

UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

JOÃO PEDRO GOBBI CODOGNOTTO

Projeto e Prototipação de Bracelete Inteligente para Auxílio e Monitoramento

de Idosos

São Carlos

2017

2

3

JOÃO PEDRO GOBBI CODOGNOTTO

Projeto e Prototipação de Bracelete Inteligente para Auxílio e Monitoramento

de Idosos

Monografia apresentada ao Curso de

Engenharia de Computação, da Escola de

Engenharia de São Carlos da Universidade de

São Paulo, como parte dos requisitos para

obtenção do título de Engenheiro de

Computação.

Orientador: Prof. Dr .Evandro L. L. Rodrigues

São Carlos

2017

4

5

6

7

DEDICATÓRIA

Dedico esse trabalho às minhas avós, Dirce e Marisa.

8

AGRADECIMENTOS

Agradeço a meu Pai, Pedro, e a minha mãe, Marisa, por todo suporte estrutural dado a mim

nos meus últimos 22 anos de vida.

Agradeço ao meu irmão, Pedro Henrique, por sempre querer o melhor para mim.

Agradeço meus amigos, por terem feito meu período na universidade mais completo.

E finalmente, agradeço vigorosamente à minha namorada, amiga e parceira, Roberta Costa,

por ser uma parte essencial em todas as minhas conquistas recentes.

Sem vocês eu com certeza não teria chegado tão longe, tão rápido.

9

“It's the questions we can't answer that

teach us the most. They teach us how to

think. If you give a man an answer, all he

gains is a little fact. But give him a question

and he'll look for his own answers.”

 -Patrick Rothfuss

10

11

RESUMO

CODOGNOTTO, J. G. Projeto e Prototipação de Bracelete Inteligente para Auxílio e
Monitoramento de Idosos. 2017. Monografia (Trabalho de Conclusão de Curso) – Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2017.

Acidentes são uma das maiores causas de morte em idosos e este trabalho foi motivado pela

utilização de tecnologias vestíveis na mitigação deste problema. Neste documento é

detalhado o desenvolvimento e implementação do projeto de um protótipo de um dispositivo

vestível, também conhecido pela expressão da língua inglesa: wearable. Este dispositivo é

voltado ao público idoso e possibilita uma comunicação quase instantânea com um contato

de emergência pré-definido. Outras funcionalidades, como a detecção de queda e a medição

de frequência de batimentos cardíacos são implementadas. O projeto utiliza Bluetooth Low

Energy para a comunicação do dispositivo com um aplicativo para smartphone Android. O

desenvolvimento do protótipo foi feito numa placa LightBlue Bean+, que conta com um

microcontrolador ATmega 328p além de um SoC Bluetooth responsável por realizar a

comunicação. O envio do pedido de emergência é feito por meio de envio de uma mensagem

SMS a partir do smartphone previamente conectado no dispositivo. O projeto foi bem-

sucedido pois implementou as funcionalidades requeridas, de forma eficiente, que

possibilitam a evolução para um produto real vestível para o monitoramento de segurança de

idosos.

Palavras-chave: Wearable, LightBlue Bean+, Bluetooth Low Energy (BLE), Android,

Monitoramento de Idosos

12

13

ABSTRACT

Accidents are one of the biggest causes of death with the elderly and this work was motivated

by the use of wearable technology on the mitigation of this problem. On this document, the

development and implementation of a wearable device prototype is detailed. This wearable

is meant especially for the elderly public and enables an almost instantaneous communication

with a pre-defined emergency contact. Other functionalities, like fall detection and heartbeat

rate measuring are also implemented. The project uses Bluetooth Low Energy for the

communication between the device and an Android application. The development of the

prototype was made on a LightBlue Bean+ development board, that has a microcontroller

ATmega 328p, besides an SoC Bluetooth responsible to accomplish communication. The

emergency request sending is done through an SMS sent from the smartphone that was

previously connected to the device. The project was successful, once it efficiently

implemented the required functionalities, which enables its evolution to a final product of a

wearable for elderly safety monitoring.

Keywords: Wearable, LightBlue Bean+, Bluetooth Low Energy (BLE), Android, Monitoring

System for Seniors.

14

15

SUMÁRIO

Sumário ... 15

1 Introdução .. 17

1.1 Objetivo .. 17

1.2 Motivação .. 17

1.3 Organização do Trabalho ... 18

1.4 Estado da Arte .. 18

2 Embasamento Teórico ... Error! Bookmark not defined.

2.1 Tecnologias Vestíveis – Wearable Technology .. 20

2.2 Bluetooth Low Energy – BLE .. 20

2.3 Sistemas Embarcados: MCUs e SOCs ... 23

2.3.1 Firmware e Bootloader ... 24

2.4 Sistema Operacional Android .. 25

3 Materiais ... 27

3.1 Placa de Prototipação LightBlue Bean+ ... 27

3.2 Sensor de Choque KY-031 .. 31

3.3 Sensor de Toque TTP223 ... 32

3.4 Sensor de Batimentos Cardíacos – SEN11574 ... 33

4 Métodos.. 36

4.1 Decisões de Projeto ... 36

4.2 Arquitetura geral do sistema ... 37

4.3 Implementação do Sistema Embarcado .. 39

4.3.1 Configuração do ambiente em Linux .. 40

4.3.2 Configuração no Ambiente Android ... 41

4.3.3 Atualização do Firmware no ambiente Linux ... 42

4.3.4 Programação do MCU no ambiente Linux ... 44

4.3.5 Programação do MCU no ambiente Android ... 45

4.3.6 Implementação do código embarcado... 45

16

4.3.7 Funcionamento da máquina de estados que define o funcionamento geral 47

4.3.8 Estado Normal .. 48

4.3.9 Estado de Emergência .. 48

4.3.10 Estado de medição de batimentos cardíacos ... 50

4.3.11 Interrupções de Transição de Pino e Aquisição dos Dados dos Sensores 57

4.3.12 Temporizador nos botões ... 59

4.3.13 Função de Detecção de Queda ... 60

4.3.14 Atualização das Bluetooth Characteristics ... 62

4.4 Implementação Android .. 64

5 Resultados .. 69

5.1 Ativação do modo de emergência por queda ... 70

5.2 Ativação do modo de emergência manual .. 71

5.3 Medição de batimentos cardíacos ... 71

6 Conclusão.. 73

6.1 Trabalhos Futuros .. 74

7 Referências ... 75

17

1 INTRODUÇÃO

1.1 OBJETIVO

O objetivo deste trabalho é desenvolver um protótipo de um dispositivo wearable de

auxílio a idosos e um aplicativo Android que se comunique com esse dispositivo. O sistema

deve ser capaz de notificar um contato pré-definido quando o dispositivo entra em estado de

emergência. O dispositivo deve poder entrar em modo de emergência manualmente ou

automaticamente, quando é detectada uma queda. Outra funcionalidade que deve ser

implementada é a medição de batimentos cardíacos. O dispositivo criado deve ser eficiente

energeticamente, possibilitar a mobilidade, além de ser de fácil uso, para aderência do uso

pelo seu público alvo: idosos.

O projeto deve ser desenvolvido utilizando materiais que possibilitem uma evolução do

protótipo para um futuro projeto de produção em massa. Além disso, há foco no uso de

tecnologias que já se encontram presentes no mercado, e na utilização de uma rede de

telecomunicação já existente cuja cobertura seja alta.

1.2 MOTIVAÇÃO

Um fato imutável é que o ser humano envelhece e novas limitações físicas e mentais

surgem. Tais limitações causam preocupação em famílias e amigos que, contra a vontade dos

mais velhos, forçam uma rotina monótona com a necessidade de cuidadores, visitas

constantes e asilos. Essas atitudes não são exageradas, uma vez que uma das maiores causas

de mortes em idosos é relacionada a acidentes (BROOKS, 2015), que poderiam ter suas

consequências mitigadas com um socorro imediato. Uma comunicação amigável, fácil e

rápida, entre o idoso e pessoas de confiança, tem o potencial de beneficiar e salvar a vida de

muitos idosos.

18

1.3 ORGANIZAÇÃO DO TRABALHO

Este documento está dividido nas seguintes seções:

1. Introdução, em que o leitor é contextualizado do propósito geral do projeto, e

uma visão geral do escopo desde documento é apresentada, assim como uma

explanação do estado da Arte para dispositivos similares no momento da

composição deste documento.

2. Embasamento teórico, em que alguns conceitos necessários para o

entendimento do funcionamento do projeto, bem como sua implementação

são explicados e detalhados.

3. Materiais, em que todos os materiais e tecnologias utilizados são relacionados,

com uma descrição detalhada dos seus funcionamentos e especificações

técnicas.

4. Métodos, em que o desenvolvimento do projeto é finalmente detalhado, com

explicações de alguns trechos de códigos, decisões de projeto, e da arquitetura

final geral do sistema.

5. Resultados. Nessa seção, o funcionamento do protótipo é demonstrado, com

casos de teste que cobrem as funcionalidades implementadas.

6. Conclusão. Na última seção, são sumarizados alguns pontos relevantes

observados durante o desenvolvimento deste protótipo e são feitas algumas

sugestões de prováveis trabalhos futuros.

1.4 ESTADO DA ARTE

O crescimento do uso de tecnologias vestíveis e da internet das coisas influencia

diretamente o crescimento da quantidade de dispositivos para monitoramento de idosos. As

soluções atuais contam com o uso de telefonia para a comunicação com uma central de

atendimento que, ao receber um pedido de emergência ativado por um simples e grande

botão de emergência, entra em contato com o idoso ou familiares. Esses serviços contam com

assinaturas mensais, como o serviço americano EverThere, da empresa americana AT&T

(AT&T, 2016) e o serviço disponível no Brasil HelpCare (HELPCARE, 2017). O Everthere é

19

independente, enquanto o HelpCare funciona apenas em residências, por depender de uma

base para comunicação por linha de telefone fixo. Também existe no Mercado comunicadores

dependentes de smartphones para a comunicação e funcionamento como, por exemplo, o

GreatCall (GREATCALL, 2017).

Figura 1: (a)Everthere (b)CarePredict (c)GreatCall (d)HelpCare

 FONTES: (a) (AT&T, 2016) (b) (CAREPREDICT, 2017) (c) (GREATCALL, 2017) (d) (HELPCARE, 2017)

Não foram encontrados projetos e produtos relevantes que implementavam uma solução

livre de assinatura mensal. Além disso, o reconhecimento automático de emergência é

limitado nos aparelhos já citados. O mais evoluído neste aspecto é o CarePredict Tempo

(CAREPREDICT, 2017), que busca padrões e os processa com inteligência artificial.

20

2 EMBASAMENTO TEÓRICO

2.1 TECNOLOGIAS VESTÍVEIS – WEARABLE TECHNOLOGY

 Uma tecnologia em expansão e que recebe grandes investimentos, esses dispositivos

têm previsão de atingir um mercado de 25 bilhões de dólares, na próxima decada (LAMKIN,

2015). Consiste em uma das maiores vertentes da Internet das Coisas, conceito que conecta

elementos comuns do cotidiano, como eletrodomésticos e a computadores à Rede, o que

resulta em uma comunicação e um monitoramento constantes.

Os Wearables, como são popularmente chamados no Brasil e no mundo, consistem

em aparelhos inteligentes, que podem substituir tarefas de computadores e Smartphones,

entretanto eles tendem a ser integradas com o usuário, podendo por meio de sensoriamento

avançado receber e enviar informações em tempo real (TEHRANI e MICHAEL, 2014).

 Segundo Tehrani e Michael (2014), o propósito de um wearable é criar uma conexão

constante, conveniente, transparente, portátil e quase independente dos usuários com seus

diversos eletrônicos. Sendo assim, o dispositivo deve focar no sensoriamento, na comunicação

com outros dispositivos, e na sua praticidade para o usuário.

2.2 BLUETOOTH LOW ENERGY – BLE

 Criado para unificar a comunicação de curta distância entre dispositivos (BLUETOOTH

SIG, 2017), o Bluetooth consiste em um conjunto de protocolos aplicados em diversas

camadas de comunicação (BRAY e STURMAN, 2002) e é muito utilizado para a criação de uma

rede PAN (Personal Area Network).

 Já sendo quase omnipresente em dispositivos móveis, a tecnologia continua em

evolução conforme a necessidade de adaptação e em 2011 foi lançada uma nova vertente da

tecnologia: o Bluetooth Low Energy, também chamado de BLE ou Bluetooth Smart. Com o

objetivo de ser utilizado amplamente por dispositivos no contexto da Internet das Coisas, o

BLE facilita sua implementação por constituir Perfil de Acesso Genérico (GAP) e Perfil de

Atributo Genérico (GATT).

21

O Generic Access Profile (GAP) é o perfil no qual o dispositivo Bluetooth se baseia para

estabelecer e gerenciar conexões e varia, principalmente, conforme a topologia da rede do

sistema. O Generic Attribute Profile (GATT) define o modo pelo qual os dispositivos BLE se

comunicam. O GATT utiliza Serviços (services) e Características (Characteristics) para a

comunicação, podendo esses ser configurações predefinidas e padronizadas ou configurações

personalizadas criadas pelo desenvolvedor do dispositivo. Como pode ser observado na Figura

2, um serviço possui diversas características, que correspondem aos dados que devem ser

sincronizados entre os dispositivos para uma certa aplicação. Um exemplo simples de GATT é

um serviço UART, em que uma das características é o canal RX, que pode ser escrito apenas

por outro dispositivo e outra é o canal TX, que deve ser configurado para apenas o dispositivo

local ser capaz de escrever (ADAFRUIT, 2014).

Figura 2: Organização do GATT contendo Serviços e, subsequentemente, Características.

FONTE: (ADAFRUIT, 2014)

 O diferencial mais relevante do Bluetooth Low Energy comparado ao Bluetooth Classic

é que no primeiro a economia de energia está inerente em todas as camadas de comunicação.

O BLE possui dois tipos de transmissão. A primeira é a de Anúncio (Advertising) que consiste

na troca de informações para a Descoberta de Dispositivos, Estabelecimento de Conexões e

Transmissões Broadcast, enquanto a segunda é a de Dados, que cria uma conexão Duplex com

uma boa taxa de transmissão.

Dos 40 canais de 2MHz disponíveis na camada física, 3 são utilizados para a

transmissão do tipo Anúncio (Advertising) e 37 são utilizados para a transmissão de dados

(WARNE, 2017). O padrão das transmissões em ambos é o mesmo, entretanto os 37 canais de

dados ficam desligados quando inativos (geralmente a maior parte do tempo), aumentado

22

significativamente a economia de energia. Portanto, os módulos BLE dos dispositivos têm a

capacidade de permanecer ociosos ao mesmo tempo em que conseguem ter uma conexão

iniciada ou receber dados Broadcast.

Utilizando seus diversos canais, a tecnologia também diminui o consumo energético

ao necessitar de menos potência para apaziguar efeitos de ruído, que são significativos, uma

vez que toda a banda utilizada pelo Bluetooth é compartilhada com outras tecnologias, como

o WiFi. O BLE implementa a Adaptative Frequency Hopping, ou Salto Adaptativo de

Frequência, em que ao detectar muita interferência em um canal de dado, simplesmente

‘salta’ para o próximo até encontrar um canal com nível de ruído aceitável. O mesmo não

ocorre com os canais de Advertising, portanto eles são especialmente selecionados para

serem os que menos sofrem de interferência, uma vez que ficam posicionados nas bordas dos

canais do WiFi (MICROCHIP TECHNOLOGY, INC., 2017). Este efeito pode ser observado na

Figura 3, que compara os canais utilizados por ambas as tecnologias no espectro de

frequência.

Figura 3: Espectro de Frequência comparando bandas do BLE com WiFi.

FONTE: (MICROCHIP TECHNOLOGY, INC., 2017)

23

2.3 SISTEMAS EMBARCADOS: MCUS E SOCS

Projetos de Sistemas Embarcados possuem os requisitos de serem eficientes e

confiáveis (MARWEDEL, 2006), conceitos os quais são relativos, pois podem referenciar

diferentes tipos de requisitos do sistema. Um sistema confiável que é protegido contra

alterações de dados mal-intencionadas é diferente de um sistema confiável protegido contra

erros em temperaturas baixas; de modo similar que um sistema eficiente energeticamente

não obrigatoriamente será eficiente em seu custo/benefício. Para alcançar os requisitos do

sistema que está sendo projetado, os desenvolvedores devem escolher com cuidado as partes

que o compõem, sem esquecer ainda de levar em consideração como elas influenciam no

tempo de desenvolvimento do produto final. Um sistema embarcado compreende de um

conjunto de Hardware, a parte física do sistema, e de Software, a parte lógica programável

que será executada no Hardware. O projetista deve, então, ponderar quais partes, tanto de

Hardware quanto Software, serão desenvolvidas internamente e quais serão adquiridas e

então integradas ao sistema, considerando que a configuração e integração dessas partes

também correspondem ao desenvolvimento do projeto. Quando partes já estão totalmente

integradas e funcionais e já foram testadas, o projetista deve abstrair esse conjunto gerado,

enxergando-o como uma única parte (ou bloco).

O essencial de qualquer aplicação de um sistema embarcado costuma ser a aquisição

de dados e o subsequente processamento destes, que serão feitos por interfaces de Entrada

e Saída (Input/Output ou I/O) e uma ou mais unidades de processamento, respectivamente.

As entradas e saídas se conectam a periféricos que são blocos abstraídos, os quais, por meio

de sua própria lógica e implementação, interagem com outros sistemas computacionais ou

realizam medições de grandezas físicas, possibilitando sensoriamentos e interações com

humanos. Com o objetivo de abstrair o essencial para o projetista, foram criados os

Microcontroladores (MicroController Unit ou MCU).

Os Microcontroladores encapsulam (ou seja, pré-conectam e abstraem os blocos

responsáveis por tarefas) um microprocessador juntamente com blocos de Entrada e Saída e

outros blocos essenciais para a realização de processamentos, como cristais osciladores,

contadores, temporizadores, memórias (VAHID e GIVAGIS, 2001). Alguns blocos mais

complexos e não essenciais, que atualmente são utilizados comumente, também podem ser

24

integrados, como por exemplo os responsáveis por entradas e saídas seriais (como UART,

entre outros).

Andrews (2004) explica que apesar de não possuir uma definição absoluta e formal, o

termo SoC (System on Chip ou Sistema em Chip) geralmente se refere ao componente que

encapsula uma ou mais unidades de processamento, blocos que gerenciam entradas e saídas,

blocos de aplicações básicas, além de um ou mais blocos específicos e complexos, que são

orientados a aplicações, como por exemplo os que gerenciam Wi-Fi ou Bluetooth; Esse nível

de abstração gera facilidade na integração e no tempo de desenvolvimento de um sistema

embarcado.

Portanto, apesar de nebulosa e não formal, a diferença entre um microcontrolador e

um SoC é, resumidamente, que os microcontroladores são mais simples, porém mais gerais,

enquanto os SoCs são mais complexos e criados para aplicações mais especificas, como por

exemplo o uso de Rede ou aplicações que demandam mais memória do que é tipicamente

encontrado em MCUs.

2.3.1 Firmware e Bootloader

Firmware são software que controlam hardware. Embarcado em microcontroladores

ou SoCs, o firmware é eternamente executado com o objetivo de controlar o dispositivo no

qual está presente. Um firmware pode ser complexo ou simples, independente ou

dependente de outros software (OSHANA e KRAELING, 2013).

Bootloader é um conjunto de instruções que é executado durante a inicialização de um

hardware. Esse software é responsável por diferentes tarefas, dependendo do hardware que

é executado. Exemplos de tarefas são: inicialização de registros, inicialização da memória,

configurações de clocks e, principalmente, a chamada de firmware e/ou Sistemas

Operacionais (OSHANA e KRAELING, 2013).

25

2.4 SISTEMA OPERACIONAL ANDROID

O Android é um sistema operacional com Kernel Linux que pode ser executado em

diversas plataformas, principalmente em telefones celulares e tablets. Fundado em 2003 e

posteriormente adquirido pela Google, hoje é o sistema operacional mais utilizado do mundo

(ZURIARRAIN, 2017).

Esse sistema operacional OpenSource administra os recursos do dispositivo com

objetivo de criar uma plataforma responsiva para o usuário; eficiente, principalmente na área

energética e na de alocação de recursos; segura e que possibilite uma relativa facilidade de

desenvolver aplicações.

Para promover o desenvolvimento de aplicações, que são escritas principalmente em

Java, o Google disponibiliza o ambiente de desenvolvimento Android Studio e o Android SDK

(Software Development Kit ou Kit de desenvolvimento de Software). Este pacote de

desenvolvimento disponibiliza ferramentas de simulação, ferramentas para Debbugging,

bibliotecas/APIs, além de códigos fonte e ferramentas geradoras de códigos automáticos.

Está disponível aos desenvolvedores também o Java API Framework, que consiste,

simplificadamente, em um conjunto de APIs. Essas APIs facilitam o desenvolvimento de

aplicativos, uma vez que possibilitam o reuso de alguns componentes do Sistema Android,

como, por exemplo, o View System ou Sistema de Visualização (responsável pelo desenho de

estruturas básicas como caixas de texto, tabelas ou botões) e Administradores (Managers) de

Notificação, Localização, Janela, entre outros, que abstraem a implementação desses recursos

na plataforma.

Para atingir tais funcionalidades, esse framework se utiliza de uma máquina virtual,

chamada Android Runtime (ART), e de bibliotecas em C/C++, que devem ser executadas

diretamente na máquina real, não na virtual. O ART e as bibliotecas em C/C++, por sua vez,

fazem uso de códigos específicos para cada periférico do dispositivo. Esses códigos compõem

o HAL (Hardware Abstraction Layer ou Camada de Abstração de Hardware), que possibilita

que o mesmo código seja compatível com diversos modelos de, por exemplo, câmeras, apenas

variando os códigos do HAL para seus respectivos hardware, o que deve ser feito,

naturalmente, pelo fabricante do dispositivo, não das aplicações. A Figura 4, abaixo, ilustra de

26

forma simples e de fácil legibilidade o relacionamento de todos esses componentes

(ANDROID, 2017).

Figura 4: Diagrama que mostra os principais componentes da plataforma Android. Organização com maior nível de
abstração conforme mais alto na pilha de blocos exibida.

FONTE: (ANDROID, 2017)

27

3 MATERIAIS

3.1 PLACA DE PROTOTIPAÇÃO LIGHTBLUE BEAN+

A placa utilizada para o desenvolvimento do projeto foi fabricada pela empresa

americana PunchThrough Design. A jovem empresa criada em 2009 é especializada em

projetos com Bluetooth e têm produtos e projetos sendo utilizados por empresas como

Google e organizações como a NASA (PUNCHTHROUGH DESIGN, 2017a).

Figura 5: Página da Internet da desenvolvedora de projetos e produtos com Bluetooth PunchThrough Design.

FONTE: Autoria Própria.

Com quase 100mil unidades vendidas, a família de placas de desenvolvimento

LightBlue Bean tem o objetivo de criar plataformas simples, porém potentes para

desenvolvimento de produtos com Bluetooth Low Energy. Existem duas versões na família, a

mais simples, menor e com baixo custo é a versão Bean, que pode ser utilizada no produto

final de pequenos projetos pessoais e industriais, e a versão Bean+, que é maior, mais robusta

e possui mais pinos e conexões. Essa última versão é a utilizada neste projeto. As placas dessa

família também contam com bibliotecas e APIs Android/IOS pré-desenvolvidos que agilizam o

tempo de desenvolvimento.

A família de placas tem suporte de “Prototipação para Produção em Massa”. Esse é o

suporte dado pela empresa PunchThrough ao disponibilizar todos os arquivos e dados

28

necessários para a transformação do protótipo em um produto final de baixo custo. Para isso,

é disponibilizado todo o esquemático da placa com todos os componentes especificados, além

do Bootloader e Firmware necessários, e de suporte pago para consultoria (PUNCH THROUGH

DESIGN, 2017b).

Figura 6: Placa de desenvolvimento LightBlue Bean+

FONTE: (PUNCHTHROUGH DESIGN, 2017a)

A arquitetura do sistema, como mostrado na Figura 7, consiste principalmente de um

SoC Bluetooth CC254x, feito pela Texas Instruments e de um Microcontrolador ATmega328p,

produzido pela Atmel. O sistema foca em abstrair detalhes de baixo nível da utilização do

Bluetooth, utilizando o SoC para a sua administração. Para alcançar essa abstração, a parte

programada pelo usuário da placa (na Figura 7 representada como User Code) é feita apenas

para o ATmega328p e, utilizando bibliotecas especificas, esse MCU se comunica

transparentemente com o SoC para utilização do Bluetooth. Essa comunicação é feita

utilizando UART (Universal Asynchronous Receiver-Transmitter), um barramento simples de

dois fios, que por ser assíncrono, necessita pré-configuração pelas duas partes envolvidas.

29

Figura 7 Arquitetura do Sistema da placa LightBlue Bean+.

FONTE: (PUNCHTHROUGH DESIGN, 2017c)

 Além da abstração do Bluetooth, também é abstraído do desenvolvedor um LED RGB

e um Acelerômetro. Esses periféricos são conectados diretamente com o SoC Bluetooth. A

conexão do acelerômetro, implementada com SPI ou I2C, é transparente e, por esse motivo,

não deve ser administrada pelo usuário. A conexão do LED RGB é feita com uma porta PWM

(Pulse Width Modulator), que significa que o LED tem a capacidade de brilhar em diversas

intensidades por receber uma entrada digital que, na prática, atua como uma entrada

analógica. Essa conexão também é transparente para o usuário, por meio de bibliotecas

específicas.

O microcontrolador Atmega 328p é o mesmo utilizado pela conhecida placa Arduino

Uno. Arduino é uma plataforma Open-Source para desenvolvimento de projetos eletrônicos.

Essa plataforma conta com uma grande quantidade de documentação além de diversas

ferramentas que ajudam no desenvolvimento de projetos (ARDUINO, 2017). Uma dessas

ferramentas é o conjunto de bibliotecas que abstrai diversas funções do microcontrolador

30

utilizado e essas bibliotecas são compatíveis com a placa LightBlue Bean+ pela utilização do

mesmo microcontrolador além de um Bootloader compatível.

O acelerômetro utilizado no LightBlue Bean+ e, consequentemente, no projeto é o

BMA250E, feito pela BOSCH (PUNCHTHROUGH DESIGN, 2017c). Esse é um acelerômetro de

3 eixos, que significa que aceleração é medida nos eixos X, Y e Z, como pode ser observado na

Figura 8. A medição é feita utilizando microssistemas Eletromecânicos (MEMS ou micro

electro-mechanical system), que são sistemas que utilizam grandezas mecânicas e grandezas

elétricas. Neste caso, converte aceleração (uma grandeza mecânica) em capacitância (uma

grandeza elétrica). Esse sensor de baixo consumo energético possui vários modos de uso e

sua saída é digital.

Figura 8: Eixos ‘x’, ‘y’ e ‘z’ mostrados em relação ao eixo da terra ‘g’.

FONTE: (BOSCH, 2011)

O BMA250E é altamente configurável e possui modos que detectam padrões ou que

geram uma saída conforme a quantidade de [g]s observados. O [g] é uma medida de

aceleração e corresponde a uma gravitação da terra, ou 9.6[m/s2]. A acurácia do sensor é fixa

em 10bits, porém sua escala pode ser selecionada entre ±2g, ±4g, ±8g e ±16g. Isso significa

que, por exemplo, na escala de ±4g os valores entre -4 [g] e + 4 [g] serão mapeados com

valores entre -512 e +511, que são os valores limites com sinal que podem ser representados

por esse número fixo de bits, calculado utilizando a equação A com o valor total deslocado

31

para representar também números negativos. O passo da medição e sua precisão será, neste

caso, de 0.0078125 [g] e de 0.0068125 [g/bit], podendo ser calculado utilizando a equação B.

 (2−𝑛) = número máximo de valores representados por n bits. (1)

2 ∗ 𝑃/(2−𝑛) = precisão (2)

Os modos que detectam padrões geram saída ALTA em pinos específicos caso o padrão

seja detectado e BAIXO caso contrário, e não foram utilizados no projeto.

O LED RGB (Red/Green/Blue ou Vermelho/Verde/Azul) é um LED que é capaz de brilhar

em todas as cores compostas por vermelho, verde e azul. Foi utilizado o modelo CL-SF687RGB,

feito pela CIEL Light (CIEL LIGHT, 2012) que é composto por 3 LEDS nas respectivas cores

supracitadas, além de apresentar grande intensidade de brilho e uma superfície quase plana.

O Bean+ também possui uma bateria recarregável de Lithium-Ion(LIPO). Essa bateria

possui uma carga completa de 600[mAh] e, conforme a completude da carga, fornece de

2.5[V] até 4.2[V] de tensão. O Bean+ é capaz de calcular a porcentagem da carga total

carregada a partir desta propriedade, isto é, a propriedade em que a tensão de saída da

bateria varia conforme a completude da carga.

3.2 SENSOR DE CHOQUE KY-031

Esse simples sensor detecta vibrações e, consequentemente, choques físicos ao

dispositivo. Também é conhecido como Knock Sensor por ser utilizado em detecção de Batidas

em portas e similares. Constituído de um Knock Switch e um resistor de Pull-Up, a saída é ALTA

quando não detectada nenhuma vibração e BAIXA caso contrário. O Knock Switch é formado

por dois terminais, sendo um em forma de mola, como pode ser visto na Figura 9. A vibração,

quando grande o suficiente, causa a conexão de ambos os terminais resultando uma saída em

baixo (UDOO NEO, 2017).

32

Figura 9: Funcionamento do Knock Switch

FONTE: (UDOO NEO, 2017)

3.3 SENSOR DE TOQUE TTP223

O sensor de toque capacitivo tem o objetivo de disponibilizar uma entrada analógica,

como a de um botão, porém mais agradável ao usuário e mais durável para o dispositivo, por

não possuir partes mecânicas. Sua saída é digital, ALTA quando sentido um toque, BAIXA, caso

contrário.

O sensor é constituído por um TTP223, o CI principal, um capacitor C1 de 22[pF], que

determina a sensibilidade base da capacitância sentida pelo CI e por outros componentes mais

simples, que podem ser vistos na

 Figura 10. Esse sensor possui a capacidade de configuração, por meio

de suas portas de entrada, entre saída ALTA e BAIXA, além do modo Toggle ou Direto. Além

disso, possui modo automático de economia de energia quando não detecta toques por 12

segundos e ajuste automático de entrada, que possibilita mais precisão com diferentes

capacitâncias de entrada. A capacitância de entrada é gerada por um SensePad, que consiste

apenas em uma grande área de material condutor que, ao ser pressionada, gera uma

capacitância entre o objeto (I.E. o dedo de um operador) e o circuito. (TONTOUCH, 2008)

33

 Figura 10: Esquemático de um TouchSensor

FONTE: (TONTOUCH, 2008)

3.4 SENSOR DE BATIMENTOS CARDÍACOS – SEN11574

O Sensor de Batimentos Cardíacos tem o objetivo de analogicamente ler, utilizando

luz, a densidade de células de sangue do usuário, formando assim uma curva que se

correlaciona com a frequência de batimentos cardíacos.

Essa técnica é chamada de Fotopletismografia (Photoplethysmography ou PPG) e

funciona da seguinte maneira: um emissor de luz e um receptor de luz são posicionados

próximos. A luz é direcionada para a pele humana quando em contato e parte desta luz é

absorvida enquanto outra parte é refletida. A porção refletida é medida pelo receptor. A

quantidade de luz absorvida pela pele, ossos e carne é quase constante enquanto a

quantidade absorvida por células do sangue varia devido ao fluxo sanguíneo cardiovascular.

Sendo assim, é possível observar picos na absorção de luz que correspondem aos batimentos

34

cardíacos (NAKAJIMA, TAMURA e H.MIIKE, 1994). A curva formada pode ser observada na

Figura 11.

Figura 11: Curva gerada pela técnica de Fotopletismografia.

FONTE: (NAKAJIMA, TAMURA e H.MIIKE, 1994)

No sensor SEN11574, a emissão de luz é realizada por um forte LED de cor verde, pois

é utilizado um fotorresistor com o pico de absorção coincidente com comprimentos de onda

da luz nessa cor, como é possível observar na curva de absorção do componente, mostrada

na Figura 12. A saída do sensor de luz é amplificada, como mostrado no esquemático da Figura

13 ,com o objetivo de facilitar a leitura do sinal. A saída do amplificador corresponde à saída

do SEN11574.

Figura 12: Curva de Absorção Relativa do Fotoresistor APDS-9008 utilizado pelo sensor de batimento cardíaco.

FONTE: (AVAGO TECHNOLOGIES)

35

Figura 13: Esquemático do Sensor de Batimentos Cardíacos SENS-11574 utilizado.

FONTE: (JOEL MURPHY, 2017)

36

4 MÉTODOS

Esse projeto, que tem como objetivo geral uma comunicação rápida e fácil em momentos

de emergência, possui duas principais partes. A primeira parte é a do sistema embarcado, isto

é, o hardware e seu software embarcado, que representa o maior volume de desenvolvimento

do projeto e será utilizado para a principal interação e controle do usuário. A segunda parte é

a do aplicativo Android, que é responsável pela comunicação com externos (ou seja, o contato

de emergência definido). A comunicação entre o Wearable e o Aplicativo Android deve ser

transparente para o usuário, rápida e eficiente energeticamente. Ambos os software foram

desenvolvidos com uma metodologia incremental, com execução de testes funcionais durante

cada iteração incremental. Os códigos podem ser encontrados integralmente no GitHub do

projeto: github.com/jgobbic/TCCWearableGobbi .

4.1 DECISÕES DE PROJETO

Um projeto de um dispositivo vestível (wearable) deve considerar o gasto energético,

além de, normalmente, uma comunicação prática com smartphones. Por esses motivos, foi

decidido a utilização do Bluetooth Low Energy no projeto, para realizar eficientemente a

comunicação com o smartphone.

A placa de desenvolvimento LightBlue Bean+ foi escolhida por dois principais motivos.

Primeiramente, ela foi desenvolvida por um grupo especializado em Bluetooth, que possui

projetos executados para grandes empresas. Além disso, a placa abstrai detalhes trabalhosos

do Bluetooth, que passa uma maior confiabilidade da comunicação enquanto aumenta a

velocidade de desenvolvimento do projeto. A placa, contudo, não seria utilizada se não

oferecesse suporte para a transformação do protótipo em produto final. Com detalhes, e

esquemáticos, dos circuitos internos da placa, componentes que podem ser encontrados no

mercado e firmware/bootloaders disponíveis, a criação de um módulo pequeno e de baixo

custo compatível com o software e hardware desenvolvidos neste projeto seria facilitada.

Para a realização da interface do sistema com o usuário, foram escolhidos dois tipos de

botões: um físico e um touch. O físico, que possui maior resposta tátil, ou seja, é mais

37

responsivo para o usuário, é utilizado para a ativação do modo de emergência, de forma que

o usuário possa ter considerável conforto de que o botão foi de fato pressionado e o pedido

de socorro foi enviado. O botão touch foi escolhido por ser mais agradável para o toque

contínuo, além de ter maior durabilidade de uso constante, e é utilizado para entrar em modo

de batimentos cardíacos. A interface de apenas dois botões foi escolhida para facilitar o uso

por idosos, que tendem a ter dificuldades na utilização de novas tecnologias.

Foi escolhido desenvolver o aplicativo compatível com o sistema Android pois, além de

ser o sistema mais utilizado no mundo, é o sistema mais acessível pois existe uma grande

variedade de smartphones de baixo custo com esse sistema operacional disponíveis.

Por último, foi escolhido o envio de mensagens por SMS, ao invés de mensagens por

meio de uso da internet, pela maior cobertura do serviço (PRADO, 2017).

4.2 ARQUITETURA GERAL DO SISTEMA

A comunicação entre as duas partes principais é o ponto chave do projeto criado. Essa

comunicação, que foi implementada em BLE, funciona por meio de characteristics

implementadas por um service genérico, seguindo a estrutura mostrada na Figura 2, do

Capítulo 1. Essas characteristics são, para o sistema, como dados compartilhados entre os

dispositivos conectados, ou seja, na prática, são variáveis compartilhadas entre o dispositivo

embarcado e o aplicativo Android.

 A implementação destas characteristcs é feita por meio de um dos 5 banks

disponibilizados pelo firmware do SoC Bluetooth do LBB+. Esses bancos são characteristics de

um service genérico. Toda vez que algum dado desse serviço é alterado, por qualquer uma das

partes, a outra parte é notificada e é feita a aquisição dos dados. Os services e characteristics

podem ser vistos em detalhes no aplicativo BLE SCANNER (BLUEPIXEL TECHNOLOGY LLP,

2017), como mostrado na Figura 14.

38

Figura 14: Serviços e Caracteristicas do Bean+ mostrados num aplicativo de analise BLE.

FONTE: Autoria Própria.

 Um diagrama de sequência que representa todo o fluxo de comunicação para o caso
de detecção de queda pode ser visto na

Figura 15.

O sistema foi implementado de maneira modular com o objetivo de facilitar a

implementação de novas funcionalidades no futuro. A transmissão de dados entre os

dispositivos é feita de maneira que, caso seja desejado a inserção de funcionalidades, é

39

necessário apenas a utilização de um dos 5 bancos para a transmissão dos dados. Cada banco

suporta até 20 bytes de dados e a leitura de cada um é feita separadamente.

Figura 15: diagrama de sequência exibindo o funcionamento no caso de detecção de queda.

FONTE: Autoria Própria.

4.3 IMPLEMENTAÇÃO DO SISTEMA EMBARCADO

Para a implementação do sistema, o primeiro passo é o processo de preparação do

ambiente para a gravação do código que será executado no microcontrolador, que pode ser

chamado de firmware do MCU. Esse passo não é trivial, pois, no LightBlue Bean+ a

programação deve ser feita de modo wireless, por meio do Bluetooth Low Energy. A

programação é feita desse modo pois o real responsável pela gravação no microcontrolador

é o SoC Bluetooth (é importante lembrar a diferença entre ambos, tratada na seção Sistemas

Embarcados: MCUs e SOCs).

Existem diferentes abordagens para fazer essa programação, e duas delas foram

utilizadas no projeto: Uma por meio de um aplicativo Android, chamado de Bean Loader for

Android e outra por meio de uma aplicação de linha de comando em ambiente Linux, chamada

40

de CLI Loader (Client Line Interface Loader). A abordagem utilizando o ambiente Android é

mais simples e intuitiva e foi a mais utilizada, uma vez que o acesso a um computador com

suporte ao Bluetooth Low Energy foi restrito durante a execução do projeto. Sendo mais

simples, a robustez e o detalhamento da compilação por meio do aplicativo Android são mais

baixos, tornando mais difícil o processo de debugging do código. A programação em um

ambiente Linux é, portanto, mais completa e facilita o debug, porém, envolve uma pré-

configuração do ambiente mais trabalhosa. Além disso, apenas o CLI Loader é capaz de

atualizar o firmware do SoC Bluetooth. A abordagem com Linux foi utilizada quando era

necessário maior nível de detalhes para debuging.

No ambiente Linux, a compilação do código é feita a partir do Arduino IDE e a

transmissão para a placa de desenvolvimento a partir do CLI Loader.

4.3.1 Configuração do ambiente em Linux

A configuração e programação desta placa é diferente do habitual, e por esse motivo,

será mostrada em detalhes nesta seção.

Para ser feita a configuração, é necessário ter Python 2.7 instalado no sistema, além

de bibliotecas específicas para a manipulação do Bluetooth. A instalação de ambos pode ser

feita com a execução dos dois comandos abaixo em um terminal bash:

$ sudo apt-get install python 2.7.1
$ sudo sudo apt-get install bluetooth bluez libbluetooth-dev libudev-dev

Deve-se instalar também o Node.js, framework que é utilizado pelo CLI Loader. Isso

pode ser feito executando os comandos abaixo, que fazem download do instalador, extraem

o arquivo baixado e, por último, instalam o framework na pasta adequada.

$ curl -O https://nodejs.org/dist/v6.11.5/node-v6.11.5-linux-x64.tar.xz
$ tar -xf node-v6.11.5-linux-x64.tar.xz
$ cp -R node-v6.11.5-linux-x64/* /usr/local/

Por último, deve-se instalar o administrador de pacotes JavaScript chamado npm, e,

finalmente, o CLI Loader.

$ sudo install npm -g
$ sudo npm install -g –unsafe-perm bean-sdk

Para a compilação do código, é necessário o Arduino IDE, que pode ser baixado,

extraído e instalado com os seguintes comandos:

41

$ curl -o http://downloads.arduino.cc/arduino-1.8.5-linux64.tar.xz
$ tar -xf arduino-1.8.5-linux64.tar.xz
$ cd arduino-1.8.5-linux64
$./install.sh

Com o Arduino IDE e o CLI Loader instalados, é necessário, então, fazer a instalação das

bibliotecas personalizadas do LBB+ na IDE. O comando e uma mensagem de sucesso para

toda a execução do processo pode ser visto no código abaixo e na Figura 16 abaixo.

$ sudo bean install_bean_arduino_core

Figura 16: Processo de instalação do CLI Loader e dependências concluído.

FONTE: Autoria Própria.

4.3.2 Configuração no Ambiente Android

No ambiente Android, a compilação é feita na Nuvem e apenas o arquivo compilado é

automaticamente baixado e transmitido para a placa de desenvolvimento.

Para a instalação do Bean Loader for Android, é apenas necessário o download do

aplicativo a partir da loja do Google Play, que pode ser visto na Figura 17.

Figura 17: Aplicativo Bean Loader que deve ser descarregado da PlayStore.

42

FONTE: Autoria Própria.

Para facilitar a transferência de arquivos entre o computador e o Smartphone Android,

além da utilização mais ágil do aplicativo, foi instalado no computador em que o projeto estava

sendo desenvolvido o programa SideSync, da Samsung, que possibilita a transferência de

arquivos ao estilo Drag’n’Drop (arrastar e soltar), além do controle total do smartphone pelo

computador.

Figura 18: Software SideSync sendo utilizado para controlar e transferir arquivos para o Smartphone, que aumenta a
produtividade utilizando o Bean Loader for Android.

43

FONTE: Autoria Própria.

4.3.3 Atualização do Firmware em ambiente Linux

 A atualização do firmware do SoC do Bean deve ser feita. Como explicado

anteriormente, isso pode ser feito somente pelo CLI Loader, pois o aplicativo Android ainda

não possui suporte para isso. Esse firmware é o que administra toda a utilização do Bluetooth,

além de tratar de tarefas críticas como, por exemplo, a gravação do software criado no

microcontrolador. Para realizar tal atualização, deve-se encontrar o Bean+ desejado na lista

de dispositivos BLE identificados, encontrar o seu endereço Bluetooth e posteriormente

executar a atualização. Esse endereço é único e fixo para cada dispositivo Bluetooth existente.

Os comandos que devem ser executados são:

$ sudo bean scan
$ sudo bean program_firmware -a 987bf359283c

A chave ‘-a’ no comando bean program_firmware especifica o endereço do Bean a

ser atualizado. O endereço é encontrado com o comando bean scan.

44

A atualização deve ser realizada, e será bem-sucedida quando o firmware encontrado

no Bean+ é o mesmo que se tenta instalar, como pode ser visto na Figura 19 abaixo.

Figura 19: Processo de atualização de firmware concluído.

FONTE: Autoria Própria.

4.3.4 Programação do MCU em ambiente Linux

A gravação de código no microcontrolador, como foi dito anteriormente, pode ser feita

por ambos os ambientes. Para a realização no ambiente Linux, o código deve ser compilado

no Arduino IDE e transmitido para o Bean por meio do CLI Loader.

Para o código ser compilado corretamente, compatível com o Bean+, deve-se

selecionar a placa de desenvolvimento no menu Tools -> Board -> LightBlue Bean+, como pode

ser visto na Figura 20.

45

Figura 20: Selecionando a placa de desenvolvimento LightBlue Bean+ no Arduino IDE.

FONTE: Autoria Própria.

Após a seleção, deve-se clicar em verify e em seguinda upload. O botão de upload, ao

contrário do que se pode imaginar, não transmite para o Bean+ o código compilado, apenas

o prepara para ser enviado manualmente pelo CLI Loader. Os botões são exibidos na Figura

21.

Figura 21: Botões de Verificação e Upload no Arduino IDE

FONTE: Autoria Própria.

Após preparado para o envio, deve-se executar os comandos:

$ sudo bean list_compiled_sketches
$ sudo bean program_sketch LittleRun -a 987bf359283c

O primeiro comando lista os códigos compilados e prontos para ser enviados, e o

segundo efetivamente transmite o sketch, isto é, o código selecionado LittleRun para o Bean+

com endereço Bluetooth 987bf359283c.

46

4.3.5 Programação do MCU no ambiente Android

A programação utilizando o Bean Loader for Android é um pouco mais simples e direta,

feita da seguinte forma. Após enviar o arquivo que contém o código fonte para o smartphone,

deve-se selecioná-lo no menu “Choose Sketch” ("Selecionar Sketch"), no aplicativo do Bean, e

então, após selecionado o Bean+ alvo, deve-se selecionar “Upload to Bean”. Uma mensagem

apontando o sucesso da operação deve ser exibida, como mostrado na Figura 22.

Figura 22: Mensagem de Upload bem-sucedido no Bean Loader for Android.

FONTE: Autoria Própria.

4.3.6 Implementação do código embarcado

O conjunto de materiais foi integrado como mostra o esquemático da Figura 23. Como

podemos observar, o Touch Sensor, o Botão, o Buzzer e o Shock Sensor foram conectados a

portas digitais, enquanto o Sensor de Batimentos Cardíacos foi conectado a uma porta

analógica. Além disso, como foi dito, o LED RGB e o Acelerômetro estão pré-integrados dentro

do LightBlue Bean+.

Figura 23: Esquemático do sistema implementado.

47

FONTE: Autoria Própria.

Pino Periférico

A0 Sensor de batimentos cardíacos

D1 Buzzer

D6 Sensor de choque

D8 Sensor de toque

D9 Botão físico

Tabela 1: Conexões do LightBlue Bean+ com sensores.

O funcionamento do software que é executado pelo microcontrolador é dividido em

três partes: setup(), loop() e interrupções. O setup() é executado apenas uma vez, inicialmente

no código, e faz configurações iniciais. O loop() é executado continuamente, ou seja, recomeça

quando sua execução termina (análogo a estrutura while(True) { }). As interrupções são trechos

especiais que são executados quando certos eventos ocorrem. Quando finalizadas, a execução

48

retorna ao loop(). Também existe o escopo global, onde são declaradas diretivas de

compilação, além da declaração de variáveis globais. As variáveis globais, diferentes das locais,

podem ser lidas e modificadas em todas as partes do código.

4.3.7 Funcionamento da máquina de estados que define o funcionamento geral

O funcionamento do firmware do microcontrolador é sumarizado por uma máquina

de estados que, conforme a leitura feita dos sensores integrados, transaciona entre os

estados. A FSM (Finite State Machine ou Máquina de Estados Finito) pode ser observada na

Figura 24.

Figura 24: Maquina de estados finita que define o funcionamento do sistema embarcado.

FONTE: Autoria Própria.

A implementação da máquina de estados foi feita com a estrutura switch/case padrão

da linguagem C e é executado continuamente, em todos os ciclos da função loop(). Dentro de

cada case (STATE_NORMAL, STATE_SOS e STATE_HRTBIT) é executada uma função

correspondente (normalState(), sosState() e hrtbitState()) que define as rotinas

correspondentes para cada estado. Essas funções serão apresentadas e explicadas

posteriormente nesta seção.

#define STATE_NORMAL 0
#define STATE_HRTBIT 1

49

#define STATE_SOS 2
[…]
void loop(){

[…]
switch(State){
 case STATE_NORMAL:
 { normalState(); //Execução do Estado Normal
 break; }
 case STATE_SOS:
 { sosState(); //Execução do Estado de Emergencia
 break; }
 case STATE_HRTBIT:
 { hrtbitState(); //Execução do Estado de Leitura de Batimentos
 break; }
}
}

4.3.8 Estado Normal

O estado normal, definido por STATE_NORMAL e caracterizado pela rotina

normalState(), é o estado em que o dispositivo normalmente se encontra. Esse é o estado

inicial da máquina, e é o estado sucessor de todos os outros. Nesse estado não é executada

nenhuma tarefa especial, apenas alguns procedimentos básicos para cálculo de transição de

estados. Esses procedimentos são: accelRead(), updateScratch(), CheckTimers(),

checkLongPress() e checkLongPressTouch().

4.3.9 Estado de Emergência

O estado de emergência, definido por STATE_SOS e caracterizado pela rotina

sosState(), é o estado que indica que ocorreu uma emergência. Esse estado é alcançado

quando um dos seguintes casos ocorrem: é detectada uma queda do usuário (modo

automático) ou é detectado o pressionamento por 3 segundos do botão de emergência (modo

manual). Para sair desse estado, deve-se pressionar novamente o botão de emergência, por 6

segundos.

Nesse estado o microcontrolador apenas é responsável por acionar o buzzer e piscar a

cor azul do LED RGB, mantendo a cor vermelha. Essas duas ações são executadas nas linhas

de código abaixo:

void sosState(){

50

 checkLongPress();
 if(quarterSecond%2) {Bean.setLed(255,0,255); } //liga o led azul
 else {Bean.setLed(255,0,0); } //desliga led azul
 digitalWrite(LED_PORT,HIGH); //aciona o buzzer
 }

 O LED pisca em diferentes cores pois a variável quarterSecond é continuamente

incrementada, a cada 250[ms] aproximadamente. Isso é feito utilizando interrupções por

timer, o funcionamento detalhado será explicado futuramente neste documento na seção

Interrupções de Transição de Pino e Aquisição dos Dados dos Sensores. Como um número par

é sempre seguido de um número ímpar, e vice-versa, a expressão quarterSecond%2 sempre

resultará intercaladamente em true e false.

A função Bean.setLed(r,g,b) é uma função padrão da biblioteca do Bean, assim como

todas da classe Bean. Essa função faz com que o MCU comunique o SoC para configurar o LED

RGB para brilhar nas cores definidas pelos argumentos que, sequencialmente, indicam a

intensidade de vermelho, verde e azul. Esses argumentos são do tipo uint8_t, que define um

valor de 8 bits entre 0 e 255. Quando especificado 0 para os três parâmetros, o LED é apagado

e esse valor pode ser incrementado até 255, que define o brilho máximo da respectiva cor.

Também pode ser observado na rotina sosState(), que apenas a função que checa o

pressionamento do botão de emergência é chamada (checkLongPress()), ou seja, o botão

touch será ignorado enquanto o sistema permanecer nesse estado e assim é impossível a

transição para o estado de leitura de batimentos cardíacos neste momento. Todas as outras

funções básicas são executadas.

A partir da leitura do código acima, aparentemente não é executada nenhuma rotina

que notificará o aplicativo Android do estado de emergência. Isso ocorre porque a notificação

é feita durante a transição do estado, e não no interior do estado. Isso é feito atribuindo o

valor ‘1’ (True, Verdadeiro) para a variavel global “st_emergency” sempre que o valor da

variável State tiver seu valor atribuído para STATE_SOS. A variável st_emergency, que indica

que a FSM está no Estado de Emergência, é continuamente enviada para o dispositivo Android,

mantendo seu valor sempre sincronizado nos dois ambientes, como será demonstrado

adiante.

[…]

51

st_emergency = 1;
State = STATE_SOS;
[…]

4.3.10 Estado de medição de batimentos cardíacos

O estado de medição de batimentos cardíacos é definido por STATE_SOS e tratado pela

rotina hrtbitState(). Esse estado é ativado por ação do usuário, e pode ser alcançado de duas

maneiras: a primeira mantendo “pressionado” o touch sensor por 3 segundos e a segunda por

meio do aplicativo Android. Para sair desse estado, deve-se “pressionar” o touch sensor por 6

segundos.

Esse estado é um estado orientado por interrupções, isto é, a principal lógica

implementada no estado se encontra dentro de uma interrupção. Interrupções são rotinas

especiais que são chamas quando algum certo evento ocorre. Essa rotina interrompe a

execução normal do código, quebrando seu fluxo natural e é executada imediatamente. A

interrupção que governa a lógica desse estado é a interrupção TIMER2_COMPA_vect que é

executada quando um timer específico, no caso o TIMER2 tem seu valor igual a um valor pré-

definido, o que explica o termo "COMPA", de comparação, no nome da interrupção. Quando

o valor do timer é igual ao pré-definido, ocorre um Match. Normalmente, tenta-se executar o

mínimo possível em interrupções, para evitar o mal funcionamento de outras interrupções

além de pausas muito longas na execução normal do código (OSHANA e KRAELING, 2013),

entretanto, nesta interrupção isso não se trata de um problema, uma vez que no estado de

aquisição de batimentos cardíacos não há processamento que demande muito tempo no

código principal e, como explicado anteriormente, a FSM não permite alterações entre

estados sem passar pelo Estado Normal.

 Para a configuração da interrupção, foi criada a rotina hrtBeatInterruptSetup() que tem

seu corpo mostrado no código abaixo e é chamada na rotina setup() do firmware, definida no

início deste capítulo. Essa rotina é responsável pela configuração do TIMER2 utilizado e

ativação da interrupção por comparação deste temporizador.

52

void setup(){
[…]
 hrtBeatInterruptSetup();
[…]
}

[…]

void hrtBeatInterruptSetup(){
 TCCR2A = 0x02;
 TCCR2B = 0x06;
 OCR2A = 0X7C;
 TIMSK2 = 0x02;
 sei();
 }

Os termos TCCR2A, TCCR2B, OCR2A e TIMSK2 são registradores de configuração que

têm seus detalhes explicados no manual do usuário do microcontrolador ATmega 328p. Suas

configurações e significados serão sumarizados nas tabelas a seguir. Registradores de

configuração deste microcontrolador têm 8bits e a configuração é feita escrevendo em bits

específicos. Algumas vezes, um conjunto de bits do mesmo ou de diferentes registradores

podem, juntos, fazer parte da configuração do mesmo recurso.

Tabela 2: Configuração do registrador TCCR2A

TCCR2A B
it 7

B
it 6

B
it 5

B
it 4

B
it 3

B
it 2

B
it 1

B
it 0

Nome do bit COM2A1 COM2A0 COM2B1 COM2B0 WGM21 WGM20

53

Significado Configura saída

em uma porta no

evento de match.

Modo normal,

que não gera

saída,

configurado.

 Configura saída em

outra porta no evento

de match. Modo normal,

que não gera saída,

configurado.
N

ão
 u

tilizad
o

N
ão

 u
tilizad

o

Justamente com o

WGM22 encontrado

no registrador

TCCR2B, configura o

modo de operação

CTC.

Valor

configurado:

0x02

0 0 0 0 0 0 1 0

Tabela 3: Configuração do registrador TCCR2B

TCCR2B B
it 7

B
it 6

B
it 5

B
it 4

B
it 3

B
it 2

B
it 1

B
it 0

Nome do bit FOC2A FOC2B WGM22 CS22 CS21 CS20

Significado Configura saída

em uma porta no

evento de

match. Modo

normal, que não

gera saída,

configurado.

N
ão

 u
tilizad

o

N
ão

 u
tilizad

o

Configura,

juntamente com

o WGM21 e

WGM20 do

registrador

TCCR2A o modo

de operação CTC.

Define a fonte de clock

(ClockSource).

Configuração de valor ‘2’

define a fonte como o

clk_v/256 onde clk_y é o

clock do microcontrolador

de 8MHz resultando numa

fonte de clock de 31.25kHz

para o timer.

Valor

configurado:

0x06

0 0 0 0 0 1 1 0

Tabela 4: Configuração da tabela OCR2A

54

OCR2A B
it 7

B
it 6

B
it 5

B
it 4

B
it 3

B
it 2

B
it 1

B
it 0

Nome do

bit

Significado O valor do OCR2A configura o valor que, quando comparado com o valor

atual do contador (regido pelo clock configurado com os bits CSxx do TCCR2B)

gerará a interrupção. O valor 0x7C hexadecimal configurado corresponde ao

valor 124 decimal.

Valor

configurad

o 0x7C

0 1 1 1 1 1 0 0

Tabela 5: Configuração do TCCR2B

TCCR2B B
it 7

B
it 6

B
it 5

B
it 4

B
it 3

B
it 2

B
it 1

B
it 0

Nome do bit OCIE2B OCIE2A TOIE2

Significado N
ão

 u
tilizad

o

N
ão

 u
tilizad

o

N
ão

 u
tilizad

o

N
ão

 u
tilizad

o

N
ão

 u
tilizad

o

Ativa a geração de uma

interrupção quando o match

do registrador OCR2x

correspondente ocorre.

Apenas configurado a geração

para o OCR2A.

Ativa geração de

interrupção no

overflow.

Configurado para

não ocorrer.

Valor

configurado:

0x02

0 0 0 0 0 0 1 0

Portanto, resumindo o funcionamento gerido pelos registradores: o registrador

TCCR2B configura que ocorrerá uma interrupção no match com o valor do registrador OCR2A.

Além disso, o TCCR2B configura uma fonte de clock de 31.25kHz para o incremento do timer

55

e, finalmente, os bits WGM dos registradores TCCR2A e TCCR2B configuram o modo de

operação para CTC, que significa Clear on Time Compare (limpar na comparação do timer),

que faz que o valor do timer seja resetado para 0 sempre que ocorrer o match.

Para calcular o valor correto para o registrador ORC2A, foi utilizada a lógica abaixo.

A rotina de interrupção, é responsável pela leitura da saída do sensor de batimento

cardíaco, ou seja, pela amostragem desse sinal analógico. Portanto, para definir uma

frequência ideal de amostragem, foi levada em consideração a condição de frequência de

amostragem mínima de Nyquist, que é dada pela equação:

faminima = 2*fmaxsinal

A fmaxsinal corresponde à frequência máxima de batimento cardíaco, que é:

A fmaxsinal = 220bpm = 3.67Hz

Portanto, a faminima = 3.67Hz * 2 = 7.33Hz

Esse valor corresponde à frequência mínima de interrupções para obter-se uma

amostragem livre de serrilhamento. No entando, não é necessario se prender a esse valor,

quanto maior a frequência de amostragem, melhor será a digitalização do sinal. Por esse

motivo, foi escolhido um valor 34 vezes superior: 250Hz, que não somente atende ao teorema

de Nyquist, como vai proporcionar um sinal digital muito mais fiel ao original, sem causar

muitos problemas de execução. Além disso, essa frequência de interrupções também será

utilizada para o cálculo do pressionamento dos botões por 3[s] ou 6[s], o que será detalhado

mais adiante nesta seção. Portanto, o valor correto para o registrador OCR2A é:

finterrupção = frecebida/val_ocr2a

250 = 31.25k/val_ocr2a

val_ocr2a = 124

frecebida corresponde à frequência de incremento do timer.

A rotina de cálculo de batimentos por segundo, que é executada dentro da

interrupção, é uma modificação da indicada pelo fabricante do sensor de batimentos

56

cardíacos utilizado SENS1574 (WORLD FAMOUS ELECTRONICS LLC) e pode ser vista com mais

detalhes na referência. Os principais pontos serão abordados a seguir.

Primeiramente, externo à interrupção e dentro da função hrtbitState() existe a

estrutura:

void hrtbitState(){
[...]

if (QS == true){ QS = false; }
[...]
}

Em que QS é uma variável que indica que foi detectado um batimento. Essa variável

precisa ser limpa continuamente a cada execução do loop() e por isso se encontra na rotina

do estado, não na interrupção.

Dentro da interrupção, há a condição de apenas executar o código de aquisição de

batimentos cardíacos se o estado da FSM for o de batimentos cardíacos, como pode ser visto

no código da próxima página.

A primeira parte do código busca os pontos mais altos e baixos de uma curva, com o

objetivo de reconhecer batimentos cardíacos. Observando a Figura 11, do Capítulo 1, é

possível observar que a partir de pontos altos e baixos da curva é possível fazer esse

reconhecimento.

ISR(TIMER2_COMPA_vect){
[…]

 if(State == STATE_HRTBIT)
 {
 cli();
 Signal = analogRead(HRTBIT_PORT); //realiza a leitura do sensor
 sampleCounter += 2;
 int N = sampleCounter - lastBeatTime;//calcula o tempo entre as leituras

// Procura o ponto mais baixo da curva
 if(Signal < thresh && N > (IBI/5)*3){
 if (Signal < T){
 T = Signal;
 }
 }

 //procura o ponto mais alto da curva
 if(Signal > thresh && Signal > P){
 P = Signal;
 }

 if (N > 250){ //Evita ruído de alta frequência

57

//detecta um batimento
 if ((Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3)){
 Pulse = true;
 digitalWrite(LED_PORT,HIGH);
 IBI = sampleCounter - lastBeatTime;
 lastBeatTime = sampleCounter;

[…]

 }

Um ciclo cardíaco possui na verdade dois batimentos: o maior é a sístole e o menor a

diástole (NAKAJIMA, TAMURA e H.MIIKE, 1994). Para o menor, sístole, não ser confundido

com um novo batimento, é adicionada a condição (N > (IBI/5)*3) no if de detecção de

batimentos. Essa condição evita o reconhecimento de um novo batimento cardíaco em um

curto espaço de tempo relativo aos batimentos já calculados. De maneira similar, a condição

(N > 250) evita ruídos de alta frequência, ignorando "batimentos" muito próximos

temporalmente (ou seja, funciona como um Filtro Passa Baixa). A variável IBI é calculada como

o tempo entre os dois últimos batimentos, e N representa a diferença entre o tempo "atual"

e tempo em que foi detectado o último batimento.

Em seguida, a rotina calcula a frequência do pulso cardíaco, além de recalcular valores

limites (threshold) para ser reconhecido o batimento. Também, ao reconhecer que o sinal está

declinando, apontando a queda da curva Fotopletismografia, os dados necessários são

resetados para que se inicie um novo reconhecimento de pulsação.

[…]
 //media de tempo dos ultimos 10 batimentos cardiacos.
 for(int i=0; i<=8; i++){
 rate[i] = rate[i+1];
 runningTotal += rate[i];
 }
 rate[9] = IBI;
 runningTotal += rate[9];
 runningTotal /= 10;

 // Tempo de 2 minutos em microsegundos dividido pela media de tempo
 //dos ultimos 10 batimentos da quantidade de batimentos por minuto
 BPM = 120000/runningTotal;
 toScratchBPM = (uint8_t) BPM;
 QS = true;

 […]

Também é possível observar a expressão toScratchBPM = (uint8_t) BPM em que a

variável toScratchBPM, que será utilizada para fazer a transmissão do dado da frequência

58

cardíaca para o aplicativo Android é atribuída com esse valor. Detalhes de como a transmissão

é feita serão explanados na seção abaixo Atualização das Bluetooth Characteristics.

4.3.11 Interrupções de Transição de Pino e Aquisição dos Dados dos Sensores

 A leitura dos dados do sensor de choque, do botão e do sensor de toque é feita

utilizando interrupções. Como o ATmega328p tem suporte para apenas 2 interrupções por

pinos, foi necessário utilizar a interrupção por porta, chamada portchange. Essa interrupção é

executada sempre que algum dos pinos que compõem uma porta é alterado.

 Para ativar essa interrupção, também chamada PCINT0_vect, é necessário configurar

o registrador PCICR, selecionando a interrupção da porta0 (também chamada de PORTB), e

do registrador PCMSK0, que configura quais pinos da porta0 são capazes de engatilhar a

interrupção. O funcionamento detalhado dos registradores é mostrado no manual do

microcontrolador (ATMEL, 2015). Os pinos pertencentes a porta0 são D9, D8, D7 e D6 do

LightBlue Bean+.

 A configuração desses dois registradores é feita na rotina setup(), por meio do código

abaixo:

[…]
Setup(){
 […]
 PCICR |= (1<<0);
 PCMSK0 |= (0x3C);
 […]
}
[…]

Os três periféricos foram conectados a pinos dessa porta, conforme a tabela abaixo, e

esses três pinos foram os habilitados para poderem engatilhar a interrupção por porta.

Tabela 6: Pinos detectados pela interrupção de mudança de estado.

Pino Periférico conectado

D6 Sensor de choque

59

D8 Sensor de toque

D9 Botão físico

Como a mesma interrupção é executada quando qualquer um dos três pinos troca de

estado, é necessário fazer o reconhecimento de qual deles foi alterado por software. Para isso,

sempre que houver uma interrupção é feita uma comparação entre o estado da porta0 com

o estado dessa porta na última execução da interrupção (pré-armazenado em uma variável

global last_PINB). Naturalmente, o bit que estiver diferente representará o pino que foi

alterado e que necessita ser tratado. Essa comparação é feita utilizando a operação binaria

ou-exclusivo, como pode ser visto no código abaixo.

ISR(PCINT0_vect) {
 uint8_t changed_bits;
 changed_bits = PINB ^ last_PINB; //compara os valores antigos com novos
 last_PINB = PINB; //salva o valor para ser comparado na prox. execução
[…]
if (changed_bits & (1 << PINB5)) //BUTTON //se o valor do pino do botão mudou
 {

 readButtom = digitalRead(BUTTON_PORT);

 if(readButtom == 1) //READBUTTON 1 = NOT PRESSING IT
 {
 […]
 }
 else
 {
 [...]
 }
 }
}

Essa estrutura é utilizada nos 3 sensores conectados à porta.

4.3.12 Temporizador nos botões

 Para realizar a temporização do botão e do sensor de toque, isto é, reconhecer o

pressionamento por 3 ou 6 segundos consecutivos, foi aproveitada a interrupção já

implementada do TIMER2 apresentada na seção Estado de medição de batimentos cardíacos.

 Esta interrupção, como foi explicado anteriormente, acontece a cada 4ms. Durante a

execução dessa interrupção, uma variável chamada counting4ms é incrementada, portanto,

60

essa variável conta a quantidade de ‘4ms’ executados. Quando counting4ms chega na

contagem de 250, totalizando a contagem de 1 segundo, seu valor é restaurado para 0 e uma

nova variável, chamada oneSecond, é incrementada. Essa variável expressa a quantidade de

segundos passados e ela é a utilizada na temporização dos 3 e 6 segundos.

ISR(TIMER2_COMPA_vect){
static uint8_t counting4ms = 0; //variavel estática é compartilhada com todas as
 //instancias da rotina.
 counting4ms++;
 if(counting4ms==250){
 counting4ms=0;
 oneSecond++; }
[…]

}

Após a implementação dessa estrutura, as funções básicas para checagem de botão

checkLongPress e checkLongPressTouch precisam apenas checar a diferença do valor da

variável OneSecond no instante em que o botão começou a ser pressionado e no instante

"atual" de execução do código, levando em consideração a possibilidade de ter ocorrido

overflow nesse meio tempo. A amostragem do valor no início do pressionamento do botão

(ou sensor) é feita na rotina de interrupção, enquanto a comparação e a amostragem do

instante corrente são feitas quando checkLongPress ou checkLongPressTouch são chamadas.

É importante entender que a variável OneSecond é continuamente atualizada pela

interrupção do timer2, enquanto a pressingTouchStartTime (e correspondentes), é atualizada

quando o botão é pressionado. É possível observar essas características no código abaixo.

ISR(PCINT0_vect) {
[…]
if (changed_bits & (1 << PINB4)) //TOUCH
 {
 readTouch = digitalRead(TOUCH_PORT);
 if(readTouch == 0){ //READTOUCH 0 = botão não pressionado
 releasingTouchTime = OneSecond;
 }
 else
 {
 updatedTouch = 1;
 handled_3secPushTouch = 0;
 handled_6secPushTouch = 0;
 pressingTouchStartTime = OneSecond;
 }

 }
[…]
}

61

void checkLongPressTouch(){
[…]
if(readTouch == 1){
 pressingStartTime = pressingTouchStartTime;
 delta_pressing = OneSecond - pressingStartTime;
 }
 […]
 if(delta_pressing>6 && delta_pressing<10 && !handled_3secPushTouch){
 handled_3secPushTouch = 1;

 […]
 }
[…]
}

Foi adicionada a variável handled_3secPushTouch (e outras correspondentes para

diferentes tempos e para o botão mecânico) como uma flag que indica que a devida ação já

foi tomada, para evitar que o mesmo código seja executado repetidamente enquanto o

touch/botão se matem pressionado.

4.3.13 Função de Detecção de Queda

A checagem do acelerômetro é feita em todos os ciclos de execução da rotina loop()

por meio da rotina accelRead(). Essa rotina reconhece momentos de queda livre do

dispositivo, que podem ou não significar uma queda do usuário. Ela acusa que houve de fato

uma queda do usuário de duas diferentes maneiras: a primeira é com diversas medidas

consecutivas que apontam a queda livre do dispositivo; a segunda é medindo uma queda livre

do dispositivo e um impacto.

 Essas medidas são feitas por meio da rotina incluída na biblioteca do LightBlue Bean+

Bean.getAcceleration(), que retorna as acelerações medidas pelo acelerômetro e as armazena

em uma estrutura (struct) que possui um campo para cada eixo cartesiano: x, y e z. Quando a

soma dessas três medidas é menor que um certo valor de limite, obtido

empiricamentedefinido no código por FALLINGSIZE_threshold, significa que houve um

momento de queda livre do dispositivo.

 Quando é detectado um momento de queda livre, são realizadas mais leituras do

acelerômetro para verificar se essa detecção se tratou de somente um movimento brusco ou

se de fato o usuário caiu, caso seja detectado um mínimo de leituras consecutivas que

apontam queda livre, definido no código como FALLINGTIMES_threshold, houve uma queda

do usuário e as rotinas correspondentes de tratamento são chamadas.

Figura 25: Fluxo de execução da rotina de detecção de queda.

62

FONTE: Autoria Própria.

Caso esse mínimo não tenha sido atingido, mas pelo menos um momento de queda

livre tiver sido detectado, ainda é possível que tenha havido uma queda do usuário. Para esses

casos, é verificado se houve impacto do dispositivo. O impacto é detectado pelo shock sensor,

que tem seu valor copiado para a variável global st_shock na rotina de interrupção.

Ambas as condições, assim como a leitura de dados correspondente podem ser

observadas no código a seguir:

void accelRead(){
 dvcAccel = Bean.getAcceleration();
 magnetude = abs(dvcAccel.xAxis) + abs(dvcAccel.yAxis) + abs(dvcAccel.zAxis);

 if(magnetude<FALLINGSIZE_threshold){ //detectado queda livre
 times_that_fell++;
 for(uint8_t i = 0; i<=(FALLINGTIMES_threshold-1) ; i++){
 dvcAccel = Bean.getAcceleration(); //novas leituras
 magnetude = abs(dvcAccel.xAxis) + abs(dvcAccel.yAxis) +
abs(dvcAccel.zAxis);

 if(magnetude<FALLINGSIZE_threshold) times_that_fell++;

63

//primeira condição para detecção de queda

 if(times_that_fell==FALLINGTIMES_threshold){
 st_emergency = 1;
 State = STATE_SOS; ///Entra em modo emergência
 Bean.setLed(255,0,0);
 }
 }

 //segunda condição para detecção de quedas
 if(times_that_fell>0 && st_shock==1){
 st_emergency = 1;
 State = STATE_SOS; //Entra em modo de emergência
 Bean.setLed(255,0,0);
 }
 times_that_fell = 0;
 }
}

4.3.14 Atualização das Bluetooth Characteristics

A verificação da necessidade de envio de dados por Bluetooth é feita em todos os ciclos

da rotina loop() no interior da rotina updateScratch(), que é responsável por administrar os

dados que estão sendo compartilhados. Caso eles tenham sido alterados, devem ser

atualizados e enviados.

Isso é feito mantendo sempre uma cópia do último dado enviado e comparando com

o atual estado dos dados. Se não forem iguais, os dados atualizados devem ser enviados para

o aplicativo Android, o que é feito por meio da rotina disponível da biblioteca do LBB+,como

demonstrado no código a seguir:

void updateScratch()
{
[…]
 if(oldScratchBuffer[0] != toScratchBuffer[0] || oldScratchBuffer[1] !=
toScratchBuffer[1])
 {
 Bean.setScratchData(2,toScratchBuffer,2);
 }
[…]
}

64

A função Bean.setScratchData(uint8_t bank, uint8_t* data, uint8_t size) escreve em

um dos 5 bancos (banks) que define as Bluetooth characteristics do Bean+ para ser lido pelo

aplicativo Android. O parâmetro bank indica em qual banco o dado será escrito, o parâmetro

data contém os dados a serem escritos e size é a quantidade de bytes a ser escrita. O dado

enviado é o vetor toScratchBuffer, que possui dois bytes: o primeiro contendo os dados de

queda, de emergência e de alguns sensores concatenados e o segundo contendo a última

medição de batimentos cardíacos.

Tabela 7: Organização dos dados a serem enviados para as BLE Characteristics

Byte/Bit 7 6 5 4 3 2 1 0

1-Sinais Emergency HearthBeat

2-hrtbit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

A estrutura que concatena as flags em um byte e a estrutura que concatena o bit de

batimentos cardíacos e os que contêm as flags é mostrada no código abaixo.

void updateScratch()
{
[…]
toScratchByteWrite = ((readShock & 0x01)<<1 | (st_fell & 0x01)<<2 |
 (st_hrtbit & 0x01)<<5 | (st_emergency & 0x01)<<7);

[…]
 toScratchBuffer[0] = toScratchByteWrite;
 toScratchBuffer[1] = toScratchBPM;
[…]

 }

Além de ser enviar dados, essa rotina também é responsável por tratar o recebimento

de dados. Isso é feito lendo o banco de memórias e checando os campos que devem ser

escritos pelo aplicativo Android. A leitura dos dados é feita utilizando uma função simples,

que retorna uma estrutura de vários bytes enfileirados. A leitura e, sequencialmente o

tratamento do dado é exibido no código abaixo.

ScratchData toScratchRead;
[…]
toScratchRead = Bean.readScratchData(2); //ler do banco 2
scratchByte = toScratchRead.data[0];
[…]
if(scratchByte & 0x4){
 activateBuzzer2sec();

65

 Bean.setLedBlue(255);
 }else
 {
 Bean.setLedBlue(0);
 }

Neste código é feito o tratamento da informação que ativa o modo de leitura de

batimentos cardíacos a partir do aplicativo Android.

4.4 IMPLEMENTAÇÃO ANDROID

 A aplicação Android foi desenvolvida utilizando o Android Studio e testada em um

aparelho Samsung Galaxy s8 rodando Android 6.0. O desenvolvimento da aplicação teve foco

em funcionalidades e por esse motivo não serão expostos detalhes do desenvolvimento da

interface de usuário.

 Primeiramente, é necessária a compreensão superficial de como um projeto Android

é organizado. Existem arquivos .java que determinam as lógicas implementadas pela

aplicação. Existem arquivos .xml que determinam como serão desenhados os elementos de

uma aplicação. Existem arquivos .gradle que determinam scripts que regem a compilação do

código e, finalmente, existe o arquivo AndroidManifest.xml, que determina configurações

básicas para a execução do aplicativo.

 Os arquivos .xml cosméticos são encontrados no GitHub do projeto, e sua confecção

foi feita com o uso dos recursos visuais do Android Studio.

 O arquivo build.gradle, que possui diretrizes de compilação, necessitou ser alterado

para a importação da biblioteca do Bean SDK, que é a API criada pela PunchThrough para a

utilização do Bean. A linha abaixo foi adicionada:

dependencies {
[…]
 compile 'com.punchthrough.bean.sdk:sdk:2.1.1'
[…]
}

Também é necessária a edição do arquivo AndroidManifest.xml, pois este arquivo

controla as permissões do Sistema que o aplicativo pode ter quando executado. As permissões

que necessitam ser adicionadas são as de leitura do estado do telefone, de recebimento e

66

envio de mensagens SMS, de Bluetooth, além de permissão de localização, necessária para a

utilização do Bean SDK. As linhas abaixo são as que devem ser adicionadas

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.gobbi.tccapp">
 <uses-permission android:name="android.permission.READ_PHONE_STATE" />
 <uses-permission android:name="android.permission.SEND_SMS" />
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
 <uses-permission android:name="android.permission.BLUETOOTH" />

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
</manifest>

Essas linhas indicam que o aplicativo pode requisitar essas permissões, porém ainda é

necessária a aprovação futura do usuário quando o aplicativo é executado pela primeira vez.

 Para compreender a implementação do aplicativo, é necessário compreender o

conceito de callback. Callbacks são funções utilizadas por funções assíncronas, ou seja, que

não têm seu resultado no momento do fim de sua execução. Ao invés disso, é necessário

esperar algum processamento (ou resposta) que chegará após um tempo indeterminado.

Quando o resultado estiver disponível, a função de callback é chamada.

O arquivo MainActivity.java define a lógica que o aplicativo executará quando for

aberto. Nesse arquivo ainda é necessário a importação de bibliotecas pois o arquivo .gradle

apenas indica quais bibliotecas serão disponíveis para a importação, ao invés de realmente

importá-las.

A rotina onCreate define a execução que será feita quando o aplicativo é aberto, e é

análogo à um main() da programação em C. Nesta rotina é feito, primeiramente, a requisição

das permissões necessárias para o usuário, por meio de rotinas como a mostrada abaixo.

ActivityCompat.requestPermissions(this,
 New String[] {Manifest.permission.ACCESS_FINE_LOCATION},
 8);

Para fazer a busca de dispositivos, é necessária a declaração de uma variável do tipo

BeanDiscoveryListener definido pela BeanSDK. Essa variável define uma classe que administra

a busca por novos dispositivos LightBlue Bean+. Nesta classe, existem funções de callback, que

serão assincronamente chamadas quando certos eventos ocorrem. Exemplos dessas call-

backs são: OnDiscoveryComplete() e OnBeanDiscovered(). Para definir, portanto, o que deve

67

ser executado quando um novo Bean é descoberto, deve-se sobrescrever a função

onBeanDiscovered(), como foi feito no código abaixo.

final BeanDiscoveryListener listener = new BeanDiscoveryListener() {
 @Override
 public void onBeanDiscovered(Bean bean, int rssi) {
 beans.add(bean);}

[…]
 }

O código acima é executado sempre que um Bean é encontrado e adiciona o

dispositivo para uma lista de dispositivos encontrados chamada de bean.

 Para começar a busca por dispositivos, é necessário executar uma função que notifica

a classe BeanDiscoveryListener como é feito abaixo.

 button1.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 BeanManager.getInstance().startDiscovery(listener);
 }
 });

A administração de um dispositivo conectado é feita por uma classe similar, chamada

BeanListener. Essa classe tem o funcionamento ditado também sobrescrevendo funções de

callback. As mais importantes são: onConnected() e onScratchValueChanged().

68

A primeira serve apenas para exibir mensagens com informações sobre o dispositivo e

é mostrada a seguir:

final BeanListener beanListener = new BeanListener() {

 @Override
 public void onConnected() {
 currentBean = beans.get(0);
 bean.readDeviceInfo(new Callback<DeviceInfo>() {
 @Override
 public void onResult(final DeviceInfo deviceInfo) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mainConsole.addInfo("Connected to device!");
 mainConsole.addInfo(deviceInfo.hardwareVersion());
 mainConsole.addInfo(deviceInfo.firmwareVersion());
 mainConsole.addInfo(deviceInfo.softwareVersion());

 }
 });

 }
 });
[...]
 }

 A sintaxe confusa apresentada pela função ocorre devido a particularidades da

linguagem. Basicamente, estão sendo definidos objetos durante a própria declaração dos

mesmos.

A função onScratchValueChanged() é chave para o sistema. Ela é a rotina que é

automaticamente chamada quando o valor das charachteristcs é alterado pelo wearable.

Nela, é feito o caminho inverso mostrado na seção Atualização das Bluetooth Characteristics.

Os dados chegam, portanto, em bytes que devem ter seus dados extraídos. Depois da

extração, deve ser feita uma comparação com os dados antigos, para averiguar quais sofreram

alteração. Esse processo é exibido no código a seguir:

69

final BeanListener beanListener = new BeanListener() {
 […]
 @Override
 public void onScratchValueChanged(ScratchBank bank, byte[] value) {
 int temp;

 scratchData[0] = value[0];
 scratchData[1] = value[1];

 temp = value[1] & 0xFF; //transforma signed em unsigned

 […]
 int st_emergency = (scratchData[0] & 1<<7) >> 7;
 […]
 int st_emergencyOld = (scratchDataOld[0] & 1<<7) >> 7;
 […]

 if(st_emergency == 1 && st_emergencyOld == 0){ //entrou em emergencia
 […]
 String msg = name + ", preciso de ajuda! Me ligue";

 […]
 sendSMS(phoneNumber,msg);
 }else if(st_emergency == 0 && st_emergencyOld == 1){ //saiu de
emergencia
 […]
 String msg = name + ", ja estou bem.";

 […]
 sendSMS(phoneNumber,msg);
 }else{
 //nothing is done
 }

 scratchDataOld[0] = scratchData[0]; //mantem copias antigas
 scratchDataOld[1] = scratchData[1];

 }

Finalmente, é feito o envio da mensagem de texto. O envio e recebimento da

mensagem de texto é administrado pelo mesmo objeto em todos os aplicativos Android. Por

isso, não se deve declarar um novo administrador de mensagem de texto e sim obter o

administrador padrão. Isso é feito com a chamada SmsMenager sms =

Sms.Manager.getDefault(). Deve-se então enviar um pedido para esse administrador com a

intenção de enviar a mensagem, com número e corpo definido. Esse procedimento pode ser

visto no código da rotina abaixo:

 private void sendSMS(String phoneNumber, String message) {

 SmsManager sms = SmsManager.getDefault();
 PendingIntent sentPI;
 String SENT = "SMS_SENT";
 sentPI = PendingIntent.getBroadcast(this, 0,new Intent(SENT), 0);
 sms.sendTextMessage(phoneNumber, null, message, sentPI, null);
 }

70

5 RESULTADOS

 Nesta seção, serão demostrados os resultados obtidos neste projeto. Os diferentes

recursos do funcionamento do protótipo serão exibidos sucintamente a seguir. Uma

apresentação do protótipo criado é mostrada na Figura 26.

Figura 26: Ilustração da montagem final do projeto.

FONTE: Autoria Própria.

Foi determinada a autonomia energética de 18 horas. Para uma bateria de 600mAh, isso

determina o gasto energético de 33.3[mAh] por hora. Esse valor é aceitável para um protótipo

criado em protoboard, entretanto deve ser melhor em um produto final.

71

5.1 ATIVAÇÃO DO MODO DE EMERGÊNCIA POR QUEDA

A ativação da emergência por queda é funcional. O sistema detectou a queda, notificou

por BLE para o aplicativo instalado no smartphone, que enviou automaticamente uma

mensagem para um contato configurado.

As Error! Reference source not found. mostram o estado do dispositivo antes e depois

da queda, e o aplicativo conectando ao dispositivo e reconhecendo a mudança de estado.

Figura 27: Teste da ativação por queda.

FONTE: Autoria Própria.

Para a validação do modo de emergência por queda, foram realizados testes em

diversas circunstancias exibidos na tabela abaixo.

Tabela 8: Testes de detecção de queda.

Altura Superfície Resultado

10cm Macia Não Detectou Queda

30cm Dura Detectou Queda

60cm Dura Detectou Queda

120cm Macia Detectou Queda

170cm Dura Detectou Queda

170cm Macia Detectou Queda

72

A Figura 28 todo mostra a mensagem que foi enviada para o contato selecionado na

configuração do aplicativo.

Figura 28: Captura de tela do smartphone que recebeu a mensagem SMS, a esquerda, e do que enviou o mensagem SMS, a
direita.

FONTE: Autoria Própria.

5.2 ATIVAÇÃO DO MODO DE EMERGÊNCIA MANUAL

A ativação da emergência por meio do do botão é funcional. O sistema detectou o

pressionamento do botão pelo tempo necessário e ativou o modo de emergência. Em seguida,

o modo de emergência foi desativado de modo análogo. As mensagens de emergência e da

saída do modo de emergência foram enviadas.

5.3 MEDIÇÃO DE BATIMENTOS CARDÍACOS

A medição de batimentos cardíacos é funcional. O sistema entra no estado de medição,

mede corretamente e envia os dados para o smartphone para a exibição na tela. Na Figura 29,

é possível observar as medições de batimento cardíaco sendo feitas e atualizadas em tempo

73

real. Nota-se que inicialmente há um período de adaptação, onde são reconhecidos valores

equivocados (como 19, 51, 38, entre outros), porém seguidamente, os valores se estabilizam

em uma medição correta (com valores em torno de 70).

Figura 29: Captura de tela do aplicativo desenvolvido recebendo dados de batimento cardíacos, que após um certo tempo
de adaptação reconhece os valores corretos.

FONTE: Autoria Própria.

74

6 CONCLUSÃO

 O projeto criado apresentou funcionamento adequado como esperado, além de

alcançar os objetivos desejados.

 Os conceitos intrínsecos de programação de sistemas embarcados foram

extensamente utilizados neste projeto. A compreensão de boas práticas para a confecção do

código foi gradual durante a execução do projeto, sendo necessária diversas vezes a alteração

de códigos já funcionais, com o objetivo de melhorar robustez e qualidade.

 O Bluetooth Low Energy, assim como o próprio Bluetooth clássico, é uma tecnologia

utilizada diariamente, mas cujos conceitos ainda são pouco conhecidos por desenvolvedores.

A implementação da comunicação Bluetooth foi surpreendentemente simples, sendo o maior

desafio entender como utilizar o BLE de maneira eficiente e eficaz no projeto.

 O Android foi outra tecnologia totalmente nova para o desenvolvedor deste projeto. A

linguagem de programação tem seu maior desafio na compreensão dos diversos conceitos

utilizados para escrever poucas linhas de código. Além desses conceitos da própria linguagem,

existem muitos conceitos de programação orientada a objetos utilizados pela linguagem, o

que causou mais uma dificuldade para o desenvolvedor.

 Finalmente, o LightBlue Bean+ é uma ótima ideia de placa de prototipação para

wearables que utilizam BLE. Dito isso, o Bean+ se mostrou decepcionante. Mesmo sendo um

projeto ativo para a PunchThrough, foi observado abandonado, não recebendo atualizações

básicas há um tempo considerável. Atualizações essas que seriam essenciais, pois grande

parte das funcionalidades não se mostravam robustas, falhando inesperadamente. Além

disso, na documentação, que à primeira vista parecia promissora, faltavam dados essenciais

que apenas são necessários quando é preciso debugar códigos. Sendo assim, o desenvolvedor

do projeto necessitou praticar diversas vezes “engenharia reversa” para obter informações

úteis. Além disso, grande parte das funcionalidades, diversas vezes básicas, da família Bean

foi implementada apenas para IOS, tendo a implementação para Android adiada

indefinidamente. A comunidade quase nula da placa corroborou para os problemas causados

pela falta de robustez e documentação.

75

Apesar dos problemas com a placa de desenvolvimento, tanto o planejamento quanto

a execução do projeto foram um sucesso. Foram compreendidas, planejadas e executadas as

partes necessárias para a criação de um protótipo funcional, que se assemelha

consideravelmente a soluções existentes atualmente no mercado.

6.1 TRABALHOS FUTUROS

A execução deste projeto foi feita de forma modular para melhor receber melhorias

em trabalhos futuros. Sendo assim, próximos passos para a melhoria do protótipo são:

• Aprimoramento do algoritmo de detecção de queda, pois ainda é um campo

em que diversas pesquisas estão sendo feitas;

• Implementação de mais bio-sensores no wearable;

• Implementação de sensores capazes de reconhecer um ambiente perigoso

para o idoso, detectando incêndios ou incidências fortes de raio UV;

• Recebimento e tratamento de mensagens SMS que realizam ações especificas

no wearable;

• Envio e recebimento de mensagens de voz por meio do dispositivo wearable;

• Implementação e envio de geolocalização junto com a mensagem de

emergência;

• Melhoria do aplicativo, melhorando sua robustez e criando uma interface

gráficas agradável ao usuário;

• Criação de uma pulseira que capacite a utilização no pulso;

• Envio de informações do nível de bateria para o aplicativo Android;

• Transformar o projeto do protótipo em um projeto de produção em massa

76

REFERÊNCIAS

ADAFRUIT. Introduction to Bluetooth Low Energy, 2014. Disponivel em:

<https://learn.adafruit.com/introduction-to-bluetooth-low-energy>. Acesso em: 15 out.

2017.

ANDREWS, J. R. Co-verification of Hardware and Software for ARM SoC Design. [S.l.]:

Newnes, 2004.

ANDROID. Android Reference. Android for Developers, 2017. Disponivel em:

<https://developer.android.com/index.html>. Acesso em: 30 nov. 2017.

ARDUINO. Arduino, 2017. Disponivel em: <https://www.arduino.cc/>. Acesso em: 23 nov.

2017.

AT&T. EverThere. AT&T, 2016. Disponivel em: <https://www.att.com/gen/press-

room?pid=25140&cdvn=news&newsarticleid=37328>. Acesso em: 28 nov. 2017.

ATMEL. ATMEL 8BIT 328p USER MANUAL, 2015.

AVAGO TECHNOLOGIES. APDS-9008 Miniature Surface-Mount Ambient Light Photo Sensor.

BLUEPIXEL TECHNOLOGY LLP. BLE Scanner Playstore Page. Play Store, 2017. Disponivel em:

<https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=pt_BR>.

Acesso em: 29 out. 2017.

BLUETOOTH SIG, 2017. Disponivel em: <https://www.bluetooth.com/what-is-bluetooth-

technology/bluetooth-origin>. Acesso em: 16 set. 2017.

BOSCH. BMA Digital, triaxial acceleration sensor Data Sheet, 2011. Disponivel em:

<http://www1.futureelectronics.com/doc/BOSCH/BMA250-0273141121.pdf>.

BRAY, J.; STURMAN, C. F. Bluetooth: Unifying the Telecommunications and Computing

Industries, 2002. Disponivel em: <http://www.informit.com/articles/article.aspx?p=27591>.

Acesso em: 16 set. 2017.

77

BROOKS, M. Falls Cause Most Accidental Deaths in Elderly Americans. Medscape, 2015.

Disponivel em: <https://www.medscape.com/viewarticle/844322>. Acesso em: 27 nov. 2017.

CAREPREDICT, 2017. Disponivel em: <https://www.carepredict.com/assisted-living-memory-

care/>. Acesso em: 28 out. 2017.

CIEL LIGHT. CL-SF687 DataSheet, 2012. Disponivel em:

<http://www.ciellight.com/pdf/smdled/3528full/CL-SF687RGB.pdf>. Acesso em: 25 nov.

2017.

GREATCALL. GreatCall, 2017. Disponivel em: <https://www.greatcall.com/devices/lively-

wearable-senior-activity-tracker?kbid=62750>. Acesso em: 28 out. 2017.

HELPCARE. HelpCare, 2017. Disponivel em:

<http://www.helpcarebrasil.com.br/monitoramento-de-idosos>. Acesso em: 28 out. 2017.

IMAGE. Wikipedia: The Free Encyclopedia. Disponivel em:

<http://commons.wikimedia.org/wiki/File:Fitbit_Charge_HR.jpg>. Acesso em: 16 set. 2017.

JOEL MURPHY. Pulse Sensor Amplified. TAPR Open Hardware, 2017. Disponivel em:

<http://tapr.org/OHL>. Acesso em: 30 out. 2017.

LAMKIN, P., 2015. Disponivel em:

<https://www.forbes.com/sites/paullamkin/2015/10/29/wearable-tech-market-to-treble-in-

next-five-years/#1bde62b82c77>. Acesso em: 16 set. 2017.

MARWEDEL, P. Embedded System Design. [S.l.]: [s.n.], 2006.

MICROCHIP TECHNOLOGY, INC. Bluetooth Low Energy Channels, 2017. Disponivel em:

<http://microchipdeveloper.com/wireless:ble-link-layer-channels#toc1>. Acesso em: 16 set.

2107.

NAKAJIMA, K.; TAMURA, T.; H.MIIKE. Monitoring of heart and respiratory rates by

photoplethysmography using digital filtering technique, 1994.

OPEN HANDSET ALLIANCE. Platform Architecture. Android for Developers, 2017. Disponivel

em: <https://developer.android.com/guide/platform/index.html>. Acesso em: 26 nov. 2017.

78

OSHANA, R.; KRAELING, M. Software Engineering for Embedded Systems. [S.l.]: [s.n.], 2013.

PRADO, J. Qual operadora tem a melhor cobertura do brasil? tecnoblog, 2017. Disponivel em:

<https://tecnoblog.net/211938/qual-operadora-melhor-cobertura-sinal-4g-3g-2g/>. Acesso

em: 04 dez. 2017.

PUNCH THROUGH DESIGN. Prototype to Production. Bean, 2017b. Disponivel em:

<https://punchthrough.com/bean/docs/guides/everything-else/proto-to-prod/>. Acesso em:

22 out. 2017.

PUNCHTHROUGH DESIGN. PunchThrough About. PunchThrough, 2017a. Disponivel em:

<https://punchthrough.com/>. Acesso em: 22 out. 2017.

PUNCHTHROUGH DESIGN. Accelerometers. Bean, 2017c. Disponivel em:

<https://punchthrough.com/bean/docs/guides/features/accelerometer/>.

PUNCHTHROUGH DESIGN. Technical Specs. Bean, 2017c. Disponivel em:

<https://punchthrough.com/bean/docs/guides/getting-started/tech-specs/>. Acesso em: 22

out. 2017.

TEHRANI, K.; MICHAEL, A., 2014. Disponivel em: <http://www.wearabledevices.com/what-is-

a-wearable-device/>. Acesso em: 16 set. 2017.

TONTOUCH. 1 KEY TOUCH PAD DETECTOR IC - TTP223-BA6, 2008. Disponivel em:

<https://radiokot.ru/konkursCatDay2014/53/01.pdf>. Acesso em: 2017.

UDOO NEO. KY-031 Knock Sensor. UDOO Neo Documentation, 2017. Disponivel em:

<https://www.udoo.org/docs-neo/Cookbook_Arduino_M4/Knock_sensor.html>. Acesso em:

2017 out. 15.

VAHID, F.; GIVAGIS, T. Embedded System Deisgn: A Unified Hardware/Software Approach.

[S.l.]: [s.n.], 2001.

WARNE, W. Bluetooth Low Energy - It starts with Advertising. Bluetooth, 2017. Disponivel em:

<https://blog.bluetooth.com/bluetooth-low-energy-it-starts-with-advertising>. Acesso em:

16 set. 2017.

79

WORLD FAMOUS ELECTRONICS LLC. Pulse Sensor GitHub. Pulse Sensor. Disponivel em:

<https://github.com/WorldFamousElectronics>. Acesso em: 29 nov. 2017.

ZURIARRAIN, J. Android já é o sistema operacional mais usado do mundo. El Pais Brasil, 2017.

Disponivel em:

<https://brasil.elpais.com/brasil/2017/04/04/tecnologia/1491296467_396232.html>. Acesso

em: 26 out. 2017.

