTH
SIG, 2017), o Bluetooth consiste em um conjunto de protocolos aplicados em diversas
camadas de comunicacdo (BRAY e STURMAN, 2002) e é muito utilizado para a criacdo de uma

rede PAN (Personal Area Network).

Ja sendo quase omnipresente em dispositivos moveis, a tecnologia continua em
evolucdao conforme a necessidade de adaptacdo e em 2011 foi lancada uma nova vertente da
tecnologia: o Bluetooth Low Energy, também chamado de BLE ou Bluetooth Smart. Com o
objetivo de ser utilizado amplamente por dispositivos no contexto da Internet das Coisas, o
BLE facilita sua implementacdo por constituir Perfil de Acesso Genérico (GAP) e Perfil de

Atributo Genérico (GATT).

21

O Generic Access Profile (GAP) é o perfil no qual o dispositivo Bluetooth se baseia para
estabelecer e gerenciar conexdes e varia, principalmente, conforme a topologia da rede do
sistema. O Generic Attribute Profile (GATT) define o modo pelo qual os dispositivos BLE se
comunicam. O GATT utiliza Servigos (services) e Caracteristicas (Characteristics) para a
comunicacdo, podendo esses ser configuracdes predefinidas e padronizadas ou configuracoes
personalizadas criadas pelo desenvolvedor do dispositivo. Como pode ser observado na Figura
2, um servico possui diversas caracteristicas, que correspondem aos dados que devem ser
sincronizados entre os dispositivos para uma certa aplicacdo. Um exemplo simples de GATT é
um servico UART, em que uma das caracteristicas é o canal RX, que pode ser escrito apenas
por outro dispositivo e outra é o canal TX, que deve ser configurado para apenas o dispositivo

local ser capaz de escrever (ADAFRUIT, 2014).

Figura 2: Organizagdo do GATT contendo Servigos e, subsequentemente, Caracteristicas.

N
PROFILE
[SERVICE)
[CHARACTERISTIC]
[CHARACTERISTIC]
[CHARACTERISTIC]

. I
[SERVICE)
[CHARACTERISTIC]
[CHARACTERISTIC]

. o
. J

FONTE: (ADAFRUIT, 2014)

O diferencial mais relevante do Bluetooth Low Energy comparado ao Bluetooth Classic
€ que no primeiro a economia de energia esta inerente em todas as camadas de comunicacao.
O BLE possui dois tipos de transmissdo. A primeira é a de Anuncio (Advertising) que consiste
na troca de informacgdes para a Descoberta de Dispositivos, Estabelecimento de Conexdes e
Transmissdes Broadcast, enquanto a segunda é a de Dados, que cria uma conexdao Duplex com

uma boa taxa de transmissao.

Dos 40 canais de 2MHz disponiveis na camada fisica, 3 sdo utilizados para a
transmissao do tipo Anuncio (Advertising) e 37 sdo utilizados para a transmissdo de dados
(WARNE, 2017). O padrao das transmissdes em ambos é o mesmo, entretanto os 37 canais de

dados ficam desligados quando inativos (geralmente a maior parte do tempo), aumentado

22

significativamente a economia de energia. Portanto, os modulos BLE dos dispositivos tém a
capacidade de permanecer ociosos ao mesmo tempo em que conseguem ter uma conexao

iniciada ou receber dados Broadcast.

Utilizando seus diversos canais, a tecnologia também diminui o consumo energético
ao necessitar de menos poténcia para apaziguar efeitos de ruido, que sdo significativos, uma
vez que toda a banda utilizada pelo Bluetooth é compartilhada com outras tecnologias, como
o WiFi. O BLE implementa a Adaptative Frequency Hopping, ou Salto Adaptativo de
Frequéncia, em que ao detectar muita interferéncia em um canal de dado, simplesmente
‘salta’ para o proximo até encontrar um canal com nivel de ruido aceitavel. O mesmo ndo
ocorre com os canais de Advertising, portanto eles sao especialmente selecionados para
serem os que menos sofrem de interferéncia, uma vez que ficam posicionados nas bordas dos
canais do WiFi (MICROCHIP TECHNOLOGY, INC., 2017). Este efeito pode ser observado na
Figura 3, que compara os canais utilizados por ambas as tecnologias no espectro de

frequéncia.

Figura 3: Espectro de Frequéncia comparando bandas do BLE com WiFi.

2.4 GHz PHY Channel Assignment
Bluetooth® Low Energy

VS.
IEEE 802.11 (United States)
2412 2437 2462
Channel 1 Channel & Channel 11

Channel: 370 1 2 3 4 5 6 7 8 9 10381112131415161718 1920 2122232425262 2930313233 34 3536 39

2400 2410 2420 2430 2440 2450 2460 2470 2480

Frequency (MHz) SOt 2483.5
. Advertising

FONTE: (MICROCHIP TECHNOLOGY, INC., 2017)

23

2.3 SISTEMAS EMBARCADOS: MCUS E SOCs

Projetos de Sistemas Embarcados possuem os requisitos de serem eficientes e
confidveis (MARWEDEL, 2006), conceitos os quais sdo relativos, pois podem referenciar
diferentes tipos de requisitos do sistema. Um sistema confidvel que é protegido contra
alteracdes de dados mal-intencionadas é diferente de um sistema confidvel protegido contra
erros em temperaturas baixas; de modo similar que um sistema eficiente energeticamente
ndo obrigatoriamente sera eficiente em seu custo/beneficio. Para alcancar os requisitos do
sistema que esta sendo projetado, os desenvolvedores devem escolher com cuidado as partes
gue o compdem, sem esquecer ainda de levar em consideragao como elas influenciam no
tempo de desenvolvimento do produto final. Um sistema embarcado compreende de um
conjunto de Hardware, a parte fisica do sistema, e de Software, a parte légica programavel
que sera executada no Hardware. O projetista deve, entdo, ponderar quais partes, tanto de
Hardware quanto Software, serdo desenvolvidas internamente e quais serdo adquiridas e
entdo integradas ao sistema, considerando que a configuracdo e integracdo dessas partes
também correspondem ao desenvolvimento do projeto. Quando partes ja estao totalmente
integradas e funcionais e ja foram testadas, o projetista deve abstrair esse conjunto gerado,

enxergando-o como uma unica parte (ou bloco).

O essencial de qualquer aplicacdo de um sistema embarcado costuma ser a aquisicdo
de dados e o subsequente processamento destes, que serdo feitos por interfaces de Entrada
e Saida (Input/Output ou I/0) e uma ou mais unidades de processamento, respectivamente.
As entradas e saidas se conectam a periféricos que sao blocos abstraidos, os quais, por meio
de sua propria légica e implementacdo, interagem com outros sistemas computacionais ou
realizam medicdes de grandezas fisicas, possibilitando sensoriamentos e interacdes com
humanos. Com o objetivo de abstrair o essencial para o projetista, foram criados os

Microcontroladores (MicroController Unit ou MCU).

Os Microcontroladores encapsulam (ou seja, pré-conectam e abstraem os blocos
responsaveis por tarefas) um microprocessador juntamente com blocos de Entrada e Saida e
outros blocos essenciais para a realizacdo de processamentos, como cristais osciladores,
contadores, temporizadores, memodrias (VAHID e GIVAGIS, 2001). Alguns blocos mais

complexos e ndo essenciais, que atualmente sao utilizados comumente, também podem ser

24

integrados, como por exemplo os responsaveis por entradas e saidas seriais (como UART,

entre outros).

Andrews (2004) explica que apesar de ndo possuir uma definicdo absoluta e formal, o
termo SoC (System on Chip ou Sistema em Chip) geralmente se refere ao componente que
encapsula uma ou mais unidades de processamento, blocos que gerenciam entradas e saidas,
blocos de aplicagGes basicas, além de um ou mais blocos especificos e complexos, que sdo
orientados a aplicacdes, como por exemplo os que gerenciam Wi-Fi ou Bluetooth; Esse nivel
de abstracdo gera facilidade na integracdao e no tempo de desenvolvimento de um sistema

embarcado.

Portanto, apesar de nebulosa e ndo formal, a diferenca entre um microcontrolador e
um SoC é, resumidamente, que os microcontroladores sdo mais simples, porém mais gerais,
enguanto os SoCs sao mais complexos e criados para aplicagdes mais especificas, como por
exemplo o uso de Rede ou aplicacdes que demandam mais memoria do que é tipicamente

encontrado em MCUs.

2.3.1 Firmware e Bootloader

Firmware sao software que controlam hardware. Embarcado em microcontroladores
ou SoCs, o firmware é eternamente executado com o objetivo de controlar o dispositivo no
qual estd presente. Um firmware pode ser complexo ou simples, independente ou

dependente de outros software (OSHANA e KRAELING, 2013).

Bootloader é um conjunto de instrugdes que é executado durante a inicializagdo de um
hardware. Esse software é responsavel por diferentes tarefas, dependendo do hardware que
é executado. Exemplos de tarefas sao: inicializacdo de registros, inicializacdo da meméria,
configuracées de clocks e, principalmente, a chamada de firmware e/ou Sistemas

Operacionais (OSHANA e KRAELING, 2013).

25

2.4 SISTEMA OPERACIONAL ANDROID

O Android é um sistema operacional com Kernel Linux que pode ser executado em
diversas plataformas, principalmente em telefones celulares e tablets. Fundado em 2003 e
posteriormente adquirido pela Google, hoje é o sistema operacional mais utilizado do mundo

(ZURIARRAIN, 2017).

Esse sistema operacional OpenSource administra os recursos do dispositivo com
objetivo de criar uma plataforma responsiva para o usuario; eficiente, principalmente na area
energética e na de alocagdo de recursos; segura e que possibilite uma relativa facilidade de

desenvolver aplicagdes.

Para promover o desenvolvimento de aplicagdes, que sdo escritas principalmente em
Java, o Google disponibiliza 0 ambiente de desenvolvimento Android Studio e o Android SDK
(Software Development Kit ou Kit de desenvolvimento de Software). Este pacote de
desenvolvimento disponibiliza ferramentas de simulagao, ferramentas para Debbugging,

bibliotecas/APIs, além de cddigos fonte e ferramentas geradoras de cddigos automaticos.

Esta disponivel aos desenvolvedores também o Java APl Framework, que consiste,
simplificadamente, em um conjunto de APIs. Essas APIs facilitam o desenvolvimento de
aplicativos, uma vez que possibilitam o reuso de alguns componentes do Sistema Android,
como, por exemplo, o View System ou Sistema de Visualizacado (responsdvel pelo desenho de
estruturas basicas como caixas de texto, tabelas ou botdes) e Administradores (Managers) de
Notificacdo, Localiza¢do, Janela, entre outros, que abstraem a implementacado desses recursos

na plataforma.

Para atingir tais funcionalidades, esse framework se utiliza de uma maquina virtual,
chamada Android Runtime (ART), e de bibliotecas em C/C++, que devem ser executadas
diretamente na maquina real, ndo na virtual. O ART e as bibliotecas em C/C++, por sua vez,
fazem uso de cédigos especificos para cada periférico do dispositivo. Esses cddigos compdem
o HAL (Hardware Abstraction Layer ou Camada de Abstracdo de Hardware), que possibilita
gue o mesmo codigo seja compativel com diversos modelos de, por exemplo, cdAmeras, apenas
variando os codigos do HAL para seus respectivos hardware, o que deve ser feito,

naturalmente, pelo fabricante do dispositivo, ndo das aplicacdes. A Figura 4, abaixo, ilustra de

26

forma simples e de facil legibilidade o relacionamento de todos esses componentes

(ANDROID, 2017).

Figura 4: Diagrama que mostra os principais componentes da plataforma Android. Organizagdo com maior nivel de
abstragdo conforme mais alto na pilha de blocos exibida.

System Apps

Dialer Calendar Camera

Java API| Framework

Managers
Content Providers
Activity Location Package Notification

View System Resource Telephony Window

Native C/C++ Libraries

OpenMAX AL Android Runtime (ART)

Media Framework OpenGL ES _.. Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel

Drivers

Binder (IPC) Display

Bluetooth

Shared Memory

Power Management

FONTE: (ANDROID, 2017)

27

3 MATERIAIS

3.1 PLACA DE PROTOTIPAGAO LIGHTBLUE BEAN+

A placa utilizada para o desenvolvimento do projeto foi fabricada pela empresa
americana PunchThrough Design. A jovem empresa criada em 2009 é especializada em
projetos com Bluetooth e tém produtos e projetos sendo utilizados por empresas como

Google e organizagdes como a NASA (PUNCHTHROUGH DESIGN, 2017a).

Figura 5: Pdgina da Internet da desenvolvedora de projetos e produtos com Bluetooth PunchThrough Design.

':;) punchThrough SERVICES Ascr_7i WHITEPAPERS JOBS BEAN STORE CONTACT

EMPOWERING
CONNECTED
PRODUCTS &

BUSINESSES

At Ppunch Through Design, we cresate the
software end hsrd that lets
businesses tap Into the evolving world of
connected products

Thync @ worosous Google @ BACi.k POPSLATE #lefucw ARM Atmel QNoRDIC €27

THE EXPERTS IN BLUETOOTH.

m

FONTE: Autoria Prdpria.

Com quase 100mil unidades vendidas, a familia de placas de desenvolvimento
LightBlue Bean tem o objetivo de criar plataformas simples, porém potentes para
desenvolvimento de produtos com Bluetooth Low Energy. Existem duas versdes na familia, a
mais simples, menor e com baixo custo é a versdao Bean, que pode ser utilizada no produto
final de pequenos projetos pessoais e industriais, e a versao Bean+, que é maior, mais robusta
e possui mais pinos e conexdes. Essa Ultima versdo é a utilizada neste projeto. As placas dessa
familia também contam com bibliotecas e APIs Android/IOS pré-desenvolvidos que agilizam o

tempo de desenvolvimento.

A familia de placas tem suporte de “Prototipa¢do para Produgao em Massa”. Esse é o

suporte dado pela empresa PunchThrough ao disponibilizar todos os arquivos e dados

28

necessarios para a transformacao do protétipo em um produto final de baixo custo. Para isso,
é disponibilizado todo o esquematico da placa com todos os componentes especificados, além
do Bootloader e Firmware necessarios, e de suporte pago para consultoria (PUNCH THROUGH

DESIGN, 2017b).

Figura 6: Placa de desenvolvimento LightBlue Bean+

FONTE: (PUNCHTHROUGH DESIGN, 2017a)

A arquitetura do sistema, como mostrado na Figura 7, consiste principalmente de um
SoC Bluetooth CC254x, feito pela Texas Instruments e de um Microcontrolador ATmega328p,
produzido pela Atmel. O sistema foca em abstrair detalhes de baixo nivel da utilizagdo do
Bluetooth, utilizando o SoC para a sua administracdo. Para alcancar essa abstracdo, a parte
programada pelo usuario da placa (na Figura 7 representada como User Code) é feita apenas
para o ATmega328p e, utilizando bibliotecas especificas, esse MCU se comunica
transparentemente com o SoC para utilizagdo do Bluetooth. Essa comunicacdao é feita
utilizando UART (Universal Asynchronous Receiver-Transmitter), um barramento simples de

dois fios, que por ser assincrono, necessita pré-configuracdo pelas duas partes envolvidas.

29

Figura 7 Arquitetura do Sistema da placa LightBlue Bean+.

Q LightBlue ‘ Beaﬂ+ Accelerometer RGB LED

System Architecture

SPI/I’C PWM
OS X
User Code
Bean Arduino AP -7 i0s
Range -=-=""
Bluetooth Stack BLE —— ender <. .
) o - = Android
Arduino + Bean Libraries ~ .
Windows
L — LightBlue Platform
ATmega Firmware
Bootloader
ATmega328p Microcontroller CC254x Bluetooth SoC
5V Supply
LiPo Charger w/ PPM — UsB
3.3V Supply
600mAh LiPo
Battery

FONTE: (PUNCHTHROUGH DESIGN, 2017c)

Além da abstracdo do Bluetooth, também é abstraido do desenvolvedor um LED RGB
e um Acelerébmetro. Esses periféricos sao conectados diretamente com o SoC Bluetooth. A
conexado do acelerémetro, implementada com SPI ou 12C, é transparente e, por esse motivo,
ndo deve ser administrada pelo usuario. A conexao do LED RGB é feita com uma porta PWM
(Pulse Width Modulator), que significa que o LED tem a capacidade de brilhar em diversas
intensidades por receber uma entrada digital que, na pratica, atua como uma entrada
analégica. Essa conexao também é transparente para o usuario, por meio de bibliotecas

especificas.

O microcontrolador Atmega 328p é o mesmo utilizado pela conhecida placa Arduino
Uno. Arduino é uma plataforma Open-Source para desenvolvimento de projetos eletrénicos.
Essa plataforma conta com uma grande quantidade de documentacdo além de diversas
ferramentas que ajudam no desenvolvimento de projetos (ARDUINO, 2017). Uma dessas

ferramentas é o conjunto de bibliotecas que abstrai diversas funcées do microcontrolador

30

utilizado e essas bibliotecas sdo compativeis com a placa LightBlue Bean+ pela utilizacdo do

mesmo microcontrolador além de um Bootloader compativel.

O acelerémetro utilizado no LightBlue Bean+ e, consequentemente, no projeto é o
BMAZ250E, feito pela BOSCH (PUNCHTHROUGH DESIGN, 2017c). Esse é um acelerémetro de
3 eixos, que significa que aceleracdo é medida nos eixos X, Y e Z, como pode ser observado na
Figura 8. A medicdo é feita utilizando microssistemas Eletromecanicos (MEMS ou micro
electro-mechanical system), que sao sistemas que utilizam grandezas mecanicas e grandezas
elétricas. Neste caso, converte aceleragdao (uma grandeza mecanica) em capacitancia (uma
grandeza elétrica). Esse sensor de baixo consumo energético possui varios modos de uso e

sua saida é digital.

[ara

Figura 8: Eixos x’, 'y’ e ‘z” mostrados em relagdo ao eixo da terra ‘g’.

FONTE: (BOSCH, 2011)

O BMA250E é altamente configurdvel e possui modos que detectam padrdes ou que
geram uma saida conforme a quantidade de [g]s observados. O [g] é uma medida de
aceleracdo e corresponde a uma gravitacao da terra, ou 9.6[m/s?]. A acuracia do sensor é fixa
em 10bits, porém sua escala pode ser selecionada entre +2g, +4g, +8g e +16g. Isso significa
que, por exemplo, na escala de +4g os valores entre -4 [g] e + 4 [g] serdo mapeados com
valores entre -512 e +511, que sdo os valores limites com sinal que podem ser representados

por esse numero fixo de bits, calculado utilizando a equa¢dao A com o valor total deslocado

31

para representar também numeros negativos. O passo da medicdo e sua precisdo sera, neste

caso, de 0.0078125 [g] e de 0.0068125 [g/bit], podendo ser calculado utilizando a equacgao B.

(27™) = nimero maximo de valores representados por n bits. (1)
2 *P/(27™) = precisédo (2)

Os modos que detectam padrdes geram saida ALTA em pinos especificos caso o padrao

seja detectado e BAIXO caso contrdrio, e ndao foram utilizados no projeto.

O LED RGB (Red/Green/Blue ou Vermelho/Verde/Azul) é um LED que é capaz de brilhar
em todas as cores compostas por vermelho, verde e azul. Foi utilizado o modelo CL-SF687RGB,
feito pela CIEL Light (CIEL LIGHT, 2012) que é composto por 3 LEDS nas respectivas cores

supracitadas, além de apresentar grande intensidade de brilho e uma superficie quase plana.

O Bean+ também possui uma bateria recarregdvel de Lithium-lon(LIPO). Essa bateria
possui uma carga completa de 600[mAh] e, conforme a completude da carga, fornece de
2.5[V] até 4.2[V] de tensdo. O Bean+ é capaz de calcular a porcentagem da carga total
carregada a partir desta propriedade, isto é, a propriedade em que a tensdo de saida da

bateria varia conforme a completude da carga.

3.2 SENSOR DE CHOQUE KY-031

Esse simples sensor detecta vibracdes e, consequentemente, choques fisicos ao
dispositivo. Também é conhecido como Knock Sensor por ser utilizado em detec¢do de Batidas
em portas e similares. Constituido de um Knock Switch e um resistor de Pull-Up, a saida é ALTA
guando nao detectada nenhuma vibracdo e BAIXA caso contrario. O Knock Switch é formado
por dois terminais, sendo um em forma de mola, como pode ser visto na Figura 9. A vibracao,
guando grande o suficiente, causa a conexdao de ambos os terminais resultando uma saida em

baixo (UDOO NEO, 2017).

32

Figura 9: Funcionamento do Knock Switch

Terminal & Terminal B

FONTE: (UDOO NEO, 2017)

3.3 SENSORDE TOQUE TTP223

O sensor de toque capacitivo tem o objetivo de disponibilizar uma entrada analdgica,
como a de um botdo, porém mais agradavel ao usudrio e mais durdvel para o dispositivo, por
nao possuir partes mecanicas. Sua saida é digital, ALTA quando sentido um toque, BAIXA, caso

contrario.

O sensor é constituido por um TTP223, o Cl principal, um capacitor C1 de 22[pF], que
determina a sensibilidade base da capacitancia sentida pelo Cl e por outros componentes mais

simples, que podem ser vistos na

Figura 10. Esse sensor possui a capacidade de configuracdo, por meio
de suas portas de entrada, entre saida ALTA e BAIXA, além do modo Toggle ou Direto. Além
disso, possui modo automatico de economia de energia quando ndo detecta toques por 12
segundos e ajuste automatico de entrada, que possibilita mais precisdo com diferentes
capacitancias de entrada. A capacitancia de entrada é gerada por um SensePad, que consiste
apenas em uma grande drea de material condutor que, ao ser pressionada, gera uma

capacitancia entre o objeto (I.E. o dedo de um operador) e o circuito. (TONTOUCH, 2008)

33

Figura 10: Esquematico de um TouchSensor

+5\
L
J1
p—— LED?Z
VCC | =l . P ouT
GND| =}2 el
ouT] &1
GND JP1 .
‘ 1k LEDH1 | PWR
Ic1 R2 ™ GND
. 6 =
| p REZEEN
TTP223-BAG 100n 100u
TP C1
GND

FONTE: (TONTOUCH, 2008)

3.4 SENSOR DE BATIMENTOS CARDiACOS - SEN11574
O Sensor de Batimentos Cardiacos tem o objetivo de analogicamente ler, utilizando
luz, a densidade de células de sangue do usudrio, formando assim uma curva que se

correlaciona com a frequéncia de batimentos cardiacos.

Essa técnica é chamada de Fotopletismografia (Photoplethysmography ou PPG) e
funciona da seguinte maneira: um emissor de luz e um receptor de luz sdo posicionados
préximos. A luz é direcionada para a pele humana quando em contato e parte desta luz é
absorvida enquanto outra parte é refletida. A porcdo refletida é medida pelo receptor. A
quantidade de luz absorvida pela pele, ossos e carne é quase constante enquanto a
guantidade absorvida por células do sangue varia devido ao fluxo sanguineo cardiovascular.

Sendo assim, é possivel observar picos na absorcdo de luz que correspondem aos batimentos

34

cardiacos (NAKAJIMA, TAMURA e H.MIIKE, 1994). A curva formada pode ser observada na
Figura 11.

Figura 11: Curva gerada pela técnica de Fotopletismografia.
@) peo \/\N\//\\/\/\/ W\/\/{\f
ECG
b 1 1

FONTE: (NAKAJIMA, TAMURA e H.MIIKE, 1994)
No sensor SEN11574, a emissdo de luz é realizada por um forte LED de cor verde, pois
é utilizado um fotorresistor com o pico de absor¢ao coincidente com comprimentos de onda
da luz nessa cor, como é possivel observar na curva de absor¢do do componente, mostrada
na Figura 12. A saida do sensor de luz é amplificada, como mostrado no esquematico da Figura
13 ,com o objetivo de facilitar a leitura do sinal. A saida do amplificador corresponde a saida

do SEN11574.

Figura 12: Curva de Absorg¢do Relativa do Fotoresistor APDS-9008 utilizado pelo sensor de batimento cardiaco.

o 9008 Spectral response
0.8 {—i——|— EyeResponse |

0.6 I l

U s 4 |'I Ii|I

Relative response

0.2 Y

300 400 500 600 700 800 900 1000
Wavelength innm

FONTE: (AVAGO TECHNOLOGIES)

Figura 13: Esquemadtico do Sensor de Batimentos Cardiacos SENS-11574 utilizado.

35

KB RevMnt LED

SM

11
L

D1

ul

1| APDS-9008

Vee

)

ND

ouT

02
oiacea
0603
RS ["Re |
10K 3. 3M
v
E g Op Amp
- 5 oo JouT
c2 c3 ca oo .l
/| |1 ¢ |l 3 NMINY ycpeooi-x_6F :
1] I §0T-23-5_MC
4. 7uF 4. 7uF 2. 2uF

(]
12K
o
=11
4
© .
5
R3
100K

FONTE: (JOEL MURPHY, 2017)

GND E|

36

4 METODOS

Esse projeto, que tem como objetivo geral uma comunicagao rapida e facil em momentos
de emergéncia, possui duas principais partes. A primeira parte é a do sistema embarcado, isto
é, o hardware e seu software embarcado, que representa o maior volume de desenvolvimento
do projeto e serd utilizado para a principal interacdao e controle do usuario. A segunda parte é
a do aplicativo Android, que é responsavel pela comunicacdo com externos (ou seja, o contato
de emergéncia definido). A comunicagdo entre o Wearable e o Aplicativo Android deve ser
transparente para o usuario, rapida e eficiente energeticamente. Ambos os software foram
desenvolvidos com uma metodologia incremental, com execugao de testes funcionais durante
cada iteracdo incremental. Os cddigos podem ser encontrados integralmente no GitHub do

projeto: github.com/jgobbic/TCCWearableGobbi .

4.1 DECISOES DE PROJETO

Um projeto de um dispositivo vestivel (wearable) deve considerar o gasto energético,
além de, normalmente, uma comunicag¢ao pratica com smartphones. Por esses motivos, foi
decidido a utilizacdo do Bluetooth Low Energy no projeto, para realizar eficientemente a

comunica¢ao com o smartphone.

A placa de desenvolvimento LightBlue Bean+ foi escolhida por dois principais motivos.
Primeiramente, ela foi desenvolvida por um grupo especializado em Bluetooth, que possui
projetos executados para grandes empresas. Além disso, a placa abstrai detalhes trabalhosos
do Bluetooth, que passa uma maior confiabilidade da comunicacdo enquanto aumenta a
velocidade de desenvolvimento do projeto. A placa, contudo, ndo seria utilizada se nao
oferecesse suporte para a transformacao do protétipo em produto final. Com detalhes, e
esquematicos, dos circuitos internos da placa, componentes que podem ser encontrados no
mercado e firmware/bootloaders disponiveis, a criacdo de um mddulo pequeno e de baixo

custo compativel com o software e hardware desenvolvidos neste projeto seria facilitada.

Para a realizagdo da interface do sistema com o usuario, foram escolhidos dois tipos de

botGes: um fisico e um touch. O fisico, que possui maior resposta tatil, ou seja, € mais

37

responsivo para o usuario, é utilizado para a ativacdo do modo de emergéncia, de forma que
0 usuario possa ter consideravel conforto de que o botdo foi de fato pressionado e o pedido
de socorro foi enviado. O botdo touch foi escolhido por ser mais agradavel para o toque
continuo, além de ter maior durabilidade de uso constante, e é utilizado para entrar em modo
de batimentos cardiacos. A interface de apenas dois bot&es foi escolhida para facilitar o uso

por idosos, que tendem a ter dificuldades na utilizagdao de novas tecnologias.

Foi escolhido desenvolver o aplicativo compativel com o sistema Android pois, além de
ser o sistema mais utilizado no mundo, é o sistema mais acessivel pois existe uma grande

variedade de smartphones de baixo custo com esse sistema operacional disponiveis.

Por ultimo, foi escolhido o envio de mensagens por SMS, ao invés de mensagens por

meio de uso da internet, pela maior cobertura do servico (PRADO, 2017).

4.2 ARQUITETURA GERAL DO SISTEMA

A comunicacdo entre as duas partes principais é o ponto chave do projeto criado. Essa
comunicacao, que foi implementada em BLE, funciona por meio de characteristics
implementadas por um service genérico, seguindo a estrutura mostrada na Figura 2, do
Capitulo 1. Essas characteristics sao, para o sistema, como dados compartilhados entre os
dispositivos conectados, ou seja, na pratica, sdo variaveis compartilhadas entre o dispositivo

embarcado e o aplicativo Android.

A implementacdo destas characteristcs é feita por meio de um dos 5 banks
disponibilizados pelo firmware do SoC Bluetooth do LBB+. Esses bancos sdo characteristics de
um service genérico. Toda vez que algum dado desse servico é alterado, por qualquer uma das
partes, a outra parte é notificada e é feita a aquisicdo dos dados. Os services e characteristics
podem ser vistos em detalhes no aplicativo BLE SCANNER (BLUEPIXEL TECHNOLOGY LLP,

2017), como mostrado na Figura 14.

38

Figura 14: Servigos e Caracteristicas do Bean+ mostrados num aplicativo de analise BLE.

< Bean+ GobbiCodo piscoNnecT £ Bean+ GobbiCodo DISCONNECT
Status: CONNECTED Status: CONNECTED
NOT BONDED NOT BONDED
CUSTOM SERVICE DEVICE INFORMATION
~ A495FF20-C5B1-4B44-B512-1370F02D74DE ~ 0x180A
PRIMARY SERVICE PRIMARY SERVICE
CUSTOM CHARACTERISTIC Q @ m CUSTOM SERVICE

UUID: A495FF21-C5B1-4B44-B512-1370F02D74DE ~" FOOOFFC0-0451-4000-B000-000000000000
Properties: READ,WRITE,NOTIFY,WRITE_NO_RESPONS PRIMARY SERVICE

Write Type:WRITE REQUEST GENERIC ACCESS

Descriptors: ' 0x1800

Client Characteristic Configuration Q PRIMARY SERVICE

UUID: 0x2902 GENERIC ATTRIBUTE

Notifications or indications disabled “ 0x1801

Characteristic User Description Q PRIMARY SERVICE

UUID: 0x2901 CUSTOM SERVICE

ARSI ' A495FF10-C5B1-4B44-B512-1370F02D74DE
CUSTOM CHARACTERISTIC Q @ m PRIMARY SERVICE

UUID: A495FF22-C5B1-4B44-B512-1370F02D74DE CUSTOM SERVICE

Properties: READ,WRITE,NOTIFY,WRITE_NO_RESPONS v

A495FF20-C5B1-4B44-B512-1370F02D74DE

Write Type:WRITE REQUEST PRIMARY SERVICE

Descriptors: BATTERY SERVICE

Client Characteristic Configuration Q ' 0x180F

UUID: 0x2902 PRIMARY SERVICE

Characteristic User Description G SCAN PARAMETERS

UUID: 0x2901 ' 0x1813

CUSTOM CHARACTERISTIC Q @ m PRIMARY SERVICE

1A, AAAFFFAA ACEBa ARAA D14 197AFAARTARE LITIRAAARI IMTEDEASE RNEVICE

FONTE: Autoria Prépria.

Um diagrama de sequéncia que representa todo o fluxo de comunicagdo para o caso
de detecgdo de queda pode ser visto na

Figura 15.

O sistema foi implementado de maneira modular com o objetivo de facilitar a
implementagao de novas funcionalidades no futuro. A transmissao de dados entre os

dispositivos é feita de maneira que, caso seja desejado a inser¢do de funcionalidades, é

39

necessario apenas a utilizacdo de um dos 5 bancos para a transmissdo dos dados. Cada banco

suporta até 20 bytes de dados e a leitura de cada um é feita separadamente.

Figura 15: diagrama de sequéncia exibindo o funcionamento no caso de deteccdo de queda.

i Ambiente Embarcado Ambiente Android i

Mede aceleracio

Envia medicio

i Envia dados 3 serem
i, enviados por BLE

wpanb eagmop|

Escreve chiractensticd
]

1 Notifica iteraclio
2 envia

Transmite dados

iRequisita envio de SMS

iComanda envio de SMS

FONTE: Autoria Prdpria.

4.3 IMPLEMENTACAO DO SISTEMA EMBARCADO

Para a implementacdo do sistema, o primeiro passo é o processo de preparag¢ao do
ambiente para a gravacao do codigo que serd executado no microcontrolador, que pode ser
chamado de firmware do MCU. Esse passo ndo é trivial, pois, no LightBlue Bean+ a
programacao deve ser feita de modo wireless, por meio do Bluetooth Low Energy. A
programacao é feita desse modo pois o real responsavel pela gravacdao no microcontrolador
é 0 SoC Bluetooth (é importante lembrar a diferenca entre ambos, tratada na secdo Sistemas

Embarcados: MCUs e SOCs).

Existem diferentes abordagens para fazer essa programacdo, e duas delas foram
utilizadas no projeto: Uma por meio de um aplicativo Android, chamado de Bean Loader for

Android e outra por meio de uma aplicacdo de linha de comando em ambiente Linux, chamada

40

de CLI Loader (Client Line Interface Loader). A abordagem utilizando o ambiente Android é
mais simples e intuitiva e foi a mais utilizada, uma vez que o acesso a um computador com
suporte ao Bluetooth Low Energy foi restrito durante a execucdo do projeto. Sendo mais
simples, a robustez e o detalhamento da compilagdo por meio do aplicativo Android sao mais
baixos, tornando mais dificil o processo de debugging do cédigo. A programacdo em um
ambiente Linux é, portanto, mais completa e facilita o debug, porém, envolve uma pré-
configuragdo do ambiente mais trabalhosa. Além disso, apenas o CL/ Loader é capaz de
atualizar o firmware do SoC Bluetooth. A abordagem com Linux foi utilizada quando era

necessario maior nivel de detalhes para debuging.

No ambiente Linux, a compilacdo do cddigo é feita a partir do Arduino IDE e a

transmissao para a placa de desenvolvimento a partir do CLI/ Loader.

4.3.1 Configuracao do ambiente em Linux
A configuracdo e programacao desta placa é diferente do habitual, e por esse motivo,

serd mostrada em detalhes nesta secao.

Para ser feita a configuracao, é necessario ter Python 2.7 instalado no sistema, além
de bibliotecas especificas para a manipulacdo do Bluetooth. A instalacdo de ambos pode ser

feita com a execuc¢do dos dois comandos abaixo em um terminal bash:

$ sudo apt-get install python 2.7.1
$ sudo sudo apt-get install bluetooth bluez libbluetooth-dev libudev-dev

Deve-se instalar também o Node.js, framework que é utilizado pelo CLI Loader. Isso

pode ser feito executando os comandos abaixo, que fazem download do instalador, extraem

o arquivo baixado e, por ultimo, instalam o framework na pasta adequada.

$ curl -0 https://nodejs.org/dist/v6.11.5/node-v6.11.5-1inux-x64.tar.xz
$ tar -xf node-v6.11.5-1linux-x64.tar.xz
$ cp -R node-v6.11.5-1inux-x64/* /usr/local/

Por ultimo, deve-se instalar o administrador de pacotes JavaScript chamado npm, e,

finalmente, o CLI Loader.

$ sudo install npm -g
$ sudo npm install -g -unsafe-perm bean-sdk

Para a compilacdo do cédigo, é necessario o Arduino IDE, que pode ser baixado,

extraido e instalado com os seguintes comandos:

41

$ curl -o http://downloads.arduino.cc/arduino-1.8.5-1inux64.tar.xz
$ tar -xf arduino-1.8.5-1linux64.tar.xz

$ cd arduino-1.8.5-1inux64

$./install.sh

Com o Arduino IDE e o CLI Loader instalados, é necessario, entdo, fazer a instalacdo das

bibliotecas personalizadas do LBB+ na IDE. O comando e uma mensagem de sucesso para

toda a execucdo do processo pode ser visto no cddigo abaixo e na Figura 16 abaixo.

|$ sudo bean install bean arduino core

Command completed.

Figura 16: Processo de instalagdo do CLI Loader e dependéncias concluido.

FONTE: Autoria Prdpria.

4.3.2 Configuracao no Ambiente Android
No ambiente Android, a compilacdo é feita na Nuvem e apenas o arquivo compilado é

automaticamente baixado e transmitido para a placa de desenvolvimento.

Para a instalacdo do Bean Loader for Android, é apenas necessario o download do

aplicativo a partir da loja do Google Play, que pode ser visto na Figura 17.

Figura 17: Aplicativo Bean Loader que deve ser descarregado da PlayStore.

42

Bean Loader - LightBlue Bean
Punch Through Design

\ DESINSTALAR ABRIR

Mais de 5.000 downloads

200

49 2 Ferramentas Semelhantes

FONTE: Autoria Prdpria.

Para facilitar a transferéncia de arquivos entre o computador e o Smartphone Android,
além da utilizacao mais agil do aplicativo, foi instalado no computador em que o projeto estava
sendo desenvolvido o programa SideSync, da Samsung, que possibilita a transferéncia de

arquivos ao estilo Drag’n’Drop (arrastar e soltar), além do controle total do smartphone pelo

computador.

Figura 18: Software SideSync sendo utilizado para controlar e transferir arquivos para o Smartphone, que aumenta a
produtividade utilizando o Bean Loader for Android.

43

=

- }//fif (times_that_fell)

179
180 - }//fox
181 = if(times_that_fell>0 && st_shock=—l }{
182 sSt_emergency = 1/
183 State = STATE SO5;
184 = LY
W g — =Y oo

185 | A “ X (%) SideSync
186 B2RW T alE 1717 o
EAC
188 SmartWatch(3l‘J) SCreen) () L
188 |}

90 &

191 Actions
192 up H-Y
193 ch

195 [sw Verify Sketch) Drag and drop files here to share them

198 Upload to Bean >

No notifications received

C++ =snurce file lenoth: 19747 lines: 711 In:1 Col:1 Sel:0I0 Unre (1F)

FONTE: Autoria Prdpria.

4.3.3 Atualiza¢do do Firmware em ambiente Linux

A atualizacdo do firmware do SoC do Bean deve ser feita. Como explicado
anteriormente, isso pode ser feito somente pelo CL/ Loader, pois o aplicativo Android ainda
ndo possui suporte para isso. Esse firmware é o que administra toda a utilizacdo do Bluetooth,
além de tratar de tarefas criticas como, por exemplo, a gravagdao do software criado no
microcontrolador. Para realizar tal atualizacdo, deve-se encontrar o Bean+ desejado na lista
de dispositivos BLE identificados, encontrar o seu endereco Bluetooth e posteriormente
executar a atualiza¢do. Esse endereco é Unico e fixo para cada dispositivo Bluetooth existente.

Os comandos que devem ser executados sao:

$ sudo bean scan
$ sudo bean program firmware -a 987bf359283c

A chave -3’ no comando bean program_firmware especifica o endereg¢o do Bean a

ser atualizado. O endereco é encontrado com o comando bean scan.

44

A atualizacdo deve ser realizada, e serd bem-sucedida quando o firmware encontrado

no Bean+ é o mesmo que se tenta instalar, como pode ser visto na Figura 19 abaixo.

Figura 19: Processo de atualizagdo de firmware concluido.

FONTE: Autoria Prépria.

4.3.4 Programacao do MCU em ambiente Linux

A gravacao de cddigo no microcontrolador, como foi dito anteriormente, pode ser feita
por ambos os ambientes. Para a realizacdo no ambiente Linux, o cédigo deve ser compilado
no Arduino IDE e transmitido para o Bean por meio do CL/ Loader.

Para o codigo ser compilado corretamente, compativel com o Bean+, deve-se
selecionar a placa de desenvolvimento no menu Tools -> Board -> LightBlue Bean+, como pode
ser visto na Figura 20.

45

File Edit Sketch | Tools|Help

Auto Format CtrsT
Archive Sketch

LitileRun Fix Encoding & Reload
#include <Pifl Serial Manitor Ctrl+Shift+ M 2
Jy— Serial Plotter Ctrl+Shift+L
j fine BUZZE \wii101 Firmware Updater
Board: "LightBlue Bean+ (2.0.3)" Bosrds Manager...
: Port Arduine AVR Boards
N Get Board Info Arduine Vin
/72aatog Programme: "AYRP " T
4define HRTBI| Burn Bootloader

Arduino Nano
STATE_NORMAL 0 Arduino/Genuino Mega or Mega 2560
STATE_ERTBIT 1 Arduine Mega ADK
STATE_SO0S 2

Arduino Leonardo

2de BSTATE_ENTSOS 3 Arduino Leonarde ETH

#de ESIATE_LEAVESOS 4 Arduino/Genuine Micro

#define invercMicroStateMacre(a) ((a) — (a) : 0 2 1) HnmEEmE
Arduino Mini
Arduino Ethemet
Arduino Fio

void sezup(){

digitalirite (BUZZER_PORT, LOW) ; Arduino BT
}//end setup LilyPad Arduino USB

LilyPad Arduine
Arduine Pro or Pro Mini
Arduino NG o older
veld loop(){ Arduino Robot Control
Arduino Robot Motor

TIMSK2 = 0x00;7 // ENEBLE INTERRUPT ON MATCH BETWE Arduine Gemma
TCCR2A = 0x02; // DISABLE PWM ON DIGITAL PINS 3 Adafruit Circuit Playground COM2R0 COM2B1 COMZBO - - WeM2Z1=1 WGM20
TCCR2B = 0x05; // DON'T FORCE COMPARE, 128 PRESCI r£s21 1

Arduing Yan Mini
//WGM = 010 CTC
OCR2A = OKTC; /¢ SET THE TOP OF THE COUNT TO 12 Sm i =all
TaNT2 = 0; Linino One
Arduine Uno WiFi

£ the value that is going to be compared

uinte_t colorl = 0
uint? t ecolor2 = 0; Arduino AVR Boards

uinté_t color3 = 255; LightBlue Bean (2.0.3)
['o] tightBlue Bean+ 20.3) |

Bean.setled(colorl,color2, colord);

Figura 20: Selecionando a placa de desenvolvimento LightBlue Bean+ no Arduino IDE.
FONTE: Autoria Prépria.
Apds a selecdo, deve-se clicar em verify e em seguinda upload. O botao de upload, ao
contrario do que se pode imaginar, ndo transmite para o Bean+ o cédigo compilado, apenas

0 prepara para ser enviado manualmente pelo CL/ Loader. Os botdes sdo exibidos na Figura
21.

Figura 21: Botdes de Verificagdo e Upload no Arduino IDE

Lpload

FONTE: Autoria Prdpria.

Apds preparado para o envio, deve-se executar os comandos:

$ sudo bean list compiled_sketches
$ sudo bean program sketch LittleRun -a 987bf359283c

O primeiro comando lista os cédigos compilados e prontos para ser enviados, e o

segundo efetivamente transmite o sketch, isto é, o cddigo selecionado LittleRun para o Bean+

com enderego Bluetooth 987bf359283c.

46

4.3.5 Programacao do MCU no ambiente Android

A programagao utilizando o Bean Loader for Android é um pouco mais simples e direta,
feita da seguinte forma. Apds enviar o arquivo que contém o cddigo fonte para o smartphone,
deve-se seleciona-lo no menu “Choose Sketch” ("Selecionar Sketch"), no aplicativo do Bean, e
entdo, apds selecionado o Bean+ alvo, deve-se selecionar “Upload to Bean”. Uma mensagem

apontando o sucesso da operacdo deve ser exibida, como mostrado na Figura 22.
Figura 22: Mensagem de Upload bem-sucedido no Bean Loader for Android.

- X X
ARW T @190

Success

Upload complete.

FONTE: Autoria Prdpria.

4.3.6 Implementac¢ao do c6digo embarcado

O conjunto de materiais foi integrado como mostra o esquematico da Figura 23. Como
podemos observar, o Touch Sensor, o Botdo, o Buzzer e o Shock Sensor foram conectados a
portas digitais, enquanto o Sensor de Batimentos Cardiacos foi conectado a uma porta
analdégica. Além disso, como foi dito, o LED RGB e o Aceleréometro estdo pré-integrados dentro

do LightBlue Bean+.

Figura 23: Esquemadtico do sistema implementado.

47

o o
S CC — (%]) GMND
E’.u‘rtg[r)I _
et 5N 18 / i
o _]_
pamm—— VREEF Po—
LightBlue | Bean+ U
AREF | e 45 =
wviown
P — ——) g3
1t v
VOUT = S e
GND
o—1 | "Touch i 3) I &
|
T
Buzzer
Vo
Shock Sensor
FONTE: Autoria Prépria.
Pino Periférico
AO Sensor de batimentos cardiacos
D1 Buzzer
D6 Sensor de choque
D8 Sensor de toque
D9 Botao fisico

Tabela 1: Conexdes do LightBlue Bean+ com sensores.

O funcionamento do software que é executado pelo microcontrolador é dividido em
trés partes: setup(), loop() e interrupgdes. O setup() é executado apenas uma vez, inicialmente
no codigo, e faz configuragdes iniciais. O loop() é executado continuamente, ou seja, recomeca
quando sua execucdo termina (analogo a estrutura while(True) { }). As interrup¢des sao trechos

especiais que sdo executados quando certos eventos ocorrem. Quando finalizadas, a execugdo

48

retorna ao loop(). Também existe o escopo global, onde sdo declaradas diretivas de
compilacdo, além da declaragao de varidveis globais. As varidveis globais, diferentes das locais,

podem ser lidas e modificadas em todas as partes do codigo.

4.3.7 Funcionamento da maquina de estados que define o funcionamento geral

O funcionamento do firmware do microcontrolador é sumarizado por uma maquina
de estados que, conforme a leitura feita dos sensores integrados, transaciona entre os
estados. A FSM (Finite State Machine ou Mdaquina de Estados Finito) pode ser observada na

Figura 24.

Figura 24: Maquina de estados finita que define o funcionamento do sistema embarcado.

FONTE: Autoria Prdpria.

A implementacdo da maquina de estados foi feita com a estrutura switch/case padrdo
da linguagem C e é executado continuamente, em todos os ciclos da funcao loop(). Dentro de
cada case (STATE_NORMAL, STATE SOS e STATE HRTBIT) é executada uma funcdo
correspondente (normalState(), sosState() e hrtbitState()) que define as rotinas
correspondentes para cada estado. Essas funcGes serdo apresentadas e explicadas

posteriormente nesta secao.

#define STATE_NORMAL ©
#define STATE HRTBIT 1

49

#define STATE_SOS 2
[..]
void loop(){
[..]
switch(State){
case :
{ normalState(); //Execucdao do Estado Normal
break; }
case :
{ sosState(); //Execu¢do do Estado de Emergencia
break; }
case :
{ hrtbitState(); //Execu¢ao do Estado de Leitura de Batimentos
break; }
}
}

4.3.8 Estado Normal

O estado normal, definido por STATE _NORMAL e caracterizado pela rotina
normalState(), é o estado em que o dispositivo normalmente se encontra. Esse é o estado
inicial da maquina, e é o estado sucessor de todos os outros. Nesse estado ndo é executada
nenhuma tarefa especial, apenas alguns procedimentos basicos para calculo de transicao de
estados. Esses procedimentos sdo: accelRead(), updateScratch(), CheckTimers(),

checkLongPress() e checkLongPressTouch().

4.3.9 Estado de Emergéncia

O estado de emergéncia, definido por STATE SOS e caracterizado pela rotina
sosState(), é o estado que indica que ocorreu uma emergéncia. Esse estado é alcancado
guando um dos seguintes casos ocorrem: é detectada uma queda do usudrio (modo
automatico) ou é detectado o pressionamento por 3 segundos do botdo de emergéncia (modo
manual). Para sair desse estado, deve-se pressionar novamente o botdo de emergéncia, por 6

segundos.

Nesse estado o microcontrolador apenas é responsavel por acionar o buzzer e piscar a
cor azul do LED RGB, mantendo a cor vermelha. Essas duas acdes sdo executadas nas linhas

de cddigo abaixo:

|void sosState(){

50

checkLongPress();

if(quarterSecond%2) {Bean.setlLed(255,0,255); } //liga o led azul

else {Bean.setlLed(255,0,0); } //desliga led azul

digitalWrite(LED_PORT,HIGH); //aciona o buzzer
}

O LED pisca em diferentes cores pois a varidvel quarterSecond é continuamente

incrementada, a cada 250[ms] aproximadamente. Isso é feito utilizando interrupgdes por
timer, o funcionamento detalhado sera explicado futuramente neste documento na secao
Interrupgdes de Transi¢ao de Pino e Aquisicao dos Dados dos Sensores. Como um nimero par
é sempre seguido de um numero impar, e vice-versa, a expressao quarterSecond%2 sempre

resultard intercaladamente em true e false.

A funcdo Bean.setLed(r,g,b) é uma funcdo padrdo da biblioteca do Bean, assim como
todas da classe Bean. Essa fungao faz com que o MCU comunique o SoC para configurar o LED
RGB para brilhar nas cores definidas pelos argumentos que, sequencialmente, indicam a
intensidade de vermelho, verde e azul. Esses argumentos sdo do tipo uint8_t, que define um
valor de 8 bits entre 0 e 255. Quando especificado 0 para os trés parametros, o LED é apagado

e esse valor pode ser incrementado até 255, que define o brilho maximo da respectiva cor.

Também pode ser observado na rotina sosState(), que apenas a funcdo que checa o
pressionamento do botdo de emergéncia é chamada (checkLongPress()), ou seja, o botdo
touch serd ignorado enquanto o sistema permanecer nesse estado e assim é impossivel a
transicdo para o estado de leitura de batimentos cardiacos neste momento. Todas as outras

funcdes basicas sdo executadas.

A partir da leitura do cddigo acima, aparentemente ndo é executada nenhuma rotina
gue notificara o aplicativo Android do estado de emergéncia. Isso ocorre porque a notificacdo
é feita durante a transicdao do estado, e ndo no interior do estado. Isso é feito atribuindo o
valor ‘1’ (True, Verdadeiro) para a variavel global “st_emergency” sempre que o valor da
varidvel State tiver seu valor atribuido para STATE_SOS. A variavel st_emergency, que indica
gue a FSM estd no Estado de Emergéncia, é continuamente enviada para o dispositivo Android,
mantendo seu valor sempre sincronizado nos dois ambientes, como serd demonstrado

adiante.

51

st_emergency = 1;
State = STATE_SOS;
[..]

4.3.10 Estado de medic¢do de batimentos cardiacos

O estado de medigdo de batimentos cardiacos é definido por STATE_SOS e tratado pela
rotina hrtbitState(). Esse estado é ativado por acdo do usuario, e pode ser alcancado de duas
maneiras: a primeira mantendo “pressionado” o touch sensor por 3 segundos e a segunda por
meio do aplicativo Android. Para sair desse estado, deve-se “pressionar” o touch sensor por 6

segundos.

Esse estado é um estado orientado por interrupgdes, isto é, a principal légica
implementada no estado se encontra dentro de uma interrupgao. Interrupg¢des sao rotinas
especiais que sdao chamas quando algum certo evento ocorre. Essa rotina interrompe a
execucdo normal do cddigo, quebrando seu fluxo natural e é executada imediatamente. A
interrupcdo que governa a légica desse estado é a interrupcdo TIMER2_COMPA vect que é
executada quando um timer especifico, no caso o TIMER2 tem seu valor igual a um valor pré-
definido, o que explica o termo "COMPA", de comparacdo, no nome da interrup¢do. Quando
o valor do timer é igual ao pré-definido, ocorre um Match. Normalmente, tenta-se executar o
minimo possivel em interrupcdes, para evitar o mal funcionamento de outras interrupgoes
além de pausas muito longas na execucdao normal do cddigo (OSHANA e KRAELING, 2013),
entretanto, nesta interrupgao isso nao se trata de um problema, uma vez que no estado de
aquisicao de batimentos cardiacos ndo ha processamento que demande muito tempo no
cddigo principal e, como explicado anteriormente, a FSM ndo permite alteracdes entre

estados sem passar pelo Estado Normal.

Para a configuracdo da interrupcao, foi criada a rotina hrtBeatinterruptSetup() que tem
seu corpo mostrado no cddigo abaixo e é chamada na rotina setup() do firmware, definida no
inicio deste capitulo. Essa rotina é responsdvel pela configuracdo do TIMER2 utilizado e

ativacdo da interrupgdo por comparagdo deste temporizador.

52

void setup(){
[..]

[.]
}

[..]

sei();

hrtBeatInterruptSetup();

void hrtBeatInterruptSetup(){
TCCR2A = 0x02;
TCCR2B = 0x06;
OCR2A = OX7C;
TIMSK2 = 0x02;

Os termos TCCR2A, TCCR2B, OCR2A e TIMSK?2 sao registradores de configuracdo que
tém seus detalhes explicados no manual do usudrio do microcontrolador ATmega 328p. Suas
configuracOes e significados serdo sumarizados nas tabelas a seguir. Registradores de
configuracdo deste microcontrolador tém 8bits e a configuracao é feita escrevendo em bits

especificos. Algumas vezes, um conjunto de bits do mesmo ou de diferentes registradores

podem, juntos, fazer parte da configuracdo do mesmo recurso.

TCCR2A

Lygd

Nome do bit COM2A1

Tabela 2: Configuragdo do registrador TCCR2A

9 ud

COM2A0

COM2B1

siugd

vug
€14
cug
Tug

COM2B0 // WGM21 WGM20

oud

Significado

Valor

configurado:

0x02

TCCR2B

Nome do bit

Significado

Valor

configurado:

0x06

Configura saida Configura saida em
em uma porta no outra porta no evento
evento de match. de match. Modo normal,
Modo normal, que ndo gera saida,
gue ndo gera configurado.

saida,

configurado.

Tabela 3: Configuragdo do registrador TCCR2B

FOC2A FOC2B / / WGM22

Lyg
914
sugd
¥ ud
€3yg

Configura saida =z =z @ Configura,
81 81
emumaportano ¢ g juntamente com
evento de ET ET o WGM21 e
e &
match. Modo WGM20 do
normal, que nao registrador
gera saida, TCCR2A o modo
configurado. de operacdo CTC.
0 0 0O 0 O

Tabela 4: Configuragdo da tabela OCR2A

53

=z =z Justamente com o
82 82
c < WGM22 encontrado
= A=
5§ & no registrador
[oN [oN
© o .
TCCR2B, configura o
modo de operacgdo
CTC.
0O O 1 0
@ @ @
-+ -+ -+
N [(=)
CS22 cs21 €S20

Define a fonte de clock
(ClockSource).

Configuracao de valor ‘2’
define a fonte como o
clk_v/256 onde clk y é o
clock do microcontrolador
de 8MHz resultando numa
fonte de clock de 31.25kHz

para o timer.

54

OCR2A o ® = = o o ® o
-+ -+ -+ -+ -+ -+ -+ -+
~N (<)} (8, H w N = o

Nome do

bit

Significado O valor do OCR2A configura o valor que, quando comparado com o valor
atual do contador (regido pelo clock configurado com os bits CSxx do TCCR2B)
gerara a interrupgao. O valor 0x7C hexadecimal configurado corresponde ao

valor 124 decimal.

Valor 0 1 1 1 1 1 0 0
configurad

o 0x7C

Tabela 5: Configuragdo do TCCR2B

TCCR2B B T ® R ® o o o
N o o~ W N [N o
Nome do bit / / / / / OCIE2B OCIE2A TOIE2
Significado Ativa a geracdo de uma Ativa geracdo de
NZ QJI QJI mz mz
o o o o o . 5 . N
€ g g g g interrupgdo quando o match interrupgdo no
§ ET § § § do registrador OCR2x overflow.
o Q. Q. Q. (o
O O o o o .
correspondente ocorre. Configurado para
Apenas configurado a geragao ndo ocorrer.
para o OCR2A.
Valor 0O 0 0 0O O o 1 0

configurado:

0x02

Portanto, resumindo o funcionamento gerido pelos registradores: o registrador
TCCR2B configura que ocorrera uma interrupgdao no match com o valor do registrador OCR2A.

Além disso, o TCCR2B configura uma fonte de clock de 31.25kHz para o incremento do timer

55

e, finalmente, os bits WGM dos registradores TCCR2A e TCCR2B configuram o modo de
operagao para CTC, que significa Clear on Time Compare (limpar na comparagao do timer),

que faz que o valor do timer seja resetado para O sempre que ocorrer o match.
Para calcular o valor correto para o registrador ORC2A, foi utilizada a logica abaixo.

A rotina de interrupgao, é responsavel pela leitura da saida do sensor de batimento
cardiaco, ou seja, pela amostragem desse sinal analdgico. Portanto, para definir uma
frequéncia ideal de amostragem, foi levada em consideracdao a condicdao de frequéncia de

amostragem minima de Nyquist, que é dada pela equacdo:
faminima = 2*fmaxsinal
A fmaxsinal cOrresponde a frequéncia maxima de batimento cardiaco, que é:
A fmaxsinal = 220bpm = 3.67Hz
Portanto, a faminima = 3.67Hz * 2 = 7.33Hz

Esse valor corresponde a frequéncia minima de interrup¢des para obter-se uma
amostragem livre de serrilhamento. No entando, ndao é necessario se prender a esse valor,
guanto maior a frequéncia de amostragem, melhor sera a digitalizacdo do sinal. Por esse
motivo, foi escolhido um valor 34 vezes superior: 250Hz, que ndo somente atende ao teorema
de Nyquist, como vai proporcionar um sinal digital muito mais fiel ao original, sem causar
muitos problemas de execucdo. Além disso, essa frequéncia de interrup¢des também serd
utilizada para o cdlculo do pressionamento dos botdes por 3[s] ou 6[s], o que sera detalhado

mais adiante nesta secdo. Portanto, o valor correto para o registrador OCR2A é:
finterrupcao = frecebida/Val_ocr2a
250 = 31.25k/val_ocr2a
val_ocr2a =124
frecebida cOrresponde a frequéncia de incremento do timer.

A rotina de calculo de batimentos por segundo, que é executada dentro da

interrupgdao, é uma modificacdo da indicada pelo fabricante do sensor de batimentos

56

cardiacos utilizado SENS1574 (WORLD FAMOUS ELECTRONICS LLC) e pode ser vista com mais

detalhes na referéncia. Os principais pontos serdo abordados a seguir.

Primeiramente, externo a interrup¢ao e dentro da fungdo hrtbitState() existe a

estrutura:

void hrtbitState(){

[...]

if (QS == true){ QS = false; }
[...]
}

Em que QS é uma varidvel que indica que foi detectado um batimento. Essa varidvel
precisa ser limpa continuamente a cada execucdo do loop() e por isso se encontra na rotina

do estado, ndo na interrupgao.

Dentro da interrup¢do, ha a condicdo de apenas executar o cédigo de aquisicdo de
batimentos cardiacos se o estado da FSM for o de batimentos cardiacos, como pode ser visto

no codigo da préxima pagina.

A primeira parte do cédigo busca os pontos mais altos e baixos de uma curva, com o
objetivo de reconhecer batimentos cardiacos. Observando a Figura 11, do Capitulo 1, é
possivel observar que a partir de pontos altos e baixos da curva é possivel fazer esse

reconhecimento.

ISR(TIMER2_COMPA vect){

[..]
if(State == STATE_HRTBIT)
{
cli();
Signal = analogRead(HRTBIT_PORT); //realiza a leitura do sensor

sampleCounter += 2;
int N = sampleCounter - lastBeatTime;//calcula o tempo entre as leituras

// Procura o ponto mais baixo da curva
if(Signal < thresh & N > (IBI/5)*3){
if (Signal < T){
T = Signal;
}
}

//procura o ponto mais alto da curva
if(Signal > thresh && Signal > P){
P = Signal;
}

if (N > 250){ //Evita ruido de alta frequéncia

57

//detecta um batimento
if ((Signal > thresh) && (Pulse == false) & & (N > (IBI/5)*3)){
Pulse = true;
digitalWrite(LED_PORT,HIGH);
IBI = sampleCounter - lastBeatTime;
lastBeatTime = sampleCounter;

[.]

}

Um ciclo cardiaco possui na verdade dois batimentos: o maior é a sistole e 0 menor a
diastole (NAKAJIMA, TAMURA e H.MIIKE, 1994). Para o menor, sistole, ndo ser confundido
com um novo batimento, é adicionada a condigdo (N > (IBI/5)*3) no if de detec¢do de
batimentos. Essa condicdo evita o reconhecimento de um novo batimento cardiaco em um
curto espaco de tempo relativo aos batimentos ja calculados. De maneira similar, a condicdo
(N > 250) evita ruidos de alta frequéncia, ignorando "batimentos" muito préximos
temporalmente (ou seja, funciona como um Filtro Passa Baixa). A varidvel /Bl é calculada como
o tempo entre os dois Ultimos batimentos, e N representa a diferenca entre o tempo "atual"

e tempo em que foi detectado o ultimo batimento.

Em seguida, a rotina calcula a frequéncia do pulso cardiaco, além de recalcular valores
limites (threshold) para ser reconhecido o batimento. Também, ao reconhecer que o sinal esta
declinando, apontando a queda da curva Fotopletismografia, os dados necessdrios sdo

resetados para que se inicie um novo reconhecimento de pulsacao.

[...]
//media de tempo dos ultimos 10 batimentos cardiacos.

for(int i=0; i<=8; i++){

rate[i] = rate[i+1];

runningTotal += rate[i];
}
rate[9] = IBI;
runningTotal += rate[9];
runningTotal /= 10;

// Tempo de 2 minutos em microsegundos dividido pela media de tempo
//dos ultimos 10 batimentos da quantidade de batimentos por minuto
BPM = 120000/runningTotal;
toScratchBPM = (uint8_t) BPM;
QS = true;

[..]

Também é possivel observar a expressao toScratchBPM = (uint8_t) BPM em que a

varidvel toScratchBPM, que sera utilizada para fazer a transmissdo do dado da frequéncia

58

cardiaca para o aplicativo Android é atribuida com esse valor. Detalhes de como a transmissdo

é feita serdao explanados na se¢do abaixo Atualiza¢cdo das Bluetooth Characteristics.

4.3.11 Interrupgoes de Transicao de Pino e Aquisicao dos Dados dos Sensores

A leitura dos dados do sensor de choque, do botdo e do sensor de toque é feita
utilizando interrupgdes. Como o ATmega328p tem suporte para apenas 2 interrupgdes por
pinos, foi necessario utilizar a interrupcao por porta, chamada portchange. Essa interrupcao é

executada sempre que algum dos pinos que compdem uma porta é alterado.

Para ativar essa interrup¢ao, também chamada PCINTO_vect, é necessario configurar
o registrador PCICR, selecionando a interrupcdo da portaO (também chamada de PORTB), e
do registrador PCMSKO, que configura quais pinos da porta0 sdo capazes de engatilhar a
interrupcdo. O funcionamento detalhado dos registradores é mostrado no manual do
microcontrolador (ATMEL, 2015). Os pinos pertencentes a portaO sdao D9, D8, D7 e D6 do
LightBlue Bean+.

A configuracdo desses dois registradores é feita na rotina setup(), por meio do cédigo

abaixo:

[.-]

Setup(){

[-]

PCICR |= (1<<9);
PCMSK@ |= (@x3C);
[-]

}

[..]

Os trés periféricos foram conectados a pinos dessa porta, conforme a tabela abaixo, e

esses trés pinos foram os habilitados para poderem engatilhar a interrup¢ao por porta.

Tabela 6: Pinos detectados pela interrupgéo de mudanga de estado.

Pino Periférico conectado

D6 Sensor de choque

59

D8 Sensor de toque

D9 Botdo fisico

Como a mesma interrupcao é executada quando qualquer um dos trés pinos troca de
estado, é necessario fazer o reconhecimento de qual deles foi alterado por software. Para isso,
sempre que houver uma interrupc¢ao é feita uma comparacdo entre o estado da portaO com
o estado dessa porta na ultima execucdo da interrupgdo (pré-armazenado em uma variavel
global /ast_PINB). Naturalmente, o bit que estiver diferente representard o pino que foi
alterado e que necessita ser tratado. Essa comparacdo é feita utilizando a operagao binaria

ou-exclusivo, como pode ser visto no codigo abaixo.

ISR(PCINTO vect) {
uint8 t changed bits;
changed bits = PINB ~ last PINB; //compara os valores antigos com novos
last _PINB = PINB; //salva o valor para ser comparado na prox. execugao

[..]

if (changed bits & (1 << PINB5)) //BUTTON //se o valor do pino do botdo mudou
{

readButtom = digitalRead(BUTTON_PORT);

if(readButtom == 1) //READBUTTON 1 = NOT PRESSING IT

Essa estrutura é utilizada nos 3 sensores conectados a porta.

4.3.12 Temporizador nos botoes
Para realizar a temporizacdo do botdo e do sensor de toque, isto é, reconhecer o
pressionamento por 3 ou 6 segundos consecutivos, foi aproveitada a interrupc¢do ja

implementada do TIMER2 apresentada na secdo Estado de medicdo de batimentos cardiacos.

Esta interrupg¢do, como foi explicado anteriormente, acontece a cada 4ms. Durante a

execucdo dessa interrupcdo, uma variavel chamada counting4dms é incrementada, portanto,

60

essa variavel conta a quantidade de ‘4ms’ executados. Quando countingdms chega na
contagem de 250, totalizando a contagem de 1 segundo, seu valor é restaurado para 0 e uma
nova variavel, chamada oneSecond, é incrementada. Essa varidvel expressa a quantidade de

segundos passados e ela é a utilizada na temporizagao dos 3 e 6 segundos.

ISR(TIMER2_COMPA vect){
static uint8_t countingdms = ©; //variavel estatica é compartilhada com todas as
//instancias da rotina.
countingdms++;
if(countingd4ms==250){
counting4ms=0;
oneSecond++; }

[.]
}

Apds a implementacdo dessa estrutura, as funcdes basicas para checagem de botao
checkLongPress e checkLongPressTouch precisam apenas checar a diferenca do valor da
varidvel OneSecond no instante em que o botdo comecou a ser pressionado e no instante
"atual" de execugdo do cddigo, levando em consideragdo a possibilidade de ter ocorrido
overflow nesse meio tempo. A amostragem do valor no inicio do pressionamento do botdo
(ou sensor) é feita na rotina de interrupg¢do, enquanto a comparagdo e a amostragem do
instante corrente sdo feitas quando checkLongPress ou checkLongPressTouch sdo chamadas.
E importante entender que a varidvel OneSecond é continuamente atualizada pela

interrupcdo do timer2, enquanto a pressingTouchStartTime (e correspondentes), é atualizada

quando o bot3o é pressionado. E possivel observar essas caracteristicas no cédigo abaixo.

ISR(PCINTO vect) {

[..]
if (changed_bits & (1 << PINB4)) //TOUCH
{
readTouch = digitalRead(TOUCH_PORT);
if(readTouch == @){ //READTOUCH © = botdo nao pressionado
releasingTouchTime = OneSecond;
}
else
{
updatedTouch = 1;
handled_3secPushTouch = 0;
handled_6secPushTouch = 0;
pressingTouchStartTime = OneSecond;
}
}
]

-’

61

void checkLongPressTouch(){
[-]
if(readTouch == 1){
pressingStartTime = pressingTouchStartTime;
delta _pressing = OneSecond - pressingStartTime;
}
[-]
if(delta_pressing>6 && delta_pressing<1@0 && !handled_3secPushTouch){
handled_3secPushTouch = 1;

[..]

'
e

Foi adicionada a variavel handled_3secPushTouch (e outras correspondentes para
diferentes tempos e para o botdo mecanico) como uma flag que indica que a devida acdo ja
foi tomada, para evitar que o mesmo cddigo seja executado repetidamente enquanto o

touch/botdo se matem pressionado.

4.3.13 Funcao de Deteccao de Queda

A checagem do acelerdmetro é feita em todos os ciclos de execucdo da rotina loop()
por meio da rotina accelRead(). Essa rotina reconhece momentos de queda livre do
dispositivo, que podem ou nao significar uma queda do usudrio. Ela acusa que houve de fato
uma queda do usuario de duas diferentes maneiras: a primeira é com diversas medidas
consecutivas que apontam a queda livre do dispositivo; a segunda é medindo uma queda livre

do dispositivo e um impacto.

Essas medidas sao feitas por meio da rotina incluida na biblioteca do LightBlue Bean+
Bean.getAcceleration(), que retorna as acelera¢des medidas pelo acelerémetro e as armazena
em uma estrutura (struct) que possui um campo para cada eixo cartesiano: x, y e z. Quando a
soma dessas trés medidas é menor que um certo valor de limite, obtido
empiricamentedefinido no cdédigo por FALLINGSIZE threshold, significa que houve um

momento de queda livre do dispositivo.

Quando é detectado um momento de queda livre, sdo realizadas mais leituras do
acelerbmetro para verificar se essa detecgao se tratou de somente um movimento brusco ou
se de fato o usuario caiu, caso seja detectado um minimo de leituras consecutivas que
apontam queda livre, definido no cddigo como FALLINGTIMES threshold, houve uma queda

do usuario e as rotinas correspondentes de tratamento sao chamadas.

Figura 25: Fluxo de execugdo da rotina de detecg¢do de queda.

62

Aceleracéo

Detectou terceira
queda livre?

Detectou segunda
queda livre?

Sim

Detectou choque? » Ativar emergéncial

Sim

FONTE: Autoria Prdpria.
Caso esse minimo ndo tenha sido atingido, mas pelo menos um momento de queda
livre tiver sido detectado, ainda é possivel que tenha havido uma queda do usudrio. Para esses
casos, é verificado se houve impacto do dispositivo. O impacto é detectado pelo shock sensor,

gue tem seu valor copiado para a variavel global st_shock na rotina de interrupcao.

Ambas as condi¢Ges, assim como a leitura de dados correspondente podem ser

observadas no cédigo a seguir:

void accelRead(){
dvcAccel = Bean.getAcceleration();
magnetude = abs(dvcAccel.xAxis) + abs(dvcAccel.yAxis) + abs(dvcAccel.zAxis);

if(magnetude<FALLINGSIZE threshold){ //detectado queda livre
times_that_fell++;
for(uint8_t i = @; i<=(FALLINGTIMES threshold-1) ; i++){
dvcAccel = Bean.getAcceleration(); //novas leituras
magnetude = abs(dvcAccel.xAxis) + abs(dvcAccel.yAxis) +
abs(dvcAccel.zAxis);

if(magnetude<FALLINGSIZE_ threshold) times_that_fell++;

63

//primeira condi¢ao para detec¢ao de queda
if(times_that_fell==FALLINGTIMES_threshold){
st_emergency = 1;
State = STATE_SOS; ///Entra em modo emergéncia
Bean.setlLed(255,0,0);
}
}

//segunda condi¢ao para detecc¢ao de quedas
if(times_that_fell>@ && st_shock==1){
st_emergency = 1;
State = STATE_SOS; //Entra em modo de emergéncia
Bean.setlLed(255,0,0);
}
times_that_fell = 0;
}
}

4.3.14 Atualizacao das Bluetooth Characteristics

A verificacdo da necessidade de envio de dados por Bluetooth é feita em todos os ciclos
da rotina loop() no interior da rotina updateScratch(), que é responsavel por administrar os
dados que estdo sendo compartilhados. Caso eles tenham sido alterados, devem ser

atualizados e enviados.

Isso é feito mantendo sempre uma cépia do ultimo dado enviado e comparando com
o atual estado dos dados. Se ndo forem iguais, os dados atualizados devem ser enviados para
o aplicativo Android, o que é feito por meio da rotina disponivel da biblioteca do LBB+,como

demonstrado no cédigo a seguir:

void updateScratch()

{

[.]

if(oldScratchBuffer[@] != toScratchBuffer[@] || oldScratchBuffer[1] !=
toScratchBuffer[1])

{

Bean.setScratchData(2,toScratchBuffer,2);
}
]

[.
}

64

A funcdo Bean.setScratchData(uint8_t bank, uint8_t* data, uint8_t size) escreve em
um dos 5 bancos (banks) que define as Bluetooth characteristics do Bean+ para ser lido pelo
aplicativo Android. O parametro bank indica em qual banco o dado sera escrito, o parametro
data contém os dados a serem escritos e size é a quantidade de bytes a ser escrita. O dado
enviado é o vetor toScratchBuffer, que possui dois bytes: o primeiro contendo os dados de
queda, de emergéncia e de alguns sensores concatenados e o segundo contendo a ultima

medi¢ao de batimentos cardiacos.

Tabela 7: Organizagdo dos dados a serem enviados para as BLE Characteristics

Byte/Bit |7 6 5 4 3 2 1 0
1-Sinais | Emergency / HearthBeat /////
2-hrtbit | Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

A estrutura que concatena as flags em um byte e a estrutura que concatena o bit de

batimentos cardiacos e os que contém as flags é mostrada no cédigo abaixo.

void updateScratch()

{

[.]

toScratchByteWrite = ((readShock & @x@1)<<1 | (st_fell & 0x01)<<2 |
(st_hrtbit & ©x01)<<5 | (st_emergency & 0x01)<<7);

[..]
toScratchBuffer[@] = toScratchByteWrite;
toScratchBuffer[1l] = toScratchBPM;

[..]

}

Além de ser enviar dados, essa rotina também é responsavel por tratar o recebimento
de dados. Isso é feito lendo o banco de memodrias e checando os campos que devem ser
escritos pelo aplicativo Android. A leitura dos dados é feita utilizando uma funcdo simples,
que retorna uma estrutura de vdrios bytes enfileirados. A leitura e, sequencialmente o

tratamento do dado é exibido no cddigo abaixo.

ScratchData toScratchRead;
[..]
toScratchRead = Bean.readScratchData(2); //ler do banco 2
scratchByte = toScratchRead.data[@];
[-]
if(scratchByte & 0x4){
activateBuzzer2sec();

65

Bean.setlLedBlue(255);
}else

{

¥
Neste cédigo é feito o tratamento da informacdo que ativa o modo de leitura de

Bean.setLedBlue(9);

batimentos cardiacos a partir do aplicativo Android.

4.4 IMPLEMENTACAO ANDROID

A aplicagao Android foi desenvolvida utilizando o Android Studio e testada em um
aparelho Samsung Galaxy s8 rodando Android 6.0. O desenvolvimento da aplica¢do teve foco
em funcionalidades e por esse motivo ndo serdo expostos detalhes do desenvolvimento da

interface de usuario.

Primeiramente, é necessaria a compreensao superficial de como um projeto Android
é organizado. Existem arquivos .java que determinam as ldgicas implementadas pela
aplicagdo. Existem arquivos .xml que determinam como serdao desenhados os elementos de
uma aplicagcdo. Existem arquivos .gradle que determinam scripts que regem a compilagao do
codigo e, finalmente, existe o arquivo AndroidManifest.xml, que determina configuracées

basicas para a execuc¢ao do aplicativo.

Os arquivos .xm/ cosméticos sdao encontrados no GitHub do projeto, e sua confec¢ao

foi feita com o uso dos recursos visuais do Android Studio.

O arquivo build.gradle, que possui diretrizes de compilacdo, necessitou ser alterado
para a importacdo da biblioteca do Bean SDK, que é a API criada pela PunchThrough para a

utilizacdo do Bean. A linha abaixo foi adicionada:

dependencies {
[-]
compile 'com.punchthrough.bean.sdk:sdk:2.1.1"
[-]
}

Também é necessaria a edicdo do arquivo AndroidManifest.xml, pois este arquivo
controla as permissdes do Sistema que o aplicativo pode ter quando executado. As permissdes

gue necessitam ser adicionadas sdo as de leitura do estado do telefone, de recebimento e

66

envio de mensagens SMS, de Bluetooth, além de permissao de localizacdo, necessaria para a

utilizagao do Bean SDK. As linhas abaixo s3ao as que devem ser adicionadas

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.gobbi.tccapp">
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.SEND_SMS" />
<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.ACCESS COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS FINE_ LOCATION" />
</manifest>

Essas linhas indicam que o aplicativo pode requisitar essas permissdes, porém ainda é

necessaria a aprovacao futura do usudrio quando o aplicativo é executado pela primeira vez.

Para compreender a implementacdao do aplicativo, é necessario compreender o
conceito de callback. Callbacks sdo funcdes utilizadas por fungbes assincronas, ou seja, que
nao tém seu resultado no momento do fim de sua execugdo. Ao invés disso, é necessario
esperar algum processamento (ou resposta) que chegard apds um tempo indeterminado.

Quando o resultado estiver disponivel, a funcdo de callback é chamada.

O arquivo MainActivity.java define a légica que o aplicativo executara quando for
aberto. Nesse arquivo ainda é necessario a importagdo de bibliotecas pois o arquivo .gradle
apenas indica quais bibliotecas serdo disponiveis para a importacdo, ao invés de realmente

importa-las.

A rotina onCreate define a execucdo que sera feita quando o aplicativo é aberto, e é
andlogo a um main() da programacdao em C. Nesta rotina é feito, primeiramente, a requisicao

das permissGes necessarias para o usuario, por meio de rotinas como a mostrada abaixo.

ActivityCompat.requestPermissions(this,
New String[] {Manifest.permission.ACCESS_FINE_LOCATION},
8);

Para fazer a busca de dispositivos, é necessaria a declaracdo de uma varidvel do tipo
BeanDiscoveryListener definido pela BeanSDK. Essa variavel define uma classe que administra
a busca por novos dispositivos LightBlue Bean+. Nesta classe, existem funcdes de callback, que
serdo assincronamente chamadas quando certos eventos ocorrem. Exemplos dessas call-

backs sdo: OnDiscoveryComplete() e OnBeanDiscovered(). Para definir, portanto, o que deve

67

ser executado quando um novo Bean é descoberto, deve-se sobrescrever a funcao

onBeanDiscovered(), como foi feito no codigo abaixo.

final BeanDiscoverylListener listener = new BeanDiscoverylListener() {
@Override
public void onBeanDiscovered(Bean bean, int rssi) {
beans.add(bean);}

[.]

}

O cddigo acima é executado sempre que um Bean é encontrado e adiciona o

dispositivo para uma lista de dispositivos encontrados chamada de bean.

Para comecar a busca por dispositivos, é necessario executar uma funcao que notifica

a classe BeanDiscoveryListener como é feito abaixo.

buttonl.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
BeanManager.getInstance().startDiscovery(listener);
}
})s

A administracdo de um dispositivo conectado é feita por uma classe similar, chamada

BeanlListener. Essa classe tem o funcionamento ditado também sobrescrevendo fungdes de

callback. As mais importantes sdo: onConnected() e onScratchValueChanged().

68

A primeira serve apenas para exibir mensagens com informagdes sobre o dispositivo e

€ mostrada a seguir:

final BeanListener beanListener = new BeanListener() {

@Override
public void onConnected() {
currentBean = beans.get(9);
bean.readDeviceInfo(new Callback<DeviceInfo>() {
@Override
public void onResult(final DeviceInfo deviceInfo) {
runOnUiThread(new Runnable() {
@Override
public void run() {
mainConsole.addInfo("Connected to device!");
mainConsole.addInfo(deviceInfo.hardwareVersion());
mainConsole.addInfo(deviceInfo.firmwareVersion());
mainConsole.addInfo(deviceInfo.softwareVersion());

s

}
1)
[...]
}

A sintaxe confusa apresentada pela funcdo ocorre devido a particularidades da

linguagem. Basicamente, estdo sendo definidos objetos durante a prépria declara¢ao dos

mesmaos.

A funcdo onScratchValueChanged() é chave para o sistema. Ela é a rotina que é
automaticamente chamada quando o valor das charachteristcs é alterado pelo wearable.
Nela, é feito o caminho inverso mostrado na se¢ao Atualizacdao das Bluetooth Characteristics.
Os dados chegam, portanto, em bytes que devem ter seus dados extraidos. Depois da
extracao, deve ser feita uma comparacdo com os dados antigos, para averiguar quais sofreram

alteracdo. Esse processo é exibido no codigo a seguir:

69

final BeanListener beanListener = new BeanListener() {
[..]
@Override
public void onScratchValueChanged(ScratchBank bank, byte[] value) {
int temp;

scratchData[@] = value[@];
scratchData[1] value[1];

temp = value[l] & OxFF; //transforma signed em unsigned

[..]
int st_emergency = (scratchData[@] & 1<<7) >> 7;

[..]
int st_emergencyOld = (scratchDataOld[@] & 1<<7) >> 7;

[..]

if(st_emergency == 1 && st_emergencyOld == 0){ //entrou em emergencia
[..]

String msg = name +
[..]
sendSMS(phoneNumber,msg) ;

}else if(st_emergency == 0 & st_emergencyOld == 1){ //saiu de
emergencia

, preciso de ajuda! Me ligue";

[..]

String msg = name +
[..]
sendSMS(phoneNumber,msg) ;

telse{

//nothing is done

, Jja estou bem.";

}
scratchData0ld[@] = scratchData[@]; //mantem copias antigas
scratchData0ld[1] = scratchData[1];

}

Finalmente, é feito o envio da mensagem de texto. O envio e recebimento da

mensagem de texto é administrado pelo mesmo objeto em todos os aplicativos Android. Por
isso, ndao se deve declarar um novo administrador de mensagem de texto e sim obter o
administrador padrdo. Isso ¢é feito com a chamada SmsMenager sms =
Sms.Manager.getDefault(). Deve-se entdo enviar um pedido para esse administrador com a
intengdo de enviar a mensagem, com numero e corpo definido. Esse procedimento pode ser

visto no cddigo da rotina abaixo:

private void sendSMS(String phoneNumber, String message) {

SmsManager sms = SmsManager.getDefault();

PendingIntent sentPI;

String SENT = "SMS_SENT";

sentPI = PendingIntent.getBroadcast(this, ©,new Intent(SENT), 0);
sms.sendTextMessage(phoneNumber, null, message, sentPI, null);

70

5 RESULTADOS

Nesta secdo, serdao demostrados os resultados obtidos neste projeto. Os diferentes
recursos do funcionamento do protétipo serdo exibidos sucintamente a seguir. Uma

apresentacdo do protdtipo criado é mostrada na Figura 26.

Figura 26: llustragdo da montagem final do projeto.

Pulse Sensor

LightBlue | Bean+

LBB+ I \ v
[—aille o ekl Farles W R s
. o 0 0 0 0 o ‘. e o 0 0 0 0 . 0 0 0 0 0 0 0 00 . e 0 0 0 0 0 0 0 II......IC...
e IR ZIZI.iiZZZ ARG R AR PR KRR R
Button Shock Sensor
> Buzzer
=

Touch Sensor

FONTE: Autoria Prdpria.

Foi determinada a autonomia energética de 18 horas. Para uma bateria de 600mAbh, isso
determina o gasto energético de 33.3[mAh] por hora. Esse valor é aceitavel para um protétipo

criado em protoboard, entretanto deve ser melhor em um produto final.

71

5.1 ATIVACAO DO MODO DE EMERGENCIA POR QUEDA
A ativagdo da emergéncia por queda é funcional. O sistema detectou a queda, notificou
por BLE para o aplicativo instalado no smartphone, que enviou automaticamente uma

mensagem para um contato configurado.

As Error! Reference source not found. mostram o estado do dispositivo antes e depois

da queda, e o aplicativo conectando ao dispositivo e reconhecendo a mudanca de estado.

Figura 27: Teste da ativagéo por queda.

FONTE: Autoria Prépria.

Para a validacdo do modo de emergéncia por queda, foram realizados testes em

diversas circunstancias exibidos na tabela abaixo.

Tabela 8: Testes de detecgdo de queda.

Altura Superficie Resultado

10cm Macia Nao Detectou Queda
30cm Dura Detectou Queda
60cm Dura Detectou Queda
120cm Macia Detectou Queda
170cm Dura Detectou Queda

170cm Macia Detectou Queda

72

A Figura 28 todo mostra a mensagem que foi enviada para o contato selecionado na

configuracgdo do aplicativo.

Figura 28: Captura de tela do smartphone que recebeu a mensagem SMS, a esquerda, e do que enviou 0 mensagem SMS, a
direita.
VAR 235 QQEEAOLOA0 § b N{@ " .4l 203:03

Roberta

< Joao Pedro Gobbi LR |

1/7:33.

auinta-feira. 22 de iunho de 2017

I'm at an emergency. Please

call for help

7 Oct, 14:08
sabado, 7 de outubro de 2017
: I'm at an emergency. Please call
Robgrta, preciso de ajudal! 1408 for help
Me ligue

: domingo, 29 de outubro de 2017
6 mins

Roberta, preciso de ajuda! Me

228 ligue
0" -

= Eu | Mas

) Send message

FONTE: Autoria Prépria.

5.2 ATIVACAO DO MODO DE EMERGENCIA MANUAL

A ativagdao da emergéncia por meio do do botao é funcional. O sistema detectou o
pressionamento do botdo pelo tempo necessario e ativou o modo de emergéncia. Em seguida,
o modo de emergéncia foi desativado de modo analogo. As mensagens de emergéncia e da

saida do modo de emergéncia foram enviadas.

5.3 MEDICAO DE BATIMENTOS CARDIACOS
A medicdo de batimentos cardiacos é funcional. O sistema entra no estado de medicao,
mede corretamente e envia os dados para o smartphone para a exibicao na tela. Na Figura 29,

¢é possivel observar as medi¢cGes de batimento cardiaco sendo feitas e atualizadas em tempo

73

real. Nota-se que inicialmente ha um periodo de adaptacdo, onde sdo reconhecidos valores
equivocados (como 19, 51, 38, entre outros), porém seguidamente, os valores se estabilizam

em uma medicdo correta (com valores em torno de 70).

Figura 29: Captura de tela do aplicativo desenvolvido recebendo dados de batimento cardiacos, que apds um certo tempo
de adaptagdo reconhece os valores corretos.

cApp

‘ScratchValueChangedBANK_2||32(|50->50
|:ScratchValueChangedBANK_2(|32(|43--43
:SeratchValueChangedBANK_2|[32](31->31
ScratchValueChangedBANK_2|[32[38-=38
‘SeratchValueChangedBANK _2||32((31-=31
:ScratchValueChangedBANK_2||32(19->19
:SeratchValueChangedBANK_2||32||16->16
:SeratchValueChangedBANK_2||32|[18-=18
:ScratchValueChangedBANK_2||32([19->19
:ScratchValueChangedBANK_2||32||38->38
I:SeratchValueChangedBANK_2|[32|51->51
ScratchValueChangedBANK_2||32||67->67
:SeratchValueChangedBANK_2||32|(78->78
ScratchValueChangedBANK_2||32||67->67
I:ScratchValueChangedBANK_2||32||64->64
|:ScratchValueChangedBANK_2]|32||71->71
‘ScratchValueChangedBANK_2||32||76->76
‘ScratchValueChangedBANK_2||32[/73->73
‘ScratchValueChangedBANK_2|[32[|71-=71
‘ScratchValueChanaedBANK 2132172->72

Roberta r.::n.t.aunaﬂan.d_l
BUSCAR DISPOSITIVO DESCONECTAR
CONECTAR DISPOSITIVO MEDIR BPM

FONTE: Autoria Prdpria.

74

6 CONCLUSAO

O projeto criado apresentou funcionamento adequado como esperado, além de

alcancar os objetivos desejados.

Os conceitos intrinsecos de programag¢ao de sistemas embarcados foram
extensamente utilizados neste projeto. A compreensao de boas praticas para a confec¢do do
codigo foi gradual durante a execugao do projeto, sendo necessaria diversas vezes a alteracao

de cdodigos ja funcionais, com o objetivo de melhorar robustez e qualidade.

O Bluetooth Low Energy, assim como o proprio Bluetooth cldssico, é uma tecnologia
utilizada diariamente, mas cujos conceitos ainda sdo pouco conhecidos por desenvolvedores.
A implementac¢ao da comunicagao Bluetooth foi surpreendentemente simples, sendo o maior

desafio entender como utilizar o BLE de maneira eficiente e eficaz no projeto.

O Android foi outra tecnologia totalmente nova para o desenvolvedor deste projeto. A
linguagem de programagao tem seu maior desafio na compreensdo dos diversos conceitos
utilizados para escrever poucas linhas de codigo. Além desses conceitos da prdpria linguagem,
existem muitos conceitos de programacao orientada a objetos utilizados pela linguagem, o

gue causou mais uma dificuldade para o desenvolvedor.

Finalmente, o LightBlue Bean+ é uma 6tima ideia de placa de prototipagdo para
wearables que utilizam BLE. Dito isso, o Bean+ se mostrou decepcionante. Mesmo sendo um
projeto ativo para a PunchThrough, foi observado abandonado, ndo recebendo atualizagdes
basicas ha um tempo considerdvel. Atualizacdes essas que seriam essenciais, pois grande
parte das funcionalidades ndo se mostravam robustas, falhando inesperadamente. Além
disso, na documentacdo, que a primeira vista parecia promissora, faltavam dados essenciais
gue apenas sao necessarios quando é preciso debugar cédigos. Sendo assim, o desenvolvedor
do projeto necessitou praticar diversas vezes “engenharia reversa” para obter informacdes
uteis. Além disso, grande parte das funcionalidades, diversas vezes basicas, da familia Bean
foi implementada apenas para /0S, tendo a implementacdo para Android adiada
indefinidamente. A comunidade quase nula da placa corroborou para os problemas causados

pela falta de robustez e documentacao.

75

Apesar dos problemas com a placa de desenvolvimento, tanto o planejamento quanto
a execucgao do projeto foram um sucesso. Foram compreendidas, planejadas e executadas as
partes necessdrias para a criacdo de um protétipo funcional, que se assemelha

consideravelmente a solugdes existentes atualmente no mercado.

6.1 TRABALHOS FUTUROS
A execucado deste projeto foi feita de forma modular para melhor receber melhorias

em trabalhos futuros. Sendo assim, préximos passos para a melhoria do protétipo sdo:

e Aprimoramento do algoritmo de detec¢dao de queda, pois ainda é um campo
em que diversas pesquisas estdo sendo feitas;

¢ Implementagao de mais bio-sensores no wearable;

e Implementacdo de sensores capazes de reconhecer um ambiente perigoso
para o idoso, detectando incéndios ou incidéncias fortes de raio UV;

e Recebimento e tratamento de mensagens SMS que realizam a¢Ges especificas
no wearable;

e Envio e recebimento de mensagens de voz por meio do dispositivo wearable;

e |Implementacdo e envio de geolocalizacdo junto com a mensagem de
emergéncia;

e Melhoria do aplicativo, melhorando sua robustez e criando uma interface
graficas agradavel ao usuario;

e Criacdo de uma pulseira que capacite a utilizacao no pulso;

e Envio de informacgdes do nivel de bateria para o aplicativo Android;

e Transformar o projeto do protdtipo em um projeto de producdo em massa

76

REFERENCIAS

ADAFRUIT. Introduction to Bluetooth Low Energy, 2014. Disponivel em:
<https://learn.adafruit.com/introduction-to-bluetooth-low-energy>. Acesso em: 15 out.

2017.

ANDREWS, J. R. Co-verification of Hardware and Software for ARM SoC Design. [S.l.]:
Newnes, 2004.

ANDROID. Android Reference. Android for Developers, 2017. Disponivel em:

<https://developer.android.com/index.html>. Acesso em: 30 nov. 2017.

ARDUINO. Arduino, 2017. Disponivel em: <https://www.arduino.cc/>. Acesso em: 23 nov.

2017.

AT&T. EverThere. AT&T, 2016. Disponivel em: <https://www.att.com/gen/press-
room?pid=25140&cdvn=news&newsarticleid=37328>. Acesso em: 28 nov. 2017.

ATMEL. ATMEL 8BIT 328p USER MANUAL, 2015.
AVAGO TECHNOLOGIES. APDS-9008 Miniature Surface-Mount Ambient Light Photo Sensor.

BLUEPIXEL TECHNOLOGY LLP. BLE Scanner Playstore Page. Play Store, 2017. Disponivel em:
<https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=pt_BR>.
Acesso em: 29 out. 2017.

BLUETOOTH SIG, 2017. Disponivel em: <https://www.bluetooth.com/what-is-bluetooth-

technology/bluetooth-origin>. Acesso em: 16 set. 2017.

BOSCH. BMA Digital, triaxial acceleration sensor Data Sheet, 2011. Disponivel em:
<http://www1.futureelectronics.com/doc/BOSCH/BMA250-0273141121.pdf>.

BRAY, J.; STURMAN, C. F. Bluetooth: Unifying the Telecommunications and Computing
Industries, 2002. Disponivel em: <http://www.informit.com/articles/article.aspx?p=27591>.

Acesso em: 16 set. 2017.

77

BROOKS, M. Falls Cause Most Accidental Deaths in Elderly Americans. Medscape, 2015.

Disponivel em: <https://www.medscape.com/viewarticle/844322>. Acesso em: 27 nov. 2017.

CAREPREDICT, 2017. Disponivel em: <https://www.carepredict.com/assisted-living-memory-

care/>. Acesso em: 28 out. 2017.

CIEL LIGHT. CL-SF687 DataSheet, 2012. Disponivel em:
<http://www.ciellight.com/pdf/smdled/3528full/CL-SF687RGB.pdf>. Acesso em: 25 nov.
2017.

GREATCALL. GreatCall, 2017. Disponivel em: <https://www.greatcall.com/devices/lively-

wearable-senior-activity-tracker?kbid=62750>. Acesso em: 28 out. 2017.

HELPCARE. HelpCare, 2017. Disponivel em:

<http://www.helpcarebrasil.com.br/monitoramento-de-idosos>. Acesso em: 28 out. 2017.

IMAGE. Wikipedia: The Free Encyclopedia. Disponivel em:
<http://commons.wikimedia.org/wiki/File:Fitbit_Charge_ HR.jpg>. Acesso em: 16 set. 2017.

JOEL MURPHY. Pulse Sensor Amplified. TAPR Open Hardware, 2017. Disponivel em:
<http://tapr.org/OHL>. Acesso em: 30 out. 2017.

LAMKIN, P., 2015. Disponivel em:
<https://www.forbes.com/sites/paullamkin/2015/10/29/wearable-tech-market-to-treble-in-
next-five-years/#1bde62b82c77>. Acesso em: 16 set. 2017.

MARWEDEL, P. Embedded System Design. [S.l.]: [s.n.], 2006.

MICROCHIP TECHNOLOGY, INC. Bluetooth Low Energy Channels, 2017. Disponivel em:
<http://microchipdeveloper.com/wireless:ble-link-layer-channels#toc1>. Acesso em: 16 set.

2107.

NAKAJIMA, K.; TAMURA, T.; H.MIIKE. Monitoring of heart and respiratory rates by

photoplethysmography using digital filtering technique, 1994.

OPEN HANDSET ALLIANCE. Platform Architecture. Android for Developers, 2017. Disponivel

em: <https://developer.android.com/guide/platform/index.html>. Acesso em: 26 nov. 2017.

78

OSHANA, R.; KRAELING, M. Software Engineering for Embedded Systems. [S.1.]: [s.n.], 2013.

PRADO, J. Qual operadora tem a melhor cobertura do brasil? tecnoblog, 2017. Disponivel em:
<https://tecnoblog.net/211938/qual-operadora-melhor-cobertura-sinal-4g-3g-2g/>. Acesso
em: 04 dez. 2017.

PUNCH THROUGH DESIGN. Prototype to Production. Bean, 2017b. Disponivel em:
<https://punchthrough.com/bean/docs/guides/everything-else/proto-to-prod/>. Acesso em:
22 out. 2017.

PUNCHTHROUGH DESIGN. PunchThrough About. PunchThrough, 2017a. Disponivel em:

<https://punchthrough.com/>. Acesso em: 22 out. 2017.

PUNCHTHROUGH DESIGN. Accelerometers. Bean, 2017c. Disponivel em:

<https://punchthrough.com/bean/docs/guides/features/accelerometer/>.

PUNCHTHROUGH DESIGN. Technical Specs. Bean, 2017c. Disponivel em:
<https://punchthrough.com/bean/docs/guides/getting-started/tech-specs/>. Acesso em: 22
out. 2017.

TEHRANI, K.; MICHAEL, A., 2014. Disponivel em: <http://www.wearabledevices.com/what-is-

a-wearable-device/>. Acesso em: 16 set. 2017.

TONTOUCH. 1 KEY TOUCH PAD DETECTOR IC - TTP223-BA6, 2008. Disponivel em:
<https://radiokot.ru/konkursCatDay2014/53/01.pdf>. Acesso em: 2017.

UDOO NEO. KY-031 Knock Sensor. UDOO Neo Documentation, 2017. Disponivel em:
<https://www.udoo.org/docs-neo/Cookbook_Arduino_M4/Knock_sensor.html>. Acesso em:

2017 out. 15.

VAHID, F.; GIVAGIS, T. Embedded System Deisgn: A Unified Hardware/Software Approach.
[S.1.]: [s.n.], 2001.

WARNE, W. Bluetooth Low Energy - It starts with Advertising. Bluetooth, 2017. Disponivel em:
<https://blog.bluetooth.com/bluetooth-low-energy-it-starts-with-advertising>. Acesso em:

16 set. 2017.

79

WORLD FAMOUS ELECTRONICS LLC. Pulse Sensor GitHub. Pulse Sensor. Disponivel em:

<https://github.com/WorldFamousElectronics>. Acesso em: 29 nov. 2017.

ZURIARRAIN, J. Android ja é o sistema operacional mais usado do mundo. El Pais Brasil, 2017.
Disponivel em:
<https://brasil.elpais.com/brasil/2017/04/04/tecnologia/1491296467 396232.html>. Acesso
em: 26 out. 2017.

