
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Engenharia Elétrica – Ênfase em Sistemas de Energia e
Automação

Gabriel do Prado Arthur

AUTOMAÇÃO RESIDENCIAL E DE IRRIGAÇÃO

RURAL COM MONITORAMENTO E CONTROLE

REMOTO VIA INTERNET UTILIZANDO ESP32

Trabalho de Conclusão de Curso apresentado à Escola de
Engenharia de São Carlos da Universidade de São Paulo como

requisito parcial para obtenção do título de Engenheiro
Eletricista.

Orientador: Prof. Dr. Rogério Andrade Flauzino

São Carlos
2025

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Arthur, Gabriel

 A788a AUTOMAÇÃO RESIDENCIAL E DE IRRIGAÇÃO RURAL COM
MONITORAMENTO E CONTROLE REMOTO VIA INTERNET UTILIZANDO
ESP32 / Gabriel Arthur; orientador Rogério Andrade
Flauzino. São Carlos, 2025.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Sistemas de Energia e Automação) -- Escola de
Engenharia de São Carlos da Universidade de São Paulo,
2025.

1. ESP32. 2. MQTT. 3. automação. 4. IoT. I.

Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

FOLHA DE APROVAÇÃO

Nome: Gabriel do Prado Arthur

Título: “Automação residencial e de irrigação rural com
monitoramento e controle remoto via internet utilizando ESP32”

Trabalho de Conclusão de Curso defendido e aprovado
em____/____/______,

com NOTA______(,), pela Comissão
Julgadora:

Prof. Associado Rogério Andrade Flauzino - Orientador

SEL/EESC/USP

Prof. Dr. Fábio Romano Lofrano Dotto - SEL/EESC/USP

Eng. Ivan Talão Martins - Doutorando EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Júnior

05 12 2025

9,5 Nove cinco

Gabriel do Prado Arthur

AUTOMAÇÃO RESIDENCIAL E DE IRRIGAÇÃO RURAL COM
MONITORAMENTO E CONTROLE REMOTO VIA INTERNET

UTILIZANDO ESP32

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São Carlos da
Universidade de São Paulo como requisito parcial para obtenção do título de Engenheiro

Eletricista.

Orientador: Prof. Dr. Rogério Andrade Flauzino

São Carlos
2025

1

Sumário

Resumo 5

Abstract 6

1 Introdução 7
1.1 Contextualização . 7
1.2 Objetivos . 9

1.2.1 Objetivo Geral . 9
1.2.2 Objetivos Específicos . 9

1.3 Metodologia . 9
1.4 Estrutura do Trabalho . 10

2 Revisão bibliográfica 11

3 Fundamentação Teórica 13
3.1 Internet das Coisas (IoT) . 13
3.2 Automação . 14
3.3 Plataforma ESP32 . 14
3.4 Segurança em Sistemas Embarcados . 15

4 Metodologia do Projeto 17
4.1 Materiais e Equipamentos . 17
4.2 Diagrama do Sistema . 19
4.3 Configuração do Hardware . 21

4.3.1 Protótipo urbano (ESP32-01): acionamento local e remoto 21
4.3.2 Protótipo rural (ESP32-02): irrigação e iluminação 23
4.3.3 Configuração do roteador para encaminhamento de porta segura

(TLS) . 28
4.4 Programação dos Módulos . 30

4.4.1 Firmware e servidor web do nó urbano (ESP32 01) 30
4.4.2 Firmware do nó rural (ESP32 02) 33
4.4.3 Módulo de comunicação Wi-Fi do nó rural 33

2

4.4.4 Arquitetura principal e módulo de temporização do nó rural 34
4.4.5 Lógica principal e agendamento do nó rural 35
4.4.6 Módulo de comunicação MQTT e formatação de dados 37

4.5 Aplicativo Mobile(IoT MQTT Panel) . 39
4.6 Envio de Dados para a Nuvem . 44

4.6.1 Configuração e Explicação do MQTTBox 44
4.6.2 Configuração da Máquina Virtual 45
4.6.3 Configuração e Ativação da Máquina Virtual 46
4.6.4 Fluxo de Dados e Integração com o Node-RED 51
4.6.5 Assinatura do tópico de temperatura 52
4.6.6 Assinatura do tópico de umidade 53
4.6.7 Configuração do broker MQTT . 54
4.6.8 Configuração TLS . 56
4.6.9 Resumo operacional dos blocos MQTT 57
4.6.10 Funções do Fluxo Node-RED: Normalização, Pareamento e Inserção 58
4.6.11 Função norm temp . 58
4.6.12 Função norm hum . 58
4.6.13 Função pair (temp+hum) . 59
4.6.14 Função function final . 59
4.6.15 Pipeline MySQL → SCADA-LTS (configuração passo a passo) . . . 60
4.6.16 Resultado final: gráfico em tempo real no SCADA-LTS (Modern

Watch List) . 63

5 Resultados e Discussões 65
5.1 Testes Realizados . 65
5.2 Análise dos Resultados . 66
5.3 Eficiência Energética e Confiabilidade . 70

5.3.1 Metodologia de estimativa . 70
5.3.2 Premissas utilizadas (planilha Cálculo da energia) 70
5.3.3 Resultados consolidados (modo automático) 71
5.3.4 Fontes das potências nominais (links de referência) 71
5.3.5 Explicações complementares . 71

5.4 Adoção do ESP32 . 72
5.5 Adoção do SCADA-LTS . 72
5.6 Adoção do RTC DS3231 e do sensor HW-390 72

6 Conclusão 73
6.1 Síntese dos Resultados . 73
6.2 Limitações do Projeto . 74
6.3 Sugestões para Trabalhos Futuros . 75

3

Referências 76

APÊNDICE A -- Firmware e página web do nó urbano (ESP32 01) 79
Firmware principal do ESP32 01 . 79
Folha de estilos CSS da página web (ESP32 01) 93

Apêndice B -- Firmware do nó rural (ESP32 02) 95
Módulo de Wi-Fi (componente wifi) . 95
main.c e CMakeLists.txt . 100
Módulo DS3231 (RTC e temperatura) . 103
Arquivo general.h . 106
Protocolo MQTT . 107
scheduler.h e scheduler.c . 124

APÊNDICE C -- Códigos das funções Node-RED 127
Função norm temp . 127
Função norm hum . 128
Função pair (temp+hum) . 128
Função final . 129

APÊNDICE D -- Pipeline MySQL → SCADA-LTS 131
Criação/verificação do banco SCADA e da tabela sensorData 131
Data Source hum_rural: consulta e ponto de medição 131
Data Source temp_rural: consulta e ponto de medição 132

4

Resumo

Este trabalho projeta e implementa um sistema de automação residencial e rural
baseado no ESP32 (DevKit V1), com monitoramento e controle remoto via internet. O
projeto possui caráter educacional, orientado ao aprendizado prático de automação e
IoT. No ambiente urbano, o sistema acionou corretamente as três lâmpadas por servidor
web embarcado, aplicativo MQTT e botão local; no ambiente rural, três lâmpadas, uma
válvula de irrigação e os sensores de umidade do solo e temperatura operaram de forma
estável, exceto pelo deslocamento de 3 horas observado nas agendas automáticas. A
comunicação utilizou Wi-Fi e o protocolo MQTT sobre TLS, com visualização dos dados
no SCADA-LTS e em aplicativo móvel. Os testes demonstraram aquisição consistente
de temperatura e umidade, e baixo custo operacional do sistema em modo automático,
estimado em R$ 25,61/mês (R$ 307,29/ano). A metodologia compreendeu definição de
requisitos, projeto eletrônico, desenvolvimento de firmware, integração com o broker e
validação funcional. São apresentadas recomendações de segurança, incluindo o uso de
TLS no MQTT e boas práticas de gestão de credenciais.
Palavras-chave: ESP32; MQTT; automação residencial; automação rural; internet das
coisas (IoT).

5

Abstract

This work designs and implements a residential and rural automation system based
on the ESP32 (DevKit V1), providing internet-enabled monitoring and remote control.
Educational in scope, the project serves as a hands-on learning platform in automation
and IoT. In the urban environment, the system successfully actuated three lamps via
embedded web server, MQTT-based mobile application, and local push button; in the rural
environment, three lamps, one irrigation valve, and soil-moisture and temperature sensors
operated stably, except for a systematic 3-hour offset observed in automatic scheduling.
Communication relies on Wi-Fi and the MQTT protocol over TLS, with data visualization
in SCADA-LTS dashboards and a mobile application. Experimental tests showed reliable
actuation and consistent acquisition of temperature and humidity, as well as a low operating
cost in automatic mode, estimated at BRL 25.61 per month (BRL 307.29 per year). The
methodology comprises requirements definition, electronic design, firmware development,
MQTT broker integration, and functional validation. Security recommendations are
provided, focusing on the use of TLS in MQTT and proper credential management.
Keywords: ESP32; MQTT; home automation; rural automation; Internet of Things
(IoT).

6

Capítulo 1

Introdução

1.1 Contextualização

O avanço das tecnologias digitais tem alterado profundamente a forma como residências
e propriedades rurais são gerenciadas. A combinação entre maior demanda por conforto,
segurança e eficiência energética cria um cenário em que soluções manuais passam a ser
insuficientes para lidar com rotinas cada vez mais complexas. Sistemas de automação
permitem padronizar tarefas, reduzir erros humanos e disponibilizar informações em
tempo real para o usuário, que passa a ter maior controle sobre o consumo de energia, o
funcionamento de equipamentos e a supervisão de ambientes mesmo à distância. Nesse
contexto, a automação deixa de ser um diferencial restrito a instalações de alto custo e se
torna uma ferramenta de apoio à gestão cotidiana em diferentes perfis de usuários.

No meio rural, essa necessidade se torna ainda mais evidente quando se considera
o manejo de água e energia em atividades agrícolas. Pequenas e médias propriedades
frequentemente dependem de deslocamentos presenciais para acionar bombas, abrir ou
fechar válvulas e verificar condições de solo e clima, o que consome tempo, combustível
e recursos financeiros. A ausência de monitoramento sistemático da umidade do solo
e da temperatura pode resultar em irrigações desnecessárias ou tardias, com impactos
diretos sobre produtividade, desperdício de água e custo da energia elétrica. A integração
entre sensoriamento, controle automático e supervisão remota surge, assim, como uma
alternativa para tornar o uso desses recursos mais racional, previsível e alinhado às
restrições econômicas típicas de ambientes não industrializados.

A automação residencial tem evoluído significativamente nas últimas décadas, impulsi-
onada pelo desenvolvimento de redes sem fio, sensores inteligentes e microcontroladores
embarcados. Nesse contexto, Gill, Yang, Yao e Lu (2009) destacam que a arquitetura
de sistemas domésticos modernos tende a migrar de soluções centralizadas e com lógica
fixa para modelos distribuídos, baseados em redes de sensores sem fio (WSNs), capazes de
coletar, processar e transmitir informações de forma autônoma e descentralizada.

7

Segundo os autores, tecnologias como ZigBee desempenham papel fundamental nesse
processo, por oferecerem uma solução de comunicação de baixo consumo energético,
estrutura de rede em malha (mesh) e alta escalabilidade. A escolha do protocolo ZigBee
deve-se à sua eficiência em aplicações que requerem monitoramento contínuo, como o
controle de iluminação, sensores de presença, temperatura e segurança em ambientes
residenciais. Esses recursos tornam a tecnologia adequada para ambientes em que o acesso
à energia ou à internet pode ser limitado ou instável.

O artigo também enfatiza que, ao integrar sensores e atuadores com módulos de
comunicação ZigBee, é possível construir uma infraestrutura doméstica capaz de se adaptar
às preferências dos usuários e de operar de forma automatizada, com mínima intervenção
humana. Essa flexibilidade permite que o sistema execute tarefas rotineiras, como acionar
luzes ao detectar presença ou desligar equipamentos com base em horários predefinidos,
elevando o nível de conforto e segurança do ambiente.

Gill, Yang, Yao e Lu (2009) dão ênfase à importância de adotar uma abordagem
modular e de baixo custo no desenvolvimento de sistemas de automação residencial, es-
pecialmente para países em desenvolvimento. O uso de microcontroladores acessíveis,
combinados a protocolos de comunicação eficientes como ZigBee, representa uma alter-
nativa viável à automação comercial tradicional, que geralmente é restrita a usuários
com maior poder aquisitivo. Essa democratização tecnológica possibilita a aplicação da
automação em diferentes camadas sociais, ampliando seu impacto social e econômico.
Dando continuidade, o panorama de Sriskanthan, Tan e Karande (2011) descreve arquite-
turas típicas de automação centradas na interação entre smartphone e microcontrolador,
e compara Bluetooth, ZigBee, GSM/SMS, Wi-Fi/Internet e EnOcean quanto a custo,
alcance, consumo de energia e adequação a aplicações de baixa latência. Os autores
ressaltam que a seleção tecnológica deve equilibrar simplicidade de implantação com
requisitos de disponibilidade e tempo de resposta, favorecendo soluções baseadas em IP
quando a interface remota e a integração com serviços em nuvem são prioritárias. Essa
leitura sustenta a priorização da conectividade Wi-Fi em projetos que exigem visualização
web e comando remoto contínuo.

À luz desse panorama, este trabalho adota a plataforma ESP32 (DevKit V1) com
conectividade Wi-Fi e o protocolo MQTT como eixo de comunicação, combinando a leveza
do modelo publish/subscribe para telemetria e comandos. No arranjo proposto, o nó
urbano aciona três lâmpadas; o nó rural aciona três lâmpadas e uma válvula de irrigação
e realiza leituras contínuas de umidade do solo e temperatura. Os dados são publicados
em tópicos MQTT e exibidos em interface web, permitindo acompanhamento em tempo
real e registro para análise. Considerando robustez e segurança, emprega-se MQTT sobre
TLS com verificação do certificado do broker no cliente ESP32.

8

1.2 Objetivos

1.2.1 Objetivo Geral

Projetar, implementar e validar um sistema integrado de automação residencial e de
irrigação rural, baseado na plataforma ESP32, com supervisão e comando remotos via
internet por meio do protocolo MQTT, contemplando o controle de iluminação e da válvula
de irrigação, a aquisição de umidade do solo e temperatura, a disponibilização de interface
web para operação e a adoção de práticas de segurança (TLS e gestão de credenciais).

1.2.2 Objetivos Específicos

• Projetar a arquitetura de hardware para controle de lâmpadas e válvula de irrigação
com ESP32;

• Implementar comunicação sem fio via Wi-Fi (2,4 GHz) utilizando o protocolo MQTT
sobre TLS (porta 8883), com autenticação no broker e validação de certificado (CA)
no cliente;

• Integrar os sensores de umidade do solo e de temperatura ambiente no ESP32
02(ESP32 da zona rural), implementar o envio periódico das leituras ao broker MQTT
e disponibilizar visualização remota da temperatura e da umidade em dashboard
web (SCADA-LTS) e aplicativo móvel;

• Validar o sistema, testando confiabilidade e funcionalidade;

• Avaliar o impacto da solução em termos de economia de energia.

1.3 Metodologia

A metodologia adotada neste trabalho é aplicada e experimental, com foco no de-
senvolvimento prático de um sistema funcional de automação. O projeto será dividido
em etapas, iniciando-se com a definição dos requisitos e a seleção dos componentes de
hardware e software. Em seguida, será realizada a montagem do circuito eletrônico com a
plataforma ESP32, sensores de umidade do solo, sensor de temperatura e módulos relé
para acionamento de lâmpadas e válvula de irrigação.

A programação será desenvolvida utilizando a IDE Arduino e o VS Code, com imple-
mentação de protocolos de comunicação como MQTT e TLS para transmissão de dados
entre os dispositivos e o servidor na nuvem(Broker). Para o monitoramento remoto, será
desenvolvida uma interface web hospedada no ESP32 destinado ao ambiente residencial.
Adicionalmente, será disponibilizado uma conexão em um aplicativo móvel que agregará
os dados publicados pelos nós ESP32 (residencial e rural), permitindo ao usuário visualizar,

9

em tempo real, o estado dos sensores e executar comandos de acionamento sobre os
atuadores.

O sistema será dividido entre dois módulos ESP32: um dedicado à automação residencial
(controle de três lâmpadas) e outro à automação rural (três lâmpadas, uma válvula de
irrigação, um sensor de umidade e um sensor de temperatura). Cada módulo será testado
individualmente em bancada, seguido de testes integrados simulando o ambiente real de
operação.

1.4 Estrutura do Trabalho

Este trabalho está organizado em seis capítulos, além de apêndices que reúnem materiais
complementares.

O Capítulo 1 apresenta a introdução, com a contextualização do tema, a motivação
do estudo, os objetivos geral e específicos, a metodologia adotada em nível macro e a
organização do texto.

O Capítulo 2 traz a revisão bibliográfica, discutindo trabalhos relacionados à automa-
ção residencial e rural, Internet das Coisas (IoT).

O Capítulo 3 aborda a fundamentação teórica necessária para o entendimento do pro-
jeto, incluindo conceitos de automação, redes de computadores, protocolos de comunicação,
arquitetura do ESP32 e noções de segurança em sistemas conectados.

No Capítulo 4 é apresentada a metodologia do projeto, detalhando os materiais
empregados, a arquitetura proposta, o diagrama do sistema, a configuração do hardware e
o desenvolvimento do software.

O Capítulo 5 reúne os resultados e discussões, apresentando os testes realizados, os
dados obtidos e a análise crítica quanto à eficiência, funcionalidade e confiabilidade da
solução implementada.

o Capítulo 6 apresenta as conclusões do trabalho, sintetizando os principais resultados,
destacando as contribuições do projeto, apontando as limitações encontradas e indicando
sugestões para trabalhos futuros.

Os Apêndices A, B, C e D reúnem os códigos-fonte e arquivos de configuração mais
extensos do projeto (módulos de controle, comunicação e automação), de forma a não
sobrecarregar o corpo principal do texto.

10

Capítulo 2

Revisão bibliográfica

O avanço recente da Internet das Coisas (IoT) tem favorecido arquiteturas de automação
residencial baseadas em sensores distribuídos, conectividade wireless e serviços em nuvem.
Em um estudo voltado para domicílios no contexto do Oriente Médio, Al-Kuwari et
al(2018) propõem uma plataforma de automação que combina sensores de temperatura,
umidade e presença com atuadores conectados a uma rede Wi-Fi doméstica. O sistema
utiliza um gateway central para coletar os dados, aplicar regras simples de automação e
disponibilizar ao usuário uma interface de monitoramento e comando remoto. Os autores
destacam a viabilidade de soluções de baixo custo, baseadas em protocolos leves, para
controlar múltiplas cargas em tempo real.

Na mesma linha, Pravalika e Prasad (2019) desenvolvem um sistema de monitoramento
residencial e acionamento de dispositivos utilizando o microcontrolador ESP32 como nó
principal. A proposta explora o uso da conectividade Wi-Fi integrada para publicar
medidas ambientais e receber comandos de acionamento a partir de uma aplicação móvel.
O trabalho reforça o papel do ESP32 como plataforma adequada para integrar sensores,
relés e interface com o usuário em um único módulo, o que reduz a quantidade de hardware
auxiliar e simplifica a instalação em residências já em uso.

Enquanto esses trabalhos se concentram na automação residencial, Aghenta e Iqbal
(2019) avançam para uma arquitetura de supervisão mais próxima de sistemas SCADA,
também com foco em baixo custo. Os autores descrevem um sistema em que o ESP32
atua como gateway e unidade remota (RTU), publicando dados de temperatura, umidade,
pressão e luminosidade via protocolo MQTT para um servidor local baseado em Raspberry
Pi, onde são executados o broker, o Node-RED e o banco de dados. A interface supervisória
é construída na própria ferramenta de fluxos, permitindo monitorar os sinais em tempo
real e acionar cargas remotamente.

Do ponto de vista de integração de sensores e serviços, Lekić e Gardašević (2018)
analisam o uso do Node-RED como plataforma de orquestração de dados em aplicações de
IoT. O estudo mostra como sensores heterogêneos podem ser conectados ao Node-RED por
diferentes protocolos, com destaque para MQTT, e como a ferramenta facilita a criação de

11

dashboards e rotinas de processamento por meio de blocos gráficos. Os resultados indicam
que o Node-RED reduz o esforço de desenvolvimento da camada de aplicação e favorece a
integração com serviços de banco de dados e nuvem

A questão da segurança em arquiteturas de supervisão baseadas em nuvem é discutida
por Sajid, Abbas e Saleem (2016). Os autores realizam uma revisão do estado da arte
em sistemas SCADA assistidos por IoT, identificando ameaças como interceptação de
mensagens, falsificação de comandos e ataques de negação de serviço. O estudo enfatiza a
necessidade de empregar criptografia de ponta a ponta, autenticação robusta e segmentação
de redes para mitigar riscos, especialmente quando protocolos leves como MQTT são
expostos à internet pública. Essas recomendações fundamentam o uso de canais TLS,
credenciais específicas para o broker e separação entre rede local e acesso externo no
desenvolvimento do sistema apresentado neste TCC.

Em síntese, os trabalhos analisados convergem na utilização de microcontroladores
conectados, protocolos leves como MQTT e ferramentas de orquestração como Node-RED
para construir soluções de automação residencial e de supervisão de baixo custo. A
contribuição deste TCC se apoia nessas evidências ao integrar, em uma mesma arquitetura,
um nó urbano e um nó rural baseados em ESP32, combinando automação de iluminação,
controle de irrigação e monitoramento de variáveis ambientais, com supervisão remota via
internet e foco em escalabilidade e segurança.

Na literatura de agricultura de precisão e irrigação inteligente, destacam-se ainda
propostas que utilizam sensores de umidade do solo e temperatura para subsidiar decisões
de manejo hídrico. Nessas soluções, o solo é monitorado continuamente, e os dados são
enviados a um servidor ou plataforma em nuvem, que pode aplicar limiares fixos ou
algoritmos mais sofisticados para decidir sobre o acionamento de válvulas e bombas. O
objetivo recorrente é reduzir o consumo de água e energia, ao mesmo tempo em que se
mantém a umidade em faixas adequadas ao desenvolvimento das culturas, aproximando o
processo de um controle orientado por dados, em contraste com práticas baseadas apenas
em observação visual ou experiência empírica do operador.

Em relação a esse conjunto de trabalhos, o presente TCC se insere como uma aplicação
híbrida que combina automação residencial e irrigação rural em uma mesma infraestrutura
de supervisão. Ao utilizar um nó dedicado à área rural, equipado com sensores de umidade
do solo e temperatura e com capacidade de comandar uma válvula de irrigação, o sistema
explora os princípios de monitoramento contínuo e controle remoto discutidos na literatura
de irrigação inteligente, mas integrados ao ecossistema de automação residencial e à pilha
tecnológica baseada em ESP32, MQTT, Node-RED e SCADA-LTS. Essa integração reforça
a relevância do monitoramento de irrigação como foco central do trabalho, conectando-o
diretamente às tendências atuais de IoT aplicada ao campo.

12

Capítulo 3

Fundamentação Teórica

3.1 Internet das Coisas (IoT)

A Internet das Coisas (IoT) pode ser entendida como o ecossistema em que objetos
físicos dotados de identificação, sensoriamento, processamento e conectividade passam a
interagir entre si e com serviços em nuvem para entregar funcionalidades úteis ao usuário
final, nesse contexto, cada dispositivo publica dados do ambiente, recebe comandos e
coopera com outros para compor serviços de maior valor. A literatura destaca quatro
pilares recorrentes: coisas (dispositivos), comunicação (redes e protocolos), computação
(processamento local e em nuvem) e serviços (aplicações e integrações). Do ponto de
vista arquitetural, é comum organizar um sistema IoT em camadas: percepção (sensores e
atuadores), rede (meios físicos e protocolos de enlace/roteamento), transporte/aplicação
(TCP/IP e protocolos como HTTP, MQTT ou CoAP) e serviços (armazenamento, análise
e interfaces). Essa separação ajuda a isolar responsabilidades: a camada de percepção
adquire dados e executa comandos, a camada de rede garante entrega, a camada de
aplicação define semântica das mensagens e a de serviços agrega visualização, persistência
e automações.

O protocolo MQTT tem ganhado destaque em cenários de monitoramento e controle
por sua leveza e modelo publish/subscribe. Em vez de endereçar dispositivos ponto a
ponto, os nós publicam mensagens em tópicos, e assinantes recebem apenas o que lhes
interessa. QoS selecionável, keep-alive e last-will contribuem para resiliência em redes
sem fio. Em sistemas conectados à internet pública, recomenda-se o uso de TLS para
confidencialidade e integridade, e adicionalmente, autenticação robusta no broker. Em
ambientes embarcados, boas práticas incluem armazenar credenciais de forma segura,
validar o certificado da autoridade (CA) e, quando aplicável, empregar mecanismos do
hardware para proteção do firmware Bahga e Madisetti (2015).

13

3.2 Automação

A ideia de fazer dispositivos operarem sozinhos é antiga. Na Antiguidade, Herão de
Alexandria descreveu mecanismos capazes de abrir portas de templos automaticamente
ao acender o fogo no altar, explorando variações de pressão de ar e água; são exemplos
de autômatos com lógica puramente mecânica descritos em seus tratados Pneumatica
e Automata (Herão de Alexandria). Na tradição islâmica medieval, al-Jazar̄ı catalogou,
em 1206, dispositivos hidráulicos e autômatos musicais no Compêndio de dispositivos
engenhosos, combinando potência hidráulica, temporização e sequências mecânicas para
executar tarefas de forma autônoma (al-Jazar̄ı, 1206).

Nos séculos XVIII e XIX, a automação ganha duas inflexões decisivas. A primeira é a
programabilidade: o tear de Jacquard (1804–1805) usa cartões perfurados encadeados para
tecer padrões complexos sem intervenção constante do operador, antecipando o controle
por instruções discretas que mais tarde influenciaria a própria computação (Jacquard,
1804–1805). A segunda é o controle por realimentação: James Watt aplica, em 1788,
o governador centrífugo ao motor a vapor para regular a velocidade automaticamente,
fechando o ciclo entre medição e atuação e estabelecendo um marco do controle automático
na Revolução Industrial (Watt, 1788).

No século XX, a automação industrial incorpora eletrônica e controle programável.
Em 1961, o Unimate entra em operação numa linha da General Motors, tornando-se o
primeiro robô industrial em serviço: um manipulador capaz de repetir sequências perigosas
e repetitivas com precisão, apontando para a robótica de manufatura (Devol e Engelberger,
1961). Os mesmos princípios que atravessam essa trajetória — sequenciamento de ações,
instruções explícitas, realimentação e segurança operacional — aparecem aqui em escala
embarcada. No sistema proposto, nós com ESP32 executam o ciclo senso–decisão–ação:
sensores fornecem dados, a lógica organiza comandos e estados por tópicos MQTT, e os
atuadores realizam as tarefas de iluminação e irrigação de forma previsível.

3.3 Plataforma ESP32

A plataforma ESP32 tem se consolidado como base de projetos embarcados conectados,
graças à combinação de processador de 32 bits, Wi-Fi 802.11 b/g/n, Bluetooth clássico/BLE
e um conjunto amplo de periféricos (GPIOs, ADCs, DACs, PWM, SPI, I2C e UART).
Segundo a própria documentação técnica da fabricante, o chip foi projetado para aplicações
de Internet das Coisas com modos finos de economia de energia, operação em 2,4 GHz
até 150 Mb/s e integração que reduz a quantidade de componentes externos (Espressif
Systems, 2021). Esses recursos permitem construir nós compactos, de baixo custo e com
conectividade nativa, o que atende diretamente às demandas deste trabalho.

Do ponto de vista histórico, o ESP32 sucede o ESP8266 e marca a transição, na família

14

da Espressif, de soluções “Wi-Fi com microcontrolador auxiliar” para um System-on-Chip
mais completo, com CPU dual-core Tensilica LX6, coprocessador de baixo consumo e
blocos analógicos integrados. Essa evolução incorporou BLE, ampliou o número de GPIOs
e trouxe periféricos que normalmente exigiam circuitos externos, tornando o projeto de
placas e produtos finais mais simples. O principal motivo prático de adoção é a relação
custo-benefício: em uma única placa, o ESP32 oferece conectividade Wi-Fi e BLE integrada,
clock de até 240 MHz, SRAM na casa de centenas de kilobytes e periféricos suficientes
para a maioria das aplicações de automação. Em comparação com plataformas clássicas
baseadas em AVR, como Arduino Uno/Nano (8 bits, 16 MHz, SRAM na ordem de kilobytes
e sem rede nativa), o ESP32 entrega mais processamento, mais memória e conectividade
embutida, reduzindo a necessidade de módulos adicionais e, portanto, o custo total do
sistema. Vale destacar ainda que a velocidade de desenvolvimento é favorecida por uma
comunidade ampla, documentação extensa e exemplos oficiais. A combinação de hardware
acessível, conectividade embarcada, desempenho superior às placas 8-bit tradicionais e um
ecossistema maduro explica por que o ESP32 se tornou a escolha preferencial em projetos
de IoT e automação nos últimos anos (Espressif Systems, 2021).

3.4 Segurança em Sistemas Embarcados

No plano da aplicação, o protocolo MQTT atende bem a dispositivos embarcados
por combinar modelo publish/subscribe com baixa sobrecarga de rede. A organização
por tópicos permite separar telemetria, comandos e estados, enquanto o controle de
qualidade de serviço (QoS) e o last will ajudam a lidar com links instáveis. Em termos
de segurança, a prática corrente é autenticar clientes no broker e restringir permissões
por tópico, evitando publicação ou assinatura indevida. Uma apresentação estruturada
desses elementos, organizados em camadas, papéis e padrões de troca de mensagens, é
apresentada no manual didático de Bahga e Madisetti (2015), que também discute a
integração do MQTT com serviços em nuvem e painéis de visualização.

A proteção do canal é garantida pelo protocolo TLS, sucessor do SSL. De forma geral,
o TLS negocia algoritmos, autentica o servidor por meio de certificados X.509 e estabelece
chaves de sessão. A cifragem simétrica protege o tráfego de dados, enquanto a criptografia
assimétrica é utilizada para a troca de chaves e para a autenticação. Esse conjunto
de mecanismos assegura, de maneira eficiente, os três pilares clássicos da segurança da
informação: confidencialidade, integridade e autenticidade. Tanenbaum (2011) descreve
essa combinação de técnicas, como o uso de chaves públicas, certificados, handshake e
HMAC, como a base prática para o estabelecimento de sessões seguras em redes públicas.

Na prática embarcada, as duas camadas se complementam: o MQTT organiza a
comunicação por tópicos entre sensores e atuadores, enquanto o TLS impede interceptação
e adulteração do conteúdo. A combinação recomendada é autenticar cada dispositivo no

15

broker, validar a cadeia de certificação do servidor e manter políticas mínimas de acesso
por tópico. Com isso, reduz-se a superfície de ataque sem penalizar a latência de forma
relevante, preservando o caráter leve do MQTT ao mesmo tempo em que se herda a base
criptográfica madura do TLS (Bahga e Madisetti, 2015; Tanenbaum, 2011).

16

Capítulo 4

Metodologia do Projeto

4.1 Materiais e Equipamentos

Os itens listados foram selecionados para compor uma arquitetura IoT completa, do
processamento local à conectividade externa, passando por sensoriamento e atuação. O
ESP32 (DevKit V1) cumpre o papel de nó de borda, concentrando processamento e
conectividade Wi-Fi para telemetria e comandos. O RTC DS3231 provê temporização
precisa e estável ao longo do dia, requisito para agendamentos, e também atua como
sensor de temperatura. A malha de sensoriamento inclui o sensor capacitivo de
umidade do solo, a camada de atuação é realizada pelos módulos de relé de 4
canais, que oferecem comutação elétrica isolada para cargas de iluminação e para a
válvula solenóide do sistema de irrigação. A infraestrutura de rede é atendida
pelo roteador Mercusys (MW301R) para a LAN local e pelo ELSYS AmpliMax,
que integra modem e antena direcionais para levar conectividade 3G/4G a áreas com
cobertura limitada, disponibilizando Ethernet ao ESP32 02(ESP 32 rural). O cabeamento
é composto por 80m de fio de 1,5mm², que asseguram a conexão elétrica dos módulos, até
as lâmpadas e a válvula, e por um cabo de rede RJ45 de 30,m, responsável por interligar
o ELSYS AmpliMax ao roteador Mercusys (MW301R). Para prototipagem e testes, as
protoboards, o kit de jumpers, os pushbuttons e o kit de LEDs facilitam montagem,
depuração e sinalização de estados; as fontes ajustáveis para protoboard alimentam os
circuitos de baixa tensão com 3,3/5 V. Em conjunto, esses materiais viabilizam um sistema
híbrido (residencial e rural) capaz de monitorar variáveis ambientais, acionar cargas e
operar rotinas automáticas com sincronização temporal e acesso remoto seguro via MQTT,
conforme resumido na Tabela 4.1.

17

Tabela 4.1: Materiais e custos do protótipo

Item Quantidade Preço total (R$)
ESP32 DevKit V1 2 77,98
Fontes ajustáveis para protoboard 2 17,94
Push-buttons 3 5,00
RTC DS3231 2 78,00
Sensor capacitivo de umidade do solo 1 3,89
Cabo 1,5mm2 (energia) 80 m 104,00
Válvula solenóide 1 20,44
Módulos relé 4 canais 2 100,00
Cabo de rede RJ45 30 m 22,56
Roteador Mercusys MW301R 1 78,00
Elsys AmpliMax 1 679,90
Kit de 10 LEDs coloridos 1 10,00
Kit de jumpers 1 30,00
Protoboards 2 24,12
Total 1.251,83

18

4.2 Diagrama do Sistema

A arquitetura proposta é composta por dois nós ESP32 fisicamente separados: um
nó urbano (‘‘ESP32 01’’) instalado na residência da cidade e um nó rural (‘‘ESP32 02’’)
instalado no sítio, a aproximadamente 7 km de distância. Ambos controlam três lâmpadas;
o nó rural acrescenta a automação da irrigação e a telemetria de umidade do solo e
temperatura. A conectividade local é feita via Wi-Fi; o transporte de dados e o controle
remoto utilizam o protocolo MQTT com canal seguro (TLS), permitindo supervisão e por
meio de um serviço de dashboard/SCADA.

Figura 4.1: Topologia física: nó urbano (ESP32 01) e nó rural (ESP32 02)

19

O diagrama da Figura 4.1 evidencia os dois domínios: no lado urbano, o ESP32 01
aciona três lâmpadas; no lado rural, o ESP32 02 aciona três lâmpadas e a válvula solenóide
da horta. Sensores de temperatura complementam o contexto ambiental. A sincronização
temporal é garantida por RTC (DS3231), essencial para registros e rotinas programadas.

Figura 4.2: Fluxo lógico de telemetria e controle do projeto

A Figura 4.2 detalha o ciclo de dados:

1. Aquisição local: o ESP32 02 lê a umidade do solo (sensor capacitivo) e a tempera-
tura; ambos os nós mantêm relógio estável com o DS3231 para carimbar eventos.

2. Publicação MQTT: as leituras e estados são publicados em tópicos hierárquicos
(por exemplo, tcc/sitio/umidade, tcc/cidade/lampadas/estado). Níveis de QoS
e retenção podem ser ajustados conforme a criticidade do dado.

3. Broker e segurança: a sessão ocorre sobre TLS na porta segura do serviço,
com verificação da CA pelo cliente, assegurando confidencialidade, integridade e
autenticidade dos pontos.

4. Supervisão e histórico: o SCADA-LTS/dashboard assina os tópicos de interesse
para fazer os gráficos séries e armazenar histórico.

5. Atuação: os ESP32 consomem os comandos e acionam os módulos de relé (ilumi-
nação e válvula), respeitando lógicas locais como modo automático, e janelas de
horário.

20

4.3 Configuração do Hardware

4.3.1 Protótipo urbano (ESP32-01): acionamento local e remoto

O protótipo urbano integra um ESP32 DevKit V1 em protoboard, um módulo de
alimentação dedicado só para ele com 5V, botões de teste e um módulo de relés de 4
canais alimentado por 5V para comandar as cargas residenciais (lâmpadas). A montagem
valida a arquitetura do sistema: leitura de entradas locais, lógica de controle embarcada
e comutação das saídas, preparando a integração com a infraestrutura de nuvem via
Wi-Fi/MQTT.

Composição do protótipo.

• ESP32 DevKit V1: controlador principal, responsável pelo ciclo de leitura das
entradas, temporizações e publicação/assinatura de tópicos MQTT.

• Protoboard com alimentação: fornece trilhos de 5 V/3,3 V para lógica e periféri-
cos; LED de diagnóstico para verificação rápida do estado.

• Botões de teste: permitem acionar localmente as saídas e validar o firmware sem
a interface remota.

• Módulo de relés (4 canais): estágio de potência para o acionamento das cargas;
recebe sinais de nível lógico do ESP32 e isola a comutação das lâmpadas.

• Rede de desacoplamento: capacitores para estabilidade dos sinais durante chave-
amentos.

• RTC DS3231: relógio de tempo real com sensor de temperatura integrado.

Funcionamento: no firmware, os botões locais e os comandos recebidos por MQTT
atualizam o estado das saídas digitais. O módulo de relés comuta as três lâmpadas
previstas para o nó urbano.

Observações de integração e segurança.

• Manter o aterramento comum entre a lógica e o módulo de relés, respeitando a
isolação recomendada pelo fabricante do módulo de relés.

• Separar fisicamente os condutores de baixa tensão dos condutores das cargas de rede.

21

Figura 4.3: ESP32 01 na protoboard, LED que indica modo automatico.

Figura 4.4: Vista superior do arranjo: ESP32 01, fileira de botões de teste e periféricos
conectados ao barramento.

22

Figura 4.5: Módulo de relés interligado ao ESP32 01.

4.3.2 Protótipo rural (ESP32-02): irrigação e iluminação

O nó rural implementa um ESP32 DevKit V1 em protoboard conectado a um
módulo de relés de 4 canais, preparado para o acionamento das cargas do sítio (três
lâmpadas e uma válvula solenoide). A comunicação de controle é feita via Wi-Fi/MQTT
(com TLS quando ativado), integrando-se ao fluxo Node-RED.

Composição do protótipo.

• ESP32 DevKit V1: unidade de controle, responsável por ler comandos remotos
(MQTT) e aplicar rotinas locais de segurança (temporizações e estados).

• Protoboard: fornece trilhos de 5 V/3,3 V para lógica e periféricos;

• Módulo de relés (4 canais): estágio de comutação das cargas de campo (válvula
e iluminação), isolando a lógica do lado de potência.

• Cabeamento de bancada: organização que prioriza separação entre sinais de
controle e condutores de carga, facilitando medições e depuração.

• RTC DS3231: relógio de tempo real com sensor de temperatura integrado; fornece
base de tempo estável para agendamentos e carimbo de tempo das leituras. Comuni-

23

cação via I2C (SDA/SCL) em 3,3 V, com bateria de reserva (CR2032) para manter
a hora em caso de falta de energia.

• Sensor de umidade do solo (HW390): módulo de três pinos conectado pelo
fio amarelo ao sinal analógico do ESP32 (saída AO do módulo), com GND ao terra
comum e VCC em 3,3 V (tensão de operação). Utilizado para estimar o teor de
umidade do solo.

• Roteador WiFi Mercusys: atua como ponto de acesso local para o nó rural, forne-
cendo a rede WiFi utilizada pelo ESP32 e pelo notebook/smartphone de supervisão.
Realiza a função de gateway entre a LAN do protótipo e a Internet, encaminhando
o tráfego MQTT/TLS até o servidor remoto.

• Amplimax: equipamento de comunicação de longa distância instalado na área
rural, responsável por estabelecer o enlace 4G com a operadora celular e criar a rede
IP que atende o nó agrícola (ESP32). Opera como roteador de borda, garantindo
conectividade estável para o envio de telemetria e o recebimento de comandos
remotos.

Funcionamento: O firmware do ESP32 recebe comandos do broker MQTT para
abrir/fechar a válvula e acionar a iluminação. Este nó está preparado para integrar
sensores de umidade do solo e temperatura.

Integração e segurança.

• Elétrica: manter terra comum entre a lógica e o módulo de relés, respeitando a
isolação do fabricante;

• Comunicação: quando em produção, utilizar MQTT com TLS (porta 8883),
autenticação de usuário/senha e certificado válido.

A Figura 4.6 apresenta o ESP32-02 montado em protoboard e interligado ao módulo
de relés, enquanto a Figura 4.7 detalha o estágio de comutação das cargas. A Figura 4.8
ilustra o sensor de umidade do solo HW-390 utilizado nos ensaios e as Figuras 4.9 e 4.10
mostram a válvula de irrigação empregada no protótipo. Por ultimo as Figuras 4.11 e
4.12 mostram respectivamente o roteador mercusys e o amplimax instalado

24

Figura 4.6: ESP32 02 em protoboard interligado ao módulo de relés.

Figura 4.7: Detalhe do módulo de relés (4 canais) com retornos de carga.

25

Figura 4.8: Sensor de umidade do solo (HW390).

Figura 4.9: Válvula de irrigação Vista Frontal

26

Figura 4.10: Válvula de irrigação Vista Lateral

Figura 4.11: Amplimax instalado

27

Figura 4.12: Roteador Mercusys configurado.

4.3.3 Configuração do roteador para encaminhamento de porta

segura (TLS)

Para permitir a comunicação remota entre os módulos ESP32 e o servidor MQTT
instalado na máquina virtual, foi necessário realizar a configuração do roteador da operadora
Vivo, responsável pela rede local do sistema. O objetivo foi liberar a porta 8883/TCP,
utilizada pelo protocolo MQTT sobre TLS (MQTTS), garantindo a criptografia e a
integridade dos dados trafegados entre os dispositivos e o servidor.

Procedimento de configuração: O acesso ao roteador foi feito por meio do navegador,
digitando o endereço IP local do equipamento. Em seguida, acessou-se o menu ‘‘Configu-
rações → Rede Local’’, onde o sistema exige autenticação (Figura 4.13). Após o login
com o nome de usuário e senha do administrador, foi aberta a aba ‘‘Encaminhamento
de Porta’’, responsável por redirecionar conexões externas a dispositivos específicos da
rede interna.

Na tela de encaminhamento, foi criada a regra para o serviço MQTT_TLS, utilizando
o protocolo TCP, com a porta externa e interna 8883, e o endereço IP interno
192.168.15.60, correspondente à máquina virtual onde o broker Mosquitto está hos-
pedado (Figura 4.14). Dessa forma, todo pacote destinado à porta 8883 do roteador é

28

automaticamente redirecionado para o servidor MQTT dentro da rede local.

Importância da configuração: Esse procedimento é essencial para o funcionamento
da comunicação remota no projeto, pois:

• possibilita que os dispositivos ESP32 (urbano e rural) publiquem e recebam mensagens
MQTT através da internet;

• mantém a camada de segurança do TLS ativa, evitando interceptações e adulterações
no tráfego de dados;

• permite a integração entre o ambiente físico de automação e o sistema de supervisão
hospedado na nuvem.

Boas práticas de segurança.

• Utilizar senha de administrador forte no roteador para impedir acesso não autorizado
às configurações.

• Manter a porta 8883 exclusiva para o tráfego do serviço MQTT seguro.

• Monitorar o log de conexões no roteador e no servidor Mosquitto para detectar
acessos suspeitos.

Figura 4.13: Tela de autenticação do roteador Vivo antes do acesso às configurações de
rede.

29

Figura 4.14: Criação da regra de encaminhamento da porta 8883/TCP para o servidor
interno (IP 192.168.15.60).

4.4 Programação dos Módulos

4.4.1 Firmware e servidor web do nó urbano (ESP32 01)

O nó urbano é implementado com um microcontrolador ESP32 DevKit V1, responsável
pelo acionamento de três lâmpadas instaladas em ambiente residencial. O firmware
desenvolvido integra, em um único dispositivo, a conexão Wi-Fi, a comunicação MQTT
segura com o broker, o controle local por botões físicos e um servidor web embarcado
para acionamento via navegador, o módulo DS3231 é utilizado como relógio de tempo real
(RTC) para viabilizar o modo automático baseado em janela horária.

O ESP32 opera como estação Wi-Fi, conectando-se ao roteador doméstico por meio
da função WiFi.begin(). Após o estabelecimento do enlace na camada de enlace/rede, o
firmware cria um cliente TLS (WiFiClientSecure) e inicializa a biblioteca PubSubClient
para comunicação MQTT na porta 8883. O certificado da autoridade certificadora do
broker é armazenado no código em formato PEM e carregado em tempo de execução com
setCACert(), permitindo a autenticação do servidor e a criptografia de todos os frames
MQTT. A sessão MQTT ainda é protegida por autenticação com usuário e senha, de modo
que somente dispositivos autorizados conseguem publicar e assinar tópicos do projeto.

A organização dos tópicos MQTT segue a hierarquia tcc/esp01/casa/. Foram de-
finidos quatro tópicos de comando, destinados a receber mensagens de aplicações ex-
ternas (aplicativo MQTT no smartphone), a saber: tcc/esp01/casa/l1, l2, l3 e auto.
De forma complementar, o nó publica seu estado em tópicos de telemetria do tipo
tcc/esp01/casa/state/varivel, permitindo que qualquer cliente reconstrua o estado atual
das saídas digitais. Todas as publicações de estado utilizam a opção retain, de maneira
que o último valor permaneça armazenado no broker e seja reenviado automaticamente a

30

novos clientes assinantes. Configura-se uma mensagem de status (tcc/esp01/casa/status
com os valores ‘‘online’’/‘‘offline’’), que indica aos supervisórios quando o nó urbano perde
a conexão com o servidor.

O mapeamento de hardware associa os GPIOs do ESP32 aos três relés (LAMP1, LAMP2
e LAMP3), aos botões de comando local e a um LED indicador do modo automático.
O firmware mantém variáveis booleanas para representar o estado de cada lâmpada
(estadoLamp1, estadoLamp2 e estadoLamp3) e quando uma mensagem MQTT é recebida,
a função de callback interpreta o payload textual (‘‘on’’, ‘‘off’’, ‘‘1’’, ‘‘0’’, etc.), atualiza as
variáveis internas e aciona imediatamente os respectivos GPIOs com digitalWrite(). Em
seguida, a função publishState() publica o novo estado em todos os tópicos de telemetria,
garantindo a sincronização entre o nó físico, o painel MQTT.

Para suportar o modo automático, o ESP32 é conectado a um módulo RTC DS3231
via barramento I2C. O relógio é inicializado no setup e, a cada iteração do laço principal,
a função dentroJanela_BRT_1830a0500() consulta o horário em formato BRT. Quando
o modo automático está habilitado e o horário corrente encontra-se na janela 18h30--5h00,
o firmware força as três lâmpadas para o estado ligado; fora dessa janela, as saídas são
desligadas. Assim, mesmo na ausência de conexão com a nuvem, o nó urbano mantém um
comportamento previsível, alinhado a uma rotina de iluminação residencial noturna.

Vale destacar ainda que além da interface MQTT, o ESP32 disponibiliza um servidor
HTTP embarcado na porta 80, responsável pela página de acionamento ilustrada na
Figura 4.15. A função relay_wifi() monitora se há clientes conectados ao objeto WiFiServer
e processa manualmente as requisições recebidas. Quando a linha de requisição contém
GET /lamp1/on, /lamp1/off e comandos equivalentes para as demais saídas, o firmware
altera o estado interno da lâmpada correspondente e atualiza o LED de modo automático
quando aplicável.

O conteúdo HTML é gerado dinamicamente e enviado ao navegador linha a linha
via httpclient.println(). A página utiliza uma folha de estilo CSS simples, com a classe
.par1 definindo o formato dos botões e as classes .btOn e .btOff diferenciando visualmente
os estados ‘‘ligar’’ e ‘‘desligar’’. O cabeçalho exibe o título ‘‘Servidor de acionamento’’
e, abaixo, são mostrados o estado textual de cada lâmpada e um botão correspondente.
Quando a saída está desligada, o botão aparece em verde com o texto ‘‘lamp X turn on’’;
quando está ligada, o botão passa para cinza com o texto ‘‘lamp X turn off ’’, permitindo
ao usuário alternar o estado com um único clique. Um bloco adicional apresenta o estado
do modo automático e um botão dedicado para sua ativação ou desativação.

No laço principal (loop()), o firmware gerencia, a cada iteração, a seleção entre controle
manual e automático, além dos serviços de comunicação. Primeiro, lê-se o botão dedicado
ao modo automático (BOTAO_AUTO) com uma janela mínima de antirruído (debounce)
baseada em millis(); quando pressionado, a variável modoAutomatico é alternada e o
LED de indicação (LED_MODO_AUTO) é atualizado. Em seguida, se o modo automático estiver

31

desativado, o código verifica os três botões locais (BOTAO1–3). Um botão pressionado força o
respectivo estado da lâmpada (estadoLampX) para true; quando solto, caso o espelho lógico
proveniente das interfaces remotas (lampX_status) esteja em false, a saída é mantida
desligada. Após computar esses estados, os GPIOs dos relés (LAMP1–3) são atualizados
com digitalWrite(), garantindo que o estado interno reflita o hardware.

Por fim, o laço assegura a robustez da conectividade. Se o Wi-Fi cair, uma tentativa
de reconexão é feita a cada 5 s e o laço retorna cedo, evitando processamento inútil de
MQTT/HTTP sem rede. Quando a interface está ativa, o cliente MQTT é mantido
com mqtt.loop() e, se necessário, é restabelecido por mqttReconnect(), que refaz as
assinaturas e republica os estados. Em todas as iterações, o servidor HTTP embarcado
é atendido pela chamada relay_wifi(), que processa requisições GET para ligar/desligar
cada lâmpada e o modo automático, também invocando publishState() após qualquer
mudança. Os códigos completos estão no Apêndice A.

Figura 4.15: servidor de acionamento ESP32 01.

32

Início / setup()

Inicializa GPIOs, RTC, Wi-Fi, MQTT (TLS) e HTTP

Wi-Fi conectado?

MQTT conectado?

Lê BOTAO_AUTO (debounce) e atualiza modoAutomatico + LED

Modo automático ativo?

Executa mqtt.loop() (tratamento de comandos)

Atende servidor HTTP (relay_wifi())

Fim da iteração de loop()

Reconecta Wi-Fi(aguarda 5 s) Reconecta MQTTrefaz assinaturas e estados

Lê BOTAO1–3Atualiza estadoLampXe GPIOs (LAMP1–3) Lê RTC (BRT)Verifica janela 18h30--5h00Liga/desliga LAMP1--3

sim

não

sim

não

não sim

Figura 4.16: Fluxograma simplificado da lógica do nó urbano (ESP32 01).

4.4.2 Firmware do nó rural (ESP32 02)

4.4.3 Módulo de comunicação Wi-Fi do nó rural

A conectividade sem fio do nó rural foi encapsulada em um componente específico
denominado wifi, responsável por inicializar a interface de rede do ESP32 em modo estação,
gerenciar o processo de conexão ao roteador do sítio e disponibilizar para o restante do
firmware uma sinalização simples de estado da rede. O código-fonte completo desse
componente encontra-se no Apêndice B, identificado como ‘‘Módulo de Wi-Fi (componente
wifi)’’.

O arquivo CMakeLists.txt do componente declara que o módulo wifi é composto pelo
arquivo connect.c, expõe seu cabeçalho na própria pasta (INCLUDE_DIRS ".") e depende
diretamente de bibliotecas do ESP-IDF relacionadas à pilha de rede, sistema e registro
de eventos, tais como esp_wifi, esp_netif, esp_event, nvs_flash e freertos. Essa
organização permite que o mesmo componente de Wi-Fi seja reutilizado em diferentes nós
da automação.

A interface pública do módulo é definida em connect.h. Esse cabeçalho declara três
funções principais: wifi_init(), wifi_connect_sta() e wifi_disconnect(). A primeira
prepara a infraestrutura de rede e registra os tratadores de evento; a segunda estabelece a
conexão em modo estação com um ponto de acesso Wi-Fi, recebendo como parâmetros
o SSID, a senha e um tempo máximo de espera; a terceira encerra de forma ordenada a
conexão.

A implementação dessas funções encontra-se em connect.c. Logo no início, é declarada

33

a variável global volatile bool wifiOnline, utilizada por outras tarefas do sistema para
saber se o nó está efetivamente conectado e com endereço IP válido. Esse arquivo também
define um event group (wifi_events) e dois bits de sincronização: CONNECTED_GOT_IP e
DISCONNECTED. Esses bits são acionados pelos tratadores de evento conforme o estado da
conexão evolui.

A função wifi_event_handler() atua como ponto central de tratamento dos eventos ge-
rados pelo Wi-Fi e pela pilha de IP. Quando o módulo entra em WIFI_EVENT_STA_START,
a função inicia a tentativa de conexão ao roteador. Em WIFI_EVENT_STA_CONNECTED,
registra-se o sucesso de associação física ao ponto de acesso, ainda sem IP. Em caso de
WIFI_EVENT_STA_DISCONNECTED, o código decodifica o motivo da desconexão,
registra mensagens de log e sinaliza o bit de desconexão no event group. Já o evento
IP_EVENT_STA_GOT_IP indica que o nó recebeu um endereço IP do roteador; nesse
momento, a variável wifiOnline é ajustada para true e o bit CONNECTED_GOT_IP é acio-
nado, liberando as tarefas que dependem de conectividade para prosseguir.

A função wifi_init() executa a configuração inicial da pilha de rede. Nela são
chamados, em sequência, os procedimentos de inicialização do esp_netif, a criação
do loop de eventos padrão, a inicialização do driver de Wi-Fi e o registro da própria
wifi_event_handler() tanto para eventos de Wi-Fi quanto para o evento de obtenção de
IP. Também é definido que as configurações de Wi-Fi serão mantidas em RAM e criado o
event group utilizado para sincronização com a função de conexão.

A função wifi_connect_sta() é responsável por, de fato, conectar o ESP32 ao roteador
do sítio. Ela cria a interface padrão em modo estação, preenche a estrutura wifi_config_t

com o SSID e a senha informados, configura o dispositivo em modo WIFI_MODE_STA, aplica
a configuração (esp_wifi_set_config()) e inicia o Wi-Fi com esp_wifi_start(). Em
seguida, a função bloqueia em xEventGroupWaitBits(), aguardando até que um dos bits
CONNECTED_GOT_IP ou DISCONNECTED seja acionado, dentro de um tempo limite estabelecido
pelo parâmetro timeout. Caso o IP seja obtido a tempo, a função devolve ESP_OK; em caso
de falha ou estouro de tempo, retorna ESP_FAIL.

A função wifi_disconnect() oferece um encerramento explícito da conexão, chamando
esp_wifi_disconnect() e esp_wifi_stop(). Embora o nó rural permaneça normalmente
conectado para suportar a recepção contínua de comandos MQTT e o envio periódico de
dados, essa função permite desligar a interface sem fio em cenários de teste, depuração ou
economia de energia.

4.4.4 Arquitetura principal e módulo de temporização do nó rural

O firmware do nó rural (ESP32 02) foi organizado como um componente do ESP-IDF,
de forma a agrupar em um único módulo o arquivo principal da aplicação (main.c), a
lógica de comunicação MQTT, o agendador de tarefas e o driver do RTC externo DS3231.

34

O arquivo CMakeLists.txt associado a esse componente declara, por meio da instrução
idf_component_register, que o conjunto de fontes é composto pelos arquivos main.c,
MQTT.c, ds3231.c e scheduler.c. Esse mesmo arquivo define que os cabeçalhos do com-
ponente se encontram na própria pasta (INCLUDE_DIRS ".") e especifica as dependências
internas e externas, como os módulos de Wi-Fi, JSON, MQTT, drivers de hardware e
pilha TCP/IP. Com isso, o ESP-IDF é capaz de compilar o nó rural como um bloco coeso,
reaproveitável e com suas bibliotecas de suporte claramente declaradas. O código-fonte
completo desse componente encontra-se reunido no Apêndice B.

Dentro dessa arquitetura, o par de arquivos ds3231.h e ds3231.c implementa o módulo
responsável pela contagem de tempo e pela medição de temperatura com o circuito integrado
DS3231, conectado ao ESP32 por meio do barramento I2C. O cabeçalho ds3231.h define
o endereço I2C do dispositivo (0x68) e os registradores utilizados para acesso à informação
de tempo e de temperatura, também declara as funções públicas do módulo: inicialização
do RTC, leitura e escrita da data e hora, e leitura da temperatura.

A implementação em ds3231.c encapsula a lógica de acesso ao hardware. Inicialmente,
são declaradas funções auxiliares para conversão entre o formato BCD (Binary Coded
Decimal), utilizado pelo DS3231 para armazenar segundos, minutos, horas e demais campos
de data, e valores inteiros comuns. Em seguida, são definidas duas rotinas de leitura e
escrita genéricas sobre o barramento I2C, responsáveis por montar os comandos com início,
endereço do escravo, registrador alvo e finalização da transação.

A função ds3231_init() recebe como parâmetros a porta I2C a ser utilizada, os pinos
SDA e SCL e a frequência de operação do barramento. Ela configura o ESP32 como
mestre I2C, associa os pinos físicos, instala o driver de comunicação e realiza uma leitura
de teste no registrador de segundos. Essa leitura inicial serve como verificação simples de
que o DS3231 está presente e respondendo corretamente no barramento, permitindo que a
aplicação registre um erro caso o módulo de relógio em tempo real esteja desconectado ou
com defeito.

Para leitura da hora e da data, a função ds3231_get_time() lê em sequência os sete
registradores que armazenam segundos, minutos, horas, dia da semana, dia, mês e ano.
Os valores em BCD são convertidos para a estrutura struct tm, utilizada pelas funções
padrão de tempo da linguagem C, incluindo o tratamento do formato de 12 ou 24 horas e
os ajustes de índice de mês e ano. Essa função é usada, posteriormente, pelo agendador de
tarefas do nó rural para calcular o horário atual em minutos desde a meia-noite e decidir,
por exemplo, quando ligar ou desligar automaticamente as lâmpadas e a irrigação.

4.4.5 Lógica principal e agendamento do nó rural

A organização da lógica principal do nó rural foi estruturada a partir de um pe-
queno conjunto de arquivos que se complementam: general.h, main.c, scheduler.c e

35

scheduler.h. Esses arquivos reúnem a configuração física do nó (mapeamento de GPIOs,
parâmetros de sensores e tópicos MQTT), o fluxo de inicialização do firmware, a criação
das tarefas do sistema e a lógica de agendamento automático de lâmpadas e irrigação. O
código-fonte completo dessa estrutura pode ser consultado no Apêndice B.

O arquivo general.h concentra as definições que descrevem o mundo físico e lógico
do nó rural. Nele são declarados o nome da rede Wi-Fi e a respectiva senha utilizados
para conectar o ESP32 ao roteador do sítio, os GPIOs associados às três lâmpadas e à
saída de irrigação, e também de parâmetros de operação do conversor analógico-digital
utilizados para leitura do sensor de umidade do solo. O arquivo também define dois pontos
de calibração para o solo seco e úmido, que são empregados em uma interpolação linear
para converter o valor cru do ADC em porcentagem de umidade. Ainda em general.h,
é estabelecido um namespace coerente de tópicos MQTT para o nó rural, separando
claramente comandos (tcc/esp02/rural/l1, /irrig, /auto, /irr_auto) de tópicos de
estado (tcc/esp02/rural/state/), além da declaração da variável wifiOnline, utilizada
por outras partes do firmware para saber se há conectividade disponível.

A função principal de inicialização encontra-se em main.c. Nesse arquivo, a rotina
setup() executa a sequência de preparação do nó: inicializa a NVS, ajusta o nível de
detalhamento dos logs, chama wifi_init() e, em seguida, wifi_connect_sta() para
estabelecer a conexão à rede local. Após garantir a conectividade básica, o firmware inicia
o processo de sincronização de horário via SNTP, configura o fuso horário do sistema para
UTC-3 e invoca ds3231_init() para habilitar o uso do RTC externo. Com isso, mesmo
que a conexão com a internet seja perdida posteriormente, o nó passa a contar com uma
base de tempo local estável para acionar as agendas automáticas.

O mesmo arquivo main.c contém a função io_init(), responsável por configurar os
GPIOs associados às lâmpadas e à irrigação como saídas digitais, assegurando que todas as
cargas iniciem desligadas no momento do boot. Na função app_main(), após a chamada a
setup() e io_init(), são criadas as tarefas FreeRTOS que compõem o comportamento
do nó rural: uma tarefa dedicada ao controle MQTT (MQTTControlTask), o agendador
automático (SchedulerTask), a tarefa de envio de dados (MQTTSenderTask) e duas tarefas
de aquisição das grandezas monitoradas (taskTemperatureQueue e taskHumidityQueue).
Essa divisão em tarefas especializadas permite que o nó execute, em paralelo, a recepção
de comandos, o acionamento de cargas, a leitura de sensores e o envio de telemetria, sem
que uma função interfira diretamente na responsividade das demais.

Já a lógica de agendamento automático está concentrada nos arquivos scheduler.c e
scheduler.h. O cabeçalho scheduler.h expõe apenas o protótipo da função SchedulerTask(),
enquanto a implementação em scheduler.c utiliza o horário fornecido pelo RTC DS3231
para calcular os minutos decorridos desde a meia-noite e, a partir disso, decidir se o sistema
deveria estar em um período de lâmpadas ligadas ou de irrigação ativa. Funções auxiliares
como minutes_since_midnight() e in_window() encapsulam esses cálculos, incluindo o

36

caso em que uma janela de funcionamento cruza a meia-noite (por exemplo, das 18h30 até
as 5h do dia seguinte).

A tarefa SchedulerTask() é executada com período de um segundo e avalia conti-
nuamente duas janelas de funcionamento: a irrigação, configurada entre 9h00 e 9h10, e
a iluminação, configurada das 18h30 até as 5h00 da manhã seguinte. Quando o modo
automático de irrigação está habilitado, a tarefa compara o horário atual com a janela
definida e liga ou desliga a saída de irrigação por meio da função set_irrig(), que
também atualiza o tópico MQTT de estado correspondente. De forma análoga, quando o
modo automático de iluminação está ativo, a tarefa comanda o conjunto de três lâmpadas
simultaneamente, utilizando set_all_lamps() para refletir o estado físico das cargas e
publicar o estado atualizado nos tópicos de state.

4.4.6 Módulo de comunicação MQTT e formatação de dados

A comunicação com o broker MQTT, bem como o empacotamento e o envio dos dados
de sensores, foi organizada no conjunto formado por MQTT.h, mqtt_cert.h e MQTT.c. Esses
arquivos definem tanto a interface de alto nível usada pelas demais partes do firmware
(tarefas de leitura de sensores, agendador e função principal) quanto os detalhes da conexão
segura via TLS, da assinatura de tópicos de comando e da publicação periódica dos valores
de temperatura e umidade do nó rural. O código-fonte completo desses arquivos está
reunido no Apêndice B.

O cabeçalho MQTT.h descreve a interface pública do módulo de comunicação. Nele
são definidas duas estruturas de dados de uso recorrente: MqttQueueFloat_t, utilizada
como fila de envio para o cliente MQTT de telemetria, e SysDataFloat_t, empregada
como buffer circular interno para armazenar séries temporais de leituras de sensores. Cada
estrutura guarda um rótulo (tag), o identificador lógico (local), o valor de ponto flutuante
medido e um carimbo de tempo em segundos. O arquivo também declara constantes que
determinam o tamanho máximo dessas filas e reúne as variáveis globais que representam o
estado das cargas e dos modos de operação do nó (lamp1_state, auto_mode, irrig_state,
auto_irrig), além do identificador da tarefa responsável pelo envio MQTT. Por fim,
MQTT.h expõe os protótipos das funções de inicialização de tempo, armazenamento em
fila, tarefas de leitura de sensores e tarefas de comunicação, permitindo que o restante do
firmware utilize o módulo sem conhecer os detalhes de implementação.

O arquivo mqtt_cert.h armazena o certificado da autoridade certificadora utilizado
para verificar a identidade do broker MQTT na conexão segura. O certificado é incluído no
firmware como uma cadeia em formato PEM e é associado aos campos de configuração do
cliente MQTT responsáveis pela verificação do servidor remoto. Ao utilizar a URI mqtts://
e preencher o parâmetro broker.verification.certificate com esse certificado, o nó
rural passa a estabelecer uma sessão TLS em que o broker é autenticado antes da troca de

37

dados. Essa abordagem protege os comandos e as leituras de telemetria contra interceptação
e alteração durante o tráfego na rede, reforçando a segurança da automação rural.

A implementação central do módulo encontra-se em MQTT.c. Esse arquivo começa com
funções auxiliares para sincronização de horário via SNTP e conversão de carimbos de
tempo para o formato ISO 8601, que serão utilizados na construção dos JSON enviados ao
backend. Também são definidos um manipulador genérico de eventos MQTT e uma função
payload_is_on(), que interpreta mensagens de comando simples ("on", "1", "true") e as
converte em valores booleanos. A tarefa MQTTControlTask() cria o cliente MQTT dedicado
ao controle, configurado com o endereço do broker, credenciais de acesso e certificado TLS.
Uma vez conectado, esse cliente assina os tópicos de comando das lâmpadas, da irrigação
e dos modos automáticos. Sempre que uma mensagem é recebida nesses tópicos, a função
mqtt_control_event() identifica qual carga está sendo comandada, atualiza as variáveis
de estado correspondentes, aciona os GPIOs físicos por meio de funções internas e publica,
nos tópicos de state, o novo estado lógico com a flag de retenção ativada.

O mesmo arquivo também implementa o caminho da telemetria. As tarefas taskHumidityQueue()
e taskTemperatureQueue(), descritas anteriormente, preenchem os buffers circulares com
as leituras mais recentes de umidade do solo e temperatura. A tarefa MQTTSenderTask()

observa essas filas e, sempre que há dados novos e conectividade Wi-Fi disponível, copia as
amostras mais recentes para o vetor generalDataQueue, marcando que há dados a enviar.
Em seguida, essa tarefa notifica a função MQTTSender(), que cria um segundo cliente
MQTT, dedicado apenas à publicação, reutilizando o mesmo certificado de confiança.
Esse cliente constrói dois tipos de payload: um formato textual compacto, no padrão
{TAG:VAL:TIMESTAMP,...}, publicado no tópico tcc/esp02/rural/raw para depuração em
ferramentas como o MQTTBox, e dois objetos JSON separados, com valor numérico e times-
tamp em ISO 8601, enviados aos tópicos tcc/esp02/rural/temp e tcc/esp02/rural/hum,
compatíveis com os fluxos de processamento no backend.

Além do envio de dados, MQTT.c também contém rotinas para leitura pontual de valores
assinados e para gerenciamento das filas. A função storeFloatQueue() implementa uma
fila circular de tamanho fixo, descartando as medições mais antigas quando o buffer está
cheio e registrando cada nova amostra com um carimbo de tempo obtido a partir do relógio
DS3231. A função convertData() realiza o parse de mensagens recebidas em formato
textual, extraindo o valor numérico mesmo quando o payload possui prefixos ou outros
campos auxiliares. Por fim, após a confirmação de publicação (ACK do broker), o módulo
limpa as estruturas internas, zera os índices e ajusta as variáveis de controle para evitar
acumulação de dados redundantes na memória.

Em conjunto, MQTT.h, mqtt_cert.h e MQTT.c estruturam o subsistema de comunicação
do nó rural de forma a combinar controle e envio periódico de telemetria, sempre sobre
uma conexão cifrada e autenticada.

38

Início / app_main()

Inicializa NVSe nível de log

wifi_init()pilha de rede e eventos

wifi_connect_sta()conectou ao roteador?

Registra erroaguarda e tenta de novo
Sincroniza horário via SNTPajusta fuso (UTC-3)ds3231_init()

io_init()GPIOs de lâmpadas e irrigação (desligadas)

Cria tarefas FreeRTOS(SchedulerTask, MQTTControlTask,taskTemperatureQueue, taskHumidityQueue, MQTTSenderTask)

Execução contínua das tarefas do nó rural

sim

não

SchedulerTask()usa DS3231janelas de luz e irrigaçãoset_all_lamps(), set_irrig() MQTTControlTask()cliente MQTT de controleassina comandosatualiza estados e GPIOs taskTemperatureQueue()taskHumidityQueue()lê sensores, converte para valorespreenche filas de telemetria

MQTTSenderTask()verifica filasmonta payload bruto e JSONpublica telemetria em tópicos MQTT

Figura 4.17: Fluxograma simplificado da lógica de inicialização e tarefas do nó rural
(ESP32 02).

4.5 Aplicativo Mobile(IoT MQTT Panel)

O Aplicativo utilizado neste trabalho foi o IoT MQTT Panel. Este aplicativo transforma
o smartphone em cliente MQTT para supervisão e comando dos nós Casa (urbano, ESP32-
01) e Sítio (rural, ESP32-02). As Figuras 4.18 a 4.23 mostram a criação da conexão segura
com o broker e os painéis utilizados no projeto.

Lista de conexões: Na tela Connections (Figura 4.18) o usuário visualiza, cria e
gerencia conexões MQTT. O item IOT indica a conexão já cadastrada, os botões flutuantes
permitem importar/exportar configurações e criar novas conexões.

39

Figura 4.18: Tela Connections do IoT MQTT Panel com a conexão IOT.

Edição da conexão segura: Na tela Edit Connection (Figura 4.19) são definidos:
Connection name (IOT), Client ID (iphone-gabriel), Broker address (IP público do
servidor Mosquitto), Port (8883) e Network protocol (TCP-SSL). A seção Manage SSL
configuration armazena certificado/ chaves TLS. Em Add Dashboard vinculam-se os
painéis Casa e Sítio.

Figura 4.19: Edição da conexão MQTT segura e associação dos dashboards.

40

Painel do nó urbano (Casa): A Figura 4.20 apresenta o painel Casa, com quatro
widgets: lâmpada 1, lâmpada 2, lâmpada 3 e modo automático. Esses controles publicam
comandos MQTT para as três cargas de iluminação do nó urbano e para a comutação
entre operação manual e a rotina automática (18:30–05:00, conforme firmware).

Figura 4.20: Painel Casa com widgets de comando.

Painel do nó rural (Sítio): A Figura 4.21 mostra o painel Sítio com seis widgets:
lâmpada 1, lâmpada 2, lâmpada 3, modo automático, irrigação (acionamento manual da
válvula) e irrigação automática (rotina diária 09:00–09:10). Na parte inferior, o gráfico
Temperatura exibe dados publicados pelo sensor do nó rural.

41

Figura 4.21: Painel Sítio com controles de iluminação e irrigação e gráfico de temperatura.

Gráficos de temperatura e umidade ilustrativos no Aplicativo: A Figura 4.22
foca o monitoramento feito pelos dois gráficos de linha. Nos gráficos é possível ver a
Temperatura (°C) e a Umidade (%), permitindo acompanhar a evolução temporal. Os
dados apresentados nos gráficos são dados de testes.

Figura 4.22: Monitoramento no painel Sítio: gráficos de temperatura e umidade.

42

Operação ativa com broker conectado. Por fim, a Figura 4.23 registra o painel em
operação, com conexão estabelecida ao broker (ícone de nuvem em destaque). Observam-se
os mesmos widgets de comando e o gráfico Temperatura com leituras em tempo real,
evidenciando a troca contínua de mensagens MQTT entre smartphone e ESP32.

Figura 4.23: Painel durante operação: conexão ativa com o broker e gráfico de temperatura.

43

4.6 Envio de Dados para a Nuvem

4.6.1 Configuração e Explicação do MQTTBox

Esta seção descreve a configuração do cliente MQTTBox para envio de dados ao
broker MQTT hospedado em máquina virtual. Na Figura 4.24a, observa-se que a conexão
ainda não foi estabelecida, pois a máquina virtual (VM) no Oracle VirtualBox permanece
desligada. Consequentemente, o endereço IP público e a respectiva porta do broker não
respondem até que a VM seja inicializada e as regras de rede (NAT/port forwarding)
estejam ativas.

A Figura 4.24b apresenta os parâmetros definidos no cliente, que serão efetivos assim
que a VM estiver operacional e o broker acessível.

• MQTT Client Name: identificador único do cliente no broker.

• Protocol (MQTTS/TLS): habilita sessão segura com autenticação e criptografia.

• SSL/TLS Version: versão mínima/negociada do TLS utilizada na sessão.

• Username e Password: credenciais de autenticação do cliente no broker.

• Certificate Type: tipo de certificado para validar o servidor (por exemplo, CA do
broker).

• Host: IP público ou FQDN do broker; indisponível enquanto a VM estiver desligada.

Observação1: O endereço IP utilizado na configuração do servidor corresponde ao IP
público da conexão com a internet, distinto do IP interno atribuído à máquina virtual ou
ao roteador local. Esse valor pode ser obtido por meio de serviços de consulta, como o site
whatismyip.com. O uso do IP público é essencial, pois o ESP32 poderá estar conectado
em outra rede Wi-Fi e, portanto, precisará acessar o servidor pela internet a partir desse
endereço.

Observação2: O certificado da autoridade certificadora (CA) utilizado pelo broker
MQTT foi gerado diretamente na máquina virtual Linux por meio do utilitário openssl.
Em um diretório dedicado (por exemplo, ~/certs), foram executados os comandos mkdir

-p /certs && cd /certs, openssl genrsa -out ca.key 2048 e, em seguida, openssl
req -x509 -new -nodes -key ca.key -sha256 -days 365 -out ca.crt. O arquivo
ca.crt resultante corresponde ao certificado público da CA e deve ser copiado para o
código do ESP32, permitindo que o cliente MQTT valide a identidade do servidor durante
o estabelecimento da conexão TLS.

44

(a) Cliente MQTTBox sem conexão, com a VM ainda desligada.

(b) Parâmetros de conexão: nome do cliente, protocolo TLS, versão,
credenciais, certificado e host.

4.6.2 Configuração da Máquina Virtual

As Figuras 4.25 e 4.26 apresentam os detalhes da configuração da máquina virtual
CentOS10 no Oracle VirtualBox. A VM é nomeada como "CentOS10" e executa um
sistema operacional Linux, utilizando a opção Red Hat 64-bit como sistema convidado. A
memória principal foi configurada para 2048 MB, com dois processadores atribuídos. A
ordem de boot inclui disquete, unidade óptica e disco rígido, e a aceleração de hardware
permanece habilitada.

Figura 4.25: Configurações gerais da máquina virtual CentOS10 no VirtualBox.

45

Figura 4.26: Detalhes adicionais da configuração de sistema da VM, incluindo memória,
placa-mãe e dispositivos de boot.

4.6.3 Configuração e Ativação da Máquina Virtual

Após o primeiro acesso à máquina virtual com o usuário root e a senha definida na
instalação, foi realizada a configuração inicial do ambiente na distribuição Linux, incluindo
a instalação do Docker por meio do gerenciador de pacotes. Esse mesmo usuário é utilizado
para criar e ajustar os contêineres necessários ao projeto (broker MQTT, banco de dados
e Scada-LTS), que serão apresentados nas figuras mostradas na sequência. Ao iniciar a
máquina virtual, como ilustrado na Figura 4.27, o sistema solicitará as credenciais de login.
Utilize o usuário root e a senha correspondente para acessar o sistema.

Figura 4.27: Tela de login da máquina virtual CentOS10.

Em seguida, execute o comando nmtui para acessar a interface de configuração de rede.
Escolha a opção "Edit a connection", conforme demonstrado na Figura 4.28.

Após selecionar "Edit a connection", a tela de configuração de rede será exibida

46

Figura 4.28: Interface do nmtui para edição de conexões.

(Figura 4.29). Nessa tela, ajuste o endereço IP, o gateway e o servidor DNS, marcando a
opção "Available to all users"antes de confirmar.

47

Figura 4.29: Ajuste das configurações de rede na VM.

Dessa forma, a máquina virtual estará configurada e pronta para uso.
Com as configurações de rede ajustadas, retornamos ao menu principal do nmtui, como

ilustrado na Figura 4.28. Nesse menu, selecione a opção "Activate a connection"para
ativar a conexão recém-configurada. A Figura 4.30 demonstra o processo de ativação.

Ao prosseguir e confirmar a ativação, conforme a Figura 4.30, a máquina virtual estará
finalmente conectada e pronta para ser utilizada.

48

Figura 4.30: Confirmação da ativação da conexão na máquina virtual.

Na etapa final, conforme ilustrado na Figura 4.31, o cliente MQTTBox aparece
devidamente conectado ao broker, indicando que a máquina virtual foi iniciada com
sucesso e as configurações foram aplicadas.

Figura 4.31: Estado de conexão estabelecida no MQTTBox.

As figuras subsequentes mostram a configuração dos publishers e subscribers, respecti-
vamente, para os tópicos de controle e monitoramento definidos no projeto.

49

Figura 4.32: Configuração de publishers e subscri-
bers do projeto parte 1.

Figura 4.33: Configuração de publishers e subscri-
bers do projeto parte 2.

Figura 4.34: Configuração de publishers e subscri-
bers do projeto parte 3.

Figura 4.35: Configuração de publishers e subscri-
bers do projeto parte 4.

Essas imagens ilustram os tópicos configurados para publicação e assinatura de mensa-
gens entre os dispositivos ESP32.

Caso o MQTTBox não estabeleça conexão, deve-se acessar a máquina virtual e executar
o Comando 01, responsável por inicializar o serviço do broker e verificar seu estado. Esse
procedimento está ilustrado na Figura 4.36.

Listing 4.1: Comando 01 para reativação do serviço do broker e verificação
do contêiner.

1 docker start scadalts-mqtt-1

2 docker ps

A primeira instrução inicia o contêiner scadalts-mqtt-1; a segunda lista os contêineres
em execução, permitindo confirmar o estado do serviço após a tentativa de reconexão
(vide Figura 4.36).

Figura 4.36: Tela de referência do procedimento de contingência para reconexão do
MQTTBox.

50

4.6.4 Fluxo de Dados e Integração com o Node-RED

O Node-RED foi utilizado como plataforma intermediária para o tratamento e rotea-
mento das mensagens publicadas pelo broker MQTT na máquina virtual. Essa ferramenta
permitiu integrar o sistema de automação desenvolvido com os bancos de dados do
SCADA-LTS e com as interfaces de visualização em tempo real.

A Figura 4.37 apresenta o fluxo criado no ambiente do Node-RED, responsável por
receber os dados enviados pelos módulos ESP32, realizar o processamento das informações
e repassá-las ao banco de dados MySQL. Cada nó do fluxo foi configurado de acordo com
a função desempenhada:

• MQTT In: subscreve aos tópicos definidos para leitura de temperatura e umidade,
recebendo as mensagens publicadas pelos dispositivos ESP32;

• Function Nodes: convertem as mensagens JSON recebidas em estruturas compatí-
veis com os comandos SQL utilizados pelo banco de dados;

• MySQL Out: executa as instruções de inserção (INSERT) no banco sensorData,
garantindo o armazenamento contínuo dos valores coletados;

• Debug Nodes: exibem o status de transmissão e eventuais erros de comunicação
durante o teste do fluxo.

Esse arranjo garante a interoperabilidade entre o nível de campo (ESP32 e sensores) e
o nível de supervisão (SCADA-LTS e dashboards), permitindo tanto o envio quanto a
leitura dos dados em tempo real. O uso do Node-RED simplifica o desenvolvimento de
integrações complexas por meio de blocos visuais e fluxos lógicos, vale a pena perceber
que o Node-RED pode oferecer alta flexibilidade para futuras expansões do sistema de
automação.

51

Figura 4.37: Fluxo de integração do Node-RED entre o broker MQTT e o banco de dados
MySQL.

A configuração dos blocos mqtt in e do nó de broker no Node-RED que viabilizam
a recepção de dados de temperatura e umidade publicados pelo ESP32 via MQTT com
autenticação e TLS (porta 8883). As Figuras 4.38 a 4.42 registram as telas de configuração
adotadas.

4.6.5 Assinatura do tópico de temperatura

O nó mqtt in para temperatura foi configurado para assinar um único tópico, com
decodificação automática de JSON e QoS 1, conforme a Figura 4.38. Os principais campos
são:

• Servidor: Broker ;

• Ação: Assinar um tópico único;

• Tópico: tcc/esp02/rural/temp;

• QoS: 1 (entrega pelo menos uma vez);

• Saída: um objeto JSON analisado sintaticamente.

52

Figura 4.38: Nó mqtt in para temperatura.

4.6.6 Assinatura do tópico de umidade

De forma análoga, o nó mqtt in para umidade assina o tópico tcc/esp02/rural/hum,
com QoS 1 e saída em JSON (Figura 4.39). Os campos espelham a configuração anterior,
alterando apenas o nome e o tópico.

53

Figura 4.39: Nó mqtt in para umidade.

4.6.7 Configuração do broker MQTT

O nó mqtt-broker concentra os parâmetros de conexão, segurança e sessão.

Parâmetros de conexão

A Figura 4.40 mostra a aba Conexão que vale tanto para o nó de temperatura quanto
para o nó de umidade. Foi utilizado o IP público do broker na porta segura 8883, com
reconexão automática e uso de TLS habilitado:

• Servidor: 189.110.217.58;

• Porta: 8883 (MQTT sobre TLS);

• Protocolo: MQTT V3.1.1;

• Conectar automaticamente: habilitado;

• Usar TLS: habilitado, associado a uma configuração TLS (vide Seção 4.6.8).

• Keep-alive: 60 s;

54

• Sessão limpa: habilitada.

Figura 4.40: Nó mqtt-broker (Conexão).

Credenciais de autenticação

A aba Segurança que vale tanto para o nó de temperatura quanto para o nó de
umidade(Figura 4.41) define as credenciais do cliente MQTT:

• Nome de usuário: gabriel;

• Senha: cadastrada no broker (campo oculto na interface).

55

Figura 4.41: Nó mqtt-broker (Segurança).

4.6.8 Configuração TLS

A Figura 4.42 documenta o nó tls-config associado ao broker. Os itens essenciais são:

• Certificado CA: arquivo server.crt carregado para validar o certificado apresen-
tado pelo broker;

• Verifique o certificado do servidor: habilitado, assegurando validação do lado
cliente;

• Certificado/Chave privada do cliente: não utilizados nesta configuração (au-
tenticação mútua não requerida).

56

Com essa configuração, a sessão MQTT opera cifrada (TLS), com verificação do certificado
do servidor e autenticação por usuário e senha.

Figura 4.42: Nó tls-config : CA server.crt carregada.

4.6.9 Resumo operacional dos blocos MQTT

Com o broker definido (Seção 4.6.7) e a camada TLS ativa (Seção 4.6.8), os nós mqtt
in das Figuras 4.38 e 4.39 consomem, com QoS 1, os tópicos:

• tcc/esp02/rural/temp (temperatura, JSON);

• tcc/esp02/rural/hum (umidade, JSON).

A opção de saída como objeto JSON permite que as funções subsequentes do fluxo
manipulem diretamente campos como msg.payload.temp e msg.payload.hum, reduzindo
a necessidade de parsing manual e evitando erros de conversão.

57

4.6.10 Funções do Fluxo Node-RED: Normalização, Pareamento

e Inserção

Esta seção descreve, em ordem de execução, as funções JavaScript do Node-RED
utilizadas no fluxo: norm temp, norm hum, pair (temp+hum) e function final. Para cada
função, apresentam-se a captura de configuração no editor do Node-RED e a listagem do
código empregado.

4.6.11 Função norm temp

A Figura 4.43 mostra o editor do nó function norm temp. A função recebe a mensagem
publicada no tópico de temperatura e:

1. realiza parse opcional de JSON quando o payload chega como string;

2. extrai a temperatura (aceita temperature, temp ou número direto);

3. obtém o carimbo de tempo timestamp/ts (ou gera um ISO 8601);

4. valida o valor numérico (Number.isFinite);

5. padroniza a saída em msg.topic=’temp’ e msg.payload={val, ts}.

Figura 4.43: Nó norm temp no editor do Node-RED.

A implementação completa da função norm temp encontra-se no Apêndice C.

4.6.12 Função norm hum

A Figura 4.44 apresenta o nó function norm hum. Ele aplica a mesma estratégia
de saneamento para a variável de umidade, aceitando chaves humidity/hum ou número
direto, e produz como saída msg.topic=’hum’ e msg.payload={val, ts}.

58

Figura 4.44: Nó norm hum no editor do Node-RED.

A função norm hum é apresentada integralmente no Apêndice C.

4.6.13 Função pair (temp+hum)

A Figura 4.45 exibe o nó function pair (temp+hum). Ele mantém, no contexto do
nó, a última leitura de cada variável e só emite uma mensagem combinada quando os
timestamps de temperatura e umidade diferem em no máximo 15 s. Leituras vencidas são
expiradas para evitar pareamentos defasados.

Figura 4.45: Nó pair (temp+hum): pareamento com janela temporal de 15 s.

O código responsável pelo pareamento entre temperatura e umidade pode ser consultado
no Apêndice C.

4.6.14 Função function final

A Figura 4.46 mostra o nó function function final, que recebe o par {temp, hum} e
prepara a inserção parametrizada no MySQL. A função escolhe um timestamp (prioriza o

59

da temperatura), converte para o formato YYYY-MM-DD HH:MM:SS e preenche msg.topic

com o INSERT e msg.payload com os valores. O código está na Listagem 19.

Figura 4.46: Nó function final : preparação do INSERT parametrizado no MySQL.

A função function final, que monta o comando INSERT para a tabela sensorData, está
documentada no Apêndice C.

4.6.15 Pipeline MySQL → SCADA-LTS (configuração passo a

passo)

1) Acesso ao phpMyAdmin (login)

O phpMyAdmin foi instalado na máquina virtual Linux como um serviço definido no
arquivo docker-compose.yml, integrado ao contêiner do MySQL e exposto para acesso
via navegador a partir do host pelo endereço 192.168.15.60/mysql/.

A Figura 4.47 mostra a tela de autenticação do phpMyAdmin. Neste ponto, utiliza-se
o usuário e senha definidos na instalação (na VM), com o idioma ajustado para Português
(Brasil). Após a autenticação, navega-se até o servidor MySQL para criar (ou conferir) o
banco e a tabela do projeto.

60

Figura 4.47: Tela de login do phpMyAdmin.

2) Criação/Verificação do banco SCADA e da tabela sensorData

A Figura 4.48 apresenta a visão do banco SCADA no phpMyAdmin, já contendo a tabela
sensorData. Caso precise criar do zero, utilize o script no apêndice D.

Figura 4.48: Banco SCADA no phpMyAdmin com a tabela sensorData.

Observação prática. O Node-RED insere linhas nesta tabela por meio do nó mysql

usando INSERT (vide função function final descrita em seção anterior), preenchendo sensor,
local, temperature, humidity e timestamp.

3) Instalação do SCADA-LTS

O SCADA-LTS foi instalado na máquina virtual Linux por meio de um contêiner Docker
definido no arquivo docker-compose.yml, apontando para o banco de dados MySQL e
expondo a porta de acesso HTTP na VM(8082). Após a inicialização dos contêineres, a

61

interface web foi acessada via navegador usando o IP da VM, com autenticação inicial
pelas credenciais padrão do sistema: usuário admin e senha admin.

4) Criação dos Data Sources SQL no SCADA-LTS

A Figura 4.49 mostra dois Data Sources do tipo SQL, chamados hum_rural e temp_rural,
ambos conectados ao banco SCADA via JDBC. O connection string utiliza o com.mysql.cj.jdbc.Driver
e define parâmetros de codificação e tempo limite.

Figura 4.49: SCADA-LTS : lista de Data Sources hum_rural e temp_rural (tipo SQL).

5) Data Source hum_rural: consulta e ponto de medição

A Figura 4.50 detalha a configuração do hum_rural. O período de atualização está em
10 s e a consulta retorna sempre o último registro de umidade (humidity) de sensorData,
mapeando colunas para o SCADA-LTS conforme: valueCol (valor numérico) e timeCol

(carimbo de tempo). O Point Humidity está configurado como Numeric, com Column
name = valueCol e Time override column = timeCol.

Figura 4.50: SCADA-LTS → hum_rural: propriedades SQL, Select Statement e Point
details.

62

6) Data Source temp_rural: consulta e ponto de medição

De forma análoga, a Figura 4.51 apresenta o temp_rural, cuja consulta obtém a última
temperatura (temperature) registrada. O Point Temperatura também é Numeric, com
Column name = valueCol e Time override column = timeCol.

Figura 4.51: SCADA-LTS → temp_rural: propriedades SQL, Select Statement e Point
details.

Validação e notas de segurança

Com os Data Sources habilitados e conectados (ícone verde em Status na Figura 4.49),
os Points passam a refletir, a cada 10 s, o último par {valor, timestamp} gravado na
tabela sensorData. Recomenda-se:

• criar um usuário dedicado no MySQL (por exemplo, scada) com permissões mínimas
de SELECT sobre SCADA.sensorData;

• manter o fuso horário do connectionTimeZone e do sistema alinhados para evitar
drift nos painéis e alarmes;

• testar as consultas pelo botão Execute (Statement test) nas telas dos Data Sources
(Figuras 4.50 e 4.51).

4.6.16 Resultado final: gráfico em tempo real no SCADA-LTS

(Modern Watch List)

A Figura 4.52 sintetiza o funcionamento completo da arquitetura implementada ---
do ESP32 ao supervisório --- exibindo a série temporal de temperatura atualizada em

63

tempo real no Modern Watch List do SCADA-LTS. Os dados percorrem o pipeline ESP32
→ MQTT (TLS) → Node-RED → MySQL → SCADA-LTS, onde:

• os nós norm temp e norm hum padronizam as medidas;

• o nó pair (temp+hum) garante sincronismo por janela temporal;

• o nó function final realiza o INSERT parametrizado na tabela SCADA.sensorData;

• os Data Sources SQL temp_rural e hum_rural (atualização a cada 10 s) publicam
os pontos no SCADA-LTS.

O gráfico apresenta navegação temporal interativa (controle deslizante superior),
tooltips por amostra e a curva de tendência da variável monitorada ao longo do dia,
evidenciando a variação térmica típica: resfriamento na madrugada seguido de aquecimento
progressivo no período diurno.

Figura 4.52: SCADA-LTS Modern Watch List : série de temperatura atualizada em tempo
real a partir da tabela sensorData.

Os scripts SQL completos utilizados na configuração do pipeline MySQL → SCADA-
LTS foram reunidos no Apêndice D, de forma a não sobrecarregar o texto principal.

64

Capítulo 5

Resultados e Discussões

5.1 Testes Realizados

Esta seção registra os ensaios funcionais executados nos nós urbano (ESP32 01) e rural
(ESP32 02), abrangendo controle por servidor web, aplicativo MQTT no smartphone e
acionamento local por push button, além da operação do modo automático (agendas). A
Tabela 5.1 sintetiza os resultados.

65

Tabela 5.1: Síntese dos testes funcionais por nó, canal de comando e alvo

ID Nó Canal Alvo Resultado/Observação

1 ESP01 Servidor web Lâmpada 1 OK: comutação executada

2 ESP01 Servidor web Lâmpada 2 OK: comutação executada

3 ESP01 Servidor web Lâmpada 3 OK: comutação executada

4 ESP01 Servidor web Modo automático (lâmpadas) OK: ativação/desativação funcionou

5 ESP01 MQTT (smartphone) Lâmpada 1 OK: comutação executada

6 ESP01 MQTT (smartphone) Lâmpada 2 OK: comutação executada

7 ESP01 MQTT (smartphone) Lâmpada 3 OK: comutação executada

8 ESP01 MQTT (smartphone) Modo automático (lâmpadas) OK: ativação/desativação funcionou

9 ESP01 Push button Lâmpada 1 OK: comutação local

10 ESP01 Push button Lâmpada 2 OK: comutação local

11 ESP01 Push button Lâmpada 3 OK: comutação local

12 ESP01 Push button Modo automático (lâmpadas) OK: ativação/desativação funcionou

13 ESP02 MQTT (smartphone) Lâmpada 1 OK: comutação executada

14 ESP02 MQTT (smartphone) Lâmpada 2 OK: comutação executada

15 ESP02 MQTT (smartphone) Lâmpada 3 OK: comutação executada

16 ESP02 MQTT (smartphone) Modo automático (lâmpadas) Parcial: agenda liga com desloca-
mento de 3 h

17 ESP02 MQTT (smartphone) Irrigação (manual) OK: comutação executada

18 ESP02 MQTT (smartphone) Modo automático (irrigação) Parcial: agenda liga com desloca-
mento de 3 h

5.2 Análise dos Resultados

Controle distribuído e coerência de estados

No nó urbano (ESP01), o controle por servidor web, aplicativo MQTT e push button
apresentou comportamento consistente, com comutação correta das três lâmpadas e ativa-
ção do modo automático. A redundância de canais de comando reforça a disponibilidade
operacional: em ausência temporária de rede, o acionamento local permanece funcional, e
quando a rede está presente, o controle remoto é efetivo.

No nó rural (ESP02), as comutações por aplicativo MQTT funcionaram para lâmpadas e
irrigação. A ativação do modo automático (lâmpadas e irrigação) também foi bem-sucedida,
porém com deslocamento de 3 horas em relação ao horário planejado.

66

Anomalia de agendamento: deslocamento de 3 horas

O offset de 3 h observado em agendas do ESP02 é típico de mismatch de fuso/relógio
entre os elementos do sistema. Hipóteses prováveis:

• ESP32 sem ajuste de timezone após sincronização SNTP/NTP (relógio interno em
UTC e agenda interpretada como local).

• RTC externo descalibrado ou gravado em horário local enquanto o software espera
UTC (ou vice-versa).

Registro: a anomalia não impediu a comutação; o sistema executou as agendas, porém
em horário deslocado. A correção será tratada na seção de trabalhos corretivos (Capí-
tulo de Conclusões/Trabalhos Futuros), alinhando todos os componentes para o fuso
America/Sao_Paulo e padronizando o armazenamento em UTC com exibição local.

Observou-se, durante os ensaios, que o ESP32-02 registrava no SCADA-LTS timestamps
coerentes com o horário configurado na máquina virtual, isto é, os gráficos de temperatura,
umidade do solo e estados de válvula apresentavam o tempo correto. No entanto, as
agendas automáticas de iluminação e irrigação eram executadas com um deslocamento
de aproximadamente 3 horas em relação ao horário esperado. Isso indica que a base
de tempo utilizada para o registro histórico no supervisório estava alinhada ao fuso
adotado pelo servidor, enquanto a lógica de agendamento local no nó rural utilizava uma
referência distinta (por exemplo, UTC sem ajuste de fuso ou RTC configurado em horário
diferente), gerando o descompasso entre o horário “visto” nos gráficos e o momento efetivo
de acionamento das cargas.

Séries temporais e evidências visuais (SCADA-LTS)

Os gráficos desta seção têm a finalidade de evidenciar, de forma ilustrativa, as funcio-
nalidades implementadas no sistema até o nível de integração com o Scada-LTS.

Temperatura em tempo real (LIVE): A Figura 5.1 apresenta o registro de tempe-
ratura em modo LIVE no Modern Watch List. Observa-se uma única curva em verde,
associada à temperatura, variando aproximadamente de 22,5 ℃ no início da manhã para
um pico em torno de 30--31 ℃ no início da tarde, seguido de resfriamento gradual até cerca
de 25 ℃ próximo das 18:00. A evolução ao longo do período exibido (aproximadamente
de 07:00 a 18:00) é suave, com pequenas flutuações pontuais.

67

Figura 5.1: Temperatura em tempo real no SCADA-LTS (Modern Watch List).

Umidade em tempo real (LIVE): Durante o acompanhamento em tempo real da
umidade no nó rural, a Figura 5.2 exibe a série da variável hum_rural1 em modo LIVE
no Modern Watch List.

Figura 5.2: Umidade relativa no nó rural em modo LIVE no SCADA-LTS (Modern Watch
List).

Temperatura e umidade diárias (24 h, sobrepostas). A Figura 5.3 apresenta, em
modo LIVE no Modern Watch List, as séries de temperatura e umidade ao longo do dia.
As duas variáveis são mostradas em verde, em faixas distintas de valores: a temperatura
varia de aproximadamente 26 ℃ no final da manhã até um máximo em torno de 29--30 ℃
próximo de 13:00, decrescendo gradualmente para cerca de 25 ℃ no fim da tarde. A
umidade relativa permanece concentrada na faixa de 56--59 %, com oscilações suaves ao
redor de um patamar quase constante, sem tendência marcada de aumento ou redução ao
longo do intervalo observado.

68

Figura 5.3: Temperatura e umidade no SCADA-LTS (Watch List, 24 h).

Temperatura diária (histórico): A Figura 5.4 mostra a evolução da temperatura ao
longo do dia no módulo de gráfico do Watch List do SCADA-LTS, ou seja, é a reconstrução
do gráfico na faixa de tempo selecionada.

Figura 5.4: Temperatura diária no SCADA-LTS (Watch List, 24 h).

Umidade diária (histórico). A Figura 5.5 mostra a evolução da umidade ao longo do
dia no módulo de gráfico Watch List do SCADA-LTS, ou seja, é a reconstrução do gráfico
na faixa de tempo selecionada.

Figura 5.5: Umidade diária no SCADA-LTS (Watch List, 24 h).

69

Temperatura e umidade diárias (histórico): A Figura 5.6 apresenta, a partir de
06:00, as séries de temperatura e umidade registradas no módulo de gráfico do Watch List
do SCADA-LTS. A curva de temperatura (em vermelho) inicia o período em torno de 20--
21 ℃, eleva-se de forma quase contínua ao longo da manhã, passando pela faixa de 24--27 ℃
entre aproximadamente 09:00 e 11:00, e atinge um máximo em torno de 30 ℃ por volta de
14:00. Em seguida, observa-se leve decréscimo, encerrando o intervalo em cerca de 27--28 ℃.
A curva de umidade relativa (em azul) aparece na faixa de 55--59 %, iniciando próximo de
55--56 % por volta das 11:00 às 11:30, subindo até aproximadamente 59--60 % próximo de
14:00 e retornando gradualmente para cerca de 56--57 % no final do período, caracterizando
oscilações moderadas em torno de um patamar quase constante(desconsiderar dados antes
do horário 6:00, pois eram apenas dados de teste).

Figura 5.6: Umidade diária no SCADA-LTS (Watch List, 24 h).

5.3 Eficiência Energética e Confiabilidade

5.3.1 Metodologia de estimativa

A energia foi estimada a partir da potência ativa e do tempo de acionamento obtido
nos logs de estados/comandos. Adotou-se

P ≈ Vrms Irms cosφ e E [kWh] =
P [W] · t [h]

1000
.

As janelas fixas do modo automático consideradas na consolidação foram: iluminação
diária das 18:30 às 05:00 e irrigação das 09:00 às 09:10. O overhead (nós ESP32, relés e
conversores) foi contabilizado conforme detalhado nas premissas da planilha Cálculo da
energia.

5.3.2 Premissas utilizadas (planilha Cálculo da energia)

• ESP32 (dissipação no regulador): queda de ∆V ≈ 1,7V com I ≈ 0,5A por nó, logo
PLDO ≈ 0,85W = 0,00085 kW.

70

• Relés 5 V: potência por canal P ≈ 0,36W (bobina 5 V). Na casa foram considerados 3
relés e no sítio 4 relés.

• Válvula solenóide 3/4’’ (DN20), 110 V AC, NC: potência típica de 20–25 W
quando energizada (valor de referência de 22 W na planilha).

• Iluminação: casa com duas lâmpadas frias de 15 W e uma lâmpada amarela de 9 W
(total 39 W); sítio com duas lâmpadas frias de 15 W e um conjunto tubular com duas
de 18 W (total 66 W).

5.3.3 Resultados consolidados (modo automático)

Tabela 5.2: Estimativa de potência, energia mensal e custo por item (cenário de modo
automático).

Item Entrada (V) Saída (V) ∆V (V) Corrente (A) Potência (kW) Energia (kWh) Custo (R$)

ESP32-01 funcionamento 5 3,3 -- 0,5 0,00165 0,0495 0,03

ESP32-01 energia dissipada 5 3,3 1,7 0,5 0,000850 0,612 0,43

ESP32-02 funcionamento 5 3,3 -- 0,5 0,00165 0,0495 0,03

ESP32-02 energia dissipada 5 3,3 1,7 0,5 0,000850 0,612 0,43

4 relés (casa) -- -- -- -- 0,001440 1,0368 0,73

4 relés (sítio) -- -- -- -- 0,001440 1,0368 0,73

Válvula solenóide (modo automático) -- -- -- -- 0,022 0,11 0,08

3 lâmpadas (casa, modo automático) -- -- -- -- 0,039 12,285 8,60

3 lâmpadas (sítio, modo automático) -- -- -- -- 0,066 20,79 14,55

TOTAL mês 25,61

TOTAL ano 307,29

5.3.4 Fontes das potências nominais (links de referência)

Tabela 5.3: Potências nominais e links utilizados na planilha.

Item Quantidade Potência (W) Link

Lâmpada fria (casa) 2 15 Kian A60 15W 6500K
Lâmpada amarela (casa) 1 9 Kian 9W 3000 K (ML)
Lâmpada fria (sítio) 2 15 Kian A60 15W 6500K
Lâmpada fria tubular (sítio, T8) 2 18 T8 18W 6500K 120 cm
Born relé (SRD-05VDC-SL-C) 8 0,36 Songle SRD-05VDC-SL-C
Válvula solenóide 3/4’’ 110 V AC 1 22 Plastic Solenoid Valve

5.3.5 Explicações complementares

1. Fonte do nó ESP32: o ESP32 não regula corrente, apenas tensão. Assim, mesmo
que a fonte forneça 1 A em 5 V, o microcontrolador consome apenas o necessário

71

(tipicamente 80–250 mA, podendo chegar a ≈500 mA com Wi-Fi ativo). Corrente
disponível acima disso não causa problema; o risco está em exceder a tensão de entrada,
não a capacidade de corrente.

2. Válvula solenóide 3/4’’ 110 V AC: bobinas AC dessa família (DN20, corpo plástico,
NC) operam tipicamente na faixa de 20–25 W (ex.: especificação comercial de 20 VA
para modelo plástico 3/4’’).

Esse valor deve ser considerado no dimensionamento de fonte, fiação, relé/driver e
dissipação térmica.

5.4 Adoção do ESP32

A opção pelo microcontrolador ESP32, em detrimento de plataformas clássicas como
o Arduino Uno ou Mega, está diretamente ligada às exigências de conectividade e
processamento do projeto. O ESP32 integra, em um único componente, interfaces
Wi-Fi e Bluetooth, eliminando a necessidade de módulos adicionais para acesso à rede e
reduzindo custo, espaço físico e complexidade de cabeamento O ESP32 dispõe de maior
capacidade de memória, frequência de operação mais elevada.

5.5 Adoção do SCADA-LTS

Optou-se pela utilização do SCADA-LTS em vez de plataformas em nuvem como
ThingSpeak, Firebase ou Blynk porque, além de se aproximar do ambiente de supervisão
industrial que se deseja simular no protótipo, atende ao caráter educacional do projeto,
permitindo ao autor ter contato direto com ferramentas e conceitos mais próximos da
realidade da automação industrial.

5.6 Adoção do RTC DS3231 e do sensor HW-390

A adoção conjunta do RTC DS3231 e do sensor de umidade do solo HW-390, em vez
de sensores convencionais como o DHT11 ou DHT22, está ligada à necessidade de
medições mais consistentes e úteis para o contexto de automação proposto. O DS3231
fornece não apenas uma base de tempo em tempo real, independente de conexão à
Internet ou do estado da rede elétrica, como também dispõe de um sensor interno de
temperatura, permitindo associar cada leitura a um carimbo de tempo confiável. Isso
facilita o registro histórico, a comparação entre dias e a implementação de rotinas de
agendamento no protótipo. Já o HW-390 foi escolhido por ser um sensor capacitivo de
umidade do solo, mais adequado para monitoramento.

72

Capítulo 6

Conclusão

6.1 Síntese dos Resultados

Esta seção sintetiza os principais achados experimentais do sistema de automação
residencial (ESP32-01) e de irrigação rural (ESP32-02), considerando comando local e
remoto, agendas automáticas, telemetria/visualização e custos energéticos.

Atuação e controle

• ESP32-01 (nó urbano): as três formas de comando de iluminação (servidor web
embarcado, aplicativo MQTT no smartphone e push button local) operaram corretamente.
O modo automático executou as janelas programadas conforme esperado, mantendo a
redundância entre comando remoto e contingência local.

• ESP32-02 (nó rural): o comando de lâmpadas via MQTT apresentou funcionamento
consistente. O modo automático funcionou parcialmente, registrando deslocamento
de 3 horas na execução das agendas. Esse mesmo deslocamento ocorreu ao agendar
pelo aplicativo MQTT no smartphone e também na irrigação automática. A irrigação
via MQTT (on demand) funcionou corretamente.

Telemetria e visualização

• Modern WatchList: exibiu temperatura e umidade;

• WatchList (padrão): apresentou séries em uma determinada faixa de tempo para
temperatura e umidade separadamente e, posteriormente, ambas as variáveis no mesmo
gráfico operando.

73

Eficiência energética e custo

• Com base na planilha Cálculo da energia e na Tabela 5.2, o cenário de operação em modo
automático apresentou baixo custo operacional: R$ 25,61/mês e R$ 307,29/ano
(incluindo cargas principais e overhead de nós/relés/fonte). Esse resultado indica
viabilidade econômica para operação contínua.

Síntese

Em conjunto, os resultados confirmam a viabilidade técnica do controle distribuído:
servidor web e MQTT atenderam ao comando remoto, enquanto o push button garantiu
contingência local. A visualização dos gráficos no Modern WatchList para um monito-
ramento consolidado com séries e gráfico unificado de temperatura e umidade teve
resultado positivo. Do ponto de vista energético, o sistema apresentou consumo e custo
mensais reduzidos, compatíveis com a proposta de automação acessível. O principal
desvio observado foi o deslocamento de 3 horas nas agendas do nó rural (ESP32-02) e
nos agendamentos via smartphone.

6.2 Limitações do Projeto

1. Dependência de infraestrutura local e ponto único de falha: o broker MQTT
foi executado em máquina virtual (PC pessoal). A disponibilidade do sistema depende
do computador estar ligado e da VM estar íntegra, criando um ponto único de falha e
ausência de alta disponibilidade.

2. Instabilidade da supervisão: o SCADA-LTS apresentou oscilações (ex.: Modern
WatchList deixou de atualizar algumas vezes), o que impactou a observabilidade contí-
nua.O WatchList também apresentou alguns problemas na apresntação dos gráficos(Os
gráficos não apareciam mesmo selecionando a faixa de tempo correta e fazendo as
configurações corretas).

3. Desalinhamento temporal nas agendas: no ESP32-02 e no agendamento via
aplicativo MQTT no smartphone observou-se deslocamento de 3 horas na execução
do modo automático, evidenciando problemas de sincronização de tempo/fuso ao longo
da cadeia (nó, servidor e interface).

4. Critério de irrigação predominantemente temporal: a irrigação automática foi
baseada em horário fixo (09:00–09:10). Na ausência de inibição por chuva ou solo
já úmido, há risco de acionamento desnecessário em condições climáticas adversas, a
situação de controle não foi implementada por conta da limitação da verba do projeto.

5. Medição energética indireta: a estimativa de energia/custo baseou-se em potências

74

nominais e tempos de acionamento (Tabela 5.2), sem medição elétrica dedicada. Optou-
se por esse caminho por conta da insuficiência de verba do projeto.

6. Eficiência da alimentação dos nós: o uso de regulador linear (LDO) com ∆V ≈ 1,7V

e I ≈ 0,5A implica dissipação térmica relevante no regime contínuo, reduzindo eficiência
e margem térmica em ambientes quentes.

7. Robustez elétrica e física do atuador/comutação: faltam elementos de proteção
e de supressão de surtos/transientes (fusíveis, MOV/TVS, snubber em cargas indutivas
AC), bem como encapsulamento com grau de proteção adequado (IP) para operação
em ambiente rural.

8. Manutenibilidade e escalabilidade: a arquitetura atual exige intervenção manual
em caso de falhas de componentização (relés, válvulas, cabeamento) e não contempla
mecanismos de auto-recovery ou backup/restore automatizados de configuração e dados.

9. Controle de tomada: não foi implementado um ponto de tomada com acionamento
remoto via MQTT, em função das limitações orçamentárias do projeto.

10. Sistema de controle por umidade do solo: não foi implementado o acionamento
automático da válvula de irrigação a partir do sensor de umidade do solo via MQTT,
também devido às restrições de orçamento na fase de prototipagem (falta de cabos até
a válvula de irrigação).

6.3 Sugestões para Trabalhos Futuros

A partir das limitações mapeadas e dos resultados experimentais, são propostos os
seguintes desdobramentos:

1. Supervisão mais estável e observável: migrar do SCADA-LTS para solução mais
robusta (p.ex., SCADA-BR).

2. Alta disponibilidade e independência do PC: hospedar o broker em dispositivo
dedicado 24/7 (Raspberry Pi/NUC) ou VPS; empregar watchdogs, reinício automático
e bridging entre brokers ; proteger a energia com UPS.

3. Sincronização de tempo ponta a ponta: padronizar armazenamento e agenda-
mento em UTC, reforçar SNTP/RTC (DS3231) como fonte de tempo; incluir testes
automatizados para impedir o deslocamento de 3 horas.

4. Irrigação orientada a dados ambientais: integrar sensor de chuva e o sensor de
umidade do solo como condição de habilitação (com histerese); incorporar previsão do
tempo/ET0 para skip de irrigação desnecessária e ajuste dinâmico do tempo de válvula.

75

5. Medição elétrica dedicada e validação metrológica: incluir módulos de medição
(p.ex., PZEM-004T/HLW8012 para CA; INA219 para CC), calibrar, estimar incerteza
e comparar com o método indireto, refinando a Tabela 5.2.

6. Alimentação mais eficiente e robusta: substituir LDO por conversor buck (5 V→3,3 V)
para aumentar eficiência e reduzir aquecimento; revisar dimensionamento térmico/ven-
tilação e adicionar proteção a transientes.

7. Endurecimento de segurança: habilitar mTLS (certificados cliente), Secure Boot,
Flash Encryption, OTA autenticado, rotação de credenciais e segmentação de rede
(VLAN IoT) com ACLs e firewall no host do broker.

8. Resiliência offline e retomada: implementar store-and-forward no ESP32 para
eventos/telemetria durante indisponibilidade do broker, além de lógica de reexecução
de agendas perdidas após reconexão.

76

Referências Bibliográficas

GILL, K.; YANG, S.; YAO, F.; LU, X. A ZigBee-Based Home Automation System.
IEEE Transactions on Consumer Electronics, v. 55, n. 2, p. 422--430, 2009. DOI:
10.1109/TCE.2009.5174403.

SRISKANTHAN, C.; TAN, D. T.; KARANDE, A. An Overview of Home Automation
Systems. International Journal of Computer Applications, vol. 19, no. 2, 2011.

AL-KUWARI, M.; RAMADAN, A.; ISMAEL, Y.; AL-SUGHAIR, L.; GASTLI, A.;
BENAMMAR, M. Smart-home automation using IoT-based sensing and monitoring
platform. In: 2018 12th IEEE International Conference on Compatibility, Power
Electronics and Power Engineering (CPE-POWERENG). Doha, 2018. p. 1--6. DOI:
10.1109/CPE.2018.8372548.

PRAVALIKA, V.; PRASAD, C. R. Internet of things based home monitoring and device
control using ESP32. International Journal of Recent Technology and Engineering
(IJRTE), v. 8, n. 1S4, p. 58--62, 2019.

AGHENTA, L. O.; IQBAL, M. T. Low-Cost, Open Source IoT-Based SCADA System
Design Using Thinger.IO and ESP32 Thing. Electronics, v. 8, n. 8, art. 822, 2019. DOI:
10.3390/electronics8080822.

LEKIĆ, M.; GARDAŠEVIĆ, G. IoT sensor integration to Node-RED platform. In: 2018
17th International Symposium INFOTEH-JAHORINA (INFOTEH). East Sarajevo: IEEE,
2018. p. 1--5. DOI: 10.1109/INFOTEH.2018.8345544.

SAJID, A.; ABBAS, H.; SALEEM, K. Cloud-assisted IoT-based SCADA systems security:
a review of the state of the art and future challenges. IEEE Access, v. 4, p. 1375--1384,
2016. DOI: 10.1109/ACCESS.2016.2549047.

BAHGA, Arshdeep; MADISETTI, Vijay. Internet of Things: A Hands-On Approach.
Hyderabad: Universities Press, 2015. ISBN 978-8173719547.

HERON OF ALEXANDRIA. The Pneumatics of Hero of Alexandria: From the Original
Greek. Translated by Joseph George Greenwood; edited by Bennet Woodcroft. London:
Taylor, Walton and Maberly, 1851.

77

AL-JAZARĪ, Ibn al-Razzāz. The Book of Knowledge of Ingenious Mechanical Devices
(Kitāb f̄ı marifat al-hiyal al-handasiyya). Translated and annotated by Donald R. Hill.
Dordrecht: D. Reidel Publishing Company, 1974.

COLUMBIA UNIVERSITY. The Jacquard Loom. Computing History, Columbia
University, s.d. Disponível em: <https://www.columbia.edu/cu/computinghistory/
jacquard.html>. Acesso em: 19 nov. 2025.

BENNETT, Stuart. A History of Control Engineering 1800--1930. London: Peter
Peregrinus Ltd., 1979.

DEVOL, George C. Programmed Article Transfer. U.S. Patent 2,988,237, 13 jun. 1961.

NOF, Shimon Y. (ed.). Handbook of Industrial Robotics. 2. ed. New York: John Wiley &
Sons, 1999.

Espressif Systems. ESP32 Series Datasheet, Version 3.5. 2021. Disponível em: <https:
//www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf>

TANENBAUM, Andrew S.; WETHERALL, David J. Redes de Computadores. 5. ed. São
Paulo: Pearson, 2011.

78

APÊNDICE A -- Firmware e página
web do nó urbano (ESP32 01)

Este apêndice apresenta o código completo do nó urbano (ESP32 01), incluindo o
firmware responsável pela conexão Wi-Fi, comunicação MQTT, controle das lâmpadas e
servidor web, bem como a folha de estilos CSS utilizada na interface HTTP embarcada.

Firmware principal do ESP32 01

Listing 1: Firmware principal do nó urbano (ESP32 01)

1 // ===

2 // --- Bibliotecas Auxiliares ---

3 #include <WiFi.h> //inclui biblioteca WiFi

4 #include <WiFiClientSecure.h>

5 #include <PubSubClient.h>

6 #include <Wire.h>

7 #include <RTClib.h>

8

9 // ===

10 // Broker

11 const char* mqtt_host = "179.145.53.227";

12 const uint16_t mqtt_port = 8883;

13 unsigned long lastWiFiAttempt = 0;

14

15 const char* mqtt_user = "gabriel";

16 const char* mqtt_pass = "...";

17

18 static const char mqtt_ca_cert_pem[] PROGMEM = R"PEM(

19 -----BEGIN CERTIFICATE-----

20 MIIDsTCCApmgAwIBAgIUVnoWnkW08

21 .

22 .

23 .

79

24 .

25 J1cwAsIhrfKNc9QaSMboHEz3knK6822jEFTCDgH4+nRD6ROD2A==

26 -----END CERTIFICATE-----

27)PEM";

28

29 WiFiClientSecure wifimqttTLS;

30 PubSubClient mqtt(wifimqttTLS);

31

32 // ===

33 // Topicos de comando (subscribe)

34 const char* TOPIC_L1_CMD = "tcc/esp01/casa/l1";

35 const char* TOPIC_L2_CMD = "tcc/esp01/casa/l2";

36 const char* TOPIC_L3_CMD = "tcc/esp01/casa/l3";

37 const char* TOPIC_AUTO_CMD = "tcc/esp01/casa/auto";

38

39 RTC_DS3231 rtc;

40 // ===

41 // Tpicos de estado (publish)

42 const char* TOPIC_L1_STATE = "tcc/esp01/casa/state/l1";

43 const char* TOPIC_L2_STATE = "tcc/esp01/casa/state/l2";

44 const char* TOPIC_L3_STATE = "tcc/esp01/casa/state/l3";

45 const char* TOPIC_AUTO_STATE = "tcc/esp01/casa/state/auto";

46

47

48 // ===

49 // --- Mapeamento de Hardware ---

50 #define LAMP1 16

51 #define LAMP2 17

52 #define LAMP3 18

53

54 #define BOTAO1 4

55 #define BOTAO2 5

56 #define BOTAO3 19

57 #define BOTAO_AUTO 23 // Botao para ativar/desativar o modo automatico

58

59 #define LED_MODO_AUTO 27 // LED que indica se o modo automatico esta ativado

60

61 #define RTC_EM_UTC true

62

63 // ===

64 // --- Constantes Auxiliares ---

80

65 const char *ssid = "Gabriel"; //atribuir nome da rede WiFi

66 const char *password = "senhadowifi123"; //atribuir senha da rede

67

68 // ===

69 // --- Objetos ---

70 WiFiServer server(80); //define a porta que o servidor ir utilizar

71

72 // ===

73 // --- Prottipo das Funes ---

74 void relay_wifi(); //function para gerar web server e controlar os rels

75

76 // ===

77 // --- Variveis Globais ---

78 String header;

79

80 //manual

81 bool estadoLamp1 = false;

82 bool estadoLamp2 = false;

83 bool estadoLamp3 = false;

84

85

86 // Auxiliar variables to store the current output state

87 bool lamp1_status = false;

88 bool lamp2_status = false;

89 bool lamp3_status = false;

90 bool auto_status = false;

91

92 bool agendamentoAtivo = false; // espelha se "as lmpadas deveriam estar ligadas"

↪→ pela janela de tempo

93 bool ultimoAgendamento = false; // para detectar transies

94

95 // Variveis de controle dos botes

96 static bool lastBotao1 = HIGH, lastBotao2 = HIGH, lastBotao3 = HIGH;

97 static unsigned long lastDebounce1 = 0, lastDebounce2 = 0, lastDebounce3 = 0;

98 const unsigned long debounce = 200;

99

100 // Current time

101 unsigned long tempoAtual1 = 0;

102 // Previous time

103 unsigned long tempogravado = 0;

104 // Define timeout time in milliseconds (example: 2000ms = 2s)

81

105 const long timeoutTime = 2000;

106

107 // ===

108

109 bool modoAutomatico = false; // flag do modo automtico

110

111 unsigned long debounceDelay = 10;

112 unsigned long lastPressAuto = 0;

113

114 // Controle do ciclo automtico

115 unsigned long tempoAtual = 0;

116 unsigned long tempoCiclo = 0;

117 bool ledAutoLigado = false;

118

119 // ===

120 //RTC-DS3231

121

122 static DateTime toBRT(const DateTime& t) {

123 if (RTC_EM_UTC) return t - TimeSpan(0, 3, 0, 0);

124 return t;

125 }

126

127 static bool dentroJanela_BRT_1830a0500() {

128 DateTime nowBRT = toBRT(rtc.now());

129 int h = nowBRT.hour();

130 int m = nowBRT.minute();

131 int s = nowBRT.second();

132

133 // Se for entre 18:30 (inclusive) e 23:59:59 ou entre 00:00 e 04:59:59

134 if (h > 18) {

135 // qualquer hora depois de 18:00 j automaticamente dentro

136 return true;

137 }

138 if (h == 18 && m >= 30) {

139 // exatamente das 18:30 em diante

140 return true;

141 }

142 // agora trata o intervalo aps a meia-noite

143 if (h < 5) {

144 return true;

145 }

82

146 // se estivermos exatamente h==5, no inclumos minuto 0

147 // normal h<5 j cobre at 4:59

148 return false;

149 }

150

151 // ===

152

153 void setup() {

154 Serial.begin(115200); //inicializa Serial em 115200 baud rate

155

156 pinMode(LAMP1, OUTPUT);

157 pinMode(LAMP2, OUTPUT);

158 pinMode(LAMP3, OUTPUT);

159 pinMode(LED_MODO_AUTO, OUTPUT);

160

161 pinMode(BOTAO1, INPUT_PULLUP);

162 pinMode(BOTAO2, INPUT_PULLUP);

163 pinMode(BOTAO3, INPUT_PULLUP);

164 pinMode(BOTAO_AUTO, INPUT_PULLUP);

165

166 Wire.begin(21, 22);

167 if (!rtc.begin()) {

168 Serial.println("ERRO: DS3231 no encontrado (0x68). Confira fiao.");

169 }

170

171 rtc.adjust(DateTime(2025, 10, 25, 10, 48, 00));

172

173 DateTime now = rtc.now(); // leitura cannica da RTClib

174 if (now.year() < 2020) {

175 Serial.println("RTC invalido; ajuste uma vez com rtc.adjust(...)");

176 //rtc.adjust(DateTime(2025, 10, 6, 10, 26, 00)); // exemplo de ajuste pontual

177 }

178

179 // Sincroniza o estado inicial do modo automtico com a janela 1011 BRT

180 ultimoAgendamento = dentroJanela_BRT_1830a0500();

181

182 digitalWrite(LAMP1, LOW);

183 digitalWrite(LAMP2, LOW);

184 digitalWrite(LAMP3, LOW);

185 digitalWrite(LED_MODO_AUTO, LOW);

186

83

187 Serial.println(); //

188 Serial.print("Conectando-se a "); //

189 Serial.println(ssid); //

190 WiFi.begin(ssid, password); //inicializa WiFi, passando o nome da rede e a

↪→ senha

191

192 while(WiFi.status() != WL_CONNECTED) //aguarda conexo (WL_CONNECTED uma

↪→ constante que indica sucesso na conexo)

193 {

194 delay(741); //

195 Serial.print("."); //vai imprimindo pontos at realizar a conexo...

196 }

197

198 Serial.println(""); //mostra WiFi conectada

199 Serial.println("WiFi conectada"); //

200 Serial.println("Endereo de IP: "); //

201 Serial.println(WiFi.localIP()); //mostra o endereco IP

202

203 server.begin(); //inicializa o servidor web

204

205

206 // --- MQTT

207 wifimqttTLS.setCACert(mqtt_ca_cert_pem); //carrega o certificado CA para

↪→ WIFIClientSecure

208 mqtt.setServer(mqtt_host, mqtt_port);

209 mqtt.setCallback(mqttCallback);

210 mqtt.setKeepAlive(60);

211 mqtt.setSocketTimeout(20);

212 mqttReconnect(); // faz a primeira conexo e assina os tpicos

213 publishState(); // publica o estado atual com retain

214 }

215

216 // ===

217 // --- MQTT: publicar estados com retain = true ---

218 void publishState() {

219 mqtt.publish(TOPIC_L1_STATE, estadoLamp1 ? "on" : "off", true);

220 mqtt.publish(TOPIC_L2_STATE, estadoLamp2 ? "on" : "off", true);

221 mqtt.publish(TOPIC_L3_STATE, estadoLamp3 ? "on" : "off", true);

222 mqtt.publish(TOPIC_AUTO_STATE, modoAutomatico ? "on" : "off", true);

223 }

224

84

225 // --- MQTT: callback de mensagens recebidas ---

226 void mqttCallback(char* topic, byte* payload, unsigned int length) {

227 String msg;

228 for (unsigned int i = 0; i < length; i++) msg += (char)payload[i];

229 msg.toLowerCase();

230

231 bool isOn = (msg == "on" || msg == "1" || msg == "true");

232

233 if (String(topic) == TOPIC_L1_CMD) { estadoLamp1 = isOn; lamp1_status = isOn;

↪→ digitalWrite(LAMP1, estadoLamp1); }

234 else if (String(topic) == TOPIC_L2_CMD) { estadoLamp2 = isOn; lamp2_status =

↪→ isOn; digitalWrite(LAMP2, estadoLamp2); }

235 else if (String(topic) == TOPIC_L3_CMD) { estadoLamp3 = isOn; lamp3_status =

↪→ isOn; digitalWrite(LAMP3, estadoLamp3); }

236 else if (String(topic) == TOPIC_AUTO_CMD) { modoAutomatico = isOn; auto_status =

↪→ isOn; digitalWrite(LED_MODO_AUTO, modoAutomatico); }

237

238 publishState(); // sempre que mudar algo, publica o novo estado (retain)

239 }

240

241

242 // --- MQTT: reconectar e refazer subscriptions ---

243 void mqttReconnect() {

244 while (!mqtt.connected()) {

245 // ClientId nico para evitar briga no broker

246 String id = "esp32-esp01-casa-" + String((uint32_t)ESP.getEfuseMac(), HEX);

247

248 // LWT: se o ESP cair sem DISCONNECT, o broker publica "offline"

249 const char* willTopic = "tcc/esp01/casa/status";

250 const char* willPayload = "offline";

251 int willQoS = 1;

252 bool willRetain = true;

253

254 // connect(clientId, username, password, willTopic, willQoS, willRetain,

↪→ willMessage, cleanSession)

255 if (mqtt.connect(id.c_str(),

256 mqtt_user, mqtt_pass,

257 willTopic, willQoS, willRetain, willPayload, true)) {

258

259 // Marca presena para quem assina status

260 mqtt.publish("tcc/esp01/casa/status", "online", true);

85

261

262 // Reassina seus comandos

263 mqtt.subscribe(TOPIC_L1_CMD);

264 mqtt.subscribe(TOPIC_L2_CMD);

265 mqtt.subscribe(TOPIC_L3_CMD);

266 mqtt.subscribe(TOPIC_AUTO_CMD);

267

268 // Reenvia os estados (retain) para sincronizar painel/SCADA

269 publishState();

270

271 } else {

272 Serial.printf("MQTT falhou, state=%d. Tentando de novo...\n", mqtt.state());

273 delay(1000);

274 }

275 }

276 }

277

278

279

280 // ===

281 void loop() {

282

283 tempoAtual = millis();

284 // --- Boto que ativa/desativa o modo automtico ---

285 if (digitalRead(BOTAO_AUTO) == LOW && tempoAtual - lastPressAuto >

↪→ debounceDelay) {

286 modoAutomatico = !modoAutomatico;

287 lastPressAuto = tempoAtual;

288 while (digitalRead(BOTAO_AUTO) == LOW); // espera soltar

289 }

290

291 // LED indicador do modo automtico

292 digitalWrite(LED_MODO_AUTO, modoAutomatico);

293

294

295

296 if (!modoAutomatico) {

297 if (digitalRead(BOTAO1) == LOW) {

298 estadoLamp1 = true;

299 } else if (lamp1_status == false) {

300 estadoLamp1 = false;

86

301 }

302

303 if (digitalRead(BOTAO2) == LOW) {

304 estadoLamp2 = true;

305 } else if (lamp2_status == false) {

306 estadoLamp2 = false;

307 }

308

309 if (digitalRead(BOTAO3) == LOW) {

310 estadoLamp3 = true;

311 } else if (lamp3_status == false) {

312 estadoLamp3 = false;

313 }

314 }

315

316

317

318 else {

319

320 }

321

322

323 digitalWrite(LAMP1, estadoLamp1);

324 digitalWrite(LAMP2, estadoLamp2);

325 digitalWrite(LAMP3, estadoLamp3);

326

327 // --- CONTROLE AUTOMTICO POR JANELA HORRIA ---

328 if (modoAutomatico) {

329 agendamentoAtivo = dentroJanela_BRT_1830a0500();

330

331 // **Se dentro da janela, mesmo que no tenha mudado, ligue as luzes**

332 if (agendamentoAtivo) {

333 // no momento em que estiver na janela e modo automtico

334 estadoLamp1 = estadoLamp2 = estadoLamp3 = true;

335 } else {

336 // fora da janela, desligue

337 estadoLamp1 = estadoLamp2 = estadoLamp3 = false;

338 }

339

340 // Aplique e publique sempre que estiver no modo automtico

341 digitalWrite(LAMP1, estadoLamp1);

87

342 digitalWrite(LAMP2, estadoLamp2);

343 digitalWrite(LAMP3, estadoLamp3);

344 publishState();

345

346 // atualiza histrico para prximas comparaes

347 ultimoAgendamento = agendamentoAtivo;

348 } else {

349 // MODO MANUAL: seu cdigo existente

350 }

351

352

353

354

355 if (WiFi.status() != WL_CONNECTED) {

356 if (millis() - lastWiFiAttempt > 5000) {

357 WiFi.begin(ssid, password);

358 lastWiFiAttempt = millis();

359 } //chama function para controle dos rels por wifi

360 // sem Wi-Fi no adianta processar MQTT/HTTP

361 return;

362 }

363

364 if (!mqtt.connected()) {

365 mqttReconnect();

366 }

367 mqtt.loop(); // TEM que rodar o tempo todo

368

369 // TELEMETRIA: imprime no Serial a cada 30 s

370 static uint32_t tLog = 0;

371 if (millis() - tLog >= 30000) {

372 tLog = millis();

373 DateTime nowBRT = toBRT(rtc.now()); // usa function utilitria

374 Serial.printf("[BRT] %04d-%02d-%02d %02d:%02d:%02d | janela18:30-5:00=%s |

↪→ modoAuto=%d | L1=%d L2=%d L3=%d\n",

375 nowBRT.year(), nowBRT.month(), nowBRT.day(),

376 nowBRT.hour(), nowBRT.minute(), nowBRT.second(),

377 dentroJanela_BRT_1830a0500() ? "ON" : "OFF",

378 modoAutomatico,

379 estadoLamp1, estadoLamp2, estadoLamp3

380);

381 }

88

382

383 relay_wifi();

384 }

385

386 void relay_wifi()

387 {

388

389 WiFiClient httpclient = server.available(); //verifica se existe um cliente

↪→ conectado com dados a serem transmitidos

390

391 if(httpclient) //existe um cliente?

392 {

393 tempoAtual1 = millis();

394 tempogravado = tempoAtual1; //armazena tempo atual

395 Serial.println("Novo cliente definido"); //informa por serial

396 String currentLine = ""; //string para aguardar entrada de dados do cliente

397

398 while(httpclient.connected() && tempoAtual1 - tempogravado <= timeoutTime)

↪→ //executa enquanto cliente conectado

399 {

400 tempoAtual1 = millis(); //atualiza tempo atual

401 mqtt.loop();

402 if(httpclient.available()) //existem dados do cliente a serem lidos?

403 { //sim

404 char c = httpclient.read(); //salva em c

405 Serial.write(c); //imprime via serial

406 header += c; //acumula dados do cliente em header

407

408 if (c == '\n') // um caractere de nova linha?

409 { //sim

410

411 if (currentLine.length() == 0) //se final da mensagem...

412 {

413

414 httpclient.println("HTTP/1.1 200 OK"); //HTTP sempre inicia com este

↪→ cdigo de resposta

415 httpclient.println("Content-type:text/html");

416 httpclient.println(); //imprime nova linha

417

418 // Controle das Sadas do ESP32:

419 if(header.indexOf("GET /lamp1/on") >= 0) //liga Rel 1

89

420 {

421 lamp1_status = true; //atualiza status

422 estadoLamp1 = true; //ativa sada

423 publishState();

424 } //end if lamp1 ON

425

426 else if(header.indexOf("GET /lamp1/off") >= 0) //desliga Rel 1

427 {

428 lamp1_status = false; //atualiza status

429 estadoLamp1 = false; //desativa sada

430 publishState();

431 } //end else if lamp1 OFF

432

433 else if(header.indexOf("GET /lamp2/on") >= 0) //liga Rel 2

434 {

435 lamp2_status = true; //atualiza status

436 estadoLamp2 = true; //ativa sada

437 publishState();

438 } //end else if lamp2 ON

439

440 else if(header.indexOf("GET /lamp2/off") >= 0) //desliga Rel 2

441 {

442 lamp2_status = false; //atualiza status

443 estadoLamp2 = false; //desativa sada

444 publishState();

445 } //end if lamp2 OFF

446

447 else if(header.indexOf("GET /lamp3/on") >= 0) //liga Rel 3

448 {

449 lamp3_status = true; //atualiza status

450 estadoLamp3 = true; //ativa sada

451 publishState();

452 } //end else if lamp3 ON

453

454 else if(header.indexOf("GET /lamp3/off") >= 0) //desliga Rel 3

455 {

456 lamp3_status = false; //atualiza status

457 estadoLamp3 = false; //desativa sada

458 publishState();

459 } //end if lamp3 OFF

460

90

461 else if(header.indexOf("GET /auto/on") >= 0) //liga automtico

462 {

463 auto_status = true;

464 modoAutomatico = true; //atualiza status

465 digitalWrite(LED_MODO_AUTO, HIGH); //ativa sada

466 publishState();

467 } //end else if auto ON

468

469 else if(header.indexOf("GET /auto/off") >= 0) //desliga automtico

470 {

471 auto_status = false;

472 modoAutomatico = false; //atualiza status

473 digitalWrite(LED_MODO_AUTO, LOW); //desativa sada

474 publishState();

475 } //end else if auto OFF

476

477

478 //Gera a pgina HTML

479

480 httpclient.println("<!DOCTYPE html><html>");

481 httpclient.println("<head><meta name=\"viewport\"

↪→ content=\"width=device-width, initial-scale=1\">");

482 httpclient.println("<link rel=\"icon\" href=\"data:,\">");

483

484 httpclient.println("<style>html { font-family: Verdana; margin: 0px

↪→ auto; text-align: center; background-color: #00FFFF;}");

485 httpclient.println(".par1 { border: none; color: #000000; padding: 20px

↪→ 40px;");

486 httpclient.println("text-decoration: none; font-size: 30px; margin:

↪→ 5px; cursor: pointer; font-family: Tahoma;}");

487 httpclient.println(".btOn { background-color: #2fb04d; }");

488 httpclient.println(".btOff { background-color: #616161; }");

489 httpclient.println("</style>");

490 httpclient.println("<title>SERVIDOR DE ACINAMENTO</title></head>");

491

492 httpclient.println("<body><h1>SERVIDOR DE ACINAMENTO</h1>");

493

494 //Imprime status atual do lamp 1

495 httpclient.println("<p>status lamp1: " + String(lamp1_status ? "ON" :

↪→ "OFF") + "</p>");

496

91

497 //Gera o boto conforme o status do Rel 1

498 if(!lamp1_status)

499 httpclient.println("<p><button class=\"par1

↪→ btOn\">lamp 1 turn on</button></p>");

500 else

501 httpclient.println("<p><button class=\"par1

↪→ btOff\">lamp 1 turn off</button></p>");

502

503 //Imprime status atual do lamp 2

504 httpclient.println("<p>status lamp2: " + String(lamp2_status ? "ON" :

↪→ "OFF") + "</p>");

505

506 //Gera o boto conforme o status do Rel 2

507 if(!lamp2_status)

508 httpclient.println("<p><button class=\"par1

↪→ btOn\">lamp 2 turn on</button></p>");

509 else

510 httpclient.println("<p><button class=\"par1

↪→ btOff\">lamp 2 turn off</button></p>");

511

512 //Imprime status atual do lamp 3

513 httpclient.println("<p>status lamp3: " + String(lamp3_status ? "ON" :

↪→ "OFF") + "</p>");

514

515 //Gera o boto conforme o status do Rel 3

516 if(!lamp3_status)

517 httpclient.println("<p><button class=\"par1

↪→ btOn\">lamp 3 turn on</button></p>");

518 else

519 httpclient.println("<p><button class=\"par1

↪→ btOff\">lamp 3 turn off</button></p>");

520

521 //Imprime status atual do auto

522 httpclient.println("<p>status auto: " + String(auto_status ? "ON" :

↪→ "OFF") + "</p>");

523

524 //Gera o boto conforme o status do auto

525 if(!auto_status)

526 httpclient.println("<p><button class=\"par1

↪→ btOn\">auto turn on</button></p>");

527 else

92

528 httpclient.println("<p><button class=\"par1

↪→ btOff\">auto turn off</button></p>");

529

530

531 httpclient.println("</body></html>");

532 httpclient.println();

533 break;

534 }

535

536 else currentLine = "";

537

538 } //end if c

539

540 else if (c != '\r')

541 currentLine += c; //adiciona caractere como parte da mensage

542

543

544 } //end if client.available

545

546 } //end while client.connected

547

548 header = ""; //limpa header

549

550 httpclient.stop(); //finaliza conexo

551 Serial.println("Cliente desconectado"); //

552 Serial.println(""); //

553

554 } //end if client

555

556

557 } //end relay_wifi

Folha de estilos CSS da página web (ESP32 01)

Listing 2: Folha de estilos CSS da interface web do ESP32 01

1 /* Documento CSS */

2

3 html {

4 font-family: Verdana;

5 margin: 0px auto;

93

6 text-align: center;

7 background-color: #00FFFF;

8 }

9

10 .par1 {

11 border: none;

12 color: #000000;

13 padding: 20px 40px;

14 text-decoration: none;

15 font-size: 30px;

16 margin: 5px;

17 cursor: pointer;

18 font-family: Tahoma;

19 }

20

21 .bton {

22 background-color: #2fb04d;

23 }

24

25 .btoff {

26 background-color: #616161;

27 }

94

Apêndice B -- Firmware do nó rural
(ESP32 02)

Este apêndice apresenta os principais arquivos de firmware utilizados no nó rural
(ESP32 02), organizados por módulo: Wi-Fi, temporização com o RTC DS3231, lógica
geral de hardware, tarefas de agendamento, envio e recebimento de dados via MQTT e
função principal da aplicação.

B.1 Módulo de Wi-Fi (componente wifi)

B.1.1 CMakeLists.txt do componente wifi

Listing 3: Arquivo CMakeLists.txt do componente de Wi-Fi

1 idf_component_register(

2 SRCS "connect.c"

3 INCLUDE_DIRS "."

4 REQUIRES esp_wifi esp_netif esp_event nvs_flash freertos esp_system log

5)

B.1.2 Arquivo connect.h

Listing 4: Cabeçalho do módulo de conexão Wi-Fi (connect.h)

1 #ifndef __CONNECT_H

2 #define __CONNECT_H

3

4 #include "esp_err.h"

5 #include "esp_wifi.h"

6

7 void wifi_init(void);

8 esp_err_t wifi_connect_sta(const char * ssid, const char * pwd, int timeout);

9 void wifi_disconnect(void);

10

95

11 #endif

B.1.3 Arquivo connect.c

Listing 5: Implementação do módulo de conexão Wi-Fi (connect.c)

1 #include <stdio.h>

2 #include <string.h>

3 #include <stdbool.h>

4 #include "esp_log.h"

5 #include "freertos/FreeRTOS.h"

6 #include "freertos/task.h"

7 #include "esp_netif.h"

8 #include "freertos/event_groups.h"

9 #include "esp_event.h"

10 #include "connect.h"

11

12 #define TAG "WIFI"

13

14 volatile bool wifiOnline = false;

15

16 esp_netif_t *wifi_netif;

17

18 static EventGroupHandle_t wifi_events;

19 static const int CONNECTED_GOT_IP = BIT0;

20 static const int DISCONNECTED = BIT1;

21

22 char *get_wifi_err(uint8_t errcode)

23 {

24 switch (errcode)

25 {

26 case WIFI_REASON_UNSPECIFIED:

27 return "WIFI_REASON_UNSPECIFIED";

28 case WIFI_REASON_AUTH_EXPIRE:

29 return "WIFI_REASON_AUTH_EXPIRE";

30 case WIFI_REASON_AUTH_LEAVE:

31 return "WIFI_REASON_AUTH_LEAVE";

32 case WIFI_REASON_ASSOC_EXPIRE:

33 return "WIFI_REASON_ASSOC_EXPIRE";

34 case WIFI_REASON_ASSOC_TOOMANY:

35 return "WIFI_REASON_ASSOC_TOOMANY";

36 case WIFI_REASON_NOT_AUTHED:

96

37 return "WIFI_REASON_NOT_AUTHED";

38 case WIFI_REASON_NOT_ASSOCED:

39 return "WIFI_REASON_NOT_ASSOCED";

40 case WIFI_REASON_ASSOC_LEAVE:

41 return "WIFI_REASON_ASSOC_LEAVE";

42 case WIFI_REASON_ASSOC_NOT_AUTHED:

43 return "WIFI_REASON_ASSOC_NOT_AUTHED";

44 case WIFI_REASON_DISASSOC_PWRCAP_BAD:

45 return "WIFI_REASON_DISASSOC_PWRCAP_BAD";

46 case WIFI_REASON_DISASSOC_SUPCHAN_BAD:

47 return "WIFI_REASON_DISASSOC_SUPCHAN_BAD";

48 case WIFI_REASON_BSS_TRANSITION_DISASSOC:

49 return "WIFI_REASON_BSS_TRANSITION_DISASSOC";

50 case WIFI_REASON_IE_INVALID:

51 return "WIFI_REASON_IE_INVALID";

52 case WIFI_REASON_MIC_FAILURE:

53 return "WIFI_REASON_MIC_FAILURE";

54 case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:

55 return "WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT";

56 case WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT:

57 return "WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT";

58 case WIFI_REASON_IE_IN_4WAY_DIFFERS:

59 return "WIFI_REASON_IE_IN_4WAY_DIFFERS";

60 case WIFI_REASON_GROUP_CIPHER_INVALID:

61 return "WIFI_REASON_GROUP_CIPHER_INVALID";

62 case WIFI_REASON_PAIRWISE_CIPHER_INVALID:

63 return "WIFI_REASON_PAIRWISE_CIPHER_INVALID";

64 case WIFI_REASON_AKMP_INVALID:

65 return "WIFI_REASON_AKMP_INVALID";

66 case WIFI_REASON_UNSUPP_RSN_IE_VERSION:

67 return "WIFI_REASON_UNSUPP_RSN_IE_VERSION";

68 case WIFI_REASON_INVALID_RSN_IE_CAP:

69 return "WIFI_REASON_INVALID_RSN_IE_CAP";

70 case WIFI_REASON_802_1X_AUTH_FAILED:

71 return "WIFI_REASON_802_1X_AUTH_FAILED";

72 case WIFI_REASON_CIPHER_SUITE_REJECTED:

73 return "WIFI_REASON_CIPHER_SUITE_REJECTED";

74 case WIFI_REASON_INVALID_PMKID:

75 return "WIFI_REASON_INVALID_PMKID";

76 case WIFI_REASON_BEACON_TIMEOUT:

77 return "WIFI_REASON_BEACON_TIMEOUT";

97

78 case WIFI_REASON_NO_AP_FOUND:

79 return "WIFI_REASON_NO_AP_FOUND";

80 case WIFI_REASON_AUTH_FAIL:

81 return "WIFI_REASON_AUTH_FAIL";

82 case WIFI_REASON_ASSOC_FAIL:

83 return "WIFI_REASON_ASSOC_FAIL";

84 case WIFI_REASON_HANDSHAKE_TIMEOUT:

85 return "WIFI_REASON_HANDSHAKE_TIMEOUT";

86 case WIFI_REASON_CONNECTION_FAIL:

87 return "WIFI_REASON_CONNECTION_FAIL";

88 case WIFI_REASON_AP_TSF_RESET:

89 return "WIFI_REASON_AP_TSF_RESET";

90 case WIFI_REASON_ROAMING:

91 return "WIFI_REASON_ROAMING";

92 }

93 return "WIFI_REASON_UNSPECIFIED";

94 }

95

96 void wifi_event_handler(void *arg, esp_event_base_t event_base,

97 int32_t event_id, void *event_data)

98 {

99 if (event_base == WIFI_EVENT) {

100 switch (event_id)

101 {

102 case WIFI_EVENT_STA_START:

103 ESP_LOGI(TAG, "Conectando...");

104 wifiOnline = false;

105 esp_wifi_connect();

106 break;

107 case WIFI_EVENT_STA_CONNECTED:

108 wifiOnline = false;

109 ESP_LOGI(TAG, "Conectado com sucesso...");

110 break;

111 case WIFI_EVENT_STA_DISCONNECTED:

112 {

113 wifi_event_sta_disconnected_t *disc =

114 (wifi_event_sta_disconnected_t *)event_data;

115 wifiOnline = false;

116 char *err = get_wifi_err(disc->reason);

117 if (disc->reason != WIFI_REASON_ASSOC_LEAVE)

118 ESP_LOGE(TAG, "Desconectado %s", err);

98

119 else

120 ESP_LOGI(TAG, "Desconectado...");

121

122 xEventGroupSetBits(wifi_events, DISCONNECTED);

123 break;

124 }

125 }

126 } else if (event_base == IP_EVENT) {

127 if (event_id == IP_EVENT_STA_GOT_IP) {

128 ESP_LOGI(TAG, "IP obtido com exito");

129 wifiOnline = true;

130 xEventGroupSetBits(wifi_events, CONNECTED_GOT_IP);

131 }

132 }

133 }

134

135 void wifi_init(void)

136 {

137 wifiOnline = false;

138 wifi_init_config_t wifiCfg = WIFI_INIT_CONFIG_DEFAULT();

139 ESP_ERROR_CHECK(esp_netif_init());

140 ESP_ERROR_CHECK(esp_event_loop_create_default());

141 ESP_ERROR_CHECK(esp_wifi_init(&wifiCfg));

142 ESP_ERROR_CHECK(esp_event_handler_register(

143 WIFI_EVENT, ESP_EVENT_ANY_ID, wifi_event_handler, NULL));

144 ESP_ERROR_CHECK(esp_event_handler_register(

145 IP_EVENT, IP_EVENT_STA_GOT_IP, wifi_event_handler, NULL));

146 ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));

147

148 wifi_events = xEventGroupCreate();

149 }

150

151 esp_err_t wifi_connect_sta(const char *ssid, const char *pwd, int timeout)

152 {

153 wifi_netif = esp_netif_create_default_wifi_sta();

154

155 wifi_config_t wifiCfg = {0};

156 memset(&wifiCfg, 0, sizeof(wifi_config_t));

157 strncpy((char *)wifiCfg.sta.ssid, ssid,

158 sizeof(wifiCfg.sta.ssid) - 1);

159 strncpy((char *)wifiCfg.sta.password, pwd,

99

160 sizeof(wifiCfg.sta.password) - 1);

161

162 esp_wifi_set_mode(WIFI_MODE_STA);

163 esp_wifi_set_config(WIFI_IF_STA, &wifiCfg);

164 esp_wifi_start();

165

166 EventBits_t evnt_result = xEventGroupWaitBits(

167 wifi_events,

168 CONNECTED_GOT_IP | DISCONNECTED,

169 pdTRUE,

170 pdFALSE,

171 pdMS_TO_TICKS(timeout)

172);

173

174 if (evnt_result & CONNECTED_GOT_IP) {

175 return ESP_OK;

176 }

177 return ESP_FAIL;

178 }

179

180 void wifi_disconnect(void)

181 {

182 esp_wifi_disconnect();

183 esp_wifi_stop();

184 }

B.2 Arquivo principal main.c e CMakeLists.txt do projeto

Listing 6: Arquivo principal da aplicação (main.c)

1 #include <stdio.h>

2 #include <time.h>

3 #include "connect.h"

4 #include "esp_log.h"

5 #include "scheduler.h"

6 #include "general.h"

7 #include "MQTT.h"

8 #include "ds3231.h"

9 #include "freertos/FreeRTOS.h"

10 #include "freertos/task.h"

11 #include "freertos/event_groups.h"

100

12 #include "freertos/queue.h"

13 #include "esp_event.h"

14 #include "nvs_flash.h"

15 #include "driver/gpio.h"

16 #include "esp_wifi.h"

17 #include "mqtt_cert.h"

18

19 static const char *TAG = "APP";

20

21 static esp_err_t wifi_connect(void)

22 {

23 esp_err_t err = wifi_connect_sta(WIFI_SSID, WIFI_PASS, 10000);

24 if (err != ESP_OK) {

25 ESP_LOGE(TAG, "Conexao Wi-Fi falhou");

26 return err;

27 }

28 ESP_LOGI(TAG, "Conexao Wi-Fi ativa");

29 return ESP_OK;

30 }

31

32 static void setup(void)

33 {

34 ESP_ERROR_CHECK(nvs_flash_init());

35

36 esp_log_level_set("*", ESP_LOG_INFO);

37 esp_log_level_set("SOIL", ESP_LOG_WARN);

38

39 wifi_init();

40 ESP_ERROR_CHECK(esp_wifi_set_ps(WIFI_PS_NONE));

41 ESP_ERROR_CHECK(wifi_connect());

42

43 time_sync_start();

44

45 setenv("TZ", "<+03>-3", 1);

46 tzset();

47

48 esp_err_t err = ds3231_init(I2C_NUM_0, GPIO_NUM_21,

49 GPIO_NUM_22, 100000);

50 if (err != ESP_OK) {

51 ESP_LOGE(TAG, "DS3231 init falhou: %s", esp_err_to_name(err));

52 }

101

53 }

54

55 static void io_init(void) {

56 gpio_config_t io = {

57 .pin_bit_mask = (1ULL<<LAMP1_GPIO) |

58 (1ULL<<LAMP2_GPIO) |

59 (1ULL<<LAMP3_GPIO) |

60 (1ULL<<IRR_GPIO),

61 .mode = GPIO_MODE_OUTPUT,

62 .pull_up_en = 0,

63 .pull_down_en = 0,

64 .intr_type = GPIO_INTR_DISABLE

65 };

66 gpio_config(&io);

67 gpio_set_level(LAMP1_GPIO, 0);

68 gpio_set_level(LAMP2_GPIO, 0);

69 gpio_set_level(LAMP3_GPIO, 0);

70 gpio_set_level(IRR_GPIO, 0);

71 }

72

73 void app_main(void)

74 {

75 setup();

76 io_init();

77

78 xTaskCreatePinnedToCore(MQTTControlTask, "MQTTControlTask",

79 6*4096, NULL, 6, NULL, 0);

80 xTaskCreatePinnedToCore(SchedulerTask, "SchedulerTask",

81 3*4096, NULL, 5, NULL, 0);

82 BaseType_t ok = xTaskCreate(MQTTSenderTask, "MQTTSenderTask",

83 5*4096, NULL, 5, &mqttTaskHandle);

84 xTaskCreate(taskTemperatureQueue, "taskTemperatureQueue",

85 configMINIMAL_STACK_SIZE * 5, NULL, 5, NULL);

86 xTaskCreate(taskHumidityQueue, "taskHumidityQueue",

87 configMINIMAL_STACK_SIZE * 5, NULL, 5, NULL);

88 if (ok != pdPASS) {

89 ESP_LOGE(TAG, "Falha ao criar MQTTSenderTask.");

90 }

91 }

Listing 7: Arquivo CMakeLists.txt do projeto principal (main)

102

1 idf_component_register(SRCS "main.c" "MQTT.c" "ds3231.c" "scheduler.c"

2 INCLUDE_DIRS "."

3 PRIV_REQUIRES wifi json mqtt driver lwip

4 REQUIRES wifi mqtt json nvs_flash esp_event esp_adc

5)

B.3 Módulo DS3231 (RTC e temperatura)

B.3.1 Arquivo ds3231.h

Listing 8: Cabeçalho do módulo DS3231

1 #pragma once

2 #include "driver/i2c.h"

3 #include <time.h>

4

5 #define DS3231_ADDR 0x68

6 #define DS3231_REG_SEC 0x00

7 #define DS3231_TEMP_MSB 0x11

8 #define DS3231_TEMP_LSB 0x12

9

10 esp_err_t ds3231_init(i2c_port_t port, gpio_num_t sda,

11 gpio_num_t scl, uint32_t freq_hz);

12 esp_err_t ds3231_get_time(struct tm *out_tm);

13 esp_err_t ds3231_set_time(const struct tm *in_tm);

14 esp_err_t ds3231_get_temperature(float *out_celsius);

B.3.2 Arquivo ds3231.c

Listing 9: Implementação do módulo DS3231

1 #include <time.h>

2 #include <stdbool.h>

3 #include "ds3231.h"

4 #include "esp_log.h"

5

6 static i2c_port_t s_port;

7

8 static uint8_t bcd2bin(uint8_t v) { return (v & 0x0F) + ((v >> 4) * 10); }

9 static uint8_t bin2bcd(uint8_t v) { return ((v / 10) << 4) | (v % 10); }

10

103

11 static esp_err_t i2c_wr(uint8_t reg, const uint8_t *data, size_t len) {

12 i2c_cmd_handle_t cmd = i2c_cmd_link_create();

13 i2c_master_start(cmd);

14 i2c_master_write_byte(cmd, (DS3231_ADDR<<1) | I2C_MASTER_WRITE, true);

15 i2c_master_write_byte(cmd, reg, true);

16 if (len) i2c_master_write(cmd, (uint8_t*)data, len, true);

17 i2c_master_stop(cmd);

18 esp_err_t err = i2c_master_cmd_begin(s_port, cmd, pdMS_TO_TICKS(100));

19 i2c_cmd_link_delete(cmd);

20 return err;

21 }

22

23 static esp_err_t i2c_rd(uint8_t reg, uint8_t *data, size_t len) {

24 i2c_cmd_handle_t cmd = i2c_cmd_link_create();

25 i2c_master_start(cmd);

26 i2c_master_write_byte(cmd, (DS3231_ADDR<<1) | I2C_MASTER_WRITE, true);

27 i2c_master_write_byte(cmd, reg, true);

28 i2c_master_start(cmd);

29 i2c_master_write_byte(cmd, (DS3231_ADDR<<1) | I2C_MASTER_READ, true);

30 i2c_master_read(cmd, data, len, I2C_MASTER_LAST_NACK);

31 i2c_master_stop(cmd);

32 esp_err_t err = i2c_master_cmd_begin(s_port, cmd, pdMS_TO_TICKS(100));

33 i2c_cmd_link_delete(cmd);

34 return err;

35 }

36

37 esp_err_t ds3231_init(i2c_port_t port, gpio_num_t sda,

38 gpio_num_t scl, uint32_t freq_hz) {

39 s_port = port;

40 i2c_config_t cfg = {

41 .mode = I2C_MODE_MASTER,

42 .sda_io_num = sda,

43 .scl_io_num = scl,

44 .sda_pullup_en = GPIO_PULLUP_DISABLE,

45 .scl_pullup_en = GPIO_PULLUP_DISABLE,

46 .master.clk_speed = freq_hz ? freq_hz : 100000

47 };

48 ESP_ERROR_CHECK(i2c_param_config(s_port, &cfg));

49 ESP_ERROR_CHECK(i2c_driver_install(s_port, I2C_MODE_MASTER,

50 0, 0, 0));

51 uint8_t ping;

104

52 return i2c_rd(DS3231_REG_SEC, &ping, 1);

53 }

54

55 esp_err_t ds3231_get_time(struct tm *out_tm) {

56 uint8_t b[7];

57 esp_err_t err = i2c_rd(DS3231_REG_SEC, b, sizeof(b));

58 if (err != ESP_OK) return err;

59

60 out_tm->tm_sec = bcd2bin(b[0] & 0x7F);

61 out_tm->tm_min = bcd2bin(b[1] & 0x7F);

62 uint8_t hr = b[2];

63 if (hr & 0x40) {

64 uint8_t h12 = bcd2bin(hr & 0x1F);

65 out_tm->tm_hour = (hr & 0x20) ? (h12 % 12) + 12 : (h12 % 12);

66 } else {

67 out_tm->tm_hour = bcd2bin(hr & 0x3F);

68 }

69 out_tm->tm_wday = (b[3] & 0x07) - 1;

70 out_tm->tm_mday = bcd2bin(b[4] & 0x3F);

71 out_tm->tm_mon = bcd2bin(b[5] & 0x1F) - 1;

72 out_tm->tm_year = bcd2bin(b[6]) + 100;

73 return ESP_OK;

74 }

75

76 esp_err_t ds3231_set_time(const struct tm *in_tm) {

77 uint8_t b[7];

78 b[0] = bin2bcd(in_tm->tm_sec);

79 b[1] = bin2bcd(in_tm->tm_min);

80 b[2] = bin2bcd(in_tm->tm_hour);

81 b[3] = bin2bcd(in_tm->tm_wday + 1);

82 b[4] = bin2bcd(in_tm->tm_mday);

83 b[5] = bin2bcd(in_tm->tm_mon + 1);

84 b[6] = bin2bcd(in_tm->tm_year - 100);

85 return i2c_wr(DS3231_REG_SEC, b, sizeof(b));

86 }

87

88 esp_err_t ds3231_get_temperature(float *out_celsius) {

89 uint8_t msb, lsb;

90 esp_err_t err = i2c_rd(DS3231_TEMP_MSB, &msb, 1);

91 if (err != ESP_OK) return err;

92 err = i2c_rd(DS3231_TEMP_LSB, &lsb, 1);

105

93 if (err != ESP_OK) return err;

94 int8_t whole = (int8_t)msb;

95 float frac = (lsb >> 6) * 0.25f;

96 *out_celsius = whole + frac;

97 return ESP_OK;

98 }

B.4 Arquivo general.h

Listing 10: Definições gerais de hardware e tópicos MQTT (general.h)

1 #ifndef __GENERAL_H

2 #define __GENERAL_H

3

4 #include <stdbool.h>

5 #include "driver/gpio.h"

6

7 #define WIFI_SSID "Wi-Fi Sitio"

8 #define WIFI_PASS "senhadowifisitio"

9

10 #define LAMP1_GPIO GPIO_NUM_16

11 #define LAMP2_GPIO GPIO_NUM_17

12 #define LAMP3_GPIO GPIO_NUM_18

13 #define IRR_GPIO GPIO_NUM_19

14

15 #define IRR_ON_MS 8000

16 #define IRR_OFF_MS 4000

17

18 #define SOIL_ADC_UNIT ADC_UNIT_1

19 #define SOIL_ADC_CHANNEL ADC_CHANNEL_6

20 #define SOIL_ATTEN ADC_ATTEN_DB_12

21 #define SOIL_BITWIDTH ADC_BITWIDTH_12

22

23 #define SOIL_RAW_DRY 1860

24 #define SOIL_RAW_WET 950

25

26 #define MQTT_NS_RURAL "tcc/esp02/rural"

27 #define TOPIC_L1_CMD_RURAL MQTT_NS_RURAL "/l1"

28 #define TOPIC_L2_CMD_RURAL MQTT_NS_RURAL "/l2"

29 #define TOPIC_L3_CMD_RURAL MQTT_NS_RURAL "/l3"

30 #define TOPIC_AUTO_CMD_RURAL MQTT_NS_RURAL "/auto"

106

31 #define TOPIC_L1_STATE_RURAL MQTT_NS_RURAL "/state/l1"

32 #define TOPIC_L2_STATE_RURAL MQTT_NS_RURAL "/state/l2"

33 #define TOPIC_L3_STATE_RURAL MQTT_NS_RURAL "/state/l3"

34 #define TOPIC_AUTO_STATE_RURAL MQTT_NS_RURAL "/state/auto"

35

36 #define TOPIC_IRR_CMD_RURAL MQTT_NS_RURAL "/irrig"

37 #define TOPIC_IRR_STATE_RURAL MQTT_NS_RURAL "/state/irrig"

38 #define TOPIC_IRR_AUTO_CMD_RURAL MQTT_NS_RURAL "/irr_auto"

39 #define TOPIC_IRR_AUTO_STATE_RURAL MQTT_NS_RURAL "/state/irr_auto"

40

41 extern volatile bool wifiOnline;

42

43 #endif

B.5 Protocolo MQTT

B.5.1 Arquivo MQTT.h

Listing 11: Cabeçalho do módulo MQTT (MQTT.h)

1 #pragma once

2

3 #include "freertos/FreeRTOS.h"

4 #include "freertos/event_groups.h"

5 #include "freertos/task.h"

6 #include <math.h>

7 #include <time.h>

8

9 #define SensorQueueLength 100

10 #define generalDataQueueLength 10

11

12 typedef struct t_MqttQueueFloat {

13 char tag[30];

14 char local[30];

15 float val;

16 long long int timestamp;

17 } MqttQueueFloat_t;

18

19 typedef struct t_SysDataFloat {

20 char local[30];

21 float val;

107

22 long long int timestamp;

23 } SysDataFloat_t;

24

25 extern TaskHandle_t mqttTaskHandle;

26 extern bool lamp1_state, lamp2_state, lamp3_state, auto_mode;

27 extern bool irrig_state, auto_irrig;

28

29 #define NETWORK_CONNECTED BIT1

30 #define MQTT_CONNECTED BIT2

31 #define MQTT_PUBLISHED BIT3

32 #define MQTT_SUBSCRIBED BIT4

33 #define MQTT_ERROR BIT5

34

35 extern int humidityIndexProcess;

36 extern int temperatureIndexProcess;

37

38 extern MqttQueueFloat_t generalDataQueue[generalDataQueueLength];

39 extern SysDataFloat_t humidityData[SensorQueueLength];

40 extern SysDataFloat_t temperatureData[SensorQueueLength];

41 extern SysDataFloat_t subscribedData;

42

43 void time_sync_start(void);

44 void epoch_to_iso8601_utc(time_t t, char out[21]);

45 void MQTTSenderTask(void *args);

46 float convertData(char data[], int lenght);

47 void getSubscribed(void);

48 int storeFloatQueue(float data, char local[], SysDataFloat_t *internalData);

49 void taskHumidityQueue(void *args);

50 void taskTemperatureQueue(void *args);

51 void MQTTControlTask(void *args);

52 void publish_state_all(void);

53 void IrrigationAutoTask(void *args);

54 void publish_irrig_state(void);

B.5.2 Arquivo MQTT.c

Listing 12: Implementação do módulo MQTT do nó rural (MQTT.c).

1 #include <stdio.h>

2 #include <string.h>

3 #include <time.h>

4 #include <stdlib.h>

108

5 #include "MQTT.h"

6 #include "connect.h"

7 #include "mqtt_client.h"

8 #include "cJSON.h"

9 #include "general.h"

10 #include "esp_log.h"

11 #include "driver/gpio.h"

12 #include "esp_adc/adc_oneshot.h"

13 #include "esp_sntp.h"

14 #include "ds3231.h"

15 #include "mqtt_cert.h"

16

17 static adc_oneshot_unit_handle_t s_adc = NULL;

18 static void set_lamp(gpio_num_t gpio, bool on);

19

20 int humidityIndexProcess = 0;

21 int temperatureIndexProcess = 0;

22

23 float retSubscribedValue = 0;

24 static bool COMSTATUS = 0;

25 bool dataToSend = 0;

26 bool humSended = 0;

27 bool tmpSended = 0;

28 bool lamp1_state=false, lamp2_state=false, lamp3_state=false, auto_mode=false;

29 bool irrig_state=false, auto_irrig=false;

30

31 static long long now_epoch_ds3231(void);

32

33

34 // --- SNTP helpers ---

35 void time_sync_start(void) {

36 esp_sntp_setoperatingmode(ESP_SNTP_OPMODE_POLL);

37 esp_sntp_setservername(0, "pool.ntp.org");

38 esp_sntp_setservername(1, "time.google.com");

39 sntp_set_sync_mode(SNTP_SYNC_MODE_SMOOTH);

40 esp_sntp_init();

41 // Espera simples (mx ~5s) pela primeira sync

42 for (int i = 0; i < 100 && esp_sntp_get_sync_status() == SNTP_SYNC_STATUS_RESET

↪→ ; ++i) {

43 vTaskDelay(pdMS_TO_TICKS(100));

44 }

109

45 }

46

47 void epoch_to_iso8601_utc(time_t t, char out[21]) {

48 struct tm tm_utc;

49 gmtime_r(&t, &tm_utc);

50 strftime(out, 21, "%Y-%m-%dT%H:%M:%SZ", &tm_utc);

51 }

52

53

54 static bool payload_is_on(const char* p, int len) {

55 // aceita on/1/true (case-insensitive)

56 if (!p || len<=0) return false;

57 if (len==1 && (p[0]=='1')) return true;

58 if (len==4 && (p[0]=='t'||p[0]=='T')) return true; // true

59 if (len==2 && (p[0]=='o'||p[0]=='O')) return true; // on

60 return false;

61 }

62

63 static esp_mqtt_client_handle_t ctrl_client = NULL;

64 MqttQueueFloat_t generalDataQueue[generalDataQueueLength] = {0};

65 SysDataFloat_t humidityData[SensorQueueLength] = {0};

66 SysDataFloat_t temperatureData[SensorQueueLength] = {0};

67 SysDataFloat_t subscribedData = {0};

68

69 #define TAG "MQTT"

70 #define BASE_TOPIC "tcc"

71

72 #define TOPIC_TEMP "tcc/esp02/rural/temp"

73 #define TOPIC_HUM "tcc/esp02/rural/hum"

74 #define TOPIC_RAW "tcc/esp02/rural/raw"

75

76 TaskHandle_t mqttTaskHandle = NULL;

77

78 void mqtt_event_handler_cb(esp_mqtt_event_handle_t event_data){

79 switch (event_data->event_id){

80 case MQTT_EVENT_CONNECTED:

81 ESP_LOGI(TAG, "MQTT CONECTADO");

82 xTaskNotify(mqttTaskHandle, MQTT_CONNECTED, eSetValueWithOverwrite);

83 break;

84 case MQTT_EVENT_DISCONNECTED:

85 ESP_LOGI(TAG, "MQTT DESCONECTADO");

110

86 break;

87 case MQTT_EVENT_SUBSCRIBED:

88 ESP_LOGI(TAG, "MQTT ASSINADO, msg_if=%d", event_data->msg_id);

89 break;

90 case MQTT_EVENT_UNSUBSCRIBED:

91 break;

92 case MQTT_EVENT_PUBLISHED:

93 ESP_LOGI(TAG, "MQTT PUBLICADO, msg_id=%d", event_data->msg_id);

94 xTaskNotify(mqttTaskHandle, MQTT_PUBLISHED, eSetValueWithOverwrite);

95 break;

96 case MQTT_EVENT_DATA:

97 ESP_LOGI(TAG, "DADO LIDO EM SUBSCRICAO");

98 ESP_LOGI("MQTT", "TOPICO=%.*s", event_data->topic_len, event_data->topic

↪→);

99 ESP_LOGI("MQTT", "DADO=%.*s", event_data->data_len, event_data->data);

100 retSubscribedValue = convertData(event_data->data, event_data->data_len)

↪→ ;

101 xTaskNotify(mqttTaskHandle, MQTT_SUBSCRIBED, eSetValueWithOverwrite);

102 break;

103 case MQTT_EVENT_ERROR:

104 ESP_LOGI(TAG, "ERRO GERAL");

105 xTaskNotify(mqttTaskHandle, MQTT_ERROR, eSetValueWithOverwrite);

106 break;

107 default:

108 ESP_LOGI(TAG, "OUTRO EVENTO - id:%d", event_data->event_id);

109 break;

110 }

111 }

112

113 static void mqtt_control_event(void* handler_args, esp_event_base_t base, int32_t

↪→ eid, void* event_data) {

114 esp_mqtt_event_handle_t e = (esp_mqtt_event_handle_t)event_data;

115 switch (eid) {

116 case MQTT_EVENT_CONNECTED:

117 esp_mqtt_client_subscribe(ctrl_client, TOPIC_L1_CMD_RURAL, 1);

118 esp_mqtt_client_subscribe(ctrl_client, TOPIC_L2_CMD_RURAL, 1);

119 esp_mqtt_client_subscribe(ctrl_client, TOPIC_L3_CMD_RURAL, 1);

120 esp_mqtt_client_subscribe(ctrl_client, TOPIC_AUTO_CMD_RURAL, 1);

121 esp_mqtt_client_subscribe(ctrl_client, TOPIC_IRR_CMD_RURAL, 1);

122 esp_mqtt_client_subscribe(ctrl_client, TOPIC_IRR_AUTO_CMD_RURAL, 1);

123 esp_mqtt_client_subscribe(ctrl_client, TOPIC_TEMP, 2);

111

124 esp_mqtt_client_subscribe(ctrl_client, TOPIC_HUM, 2);

125 publish_state_all(); // publica estado atual ao conectar (retain)

126 publish_irrig_state();

127 break;

128

129 case MQTT_EVENT_DATA: {

130 // topic e data NO so null-terminated

131 const char* t = e->topic; int tlen = e->topic_len;

132 const char* p = e->data; int plen = e->data_len;

133 bool is_on = payload_is_on(p, plen);

134

135 if (tlen == (int)strlen(TOPIC_TEMP) && strncmp(t, TOPIC_TEMP, tlen) == 0) {

136 ESP_LOGI(TAG, "JSON recebido em %.*s: %.*s", tlen, t, plen, p);

137 return;

138 }

139 if (tlen == (int)strlen(TOPIC_HUM) && strncmp(t, TOPIC_HUM, tlen) == 0) {

140 ESP_LOGI(TAG, "JSON recebido em %.*s: %.*s", tlen, t, plen, p);

141 return;

142 }

143

144 if (tlen == strlen(TOPIC_L1_CMD_RURAL) && strncmp(t, TOPIC_L1_CMD_RURAL,

↪→ tlen)==0) {

145 lamp1_state = is_on; set_lamp(LAMP1_GPIO, lamp1_state);

146 esp_mqtt_client_publish(ctrl_client, TOPIC_L1_STATE_RURAL, lamp1_state?"

↪→ on":"off", 0, 1, true);

147 } else if (tlen == strlen(TOPIC_L2_CMD_RURAL) && strncmp(t,

↪→ TOPIC_L2_CMD_RURAL, tlen)==0) {

148 lamp2_state = is_on; set_lamp(LAMP2_GPIO, lamp2_state);

149 esp_mqtt_client_publish(ctrl_client, TOPIC_L2_STATE_RURAL, lamp2_state?"

↪→ on":"off", 0, 1, true);

150 } else if (tlen == strlen(TOPIC_L3_CMD_RURAL) && strncmp(t,

↪→ TOPIC_L3_CMD_RURAL, tlen)==0) {

151 lamp3_state = is_on; set_lamp(LAMP3_GPIO, lamp3_state);

152 esp_mqtt_client_publish(ctrl_client, TOPIC_L3_STATE_RURAL, lamp3_state?"

↪→ on":"off", 0, 1, true);

153 } else if (tlen == strlen(TOPIC_AUTO_CMD_RURAL) && strncmp(t,

↪→ TOPIC_AUTO_CMD_RURAL, tlen)==0) {

154 auto_mode = is_on;

155 esp_mqtt_client_publish(ctrl_client, TOPIC_AUTO_STATE_RURAL, auto_mode?"

↪→ on":"off", 0, 1, true);

112

156 } else if (tlen == strlen(TOPIC_IRR_CMD_RURAL) && strncmp(t,

↪→ TOPIC_IRR_CMD_RURAL, tlen)==0) {

157 irrig_state = is_on; set_lamp(IRR_GPIO, irrig_state);

158 publish_irrig_state();

159 } else if (tlen == strlen(TOPIC_IRR_AUTO_CMD_RURAL) && strncmp(t,

↪→ TOPIC_IRR_AUTO_CMD_RURAL, tlen)==0) {

160 auto_irrig = is_on;

161 esp_mqtt_client_publish(ctrl_client, TOPIC_IRR_AUTO_STATE_RURAL,

↪→ auto_irrig ? "on" : "off", 0, 1, true);

162 if (!auto_irrig) {

163 set_lamp(IRR_GPIO, irrig_state);

164 publish_irrig_state();

165 }

166 }

167

168 break;

169 }

170 default:

171 break;

172 }

173 }

174

175 void MQTTControlTask(void *args){

176 const esp_mqtt_client_config_t cfg = {

177 .broker.address.uri = "mqtts://179.145.53.227:8883",

178 .credentials.client_id = "esp32-esp02-rural",

179 .credentials.username = "gabriel",

180 .credentials.authentication.password = "root123456204",

181 .broker.verification.certificate = mqtt_ca_cert_pem,

182 .session.keepalive = 30,

183 .network.disable_auto_reconnect = false

184 };

185 ctrl_client = esp_mqtt_client_init(&cfg);

186 esp_mqtt_client_register_event(ctrl_client, ESP_EVENT_ANY_ID,

↪→ mqtt_control_event, NULL);

187 esp_mqtt_client_start(ctrl_client);

188

189 while (1) {

190

191 vTaskDelay(pdMS_TO_TICKS(200));

192 }

113

193 }

194

195 static void mqtt_event_handler(void* event_handler_arg, esp_event_base_t event_base

↪→ , int32_t event_id, void* event_data){

196 mqtt_event_handler_cb(event_data);

197 }

198

199 static void set_lamp(gpio_num_t gpio, bool on) {

200 gpio_set_level(gpio, on ? 1 : 0);

201 }

202

203 void MQTTSender(MqttQueueFloat_t *sensorFloatReading, bool subscribe){

204 uint32_t command = 0;

205 const esp_mqtt_client_config_t mqttConfig = {

206 .broker.address.uri = "mqtts://179.145.53.227:8883",

207 .broker.verification.certificate = (const char*)mqtt_ca_cert_pem,

208 .credentials.username = "gabriel",

209 .credentials.authentication.password = "root123456204",

210 .credentials.client_id = "esp32-esp02-rural-sender",

211 .session.keepalive = 60,

212 .network.disable_auto_reconnect = false

213 };

214 esp_mqtt_client_handle_t client = NULL;

215

216 while(1){

217 char local[30];

218 char dataBuff[15];

219 char outBuff[1000];

220 char tag[30];

221 char timestamp[15];

222 xTaskNotifyWait(0,0,&command, portMAX_DELAY);

223 switch (command)

224 {

225 case NETWORK_CONNECTED:

226 COMSTATUS = 0;

227 client = esp_mqtt_client_init(&mqttConfig);

228 esp_mqtt_client_register_event(client, ESP_EVENT_ANY_ID,

↪→ mqtt_event_handler, client);

229 esp_mqtt_client_start(client);

230 ESP_LOGI(TAG, "ONLINE");

231 break;

114

232 case MQTT_CONNECTED:

233 COMSTATUS = 0;

234 if(subscribe){

235 strcpy(local,sensorFloatReading[0].local);

236 esp_mqtt_client_subscribe(client, local, 1);

237 }else {

238 // ---------- MONTA O PAYLOAD ANTIGO PARA O VISOR ----------

239 // usa as variveis j declaradas acima (outBuff, tag, dataBuff,

↪→ timestamp)

240 // zera o buffer

241 outBuff[0] = '\0';

242 strcat(outBuff, "{");

243

244 // contador para vrgula apenas entre pares vlidos

245 int wrote = 0;

246 for (int i = 0; i < generalDataQueueLength; i++) {

247 if (sensorFloatReading[i].timestamp == 0) continue; // slot

↪→ vazio

248

249 // monta "TAG:VAL:TIMESTAMP"

250 strcpy(tag, sensorFloatReading[i].tag);

251 sprintf(dataBuff, "%.2f", sensorFloatReading[i].val);

252 sprintf(timestamp, "%lld", sensorFloatReading[i].timestamp);

253

254 if (wrote > 0) strcat(outBuff, ",");

255 strcat(outBuff, tag);

256 strcat(outBuff, ":");

257 strcat(outBuff, dataBuff);

258 strcat(outBuff, ":");

259 strcat(outBuff, timestamp);

260 wrote++;

261 }

262 strcat(outBuff, "}");

263

264 // PUBLICA O PAYLOAD ANTIGO (para o visor do MQTTBox)

265 esp_mqtt_client_publish(client, TOPIC_RAW, outBuff, 0 /* strlen

↪→ auto */, 2, false);

266

267 // ---------- MONTA E PUBLICA OS JSONs PARA O BACKEND ----------

268 const MqttQueueFloat_t *hum = NULL, *tmp = NULL;

269 for (int i = 0; i < generalDataQueueLength; i++) {

115

270 if (sensorFloatReading[i].timestamp == 0) continue;

271 if (strncmp(sensorFloatReading[i].tag, "HUM", 3) == 0) hum =

↪→ &sensorFloatReading[i];

272 if (strncmp(sensorFloatReading[i].tag, "TMP", 3) == 0) tmp =

↪→ &sensorFloatReading[i];

273 }

274

275 char jsonBuf[160];

276

277 if (tmp) {

278 char iso_temp[21];

279 epoch_to_iso8601_utc((time_t)tmp->timestamp, iso_temp);

280 snprintf(jsonBuf, sizeof(jsonBuf),

281 "{\"temperature\": %.2f, \"timestamp\": \"%s\"}", tmp

↪→ ->val, iso_temp);

282 esp_mqtt_client_publish(client, TOPIC_TEMP, jsonBuf, 0, 1,

↪→ false);

283 }

284

285 if (hum) {

286 char iso_hum[21];

287 epoch_to_iso8601_utc((time_t)hum->timestamp, iso_hum);

288 snprintf(jsonBuf, sizeof(jsonBuf),

289 "{\"humidity\": %.2f, \"timestamp\": \"%s\"}", hum->

↪→ val, iso_hum);

290 esp_mqtt_client_publish(client, TOPIC_HUM, jsonBuf, 0, 1,

↪→ false);

291 }

292

293 }

294 break;

295 case MQTT_PUBLISHED:

296 ESP_LOGI(TAG, "PARANDO");

297 if (client) {

298 esp_mqtt_client_stop(client);

299 esp_mqtt_client_destroy(client);

300 client = NULL;

301 }

302 COMSTATUS = 1;

303 return;

304 case MQTT_SUBSCRIBED:

116

305 sensorFloatReading[0].val = retSubscribedValue;

306 if (client) {

307 ESP_ERROR_CHECK(esp_mqtt_client_stop(client));

308 ESP_ERROR_CHECK(esp_mqtt_client_destroy(client));

309 client = NULL;

310 }

311 COMSTATUS = 1;

312 return;

313 case MQTT_ERROR:

314 ESP_LOGE(TAG, "ERRO DE CONEXAO");

315 if (client) {

316 esp_mqtt_client_stop(client);

317 esp_mqtt_client_destroy(client);

318 client = NULL;

319 }

320 COMSTATUS = 0;

321 default:

322 break;

323 }

324 }

325 }

326

327 void publish_state_all(void) {

328 if (!ctrl_client) return;

329 esp_mqtt_client_publish(ctrl_client, TOPIC_L1_STATE_RURAL, lamp1_state?"on":"

↪→ off", 0, 1, true);

330 esp_mqtt_client_publish(ctrl_client, TOPIC_L2_STATE_RURAL, lamp2_state?"on":"

↪→ off", 0, 1, true);

331 esp_mqtt_client_publish(ctrl_client, TOPIC_L3_STATE_RURAL, lamp3_state?"on":"

↪→ off", 0, 1, true);

332 esp_mqtt_client_publish(ctrl_client, TOPIC_AUTO_STATE_RURAL, auto_mode?"on":"

↪→ off", 0, 1, true);

333 }

334

335 void publish_irrig_state(void) {

336 if (!ctrl_client) return;

337 esp_mqtt_client_publish(ctrl_client, TOPIC_IRR_STATE_RURAL, irrig_state?"on":"

↪→ off", 0, 1, true);

338 }

339

340 static void soil_adc_init_once(void){

117

341 static bool inited = false;

342 if (inited) return;

343

344 adc_oneshot_unit_init_cfg_t unit_cfg = {

345 .unit_id = SOIL_ADC_UNIT,

346 };

347 ESP_ERROR_CHECK(adc_oneshot_new_unit(&unit_cfg, &s_adc));

348

349 adc_oneshot_chan_cfg_t chan_cfg = {

350 .bitwidth = SOIL_BITWIDTH,

351 .atten = SOIL_ATTEN,

352 };

353 ESP_ERROR_CHECK(adc_oneshot_config_channel(s_adc, SOIL_ADC_CHANNEL, &chan_cfg))

↪→ ;

354 inited = true;

355 }

356

357 // Mediana simples de N leituras para reduzir rudo

358 static int read_soil_raw_multisample(void){

359 const int N = 15;

360 int v[N];

361 for (int i = 0; i < N; i++){

362 ESP_ERROR_CHECK(adc_oneshot_read(s_adc, SOIL_ADC_CHANNEL, &v[i]));

363 }

364 // insertion sort

365 for (int i = 1; i < N; i++){

366 int key = v[i], j = i - 1;

367 while (j >= 0 && v[j] > key){ v[j+1] = v[j]; j--; }

368 v[j+1] = key;

369 }

370 return v[N/2];

371 }

372

373 // Mapeia leitura para % de umidade (0..100)

374 static float soil_percent_from_raw(int raw){

375 float dry = SOIL_RAW_DRY, wet = SOIL_RAW_WET;

376 if (dry < wet){ float t = dry; dry = wet; wet = t; } // por via das dvidas

377 float pct = (dry - raw) / (dry - wet);

378 if (pct < 0) pct = 0;

379 if (pct > 1) pct = 1;

380 return pct * 100.0f;

118

381 }

382

383

384 void MQTTSenderTask(void *args){

385 mqttTaskHandle = xTaskGetCurrentTaskHandle();

386 ESP_LOGI(TAG, "INICIADO SENDER TASK");

387

388 while (1)

389 {

390 static int index = 0;

391 index = 0;

392

393 ESP_LOGI(TAG, "INICIANDO REDE WIFI");

394 ESP_ERROR_CHECK(esp_wifi_start());

395

396 while(!wifiOnline){

397 vTaskDelay(20);

398 }

399

400 if (humidityIndexProcess > 0 && wifiOnline){

401 strcpy(generalDataQueue[index].tag, humidityData[humidityIndexProcess

↪→ -1].local);

402 strcpy(generalDataQueue[index].local, "tcc/esp02/rural/hum");

403 generalDataQueue[index].val = humidityData[humidityIndexProcess-1].val;

404 generalDataQueue[index].timestamp = humidityData[humidityIndexProcess

↪→ -1].timestamp;

405 index++;

406 dataToSend = 1;

407 humSended = 1;

408 }

409

410 if (temperatureIndexProcess > 0 && wifiOnline){

411 strcpy(generalDataQueue[index].tag, temperatureData[

↪→ temperatureIndexProcess-1].local);

412 strcpy(generalDataQueue[index].local, "tcc/esp02/rural/temp");

413 generalDataQueue[index].val = temperatureData[temperatureIndexProcess

↪→ -1].val;

414 generalDataQueue[index].timestamp = temperatureData[

↪→ temperatureIndexProcess-1].timestamp;

415 index++;

416 dataToSend = 1;

119

417 tmpSended = 1;

418 }

419 vTaskDelay(pdMS_TO_TICKS(30000));

420

421 if(dataToSend == 1){

422 xTaskNotify(mqttTaskHandle, NETWORK_CONNECTED, eSetValueWithOverwrite);

423 MQTTSender(generalDataQueue,0);

424 dataToSend=0;

425 }

426

427 if (COMSTATUS == 1){

428 if(humidityIndexProcess > 0 && humSended ==1){

429 humidityData[humidityIndexProcess-1].timestamp = 0;

430 humidityData[humidityIndexProcess-1].val = 0;

431 humidityIndexProcess--;

432 humSended = 0;

433 }

434

435 if(temperatureIndexProcess > 0 && tmpSended ==1){

436 temperatureData[temperatureIndexProcess-1].timestamp = 0;

437 temperatureData[temperatureIndexProcess-1].val = 0;

438 temperatureIndexProcess--;

439 tmpSended = 0;

440 }

441

442 for(int i = 0; i<generalDataQueueLength; i++){

443 strcpy(generalDataQueue[i].tag, " ");

444 strcpy(generalDataQueue[i].local, " ");

445 generalDataQueue[i].val=0;

446 generalDataQueue[i].timestamp=0;

447 }

448 }

449 vTaskDelay(pdMS_TO_TICKS(30000));

450 }

451 }

452

453 void getSubscribed(){

454 MqttQueueFloat_t temp[1];

455

456 strcpy(subscribedData.local, "tcc/esp02/rural/temp");

457 xTaskNotify(mqttTaskHandle, NETWORK_CONNECTED, eSetValueWithOverwrite);

120

458 strcpy(temp[0].tag, " ");

459 strcpy(temp[0].local, " ");

460 temp[0].val = 0;

461 temp[0].timestamp=0;

462 strcpy(temp[0].local, subscribedData.local);

463 MQTTSender(temp, 1);

464 subscribedData.val = temp[0].val;

465 printf("Valor lido: %f \n\r", subscribedData.val);

466 }

467

468 int storeFloatQueue(float data, char local[], SysDataFloat_t *internalData){

469 int indexLocal = 0;

470

471 if (internalData[SensorQueueLength-1].timestamp != 0){

472 for(int i=0; i<(SensorQueueLength-1); i++){

473 internalData[i].val = internalData[i+1].val;

474 internalData[i].timestamp = internalData[i+1].timestamp;

475 internalData[i].timestamp = internalData[i+1].timestamp;

476 strcpy(internalData[i].local,internalData[i+1].local);

477 indexLocal = SensorQueueLength-1;

478 }

479 }else{

480 for(int i=0; i<SensorQueueLength;i++){

481 if(internalData[i].timestamp == 0) {

482 indexLocal = i;

483 break;

484 }

485 }

486

487 }

488 internalData[indexLocal].val = data;

489 internalData[indexLocal].timestamp = now_epoch_ds3231();

490 strcpy(internalData[indexLocal].local,local);

491

492 return(indexLocal+1);

493 }

494

495 void taskHumidityQueue(void *args){

496 humidityIndexProcess = 0;

497 soil_adc_init_once();

498

121

499 while(1){

500 int raw = read_soil_raw_multisample();

501 float hum_pct = soil_percent_from_raw(raw); // 0..100 %

502

503 humidityIndexProcess = storeFloatQueue(hum_pct, "HUM01", humidityData);

504 vTaskDelay(pdMS_TO_TICKS(2000));

505 }

506 }

507

508 void taskTemperatureQueue(void *args){

509 temperatureIndexProcess = 0;

510

511 while(1){

512 float tC = 0.0f;

513 if (ds3231_get_temperature(&tC) == ESP_OK) {

514 temperatureIndexProcess = storeFloatQueue(tC, "TMP01", temperatureData);

515 }

516 vTaskDelay(pdMS_TO_TICKS(2000)); // RTC atualiza

517 }

518 }

519

520

521

522 float convertData(char data[], int lenght){

523 bool negative = 0;

524 bool dot = 0;

525 int factorMult = 0;

526 int factorDiv = 0;

527 int factorDivAux = 0;

528 float valor = 0;

529

530

531 for(int i=9; i<lenght-1; i++){

532 if(data[i]=='.'){

533 dot=1;

534 }

535

536 if (data[i] =='-'){

537 negative = 1;

538 }else{

539 if (dot==0){

122

540 factorMult++;

541 }else{

542 factorDiv++;

543 }

544 }

545 }

546 //Se no achou o . ento precisa subtrair um para ajustar o comprimento

547 if(dot==0){

548 factorMult--;

549 }

550 dot = 0;

551

552 factorDivAux = factorDiv-1;

553

554 for(int i=9; i<lenght-1; i++){

555 if(data[i]=='.'){

556 dot=1;

557 }else{

558 if (data[i] > 47 && data[i] < 58){

559 if(dot == 0){

560 factorMult--;

561 valor = (float)(((int)data[i]) -48) * pow(10,factorMult) + valor;

562 }

563 if(dot == 1){

564 valor = (float)(((int)data[i]-48)) / pow(10,factorDiv-factorDivAux) +

↪→ valor;

565 factorDivAux--;

566 }

567 }

568 }

569 }

570

571 if(negative){

572 valor = -valor;

573 }

574

575 return valor;

576 }

577

578 static long long now_epoch_ds3231(void){

579 struct tm t;

123

580 if (ds3231_get_time(&t) == ESP_OK) {

581 // TZ=UTC0 -> mktime() devolve epoch UTC

582 return (long long) mktime(&t);

583 }

584 // fallback: se o RTC falhar, devolve 0 (ou um erro)

585 return (0);

586 }

B.5.3 Arquivo mqtt_cert.h

Listing 13: Certificado da autoridade certificadora (mqtt_cert.h)

1 #ifndef MQTT_CERT_H

2 #define MQTT_CERT_H

3

4 static const char mqtt_ca_cert_pem[] =

5 "-----BEGIN CERTIFICATE-----\n"

6 "MIIDsTCCApmgAwIBAgIUVnoWnkW08LN+bo8boufYy4Ap8agwDQYJKoZIhvcNAQEL\n"

7 /* linhas intermediarias do certificado omitidas para brevidade */

8 "J1cwAsIhrfKNc9QaSMboHEz3knK6822jEFTCDgH4+nRD6ROD2A==\n"

9 "-----END CERTIFICATE-----\n";

10

11 #endif // MQTT_CERT_H

B6 Arquivo scheduler.h e scheduler.c

Listing 14: Cabeçalho do agendador de tarefas (scheduler.h)

1 #pragma once

2 #ifdef __cplusplus

3 extern "C" {

4 #endif

5

6 void SchedulerTask(void *args);

7

8 #ifdef __cplusplus

9 }

10 #endif

Listing 15: Implementação do agendador de iluminação e irrigação (scheduler.c)

124

1 #include <stdbool.h>

2 #include "freertos/FreeRTOS.h"

3 #include "freertos/task.h"

4 #include "driver/gpio.h"

5 #include "esp_log.h"

6 #include "ds3231.h"

7 #include "general.h"

8 #include "MQTT.h"

9

10 static const char *TAG = "SCHED";

11

12 static int minutes_since_midnight(void) {

13 struct tm t = {0};

14 if (ds3231_get_time(&t) != ESP_OK) {

15 ESP_LOGW(TAG, "RTC falhou; assumindo 00:00");

16 return 0;

17 }

18 return t.tm_hour * 60 + t.tm_min;

19 }

20

21 static bool in_window(int now_min, int start_min, int end_min) {

22 if (start_min <= end_min) {

23 return (now_min >= start_min) && (now_min < end_min);

24 } else {

25 return (now_min >= start_min) || (now_min < end_min);

26 }

27 }

28

29 static void set_all_lamps(bool on) {

30 lamp1_state = lamp2_state = lamp3_state = on;

31 gpio_set_level(LAMP1_GPIO, on);

32 gpio_set_level(LAMP2_GPIO, on);

33 gpio_set_level(LAMP3_GPIO, on);

34 publish_state_all();

35 }

36

37 static void set_irrig(bool on) {

38 irrig_state = on;

39 gpio_set_level(IRR_GPIO, on);

40 publish_irrig_state();

41 }

125

42

43 void SchedulerTask(void *args) {

44 const TickType_t period = pdMS_TO_TICKS(1000);

45

46 const int IRR_START = 9*60 + 0;

47 const int IRR_END = 9*60 + 10;

48 const int LMP_START = 18*60 + 30;

49 const int LMP_END = 5*60;

50

51 for (;;) {

52 int now = minutes_since_midnight();

53

54 if (auto_irrig) {

55 bool want_irrig = in_window(now, IRR_START, IRR_END);

56 if (want_irrig != irrig_state) {

57 set_irrig(want_irrig);

58 }

59 }

60

61 if (auto_mode) {

62 bool want_lamps = in_window(now, LMP_START, LMP_END);

63 bool group_on = lamp1_state || lamp2_state || lamp3_state;

64 if (want_lamps != group_on) {

65 set_all_lamps(want_lamps);

66 }

67 }

68

69 vTaskDelay(period);

70 }

71 }

126

APÊNDICE C -- Códigos das funções
Node-RED

Este apêndice apresenta os códigos completos dos nós function utilizados no Node-RED,
descritos na Seção 3.5. As listagens a seguir correspondem, respectivamente, às funções
norm temp, norm hum, pair (temp+hum) e function final, associadas às subseções 3.5.11,
3.5.12, 3.5.13 e 3.5.14 do texto principal.

Função norm temp

Listing 16: Função de normalização da temperatura (norm temp)

1 // Normaliza TEMPERATURA -> msg.topic='temp', msg.payload={val, ts}

2 let p = msg.payload;

3 if (typeof p === 'string') {

4 try {

5 p = JSON.parse(p);

6 } catch {

7 // deixa como string

8 }

9 }

10

11 const val = Number(

12 (p && (p.temperature ?? p.temp)) ?? (typeof p === 'number' ? p : NaN)

13);

14 const ts = (p && (p.timestamp ?? p.ts)) || new Date().toISOString();

15

16 if (!Number.isFinite(val)) {

17 node.error('Temperatura invlida', msg);

18 return null;

19 }

20

21 msg.topic = 'temp';

22 msg.payload = { val, ts: String(ts) };

127

23 return msg;

Função norm hum

Listing 17: Função de normalização da umidade (norm hum)

1 // Normaliza UMIDADE -> msg.topic='hum', msg.payload={val, ts}

2 let p = msg.payload;

3 if (typeof p === 'string') {

4 try {

5 p = JSON.parse(p);

6 } catch {

7 // deixa como string

8 }

9 }

10

11 const val = Number(

12 (p && (p.humidity ?? p.hum)) ?? (typeof p === 'number' ? p : NaN)

13);

14 const ts = (p && (p.timestamp ?? p.ts)) || new Date().toISOString();

15

16 if (!Number.isFinite(val)) {

17 node.error('Umidade invlida', msg);

18 return null;

19 }

20

21 msg.topic = 'hum';

22 msg.payload = { val, ts: String(ts) };

23 return msg;

Função pair (temp+hum)

Listing 18: Função de pareamento de temperatura e umidade (pair (temp+hum))

1 const windowMs = 15_000; // 15s

2

3 let t = context.get('t') || null;

4 let h = context.get('h') || null;

5

6 if (msg.topic === 'temp') {

128

7 t = { ...msg.payload };

8 context.set('t', t);

9 } else if (msg.topic === 'hum') {

10 h = { ...msg.payload };

11 context.set('h', h);

12 } else {

13 return null;

14 }

15

16 if (t && h) {

17 const timeT = Date.parse(t.ts);

18 const timeH = Date.parse(h.ts);

19

20 if (!Number.isNaN(timeT) && !Number.isNaN(timeH)) {

21 const diff = Math.abs(timeT - timeH);

22

23 if (diff <= windowMs) {

24 const out = { payload: { temp: t, hum: h } };

25 context.set('t', null);

26 context.set('h', null);

27 return out;

28 }

29

30 // opcional: expirar leitura velha para no empacar

31 const now = Date.now();

32 if (now - timeT > windowMs) context.set('t', null);

33 if (now - timeH > windowMs) context.set('h', null);

34 }

35 }

36 return null;

Função function final

Listing 19: Função de montagem do comando SQL para inserção em sensorData (function
final)

1 // msg.payload = { temp?:{val,ts}, hum?:{val,ts} }

2 const p = msg.payload || {};

3 const t = p.temp;

4 const h = p.hum;

5

129

6 // escolhe um ts: prioriza o da temp; seno o da hum

7 const tsISO = (t && t.ts) || (h && h.ts);

8

9 function toMySQL(s) {

10 const d = new Date(s);

11 return isNaN(d.getTime())

12 ? null

13 : d.toISOString().slice(0, 19).replace('T', ' ');

14 }

15

16 const when = toMySQL(tsISO);

17 if (!when) {

18 node.error('timestamp invlido', msg);

19 return null;

20 }

21

22 msg.topic = 'INSERT INTO `sensorData`

↪→ (`sensor`,`local`,`temperature`,`humidity`,`timestamp`) VALUES (?,?,?,?,?)';

23 msg.payload = [

24 'combo', // ou 'temperatura+umidade'

25 'LAB', // seu local

26 t ? t.val : null, // temperature

27 h ? h.val : null, // humidity

28 when // YYYY-MM-DD HH:MM:SS

29];

30 return msg;

130

APÊNDICE D -- Pipeline MySQL →
SCADA-LTS

Este apêndice apresenta os códigos em SQL utilizados na configuração do pipeline entre
o banco de dados MySQL (tabela sensorData) e o SCADA-LTS, conforme descrito na
Seção 3.5.15. As listagens a seguir correspondem, respectivamente, à criação/verificação
do banco e da tabela (passo 2), e às consultas associadas aos Data Sources hum_rural

(passo 4) e temp_rural (passo 5).

Criação/verificação do banco SCADA e da tabela sensorData

Listing 20: Criação/verificação do banco SCADA e da tabela sensorData

1 CREATE DATABASE IF NOT EXISTS SCADA

2 DEFAULT CHARACTER SET utf8mb4

3 COLLATE utf8mb4_0900_ai_ci;

4 USE SCADA;

5

6 CREATE TABLE IF NOT EXISTS sensorData (

7 id INT AUTO_INCREMENT PRIMARY KEY,

8 sensor VARCHAR(30) NOT NULL,

9 `local` VARCHAR(50) NOT NULL,

10 temperature DECIMAL(5,2) NULL,

11 humidity DECIMAL(5,2) NULL,

12 `timestamp` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP

13) ENGINE=InnoDB;

Data Source hum_rural: consulta e ponto de medição

Listing 21: Select Statement do hum_rural

1 SELECT 'hum' AS pointId,

2 humidity AS valueCol,

131

3 `timestamp` AS timeCol

4 FROM sensorData

5 ORDER BY `timestamp` DESC, id DESC

6 LIMIT 1;

Data Source temp_rural: consulta e ponto de medição

Listing 22: Select Statement do temp_rural

1 SELECT

2 'temp' AS pointId,

3 temperature AS valueCol,

4 `timestamp` AS timeCol

5 FROM sensorData

6 ORDER BY `timestamp` DESC, id DESC

7 LIMIT 1;

132

