UNIVERSIDADE DE SAO PAULO
ESCOLA POLITECNICA
DEPTO. DE ENG. MECANICA

PMC-581

Projeto de uma interface de
descricao de modelos sélidos
B-rep por meio de operacdes locais
e entrada de dados em 3D

RELATORIO FINAL

GLAUCIO TERRA

ORIENTADOR:

PROF. DR. Marcos de Sales Guerra Tsuzuki

1996

1. Indice 1
2. Introducdo e objetivos 2
3. Especificacdes da interface 5
4. Solugdo proposta 5
5. Concepgdo da interface 6
5.1 Esquema de representacio interno 6
5.1.1 Classes da estrutura 3D 8
5.1.2 Classes da estrutura 2D 11
5.1.3 Consideragdes finais sobre 0 esquemna de representagiio interno 11
5.2 Médulos de interface externa, visualizaciio e selegio 12
5.3 Médulo de operacdes locais 14
6. Como utilizar o software 16
6.1 Menu Shell 23
6.2 Menu “Euler” 24
6.3 Menu “Projection” 26
6.4 Menu “Primitives” 27
6.5 Menu “Operations” 28
6.6 Menu “Options” 28
7. Descrigdo do codigo fonte 29
7.1 Pares e ternas ordenadas 29
7.2 Matrizes de transformacio homogénea 30
7.3 Funcdes vetoriais 30
7.4 Classes TPlane e TWindowData 34
7.5 Classe Tlinkage (“linkage.h™) 50
7.6 Classes da estrutura 2D 52
7.7 Classes da estrutura 3D 57
7.8 Operadores de Euler (“euler.h”) 73
7.9 Interface Windows 74
8. Conclusio 86
9. Referéncias Bibliogrdficas 98
Apéndice A 87
Apéndice B 91
Apéndice C 97

2. Introducao e objetivos

Sistemas de CAD/CAM existentes atualmente possuem , em seu micleo, um sistema de
modelagem geométrica, o qual € capaz de modelar sélidos e responder algoritmicamente questdes de
natureza geométrica arbitrarias acerca dos solidos por ele modelados.

Um tal sistema deve ter a seguinte estrutura:

Entrada
de dados Interface para Interface com

para |[* descriggo do |« Modelador |, demais [* g
descrigfio modelo modulos .
do sélido - !

Sistema de modelagem de solidos

Sistema de CAD/CAM

A entrada de dados para o modelador € feita por meio de uma interface de descrigéio, a qual
recebe dados do usuario/meméria externa por meio de uma linguagem de descriciio ou interface
grafica interativa.

Uma vez entradas, as descrigdes dos objetos sdo traduzidas para os esquemas de
representacfio internos do modelador, o qual deve ser capaz de trocar informag¢des com outros
modulos através de uma interface interna com o0s mesmos.

O modelador deve ser capaz de manipular e armazenar informagdes geométricas por meio de

diferentes e coexistentes esquemas de representagiio, cada um deles adequado para um determinado

tipo de aplicagdo. Isto implica que 0 mesmo deve prover algoritmos de conversdo entre os varios
esquemas de representagio por ele suportados. A grande dificuldade que surge ¢ que nfo séo
conhecidos algoritmos de conversdo entre todos os esquemas de representagdo; além disso, ha
problemas de consisténcia entre as representagdes, devido ao fato de esquemas de representagio
distintos possuirem, em geral, espacos de modelagem distintos.

A solucio usualmente adotada em modeladores hibridos (isto ¢, modeladores que suportam
diversos esquemas de representagio coexistentes) para tais problemas de consisténcia e falta de
algoritmos de conversdo consiste em adotar-se uma das representages suportadas como primaria, e
as demais como secunddrias. Seguindo-se esta idéia, a maioria dos sistemas de modelagem de sélidos

atualmente existentes adotam uma das seguintes arquiteturas:

CSG CSG Decomposition
interface trees — model
('31;a1:1>‘?1ca1 Boundary
interface . e
EInterface de descrigdo EModelador

...

CSG CSG

) Bound

interface trees ?r‘:;ldgry

%Interface de descri¢do : :

'..................................._..........‘........._.._..................J ‘ Decomposiﬁon
; model
%Modelador

(b)

Modeladores do segundo tipo, que tém modelos B-rep como esquema de representagdo
primério, utilizam uma interface de descrigéo CSG, o que significa que os solidos sdio construidos
por meio de operages booleanas sobre um dado conjunto de primitivos. Isto ¢ adequado para
s6lidos de geometria simples, mas inconvenientes quando solidos de geometria complexa estdo
envolvidos. Neste caso, seria interessante se o solido pudesse ser construido por operagdes locais, o
que simplificaria sobremaneira a descti¢do do mesmo.

Propde-se, no presente trabalho, o projeto de uma interface de construgdo que permita

descrever modelos solidos B-rep a partir de operagdes locais.

3. Especificagdes da interface

e A entrada de dados para a interface devera ser feita através de memoria externa ou de uma

interface grafica tridimensional, na qual o usuario entrard com dados interativamente por meio de

dispositivo apontador ou digitalizador;

o A entrada de dados devera ser ecoada no terminal de video. Para tal, a interface deveré

possuir um esquema de representagso interno que permita interface com um médulo de visualizagéo,

e A interface devera prover modulos para comunicagdo com o modelador.

4. Solugao proposta

Propbe-se desenvolver uma interface de descrigio conforme esquematizado abaixo.

Adicionalmente, desenvolver-se-4 o médulo de visualizagdo, sem o qual a interface ndo podera ser

testada.
Moédulo de visualizagdo e
selecdo
Memoria ; . "D
externa le B Madulo de‘ B
---------------- descrigﬁo ; 3D (repre;Zil:agﬁo
s Interface : s
Usuario : oo | % | primaria)
3 operagoes locais :
Interface de descrigio ‘Modelador

..

Decomposition
model :

[

Interface com
outros médulos

5. Concepcao da interface
No que segue, serd dada uma visdo geral do projeto e implementagiio de cada um dos
médulos da interface, conforme esquema do item anterior. Uma descrigfio em detalhes sera feita
posteriormente. Os médulos projetados foram desenvolvidos por meio de técnicas de programagio
orientada a objetos e implementados em C++ (usou-se o ambiente de desenvolvimento Borland C++
4.5, da Borland, ¢ a biblioteca OWL 2.5). Alguns algoritmos foram modelados € analisados por meio

de MFGs,

5.1 Esquema de representacéo interno

No projeto do esquema de representagdo interno, optou-se por utilizar um modelo de
representagio limitada, ao invés do wireframe inicialmente proposto. Justifica-se tal escolha por
permitir-se uma futura expansfo das operagdes suportadas pela interface (renderizagdo, por
exemplo), a um “esfor¢o” de projeto adicional relativamente baixo.

Desta forma, o esquema de representagfo interno foi implementado através de uma estrutura
“winged-edge”. Para fins de visualizagdo, os s6lidos modelados sdo projetados por uma perspectiva
num determinado plano de projegio (note-se que o usuario tem total liberdade para escother o plano
de projecdo, bem como os parimetros da perspectiva) . Para tal, a estrutura tridimensional winged-
edge & traduzida para uma lista de pontos bidimensionais, por meio de um objeto “edmera”, que
contém os métodos necessarios para fazer-se a projecio.

O diagrama a seguir € uma sinopse da estrutura de dados utilizada para implementar o

esquema de representagdo interno da interface.

Projection Window A
Plane L
Modulo de visualizagio e selecdo / :
Estrutura T
’ Scene Estrutura2D | |
I v i
Layer
{ P2D :
Shell :
Face(flat)
F Bézier |
patch
Loop
. Wing‘e i Facewin
—» -edge(straight) | : €
Bézier Isometric Curve
cubic :
1 P3D : .
: Ed
(Ponto no E?) / : S
pcedge i : 3
[poace_ | EEEm
pcface :
s vertex ! :

No esquema acima, cada box em linha cheia representa uma classe. As setas representam
interconexes entre as instincias das classes em questdio, feifas por meio de ponteiros ou vetores de
ponteiros (no caso de uma dada instincia apontar para vérias outras de uma mesma classe; por

exemplo, um skell contém um vetor de ponteiros que apontam para cada uma de suas faces).

5.1.1 Classes da estrutura 3D

Instincias das classes da estrutura 3D representam objetos tridimensionais no espago afim
euclidiano de trés dimensdes E’. Em cada uma destas instincias estdo embutidas estruturas para se
descrever a “topologia” dos sélidos (informagdes de conectividade entre cada um de seus elementos)
e estruturas para se descrever a “geometria” dos mesmos (informagdes relativas & “forma” dos seus
elementos).

Um ponteiro global do tipo scene (cada uma destas instdncias representa uma cena, um
conjunto enumeravel de solidos, organizados em /ayers) ¢ usado para apontar para a cena corrente
do aplicativo .

Futuramente, todas estas classes serdo feitas serializdveis, de modo a permitir comunicagdo
com meméria externa; parte da estrutura necessaria para isto ja foi projetada e implementada, mas
ainda nfo testada.

Cada sélido (uma instdncia do tipo shell) aponta para o layer que o contém. Além disso, o
mesmo contém quatro confainers: um para o conjunto de faces que compdem o solido (insténcias do
tipo face), outro para o conjunto de winged-edges ¢ outro para o conjunto de vértices do solido
(instdncias do tipo P3D); o quarto conmtainer contém um conjunto de instdncias do tipo
TMatProjPlane. Cada uma destas instancias contém as matrizes de transformagio das coordenadas
de mundo do solido (E*) para as coordenadas associadas a cada um dos planos de projecdo . Trés

tipos de coordenadas sio associadas a cada plano de projegéo:

® eye coordinates (E*), coordenadas relativas ao sistema de coordenadas da cdmera associada
ao plano de projecdio em questdo;

® projection coordinates (E®), coordenadas relativas ao sistema de coordenadas do plano de
projecgéo;

e view coordinates (E*), coordenadas de tela.

Uma instancia do tipo fuace representa uma face de algum solido. Cada face possui um
ponteiro para o sélido (skell) que a contém, um ponteiro para o seu Joop externo e um container de
loops internos. Em relagdio a geometria da face, a mesma podera ser de dois tipos, a principio: ou
sera a face plana ou uma spline de patches triangulares clbicas de Bézier. Note que uma face plana
pode ser considerada um tipo particular do segundo tipo de face, bastando para isto que os pontos
de controle dos tridngulos de Bézier estejam todos no mesmo plano; todavia, para fins de
desenvolvimento do projeto, bem como por razdes de eficiéncia dos algoritmos e utilizagdo de
memdria, julgou-se conveniente separar os dois casos. Analogamente, observe que, escolhendo-se 0s
pontos de controle convenientemente, as patches triangulares cubicas de Bézier podem representar
partes da superficie de qualquer quédrica, incluindo superficies esféricas, conicas, cilindricas, etc.; no
entanto, se for conveniente, tais casos também poderfio ser considerados em separado. Até o
momento, foram implementadas e testadas apenas as classes de face que descrevem faces planas,
permitindo apenas a construgdo de solidos poliédricos. Parte da estrutura necessaria para descrever
outros tipos de face ja foi projetada e implementada, no entanto.

Instdncias do tipo loop representam os lagos (loops) internos € externo que compdem cada
face. Um loop tem um flag indicando se o mesmo é um /oop interno ou externo; a referida classe €
feita metamorfica, em alguns métodos (selegdo, por exemplo), em fingio deste flag. Um loop
também tem um ponteiro para a face a qual ele pertence, e um container de ponteiros para 0s
winged-edge’s do mesmo.

Instincias da classe winged-edge representam arestas do solido, sua geometria e topologia

(conectividade). Um objeto do tipo winged-edge pode ser descrito conforme o esquerna abaixo:

fow)

CwW
P new

neCw L

M feow

Onde:

few e feew - face clockwise e face counter clockwise sdo ponteiros para as duas faces
adjacentes ao winged-edge;

pew, new, peew € neew - previous clockwise, next clockwise, previous counter clockwise ¢
next counter clockwise sdo ponteiros para os winged-edge’s adjacentes pertencentes as faces fowe
Jfeew.

Obs.: na implementacfio da referida estrutura, tomou-se fccw como a face com orientacio
coincidente com a do edge em questio, diferentemente do esquema acima.

Além destes ponteiros, um winged-edge também possui um ponteiro para o solido (shell) ao
qual pertence, e um container de instincias do tipo edgewin, cada uma delas correspondendo a
projecdo da aresta representada pelo winged-edge em algum plano de projecéo.

De forma analoga ao caso das faces, as arestas também poderdo ter dois tipos de geometria:
segmentos de reta ou ciibicas de Bézier. Novamente, o primeiro caso também pode ser incluido no
segundo, mas consideragdes idénticas as feitas anteriormente também se aplicam aqui. Do mesmo
modo, outros tipos de geometria também poderdo ser derivados futuramente, caso seja conveniente.

Finalmente, a classe P3D serd usada para representar pontos do E’, e terd trés subclasses,

conforme o ponto seja um vértice de sélido, ponto de controle de face ou de aresta . Contera um

10

container de ponteiros para instancias da classe P2D (cada uma delas correspondendo 3 projecéo do

ponto em um dos planos de projegdo).

5.1.2 Classes da estrutura 2D

A estrutura 2D possui cinco classes, a saber, P2D, FaceWin, EdgeWin, IsoCurve e
EdgeCurve.

Instancias do tipo P2D representam projegdes dos pontos representados pelos objetos P3D
correspondentes. Conterio um ponteiro para o P3D correspondente ¢ outro para o objeto
“projection plane” correspondente. Tais insténcias sdo construidas ou modificadas quando o objeto
P3D correspondente for construido ou modificado. Quando uma instancia do tipo P3D for
construida, o construtor da referida classe deverd chamar uma rotina do objeto projection plane
associado a cada um dos planos de projegdo para calcular as coordenadas da sua proje¢dio naquele
plano, e a seguir chamara o construtor da classe P2D para construir uma instincia da mesma.

As instancias das classes TEdgeWin e TFaceWin correspondem a objetos resultantes da
operagio de clipping dos objetos wedge e face (no caso de uma face cuja superficie seja uma patch
de Bézier, serdo plotadas isométricas da mesma) da estrutura 3D, na viewport associada ao plano de
projegdo correspondente.

Cada objeto TFaceWin possui um container de objetos TIsoCurve, que por sua vez
representa uma das curvas isométricas que serdo desenhadas ao desenhar-se a face. Analogamente,
cada objeto TEdgeWin possui um container de objetos TEdgeCurve, que tepresentam cada um dos

trechos desconexos da curva na viewport correspondente.

5.1.3 Consideracdes finais sobre o esquema de representacio interno

Para finalizar esta se¢dio, algumas consideragSes importantes sobre o modo como foi

concebido o esquema de representagio interno se fazem necessarias.

11

Inicialmente, note-s¢ que muitas estruturas sdo redundantes, mas extremamente convenientes
para alguns algoritmos que foram desenvolvidos e outros que o serfo futuramente; além disso, quase
todas as ligagdes (através de ponteiros) sdo duplas, para fins de rastreabilidade, caso isto seja
Necessario.

Outra questdo relacionada ao uso de grande nimero de ponteiros € que grande parte dos
objetos possui mais de um ponteiro apontando para eles. Isto é uma fonte de bugs em potencial, €
por este motivo todos estes ponteiros sio mantidos sob estrito controle. Para facilitar este controle,
todas as classes em questfio foram derivadas de uma classe denominada Tl/inkage, que fornece um
conjunto de dados-membro ¢ métodos para que todas as ligagdes sejam mantidas automaticamente.
Assim, por exemplo, quando um objeto de classe derivada de Tlinkage ¢ deletado, todos os
ponteiros que sejam membros de outros objetos TLinkage e que apontam para o referido objeto sdo
automaticamente aterrados, e todos os containers séo automaticamente atualizados. Esta proposta
mostrou-se extremamente util, nfo apenas por permitir implementagiio do cddigo de forma mais
sistematica e a prova de erros, mas também por facilitar sobremaneira a manutengéo e modificagio

da estrutura de dados em questfo. Tal solugHo introduz, todavia, um gasto extra de memoria.

5.2 Mdédulos de interface externa, visualizagdo e selegéo

Conforme especificado no item “3”, a entrada de dados ¢ feita interativamente por meio de
dispositivo apontador ¢ ecoada no terminal de video. Até o momento, ainda ndo foi desenvolvida
comunicacdo com memoéria externa. No entanto, varias classes foram projetadas e implementadas
como serializaveis (“streamable™), com o intuito de que tal comunicagdo possa ser feita futuramente
sem grandes esforgos de projeto. A setializagfio de alguns objetos permitird, além disso, implementar
uma ferramenta “undo™.

O aplicativo ¢ executado numa janela, a qual contém uma ou mais viewporis em que as
imagens dos objetos serio ecoadas; cada viewport (uma vista), corresponde a um objeto
TWindowData , que por sua vez ¢ um dado-membro de um objeto TProjectionPlane. Ou seja, a

cada viewport estd associado um plano de projegio, havendo liberdade para se posicionar a viewport

12

sobre o referido plano. Até o momento, ¢ permitido o uso de apenas um plano de projecio (apenas
uma vista), mas a estrutura para suportar a existéncia simultinea de vérios planos de projegfio j4 estd
implementada e testada, faltando apenas modificar a implementacéo das classes de interface Windows
da OWL. Deve ser usada, provavelmente, uma interface MDI - doc/view, ou SDI - doc/ view; no
tltimo caso, cada cena (“TScene”) corresponderd a um documento (“TDocument™) e cada plano de
projecéo corresponderé a uma vista (“7View”) do referido documento.

O aplicativo € “orientado” a comandos, ou seja, a cada comando do usu4rio cotresponde uma
dada operagéio de construgfio, modificagiio ou visualizacdo de um ou mais s6lidos. A entrada de

comandos ¢€ feita por meio de um sisterna de menus e teclas aceleradoras, como o da figura abaixo.

1Eilt: Edit Shell Euler Projection Primitives Operations Options Help

B L EI) Sl

}fl [NOM[|

Quando algum comando requisitar a entrada de algum ponto, isto é feito através do mouse:
um click no botdo esquerdo do mouse gera uma mensagem para que se tome o ponto do plano de

construgéo corrente cuja proje¢éio se encontra na posigio do cursor do mouse na viewport (plano de

13

projecdo) corrente no momento do click. Um cursor tridimensional facilita a visualizagdo por parte
do usudario do ponto cujas coordenadas estfio sendo fornecidas.

O usuario tem total liberdade para mudar o plano de construcio corrente, bem como para
“amarrar” o cursor do mouse a um conjunto particular de pontos (uma linha, uma superficie néo
plana ou um conjunto discreto de pontos equiespagados, por exemplo).

Com relagfio a selegdo de objetos, tal operagfio € feita por meio de uma janela na viewport
ativa (todos os objetos da viewport ativa que estiverem dentro de uma tal janela sio selecionados).
Para identificar quais os objetos que estdo dentro de uma janela na viewport ativa, basta percorrer os
objetos da estrutura 2D correspondente e realizar uma operagio de clipping para a janela de selegfo.
QOu seja, basta percorrer cada um dos containers TP2dContainer, TEdgeWinContainer ¢
TFaceWinContainer do objeto TProjectionPlane associado a viewport em questdo.

Note que 0s botdes do mouse devem ser sobrecarregados, o que implica que as fungdes de
resposta de mensagem associadas aos mesmos também devem ser. Isto exige o uso de diversos flags
que indicam o estado do sistema (esperando um comando, esperando a entrada de um ponto, em
modo de selegfio, entrada no modo de sele¢do habilitada ou nfio, etc.); de acordo com o estado

destes flags, as referidas fungGes de resposta de mensagem tomam uma ou outra agfo.

5.3 Mbédulo de operacbes locais

Todas as operagdes passiveis de serem aplicadas aos sélidos - nfio apenas operagfes locais,
mas também transformagdes de corpo rigido (isometrias) - foram implementadas através de objetos
de classes serializaveis (“streamable™), para futuramente permitir comunicagio com memoria externa
através de linguagem apropriada e implementagéio do “undo”.

Num nivel mais baixo, foram implementados operadores de Euler para construir os soélidos.
No nivel seguinte, algumas operagdes do tipo sweep, lifi, chamfer, transformagdes de corpo rigido -
rotagdio e translagdo. O conjunto de operagdes locais implementadas ainda estd bastante restrito e
precisa ser expandido - e ndio deve haver dificuldades para tal, uma vez que a estrutura ji estd

montada.

14

Cada comando que o usuirio acessar via menu corresponde a uma ou mais operagdes locais.
O que se propde ¢ que o usuario tenha , através destes comandos, a maior liberdade possivel para
efetuar operagbes tanto de alto como de baixo nivel. Assim, o usuério tem acesso, via menu, aos
proprios operadores de Euler; ou pode construir um séfido por meio de um primitivo e de operagdes
locais sobre este primitivo.

Assim, por exemplo, o usuario pode acessar os proprios operadores de Euler para construir
um sélido; ou pode construir uma face e aplicar a ela um sweep, resultando num sélido, ou colé-la a

outras faces para também construir um sélido.

15

6. Como utilizar o software
O software € bastante interativo e de facil utilizag8o, sendo que mensagens na barra de status
indicam ao usudrio o que cada comando faz ou que tipo de argumento ou operagio estdo sendo
esperados. Além disso, qualquer operagfio pode ser cancelada em qualquer instante, bastando para
tal clicar o botfo “cancel”, caso 0 mesmo esteja exibido, ou selecionar um conjunto vazio quando,
por exemplo, em modo de sele¢do de algum tipo de entidade.

A utilizagdio do software sera ilustrada, a seguir, através de um exemplo, mostrando-se cada

uma das etapas da construgfio de um solido.

inter HE

File Edit Shell Euler Projection Primitives Operations Options Help

BELILL B LS

=] 3D Coordinates

X: |7.380000
| ¥ |6.570000
Z: |0.000000

‘VWKCM

_/]

T T e D S S D TR T e e -) R TR

=

1
Foi selecionado o comando “Cube” no menu “Primitives”; a seguir, pede-se para que sejam
fornecidas as coordenadas do vértice inferior esquerdo frontal do cubo a ser construido. A figura
mostra o cursor neste momento, os eixos coordenados € uma caixa de didlogo com a posigéo atual
do cursor. As coordenadas também podem ser dadas numericamente, bastando para tal preencher os
edit boxes da referida caixa de didlogo. Para cancelar a operagéo, basta clicar no botdo “cancel”.

16

inter
.' Shlﬁuler Projection Primitives Operations Options Help

i oMl

2
Estado do aplicativo ap6s a construgio do cubo e chamada ao comando “camera”™ para
reposicionamento da cAmera associada ao plano de projegdo corrente.

Eile Edit Shell Euler Primitives Operations Options Help

Projection

PN | | [moml T |

3
Estado do aplicativo ap6s reposicionamento da cimera.

17

//
]I=I 3D Coordinates
X: |5.932979

¥: |4.890390

7 Z: |0.000000

i A _ f“‘ﬁl M

[E'rnarpointm;rdims. | INUM | 1

4
Foi selecionado o comando MEV (make edge, vertex), a seguir, foi selecionado um vértice

(vértice marcado com uma cruz, na figura) e o comando pede para que sejam fornecidas as

coordenadas do ponto final do edge. A figura mostra o estado do software neste instante.

| | INUM | |

5
Estado apds opera¢iio MEV e construgio de uma face hexagonal através do comando ‘‘face”
{(menu “primitives™).

18

6
Estado ap6s operago KEMR (kill edge, make ring).

19

YA T e A |

File Edit Shell Euler Projection Primitives Operations Options Help
eR] rRICIREIEE

P
|;| 3D Coordinates
X [6.517181
1 . [+.489350

o Z- |0.000000

Select Point
3 Points
xy
xZ
yz
. // Attach to Line »
_Enter point coordinates. o { INUM | |
7

Foi chamado o comando “sweep” e selecionada a face hexagonal. O comando pede, entfo,
um vetor de translagio, que serd fornecido através de dois pontos. Um deles foi tomado sobre a
referida face, € 0 outro sera tomado sobre a face posterior do cubo.

20

inter

Eli dlt Shell Euler Projection

| ' | NUM| |

8
Estado apds o “sweep” e operagio KFMRH (kill face, make ring, hole), fazendo-se um
orificio no cubo. A figura também mostra outra face que foi construida na face superior do cubo e 4
qual foi aplicado outro “sweep”, desta vez para “fora” do cubo. A cimera foi reposicionada para
uma posicio que permitisse melhor dngulo de visualizacio.

21

ﬂl Shell Euler Projection Primitives Operations Options Help

9 - Outro s6lido construido com sweep’s.

22

Finalizar-se-4 este pequeno “tutorial” do sofiware com uma sucinta explicagdo de cada um dos

comandos.

6.1 Menu Shell

O menu “shell” contém comandos para criar, abrir, fechar e destruir um solido.

e new : cria um solido(shell) aberto através do operador MVS (make vertex, shell).

Um solido aberto é o que se obtém da remogio de uma face de um sélido fechado,
apresentando caracteristica de Euler 1 (v - ¢ + f = I). Os operadores de Euler foram modificados
para operar sobre solidos abertos (isto esta formalizado no apéndice “A”) ; todos os comandos que
chamam tais operadores (incluidos no menu “Euler”) sfo desabilitados quando o sblido esta fechado.
Assim sendo, para aplicar algum operador de Euler sobre algum sélido que esteja fechado, é
necessario abrir 0 mesmo em uma de suas faces com o comando “oper”. Isto foi feito desta forma
para facilitar a verificagfio dos resultados das operagGes.

O comando new pede que sejam fornecidas as coordenados de um ponto como argumento.

Obs.: sempre que for pedido para serem fornecidas as coordenadas de um ponto, isto pode
ser feito de trés maneiras:

1. Movimentando-se o cursor tridimensional até o ponto desejado e clicando-se o botédo
esquerdo do mouse. O cursor sempre se movimenta sobre um plano, denominado plano de
construgdo. Inicialmente, o plano de construgio € dado por z = 0 . Para muda-lo, clique o
botdo direito do mouse quando estiver no modo de entrada de coordenadas, ¢ aparecera um
menu flutuante como o mostrado numa figura anterior; selecione, entéio, a opgéo “costruction
plane” e a seguir uma das subopgdes que aparecerem (auto-explicativas).

2. Fornecendo-se as coordenadas numericamente, através da seguinte caixa de dialogo que

aparece quando no modo de entrada de coordenadas e que fornece a posicfio atual do cursor:

23

3D Coordinates

3. Selecionando-se um ponto ja existente, caso em que serfio tomadas as coordenadas do

mesmo.

e close : pede para que seja selecionado um sélido aberto e fecha o mesmo. Antes de fecha-

lo, é feita uma verificagfio e, caso a operagdo nfo seja valida (por conduzir a um sélido invélido), a

operagio é cancelada e gera-se uma mensagem de erro.

e open : pede para que seja selecionada uma face de um solido fechado ¢ abre o sélido na

referida face.

e destroy : pede para que seja selecionado um sdlido e detréi o mesmo.

6.2 Menu “Euler”

No menu “Euler” foram incluidos os seguintes operadores de Euler:

o mev: make edge, vertex. Deve-se selecionar um ponto (VStart do edge a ser construido) ¢

fornecer as coordenadas de um outro ponto (Vend);

o mef: make edge, face. Pede como argumentos:

1. selecdio de um ponto (VStart do edge a ser construido);

24

2. coordenadas de um outro ponto (Vend);

3. selegdo de um conjunto de edges que constituirdo, em conjunto com o edge a ser

construido, o /oop exierno da face a ser construida.

Caso os argumentos fornecidos ndo sejam consistentes, a operacfio ¢ cancelada e gera-se uma
mensagem de erro. Além disso, como j& foi mencionado, qualquer operagdio pode ser cancelada
através do botdo “cancel”, quando em modo de entrada de coordenadas, ou selecionando-se um

conjunto vazio, quando em modo de selecfo.

o kemr: kill edge, make ring. Pede como argumentos:

1. selegdo do edge a ser deletado;

2. selegdo da face a qual serd incorporado o ring;

3. selecfio de um conjunto de edges. os quais constituirfio o ring a ser construido.
Analogamente ao comando anterior, caso os argumentos fornecidos nfio sejam consistentes, a

operagao € cancelada.

e kfmrh: kill face, make ring, hole. Pede como argumentos:
1. selecdo da face a ser deletada;

2. selecdo da face a qual sera incorporado o ring.

o kev: kill edge, vertex. Deve-se fornecer como argumentos o edge ¢ o verfex a serem

deletados.

o kef: kill edge, face. Deve-se fornecer como argumentos o edge e a face a serem deletados.

» mekr: make edge, kill ring. Deve-se fornecer como argumentos os vértices inicial e final do

edge a ser construido, bem como selecionar-se o ring a ser deletado.

23

o mfkrh: make face, kill ring, hole. Deve-se apenas selecionar o ring a ser deletado.

6.3 Menu “Projection”

No menu “projection” foram incluidos alguns comandos de visualizacio.

o pan: desloca a viewport ativa sobre o plano de projegdo a ela associado. Deve-se fornecer

um vetor de translacfio, através das coordenadas de dois pontos.

o zoom: aumenta ou diminui o tamanho da viewport ativa sobre o plano de projegdo a ela

associado.

o camera: chama a caixa de didlogo “camera”, para que seja alterada a po sicdo da cAmera do

plano de projegdo associado a viewpor! ativa.

26

6.4 Menu “Primitives”

No menu “primitives” foram incluidos comandos para construcdo de solidos ou faces

inteiros. Até o momento, foram desenvolvidos apenas dois comandos:

e cube: constréi um cubo com faces paralelas aos planos coordenados. Para construir-se um
cubo numa posigio genérica, basta construir um cubo com este comando ¢ em seguida usar
operacdes de rotagdo e translagio adequadas. Deve-se fornecer dois pontos como argumentos: o
primeiro é o vértice inferior esquerdo frontal do cubo, e o segundo € usado apenas para determinar o

comprimento do lado do mesmo.

e face: constr6i uma face poligonal regular no plano de construgfo corrente. Deve-se
fornecer como argumentos:

1. dois primeiros vértices da face (o primeiro deve ser um vértice ja existente);

2. ponto para indicar o semi-plano do plano de construgfo corrente em que serdo construidos
0s demais vértices.

O nimero de lados da face deve ser fornecido através do comando “general options” do

menu “options”. O default € 6.

Futuramente, novos comandos para construgfio de primitivos deverdo ser desenvolvidos; isto

deverd ser feito facilmente, uma vez que os primitivos sdo construidos a partit de uma mera

seqiiéncia de operadores de Euler, ¢ estes ja foram implementados.

27

6.5 Menu “Operations”

Neste menu foram incluidos comandos para efetuar operagdes sobre sélidos existentes:

operagdes locais e transformagdes de corpo rigido (rotacdio e translacio).

o sweep: executa um “sweep” sobre uma face selecionada. Deve-se fornecer como

argumentos uma face e um vetor de translagéo.

e rofate: rotaciona um sdolido selecionado em torno de um eixo.

Até 0 momento, o nimero de operagdes locais implementadas ainda é muito restrito. Para

que a interface seja til, outros tipos de operagdes locais devem ser implementados.

6.6 Menu “Options”

Neste menu foram incluidos comandos para alterar pardmetros tais como cor dos objetos a
serem construidos, numero de lados das faces construidas com o comando “face”, tamanho das

marcas de sele¢do de pontos e tamanho do cursor de selegio, entre outros.

General Options

Cursor 3D
[T Show cursor intercepts

28

7. Descrigdo do codigo fonte

Uma vez apresentado o funcionamento do software, o passo seguinte serd uma descrigdo em

detalhes das principais classes, algoritmos e estruturas de dados usados em sua implementagéo.

7.1 Pares e ltemas ordenadas

O arquivo “pontos.n” contém declaragdes de femplates (gabaritos) de classes de pares
ordenados (class TParOrdenado<T>) € ternas ordenadas (class TTernaOrdenada<T>, derivada
publicamente de TParordenado<T>).

Foram definidos construtores default ¢ um construtor que define o objeto a partir de cada
um dos elementos do par ou da terna. Na classe TTernaordenada<T> também foi definido um
construtor que toma como argumento um TParOrdenado<T>. Neste caso, constroi-se uma terna
ordenada a partir dos dois primeiros elementos de um par ordenado, ficando o terceiro elemento
indefinido (ou nulo, caso os clementos da terna sejam niimeros).

Sobrecarregou-se o operador de igualdade em fungdo do tipo de par ou terna ordenada.
Assim, se o tipo do par ordenado for int (ou seja, TParOrdenado<int>), O operador simplesmente
testa a igualdade de cada elemento do par (ou da terna). Se o tipo do par ordenado for flocat ou
double, 0 operador usa uma fungfo global denominada compareDoublef...) usada para testar
igualdade de nimeros de ponto flutuante em fungdo de uma tolerancia. Se o tipo do par ou terna
ordenada for outro, o operador de igualdade sobrecarregado chama o operador de igualdade da
classe de base de TParordenado<T>, TLinkage (esta classe serd explicada posteriormente).

Aleuns typede£’s também foram definidos no arquivo “pontos.h”. Os rincipais sdo:
g

typedef TParOrdenado<int> TParInt;

typedef TParOrdenado<float> TParFloat;

typedef TTernaOrdenada<int> TTernalnt;

typedef TTernaOrdenada<float> TTernaFloat;

typedef TArrayAsVector< TParOrdenado<float> > TParFloatContainer;
rypedef TarrayAsVector< TTernaOrdenada<float> > TTernaFloatContainer;

Para maiores detalhes sobre a implementagio destes templates, consulte a listagem.

29

7.2 Matrizes de transformagdo homogénea

Matrizes de transformagio homogénea foram implementadas através da classe ™atTrans ¢
de suas derivadas (um sumério sobre matrizes de transformagio homogénea encontra-se no
apéndice “B”).

A classe T™MatTrans contém uma matriz 4x4 de float’s protegida, na qual sdo armazenados
os elementos da matriz de transformagéio. Foi definido um construtor default e outro que define a
matriz a partir de um vetor £1oat[4][4]. Foi também sobrecarregado o operador [.] (indice), para
ser possivel acessar os elementos da matriz através de uma sintaxe conveniente € de facil leitura.

Foram derivadas publicamente de T™MatTzans as seguintes classes:

- TMatRotx, TMatRoty € TMatRotz, mafrizes de rotagdo em torno dos eixos X, y ¢ z,
respectivamente. Seus construtores tomam o &ngulo de rotagéo como parametro.

- TMatTranslation, matriz de translagio. Seus construtores tomam como pardmetro irés
float’s ou um objeto TTernaFloat, que si0 as coordenadas do vetor de translagéo.

- TMatScaling, matriz de escalonamento. Seus construtores tomam como pardmetro trés
£1oat’s ou um objeto TTernaFloat, que sdo os fatores de escala nas diregdes X, y € Z.

- TMatPerspective, matriz de projegiio perspectiva. Seu construtor toma como parametro um
float, distdncia do centro de projecfio ao plano de projecio.

As declaragBes destas classes encontram-se no arquivo de cabegalho “mattrans.h”.

7.3 Funcébes veloriais

No arquivo “vector.h” encontram-se declaradas vérias fungdes globais para manipulagio de

vetores:

extern float _FAR sqr{float x);
extern double _FAR sqgrd(double x};
extern long double _FAR sqrld(leng double x};

Estas fungdes dispensam explicacOes.

extern float _FAR norma {const TTernaFloat _FAR &);
extern float _FAR norma{const TParFloat _FAR &};

Retornam a norma euclidiana de um ponto passado como parimetro (TTernaFloat).

30

extern TTernaFloat _FAR cross(const TTernaFloat _FAR & pl,const TTernaFloat FAR & P2);

Retorna produto vetorial p1p2 .

extern float _FAR dot{const TTernaFloat _FAR & pl,const TTernaFleoat FAR & p2);
extern fleat _FAR dot{const TParFloat _FAR & pl,const TParFloat _FAR & P2} ;

Retornam produto escalar <p1,p2>.

extern TTernaFloat _FAR versor (const TTernaFloat FAR & pl);
Retorna versor na direcéio e sentido de pa.

extern TTernaFloat _FAR cperator+ (const TTernaFloat _FAR & pl,const TTernaFloat FAR &
P2) ;

Retorna p1+p2.

extern TTernaFloat _FAR operator-(const TTernaFloat _FAR & pl,const TTernaFloat _FAR &
p2});

Retorna pi-p2.
extern TTernaFloat FAR operator-(const TTernaFloat _FAR & Pl);
Retorna -p1.

extern TTernaFloat _FAR operator* (float a,const TTernaFloat _FAR & p);
extern TTernaFloat _FAR operator¥ {const TTernaFloat FAR & p, float a):

Retornam a.p (a escalar, p vetor).
extern TTernaFloat _FAR operator/ (const TTernaFloat FAR & p, float a);
Retorna p/a (a escalar, p vetor).

extern TTernaFloat FAR operator* {const TTernaFloat FAR & pin,const TMatTrans _FAR &

Retorna p.m.

extern TMatTrans _FAR operator* (const TMatTrans _FAR & ml,const TMatTrans _FAR & m2)};
/* retorna ml*m2 */

Retorna mi.m2.
extern TMatTrans _FAR transp (const TMatTrans _FAR & m);

Retorna transposta de n.

31

extern bool _FAR findSegmentsintersection (TTernaFloat P1, TTernaFloat PZ,
TTernaFloat P3, TTernaFloat P4, TTernaFloat FAR & Pinter, bool bPlane

=true) ;
Esta funcio determina a interseccfio de dois segmentos (pl,p2) € (p3,p4). E usada pela

classe do cursor de selegiio (Tcursor2p) para selecionar edges na viewport ativa. Retorna um valor
booleano que indica se encontrou ou no intersecgfio; caso fenha encontrado, o ponto de intersecgéo
¢é retornado no pardmetro Pinter (caso a intersecdo seja um segmento, apenas uma das
extremidades do mesmo é retornada, pois isto ja € suficiente para os propdsitos aos quais esta fungéo
se destina no programa). O parimetro brlane é um flag que indica se os segmentos estéio no plano
z=0 ou n#o, pois o algoritmo ¢ diferente em um e outro caso.

O algoritmo é o seguinte:

Consideremos a seguinte parametrizagdo para os segmentos:

P:[01] —» E’

A+ Pl+A(P2-P))

P*:[0]] » E°
E > P3+&E(P4—P3)

Entdo:

P(A)=P (e
Pl+ A (P2- Pl)=P3+£(P3-PA) <
A (P2— Pl)+¢&(P3— P4)= P3— Pl

Fazendo-se
P2-Pl=a
P3-P4=b
e P3—P1=¢

devemos resolver a equagéo vetorial
Ad+Eb=C

32

Caso 0s vetores estejam no plano, teremos um sistema linear de duas equagles ¢ duas
incognitas. Caso nfo seja este o caso, deveremos achar a projeio de ¢ no subespago formado por a
e b, ¢ depois verificar se ¢la é solugdo. Para encontrar a projecio, devemos determinar a matriz

Grammiana de a € b e resolver o seguinte sistema:
A)_[a.)
G . = — -
& (b ,c)
onde
a,a) (ab)
(b,d) (8.5)

¢ a matriz Grammiana de a € b € <., .> denota produto escalar.

G =

Resolvido o sistema, devemos verificar se A e & estdo entre 0 e 1, e, no segundo caso

(vetores fora do plano), verificar se a projecéo satisfaz (*).

extern bool _FAR findSegPclInter {TTernaFlcat Pl, TTernaFloat P2,
const TTernaFlcatContainer FAR & vTerna, TTernaFloat FAR & Pinter) ;

Esta fungfio determina a intersecgfio de um segmentos (p1,p2) ¢ uma face poligonal plana
cujos vértices sdo dados pelo container vrerna. E usada pela classe do cursor tridimensional
(Tcursor3p) para determinar a intersecg@io do cursor com cada face de cada solido, de modo a
fornecer informagdes visuais em 3D para o usudrio. Retorna um valor booleano que indica se
encontrou ou ndo intersec¢do; caso tenha encontrado, o ponto de interseccio é retornado no
parimetro pinter. Caso a solugdio seja indeterminada, o algoritmo retorna false € ndo encontra
solugdo alguma, pois isto nfio € necessario para os objetivos a que se presta esta fungdo no
programa. Seria interessante otimizar o algoritmo proposto, ou mesmo usar ouiro que seja mais

eficiente, pois quando o niimero de faces é muito grande o programa fica muito lento.

33

O algoritmo consiste em dividir-se o poligono numa seqiiéncia de tridngulos, ¢ percorrer esta
seqiiéneia até que se ache a intersecgo com algum trifingulo ou até que termine a seqiiéncia sem que

nenhuma interseccio seja achada. O procedimento para se determinar a intersecgdo do segmento

com um tridngulo € o que segue:

Consideremos a seguinte parametrizagéio para o segmento:

P:[0,]] » E°
A B Pl+A(P2-Pl)

e para o fridngulo (dado pelos pontos T1, T2 € T3):

T:[0,1]x[0,]] —» E’
(a,8) - Tl+a(T2-TH)+pB(T3-T2)

Entéo:
P(A)=T(a,p) =
a(T2—TD+ B(T3-T2)+ A (P1- P2)= P1-T1

Analogamente ao caso anterior, isto se resume a resolver
ad+pb+Ac=d

Apbs resolver o sistema linear 3x3, devemos verificar se o, B e A estdo entre O e 1.

7.4 Classes TPlane e TWindowData

As classes TPlane (¢ derivadas) € TWwindowbata sdo responsdveis pela interface entre a
estrutura 2p e a interface Windows da OWL, além de terem participacio no mecanismo de proje¢do
da estrutura 3p para a estrutura 2o, Tais classes encontram-se declaradas nos arquivos “plane.h” ¢

“window.h”, respectivamente.

Classe TPlane.

Objetos da classe TPlane representam planos, como sugerido pelo nome. Esta classe,

derivada de TLinkage (descrita mais adiante), possui dois membros protegidos, TTernaFloat p,n;p ¢

34

um ponto do plano € n € o versor normal ao plano. Ha dois construtores publicos: um construtor
default e outro que constr6i o plano a partir de p e n. A classe também possui as seguintes fungdes-
membro publicas:

TTernaFloat getp(void) consgt;

Retorna p.

TTernaFloat getn{void) const;
Retorna n.
void setp(const TTernaFloat& p);
Altera p.
void setn{const TTernaFloat& n):
Altera n.
bool isOnPlane{const TTernaFloat& p);
Verifica se o ponto passado como pardmetro pertence ao plano.
float distToPlane {const TTernaFloat& p);

Retorna distancia do ponto passado como parimetro ao plano; o sinal é dado pelo semi-plano

em que estiver o ponto.

Classe TConstructionPlane

Derivada publicamente de Tpiane; objeios desta classe representam planos de construgdo.
Cada objeto TconstructionPlane estd associado a um objeto TProjectionPlane, tendo um ponteiro
protegido para o mesmo (que entra como pardmetro extra no construtor), além dos membros

herdados. Possui os seguintes campos métodos publicos:
bool validPeointCons;

Flag que indica se o ponto construido (coordenadas obtidas de proj2cons(...) ou

view2cons (. ..)} € valido ou ndo.

void setpTProjPlane{TProjPlane*}:;
TProjPlane* getpTProjPlane(void) const;

35

Fungdes para acessar o ponteiro para o plano de projegdo associado (TProjPlane*

pTProjPlane).

bool setPlane (TTernaFloatContainer) :;
bool setPlane (TFlatFaceV¥) ;

Alteram os parémetros do plano (ie., » ¢ n) de modo que o plano seja coincidente com o

plano de uma face (2a. fungdo} ou com um plano dado por trés pontos nfio colineares (la. funcdo).

TTaernaFloat proj2cons (TTernaFloat);
TrarnaFloat view2cons(TParint);

view = view coordinates (coordenadas de tela, E?) do ponto no plano de projegdo
proj = projection coordinates (coordenadas de plano de projecdo, E?) do ponto no plano de projegdo
cons = world coordinates (coordenadas de mundo, E?) do ponto a ser construido.

Estas fungdes convertem as coordenadas de tela ou de plano de projecio de um ponto no
plano de projegdo, fornecido como pardmetro, em coordenadas de mundo, no presente plano de
construgdo. S%o usadas para determinar as coordenadas de um ponto no E* a partir da posigio do
cursor tridimensional na tela.

O algoritmo usado na conversdo € o seguinte:

Sejam ®, € n 0s parimetros que definem o plano de construgdo (i.e., um ponto do plano e
versor normal). Sejam ainda (eye, ref,up) O triedro que define a cAmera (vide classe TProjPlane
para maiores detalhes) , , o ponto no plano de projegiio € B, 0 ponto no plano de construgio que

se deseja encontrar.

O plano de construgéo ¢ dado por:
3 AN
P ek /(PC—PO,n>—0
A reta {eye,Pp) pode ser parametrizada por:

P:R—> E’

A > eye+ (P, —eye)-A ®

Entfo:

36

P=P o
(eye+(PP —eye)- A —Po,ﬁ>=0c>
(- e,

1=
(P, — eye, i)

Basta substituir A em (*) para encontrar o ponto no plano de construgdo.

Classe TProjPlane

Derivada de Tplane; objetos desta classe representam planos de construgfo. Além dos

membros herdados, possui os seguintes membros:

/**i’*

dados-membro protegidos
e e e e S e PR L E LTI E L L L TR S S L S S A A A X A R A L L Y

TP2dContainer wviTP2d;

Este container contém ponteiros para todos os Tp2d’s associados a este plano de proje¢dio.
Cada objeto da classe Te2d € a proje¢éo de um ponto do E’ em algum plano de pojegfio.
bool bProjCoordvalid;

Flag que indica se as coordenadas de plano de proje¢do dos elementos da estrutura 2p

associada a este plano sdo validas ou ndo. Quando o plano de plano de projegdo ou algum sélido

moda de posigio, por exemplo, este flag ¢ ressetado.
beol bPlaneModified;
Quando o presente plano de proje¢iio muda de posigéo no espago, este flag é setado.
bool bASolidModified;
Quando algum sélido muda de posigiio no espago, este flag ¢ setado.
TFlagSclidContainer vIFlagSolid;
Container de TF1agso1id’s. Cada objeto da classe TFlagsolid contém um ponteiro para um

rshell e um flag indicando se o mesmo mudou de posico no espago ou ndo. O container possui um

TFlagSolid para cada solido existente.

37

Este conjunto de flags (bProjCoordvalid, bPlaneModified, bASolidModified € vIFlagSolid)
é utilizado para atualizar as coordenadas de plano de projecdo dos elementos da estrutura 2p
associada ao presente plano de projegio de uma maneira eficiente e no momento mais adequado.

Se todas as coordenadas fossem atualizadas no momento em que deixam de ser validas,
todos estes flags poderiam ser dispensados. Por exemplo, quando um sélido muda de posi¢do no
espago, poder-se-ia atualizar imediatamente todas as coordenadas associadas aos seus pontos. Ou,
quando o plano muda de posigdo, poder-se-ia , de forma andloga, atualizar todas as coordenadas de
todos os elementos da estrutura 2p a ele associada imediatamente. Mas, como estas atualizagdes
consomem tempo, isto pode resultar num efeito visual pobre no momento da operagfo; quando o
usudrio rotacionar um sélido, por exemplo, vai desejar ver o sélido sendo rotacionado o mais rapido
possivel. Para tal, deve-se atualizar as coordenadas de tela imediatamente; as demais coordenadas
sio atualizadas depois, em segundo plano, quando o usuario ndo estiver fazendo nada. E, para que
se possa obter as coordenadas de mundo de algum vértice do sélido que tiver mudado de posicio e
ainda nio tiver suas coordenadas de mundo atualizadas, por exemplo, serd associada uma matriz de
transformagio ao mesmo descrevendo a mudanga de posigdo, de forma que as coordenadas
atualizadas possam ser obtidas 4 medida em que forem necessarias ("just in time”). Além disso, nem
todas as coordenadas de tela precisam ser atualizadas imediatamente; apenas aquelas associadas aos
planos de projegéio visiveis. As demais também podem ser atualizadas em segundo plano, ou,
analogamente, “just in time”, & medida em que forem necessarias.

O algoritmo de atualizagfo das coordenadas em segundo plano € o seguinte:

Para atualizar-se as coordenadas de tela e de plano de projegdio, percorre-se um vetor global
de TProjplane* e, através do sistema de flags, verifica-se se o plano precisa atualizar as coordenadas
de plano de projegdio a ele associadas. Se for necessario, chama-se uma rotina de atualizago de
coordenadas do objeto TProjrlane em questdo, para que a mesma atualize as coordenadas de plano
de projegdo da estrutura 2p associada. A necessidade ou nfo de serem atualizadas as coordenadas de

tela também & verificada através de um sistema de flags semelhante, presente mum objeto

33

TWindowData, membro publico de TProjplane, denominado planewindowbata. De forma analoga,
chama-se uma rotina de atualizagio de coordenadas do membro planeWindowData de TerojPlane
para que as coordenadas de tela sejam atualizadas, caso necessario. Mais precisamente, a
necessidade ou niio de se atualizarem as coordenadas de plano de projecdo ou de tela ¢ determinada
em funcéio de um Gnico flag: bProjcoordvalid (OU bViewCoordvalid - Vide classe TWwindowbata - no
caso das coordenadas de tela). Os demais flags sdo utilizados para determinar quais elementos da
estrutura 2o associada devem ter suas coordenadas de tela ou de plano de projecgo atualizadas. Por
exemplo, quando um sélido mudar de posigio no espago, serdo setados em cada um dos planos de
projeciio 0s TFlagsolid’s correspondentes (além de serem setados baSolidModified € ressetado
bProjCoordvalid). Se o plano de projecdo ndo tiver mudado de posi¢do no espago, a0 ser feita a
atualizacio das coordenadas de plano de projecdio dos elementos da estrutura 2o associada, sera
apenas necessario atualizar as coordenadas dos sélidos que tiverem mudado de posicéio, ndo €
preciso perder tempo de processamento atualizando coordenadas de sélidos que continuam validas.
Assim, basta percorrer o container de TFlagsolid’s € verificar quais solidos precisam de atualizagéo.

Finalmente, para atualizar-se as coordenadas de mundo da estrutura 3p, percorre-se O
container de TLayer’s da cena corrente (apontada pelo ponteiro global pcurrentscene), ¢ para cada
objeto TLayer percorre-se o container de rsheill’s membro do mesmo. Cada objeto Tshell possui
um flag indicando se as coordenadas de mundo do mesmo precisam ser atualizadas ou néo; caso
necessério, chama-se uma rotina de atualizag8io de coordenadas do objeto em questéo.

Apesar de o processamento em segundo plano ainda néo ter sido implementado, a estrutura
para suporté-lo ja estd montada, como se pode observar, e, assim sendo, ndo se deve encontrar

dificuldade em implement4-lo.

TTarnaFloat eye, ref, up; // (world coordinates)
Estes membros protegidos definem a posigiio da cimera associada a um objeto da presente

classe (plano de projecdo). Eye é um ponto do E’ no qual se encontra o centro da cdmera (i.e.,

centro da projecdo perspectiva. Ref ¢ um ponto de referéncia pertencente ao plano de projegéo. O

39

vetor {eye - ref) é sempre pormal ao plano de projegdo. Up é um versor usado para determinar a

orientagfio da cimera em torno do eixo (eye, ref). Vide ilustracgo abaixo.

ViewPort

Projection Plane

A cémera é definida pelo triedro (eye, ref, up}. O sistema de coordenadas associado a este
triedro (com centro em ret, diregio y dada por up € diregéio z dada por (eye - ref), dextrégiro,
denomina-se eye coordinate system associado ao plano de projecdo, e as coordenadas a ele
associadas denominam-se eye coordinates. A matriz de mudanga de base do eye coordinate system
para o sistema de coordenadas “absoluto” (coordenadas de mundo) é dada por uma matriz de
transformacio homogénea armazenada num membro piblico TMarDiriav de TProjPlane
denominado eyeMat. TMatDirInv & uma classe usada para agrupar dois objetos T™™atTrans, que sdo
uma matriz de transformagdio homogénea e sua inversa. Para ganhar tempo de processamento,
matrizes de transformacfio homogénea sfio armazenadas em conjunto com a sua inversa {caso exista
inversa), para que n3o seja necessario inverter a matriz a todo momento que se precisar da sua
inversa.

Além da matriz eyeMat, hi também a matriz de transformagfio homogénea responsavel pela
transformagdio perspectiva. Tal matriz é armazenada no membro piiblico T™™atTrans de TProjPlane

denomindado projmMat. Note que projMat ndo foi declarado da classe T™atDirInv porque a

40

transformagfio perspectiva nfo ¢ inversivel, logo a matriz de transformagdo perspectiva ndo tem
inversa. Multiplicando-se as eye coordinates de um ponto do E’ pela matriz de transformagfio
perspectiva proiMat, obtém-se as coordenadas da projegéo perspectiva do referido ponto no objeto
plano de projecio em questdo. Tais coordenadas denominam-se projection coordinates ou

coordenadas de plano de projegéo do ponto.

virtual void delLinkageTo {TLinkage* pTo}:
wvirtual void delLinkageTo (int i),

Estas fungdes anulam fungdes "dellinkageTo" da classe base TLinkage, ¢, juntamente com as
demais funcdes herdadas de Trinkage, constituem o mecanismo de atualizagio automdtica de

ligagdes entre objetos de classes derivadas de TLinkage, que sera explicado posteriormente.

void setEye (ITernaFloat eyeln);

void setRef (TTernaFloat reflin);

void setUp(TTernaFloat upln};

void setTriedro (TTernaFloat eyeIn, TTernaFloat refln, TTernaFloat upln);

Estas fungdes modificam o triedro (eye, ref, up) € redefinem as matrizes eyeMat € projMat
coerentemente; setTriedro sempre deve ser chamada a partir da fungio-membro publica
changePlane{...). Ou seja, a posicio da camera s6 deve ser alterada por esta fungdo, mesmo que a
posigdo do plano de projegdo néo mude, pois a referida funcfio atualiza o sistema de flags para que
posteriormente as coordenadas de plano de projecéo ou de tela possam ser atualizadas.

As matrizes eyeMat € projMat sdo calculadas da seguinte maneira:

eyeMat.dir =T- M

eyeMat.inv=M'-T"

projMat =T. MatPerSpective(“eye —ref ”)

onde M ¢ a matriz de mudanga de base e T a matriz de translagdo do eye coordinate system
para o sisterma de coordenadas de mundo. Usando os indices w para coordenadas de mundo, e para

eye coordinates e p para coordenadas de plano de projegiio, temos as seguintes relagdes:

—

X, =X, eveMat.dir
X, =X, projMat

41

Note que as coordenadas de plano de projegdo obtidas desta maneira tém sempre a terceira

coordenada nula.

wvoid setbASolidModified (void);
Percorre o container de TFlagsolid’s ¢ verifica se ha algum flag setado, para entfio atualizar

bASolidModified.

/**

construtores
PO rraprgrae e e e T R T T P S I R R S A A AL A ALY
TProjPlane() ; //construtor default

TProjPlane {const TTernaFlcaté eyeln,
const TTernaFlcoat& refln,
const TTernaFloat& upln);

TProjPlane (const TTernaFloat& eyeln,
const TTernaFloaté& refln,
const TTernaFloat& upln,
const TParFloats& llcEye,
const TParFloat& urcEye,
const TParInt& 1llcWin,
const TParInt& urcWin):

Os tltimos quatros pardmetros deste construtor sdo usados para construir 0 objeto-membro

planewindowData, da classe TwindowData (explicada mais adiante).

/*************************i**

destrutor
**/

virtual ~TProjPlane();

O destrutor deleta todos os objetos Tr2d da estrutura 2p associada. Note que, pelo fato de
estar sendo utilizado o operador delete para destruir-se objetos Tp2d, todos os objetos deste tipo
deverdio ser construidos no heap (i.e., com o operador new), OU NO stack mas com a condigdio de que
sejam destruidos antes de ser chamado o destrutor do plano de projegfio associado. Esta observagéo
vale no apenas para objetos Tp2d, mas para todos os objetos da estrutura 2p ou 3p que forem

deletados automaticamente de forma semelhante.

/**

operadores, fungbes-membro e dados-membro pablicos
T T T e T T T T TR I L s T T L L AL AL LA AL S L AT

42

TWwindowData planeWindowData;
TConsPlane consPlane;

A cada objeto plano de projegiio estdo associados um objeto plano de costrugdo

(TConsPlane) € um objeto TWindowData.

TMatDirInv eyeMat;
TMatTrans projMat;

Matrizes de transformagéo homogénea ja mencionadas.

TTernaFloat getEve (void) const;
TrernaFloat getRef (void) const;
TParnaFloat getUp{void) censt;

void setbProjCoordvalid(bool blIn):

bool getbProjCoordvalid(void) const;

void setbPlaneModified{bool bIn):

bool getbPlaneModified{wvoid) const;

bool getbASolidModified(void) const;

void setbFlagSolid(TShell* pShell, bocol bIn);
bool getbFlagSolid(TShell* pShell);:

Funcdes para acessar os flags correspondentes (que s&o protegidos).

TFlagSolid addTFlagSclid(TFlagSeolid newTFlagSolid) ;
TFlagSolid addTFlagSolidAt(TFlagSolid newTFlagSolid, int i)
int findTFlagSolid(TFlagSolid TFlagSolidIn} const;
TPlagSolidé getTFlagSolid(TShell*) const:

TFlagSolidé getTFlagSolid({int i) const;

TFlagSclid removeTFlagSclid(TFlagSclid TFlagSolidiIn) ;
TFlagSolid removeTFlagSolid (int i)

itTFlagSolidContainer itvTFlagSolid;

int getItemsInvTFlagSolid(veoid};

Funcdes para manipular o container de TFlagsolid’s .

TTernaFloat world2eye (TTernaFloat ternaln);
TParnaFloat eye2world(TTernaFloat ternaln):
TPaernafloat eyel2proj{TTernaFloat ternaln);
TParnaFloat proj2eye (TTernaFloat ternaln);
TTernafloat world2proj{TTernaFloat ternaln):;
TTernaFloat proj2world{TTernaFlcat ternaln}:
TParInt world2view(TTernaFloat ternaln);
TParIint eye2view(TTernaFloat ternaln) ;
TParInt proj2view(TTernaFloat ternaln):;

Funcdes de conversdo de coordenadas. Os nomes sdo mhemonicos:

world = wotld coordinates;

eye = eye coordinates;

proj = projection coordinates (coordenadas de plano de projecéo),

view = view coordinates (coordenadas de tela).

Note que as coordenadas de plano de projecdo sdo armazenadas numa terna ordenada, ao
invés de num par ordenado, como seria razodvel de se esperar. A razfio disto é que a terceira

coordenada (z) das eye coordinates ¢ mantida, para que s¢ possam recuperar as eye coordinates do

ponto a partir das coordenadas de plano de projegdo. Ou seja, isto é uma maneira de se transformar a

43

perspectiva numa aplicagfio bijetiva (inversivel), o que pode ser desejavel em alguma situagdo.
Assim, apés a mutiplicagéio

X, =X, projMat

atribui-se 4 cordenada z das coordenadas de plano de projecSio a coordenada z das eye
coordinates. Evidentemente, apenas as duas primeiras coordenadas da terna sdo, efetivamente,

coordenadas de plano de projegio, ¢ apenas elas serfio usadas no mapeamento das coordenadas de

plano de proje¢do para coordenadas de tela.

void changePlane (TTernaFloat& eyeln,
TTernaFloat&é refln,
TTernaFlecat& upln,
const TParFloat& llcEye=zeroTernaFlocat,
const TParFloat& urcEye=zeroTernaFloat,
const TParInt& llcWin=zeroTernaint,
const TParInt& urcWin=zeroTernalnt);

Redefine a posigio do plano de projegiio. Caso os quatro ultimos pardmetros assumam
valores default, a posigio da viewport (i.e., planeWindowData) ¢ mantida inalterada, senfio a funcéo-

membro piblica changeWindow(. . .) de TWindowbData ¢ chamada com estes pardmetros.

void changeConsPlane (TTernaFloat p, TTernaFloat n);
Redefine a posigio do plano de construgdo associado.
void refreshProjCoordinates (void);

Atualiza coordenadas de plano de projegdo da estrutura 2p associada.

Tp2d* addTP2d(TP2d* pnewTP2d) ;

Tp2d* addTP2dAt (TP24d* pnewTP2d, int i);
int findTP2d{TP2d* pTP2d) const;

TP2d* getTP2d(int i) const;

TP2d* removeTP2d(TP2d* pTP2d)

TP2d* removeTP2d(int i);

bool delTP2d (TP2d* pTP2d) ;

bool delTP2d({int i):;

itTP2dContainer itviTP2d;

int getItemsInviTP2d(void) const;

Fungdes para manipular o container de Te24d’s.

Classe TWindowData

44

Cada objeto TProjPlane possui um membro publico denominado planeWindowdata. Este
membro é da classe TwindowData, que tem as seguintes fungdes principais:

- mapeamento das coordenadas de plano de projecfio para as coordenadas de tela;

- manutencfio das coordenadas de tela da estrutura 2p associada ao objeto plano de projecio
ao qual um objeto da presente classe (Twindowbata) pertence;

- comunicacio com a interface Windows da OWL . Provisoriamente, tal comunicac8o € feita
através de um ponteiro para a janela cliente da janela principal do aplicativo. Posteriormente, ao se
mudar a interface Windows do aplicativo para um modelo doc/view, esta comunicagdo devera ser
feita com um objeto Tview, nfio mais com a janela cliente da janela principal. Desta forma, cada
objeto Twindowpata (e, conseqiientemente, cada objeto plano de proje¢do), estara associado a uma
vista de um documento do aplicativo (ou do documento, caso seja mantida a interface SDI, o que
parece razodvel, para limitar o consumo de memoria RAM durante a execugéo do programa). Cada
documento devera, por sua vez, estar associado a um objeto Tscene.

A classe TWindowbata pOSssui 0s seguintes membros principais:

/**'k***********************

dados-membro protegidos
B 2 S RS2 PR TR LS T LA L 2 S22 2T 2L T2 LY

bool bViewCoordvalid;
bool bWindowModified;
bool bPlaneModified;
bool bASclidModifiad;
TFlagSolidContainer vTFlagSolid;

Sistema de flags semelhante ao da classe TProjPlane, usado para atualizagdo das

coordenadas de tela, conforme ja discutido.

TParFloat llcProj, urcProj;
TParInt llcWin, urcWin;
/* view e proj coordinates do upper right corner e do lower left corner da janela */

Através das projection coordinates e correspondentes view coordinates dos pontos He(/ower
left corner) e urc(upper right corner) que definem a viewport, determina-se o mapeamento das

coordenadas de plano de plano de projegio para coordenadas de tela.

45

urg ViewPort

aye

Projection Plane

r

O referido mapeamento € feito através da fungdo de conversdo de coordenadas
proj2view(...), € O mapeamento inverso através de view2proj(...}. Estas fungbes utilizam a
matriz de transformagio homogénea armazenada no membro publico viewMat, descrito

posteriormente.

TProjPlane* pTProjPlane;
Ponteiro para permitir comunicagio com o objeto TProjPlane pai.
interwWwindow?* pVisWindow;

Ponteiro para permitir comunicagio com a janela cliente da janela principal do aplicativo

(vide discussdo acima).

TEdgeWinContainer viTEdgeWin;
TFaceWinContainaer viTFaceWin;

Containers de ponteiros para todos 0s objetos TEdgeWin € TFacewin da estrutura 2o
associada. Cada objeto TEdgewin & a projegfio de um objeto TWedge (estrutura 3p) no plano de
projec3o pai; analogamente, cada objeto TFacewin ¢ a projegdo de um objeto TRezierFace. Note

que, como a estrutura para suportar faces nfio-planas ainda nfio estd completamente desenvolvida,

46

objetos da classe TRezierFace nfio sdo criados, por enquanto. Conseqiientemente, objetos da classe
TFacewin também ndo s3o. Ndo ¢ necessario manter um objeto na estrutura 2p que represente a
projegio de uma face plana. Sendo o proposito de um tal objeto permitir que curvas isométricas da
face sejam plotadas numa representagdo iconica da mesma, dispensa-se isto para faces planas,
porque a representagdo iconica destas consiste apenas nas arestas que limitam o seu contorno (i.e.,

loops internos e externo).

virtual void dellinkageTo (TLinkage* pTo);
virtual void delLinkageTo({int i};
/* anulam fungdes "dellLinkageTo" da classe base */

Estas fungdes anulam fungdes "dellinkageTo" da classe base TLinkage, e, juntamente com as
demais funcbes herdadas de TLinkage, constituem o mecanismo de atualizagio automatica de

ligagGes entre objetos de classes derivadas de TLinkage, que serd explicado posteriormente.

void setCorners (TParFloat urcProjIn, TParFloat llecProjIn, TParInt urcWinln, TParInt
licWinIn) ;

Estas fungdes alteram as coordenadas de tela e de plano de projegdo dos pontos ilc € urc
que definem a viewport (vide discussdo acima). Também redefine, coerentemente, o mapeamento
entre coordenadas de tela e de plano de projecdio, dado pela matriz de transformacdio homogénea

armazenada no membro publico viewmat. Esta matriz ¢ calculada da seguinte maneira:

urc

J L llc
I

= (urcv,z?— (llcv,? ref
g <urcp,i>—(llcp,l>
B (urcv ,f) — (llcv, A)
i (urcp,}> — <llcp,f)

47

viewMat.dir = TMatScaling(s, ,s,,0) - TMatTranslation(t,,t,,0)

onde o indice p foi usado para coordenadas de plano de projegdo (projection coordinates) e

o indice v foi usado para coordenadas de tela (view coordinates).

JRdhdhdekkdkddk Rk kgt kRt kb R kR R kR R Rk Rk ko Rk sk ok ok ok
construtores
RS AR T L T 2 2 2 223 S RS e R a a2 R XL T T 22222 2222 21220 4 0
TWindowData (TProjPlane* pPlane=NULL}; //construtor default
TWindowData (const TParFloat& llcProj,const TParFloat& urcProj,

const TParInt& llcWin,const TParInt& urcWin,
TProjPlane* pPlane=NULL) ;

/**

destrutor
PRI ararararaTrararis sraararargrargnen e g SO PR Y s IR T T L 2 s 2 R A L Y

virtual ~TWindowData() ;

O destrutor deleta todos os objetos TEdgewin € TFacewin da estrutura 2p associada, seguindo

a mesma filosofia do destrutor da classe TProjPlane.

/**

operadores, dados e fungdes-membro piblicas
***/

TMatDirInv viewMat, viewCorrectorMat;

O objeto viewMat armazena a matriz de transformaglo homogénea através da qual as
coordenadas de plano de projegio sio mapeadas em coordenas de tela, como ja discutido. O
membro viewCorrectorMat armazena uma matriz de transformagfo homogénca usada para
atualizagfio rapida das coordenadas de tela da estrutura 2p associada, quando as mesmas deixam de
ser vélida por causa de um simples deslocamento da viewpor? sobre o plano de projecéo (o que

ocorre numa operagio zoom ou pan, por exemplo). Vide codigo de atualizagéo de coordenadas de

tela - listagem da fungfio refreshviewCoordinates (...} - para maiores detalhes.

D2dCursor cursor;

Este membro é um objeto da classe p2dcursor, descrita mais adiante, ¢ € usado para

descrever um cursor bidimensional associado & viewport, usado para selegéo.

void setbViewCoordvalid(bocol bIn);

bool getbViewCoordvValid(void) const;

void setbWindowModified(bool bIn);

bool getbWindowModified (void) const;

void setbPlaneModified(bool blIn);

bool getbPlaneModified{veid) const;

bool getbASclidModified(veoid) const;

void setbFlagSclid(TShell* pShell, bool bIn);

48

bool getbFlagSolid(TShell* pShell) const;

TFlagSolid addTFlagSolid(TFlagSolid newTFlagSolid);
TFlagSolid addTFlagSclidAt (TFlagSeclid newTFlagSolid, int i):
int £indTFlagSolid(TFlagSolid TFlagSolidIn) const;
TFlagSolid& getTFlagSoclid{TShell* pShell) const;

TFlagSclid& getTFlagScolid(int i) const;

TFlagSolid removeTFlagSolid(TFlagSolid TFlagSolidIn);
TFlagSelid removeTFlagScolid{int i);

itTFlagSclidContainer itvTFlagSelid:

int getItemsInvTFlagSolid(void):;

/* fungdes para manipular o container de TFlagSolids */

TParFloat getUrcProj(void) const;
TParFloat getllcProj(veoid) const:
TParInt getUrcWin{veid) const;
TParInt getLlcWin (veid) const;

TParInt proj2view (const TParFloat& Pin);
TParFloat view2proj (const TParInt& Pin);

Funcdes de conversio entre projection e view coordinales, ja discutidas.

TParInt viewOld2viewNew{const TParInt& Pin);
TParInt viewNewZviewOld{(const TParInt& Pin);
/* funcdes de corregic de view coordinates */

Estas fungSes sdo usadas no mecanismo de atualizagdo rapida de coordenadas de tela, ja

mencionado.
void refreshviewCoordinates(void):
Fungdes de atualizagio das coordenadas de tela da estrutura 2p associada.

void changeWindow(const TParFloat& 1lcProj,const TParFloaté urcProj,
const TParInt& llcWin,const TParInt& urcWin);

Esta funcfo redefine a posigdo da viewport sobre o plano de proje¢do, e altera o mapeamento

de coordenadas de plano de projegio para coordenadas de tela coerentemente.

void setpTProjPlane (TProjPlane* pIn);
TProjPlane* getpTProjPlane(void) const;

void setpVisWindow {interWindow* pIn);
interWindow* getpVisWindow{void) const;

TEdgeWin* addTEdgeWin (TEdgeWin* pnewTEdgeWin) ;
TEdgeWin* addTEdgeWinAt(TEdgeWin* pnewTEdgeWin, int i) ;
int findTEdgeWin (TEdgeWin* pTEdgeWin) const;

TEdgeWin* getTEdgeWin(int i) const;

TEdgeWin* removeTEdgeWin (TEdgeWin* pTEdgeWin):
TEdgeWin¥ removeTEdgeWin (int i) ;

itTEdgeWinContainer itviTEdgeWin;

int getItemsInviTEdgeWin (veid):

/* funcdes para manipular o container de TEdgeWin’'s */

TFaceWin* addTFaceWin (TFaceWin¥* pnewTFaceWin):;
TFaceWin* addTFaceWinAt (TFaceWin* pnewTFaceWin, int i);
int FfindTFaceWin (TFaceWin* pTFaceWin) const;

TFaceWin* getTFaceWin(int i) const;

TFaceWin* removaTFaceWin (TFaceWin* pTFaceWin);
TFacoWin* removeTFaceWin (int i)

49

itTFaceWinContainer itviTFaceWin;
int getItemsInviTFaceWin(void):;
/* fungdes para manipular o container de TFaceWin’s */

7.5 Classe Tlinkage (-1inxage.n")

A classe TLinkage ¢ a classe base de todas as classes das estruturas 2p e 3p, das classes
TPlane € TWindowbata. Esta classe incorpora funcionalidade aos objetos das classes derivadas para
manutengio automatica das ligagdes (ponteiros) entre 0s mesmos.

Por exemplo, suponha que tenhamos um objeto TWedge, com varios outros tipos de objetos
apontando para o mesmo. Entgo, se este objeto for destruido, todos os ponteiros de todos os objetos
de classes derivadas de TLinkage que apontam para ele serdo atualizados (ou seja, aterrados)
automaticamente. Além disso, se algum destes objetos possuir um container de ponteiros para
objetos Twedge (como € 0 caso dos objetos das classes Tshell, TLoop, ¢ TP3d), 0 ponteiro do objeto
mwedge a ser deletado serd retirado automaticamente destes containers.

Sem este mecanismo automatico de atualizagio de ligagdes, seria preciso atualiza-las
“manualmente”, um procedimento sujeito a erros e que envolveria muitas linhas de codigo.

O inconveniente deste processo de atualizagdo automatica de ligagdes € o consumo de
memoria, pois cada ponteiro para um objeto de classe derivada de TLinkage que participa do
mecanismo (ha a possibilidade de se excluirem ponteiros do mecanismo, como serd visto adiante)
acaba tendo que ser armazenado trés vezes.

Resumidamente, 0 mecanismo finciona da seguinte maneira:

Cada objeto de classe derivada de TLinkage herda dois containers da mesma: num container,
denominado viTLinkageTo, sd0 armazenados todos os ponteiros para objetos TLinkage para os
quais o objeto em questdo aponta; no outro container, denominado viTLinkageFrom, S&0
armazenados ponteiros para todos os objetos que apontam para 0 objeto em questdo. A atualizagio
automética de ligagdes ¢ feita quando algum objeto de classe derivada de TLinkage esta prestcs a ser

destruido: sendo chamado o destrutor da classe de base para destruir o subobjeto TLinkage herdado,

50

o mesmo faz chamada a um método denominado delallLinkages(), qué percorre cada um dos
containers mencionados e desfaz as ligagdes. Para que isto funcione, hé dois requisitos:

1. Para que a ligagiio com algum objeto de classe derivada de TLinkage seja incluida no
mecanismo de atualizagio automatica, a mesma deve ser feita usando-se a funco
newLinkageTo (. . .), fun¢fio que atualiza o container viTLinkageTo do objeto que estd apontando ¢ o
container viTLinkageFrom do objeto que estd sendo apontado. Note que a referida fungcdo apenas
atualiza os containers; a ligagio, propriamente dita, deve ser feita normalmente, utilizando-se 0
operador de atribuigfio, por exemplo. Como newLinkageTo(...) ¢ fungdo protegida, ela deve ser
chamada de alguma outra fun¢do-membro da classe, ao ser feita a ligaciio. Isto foi feito
propositalmente, com o intuito de que sempre s& use uma fungfio de nivel mais alto que encapsule as
chamadas a newLinkageTo (. ..) para fazer as liga¢des.

2. Além de chamar a fung80o newiLinkageTo(...) a0 ser feita a ligacdo, o mecanismo de
atualizacio automatico de ligagBes também exige que seja anulada nas classes derivadas a fungfo
virtual delLinkageTof. . .). Esta fungdo é chamada pela fungdo delallrinkages (), herdada da classe
base. DelAlllinkages(), por sua vez, ¢ chamada no destrutor da classe base, conforme ja
mencionado. A funcio deliinkageTo(...) a ser anulada recebe como parimetro um TLinkage*
(ponteiro para Tlinkage); este ¢ um ponfeiro para o objeto apontado com o qual devera ser cortada
a ligagdo. A funclio anulada deverd comparar este ponteiro com cada um dos ponteiros da classe
derivada que participam do mecanismo ¢ tomar as medidas cabiveis em cada caso (se o ponteiro for
um dado-membro, devera aterra-lo; se estiver num container, devera remové-lo do container, etc.).

Vide codigo fonte da classe TLinkage e de alguma classe derivada para uma maior elucidag8o.

51

7.6 Classes da estrutura 2D

Classes TEdgeWin ¢ TFaceWin (eatawin.n”)

Objetos das classes TeEdgeWin € TFaceWin s30 projegdes de objetos das classes TWedge €
TBezierFace, respectivamente. Como ja mencionado, ainda nfio foi desenvolvido completamente o
suporte a faces nio-planas, por isto objetos da classe TBezierFace nfio séo criados, por enquanto,
nem da classe TFacewin. As classes TEdgeWin € TFaceWin s30 derivadas de uma classe abstrata
denominada TEdgeFaceWin, que agrupa os elementos comuns as duas primeiras.

Objetos destas classes sdo sempre criados automaticamente através de uma operagdo de
projecdio dos objetos da estrutura 3p. Esta operagdo de projegdo pode ocorrer em duas situages:

. quando o objeto da estrutura 3p é construido; neste caso, o proprio construtor deste
objeto faz chamada a uma fungdo membro que o projeta em cada um dos planos de projegio,
construindo automaticamente os objetos das estruturas 2o correspondentes;

. quando um novo plano de projecio é criado; neste caso, o construtor do objeto
TProjPlane faz chamada a uma funcdo membro que “comanda” a cena corrente a se projetar no
referido plano. A cena corrente, entdo, “rola” o comando hierarquia abaixo, ordenando para que
cada TLayer S¢ projete, que por sua vez ordena que cada Tshell associado se projete, que por sua
vez ordena que cada TFace, TWedge € TP3d componentes se projetem no novo plano de projecio
criado.

Os principais membros destas classes sdo:

Classe TEdgeFaceWin

/**

dados-membro protegidos
o e e e e T T T IR T LR 2 R 2 R A A A A A AR L e

TWindowData* pTWindowData’
Ponteiro para objeto da classe Twindowbata do plano de projegdo ao qual esta associada a

estrutura 2o a que pertencerd algum objeto desta classe.

52

TEdgeIsoCurveContainer viTEdgalsoCurve;
Vetor de ponteiros para objetos de classes derivadas da classe abstrata TEdgeIsoCurve. Tal

classe é a base das classes TEdgecurve € TIsocurve (explicadas mais adiante).

virtual void dellLinkageTo ({TLinkage* pTo}:
virtual void delLinkageTo(int i)
/* anulam funcdes correspondentes da classe base */

int selected;
Este inteiro ¢ usado pelo mecanismo de selegdo. Cada vez que um objeto TEdgeWin €

selecionado, este membro ¢ incrementado; se for desselecionado, decrementa-se o referido membro.
Na verdade, este membro nfio deveria estar aqui, e sim nas classes TWwedge € TFace; 0S objetos
TEdgeWin € TFaceWin $30 usados pelo mecanismo de selegfo, mas os objetos a serem selecionados
sempre estdo, em tltima instancia, na estrutura 3p. Colocar este campo aqui foi um erro de projeto, &

preciso corrigi-lo.

/*************************************t**********************************

construtores
***********************i**/

TEdgeFaceWin {TWindowData* pTWindowData=NULL) ; // construtor default
I T LA L A AL AR R A R A LA S bbb bbb bbbl

destrutor
*****************************i**/

virtual ~TEdgeFaceWin():
Destroi todos os objetos apontados no container viTEdgeIsoCurve.

/**

operadores, fungdes-membro piblicas
N S S PR e T R T AR TR 2 A 2 A L A A

void setpTWindowData (fWindowData*);

TWindowData* getpTWindowData (void) const;

/* funcbes para acessar pTWindowData */

TEdgeIsoCurve* addTEdgeIscoCurve (TEdgelsoCurvet) ;
TEdgeIsoCurve® addTEdgeIsoCurveAt (TEdgelscCurve*, int i);
int findTEdgeIsoCurve(TEdgeIsoCurve*) const;
TEdgelsoCurve* getTEdgeIsoCurve (int i) const;
TEdgelsoCurve®* removeTEdgelsoCurve (TEdgeIsoCurve*) ;
TEdgeIsoCurve* removeTEdgelsoCurve{int i);
itTEdgeIlsoCurveContainer itviTEdgelsoCurve;

int getItemsInviTEdgelsoCurve (void);

void delAllTEdgeIsoCurves (void);

/* funcdes para manipular o container de TEdgeIsoCurve */

virtual void rafreshViewCcordinates (void)=0;
void setVisibility(void);

virtual void draw(TDC& dec)} const =0;
virtual void showSelection(TDC&) =0;

wvirtual void hideSelection (TDC&) =0;

virtual void drawSelection(TDC&) =0;

53

Classe TEdgeWin

Além dos membros herdados de TEdgeFacewin, a classe TEdgeWin tem wm ponteiro para wm
objeto Twedge (estrutura 3p) € anula os seguintes métodos virtuais abstratos da classe base:

. refreshViewCoordinates () : fungiio usada para atualizar as coordenadas de tela do
objeto TEdgewin;

. draw() : desenha objetos desta classe;

. showSelection(...) € hideSelection(...): seleciona ou desseleciona objetos

desta classe.

Classe TFaceWin
Como ainda nio foi desenvolvido completamente o suporte a faces nfio-planas, objetos desta
classe ndo sio criados. Assim sendo, nfio se entrard em maiores detalhes sobre a mesma, além do que

j4 foi dito; consulte a listagem para maior elucidago.

Classes TEdgeCurve e TIsoCurve (vedfacurv.n”)

As classes TEdgeCurve € TIsoCurve sdo derivadas da classe abstrata TEdgeIsoCurve. Cada
objeto da classe TEdgewin possui um container de ponteiros para objetos da classe TEdgecurve. Cada
objeto TEdgecurve & um trecho conexo da projecdo do objeto TWedge na estrutura 2p.
Analogamente, cada objeto da classe TFaceWin pOSSUi um container de objetos da classe TIsoWin;
cada objeto TIsoWin € a proje¢dio de uma curva isométrica de uma face (TBezierFace) na estrutura
2p. Objetos desta classe ainda ndo sdo criados, por motivos ja expostos, por isto nfio se entrard em
maiores detalhes sobre a mesma (vide listagem).

Os principais membros de TEdgeCurve 580:

/***i’******

dados-membro protegidos
TR T s S s A S il

Vigibility vis;
Membro que indica se o objeto é visivel ou nio, em fun¢do do layer a que ele pertence.

DPointContainer vDPoint;

54

Container de objetos da classe ppoint. Esta € uma classe derivada da classe Tpoint da OWL.
No caso de Twedge’s que sejam segmentos de reta, este container contém as projecdes (em
coordenadas de tela) de cada extremidade do segmento. Futuramente, para suportar TWedge'S COmM
outras geometrias, este container poderd ser usado para armazenar pontos discretos da curva a ser

plotada na viewport, ou pontos de controle da mesma, por exemplo.

TEdgeWin* pTEdgeWin;
Ponteiro para o objeto da classe TEdgewin correspondente.

virtual void dellinkageTo (TLinkage* pTo);
virtual void delLinkageTo(int i)
/* anulam fungdes correspondentes da classe base */

/**

cperadores, fungbes-membro publicas
S T e T T L T e S S S A AL L e At A e h i

virtual void setVisibility (veid);
Determina se o objeto & visivel ou nfio em fungdo da visibilidade do Jayer em que ele se

encontra.

virtual void draw(TDC& de) const;
Desenha o objeto através dispositivo de contexto passado como pardmetro.

Classe TP2d ('pzd4.n”)

Instincias desta classe representam a proje¢io de um objeto da classe Te3d. Como no caso
dos objetos das classes TEdgeWin ¢ TFaceWin, objetos desta classe devem ser sempre criados
automaticamente por uma operagfo de projegio do objeto da estrutura 3p associado (i.e., TP3qd).
Quando um Te3d ¢ criado, o construtor do mesmo chama uma fungfio de proje¢do que o projeta em
todos os planos de projegfio, crianndo 0s TP2d’s correspondentes. Analogamente, quando um novo
plano de projecdo € criado, o construtor do mesmo ordena que a cena corrente se projete sobre ele
(vide discussdo acima), € todos 0s TP3d’s da cena se projetam sobre o referido plano, criando os
p2d’s correspondentes.

Os principais membros desta classe s&o:

/**

dados-membro protegidos
**/

TTerna¥Float projCoord;

35

Coordenadas de plano de proje¢do.

DPoint wviewCoord;
Coordenadas de tela.

TP3d* pTP3d; // ponteiro para o TP3d correspondente
TProjPlane* pTProjPlane; // ponteiroc para o plane de projegio correspondente

virtual void dellLinkageTo (TLinkage* pTo);
virtual void dellLinkageTo(int i)
/* anula fungdes correspondentes da classe base */

/************************************i***********************************

construtores
**/

TP24() ; //construtor default

7p24 (TP3d& TP3dpai, TProjPlane& TProjPlanein);

Constroi Tp24q a partir de um TP2d e de um objeto TProjPlane.

/**

operadores, fungdes—membre piablicas
PO e S T T T T T T TS TR L A A s A L AL

int toggled;
Possui fungfio andloga a0 membro selected da classe TEdgeFaceWin, discutida anteriormente.

Cada vez que o ponto ¢ selecionado, incrementa-se este inteiro; cada vez que o ponto €
desselecionado, toggled é decrementado. Como no caso da classe TEdgeFaceWin, €st€ membro
também deveria ter sido colocado na estrutura 3o (i.e., na classe Tp3d); deve-se corrigir este erro de

projeto futuramente (vide discussio sobre isto na classe TEdgeFaceWin).

void setxProj (float xProij);

void setyProj (flcat yProj):;

void setzProj (float zProj):

void setProjCoord(TTernaFloat pin};

float getxProj(void) const;

float getyProj (veid) const;

float getzProj(void) const;

TTernaFloat getProjCoord(veoid) const;

/* fungSes para acessar as “projection coordinates” do ponto */
void setxView (int xView) ;

void setyView(int yView) ;

void setViewCoord{(TParInt pin):

int getxView(wvoid) const;

int getyView{void} const;

TParInt getViewCoord{void) const;

/* funcdes para acessar as “view coordinates” do ponto */
void setpTP3d{(TP3d* pTP3d) ;

TP3d* getpTP3d(void) const;

/* funcdes para acessar pTP3d */

void setpTProjPlane(TProjPlane* pTProjPlane);
TProjPlane* getpTProjPlane (void) const;

/* fungdes para acessar pTProjPlane */
virtual bool operator=={const TP2d&);

Este operador foi sobrecarregado para testar a igualdade entre objetos da classe TP2d por

meio de comparagio entre as suas coordenadas (vide codigo fonte).

56

operator DPoint ()
{return DFoint (getViewCoord(});};

Operador de conversio que constréi um objeto proint a partir das coordenadas de tela do

objeto Tr2d.

void refreshProjCoordinates{void);
void refreshViewCoordinates (void):
void refreshCoordinates (void);

Fungdes para atualizar coordenadas de plano de projecéio e de tela do Te2d.

void toggleSelection{bool) ;
Caso seja passado frue como pardmetro, o ponto € selecionado; caso contrario,

desselecionado.

void showMark (TDC& dc) ;
Mostra uma marca em torno do ponto, caso 0 mesmo esteja selecionado.

void draw(TDC& de);
Usada pela fungfo paint(...) da classe T™window da OWL para redesenhar o ponto (se estiver

selecionado, desenha uma marca, caso contrario ndo desenha nada).

7.7 Classes da estrutura 3D

Classe TP3d (p34.n”)

Objetos desta classe representam pontos do E’. Seus principais membros sio:

/***i**********************

dados-membro protegidos
R T S T e T T e e e I T e Ly

TTernaFloat worldCoord;
Coordenadas de mundo do ponto.

TP2dContainer viTP2d;
Container de ponteiros para todos os objetos Tp2d’s correspondentes.

TShell* pTshell; // ponteiro para o TShell que contém o TP3d
virtual void dellinkageTco({TLinkage* pTo);

virtual void delLinkageTo{int i);

/* anulam funcdes “dellinkageto” da classe base */

/**

construtores
t****************/
T34 (TShell* pIn=NULL, PointType ptype=nothing):; // contrutor default

TP3d{float x, flocat y, float z,TShell* pIn=NULL, PointType ptype=nothing):
/* constréi um TP3d com coordenadas x,y,z. O construtor também devera

57

chamar o construtor da c¢lasse TP2d, definindo tantas insténcias da referida
classe quantos forem os plancos de projegio e estabelecer as ligagdes com
cada um dos TP2d construidos */

TP3d ({TTernaFloat, TShell* pTShell=NULL, PointType ptype-nothing);

/**i**i****************

destrutor
L T R L ey e

virtual ~TP3d{};
Destroi todos os Tp2d’s correspondentes.

/**

operadores, fungdes-membro publicas
L I T L e T T I e T T e L e R e IS 2L L)

void setpTShell (TShell* pTShell);
TShell* getpTShell({) const;

/* funcdes para aceasar pTShell */
TP2d* addTP2d(TP2d* pnewTP2d) ;

TP2d* addTP2dAt (TP2d* pnewTP2d, int i});
int findTP2d(TP2d* pTP2d} const;

TP2d* getTP2d (TProjPlane*) const;

TP2d* getTP2d{int i) const;

TP24d* removeTP2d(TP2d¥% pTP2d) ;

TP2d* removeTP2d(int i) ;
itTP2dContainer itviTP2d;

int getItemsInviTP2d(void):

/* fungdes para manipular o container de TP2d */

void setxWorld(float x);

void setyWorld(float y);

void setzWorld{float z);

void setWorldCoord (TTernaFloat};

float getxWorld{void) const:

float getyWorld(veid) const;

float getzWorld(void) const;
TTernaFloat getWorldCoord(wveoid) const;

Fungdes para acessar as coordenadas de mundo do ponto.

operator TTernaFloat()
{return getWorldCoord():}:

Operador de conversiio que constr6i uma terna ordenada a partir das coordenadas de mundo

do objeto TP34.

float getxEye (TProjPlane*) const;

float getyEye (TProjPlane*) const;

float getzEye (TProjPlane*) const;
TTernaFloat getEyeCoord (TProjPlane*) const;
float getxProj (TProjPlane*) const;

float getyProj (TProjPlane*) const;

float getzProj (TProjPlane*) const;
TTernaFloat getProjCoord(TProjPlane*) const;
int getxView(TProjPlane*) const;

int getyView(TProjPlane*)} const;

TParInt getViewCcord(TProjPlane*) const;

Fungdes para acessar eye, projection € view coordinates do ponto em relagdo ao plano de

projecéio passado como pardmetro.

void projP3d(void);
Projeta o objeto Te3d em todos os planos de projecéo.

void projP3d(TProjPlane*) ;

58

Projeta o objeto Te3a no plano de projecfio passado como pardmetro.

void refreshWorldCoordinates (void) ;
void refreshProjCoordinates(void) ;
void refreshProjCoordinates (TProjPlane*) ;
void refreshViewCoordinates (void);
void refreshViewCoordinates (TProjPlane*) ;

Atualizam coordenadas do objeto Tp3d.

Classe TVertex3d (p3d.n”)

A classe Tvertex3d é derivada de Te3d e incorpora funcionalidade extra para representar

vértices de objetos Tshell.

/**

dados-membro privados
T Ty Y e T e T S TR T s e L S S s 2L L

TWedgeContainer viTWedge;
Container de ponteiros para todas as arestas (Twedge’s) ligadas ao vértice.

virtual void dellinkageTo(TLinkage* pTo);
virtual void delLinkageTo({int i) ;
/* anulam funcdes correspondentes da classe base */
F R L i E I i L e Lt sy
operadoraes, fungdes-membro publicas
Y L R R e T R e T e R L 2 T e T s L s L

THadge* addTWedge {TWedge* pnewTWedge) ;

TWedge* addTWedgeat (TWedge* pnewTWedge, int i);
int findTWedge {TWedge* pTWedge) const;

TWedge* getTWedge (int i) const;

TWedge* removeTWedge (TWedge* pTWedge) ;

TWedge* removeTWedge(int i) ;

itTWedgeContainer itviTWedge;

int getlItemsInviTWedge (void) const;

bool hasTWedgeMember (TWedge* pTWedge) const;

/* funcdes para manipular o container de TWedge */

Classe TWedge (“wedge.r”)

A classe TWwedge ¢ usada para implementar a estrutura “winged-edge”, ja discutida. Seus

principais membros sdo:

/**

dados-membro protegidos
e 2 2 21222 A LR E s e T S T e TR S A XS T TS LSS 222 L 20

TP3dContainer viTP3d; //viTP3d[0]=Vstart; viTP3d[last]=Vend
Container de ponteiros para os Te3d’s que definem o edge (Vstart, Vend e, possiveimente,

pontos de controle intermedidrios, que podem ser usados para descrever arestas que ndo sejam

segmentos de reta - basta derivar classes desta com funcionalidade extra).

TWedge* ppow;
TWadge* pnow;
TWedge* ppcow;
TWedge* pnccw;
TFace* pfcew;

59

TFace* pfccw;
Vide explicagfio sobre a estrutura “winged-edge” (item 5.1.1); maiores detalhes na referéncia

[11].

TShell* pTShell; //ponteiro para o TShell ac qual pertence o TWedge
TEdgeWinContainer viTEdgeWin;

Container de ponteiros para todas as projecdes do objeto Twedge (i.€., TEdgeWin’s).

virtual void dellLinkageTo(TLinkage* pTo) ;
virtual void dellinkageTec({int i):
/* anulam fungdes correspondentes da classe base */

/**

construtores
P e e e e P e P T P TP PRI I T ST R EE LS T LA S S 22 A 2 S L0 L

TWedge {TShell* pTShell=NULL, EdgeFype etype=straight); // construtor default
TWedge {TVertex3d* , TVertex3d* , TShell* pTShell=NULL, EdgeType etype=straight]} ;
/* constrdi TWedge com vértices apontados por pvstart, pvend e TShell dade

por pTShell, estabelecendo as ligagdes com os referidos objetos; devera cha-
mar o construtor da classe TEdgeWin e estabelecer a ligagio com o objeto
correspondente. Define EdgeType = straight */

TWedge (TVertex3d*[2] , TShell* pTShell=NULL, EdgeType etype=straight);

/* andloge ac construtor anterior; pvertex[l]=vstart e pvertex[2]=pvend */

/***i**

daestrutor
TR arrargrargrpeargrarpare e S T TR TR T T T TR EI LT IR 2 2 TR L L)

virtual ~Twedge():
Destréi todos os TEdgewin’s associados.

/***

operadores, fungSes-membro piblicas
B T T g e S T T T L e R S L SR A L L

int countP3d(TP3d*);
Retorna o nimero de ponteiros de um objeto desta classe para o objeto Te3a passado como

pardmetro.

int countWedge (TWedge¥*) ;
Retorna o nimero de ponteiros de um objeto desta classe para o objeto TWedge passado

como parametro.

int countFace (TFace*) ;
Retorna o mimero de ponteiros de um objeto desta classe para o objeto TFace passado como

parametro.

TEdgeWin* addTEdgeWin (TEdgeWin¥ pneTHTEdgeWin) ;
TEdgeWin* a2ddTEdgeWinAt {TEdgeWin* pneIWTEdgeWin, int i}:
int findTEdgeWin {TEdgeWin* pTEdgeWin) const;

TEdgeWin* getTEdgeWin (TProjPlane* pIn) const;

TEdgeWin* getTEdgeWin (int i) const;

TEdgeWin* removeTEdgeWin (TEdgeWin* pTEdgeWin) ;

TEdgeWin* removeTEdgeWin (int i);

60

itTEdgeWinContainer itviTEdgeWin;
int getIltemsInviTEdgeWin (vcid} const;
/* fungdes para manipular o container de TEdgeWin */

viTP3d[1]
viTP3d[2]

void setVStart {(TVertex3d* }; /7
virtual void setVEnd({TVertex3d*); /7
TVertex3d* getVStart(veid} const;
TVertex3d* getVEnd(void) const;

void setTP3d{TP3d* pTP3d, int i);

TpP3d* getTP3d{int i) const;
itTP3dContainer itviTP23d;

int getItemsInviTPSd(void) const;

/* fungdes para acessar Vstart e Vend */

void getpTShell (TShell* pTShell);
Tshell* getpTShell{void) const;
/* funcgdes para acessar pITShell */
void setpfcw (TFace* pTFace)
void setpfcow(TFace* pTFace);
TFace* getpfcw(void):;
TFace* getpfcocw(void);
/* funcdes para acessar pfow e pfcow */
wvoid setpnecw (TWedge* pTWedge)} :
void setpnccw(TWedge* pTWedge);
void setppcw(TWedge* pTWedge) ;
void setppcow (TWedge* pTHedge) ;
TWedge* getpncw(void) const;
T"Wedge* getpnccw(void) const;
TWadge* getppcw(void) const;
THedge* getppccw(void) const;
/* fungdes para acessar pnow, pnccw, ppcw e ppocw */
EdgeType gettipo{void):
void setColor (TColor cor);
TColor getColor(veid) const;
void projWedge (void) ;
Projeta o objeto Tedge (i.e., constrdi 0 TEdgeWin’s correspondentes) em todos os planos de

projecéo.

void projWedge (TProjPlane*);
Projeta o objeto Twedge (ie., constrdi oS TEdgeWin's correspondentes) no plano de proje¢do

passado como pardmetro.

virtual void constructEdgeCurves(TEdgeWin*);
Método usado pelas funges de projegdo para construir 0s objetos TEdgecurve d0S TEdgeWin

correspondentes. Também ¢é usado pelas fungSes de atualizagio de coordenadas de tela (vide codigo

fonte para maior elucidacgo).

void showSelection (void);
void showSelection (TProjPlane* pTProjPlane);
void hideSelection{void);
void hideSelection (TProjPlane* pTProjPlane) ;

ShowSelection(...) seleciona; hideselection(...} desseleciona. Quando nfio é passado

nenhum parametro, chamam as fungdes de memo nome de todos os TEdgewin’s associados; quando €

61

passado um plano de proje¢io como pardmetro, chamam as fungdes de mesmo nome apenas do

TEdgeWin correspondente ao tal plano.

void refreshViewCoordinates (veoid);
Atualiza coordenadas de tela relativas a todos os planos de projegéo.

void refreshViewCoordinates (TProjPlane®);
Atualiza coordenadas de tela relativas ao plano de projecfio passado como parametro.

Classe TBezierWedge ("wedge.n”)

Classe derivada de Twedge a qual foi adicionada funcionalidade extra para representar
segmentos que nfo sejam segmentos de reta necessariamente, podendo ser dados por uma cubica de
Bézier, por exemplo. Para tal, basta adicionar os pontos de controle adequados no container viTp3ad.

Como o suporte a arestas nfio retilineas ainda nfo estd completamente desenvolvido, nfio

serdio fornecidos maiores detalhes sobre esta classe; consulte o ¢odigo fonte, caso necessario.

Classe TLoop (“1ocp.n”)

Objetos da classe TLoop sio usados para representar os loops internos e externo de cada face.

Seus principais membros s30:

/**

dados-membro protegidos
**/

Orientation orient;
Define orientacgio do Joop (positiva se concordante com a orientagio do 1o. Twedge, negativa

caso contrario).

LoopType tipo;
Define tipo do loop: interno ou externo. Algumas fungdes so feitas metamorficas em fungéo

deste dado-membro (i.e., mudam de comportamento em fungdo do tipo do loop).

Todas as faces possuem um timico /oop externo, e zero ou mais Jogps internos.

TWedgeContainer viTWedge:
Container de ponteiros para todos os objetos Twedge que compdem o loop.

TFace* pTFace;
Ponteiro para ¢ objeto TFace a que pertence o loop.

TVertex3d* pvStart; //ponteiro para primeiroe vértice do TLoop
void setTipo(LoopType ltype):
virtual void dellinkageTo(TLinkage* pTo);

62

virtual void dellLinkageToc({int i):;
/* anulam fungdes correspondentes da classe base */

/**

construtores
I R r e s R e T e e e i e e 2 e s 2 TS 222 L

TLoop {TVertex3d¥* pVStart=NULL , TFace* pTFace=NULL,
Orientation orient=pos, LoopType ltype=outer):;

TLoop {congt TWedgeContainers viTWedge, TFace* pTFace=NULL,
Orientation orient=pos, LoopType ltype=outer);

/* constréi TLoop a partir de um container de THedges */

/**

oparadores, dados fungSes-membro puablicos
P I R i LRt LT Ry L eI ¥y
int countWedge (TWedge* pTWedge) ;

Retorna o nimero de ponteiros do objeto TLoop para o objeto Twedge passado como

parmetro (i.e., quantas vezes 0 TWedge aparece no loop).

TWedge* addTWedge (TWedge* pnewIWedge) ;

TWedge* addTWedgeAt {(TWedge* pnewTWedge, int i)
int findTWedge (TWedge* pTIWedge) const;

THedge* getTWedge (int i) const;

TWedge* removeTWedge (TWedge* pTWedge) ;

TWedge* removeTWedge (int i);

itTWedgeContainer itviTWedge:’

int getItemsInviTWedge {void) ;

/* fungdes para manipular o container de TWedge */

Orientation getOrientation (void);

virtual void setOrientation(Orientation) ;

LoopType getTipo(void);

void setpTFace (TFace* pTFace);

void setpVStart(TVertex3dd* pvstart);

void adjustpvStart{void)};

TFace* getpTFace(void) const;

TVertex3d* getpvstart(void) const;

virtual Orientation getTWedgeOrientation (TWedge* pTWedge)=0;
virtual void getTernaSeq(TTernaFloatContainers) const = 0;

bool hasTP3d(TP3d*) ;
Retorna frue caso o Tp3d passado como pardmetro pertenca ao loop, false caso contrario.

void hideSelection (void);
Desseleciona o loop (chama o método de mesmo nome de todos os Twedge’s do loop,

desselecionando-os).

void showSelection (void) ;
Seleciona o loop. Como no caso anterior, também “rola” o comando de selegdo hierarquia

abaixo (i.e., chama o método de mesmo nome de todos os TWedge’s do Joop, selecionando-o0s).

63

Classe TSimpleLoopV (“icop.n")

Derivada da classe TLoop, objetos desta classe representam /oops constituidos de uma curva

fechada simples (curva de Jordan).

Curva de Jordan
no plano

Seus principais membros séo:

/**

construtores
hhhkhRRRRIRRRE R RR Rk h kT Ak hkkh ke hkhhhhkhhhhkhrkhhhkrkhhhkhhhhhhhkdhhhkrdd/

//contruter default

T8impleLoopV (TVertex3d* pVStart=NULL , TFace* pTFace=NULL,
Orientation orient=pos, LoocpType ltype=ocuter):;
TSimpleLoopV{const TWedgeContainers viTWedge, TFace* pTFace=NULL,
Orientation crient=pos, LoopType ltype=outer):

/* constréi TLoop a partir de um container de TWedges */

/**

operadores, dados fun¢des-membro piblicos
L R R i L I R e T e T S T R T e L T e T

TSimpleLoopValidator validator;
Este subobjeto membro ¢ usado para verificar a validade do loop (i.e., se 0 loop ¢ uma curva

fechada simples ou nfio). Quando o loop é construido, métodos da classe TsimpleLoopvalidatoz SA0
chamados pelo construtor para verificar se o Joop € vélido; o resultado é armazenado num flag
plblico do objeto validator, denominado bIsTLoopValid. ApoOs construir-se o loop, deve-se

consultar este flag para verificar se o Joop é valido, e tomar as medidas adequadas caso ndo seja.

virtual void setOrientation (Orientation):;
virtual Orientation getTWedgeOrientation {TWedge* pTWedge)
virtual void getTernaSeq (TTernaFloatContainer&) const ;

Y.y

Retorna, no container passado por referéncia como pardmetro, a seqiiéncia de ternas
ordenadas que define o contorno do /oop.

Classe TFace (face.n”)

Objetos da classe Trace (classe base) e de suas derivadas representam faces. Cada face ¢
constituida de um Joop externo e de zero ou mais loops internos.

Os principais membros da classe TFace sio os seguintes:

/**

dados-membro protegidos
P g e T T T T E T T T TR TP LR TP T AT TR PR E L YL I PSR L 2L LS 2 L Y

64

TShell* pTShell;
Ponteiro para o objeto Tshell ao qual pertence a face.

TLoop* pOuterlLoop:’
Ponteiro para o loop externo da face.

TLoopContainer viTLoop;
Container de ponteiros para os loops internos da face.

virtual void delLinkageTo (TLinkage* pTo);
virtual void delLinkageTo(int i);
/* anulam fungdes correspondentes da classe base */

/**

construtores
gt 2 T TP TR T L LA SR LA A S A AL AL L Y

//construtor default

TFace (FaceType ftype = flat);

TFace {(TLoop* pOuterLoop, TShell* pTShell=NULL, FaceTlype ftype=flat) ;

TFace (const TLoopContainers , TShell* pTShell=NULL, FaceType frype=flat} ;
/* o primeiro Tloop do container é o TLoop externo; os demais, se houver,
sioc TLoops internos. O construtor também estabelece a ligagac com o TShell
correspondente. ¥/

/**

destrutor
R Trapanpaaaprparargare e e PR ST TR FEUERE 2L S TR L LA LA LAY

virtual ~TFace();
Deleta todos os loops da face (internos e externo).

/**t*****

operadores, fungdes-membro piblicas
T P L e I T 2 T e S S s A e iy

virtual TLoop* addTLoop (TLoop* pnewTLoop) ;

virtual TLoop* addTLoophAt(TLoop* pnewTLoop, int i)
int findTLoop (TLoop* pTLoop) const;

TLoop* getTLoop(int i) const;

virtual TLoop* removeTLoop (TLoop* pTLoop):

virtual TLoop* removaeTLoop(int i):

itTLoopContainer itviTLoop;

int getItemsInviTlLoop(void) const;

/* funcbes para manipular o container de TLoops */

TLoop* findTWedgeLoop (TWedge*) ;
Se 0 TWedge passado como parﬁmetro pertencer a face, retorna um ponteiro para O lOOp ao

qual ele pertence, caso contrario retorna NULL.

virtual TLoop* setpOuterLoop (TLoop* pTLoop) ;

TLoop* getpOuterLoop({void) const; // acessa viTLoop[0] (TLoop externo)
void setColor (TColor cor):;

TColor getColor (wvoid) const;

FaceType getTipo (void) const;

void setpTShell (TShell* pTShell):

TShell* getpTShell (void) const;

void projFace (void);

65

Projeta a face em todos os planos de projegdo. No caso de faces planas, este método nio faz
nada, pois faces planas nfio tem elementos correspondentes nas estruturas 2p associadas aos planos

de projegdo, como ja foi explicado.

virtual void proiFace (TProjPlane¥);
Projeta a face no plano de projegdo passado como pardmetro. Vale a mesma observagio

anterior caso a face seja plana.

virtual void toggleFaceOrientation(veoid);
Método usado para inverter a orientagio da face. E sempre chamado pelo método

toggleShellOrientation(...), da classe Tshell, usado para inverter a orientagdo de um objeto da
referida classe (ie., comutar entre orientagio dada por campo normal externo ou interno).
ToggleshellOrientation(...) comanda todas as faces do solido a inverterem a sua orienta¢do por
uma chamada a toggleFaceOrientation(...); este método, por sua vez, “rola” o comando
hierarquia abaixo, ordenando cada loop a inverter a sua orientacdo. Vide codigo fonte para maiores

detalhes.

virtual void showSelection(bool showBoundaries = true);
virtual void showSelaction(TProjPlane*, bool showBoundaries = true);
wvirtual void hideSelection (bool hideBoundaries = true):

virtual void hideSelection(TProjPlane*, bool hideBoundaries

true);

Métodos usados para selecionar ou desselecionar uma face, analogos aos métodos de mesmo
nome das classes TLoop € TWedge, ja estudados. Também usa a filosofia de “rolar” o comando
hierarquia abaixo, ordenando para que cada um de seus loops e curvas isométricas (no caso de faces
nfio-planas) sejam selecionados ou desselecionados. Quando o flag showBoudaries for false, o
comando & “rolado” apenas as curvas isométricas da face (caso existam, i.e., caso a face seja ndo-
plana). Quando o referido flag for true, o comando também é “rolado” para os loops que delimitam
a face.

Classe TBezierFace (face.n”)

A classe TBezierFace foi derivada da classe TFace para suportar faces ndo-planas, dadas por
patches triangulares de Bézier. O suporte 2 faces ndo-planas ainda nfo foi completamente
desenvolvido, como j4 foi mencionado, por isto objetos desta classe nfo sfo criados. Consulte o

cddigo fonte para maiores detalhes.

66

Classe TFlatFaceV (face.n”)

A classe TFlatFacev foi derivada de Trace para oferecer suporte e verificagio a construgéo
de objetos que representem faces planas. O construtor de TFlatFacev chama métodos que verificam
a validade da face (por exemplo, se todos 0s seus pontos estdo no mesmo plano). O resultado destas
verificages é colocado no flag publico bIsTracevalid. Assim, apés constuir 0 objeto TFlatFacev,
deve-se sempre consultar este flag para verificar se a face construida ¢ valida, ¢ tomar as medidas
cabiveis (deletar o objeto, por exemplo) caso ndo seja.

Os principais métodos desta classe sdo:

/**'k********************'k********

dados e fun¢des-membro protegidos
B U T g e 1 2 2 L 122 s e a2 a2 22 T2 2222 2222 2 22 o)

virtual void delLinkageTo (TLinkage* pTo}:
virtual void dellinkageTo(int i);
/* anulam funcdes correspondentes da classe base */

TPlane plane;
Subobjeto protegido que descreve o plano da face. Os métodos piblicos getp(), setp(),

getn() € setn() podem ser usados para acessar os parAmetros que definem este objeto (vide classe

TPlane)

bool isLoopOrientationDefined (const TSimpleLoopVa) ;
Método que verifica se a orientagio do loop passado como parfimetro ja esta definida (i.e., se

existe algum Twedge do loop que pertenga a outra face; caso isto ocorra, a orientagdo desta face
devers induzir a orientagdo do referido loop, estando a mesma, portanto, ja definida). Esta fungéo ¢
chamada pelos métodos sobrecarregados setLoopoOrientation(...), descritos logo mais, usados

para tentar otientar os /oops internos ou externo coerentemente com as demais faces do sélido.

bool setLoopOrientation(TSimpleLoopVE) ;
Método chamado pela funggo virtual setpoutertoop(. . .) para tentar orientar o /oop externo

coerentemente com as outras faces do so6lido (caso isto nfio seja possivel, retorna false) e calcular o
versor normal A face também coerentemente com esta orientagdo (por chamada ao método

calcNormal{...)).

bool setLoopOrientation (TSimpleLoopV&, TTernaFloat n);
Método chamado pela fungHo virtual addTreop(. ..) para definir a orientagdo de um loop

interno de acordo com a normal 3 face (passada no pardmetro n). Retorna false caso nfo seja

67

possivel orientar o referido loop com a orientagdo induzida pelo campo normal (ie., caso a

orientagio do loop ja esteja definida no sentido contrario, induzida por outra face).

TTernaFloat calcNormal (const TSimpleLoopVE);
Dado um Joop plano (passado como parimetro), calcula versor normal ao plano do mesmo,

com orienta¢do induzida pela orientagdo do loop. Retorna terna ordenada com as coordenadas de
mundo deste versor. Antes de chamar este método, deve-se verificar se o loop € plano, por chamada

a0 método isLoopFlat(...).

TP3dContainer get3NCTP3dInLoop (const TSimpleLoopVe) ;
Retorna um container de ponteiros para objetos Tp3d com ponteiros para trés Te3d’s ndo

colineares pertencentes ac Joop. Caso nio haja trés pontos nfo colineares no Joop, retorna um

container vazio.

bool isLoopFlat{const TSimpleLoopVE) ;
Retorna true caso o loop passado como parimetro seja plano, false caso contrario.

bool isloopOnPlane (const TSimpleLoopV&, const TPlane&) ;
Retorna true caso o loop passado como parmetro esteja no plano também passado, false

¢aso contrario.

Consulte o codigo fonte para maiores detalhes sobre estes métodos.

/**

construtores
T T e E s e e s e s L

//construtor default
TFlatFaceV (TSimpleLoopV* pOuterLoop=NULL, TShell* pTShell=NULL) ;

TFlatFaceV(const TLoopContainers , TShell* pTShell=NULL):;
/* o primeiro TLoop do container & o TLoop externo; os demais, se houver,
sdo TLoops interncs. O construtor também estabelece a ligagio com o TShell

correspondente. */

/**************i***

dados e fungdes-membro piblicos
T e 2 R S L 22 2 e R R TR T T R N e e E e e e T e s T T L L

virtual ~TFlatFaceV{) ;
bool bIsTFaceValid;

Flag para indicar se o objeto TF1atFacev construido é valido ou nfo, conforme ja explicado.

void setp (TTernaFloat);
void setn(TTernaFlecat);
TTernaFloat getp(void) const;
TTernaFloat getn(void) const;

68

Estes quatro métodos podem ser usados para acessar os pardmetros que definem o plano da

face, como ja foi mencionado.

/* 36 deve ser chamado no construtor {(este método estid protegido)*/
virtual TLoop* setpOuterLoop (TLoop* pTLoop) ;

virtual TLeoop* addTLoop(TLoop* pnewTLoop);

virtual TLoop* addTLoopAt{TLoop* pnewTLoop, int i);

virtual TLoop* removeTLoop (TLocop* pTLoop) !

virtual TLoop* removeTlLoop(int i};

Anulam métodos homdnimos da classe base (Trace).

virtual void toggleFaceOrientation{void);
Método usado para inverter a orientacfio da face, conforme ja explicado.

virtual void refreshWorldCoordinates (void) ;
Atualiza coordenadas de mundo dos pardmetros que definem o plano da face (i.e., p € n, vide

classe Tplane).

Classe TShell (*sheii.n”)

Objetos da classe Tshell representam sélidos. Seus principais membros séio os seguintes:

/**

dados-membro privados
e o Y 1222222222 T Iy TI e TR R L e e e e s el Ly

bool bWorldCoordValid;
Flag que indica se as coordenadas de mundo dos TP3d’s pertencentes ao sélido séo validas

ou ndo. Este flag também deve ser usado pelo sistema de atualizagfio de coordenadas em segundo

plano, ainda a ser implementado (vide discussdo na classe Telane).

TLayer* pTLayer;
Ponteiro para o objeto TLayer a que pertence o sélido.

TFaceContainer viTFace;
Container de ponteiros para todas as faces que compdem o sélido.

TWedgeContainer viTWedge;
Container de ponteiros para todos 0s Twedge’s que pertencem ao solido.

TP3dContainer viTP3d;
Container de ponteiros para todos os Tp3d’s que pertencem ao solido.

T™MatProjPlaneContainer vIMatProjPlane;
Container de objetos da classe TMatprojPlane. Cada objeto desta classe possui um ponteiro

para um objeto TerojPlane ¢ trés matrizes de transformacdio homogénea para transformar as

69

coordenadas de mundo do sélido em eye, projection € view coordinates relativas ao respectivo plano
de projegio.

A principio, poderia parecer desnecessario armazenar estas matrizes em todo objeto Tshell.
Isto seria verdade se elas fossem as mesmas para todos os solidos, dependendo apenas do sistema de
coordenadas de mundo e dos sistemas de coordenadas associados aos planos de projegéio. Mas nfio ¢
0 que ocorre, pois, quando um sélido muda de posigdo no espago, as suas coordenadas de mundo
ndo sdo atualizadas imediatamente (isto deve ser feito em segundo plano, como j4 foi discutido, vide
discussdo sobre este assunto na classe TProjPlane); ao invés disto, a matriz de transformagfo
homogénea que descreve o movimento do sblido é armazenada. Cada uma das matrizes de
transformac¢do homogénea de vTMatProjPlane €, entdo, multiplicada por esta matriz, armazenada no
membro puiblico correctorMat; & por isto que as referidas matrizes nio dependem apenas do sistema
de coordenadas de mundo e dos sistemas de coordenadas dos planos de projeg#o.

As matrizes deste container sio atualizadas sempre que o s6lido muda de posi¢io no espaco,
como discutido no paragrafo anterior, e sempre que algum plano de projecdo (ou viewport

correspondente) é criado ou modificado. Vide codigo fonte para maiores detalhes.

virtual void delLinkageTo {TLinkage* pTo):;
virtual void delLinkageTo (int i}
/* anulam fungdes “dellLinkageTc” da classe base */

/**

construtores
**/

//construtor default
TShell {TFace* pTFace(=NULL, ShellType stype=opened, EditMode nmode=0ff) ;

/**

destrutor
**/

virtual ~TShell() :
Deleta todos os objetos TFace, TWedge € TP3d pertencentes ao solido.

/*******************************i***i************************************

operadores, fungdes-membro pablicas
***/

int v, e, £, h, x;

70

Estes membros mantém contagem do numero de vértices, edges, faces, holes e rings do
solido, respectivamente; s&o usados para habilitagéo dos comandos que aplicam operadores de Euler

sobre o solido.

TMatDirInv correctorMat;
Este membro é usado para armazenar matrizes de transformaco homogénea associadas a

movimentos do solido; como jé foi explicado, devera fazer parte do mecanismo de atualizagdo de

coordenadas em segundo plano.

/* funcdes para manipular ¢ container de TWadge */
TWedge* addTWedge (TWedge* prnewTWedge) ;

THedge* addTWedgeAt (TWadge* pnewTWedge, int i);
int findTWedge (TWaedge* pTWedge) const;

TWedge* getTWedge(int i) const;

TWedge* removeTWedge (TWedge* pTIWedge) .

TWedge* removeTWedge(int i)

itTWedgeContainer itviTWedge:

int getItemsInviTWedge (void) const;

/* funcdes para manipular o container de TFace */
TFace* addTFace (TFace* pnewTFace) ;

TFace* addTFaceAt(TFace* pnewTFace, int i);

int findTFace (TFace* pTFace) const;

TFace* getTFace({int i) const;

TFace* removeTFace (TFace* pTFace);

TFace* removeTFace{int i)

itTFaceContainer itviTFace;

int getItemsInviTFace(void} ceonst;

/% fungdes para manipular o container de TP3d */
TP3d* addTP3d (TP3d* pnewTP3d)}:

TP3d* addTP3dAt (TP3d* pnewTP3d, int 1);

int £indTP3d4(TP3d* pTP3d) const;

TP3d* getTP3d(int i) const;

TP3d* removeTP3d(TP3d* pTP3d);

TP3d* removeTP3d(int i);

itTP3dContainer itviTP3d;

int getItemsInviTP3d(void) const;

void setpTLayer (TLayer* pTLayer);

TLayer* getpTLayer(void) const;

/* funcdes para manipular o container de TMatProjPlane */
TMatProjPlane addTMatProjPlane (TMatProjPlane newTMatProjPlane)} ;
TMatProjPlane addTMatProjPlaneit (TMatProjPlane newTMatProjPlane, int i};
int findTMatProjPlane (TMatProjPlane TMatProjPlanelIn) const;
TMatProjPlanes& getTMatProjPlane(TProjPlane*) const;
TMatProjPlane& getTMatProjPlane{int i) const;

void setMatEye {TMatDirInv eye, TProjPlane* pPlane);

void setMatProj (TMatTrans proi, TProjPlane* pPlane);

void setMatView (IMatTrans view, TProjPlane* pPlane);
T™MatProjPlane remcveTMatProjPlane (TMatProjPlane TMatProjPlaneln) ;
TMatProjPlane removeTMatProjPlane (int i):
itTMatProjPlaneContainer itvITMatProjPlane;

int getItemsInviTMatProjPlane(void) const;

TTernaFloat worldNew2worldOld(TTernaFloat)
TTernaFloat worldOld2worldNew{TTernaFleoat);
TPernaFloat world2eye (TTernaFloat ternaln, TProjPlane* pPlane):;
TTernaFloat eye2world(TTernaFloat ternaln, TProjPlane* pPlane);
TTernalloat world2proj(TTernaFloat ternaln, TProjPlane* pPlane);

71

TTernaFloat proj2world(TTernaFloat ternaln, TProjPlane* pPlane);
TParInt world2view(TTernaFloat ternaIn, TProjPlane* pPlane);

Fungdes de conversio de coordenadas, andlogas as vistas na classe TProjPlane.

void projShell (void) ;
Projeta o sélido em todos os planos de proje¢io. Também usa a filosofia de “rolar” o

comando hierarquia abaixo, ordenando todos 0s seus TP3d’s, TWedge’s € TFace’s @ 5¢ projetarem.

void projsShell (TProjPlanet*) ;
Método anilogo ao anterior; projeta o solido no plano de projegéo passado como parametro.

void adjustMat (void);

void adjustMat (TProjPlanet);
void adjustEyeMat (void) ;

void adjustEyeMat (TProjPlane+) ;
void adjustProjMat (void);

void adjustProjMat (TProjPlane*);
void adjustViewMat (void);

void adjustViewMat (TProjPlane¥) ;

Métodos usados para atualizar as matrizes de transformagfo homogénea do container
vIMatProjPlane (vide discussio acima).

void refreshWorldCoordinates{void) ;

void refreshProjCoordinates(void);

void refreshProjCoordinates (TProjPlane*) ;
void refreshViewCoordinates (void);

void refreshViewCoordinates(TProjPlane¥) ;

Métodos usados para atualizagio das coordenadas de mundo, de plano de proje¢do e de tela

da estrutura 3p e estruturas 2o associadas ao sélido.

bool openShell (TFlatFaceV* pTFace=NULL} ;
Abre um solido fechado na face passada como pardmetro, deletando a mesma. Retorna frue

caso a operacdo seja bem sucedida, false caso contrario.

bool closeShell (void) ;
Fecha um solido aberto, acrescentando uma face ao mesmo. Se for impossivel obter um

sélido valido pelo acréscimo de uma face, ou se a face a ser acrescentada ndo for valida, a operagdo

ndio é feita e 0 método retorna false.

void toggleShellOrientation({void):

72

Inverte a orientagdo do sélido (i.e., comuta entre orientagdo definida pelo campo normal
externo ou interno). Também usa a filosofia de “rolar” o comando abaixo na hierarquia, ordenando

todas faces que o compdem a inverterem suas orientagdes.

void showSelection(void);
void showSelaction (TProjPlane*) ;
void hideSelection(void};
void hideSelection (TProjPlane*) ;

Anélogas aos métodos homonimos ja vistos nas classes TFace, TLoop € THedge; também usa a
filosofia de “rolar” o comando abaixo na hierarquia, ordenando todos os seus Twedge’s a serem
selecionados ou desselecionados.

Classes TLayer (“iayer.n”) € TScCeNe (scene.n”)

Objetos das classes TLayer € Tscene sfo usados para representar /ayers e cenas,
respectivamente.

Shells sio agrupados em layers; cada layer pode estar num estado visivel ou invisivel, em
fungio do estado do membro privado layerMode (isto ainda ndo foi completamente implementado,
mas, para tal, basta acrescentar algumas poucas linhas de c6digo). Ha um ponteiro global, de nome
pCurrentLayer, quE aponta para o Jayer corrente da cena corrente do aplicativo.

Layers, por sua vez, sdo agrupados em cenas. Ha um ponteiro global, denominado
pCurrentScene (vide declaragiio de objetos globais em “globals.h”), que aponta para a cena
corrente do aplicativo. Futuramente, a0 se implementar um modelo doc/view, cada cena devera
corresponder a um documento, como j4 foi discutido.

Como o c6digo fonte destas duas classes é curto e de ficil entendimento, nfio se entrara em

maiores detalhes sobre 0 mesmo.

7.8 Operadores de Euler (-euier.n”)

Os operadores de Euler foram implementados através de classes que derivam da classe base
TEuleroperator (derivada, por sua vez, da classe roperator).
Como ja foi comentado, todas estas classes foram feitas serializéveis (“streamable™), de

modo a permitir comunicagfio com memdria externa e futuro desenvolvimento de um “undo”.

73

Por exemplo, suponha que desejamos aplicar um operador sobre algum solido, digamos, mev.
Para tal, basta criar um objeto da classe mev, com os devidos pardmetros, € o construtor do mesmo
se encarrega de efetuar a operagfio. A partir dai, cabe ao programador definir o destino do objeto
criado. Para implementar-se um “undo”, o objeto poderia ser colocado numa pilha de operacdes;
sendo necessdrio desfazer a ultima operagfo, bastaria retirar (pop) o Gltimo objeto “operador” da
pilha e executar a operagdo inversa correspondente (kev, caso seja retirado um objeto mev, por
exemplo), com os devidos pardmetros, que podem ser obtidos a partir dos dados-membros (estado)
do objeto que foi retirado da pilha.

O fato de os objetos serem serializdveis permite que uma cena possa ser “armazenada” em
memdria externa; para isto, basta serializar a pilha de operagGes para um arquivo. A seqiiéncia de
operagdes seria, entfio, uma linguagem de descrigéio da cena.

Caso ndo se deseje criar um objeto “operador” para efetuar uma dada operacfo, basta chamar
uma fungdo estatica que foi colocada em cada uma das classes de operadores de Euler. Assim, para
se executar uma operacdo mev, pode-se tanto criar um objeto ™mEv (0 construtor executa a
operagdo) como chamar a fungfo estitica TMEV::MEV(...}, com os devidos pardmetros. Até o
momento, apenas o tltimo método foi testado; o primeiro (criar um objeto “operador™), apesar de
projetado e implementado, ainda nio foi testado. Mas, como foi discutido no paragrafo anterior,
podera ser necessario para implementar-se um “undo” ¢ comunicagfio com memoria externa.

Consulte o ¢cédigo fonte das classes de operadores de Euler para maiores detalhes. Como as

classes sfio curtas e o codigo de facil entendimento, o mesmo néo sera abordado aqui.

7.9 Interface Windows

A interface Windows do aplicativo esta centralizada num objeto da classe Twindow : a janela
cliente da janela principat do aplicativo.
Como ja foi dito, esta interface sera modificada futuramente, devendo ser implementada por

um modelo MDI - doc/view, ou SDI - doe/ view; neste caso, a cada cena (“7Scene”) correspondera

74

um documento (“TDocument”) e a cada plano de projecdo correspondera uma vista (“7View”) do
referido documento.

Quando um item de menu ou botéo da barra de ferramentas ¢ pressionado, uma mensagem de
comando ¢ gerada; tal mensagem & colocada na fila de mensagens do aplicativo, e capturada pelo
loop de “bombeamento” mensagens do mesmo. Sendo capturada a referida mensagem, o aplicativo
pesquisa em cada tabela de respostas de mensagens das classes que estfio no caminho de roteamento
de comandos (mesagens do tipo wM_comvanp) até encontrar uma fungéo de resposta correspondente
em alguma tabela; no caso tal fungfio serd encontrada na tabela de resposta da classe intexWindow ,
derivada da classe Twindow € 4 qual pertence o objeto jancla cliente da janela principal do aplicativo.

Quase todos os comandos da interface exigem que algum dado seja fornecido como
argumento. Por exemplo, pode ser necessdrio que se forneca as coordenadas de um ponto no E’, ou
que se selecione um vértice, aresta, face, ring ou sdido. Assim, ao ser selecionado o item MEV do
menu Euler, uma mensagem de comando com o /D do item de menu MEV é gerada e colocada na
fila de mensagens do aplicativo. Apés ser capturada esta mensagem, € chamada a fungfio de resposta
de mensagem correspondente, pelo processo descrito no paragrafo acima : 0 método cmMEV (. . .) da
classe interWindow, no caso - vide tabela de respostas de mensagens da referida classe. Este método,
entdio, pede que o usudrio fornega os argumentos necessarios & execucio da operagio mev: selegéo
de um vértice e entrada das coordenadas de um outro vértice.

A entrada de coordenadas e a seleciio de objetos é feita através do mouse. Os botdes do
mouse s3o sobrecarregados; o evento “disparado” por eles € tratado de forma diferente em funcéio
do estado do aplicativo. Este estado, por sua vez, € descrito por um conjunto de flags globais
(variveis de estado), declaradas no arquivo “tlags.nh” e definidas em “clags. cpp’ -

O codigo da classe interwindow ndo sera discutido aqui; consulte a listagem da referida
classe para maiores detalhes. Serdo apresentados os digramas PFS/MFG utilizados para modelar e
analisar algumas fungdes da referida classe, ¢ a seguir as classes usadas para implementar objetos

“cursor” € “sistema de coordenadas”.

75

Fungdo CmMVS()
O método CmMVS(), da classe interWindow, é chamado em resposta ao evento disparado

pela seleciio do item de menu New do menu Shell. Tal método executa uma operagio mvs (vide
apéndice “A” - operadores de Euler), apds pedir para que o usudrio forneca os pardmetros

necessarios. Este método foi modelado pelo seguinte MFG:

CmMVS
bNoOperation
Get Vertex MVS
bMvs
raeset flags bVali%Coords

\ [

|

h.

_.|

Cancel

76

Fungédo CmMEV()

Executa operacio mev.

CmMEV
bNoOperation

Yy

h 4

K === Get Vertex -

L

bMev
nEnternedPoint
raset flags 0 bValidlCoords
= [//’
¥
Cancal
Funcdo CmMEF()
CmMEF
bNoOperation
Select VStart Salect VEnd MEF
Select
Y 1 Wedges
bMef)

nPointfelected

bEndSeflection

reset flags 1 nPoint$elected==2

g

-

._>|

Cancel

Fili

F Select
Weadges

Add pSelWedge

h 4
—
L
3

N
S bEndSaelection
bRightButtonDown
Fungdo CmKEMR()
Executa operacio kemr.
CmEEMR
bNoOperation
Select Wedge Select Face
_| Select
N Wedges
nEdgeSelected bEndSglection
reset flags 0 nFaceSelected > O

Y e i &

__.l

Cancel

78

Funcdo CmKFMRH
Executa operago kfmmrh.

bNoOperation

. +

(‘l act PFace

Y

Select Face

A

/:4

h 4

nFaceSelected
reset flags 1

[l

nFaceilected
2

A

79

»

Classe D3dCursor (cursor.n”)

Cada objeto desta classe, derivada de pcursor, € um cursor tridimensional (cursor usado para
obter coordenadas de pontos do E.

Os principais membros desta classe sdo os seguintes:

/**'k*************************

dadog-membro protegidos
B R e 2 L 2 8 2 2 22 SR LT T s TR T TR L R S X T2 2L s L2t Yy

bool findSegCursorIntercept(TTernaFloat Pl, TTernaFloat P2, TFace* pTFace);

Encontra intersecgdio entre o segmento (p1,p2) ¢ 4 face passada como paréimetro; o ponto de
intersecgiio ¢ adicionado ao container protegido intercepts. Caso ndo encontre intersecgio, retorna
false. Este método ¢ chamado pela fungfo protegida findFaceCursorintercepts(...), descrita

abaixo.
bool findFaceCursorIntercepts{TFace¥*)} ;

Encontra intersecgio entre as arestas do paralelepipedo do cursor ¢ a face passada como
pardmetro. Na verdade, para que o programa ndo fique muito lento, por enquanto estdo sendo

calculadas apenas as intersecces das trés arestas ligadas ao “ponto corrente” do cursor.
void refreshP3dCoordinates (TP3d&) ;

Método utilizado para atualizar as coordenadas dos vértices do cursor, quando o mesmo
muda de posigéo.

TTernaFloat ui, uj, uk;

Versores nas diregdes i, j € k, em relagdo ao sistema de coordenadas ligado ao cursor.

TTernakFloatContainer intercepts;

Container de ternas ordenadas com as intersecgdes do cursor com as faces da cena corrente,
na posicdo atual do cursor; quando o cursor € desenhado, ¢ plotada uma marca ao redor de cada

uma destas intersec¢des, de modo a fornecer informages visuais em trés dimensdes ao usuario.

TTernaFloatContainer oldIntercepts;

Nio utilizado.

80

/**
dados, operadores e fungdes-membro puablicas

**/

// todas as coordenadas sio absclutas

TP3d curPoint;

TP3d origin;

TP3d ox;
TP3d oy ;
TP3d oz;
TP3d oxy;
TP3d oyz ;
TP3d oxz g
kll
oyz curPoint
oz bxz
J
o / oxy
e
origin oxX q

void move (TTernaFloat) ;

Desloca a posigio corrente do cursor para o ponto passado como pardmetro, atualiza as
coordenadas de todos os pontos do cursor e acha os interceptos com as faces da cena corrente na

nova posi¢éo.

Os campos e métodos acima séo herdados da classe pcursor; 0s campos € métodos seguintes

sfo da classe p3dcursor.

/************************************t*****w*****************************
construtores

*************************************t**********************************/
D3dCursor (TTernaFloat points[4]1};
Constroi objeto p3dcursor a partir das coordenadas dos seus pontos origin, ox, oy € oz.

/**t*****

dados, coperadores e funcdes-membro publicas
t*****************/

virtual void draw(DrawMode = show) const;
virtual void draw(TProjPlane*, DrawMode = show) const;
virtual void draw(TProjPlane*, TDC&, DrawMode = show) const;

Meétodos usados para desenhar o cursor, semelhantes aos muitos ja vistos até aqui. As

diferengas entre cada um deles sfio explicadas no c6digo fonte; o pardmetro DrawMode néo € usado.

81

Classe D2dCursor (cursor.n”)

Objetos da classe p2dcursor s30 cursores bidimensionais, usados para sele¢do. Cada objeto
da classe TwindowData possui um membro publico desta classe, denominado cursor (vide classe

TWindowData). Seus principais membros sdo:

/***i

dados-membro protegidos
******************i***/

int tam;
Tamanho do cursor.
SelType selMode;

Modo de selegiio corrente do cursor. O tipo selType ¢ um enun declarado no arquivo
“gefinit.h”. Consulte na listagem deste arquivo a declaracfio deste ¢ de varios outros enum’s usados

no programa.
CursorType tipo;
Tipo do cursor. Consulte em “definit.h” a declaragio de cursorType.

TParInt ulc;
TParInt urc;
TParInt 1lc;
TParInt 1irc;

Coordenadas de tela dos vértices do cursor.

urec
ule

1lle lre

TWindowData* pTWindowData:
Ponteiro para o objeto TWindowbata @ que pertence o Cursor.
TP3d* pCursSelP3d;

Ponteiro para o objeto Tp3a atualmente selecionado, caso em modo de selecdo de pontos.

TWedgae* pCurSelWedge;

Ponteiro para o objeto TWedge atualmente selecionado, caso em modo de selegéo de edges.

82

/***t**t*********************

congtrutores
PP gy T P P TR T T T S TS TR L L LA L LS T L 2 L L

D2dCursor (TWindowData#* pWin = NULL, TParInt point = zeroTernalnt,
int tamanho = curMarkSize, SelType tsel = edge):; // contrutor default

O pardmetro point é usado para inicializar o membro piblico curpoint, par ordenado com as

coordenadas de tela do ponto corrente do cursor (centro do cursor).

f***********i**i*****************

dados, operadores e fungdes-membro piblicas
T R S 1 2 2 L R A R s R E T e e S S R T S L e S e s i s)

TParInt curPoint;
Coordenadas de tela do ponto corrente do cursor,
TParInt ancora;

Coordenadas de tela da dncora (usada para desenhar uma linha eléstica & medida que o cursor

se move - vide codigo fonte dos comandos pan e zoom window, por exemplo).
bool contains (TPariInt) ;

Método usado por findSelection() para verificar se um ponto estd dentro da regifio de

selecho.
bool findSelection{void) ;

Percotre todos os objetos da estrutura 2p associada ao cursor até encontrar algum dentro da
regidio de sclegio do mesmo; o tipo de objeto a ser selecionado depende do modo corrente de

selecsio, definido pelo membro protegido tipo.

TRindowData* setpTWindowData (TWindowData¥*) ;
TWindowData* getpTWindowData (void) const;

TP3d* setpCurSelP3d(TP3d*);

TWadge* satpCurSelWedge (TWedge*) ;
Te3d* getpCurSelP3d(void) const;
TWedge* getpCurSelWedge (veid) const;

void changeCursorTam{int) ;
void changeSelMode (SelType) ;

void move (TParInt) ;
void setPos (TParint):;

Métodos usados para deslocar a posiciio corrente do cursor para o ponto passado como
parimetro (coordenadas de tela). Diferengas entre estes dois métodos sdo explicadas no cédigo

fonte.

83

virtual void draw{void) const ;
virtual void draw{TDC&) const ;

Desenham ¢ cursor.

CursorType getTipe (void)} const;
void setTipo(CursorType);

Classe TCoordSys (“coordsys.n”)

Objetos da classe Tcoordsys sfo usados para descrever sistemas de coordenadas. O ponteiro
global denominado pcurrentCoordsys (vide declaracdio de objetos globais em “globals.n”) aponta
para o sistema de coordenadas corrente.

Os principais membros desta classe sdo os seguintes:

/**

dados-membro protegidos
**/

void setMatChangeBase (TTernaFloat pointsidl);

Método protegido usado para atualizar a matriz de mudanca de base do sistema coordenadas
descrito por um objeto desta classe para o sistema de coordenadas de mundo. Esta matriz ¢

armazenada no membro publico matChangeBase.

/**

construtores
***/
TCoordsSys (TTernaFloat peints[4] = defaultTriedro) ; // contrutor default

Cada objeto Tcoordsys possui um ponteiro para um objeto da classe Deursor. Os parametros

passados para o construtor sdo usados para construir este objeto (vide construtor da classe pcursor).

/**

destrutor
**/

virtual ~TCoordSys{)}:
Destrdi o objeto da classe dcursor correspondente.

/**
dados, operadcores e fungdes-membro ptblicas
**/
DCursor* cursor;

Ponteiro para objeto da classe bcursor, ja mencionado.

84

T™atDirInv matChangeBase;

Matriz de mudanga de base do sistema de coordenadas descrito por um objeto desta classe

para o sistema de coordenadas de mundo.
TTernaFloat cursorlLocalCoord; // coordenadas locais

Coordenadas do cursor (objeto apontado pelo membro plblico cursor) em relagio ao

sisterna de coordenadas descrito por um objeto desta classe.

void proj (veid)
void proj(TProjPlane¥*);

Chamam métodos homdnimos da classe pcursor.

DCursor* setCursor (DCursor¥);

DCursor* getCursor (void)

void draw{DrawMode = show);

void draw(TProjPlane*, DrawMede = show);

void draw(TProjPlane*, TDC&, DrawMode = show) ;

void move (TTernaFleat) ; // coordenadas absolutas
void moveL(TTernaFloat); // coordenadas locais
TTernaFloat getCuraorPos(void):; // coordenadas absolutas
void setCursorPos (TTernaFloat); // coordenadas absolutas
TTernaFloat getCursorPosL(void); // coordenadas locais
void setCursorPosL(TTernaFloat)’ // coordenadas locais

Métodos usados para mudar a posi¢io correnie do cursor associado. As diferencas entre eles

si0 explicadas no cédigo fonte.

TTernaFloat local2world(TTernaFloat) ;
TrernaFloat world2local (TTernaFloat};

Fungdes de conversdo entre coordenadas de mundo ¢ coordenadas relativas ao sistema de
coordenadas descrito por um objeto desta classe (coordenadas Jocais ou relativas). Estes métodos

utilizam a matriz de mudanga de base armazenada no membro matChangeBase.

85

8. Conclusao

Acredita-se que foram atingidos, a0 menos parcialmente, os objetivos propostos no inicio do
trabalho, que mostrou-se mais extenso do que a principio se imaginava. Ainda ha muito o que ser
desenvolvido, destacando-se os itens seguintes:

1. Projeto e implementagio de maior niimero de operagdes locais. Apesar de os operadores
de Buler implementados permitirem a construgdio de qualquer solido poliédrico (vide Apéndice),
as operagdes realizadas pelos mesmos s&o de nivel muito baixo, o que torna o seu uso pelo usuario
extremamente dificil. E necessario o desenvolvimento de operagdes de nivel mais alto que facilitem
as tarefas do usuario;

2. Apesar de a interface ser grafica e interativa, como inicialmente proposto, ainda ¢ pouco
amigéavel e deve ser melhorada. O ntimero de planos de projecio (vistas) existentes simultaneamente
ainda deve ser ampliado; o acesso aos comandos, por ora apenas através de menus, deve ser
facilitado; muitas outras ferramentas ainda devem ser acrescentadas para tornar o uso do software
mais facil e intuitivo.

Além disso, as classes correspondentes aos varios tipos de cursor (2d, 3d), mecanismos de
selecdio e entrada de coordenadas, sistemas de coordenadas, cdmera, eic., deverfio ser agrupadas
num conjunto de resources, os quais poderfio ser incorporados a uma linguagem e facilmente
transportados para outros sotwares.

3. Devem ainda ser desenvolvidos modulos de comunicagio com meméria externa e,
possivelmente, com outros softwares.

Para finalizar, cabe a observagio de que, apesar de ainda haver vérios jtens a serem
projetados e implementados, grande parte da estrutura para suporta-los (operadores de Euler,
esquema de representagfio interno, interface Windows, etc.) j4 foi desenvolvida, o que devera facilitar

sobremaneira o trabalho futuro.

86

Apéndice A

Observacies sobre os operadores
de Euler utilizados

Segue-se um resumo sobre operadores de Euler e as modificagdes introduzidas em sua
aplicagio no projeto. Maiores detalhes podem ser encontrados na referéncia {11].

Consideremos o espago vetorial R® sobre R, € 0s vetores da sua base candnica

V =(1,0,0,0,0,0)
E =(0,1,0,0,0,0)
F =(0,0,1,0,0,0)
H =(0,0,0,1,0,0)

R =(0,0,0,0,1,0)
S = (0,0,0,0,0,1)

O subconjunto do r® dado por
P=vV+eE+ fF+hH+rR+sS
v,e, [,hr,s eR/
v—e+f=2(s—-h)+r ()
& um subespago vetorial do mesmo, de dimenséo 5, como pode ser facilmente verificado.
Consideremos agora o conjunto de todos os sdlidos cujas superficies sejam topologicamente
equivalentes a um “2-manifold”, e cujos modelos planos correspondentes (“plane models”) tenham

caracteristica de Euler y=2. Designemos por Sr este comjunto (solidos poliédricos fechados

pertencem a ele).

87

Entfio, podemos colocar Sy em correspondéncia biunivuca com um subconjunto discreto do
subespago vetorial (I), obtido pela restrigio das coordenadas v, e,/ hr ¢ s ao conjunto dos nimeros
naturais: a cada modelo plano com

vertices
edges
faces
holes
rings
shells

W o3 N o=

corresponde o vetor

P=vV+eE+ fF+hH+rR+sS

do referido subconjunto.

Sendo 5 uma base do subespago (1), a todo sélido de Sr corresponde um Unico vetor do
referido subespago, dado por uma combinag8o linear (dnica, a menos da ordem) dos elementos desta
base. Assim, se a cada vetor v desta base fizermos corresponder um operador p sobre o espago dos
modelos planos de Sy, de tal forma que a soma de um vetor com v em (I) e a aplicagéo de p ao
modelo plano correspondente sejam equivalentes, chegaremos vm conjunto de operadores atraveés
dos quais pode-se construir qualquer modelo plano. Um tal conjunto de operadores ¢ designado de
conjunto de operadores de Euler.

Geralmente, escolhe-se uma base de (I) formada pelos seguintes vetores (os correspondentes

operadores de Euler so indicados ao lado):

Vetor da base Operador
ve f hr s
1 0 0 0 0 MEV
0 1 1 0 0 0 MEF
0 -1 0 0 1 0 KEMR (I
1 0 1 0 0 1 MVES
0 0 -1 1 1 0 KFMRH

88

Por exemplo, o operador mev (make edge, vertex) acrescenta um edge e um verfex ao
modelo plano; o operador mef (make edge, face) acrescenta um edge e uma face, etc. Usa-se a
seguinte convengio na nomenclatura dos operadores:

m - make
k- kil

v - vefex
¢ - edge
f-face

h - hole
¥-ring
§ - shell

Também sdo tteis os operadores inversos, que sio obtidos quando se toma o simétrico de

cada vetor da base (II):

Vetor Operador
v ¢ f r s
-1 -1 0 0 0 0 KEV
0 -1 -1 0 0 0 KEF
01 0 0 -1 0 MEKR
-1 0 -1 0 0 -1 KVFS

No projeto, nio foram utilizados operadores de Euler para s6lidos do tipo até aqui
considerado (i.e., s6lidos com superficie topologicamente equivalente a um “2-manifold” e com
modelos planos com caracteristica de Euler y=2). Foram usados operadores de Euler para 2-
manifold’s com modelos planos com caracteristica de Euler ¢=1. Superficies poliédricas abertas,
obtidas pela remogdo de uma face de uma superficie poliédrica fechada, enquadram-se nesta
categoria.

Seguindo um raciocinio anilogo, o conjunto S, destes 2-manifold’s pode ser posto em

correspondéncia biunivuca com um subconjunto discreto do subespaco vetorial de dimens3o 5 do r®

dado por

89

P=v+eE+ fF+hH+rR+sS
v,e, f,hr,s eR/
v—e+f=s+r—-2h ()

Os operadores de Euler utilizados foram obtidos de maneira analoga:

Vetor da base Operador

v e f h r s

1 1 ¢ 0 0 0 MEV

01 1t 0 0 0 MEF

0 -1 0 0 1 0 KEMR ()

1 0 0 0 0 1 MVS

0 0 -1 1 1 0 KFMRH
Vetor Operador

v e f h r s

-1 -1 0 0 0 0 KEV

0 -1 -1 0 0 0 KEF

01 0 0 -1 0 MEKR

-1 0 0 0 0 -1 KVS

0 6 1 -1-10 MFKRH

A tnica modificagiio introduzida foi no operador MVFS, que passou a ser MVS, e no

correspondente operador mverso.

90

Apéndice B

Matrizes de Transformacdo
Homogénea

No que segue, serfio apresentadas algumas notas sobre matrizes de transformagio
homogénea. O grande mérito do uso destas matrizes consiste em transformar certas operagfes como
translagfio em perspectiva em transformagdes lineares, que podem ser escritas matricialmente e so
mais adequadas para tratamento computacional. O assunto pode ser formalizado da seguinte
maneira:

Cada ponto P = (x,y,z) do R’ ser4 transformado bijetivamente num subespago vetorial de

dimensdo 1 do R*, designado a partir daqui de subespago ampliado de P Sp, como se segue:

(x,y,z) Sk ﬂ'(xsyszal) (I)

O conjunto unitario formado pelo vetor P = (x,¥,2,1) ¢ uma base para Se; P denomina-se
vetor homogéneo associado a P.

A seguir, serfio definidos os operadores lineares rotagio, translagdo ¢ perspectiva no RY, de
forma que aplicar uma rotagio, translagdo ou perspectiva em um ponto do R? seja equivalente a
aplicar o correspondente operador rotagiio, translagio ou perspectiva em um vetor qualquer do

subespago ampliado deste ponto.

91

Operador translacao

Sendo dado um vetor t = (t;, t, t,) do R® ,define-se operador translagdo de t, no R*, pela

seguinte matriz, em relagio A base candnica:

1 0 0 r
010 ¢
I= y
00 1 ¢
00 0 1]

Uma translaggo de t no R® pode ser feita por uso deste operador da seguinte maneira:
Seja P = (x,y,z) um ponto do R’ . Tomemos um vetor qualquer ndo nulo do seu subespaco
ampliado, digamos, (ax, ay, az, a), sem perda de generalidade. Aplicando o operador T, a este

vetor, obtemos:

1 0 0 ¢ |[ax] a(x+1.)]
0 1 0 ¢ || _ a(y+t,)
0 0 1 ¢ ||az a(z+t))
0 00 1j|la] | a |

Mas (a(x+ty) , a(y+ty) , a(z+t;) , a) & um vetor do subespago A(x+ty, ytty, Ztt, 1), que,
por (), é o subespaco ampliado de (x+ty, y+ty, Ztts).

Para simplificar os cdlculos, normalmente se toma o vetor homogéneo associado a P, apesar
de ser possivel escolher qualquer vetor do correspondente subespago ampliado, como foi mostrado.

Note que a operaglio franslacdo no R®, ndo-linear, foi transformada num operador linear no

R4

92

Operadores de rotacao

-~ 4 ~ . . [o x
Os operadores de rotagiio, no R”, sdo definidos pelas seguintes matrizes, em relagfo 4 base
candnica:

- rotagfio em torno de x:

1 0 0 0
0 cosd -—send O
Rot (@) =
0 send cos@ O
10 0 0 1]
- rotagfio em torno de y:
[cos® O send O]
0 1 0 0
Rot (0) =
Y —send 0 cos@ O
0 0 0 1]
- rota¢iio em torno de z:
cos@ —senf 0 0]
send cos@ O O
Rot (6) =
0 0 1 0
|0 0 0 1

Para aplicar uma rotagio em um ponto P do R’, o procedimento é analogo ao do caso
anterior: toma-se um vetor qualquer do correspondente subespago ampliado (para facilitar, escolhe-
se o vetor homogéneo P), aplica-se o operador de rotagio no R’ e obtem-se o resultado no R’

utilizando (I).

93

Operador escalonamento

o 3
Uma mudanca de escala nos eixos x, y € z, no R, segundo os fatores s; , sy € 5z,
respectivamente, pode ser feita através do operador escalonamento, no R’ definido pela seguinte

matriz em rela¢fio a base candnica:

s, 0 0 0

~ 0 s, 0 0

SESEY & 5

i 0 0 O 1_
Operador perspectiva

Dado um ntimero real ndo nulo d, define-se o operador perspectiva pela seguinte matriz, em

relagfio & base candnica do R*:

Pers(d) =

oo O e
o o = O
]

Seja P = (x, ¥, z) um ponto do R* e P =(x, ¥, z, 1) 0 respectivo vetor homogéneo. Entéo:

10 0 0]l .
- |0 1 0 0|y y
Pers(d)- P = el R
ers(d) 00 o0 o0z 0
0 0 -1/ 1]|1] |1-z/d]

Através de (1), obtém-se o correspondente resultado no R*:

P;=(MEGRE. ,0)
1-z/d 1-z/d

94

Desta forma, a fransformacdo perspectiva, njo-linear no R®, dada por
Tp:R> - R’

x y
> H H - ,0)
(%,2) (1—z/d iy

foi transformada num operador linear no R*.

Resumindo, para aplicar-se uma transformagio de translacdo, rotacio, escalonamento ou
perspectiva, num ponto P do R’, pelo uso de matrizes de transformagdio homogénea, deve-se seguir
0$ seguintes passos:

1. obter o vetor homogéneo P (ou qualquer ouiro ponto do subespago ampliado
correspondente);

2. aplicar o operador linear translaciio, rotagio, escalonamento ou perspectiva no RY

3. utilizando (1), obter o resultado correspondente no R’.

A grande vantagem deste método consiste em tornar transformac¢des nfo-lineares no R’ em
transformagdes lineares no R*. Além de isto ser mais adequado para implementagio computacional,
uma vez que transformacdes lineares podem ser escritas sob a forma de multiplicagio de matrizes,

também facilita os calculos sobremaneira quando se trata de efetuar composi¢do de transformagdes.

95

Ora, como sabemos da Algebra Linear, a matriz de uma transformagfo linear composta € dada pelo
produto das matrizes de cada transformag8o - isto significa que para efetuar uma composicio de

transformagdes, é necessirio apenas efetuar uma multiplicagio de matrizes.

26

Apéndice C

Estudos de Caso

No que segue, serdo apresentados alguns modelos solidos construidos através da interface.
Note que, apesar da simplicidade geométrica dos objetos modelados, seria dificil construir-se um

modelo dos mesmos sem usar operagdes locais (i.e., por operagbes booleanas).

97

Eile_ Edit _Shell

ERk| "i_:J _,_,_'."‘::_-,!w

Euler Projection Primitives _Operations Options _ Help
PRIERIEC0

Ble Edit Shell Euler l:lhn Erims Qpenns Options Help

AR [ddcud 2] - |7] [&Sle

PSS o) 0000 K)

¥

._._ Euler Em]eulnn Primitives | Operations Options Help i
ELEEEEEEEREER
a2l
¥ el
Prete = o i 1 INoM[[

B|EE I

3]

__ il el Euler F_‘mieuﬁon Primitives Operations Options Help

ER[=E

9. Referéncias Bibliograficas

1 Ritchie, Dennis M. & Kernighan, Brian W. C, A Linguagem de Programacio Padriio ANSI.

2 Potts, Stephen & Monk, Timothys. Berland C++ 4.0. Axcel Books, 1994.

3 Swan, Tom. Aprendendo C++. Ed Campus, 1993.

4 Granero, A. F. & Siqueira, J. O. . Programagio Orientada para Objeto em C++ no Ambiente
Windows™". Sdo Paulo, Atlas, 1995.

5 Yao, Paul. Borland C++ 4.0: programaciio for Windows' . Sdo Paulo, Makron Books, 1995.

6 Heiny, Loren. Windows™ Graphics Programming with Borland C++. John Wiley & Sons,
1994.

7 Taylor, Philip. 3D Graphics Programming in Windows"™. Addison Wesley, 1994.

8 Borland Object Windows for C++ 2.0 - Programmer’s Guide. Borland International Inc,
1993.

9 Borland Object Windows for C++ 2.0 - Reference Guide. Borland International Inc, 1993.
10 Borland C++ 4.0 - Library Reference. Borland International Inc, 1993.

11 Mintili, Martti. An Introduction to Solid Modeling. Computer Science Press, 1988.

98

