Integracao de LLMs com APls: um estudo de caso

Luciano Lima Silva
Monografia - MBA em Inteligéncia Artificial e Big Data

o
]
=
(a B
o
<
Vg
LLY
=
LLY
=
<
o
W
oc
LLY
>
=
=

Instituto de Ciéncias Matematicas e de Computacao

SAO CARLOS

ICMC
i

SERVICO DE POS-GRADUACAO DO ICMC-USP

Data de Depésito:

Assinatura:

Luciano Lima Silva

Integracao de LLMs com APIs: um estudo de caso

Monografia apresentada ao Departamento
de Ciéncias de Computacao do Instituto
de Ciéncias Matematicas e de Computagao,
Universidade de Sao Paulo - ICMC/USP,
como parte dos requisitos para obtencao
do titulo de Especialista em Inteligéncia
Artificial e Big Data.

Area de concentracao: Inteligéncia Artificial

Orientador: Prof. Jean Roberto Ponciano

Versao original

Sao Carlos
2024

Ficha catalografica elaborada pela Biblioteca Prof. Achille Bassi
e Secdo Técnica de Informéatica, ICMC/USP,
com os dados inseridos pelo(a) autor(a)

Silva, Luciano Linma
S586i I ntegracdo de LLMs com APls: um estudo de caso /
Luci ano Lima Silva; orientador Jean Roberto
Ponci ano; coorientador Solange diveira Rezende. --
Sao Carl os, 2024.
52 p.

Trabal ho de concl usdo de curso (MBA em
Inteligéncia Artificial e Big Data) -- Instituto de
Ci éncias Matemati cas e de Conputacdo, Universidade
de Sao Paul o, 2024.

1. Integracdo de LLMs com APIs. 2. Inteligéncia
Artificial. 3. Integracdo de Sistemas. 4. Al. 5.
APl . |. Ponciano, Jean Roberto, orient. I1I.
Rezende, Solange Qiveira, coorient. Ill. Titulo.

Bibliotecarios responsaveis pela estrutura de catalogagéo da publicacéo de acordo com a AACR2:
Glaucia Maria Saia Cristianini - CRB - 8/4938
Juliana de Souza Moraes - CRB - 8/6176

Luciano Lima Silva

Integracao de LLMs com APIs: um estudo de caso

Monograph presented to the Departamento
de Ciéncias de Computacao do Instituto
de Ciéncias Matematicas e de Computagao,
Universidade de Sao Paulo - ICMC/USP, as
part of the requirements for obtaining the
title of Specialist in Artificial Intelligence and
Big Data.

Concentration area: Artificial Intelligence

Advisor: Jean Roberto Ponciano

Original version

Sao Carlos
2024

Este trabalho ¢é dedicado aos meus pais e a minha familia, com gratidao a Forca Divina
que permeia o Universo. Que ele possa também servir como contribuicdo para todos

aqueles que buscam conhecimento e crescimento.

AGRADECIMENTOS

Agradeco a Deus e a minha familia pelo apoio e incentivo constante, que foram

essenciais para que eu chegasse até aqui.

Ao meu orientador e aos professores, pela dedicagao e pelos ensinamentos que me

guiaram durante todo o processo.

E aos colegas, pela companhia e pelas trocas de conhecimento.

“O estudo, a busca da verdade e da beleza sao dominios
em que nos € consentido sermos criangas por toda a vida.”
Albert Finstein

RESUMO

SILVA, L.S. Integracdo de LLMs com APIs: um estudo de caso. 2024. 52 p.
Monografia (MBA em Inteligéncia Artificial e Big Data) - Instituto de Ciéncias
Matematicas e de Computacio, Universidade de Sao Paulo, Sao Carlos, 2024.

Este trabalho explora a integragao de Grandes Modelos de Linguagem (LLMs) com APIs,
visando modernizar e simplificar a interagdo entre o usudrio e o sistema. A hipdtese
central é que a utilizacdo de LLMs pode melhorar significativamente a identificacao das
intencoes dos usudrios e automatizar a execucao de tarefas por meio de chamadas de
API, utilizando linguagem natural. Para validar essa hipotese, foram selecionados trés
modelos de LLMs: tinyllama-bnb-4bit, gemma-7b-bnb-4bit e llama-3-8b-bnb-4bit, que
passaram por um processo de ajuste fino (fine-tuning) utilizando um dataset criado a
partir de registros anonimizados de clientes, associados a diferentes agoes do sistema, como
"ConsultarSaldo", "CadastrarCliente'e "CadastrarBoleto". Esse dataset foi ampliado com
variagoes de frases em linguagem natural para aumentar a robustez do treinamento. O
processo de fine-tuning demonstrou ser eficaz na reducao da discrepancia entre as saidas
esperadas e as geradas pelos modelos, evidenciado por melhorias nas métricas de distancia
de string e de JSON. Os resultados indicam que a integracao proposta pode oferecer uma

interface mais intuitiva, aproximando a comunicagao entre o usuario e o sistema.

Palavras-chave: LLM, API, JSON, Fine-tuning, Integracdo de Sistemas, Inteligéncia
Artificial, Al

ABSTRACT

SILVA, L.S. Integracdo de LLMs com APIs: um estudo de caso. 2024. 52 p.
Monograph (MBA in Artificial Intelligence and Big Data) - Instituto de Ciéncias
Matematicas e de Computacio, Universidade de Sao Paulo, Sao Carlos, 2024.

This work explores the integration of Large Language Models (LLMs) with APIs, with the
goal of modernizing and simplifying the interaction between the user and the system. The
central hypothesis is that the use of LLMs can significantly improve the identification of
user intentions and automate task execution through API calls using natural language. To
validate this hypothesis, three LLM models were selected: tinyllama-bnb-4bit, gemma-7b-
bnb-4bit, and llama-3-8b-bnb-4bit, which underwent a fine-tuning process using a dataset
created from anonymized customer records associated with different system actions, such as
"ConsultarSaldo," "CadastrarCliente," and "CadastrarBoleto." This dataset was expanded
with variations of natural language phrases to increase the robustness of the training. The
fine-tuning process proved effective in reducing the discrepancy between expected and
generated outputs, as evidenced by improvements in string and JSON distance metrics.
The results indicate that the proposed integration can offer a more intuitive interface,

bringing the communication between the user and the system closer to human language.

Keywords: LLM, API, JSON, Fine-tuning, Systems Integration, Artificial Intelligence,
AL

LISTA DE FIGURAS

Figura 1 — Diagrama dos passos executados
Figura 2 — LLM processa a entrada, identifica a acdo, os parametros e forma o
JSON adequado para chamada da API

LISTA DE TABELAS

Tabela 1 Especificacoes Técnicas dos Modelos Selecionados 39
Tabela 2 Combinagoes de Parametros Utilizados nos Experimentos 44
Tabela 3 — Resultados da Execucao do Fine-Tuning Inicial 45
Tabela 4 — Média da Distancia String Antes e Apés o Fine-Tuning 46
Tabela 5 — Distancia JSON Apés o Fine-Tuning 47

LISTA DE QUADROS

ABNT

IBGE

USP

USPSC

LLM

API

CPF

JSON

Al

PLN

LISTA DE ABREVIATURAS E SIGLAS

Associacao Brasileira de Normas Técnicas

Instituto Brasileiro de Geografia e Estatistica
Universidade de Sao Paulo

Campus USP de Sao Carlos

Large Language Model (Grande Modelo de Linguagem)

Application Programming Interface (Interface de Programagcao de Apli-

cativos)

Cadastro de Pessoas Fisicas

JavaScript Object Notation (Notagao de Objetos JavaScript)
Artificial Intelligence (Inteligéncia Artificial)

Processamento de Linguagem Natural

1.1
111
1.1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.7.1
2.7.2
2.7.3
2.7.4

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

SUMARIO

INTRODUCAO i ittt e e e e e et e et e 27
Hipétese e Objetivos 28
Objetivo Geral 29
Objetivos Especificos 29
FUNDAMENTACAO TEORICA 31
Inteligéncia Artificial 31
Processamento Linguagem Natural - PLN 31
LLM . e 31
APl . . 32
JSON . . . 32
ChatBots e LLM 32
LLMs Existentes 34
Llamma3 e 34
Gemma7b 34
Tinnyllama 34
Gorilla LLM 35
TRABALHOS RELACIONADOS it i i i e 37
METODOLOGIA e e e e e e e e e 39
Coletadosdados 40
Criacadode Dataset 40
Fine-Tuning 41
Avaliacao dos Resultados 41
Resultados Esperados 42
AVALIACAO EXPERIMENTAL vt e e e e 43
Fine Tunning 43
Execucao do Fine Tunning 44
Discussao 48
CONCLUSOES e e e 49
Trabalhos Futuros 49

REFERENCIAS e e e e e e s s s i 51

27

1 INTRODUCAO

A operagao de alguns sistemas empresariais tem se tornado gradualmente mais
complexa, decorrente de diversos fatores, sendo os principais destacados pelas exigéncias
governamentais, regras de negdcio, legislagao e obrigacoes legais. Podemos mencionar,
também, as leis contabeis com regulamentacoes complexas que dependem de intimeros
fatores para serem aplicadas; essa complexidade é incorporada a esses sistemas. Nesse
cenario, adicionam-se as regras e estratégias de negécio da empresa, nos mais diversos
ramos, como comeércio, cadeia de suprimentos, produtos e servigos, entre outros. Além disso,
observa-se a presenca de operagoes repetitivas, contribuindo para a sobrecarga do usuério
e aumentando a probabilidade de ocorréncia de erros.Todos esses fatores contribuem para
um grande volume de dados, complexidade de operagao e manutencao desses sistemas por

parte dos usudrios e operadores.

Atualmente, poucos sistemas empresariais fazem uso de Grandes Modelos de Lin-
guagem (Large Language Model, LLM), evidenciando um vasto campo a ser explorado e
muitas oportunidades a serem implementadas em sistemas existentes, uma vez que esses
sistemas ainda executam eficientemente suas funcoes para as quais foram concebidos. En-
tretanto, observa-se que esses sistemas estao se tornando desatualizados e operacionalmente
complexos, o que destaca a necessidade de modernizacao e simplificagdo em sua operagao.
A inteligéncia artificial e os LLM emergem como solugdes promissoras para preencher essa
lacuna, proporcionando uma abordagem inovadora e eficaz na interacao entre usuarios e
sistemas, ao mesmo tempo em que melhoram a eficiéncia operacional e a experiéncia do
usudrio. Nesse contexto, os avangos recentes na area de Inteligéncia Artificial (AI), em
particular no que diz respeito a criagdo e incorporagao de LLM e agentes de (Al), tém o
potencial de ajudar a contornar as dificuldades enfrentadas por usuarios e mantenedores

de sistemas.

O presente trabalho de conclusao de curso propoe-se a auxiliar os usuarios de
sistemas de uma maneira mais humanizada na operacao desses sistemas, utilizando o
processamento de linguagem natural (PLN) em LLM com integragao da Interface de
Programacao de Aplicativos (API, Application Programming Interface). Em particular,
destacando as etapas necessarias para a adaptacao e potencial incorporacao futura. O
Processamento de Linguagem Natural (PLN) é uma subarea da Inteligéncia Artificial
(AI), que possibilita aos computadores entenderem e interpretarem o que os humanos
falam ou escrevem, permitindo um didlogo mais proximo do utilizado em uma conversa
entre humanos. Dessa maneira, torna-se possivel conversar com o sistema e expressar
o que se deseja obter. Em muitos cenarios de negbcio, o usuario sabe a operacao que

precisa realizar, mas pode nao saber exatamente como operar o sistema para alcancar

28

o resultado desejado. Pode ser que nao conheca a complexidade e as regras envolvidas
nessa solicitagdo. Neste cenario, o usuario informa ao LLM a operagao desejada, o qual
pode solicitar as informacgoes necessarias e executar a operagao diretamente apos validar
todas as informagoes. Quando nao for possivel executar a operacao diretamente devido a
natureza da mesma, o usudrio sera guiado sobre como proceder para alcancar o resultado
desejado. Fluxos e regras complexas podem ser explicados a medida que o usuario avanca

nessa conversa.

1.1 Hipotese e Objetivos

Como hipdtese, espera-se que a integracao de LLMs com APIs permita que o
sistema identifique de maneira adequada a intencao do usuario e os dados inseridos,
para executar a acao desejada de forma eficiente. Essa abordagem devera proporcionar
uma interface mais préxima da linguagem humana, facilitando a interacdo e melhorando
significativamente a experiéncia do usuario. Além disso, a utilizagao de LLMs e APIs

contribuira para a modernizagao e otimizagao do sistema.

Com o ajuste do modelo, buscamos aumentar a probabilidade de que ele seja
capaz de identificar corretamente as agoes desejadas pelo usuério. Para isso, utilizaremos
trés tipos de exemplos de textos em linguagem natural e trés tipos de chamadas de
APIs correspondentes como base: ClienteCadastrar, BoletoCadastrar e SaldoConsultar.
A API ClienteCadastrar é utilizada para registrar novos clientes no sistema, fornecendo
informacgoes como nome, endereco e CPF. A API BoletoCadastrar é responsavel por gerar
e registrar boletos de pagamento, incluindo detalhes como valor e data de vencimento. J&
a API SaldoConsultar permite verificar o saldo disponivel em uma conta, retornando as

informacgoes necessarias para o usuario.

Incorporar ao LLM funcionalidades que permitam executar operagoes a partir de
solicitagoes do usuario. Por exemplo, se o usuario fornecer a instrucao: 'Por favor, cadastre
o cliente José Silva, Av. Paulista, 123, CPF 123456789-00’, espera-se que o sistema seja
capaz de gerar um JSON correspondente a chamada da API ’CadastrarCliente’, com os
parametros adequados, como no seguinte formato: { ’api’: ’CadastrarCliente’, 'nome’: "José
Silva’; ’endereco’: 'Av. Paulista, 123’ ’cpf’: "123456789-00 }. Esse processo permitird que
o modelo transforme automaticamente comandos em linguagem natural em solicitagoes
no formato JSON para a chamada de API, facilitando a interacdo entre o usuario e o

sistema.".

29

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é integrar LLMs com APIs, com a finalidade de
melhorar a capacidade do sistema em identificar intengoes dos usuarios, facilitar operagoes
e automatizar processos em uma aplicacao ja existente, proporcionando uma interface

mais préxima da linguagem humana.

1.1.2 Objetivos Especificos

1. Desenvolver a integracao de LLMs com APIs que possibilite a interacao do

usuério por meio de linguagem natural.

2. Ajustar o modelo LLM de tal forma que, a partir de uma entrada em linguagem
natural fornecida pelo usuario, o modelo seja capaz de compreender e identificar a acao
desejada pelo usuario, bem como extrair os parametros necessarios para executar essa
acao. Com base nessas informagoes, o modelo deverd ser capaz de gerar uma saida
estruturada em formato JSON, que incluird os pardmetros essenciais para a chamada da

API correspondente a agao solicitada.

3. Validar a saida do modelo com a saida esperada a partir de métricas quantitativas

de distancia ou dissimilaridade.

31

2 FUNDAMENTACAO TEORICA

2.1 Inteligéncia Artificial

De acordo com (Negnevitsky, 2005), a Inteligéncia Artificial é um campo da ciéncia
da computacao que se dedica ao desenvolvimento de sistemas capazes de realizar tare-
fas que normalmente exigiriam inteligéncia humana. Estes sistemas sao projetados para
aprender com dados, fazer inferéncias, resolver problemas complexos, reconhecer padroes e
tomar decisoes autonomas. A Inteligéncia Artificial abrange uma ampla gama de técnicas
e algoritmos, incluindo aprendizado de méaquina, légica, raciocinio probabilistico e proces-
samento de linguagem natural, com o objetivo de simular ou reproduzir comportamentos

inteligentes.

2.2 Processamento Linguagem Natural - PLN

Segundo (Nadkarni; Ohno-Machado; Chapman, 2011) a PLN, iniciou na década de
1950, surgiu da intersecao entre inteligéncia artificial e linguistica. Inicialmente separada
da recuperacao de informagoes de texto, que usa estatisticas para indexar e pesquisar
textos. Hoje, a PLN ¢ influenciada por diversos campos, demandando que os pesquisadores
ampliem seu conhecimento. Abordagens iniciais, como traduc¢ao palavra por palavra,
enfrentaram desafios com palavras com miltiplos significados e metaforas. A analise de
Chomsky sobre graméticas linguisticas, em 1956, influenciou a criacao da notacao BNF em
1963, usada para especificar a sintaxe de linguagens de programacao. Chomsky também
identificou gramaticas "regulares', a base das expressoes regulares usadas para padroes
de pesquisa de texto. A sintaxe de expressao regular, definida por Kleene em 1956, foi

implementada pela primeira vez no UNIX por Ken Thompson com o utilitario grep.

Na PLN, o objetivo é entender o significado do texto usando gramaticas formais
que descrevem como as palavras se relacionam, como substantivos, verbos e adjetivos. As

gramaticas podem ser expandidas para incluir o significado em linguagem natural.

23 LLM

Segundo (Ozdemir, 2023), os Grandes Modelos de Linguagem (LLM), sao projetados
para compreender a linguagem humana. Para alcancar esse objetivo, esses modelos sao
treinados com grandes volumes de texto, permitindo que capturem nuances e complexidades
da linguagem humana. Essa abordagem de treinamento massivo capacita os LLMs a
entenderem a linguagem humana de maneira mais eficaz, possibilitando uma ampla gama

de aplicacoes, desde a geracao de texto até a compreensao de perguntas e respostas.

32

2.4 API

API ou Interface de Programagao de Aplicativos é definida por (Jin; Sahni; Shevat,
2018) como uma interface que um programa de software oferece para outros programas,
através desta interface diferentes programas podem se conectar, trocar informacoes, realizar
operagoes e permitem a interoperabilidade para as principais plataformas de negdcios
na web. Em (Brati¢ et al., 2024) uma API (interface de programacao de aplicativos) é
um conjunto de regras e especificagoes que determinam como diferentes softwares podem
se comunicar entre si. Ela facilita o acesso de aplicativos a fungoes e dados de outros

aplicativos, servigos ou plataformas.

2.5 JSON

Como descrito em (Marrs, 2017), o JSON (JavaScript Object Notation) é um
formato de troca de dados leve e de facil leitura, amplamente utilizado para a transmissao
de dados entre sistemas. Ele é baseado em uma estrutura simples de chave-valor, onde
cada chave é associada a um valor especifico, permitindo a organizagao de dados de forma
clara e hierarquica. Devido a sua simplicidade e flexibilidade, JSON se tornou um padrao
na comunicacao entre servicos web, APIs, e aplica¢bes que precisam trocar informagoes
de maneira eficiente. A estrutura do JSON é composta por objetos e arrays. Um objeto
¢ definido por um conjunto de pares chave-valor, delimitados por chaves , enquanto um
array ¢ uma lista ordenada de valores, delimitados por colchetes [|. Cada valor dentro
de um objeto ou array pode ser um nimero, uma string, um booleano, outro objeto, um
array, ou o valor nulo. Essa flexibilidade permite que JSON represente dados complexos de
forma simples, compacta e facil de interpretar tanto por humanos quanto por maquinas.
Por exemplo, um JSON que represente as informagoes de um cliente pode ser estruturado

da seguinte forma:

{
"nome": "Joao Silva'",
"idade": 30,
"email": "teste@email.com",
"endereco" : "Av. Paulista, 123"
}

2.6 ChatBots e LLM

Segundo (Adamopoulou; Moussiades, 2020) os chatbots sdo programas de computa-
dor que podem simular conversas humanas e entreter os usuarios, mas eles nao sao criados
apenas com esse propoésito. Eles tém uma variedade de aplicagoes uteis em areas como

educacao, recuperagao de informagoes, negdcios e comércio eletronico. Eles se tornaram

33

muito populares devido as muitas vantagens que oferecem tanto para os usudrios quanto
para os desenvolvedores. Além disso, o contato com um chatbot pode ser feito de forma
integrada com o ambiente social do usuario, sem a necessidade de sair do aplicativo de

mensagens onde o chatbot estd inserido, o que garante a identidade do usuario.

Ainda segundo o autor, em 1950, Alan Turing levantou a questao de saber se um
programa de computador seria capaz de interagir com um grupo de pessoas sem que
elas percebessem que estavam conversando com uma entidade artificial. Esse conceito,
conhecido como o teste de Turing, ¢ amplamente considerado como o ponto inicial para
o desenvolvimento dos chatbots.O primeiro chatbot conhecido foi o Eliza, desenvolvido
em 1966, seguido pelo PARRY em 1972 e pelo ALICE em 1995. Desde entéao, assistentes
pessoais virtuais como Siri, Cortana, Alexa, Assistant e Watson foram desenvolvidos. O
interesse por chatbots cresceu significativamente apés 2016, conforme evidenciado por

pesquisas.

Na pesquisa de (Brachten; Kissmer; Stieglitz, 2021) os autores citam que embora
haja um aumento significativo nas pesquisas sobre o uso de chatbots no setor privado,
a aplicacao desses assistentes no contexto empresarial ainda nao foi adequadamente
examinada. Essa observagao esta alinhada com a ideia de que, no ambiente empresarial, a
adoc¢ao de novas tecnologias geralmente é mais lenta devido a interesses institucionais, em
comparacao com ambientes pessoais. Além disso, a decisao de implementar chatbots em
um ambiente corporativo é considerada complexa, pois é vista como uma decisao de longo
prazo, com o objetivo de aumentar as vendas e melhorar a eficiéncia. Estudos indicam que
a interacao diaria com sistemas de conversagao, como os chatbots, esta se tornando cada

vez mais comum no ambiente de trabalho.

Segundo (Kar; Haldar, 2016), os chatbots tém a capacidade de executar agoes
relevantes para o usuario, levando em conta suas preferéncias e o ambiente em que estao
inseridos. Além disso, eles sao eficazes na automacao de tarefas repetitivas, utilizando

chamadas de API, Websockets ou outros métodos.

Neste artigo, o autor descreve um cenéario em que multiplos agentes, incluindo
agentes de (Al), colaboram com humanos para executar tarefas. Um agente de IA utiliza
recursos avangados, como (LLMs), ou se comunica com outros sistemas externos para
gerar uma solucao inicial para a tarefa. Essa solucdo é entao passada para o agente proxy,
que pode solicitar entradas adicionais dos humanos ou executar o c6digo fornecido pelo
assistente. Os resultados sao enviados de volta ao assistente como feedback, permitindo
ajustes ou refinamentos adicionais, se necessario. Essa abordagem facilita uma colaboracao
eficaz entre agentes assistentes e humanos, melhorando a qualidade e a eficiéncia da

execucao da tarefa.

34

2.7 LLMs Existentes
2.7.1 Llamma3

Segundo a (Meta, 2024) o Llama3 é um LLM desenvolvido com foco em ser uma
ferramenta de codigo aberto. Ele foi projetado para oferecer capacidades em termos de
raciocinio, geracao de texto e compreensao de linguagem natural. Este modelo vem em
diferentes tamanhos, variando de 7 a 70 bilhoes de parametros, permitindo uma ampla gama
de aplicacoes, desde a pesquisa académica até implementagoes empresariais complexas.
Além disso, o Llama3 foi projetado para ser eficiente, com otimizagdes que permitem que
ele seja implementado em diferentes infraestruturas, desde servidores de grande porte
até dispositivos menores. Isso torna o modelo acessivel e pratico para desenvolvedores e
empresas que buscam solugdes de (AI). O Llama 3 também se destaca por seu desempenho,
oferecendo uma capacidade de processamento aprimorada, que melhora significativamente
a precisao e a rapidez na geracao de respostas. Além disso, o modelo suporta um ajuste
fino de instrucao que permite personalizar seu comportamento para atender a necessidades

especificas, aumentando sua versatilidade e aplicabilidade em diferentes contextos.

2.7.2 Gemma 7b

Como descrito pela (Google, 2024) o Gemma 7B é um LLM desenvolvido pela
Google, sendo parte de uma nova familia de modelos de codigo aberto. Projetado para
ser leve e eficiente, o Gemma 7B se baseia na mesma pesquisa e tecnologia que deram
origem aos modelos Gemini. Com 7 bilhoes de pardmetros, ele é otimizado para fornecer
desempenho, permitindo uma ampla gama de aplicagoes, desde o desenvolvimento de
software até a integracao em sistemas empresariais. Além disso, o modelo foi otimizado
para funcionar de maneira eficiente em diversos frameworks, ferramentas e hardwares,
garantindo flexibilidade e facilidade de uso em diferentes ambientes. O modelo também
¢é personalizavel, permitindo ajustes finos para tarefas especificas, o que amplia sua

versatilidade e aplicabilidade em diferentes contextos.

2.7.3 Tinnyllama

O TinyLlama é um LLM leve e de codigo aberto desenvolvido por Jingyu Zhang
(Zhang et al., 2024), com foco na eficiéncia em dispositivos de recursos limitados. Este
projeto, se destaca por sua capacidade de operar em ambientes com poder computacional
restrito, sem comprometer a qualidade na geracao de texto.Com um vocabulario de 32
mil tokens, o TinyLlama oferece uma excelente relagao entre desempenho e economia de
recursos, sendo ideal para desenvolvedores que buscam personalizacoes especificas em seus

projetos de IA. Além disso, é um projeto open-source.

35

2.7.4 Gorilla LLM

Segundo o autor (Patil et al., 2023) Gorilla é um modelo aprimorado baseado
em LLaMA, projetado para superar as limitagoes dos Grandes Modelos de Linguagem
(LLMs) ao realizar chamadas de API de maneira eficaz. Ele se destaca por sua capacidade
de adaptabilidade as mudancas na documentacao da API em tempo real e pela reducao
significativa do problema de alucinacao comumente encontrado em modelos de LLMs. A
avaliagdo do Gorilla é realizada utilizando o conjunto de dados APIBench, demonstrando
sua eficacia na integracao de sistemas de recuperagao de documentos e seu potencial para

aumentar a precisao e a confiabilidade no uso de ferramentas externas.

37

3 TRABALHOS RELACIONADOS

O estudo de (Brati¢ et al., 2024) examina os desafios relacionados ao armazenamento
de materiais educacionais em um banco de dados fragmentado e diversificado.Nesse artigo o
autor propoe um modelo hibrido que combina a estrutura de (LLM) / chatbot ja existente
e chamadas de API. Essa combinagao assegura respostas precisas, provenientes de um

amplo banco de dados educacionais.

Ainda segundo o autor, os chatbots podem ser divididos em duas categorias
principais: os baseados em regras e os baseados em inteligéncia artificial (IA). Os chatbots
baseados em regras oferecem aos usuarios opgoes especificas para escolher, geralmente sendo
usados em tarefas simples, como responder a perguntas frequentes (FAQs). Por outro lado,
os chatbots baseados em IA utilizam tecnologias como inteligéncia artificial, processamento
de linguagem natural (PNL) e aprendizado de maquina (ML) para compreender as palavras-
chave que os usuarios usam durante a conversa. Esses chatbots sdo treinados ao longo do
tempo para aprender quais respostas oferecer com base nas consultas dos usuarios. Por
fim, um chatbot hibrido combina caracteristicas de ambos os tipos, mesclando abordagens
baseadas em regras e em IA. O modelo hibrido se torna relevante, sendo desenvolvido para
superar essa limitacao ao gerenciar as solicitagoes do usuario de forma local. Ao combinar
uma estrutura de Chatbot com LLM e chamadas de API, o modelo hibrido se sobressai
no processamento das solicitagdes do usudrio e na recuperagao de informagoes pertinentes

de um banco de dados de materiais educacionais fornecido pelo usuario.

No trabalho de (Kim et al., 2023) os autores descrever a capacidade dos LLMs de
integrar varias ferramentas e "chamada de fungao'(function calling) esta técnica, permite
que LLMs invoquem APIs para automatizar a execucgao de tarefas especificas o que pode
revolucionar a maneira como o software baseado em LLM é desenvolvido. No entanto, isso
apresenta um desafio significativo: qual é a maneira mais eficaz de incorporar multiplas
chamadas de fungao? Uma abordagem notavel (ReAct) foi introduzida o por (Yao et al.,
2022), onde o LLM faz uma chamada de funcao, analisa os resultados e entdo decide sobre
a proxima agao, que geralmente envolve uma chamada de fun¢ao subsequente. No entanto,
os métodos atuais para chamadas de multiplas fungoes geralmente requerem raciocinio e
execucao sequencial para cada funcdo, o que pode resultar em alta laténcia, custos elevados
e, por vezes, comportamento impreciso. O autor também apresenta o LLMCompiler, que
executa fungoes em paralelo para orquestrar eficientemente chamadas de multiplas fungoes.
Inspirado nos principios dos compiladores classicos, o LLMCompiler simplifica a chamada
de fungoes em paralelo com trés componentes principais: (i) um Planejador LLM, que
formula planos de execucao; (ii) uma Unidade de Busca de Tarefas, que despacha tarefas

de chamada de fungao; e (iii) um Executor, que executa essas tarefas em paralelo. O autor

38

em seu trabalho conclue que o ReAct é um método simples, porém eficaz, para integrar
raciocinio e a¢do em grandes modelos de linguagem. Através de uma série diversificada
de experimentos, incluindo respostas a perguntas multi-hop, verificacao de fatos e tarefas
interativas de tomada de decisao, os autores demonstraram que o ReAct alcanca um

desempenho superior com tracos de decisao interpretaveis.

Gorilla é um LLM baseado em LLaMA que pode fornecer chamadas de API
apropriadas. Os autores (Patil et al., 2023) da Univercidade de Berkeley, mencionam em
seus estudos que o Gorilla é capaz de superar o desempenho do GPT-4 (OpenAl, 2023),
um modelo de inteligéncia artificial desenvolvido pela OpenAl. O autor apresenta estudos
comparativos entre os modelos Gorilla, GPT-4 e Claude (Anthropic, 2023), evidenciando a
capacidade do modelo Gorilla de identificar corretamente a tarefa e sugerir uma chamada
de API mais apropriada. Foi utilizada a técnica de correspondéncia de subarvore AST
(Abstract Syntaz Trees) para avaliar a corre¢ao funcional das APIs geradas, onde o codigo é
analisado em uma arvore AST e uma subarvore contendo a chamada de API é identificada
para avaliagdo. A Gorilla demonstra capacidade de sugerir a API apropriada com base na
consulta do usuario durante a inferéncia. Para compilar um conjunto de dados completo
de APIs de ML, foram coletadas diversas chamadas de API do TensorFlow Hub, Torch
Hub e HuggingFace. Dados sintéticos foram gerados usando o GPT-4, com exemplos de
contextualizados e referéncias a documentacao da API. Este processo resultou em pares
instrucao-API que fornecem uma base sélida para analises subsequentes. Da mesma forma,
¢ importante que o Gorilla respeite restrigoes como precisao, nimero de parametros do
modelo e consumo de recursos. O autores apresentam um estudo de para avaliar como

diferentes modelos se comportam em respeito a uma restri¢ao especifica.

Os autores concluem que os LLMs estao rapidamente se tornando populares em
diversos dominios. Em seus estudos, destacam técnicas projetadas para melhorar a precisao
na identificacdo da API adequada por parte dos LLMs. Como as APIs funcionam como
uma linguagem universal para a comunicacao eficaz entre sistemas, seu uso correto pode
aumentar a capacidade dos LLMs de interagir com diversas ferramentas. Propondo o
Gorilla, como um novo pipeline para ajustar LLMs para invocar APIs, o Gorila gera
chamadas de API confidaveis para modelos de ML, demonstrando capacidade de adaptacao
as mudancas de uso da API e considerando restrigoes ao selecionar APIs. O autor destaca
as limitagoes das APIs focadas em aprendizado de maquina (ML), ressaltando uma
desvantagem significativa, a propensao dessas APIs a gerar previsoes enviesadas quando

treinadas com conjuntos de dados distorcidos, o que pode acarretar impactos negativos.

39

4 METODOLOGIA

Neste capitulo, é apresentado a metodologia para integrar LLM com APIs. Para a
experimentacao foram selecionados trés modelos de LLMs: tinyllama-bnb-4bit, gemma-
7b-bnb-4bit, e llama-3-8b-bnb-4bit. Esses modelos foram escolhidos com base em suas
especificagdes técnicas, como o tamanho do vocabulario, a quantidade de parametros, e a
VRAM requerida, que variam de 0,631 bilhoes a 8 bilhdes de parametros e de 0,8 GB a
5,7 GB de tamanho de arquivo.

A manutencao e distribuicdo desses modelos é realizada pela startup Unsloth, utili-
zando como base os modelos treinados originalmente pela Google, Meta e pela Comunidade
OpenSource. Na tabela 1 podemos ver as especificagoes técnicas dos modelos selecionados

para o experimento.

Tabela 1 — Especificagoes Técnicas dos Modelos Selecionados

tinyllama-bnb-4bit | gemma-7b-bnb- llama-3-8b-bnb-
4bit 4bit
Modelo Base Tinyllama Gemma-7b Llama-3
OpenSource Google Meta
Modelo Unsloth tinyllama-bnb-4bit gemma-7b-bnb-4bit llama-3-8b-bnb-4bit
Licenga apache-2.0 apache-2.0 llama3 / Meta
Vocabulario 32.000 256.000 128.256
Vram Requerida 0.8Gb 5.6Gb 5.6Gb
Tamanho Arquivo | 0.8Gb 5Gb 5.7Gb
N€ Parametros 0.631b b 8b

Os modelos considerados sao quantizados para 4 bits, gerados a partir do modelo
base. Esses modelos sao distribuidos e mantidos pela Unsloth (UnslothAl, 2024), com o
proposito de reduzir a quantidade de memoria utilizada durante a inferéncia e treinamento.
A quantizagao de um modelo de linguagem, como um LLM (Large Language Model), é
uma técnica que consiste em reduzir a precisdo dos niimeros que representam 0s pesos
do modelo, passando de 32 bits (padrdo) para 4 bits. Essa redugao diminui o consumo
de memoria e o uso da largura de banda, permitindo que o modelo seja executado em
hardware menos potente sem perder significativamente a precisao ou a qualidade das
respostas. Entre os beneficios da quantizagao estao a reducao do tempo de inferéncia,
a diminuicao do tamanho do modelo e a viabilidade de execugao em dispositivos com
menos recursos, como GPUs com menor capacidade de memoria. Além disso, a quantizagao
permite economizar custos operacionais, pois modelos mais leves consomem menos energia
e recursos computacionais. Essas vantagens influenciaram a escolha dessa técnica no

desenvolvimento deste projeto.

40

4.1 Coleta dos dados

Para a criacao do dataset, utilizou-se uma base de dados composta por 2 mil
registros cadastrais de clientes que ja utilizam o sistema BoletoFast!. Devido a questdes

de privacidade e confidencialidade, esses dados nao serao disponibilizados.

4.2 Criacao de Dataset

A partir da coleta de dados, foi criado um dataset que possui dois campos principais:
"prompt de entrada do usudrio'e "saida esperada em JSON". O objetivo é fornecer ao
modelo um prompt de entrada em linguagem natural, a partir do qual o modelo deve
gerar um JSON correspondente para a chamada da API. A partir da base de dados
composta por 2 mil registros cadastrais de clientes, o objetivo seguinte foi associar esses
registros a trés agoes especificas: 'ConsultarSaldo", "CadastrarCliente'e "CadastrarBoleto".
Para cada uma dessas agoes, foram geradas diversas frases em linguagem natural que
representam as intencoes dos usuarios. Para melhorar a eficacia do modelo em interpretar
comandos em linguagem natural, foram criados conjuntos especificos de frases para cada
acao selecionada. No caso da acao "CadastrarCliente", o modelo foi exposto a frases
como "Inscreva', "Cadastre', "Registre o cliente", "Adicione o cliente", entre outras. Para
'CadastrarBoleto", foram utilizadas expressoes como "Registre Boleto", "Cadastre Boleto",
"Inclua Boleto". Por fim, para "ConsultarSaldo", o modelo recebeu frases com termos como
"Saldo do cliente", "Balance", "Extrato do cliente", "Qual é o saldo". Com essa variedade
de expressoes incluidas no dataset espera-se que o modelo desenvolva a capacidade de
identificar corretamente as intengoes e os parametros necessarios para cada agdo, gerando
um JSON bem estruturado para a chamada das APIs correspondentes.Esse processo de
criagao do dataset visa aumentar o nimero de exemplos disponiveis, com o objetivo de
melhorar a precisao do modelo em relagdo ao comportamento esperado em cenérios de
uso real. Ao incluir mais exemplos variados, busca-se aprimorar a capacidade do modelo
de lidar com diferentes solicitagoes dos usuarios de forma mais eficaz, aproximando-o dos

resultados desejados no contexto pratico.

Ao final desse processo foram totalizando 6.071 registros. Deste total de registros,
80% foi utilizado para treinamento e 20% para testes, visando que o modelo identifique

corretamente a intengdo e os parametros necessarios para formar o JSON adequado.

1 BoletoFast https://boletofast.com.br ¢ um software desenvolvido e mantido pelo autor desta

monografia.

https://boletofast.com.br

41

4.3 Fine-Tuning

Fine-tuning (ajuste fino) é uma técnica de aprendizado de maquina utilizada
para adaptar um modelo previamente treinado a um novo conjunto especifico de dados
(datasets) (Friederich, 2017). Em vez de treinar um modelo do zero, aproveita-se um
modelo que ja foi treinado em um grande volume de dados gerais. Esse modelo é entao
ajustado com dados mais especificos e relevantes ao problema que estamos tentando
resolver. Esse processo nao s6 economiza tempo e recursos computacionais, mas também
melhora o desempenho do modelo em tarefas especificas, como a integragdo com APIs de
sistemas existentes. Para realizar o Fine-Tuning, sera utilizado o algoritmo desenvolvido
pela Unsloth (UnslothAlI, 2024), que facilita o ajuste fino desses modelos por meio de
um codigo padronizado. O cédigo-fonte é disponibilizado no GitHub (UnslothAl, 2024),
permitindo que seja personalizado conforme as necessidades especificas do projeto. Na

Figura 1 podemos ver o fluxo desse processo.

=T N i | |
— — r{&./}' ’

3) Ajuste de paramelfros e

1) Coleta de dados 2) Tratamento de Dados e Fine Tunnning modelo LLM 4) LLM Testes
Criacao do Dataset & Analise de Metricas

L J
¥

Figura 1 — Diagrama dos passos executados

4.4 Avaliacao dos Resultados

Para avaliar os resultados do ajuste do LLM, utilizaremos duas métricas? principais.
A primeira serd a distdncia entre a string do prompt de entrada e a string de saida gerada
pelo modelo, o que permitirda medir o quao préximo o modelo chega da transformagao
esperada das solicitacoes. A segunda métrica serd a distancia entre o JSON esperado e
o JSON gerado pelo modelo, ajudando a avaliar a proximidade dos resultados com as
expectativas. Essas duas métricas sao utilizadas conjuntamente porque abordam diferentes
aspectos, enquanto a distancia entre as strings foca na precisao do conteido textual,
avaliando diretamente quao bem o modelo gera texto alinhado com a saida esperada,
a distancia entre os JSONs se concentra na precisdo do contetido textual e também na
precisao de estar em conformidade com as especificagoes do formato JSON. Adicionalmente,

a loss do modelo durante o treinamento e o tempo de resposta sao monitorados para fornecer

2 Para as metricas de distancia entre a string e distancia entre o JSON, foi utilizada a biblioteca

em Python disponivel em https://python.langchain.com/v0.1/docs/guides/productionization/
evaluation/string/json/ para implementar essas métricas.

https://python.langchain.com/v0.1/docs/guides/productionization/evaluation/string/json/
https://python.langchain.com/v0.1/docs/guides/productionization/evaluation/string/json/

42

uma avaliacdo mais completa da performance operacional e da eficicia do aprendizado do

modelo.

4.5 Resultados Esperados

Ao final do processo, espera-se que o usuario possa inserir uma solicitacdo em
linguagem natural, como por exemplo "Por favor, cadastre no sistema o cliente José
Silva, residente na Av. Paulista, 123 com o CPF 123456789-00."O LLM deve ser capaz
de identificar automaticamente a acdo desejada (neste caso, "CadastrarCliente") e extrair
os parametros necessarios, como nome, endereco e CPF, da solicitacdo. Com base nessa
identificacdo, o modelo deve entdo gerar uma resposta em formato JSON, estruturada
corretamente para a chamada da API correspondente. Por exemplo, o JSON retornado
deve incluir todos os campos necessérios, como {"api": "CadastrarCliente", "nome": "José
Silva", "endereco": "Av. Paulista, 123", "cpf": "123456789-00"}. A precisao deste processo é
avaliada pelas métricas discutidas anteriormente, assegurando que o modelo, mesmo em
sua fase experimental, esteja proximo de produzir respostas adequadas e utilizaveis em um
contexto real. Como mostrado na Figura 2, esse fluxo é demonstrado, ilustrando como o

LLM processa a entrada, identifica os parametros e forma o JSON adequado para a API.

- =]

Enirada LLM: Saida LLM:
Cadastre o cliente, LLM { API:CadastraCliente_
Joao Pereira, Grande Parametros : {
email joao@teste.com Modelo de { nome: Joao Preira },
Av. Paulista, 1234, Linguagem { email: joao@teste.com },
Sao Paulo I endereco: Av. Paulista, 1234 },

{ Cidade : Sao Paulo }}}

Figura 2 — LLM processa a entrada, identifica a agdo, os pardmetros e forma o JSON
adequado para chamada da API

43

5 AVALIACAO EXPERIMENTAL

5.1 Fine Tunning

Como mencionado na Se¢ao 4.3 para o processo de Fine-Tuning, foi utilizado o
algoritmo proposto pela Unsloth, que, por meio de um cédigo padronizado, permite o
Fine-Tuning desses modelos. O cédigo-fonte esté disponivel no GitHub (UnslothAl, 2024),

permitindo personaliza¢ao conforme as necessidades do projeto.

Além do algoritmo proposto para o Fine-Tuning, a escolha dos parametros é
essencial para descobrir as melhores combinagoes que otimizem o desempenho do modelo.
Pardmetros como o nimero de épocas e a taxa de aprendizado (Learning Rate) tém
um impacto significativo no processo de treinamento. O niimero de épocas determina
quantas vezes o modelo passard pelos dados de treinamento (Goodfellow, 2016), o que
pode influenciar a qualidade da resposta do modelo. Um ntimero muito baixo de épocas
pode resultar em um modelo subajustado , enquanto um ntimero muito alto pode causar
sobreajuste. A taxa de aprendizado, por sua vez, controla o tamanho dos passos que
o algoritmo de otimizacao da na busca por melhores pesos para o modelo. Taxas de
aprendizado muito altas podem fazer com que o modelo perca padroes importantes nos
dados, enquanto taxas muito baixas podem levar a um treinamento excessivamente longo

ou a um modelo preso em minimos locais.

Para este experimento inicial, foram escolhidas trés variagoes de épocas (30, 60 e
90) e trés variagoes de Learning Rate (le-5, 2e-4, 5e-4), totalizando seis combinacoes de
parametrizacoes para cada modelo e um total de 18 variagoes nesta fase do experimento.

Na Tabela 2, podemos ver os parametros utilizados.

44

Tabela 2 — Combinagdes de Parametros Utilizados nos Experimentos

Modelo Epocas | Learning Rate
le-5
30 2e-4
5e-4
le-5
60 2e-4
oe-4
le-5
30 2e-4
oe-4
le-5
60 2e-4
5e-4
le-5
30 2e-4
5e-4
le-5
60 2e-4
oe-4

llama-3-8b-bnb-4bit

gemma-7b-bnb-4bit

tinyllama-bnb-4bit

5.2 Execucao do Fine Tunning

Todo o processo de Fine-Tuning foi executado no Google Colab PRO, utilizando
instancias idénticas para garantir uma analise mais precisa dos dados. As principais
caracteristicas das instancias utilizadas foram: 13 GB de RAM do sistema, 15 GB de RAM
em uma GPU Tesla T4, e 80 GB de espago em disco. Na tabela 3, sao apresentados os dados
referentes ao Fine-Tuning inicial das 18 variagdes apresentadas na Tabela 2, onde estao
listados o Loss Inicial, o Loss Final, e o tempo de treinamento para cada variacao. Esses
dados sao essenciais para avaliar a eficiéncia e a performance de cada configuragdo durante
o processo de ajuste fino. A Loss Inicial representa o erro do modelo na primeira época do
processo de ajuste fino, enquanto a Loss Final reflete o erro na tdltima época do mesmo,
ambos medidos utilizando a Cross Entropy Loss como métrica de erro. Comparando os
resultados da Tabela 3, observa-se que a configuragdo com tinyllama-bnb-4bit, 60 épocas e
uma Learning Rate de 5e-4 apresentou a menor Loss Final (0.5555), indicando uma melhor
adaptacao ao ajuste fino. Por outro lado, a configuracao com llama-3-8b-bnb-4bit, 60
épocas e Learning Rate de le-5 apresentou uma Loss Final maior (2.3169), sugerindo uma
menor eficicia nesse cenario especifico. Porém, uma anélise da reducao de loss revela que
a configuracao que demonstrou a maior taxa de aprendizado foi a do modelo llama-3-8b-
bnb-4bit, com 60 épocas e uma learning rate de 5e-4, que alcangou uma reducao de loss de
2.3625. Estes resultados ajudam a identificar quais combinagoes de parametros otimizam
o desempenho do modelo durante o processo de Fine-Tuning. Na Tabela 3, podemos ver

esses resultados.

45

Tabela 3 — Resultados da Execugao do Fine-Tuning Inicial

Modelo Epocas | Learning| Loss Loss Reducao
Rate Inicial Final de Loss

le-5 3.0198 | 2.5900 | 0.4208
30 [204 3.0108 | 0.9020 | 2.1178
. 5e-4 3.0198 | 0.7876 | 2.2322
llama-3-8b-bnb-4bit Te-5 3.0198 | 2.3169 | 0.7029
60 | 20-4 3.0198 | 0.6959 | 2.3239
5e-4 3.0198 | 0.6573 | 2.3625
le-5 2.7780 | 1.9186 | 0.8594
30 | 204 27780 | 0.7421 | 2.0359
. 54 2.7780 | 0.7304 | 2.0476
gemma-7b-bub-4bit Te-5 27780 | 1.2260 | 1.5520
60 | 20-4 2.7780 | 0.6016 | 2.1764
5e-4 27780 | 0.5977 | 2.1803
Te-5 94316 | 2.2381 | 0.1935
30 | 204 9.4316 | 0.8786 | 1.5530
. . 5e-4 94316 | 0.7040 | 1.7276
tinyllama-bnb-4bit Te-5 94316 | 2.2154 | 0.2162
60 | 204 94316 | 0.6421 | 1.7895
5e-4 24316 | 0.5555 | 1.8761

Uma andlise realizada em sequéncia foi a da distancia de similaridade entre strings,
uma métrica utilizada para avaliar a precisao das saidas geradas pelos modelos. A distancia
de similaridade entre strings é uma métrica utilizada para quantificar o grau de semelhanca
entre duas sequéncias de caracteres, ou "strings". A distancia de similaridade pode ser
usada para avaliar quao semelhante uma string gerada por um modelo estda em relagao
a uma string de referéncia ou esperada. O valor da distancia varia entre 0 e 1, onde 0
indica que as strings comparadas sao idénticas, e 1 indica que elas sao completamente
diferentes. Neste trabalho, utizamos inicialmente essa métrica para avaliar a performance

dos modelos durante o processo de Fine-Tuning.

Nos dados apresentados na Tabela 4, podemos observar uma evolugao significativa
na performance dos modelos apds o processo de Fine-Tuning. Notamos que a "distancia
média string', ou seja, a média das distancias obtidas para as tuplas (json esperado, json
obtido), foi consideravelmente reduzida em quase todas as configuragoes, evidenciando a
eficicia do ajuste fino em melhorar a precisao dos modelos na geracao de saidas esperadas.
Por exemplo, no modelo llama-3-8b-bnb-4bit com 60 épocas e uma learning rate de 5e-4, a
distancia média foi reduzida de 0,8746 para 0,00253, mostrando uma significativa melhoria.
De maneira semelhante, o modelo gemma-7b-bnb-4bit com 60 épocas e uma learning
rate de be-4 também apresentou uma reducgao, passando de 0,8250 para 0,00654. Além
disso, o modelo tinyllama-bnb-4bit com 60 épocas e uma learning rate de 5e-4 reduziu
a distancia de 0,8275 para 0,01241. Esses resultados demonstram que o Fine-Tuning

foi particularmente eficaz nessas configuragoes, resultando em saidas mais proximas do

46

esperado. Segundo esse critério, a melhor configuracao foi o modelo llama-3-8b-bnb-4bit

com 60 épocas e Learning Rate de be-4.

Tabela 4 — Média da Distancia String Antes e Apds o Fine-Tuning

Modelo Epocas | Learning Rate | Média Antes | Média Apoés
le-5 0,8746 0,85627
30 2e-4 0,8746 0,01255
: 5e-4 0,8746 0,00891
llama-3-8b-bnb-4bit ToF 0.8716 0.81521
60 2e-4 0,8746 0,09707
5e-4 0,8746 0,00253
le-5 0,8250 0,84755
30 2e-4 0,8250 0,00857
. Se-4 0,8250 0,00597
gemma-7b-bub-4bit Te-5 0,8250 0,42922
60 2e-4 0,8250 0,00667
5e-4 0,8250 0,00654
le-5 0,8275 0,85161
30 2e-4 0,8275 0,08218
. . 5e-4 0,8275 0,02543
tinyllama-bnb-4bit ToF 0.8275 0.89350
60 2e-4 0,8275 0,02180
5e-4 0,8275 0,01241

Outra analise realizada foi a distdncia de similaridade entre objetos JSON contidos
nas strings geradas pelos modelos. Essa métrica é particularmente 1til para avaliar ndo
apenas a precisao textual, mas também a exatidao estrutural e semantica das saidas geradas.
Ao comparar os objetos JSON, podemos quantificar o quao proxima a estrutura gerada
pelo modelo esta em relagao a estrutura esperada, levando em conta tanto a presenca dos
campos corretos quanto os valores atribuidos a eles. O valor dessa distancia, assim como na
comparagao entre strings, varia entre 0 e 1, onde 0 indica que os objetos JSON comparados
sao idénticos em estrutura e conteudo, enquanto 1 indica que eles sao completamente
diferentes. Essa métrica permite uma avaliagdo mais robusta do desempenho do modelo,
j& que considera a correta formacao e estruturacao dos dados em formato JSON, o que é
muito importante para aplicagoes que dependem da precisao na comunicacao de dados

entre sistemas.

Na Tabela 5, podemos observar os resultados das distancias JSON apés o Fine-
Tuning para diferentes modelos e configuragoes. Primeiramente, é importante destacar as
trés configuracoes que apresentaram a pior performance em termos de distancia JSON. O
modelo tinyllama-bnb-4bit com 30 épocas e uma learning rate de le-5 apresentou uma das
maiores distancias, com um valor de 0,99852, indicando uma grande discrepancia entre o
JSON gerado e o esperado. Outra configuracao que apresentou um desempenho fraco foi o
modelo llama-3-8b-bnb-4bit com 30 épocas e uma learning rate de le-5, que também obteve
uma alta distancia JSON de 0,99835. Por fim, o modelo gemma-7b-bnb-4bit com 30 épocas

47

e uma learning rate de le-5 resultou em uma distancia de 0,97571, mostrando dificuldades
semelhantes na geragao precisa do JSON. Em contrapartida, as trés configuracoes que
demonstraram a melhor performance foram significativamente mais eficazes. O modelo
llama-3-8b-bnb-4bit com 60 épocas e uma learning rate de He-4 alcancou uma das menores
distancias JSON, com um valor de 0,00312, indicando uma excelente proximidade entre
o JSON gerado e o esperado. De forma semelhante, o modelo gemma-7b-bnb-4bit com
60 épocas e uma learning rate de 5e-4 apresentou uma distancia muito baixa, de 0,00549,
evidenciando uma melhoria consideravel em comparacdo com suas outras configuracoes.
Finalmente, o modelo tinyllama-bnb-4bit com 60 épocas e uma learning rate de 5He-4

também obteve um bom resultado, com uma distancia JSON de 0,00997.

Tabela 5 — Distancia JSON Apés o Fine-Tuning

Modelo Epocas | Learning Rate | Distancia JSON
le-5 0,99835
30 2e-4 0,00944
_ 5e-4 0,00526
llama-3-8b-bnb-4bit le-5 0,98553
60 2e-4 0,08707
5e-4 0,00312
le-5 0,97571
30 2e-4 0,00636
_ 5e-4 0,00487
gemma-7b-bnb-4bit Te-5 0,51458
60 2e-4 0,00167
5e-4 0,00549
le-5 0,99852
30 2e-4 0,19677
' ' 5e-4 0,02373
tinyllama-bnb-4bit 1e5 0,95654
60 2e-4 0,14803
5e-4 0,00997

Ao comparar as configuragoes com melhor e pior desempenho, ficou evidente que
o aumento no numero de épocas e o ajuste da learning rate para valores maiores, como
He-4, foram fatores decisivos para a melhora na precisao dos modelos. As configuragoes
com uma learning rate muito baixa (le-5) e menos épocas nao conseguiram convergir de
forma eficaz, resultando em distancias JSON mais elevadas, enquanto as configuragoes
com mais épocas e uma learning rate mais elevada (5e-4), foram capazes de minimizar as
discrepancias na geragao dos objetos JSON. Segundo esse critério, a melhor configuracao

foi o modelo llama-3-8b-bnb-4bit com 60 épocas e Learning Rate de 5e-4.

48

5.3 Discussao

Os resultados obtidos a partir da integracao dos LLMs com APIs revelam o
potencial significativo desta abordagem para simplificar a interacao do usuéario com
sistemas empresariais. A utilizagao de LLMs para interpretar comandos em linguagem
natural e converté-los em chamadas estruturadas de API mostrou-se eficaz, com os modelos
ajustados atingindo niveis satisfatérios de precisao tanto na identificacdo de intenc¢oes
quanto na geracao de JSONs. Em particular, para as andlises efetuadas e dataset utilizado,
o modelo llama-3-8b-bnb-4bit com 60 épocas e Learning Rate de 5e-4, mostrou-se superior
para essa tarefa. No entanto, a discussao dos resultados também levanta algumas questoes
importantes. Primeiro, a dependéncia do Fine-Tuning para alcangar a precisao desejada
sugere que, apesar dos avangos, os LLMs ainda exigem ajustes especificos ao contexto de
aplicacao para funcionarem de maneira correta. Isso pode implicar em desafios adicionais
quando se trata de adaptar esses modelos para diferentes sistemas ou contextos empresariais

sem uma fase extensiva de ajuste fino.

Além disso, a analise das métricas de distancia entre strings e JSONs evidenciou que,
embora os modelos tenham atingido altos niveis de precisao, ainda existem cenarios onde
a formacao de JSONs nao é perfeita. Isso sugere a necessidade de estratégias adicionais,
como a implementagao de técnicas de pds-processamento para corrigir ou ajustar saidas
que nao estejam em conformidade com o esperado. Por fim, a aplicacao pratica desta
solucado em um ambiente empresarial real ainda requer mais estudos. A transicao do
ambiente experimental para o ambiente de producao pode introduzir novos desafios, como
a necessidade de escalabilidade, a gestao de diferentes contextos de uso e a adaptacao a

mudancas nas APIs ou nos requisitos do sistema.

49

6 CONCLUSOES

Neste trabalho, foi proposta a integragao de Large Language Models (LLMs) com
APIs, visando a modernizacao e simplificacdo das interagoes entre o usuario e o sistema.
Através do ajuste fino (Fine-Tuning) de modelos como tinyllama-bnb-4bit, gemma-7b-bnb-
4bit, e llama-3-8b-bnb-4bit, foi possivel observar uma melhoria significativa na capacidade
dos modelos em transformar comandos em linguagem natural em requisi¢oes estruturadas

em JSON, prontas para a chamada de APIs.

Os resultados experimentais demonstraram que o processo de Fine-Tuning, especi-
almente com a variacao de parametros como o nimero de épocas e a taxa de aprendizado,
foi eficaz em reduzir a discrepancia entre as saidas esperadas e as geradas pelo modelo.
A melhoria nas métricas de distancia entre strings e na precisao da formagao de JSONs
indicam que o modelo ajustado pode ser uma ferramenta valiosa na automacao de processos
empresariais, proporcionando uma interface mais intuitiva e proxima da linguagem natural

humana.

6.1 Trabalhos Futuros

Para trabalhos futuros, é sugerido algumas melhorias que podem ser implementadas
com base nas observagoes dos resultados atuais. Primeiramente, um aumento no niimero
de épocas pode ser explorado, uma vez que o incremento de épocas demonstrou ser eficaz
na melhoria da precisao na geracao dos objetos JSON. Esse aumento no ntimero de
épocas pode permitir que os modelos tenham mais tempo para ajustar seus parametros
e melhorar a convergéncia, resultando em distancias JSON ainda menores. Além disso,
seria interessante testar uma variacao ainda maior na learning rate, mantendo os valores
como 5e-4, mas também experimentando valores intermediarios, como 3e-4 e 4e-4, para
encontrar um equilibrio ideal entre velocidade de aprendizagem e precisao. Outra area
de melhoria seria a implementacao de técnicas de regularizacao, como dropout, bayesian
optimization ou weight decay, que poderiam ajudar a evitar overfitting, especialmente em

configuragoes com mais épocas.

51

REFERENCIAS

ADAMOPOULOU, E.; MOUSSIADES, L. An overview of chatbot technology. In:
SPRINGER. IFIP international conference on artificial intelligence applications
and innovations. [S.l.: s.n.], 2020. p. 373-383.

Anthropic. Claude. 2023. https://www.anthropic.com/claude. Accessed: 2023-09-01.

BRACHTEN, F.; KISSMER, T.; STIEGLITZ, S. The acceptance of chatbots in
an enterprise context—a survey study. International Journal of Information
Management, Elsevier, v. 60, p. 102375, 2021.

BRATIC, D. et al. Centralized database access: Transformer framework and 1lm/chatbot
integration-based hybrid model. Applied System Innovation, Multidisciplinary Digital
Publishing Institute, v. 7, n. 1, p. 17, 2024.

FRIEDERICH, S. Fine-tuning. The Stanford encyclopedia of philosophy, 2017.
GOODFELLOW, I. Deep learning. [S.l.: s.n.]: MIT press, 2016. v. 196.

GOOGLE. Gemma: Google introduces new state-of-the-art open models. 2024.
Acessado em: Agosto, 2024. Disponivel em: https://blog.google/technology/developers/
gemma-open-models/.

JIN, B.; SAHNI, S.; SHEVAT, A. Designing Web APIs: Building APIs That
Developers Love. [S.l.: s.n.]: "O’Reilly Media, Inc.", 2018.

KAR, R.; HALDAR, R. Applying chatbots to the internet of things: Opportunities and
architectural elements. arXiv preprint arXiv:1611.03799, 2016.

KIM, S. et al. An llm compiler for parallel function calling. arXiv preprint
arXiv:2312.04511, 2023.

MARRS, T. JSON at work: practical data integration for the web. [S.l.: s.n.]:
'"O’Reilly Media, Inc.", 2017.

META. Apresentando Meta Llama 3: o grande modelo de lin-
guagem de cddigo aberto mais capaz até hoje. 2024. Acessado
em: Agosto, 2024. Disponivel em: https://about.tb.com/br/news/2024/04/

apresentando-meta-llama-3-o-grande-modelo-de-linguagem-de-codigo-aberto-mais-capaz-ate-hoje/ .

NADKARNI, P. M.; OHNO-MACHADO, L.; CHAPMAN, W. W. Natural language
processing: an introduction. Journal of the American Medical Informatics
Association, BMJ Group BMA House, Tavistock Square, London, WC1H 9JR, v. 18,
n. 5, p. 544-551, 2011.

NEGNEVITSKY, M. Artificial intelligence: a guide to intelligent systems. [S.[.:
s.n.]: Pearson education, 2005.

OpenAl. GPT-4. 2023. https://openai.com/index/gpt-4/. Accessed: 2023-09-01.

https://www.anthropic.com/claude
https://blog.google/technology/developers/gemma-open-models/
https://blog.google/technology/developers/gemma-open-models/
https://about.fb.com/br/news/2024/04/apresentando-meta-llama-3-o-grande-modelo-de-linguagem-de-codigo-aberto-mais-capaz-ate-hoje/
https://about.fb.com/br/news/2024/04/apresentando-meta-llama-3-o-grande-modelo-de-linguagem-de-codigo-aberto-mais-capaz-ate-hoje/
https://openai.com/index/gpt-4/

52

OZDEMIR, S. Quick Start Guide to Large Language Models: Strategies and
Best Practices for Using ChatGPT and Other LLMs. [S.l.: s.n.]: Addison-Wesley
Professional, 2023.

PATIL, S. G. et al. Gorilla: Large language model connected with massive apis. arXiv
preprint arXiv:2305.15334, 2023.

UNSLOTHAI Unsloth: Finetune Llama 3.1, Mistral, Phi & Gemma LLMs 2-5x
faster with 80% less memory. 2024. Acessado em: Agosto 22, 2024. Disponivel em:
https://github.com /unslothai/unsloth.

YAO, S. et al. React: Synergizing reasoning and acting in language models. arXiv
preprint arXiv:2210.03629, 2022.

ZHANG, P. et al. TinyLlama: An Open-Source Small Language Model. 2024.

https://github.com/unslothai/unsloth

	Folha de rosto com carimbo
	Folha de rosto adicional
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de quadros
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Hipótese e Objetivos
	Objetivo Geral
	Objetivos Específicos

	Fundamentação Teórica
	Inteligência Artificial
	 Processamento Linguagem Natural - PLN
	LLM
	API
	JSON
	ChatBots e LLM
	LLMs Existentes
	Llamma3
	Gemma 7b
	Tinnyllama
	Gorilla LLM

	Trabalhos Relacionados
	Metodologia
	Coleta dos dados
	Criação de Dataset
	Fine-Tuning
	Avaliação dos Resultados
	Resultados Esperados

	Avaliação Experimental
	Fine Tunning
	Execução do Fine Tunning
	Discussão

	Conclusões
	Trabalhos Futuros

	Referências

