UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS
Engenharia Elétrica — Enfase em Sistemas de Energia e

Automacao

Gabriel do Prado Arthur

AUTOMACAO RESIDENCIAL E DE IRRIGACAO
RURAL COM MONITORAMENTO E CONTROLE
REMOTO VIA INTERNET UTILIZANDO ESP32

Trabalho de Conclusao de Curso apresentado a Escola de
Engenharia de Sao Carlos da Universidade de Sao Paulo como
requisito parcial para obtencao do titulo de Engenheiro

Eletricista.

Orientador: Prof. Dr. Rogério Andrade Flauzino

Sao Carlos
2025

AUTORIZO A REPRODUGCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

A788a

Arthur, Gabri el
AUTOVACAO RESI DENCI AL E DE | RRI GACAO RURAL COM
MONI TORAMENTO E CONTROLE REMOTO VI A | NTERNET UTI LI ZANDO
ESP32 / Gabriel Arthur; orientador Rogéri o Andrade
Fl auzi no. Sado Carl os, 2025.

Monogr afi a (Graduagdo em Engenharia El étrica com
énfase em Si stemas de Energia e Automacdo) -- Escol a de
Engenharia de S&o Carl os da Uni versi dade de Sdo Paul o,
2025.

1. ESP32. 2. MJIT. 3. automacdo. 4. loT. I|.
Titul o.

Eduardo Graziosi Silva - CRB - 8/8907

FOLHA DE APROVAGCAO

Nome: Gabriel do Prado Arthur

Titulo: “Automacao residencial e de irrigagdo rural com
monitoramento e controle remoto via internet utilizando ESP32”

Trabalho de Conclusao de Curso defendido e aprovado
em 05/ 12 2025,

com NOTA_95 (Nove cinco), pela Comisséo
Julgadora:
Prof. Associado Rogério Andrade Flauzino - Orientador
SEL/EESC/USP

Prof. Dr. Fabio Romano Lofrano Dotto - SEL/EESC/USP

Eng. Ivan Talao Martins - Doutorando EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Junior

Gabriel do Prado Arthur

AUTOMACAO RESIDENCIAL E DE IRRIGACAO RURAL COM
MONITORAMENTO E CONTROLE REMOTO VIA INTERNET
UTILIZANDO ESP32

Trabalho de Conclusao de Curso apresentado a Escola de Engenharia de Sao Carlos da
Universidade de Sao Paulo como requisito parcial para obtencao do titulo de Engenheiro

Eletricista.

Orientador: Prof. Dr. Rogério Andrade Flauzino

Sao Carlos

2025

Sumario

Resumo
Abstract

1 Introdugao

1.1 Contextualizagdo
1.2 Objetivos o
1.2.1 Objetivo Geralo
1.2.2 Objetivos Especificos oo
1.3 Metodologia L
1.4 Estrutura do Trabalho

Revisao bibliografica

Fundamentagao Tedrica

3.1 Internet das Coisas (IoT)
3.2 Automacao
3.3 Plataforma ESP32

3.4 Seguranca em Sistemas Embarcados L.

Metodologia do Projeto
4.1 Materiais e Equipamentos
4.2 Diagrama do Sistema Lo
4.3 Configuracao do Hardware
4.3.1 Prototipo urbano (ESP32-01): acionamento local e remoto
4.3.2 Prototipo rural (ESP32-02): irrigagao e iluminagdo
4.3.3 Configuracao do roteador para encaminhamento de porta segura
(TLS) . . o
4.4 Programacao dos Moduloso
4.4.1 Firmware e servidor web do né urbano (ESP3201)
4.4.2 Firmware do né rural (ESP3202)

4.4.3 Modulo de comunicagao Wi-Fidon6é rural

10

11

13
13
14
14
15

4.4.4 Arquitetura principal e médulo de temporizacao do né rural 34

4.4.5 Logica principal e agendamento do n6 rural 35
4.4.6 Modulo de comunicacao MQTT e formatagao de dados 37
4.5 Aplicativo Mobile(IoT MQTT Panel) 39
4.6 Envio de Dados para a Nuvem 44
4.6.1 Configuragao e Explicacao do MQTTBox 44
4.6.2 Configuracao da Maquina Virtual 45
4.6.3 Configuragao e Ativagao da Maquina Virtual 46
4.6.4 Fluxo de Dados e Integracao com o Node-RED o1
4.6.5 Assinatura do topico de temperatura 52
4.6.6 Assinatura do topico de umidade L. 53
4.6.7 Configuracao do broker MQTT 54
4.6.8 Configuracao TLS 56
4.6.9 Resumo operacional dos blocos MQTT 57
4.6.10 Funcgoes do Fluxo Node-RED: Normalizagao, Pareamento e Inser¢cao 58
4.6.11 Funcao norm temp oo 58
4.6.12 Funcao norm hum 58
4.6.13 Fungao pair (temp+hum) 59
4.6.14 Funcao function finalo 59
4.6.15 Pipeline MySQL — SCADA-LTS (configuragao passo a passo) . . . 60
4.6.16 Resultado final: grafico em tempo real no SCADA-LTS (Modern
Watch List) 63
5 Resultados e Discussoes 65
5.1 Testes Realizados 65
5.2 Analise dos Resultadoso 66
5.3 Eficiéncia Energética e Confiabilidade 70
5.3.1 Metodologia de estimativa 70
5.3.2 Premissas utilizadas (planilha Cdlculo da energia) 70
5.3.3 Resultados consolidados (modo automatico) 71
5.3.4 Fontes das poténcias nominais (links de referéncia) 71
5.3.5 Explicagoes complementares 71
54 Adocao do ESP32 72
5.5 Adocao do SCADA-LTS 72
5.6 Adocao do RTC DS3231 e do sensor HW-390 72
6 Conclusao 73
6.1 Sintese dos Resultados oo 73
6.2 Limitagoes do Projetoo 74
6.3 Sugestoes para Trabalhos Futuros 75

Referéncias

APENDICE A -- Firmware e pagina web do né urbano (ESP32 01)

Firmware principal do ESP3201
Folha de estilos CSS da pagina web (ESP32 01)

Apéndice B -- Firmware do n6 rural (ESP32 02)
Moédulo de Wi-Fi (componente wifi)
main.c e CMakeLists.txt
Moédulo DS3231 (RTC e temperatura)
Arquivo general.h
Protocolo MQTT
scheduler.h e scheduler.c

APENDICE C -- Cédigos das fungdes Node-RED
Funcao norm temp
Funcao norm hum
Funcdo pair (temp+hum)

Funcao final

APENDICE D -- Pipeline MySQL — SCADA-LTS

Criagao/verificagao do banco SCADA e da tabela sensorData

Data Source hum rural: consulta e ponto de medigao .

Data Source temp _rural: consulta e ponto de medigao

76

79
79
93

95

95
100
103
106
107
124

127
127
128
128
129

Resumo

Este trabalho projeta e implementa um sistema de automacao residencial e rural
baseado no ESP32 (DevKit V1), com monitoramento e controle remoto via internet. O
projeto possui carater educacional, orientado ao aprendizado préatico de automacao e
IoT. No ambiente urbano, o sistema acionou corretamente as trés lampadas por servidor
web embarcado, aplicativo MQTT e botao local; no ambiente rural, trés lampadas, uma
valvula de irrigacao e os sensores de umidade do solo e temperatura operaram de forma
estavel, exceto pelo deslocamento de 3 horas observado nas agendas automaticas. A
comunicacgao utilizou Wi-Fi e o protocolo MQTT sobre TLS, com visualizacao dos dados
no SCADA-LTS e em aplicativo movel. Os testes demonstraram aquisi¢ao consistente
de temperatura e umidade, e baixo custo operacional do sistema em modo automatico,
estimado em R$ 25,61 /més (R$ 307,29/ano). A metodologia compreendeu definigao de
requisitos, projeto eletronico, desenvolvimento de firmware, integracao com o broker e
validagao funcional. Sao apresentadas recomendagoes de seguranga, incluindo o uso de
TLS no MQTT e boas praticas de gestao de credenciais.

Palavras-chave: ESP32; MQTT; automacao residencial; automacao rural; internet das

coisas (IoT).

Abstract

This work designs and implements a residential and rural automation system based
on the ESP32 (DevKit V1), providing internet-enabled monitoring and remote control.
Educational in scope, the project serves as a hands-on learning platform in automation
and IoT. In the urban environment, the system successfully actuated three lamps via
embedded web server, MQTT-based mobile application, and local push button; in the rural
environment, three lamps, one irrigation valve, and soil-moisture and temperature sensors
operated stably, except for a systematic 3-hour offset observed in automatic scheduling.
Communication relies on Wi-Fi and the MQTT protocol over TLS, with data visualization
in SCADA-LTS dashboards and a mobile application. Experimental tests showed reliable
actuation and consistent acquisition of temperature and humidity, as well as a low operating
cost in automatic mode, estimated at BRL 25.61 per month (BRL 307.29 per year). The
methodology comprises requirements definition, electronic design, firmware development,
MQTT broker integration, and functional validation. Security recommendations are
provided, focusing on the use of TLS in MQTT and proper credential management.
Keywords: ESP32; MQTT; home automation; rural automation; Internet of Things
(IoT).

Capitulo 1

Introducao

1.1 Contextualizacao

O avanco das tecnologias digitais tem alterado profundamente a forma como residéncias
e propriedades rurais sao gerenciadas. A combinacao entre maior demanda por conforto,
seguranca e eficiéncia energética cria um cenario em que solu¢ées manuais passam a ser
insuficientes para lidar com rotinas cada vez mais complexas. Sistemas de automacao
permitem padronizar tarefas, reduzir erros humanos e disponibilizar informagoes em
tempo real para o usuario, que passa a ter maior controle sobre o consumo de energia, o
funcionamento de equipamentos e a supervisao de ambientes mesmo a distancia. Nesse
contexto, a automacao deixa de ser um diferencial restrito a instalagoes de alto custo e se
torna uma ferramenta de apoio a gestao cotidiana em diferentes perfis de usuarios.

No meio rural, essa necessidade se torna ainda mais evidente quando se considera
o manejo de agua e energia em atividades agricolas. Pequenas e médias propriedades
frequentemente dependem de deslocamentos presenciais para acionar bombas, abrir ou
fechar valvulas e verificar condigoes de solo e clima, o que consome tempo, combustivel
e recursos financeiros. A auséncia de monitoramento sistematico da umidade do solo
e da temperatura pode resultar em irrigagoes desnecessarias ou tardias, com impactos
diretos sobre produtividade, desperdicio de dgua e custo da energia elétrica. A integracao
entre sensoriamento, controle automético e supervisao remota surge, assim, como uma
alternativa para tornar o uso desses recursos mais racional, previsivel e alinhado as
restrigoes economicas tipicas de ambientes nao industrializados.

A automacao residencial tem evoluido significativamente nas tultimas décadas, impulsi-
onada pelo desenvolvimento de redes sem fio, sensores inteligentes e microcontroladores
embarcados. Nesse contexto, Gill, Yang, Yao e Lu (2009) destacam que a arquitetura
de sistemas domésticos modernos tende a migrar de solucoes centralizadas e com logica
fixa para modelos distribuidos, baseados em redes de sensores sem fio (WSNs), capazes de

coletar, processar e transmitir informagoes de forma auténoma e descentralizada.

Segundo os autores, tecnologias como ZigBee desempenham papel fundamental nesse
processo, por oferecerem uma solucao de comunicagao de baixo consumo energético,
estrutura de rede em malha (mesh) e alta escalabilidade. A escolha do protocolo ZigBee
deve-se a sua eficiéncia em aplicagoes que requerem monitoramento continuo, como o
controle de iluminagao, sensores de presenca, temperatura e seguranca em ambientes
residenciais. Esses recursos tornam a tecnologia adequada para ambientes em que o acesso
a energia ou a internet pode ser limitado ou instavel.

O artigo também enfatiza que, ao integrar sensores e atuadores com moédulos de
comunicagao ZigBee, é possivel construir uma infraestrutura doméstica capaz de se adaptar
as preferéncias dos usuérios e de operar de forma automatizada, com minima intervengao
humana. Essa flexibilidade permite que o sistema execute tarefas rotineiras, como acionar
luzes ao detectar presenca ou desligar equipamentos com base em horarios predefinidos,
elevando o nivel de conforto e seguranca do ambiente.

Gill, Yang, Yao e Lu (2009) dao énfase & importancia de adotar uma abordagem
modular e de baixo custo no desenvolvimento de sistemas de automacao residencial, es-
pecialmente para paises em desenvolvimento. O uso de microcontroladores acessiveis,
combinados a protocolos de comunicacgao eficientes como ZigBee, representa uma alter-
nativa viavel a automacao comercial tradicional, que geralmente é restrita a usuérios
com maior poder aquisitivo. Essa democratizagao tecnologica possibilita a aplicagao da
automacao em diferentes camadas sociais, ampliando seu impacto social e econémico.
Dando continuidade, o panorama de Sriskanthan, Tan e Karande (2011) descreve arquite-
turas tipicas de automacao centradas na interacao entre smartphone e microcontrolador,
e compara Bluetooth, ZigBee, GSM/SMS, Wi-Fi/Internet e EnOcean quanto a custo,
alcance, consumo de energia e adequacao a aplicagoes de baixa laténcia. Os autores
ressaltam que a selecao tecnologica deve equilibrar simplicidade de implantacao com
requisitos de disponibilidade e tempo de resposta, favorecendo solu¢oes baseadas em IP
quando a interface remota e a integracao com servigos em nuvem sao prioritarias. Essa
leitura sustenta a priorizagao da conectividade Wi-Fi em projetos que exigem visualizacao
web e comando remoto continuo.

A luz desse panorama, este trabalho adota a plataforma ESP32 (DevKit V1) com
conectividade Wi-Fi e o protocolo MQTT como eixo de comunicacao, combinando a leveza
do modelo publish/subscribe para telemetria e comandos. No arranjo proposto, o no
urbano aciona trés lampadas; o n6 rural aciona trés lampadas e uma valvula de irrigagao
e realiza leituras continuas de umidade do solo e temperatura. Os dados sao publicados
em topicos MQTT e exibidos em interface web, permitindo acompanhamento em tempo
real e registro para andlise. Considerando robustez e seguranga, emprega-se MQTT sobre

TLS com verificagao do certificado do broker no cliente ESP32.

1.2 Objetivos

1.2.1 Objetivo Geral

Projetar, implementar e validar um sistema integrado de automacao residencial e de
irrigacao rural, baseado na plataforma ESP32, com supervisao e comando remotos via
internet por meio do protocolo MQTT, contemplando o controle de iluminagao e da valvula
de irrigacao, a aquisicao de umidade do solo e temperatura, a disponibilizacao de interface

web para operagao e a adog¢ao de praticas de seguranga (TLS e gestao de credenciais).

1.2.2 Objetivos Especificos

e Projetar a arquitetura de hardware para controle de lampadas e valvula de irrigacao
com ESP32;

e Implementar comunicagao sem fio via Wi-Fi (2,4 GHz) utilizando o protocolo MQTT
sobre TLS (porta 8883), com autenticagao no broker e validagao de certificado (CA)

no cliente;

e Integrar os sensores de umidade do solo e de temperatura ambiente no ESP32
02(ESP32 da zona rural), implementar o envio periddico das leituras ao broker MQTT
e disponibilizar visualizagao remota da temperatura e da umidade em dashboard
web (SCADA-LTS) e aplicativo movel;

e Validar o sistema, testando confiabilidade e funcionalidade;

e Avaliar o impacto da solucao em termos de economia de energia.

1.3 Metodologia

A metodologia adotada neste trabalho é aplicada e experimental, com foco no de-
senvolvimento pratico de um sistema funcional de automacao. O projeto sera dividido
em etapas, iniciando-se com a defini¢ao dos requisitos e a selecao dos componentes de
hardware e software. Em seguida, seré realizada a montagem do circuito eletronico com a
plataforma ESP32, sensores de umidade do solo, sensor de temperatura e modulos relé
para acionamento de lampadas e valvula de irrigacao.

A programacao sera desenvolvida utilizando a IDE Arduino e o VS Code, com imple-
mentacao de protocolos de comunicacao como MQTT e TLS para transmissao de dados
entre os dispositivos e o servidor na nuvem(Broker). Para o monitoramento remoto, sera
desenvolvida uma interface web hospedada no ESP32 destinado ao ambiente residencial.
Adicionalmente, sera disponibilizado uma conexao em um aplicativo movel que agregara

os dados publicados pelos nos ESP32 (residencial e rural), permitindo ao usuario visualizar,

em tempo real, o estado dos sensores e executar comandos de acionamento sobre os
atuadores.

O sistema seré dividido entre dois médulos ESP32: um dedicado & automagao residencial
(controle de trés lampadas) e outro & automagao rural (trés lampadas, uma valvula de
irrigacao, um sensor de umidade e um sensor de temperatura). Cada modulo sera testado
individualmente em bancada, seguido de testes integrados simulando o ambiente real de

operagao.

1.4 Estrutura do Trabalho

Este trabalho esta organizado em seis capitulos, além de apéndices que retinem materiais
complementares.

O Capitulo 1 apresenta a introducao, com a contextualizacao do tema, a motivacao
do estudo, os objetivos geral e especificos, a metodologia adotada em nivel macro e a
organizacao do texto.

O Capitulo 2 traz a revisao bibliografica, discutindo trabalhos relacionados & automa-
¢ao residencial e rural, Internet das Coisas (IoT).

O Capitulo 3 aborda a fundamentacao tedrica necessaria para o entendimento do pro-
jeto, incluindo conceitos de automacao, redes de computadores, protocolos de comunicacao,
arquitetura do ESP32 e nogoes de seguranca em sistemas conectados.

No Capitulo 4 ¢é apresentada a metodologia do projeto, detalhando os materiais
empregados, a arquitetura proposta, o diagrama do sistema, a configuragao do hardware e
o desenvolvimento do software.

O Capitulo 5 retune os resultados e discussoes, apresentando os testes realizados, os
dados obtidos e a anélise critica quanto a eficiéncia, funcionalidade e confiabilidade da
solucao implementada.

o Capitulo 6 apresenta as conclusoes do trabalho, sintetizando os principais resultados,
destacando as contribui¢oes do projeto, apontando as limitacoes encontradas e indicando
sugestoes para trabalhos futuros.

Os Apéndices A, B, C e D retinem os cédigos-fonte e arquivos de configuragao mais
extensos do projeto (modulos de controle, comunicac¢ao e automagao), de forma a nao

sobrecarregar o corpo principal do texto.

10

Capitulo 2
Revisao bibliografica

O avango recente da Internet das Coisas (IoT) tem favorecido arquiteturas de automagao
residencial baseadas em sensores distribuidos, conectividade wireless e servicos em nuvem.
Em um estudo voltado para domicilios no contexto do Oriente Médio, Al-Kuwari et
al(2018) propoem uma plataforma de automagao que combina sensores de temperatura,
umidade e presenca com atuadores conectados a uma rede Wi-Fi doméstica. O sistema
utiliza um gateway central para coletar os dados, aplicar regras simples de automacgao e
disponibilizar ao usuario uma interface de monitoramento e comando remoto. Os autores
destacam a viabilidade de solugoes de baixo custo, baseadas em protocolos leves, para
controlar multiplas cargas em tempo real.

Na mesma linha, Pravalika e Prasad (2019) desenvolvem um sistema de monitoramento
residencial e acionamento de dispositivos utilizando o microcontrolador ESP32 como n6
principal. A proposta explora o uso da conectividade Wi-Fi integrada para publicar
medidas ambientais e receber comandos de acionamento a partir de uma aplicacao movel.
O trabalho reforca o papel do ESP32 como plataforma adequada para integrar sensores,
relés e interface com o usuario em um tnico médulo, o que reduz a quantidade de hardware
auxiliar e simplifica a instalacao em residéncias ja em uso.

Enquanto esses trabalhos se concentram na automacao residencial, Aghenta e Igbal
(2019) avangam para uma arquitetura de supervisao mais proxima de sistemas SCADA,
também com foco em baixo custo. Os autores descrevem um sistema em que o ESP32
atua como gateway e unidade remota (RTU), publicando dados de temperatura, umidade,
pressao e luminosidade via protocolo MQTT para um servidor local baseado em Raspberry
Pi, onde sao executados o broker, o Node-RED e o banco de dados. A interface supervisoria
é construida na propria ferramenta de fluxos, permitindo monitorar os sinais em tempo
real e acionar cargas remotamente.

Do ponto de vista de integragao de sensores e servigos, Leki¢ e GardaSevié¢ (2018)
analisam o uso do Node-RED como plataforma de orquestracao de dados em aplicacoes de
IoT. O estudo mostra como sensores heterogéneos podem ser conectados ao Node-RED por

diferentes protocolos, com destaque para MQTT, e como a ferramenta facilita a criacao de

11

dashboards e rotinas de processamento por meio de blocos graficos. Os resultados indicam
que o Node-RED reduz o esfor¢o de desenvolvimento da camada de aplicagao e favorece a
integracao com servigos de banco de dados e nuvem

A questao da seguranca em arquiteturas de supervisao baseadas em nuvem é discutida
por Sajid, Abbas e Saleem (2016). Os autores realizam uma revisdo do estado da arte
em sistemas SCADA assistidos por IoT, identificando ameacas como interceptacao de
mensagens, falsificacao de comandos e ataques de negagao de servigo. O estudo enfatiza a
necessidade de empregar criptografia de ponta a ponta, autenticacao robusta e segmentacgao
de redes para mitigar riscos, especialmente quando protocolos leves como MQTT sao
expostos a internet publica. Essas recomendagoes fundamentam o uso de canais TLS,
credenciais especificas para o broker e separacao entre rede local e acesso externo no
desenvolvimento do sistema apresentado neste TCC.

Em sintese, os trabalhos analisados convergem na utilizagao de microcontroladores
conectados, protocolos leves como MQTT e ferramentas de orquestracao como Node-RED
para construir solucées de automacao residencial e de supervisao de baixo custo. A
contribuicao deste TCC se apoia nessas evidéncias ao integrar, em uma mesma arquitetura,
um né6 urbano e um noé rural baseados em ESP32, combinando automacao de iluminacao,
controle de irrigacao e monitoramento de variaveis ambientais, com supervisao remota via
internet e foco em escalabilidade e seguranca.

Na literatura de agricultura de precisao e irrigacao inteligente, destacam-se ainda
propostas que utilizam sensores de umidade do solo e temperatura para subsidiar decisoes
de manejo hidrico. Nessas solugoes, o solo é monitorado continuamente, e os dados sao
enviados a um servidor ou plataforma em nuvem, que pode aplicar limiares fixos ou
algoritmos mais sofisticados para decidir sobre o acionamento de vélvulas e bombas. O
objetivo recorrente é reduzir o consumo de dgua e energia, ao mesmo tempo em que se
mantém a umidade em faixas adequadas ao desenvolvimento das culturas, aproximando o
processo de um controle orientado por dados, em contraste com praticas baseadas apenas
em observacao visual ou experiéncia empirica do operador.

Em relagao a esse conjunto de trabalhos, o presente TCC se insere como uma aplicagao
hibrida que combina automagao residencial e irrigagao rural em uma mesma infraestrutura
de supervisao. Ao utilizar um n6 dedicado a area rural, equipado com sensores de umidade
do solo e temperatura e com capacidade de comandar uma vélvula de irrigacao, o sistema
explora os principios de monitoramento continuo e controle remoto discutidos na literatura
de irrigacao inteligente, mas integrados ao ecossistema de automagao residencial e & pilha
tecnologica baseada em ESP32, MQTT, Node-RED e SCADA-LTS. Essa integracao reforga
a relevancia do monitoramento de irrigacao como foco central do trabalho, conectando-o

diretamente as tendéncias atuais de IoT aplicada ao campo.

12

Capitulo 3

Fundamentacao Teoérica

3.1 Internet das Coisas (IoT)

A Internet das Coisas (IoT) pode ser entendida como o ecossistema em que objetos
fisicos dotados de identificacao, sensoriamento, processamento e conectividade passam a
interagir entre si e com servigos em nuvem para entregar funcionalidades tuteis ao usuario
final, nesse contexto, cada dispositivo publica dados do ambiente, recebe comandos e
coopera com outros para compor servigos de maior valor. A literatura destaca quatro
pilares recorrentes: coisas (dispositivos), comunicagao (redes e protocolos), computagio
(processamento local e em nuvem) e servicos (aplicagoes e integragoes). Do ponto de
vista arquitetural, € comum organizar um sistema loT em camadas: percepgao (sensores e
atuadores), rede (meios fisicos e protocolos de enlace/roteamento), transporte/aplicagao
(TCP/IP e protocolos como HTTP, MQTT ou CoAP) e servi¢os (armazenamento, andlise
e interfaces). Essa separagao ajuda a isolar responsabilidades: a camada de percepcao
adquire dados e executa comandos, a camada de rede garante entrega, a camada de
aplicagao define seméntica das mensagens e a de servigos agrega visualizagao, persisténcia
e automacoes.

O protocolo MQTT tem ganhado destaque em cenarios de monitoramento e controle
por sua leveza e modelo publish/subscribe. Em vez de enderegar dispositivos ponto a
ponto, os nés publicam mensagens em topicos, e assinantes recebem apenas o que lhes
interessa. QoS selecionavel, keep-alive e last-will contribuem para resiliéncia em redes
sem fio. Em sistemas conectados a internet publica, recomenda-se o uso de TLS para
confidencialidade e integridade, e adicionalmente, autenticagao robusta no broker. Em
ambientes embarcados, boas praticas incluem armazenar credenciais de forma segura,
validar o certificado da autoridade (CA) e, quando aplicavel, empregar mecanismos do

hardware para protegao do firmware Bahga e Madisetti (2015).

13

3.2 Automacao

A ideia de fazer dispositivos operarem sozinhos é antiga. Na Antiguidade, Herao de
Alexandria descreveu mecanismos capazes de abrir portas de templos automaticamente
ao acender o fogo no altar, explorando variagoes de pressao de ar e agua; sao exemplos
de automatos com légica puramente mecanica descritos em seus tratados Pneumatica
e Automata (Herao de Alexandria). Na tradi¢@o islamica medieval, al-Jazar1 catalogou,
em 1206, dispositivos hidraulicos e autématos musicais no Compéndio de dispositivos
engenhosos, combinando poténcia hidraulica, temporizacao e sequéncias mecanicas para
executar tarefas de forma autonoma (al-Jazari, 1206).

Nos séculos XVIII e XIX, a automagao ganha duas inflexdes decisivas. A primeira é a
programabilidade: o tear de Jacquard (1804-1805) usa cartoes perfurados encadeados para
tecer padroes complexos sem intervengao constante do operador, antecipando o controle
por instrugoes discretas que mais tarde influenciaria a prépria computacao (Jacquard,
1804-1805). A segunda é o controle por realimentagao: James Watt aplica, em 1788,
o governador centrifugo ao motor a vapor para regular a velocidade automaticamente,
fechando o ciclo entre medicao e atuagao e estabelecendo um marco do controle automatico
na Revolucao Industrial (Watt, 1788).

No século XX, a automacao industrial incorpora eletronica e controle programéavel.
Em 1961, o Unimate entra em operagao numa linha da General Motors, tornando-se o
primeiro rob6 industrial em servico: um manipulador capaz de repetir sequéncias perigosas
e repetitivas com precisao, apontando para a robotica de manufatura (Devol e Engelberger,
1961). Os mesmos principios que atravessam essa trajetoria — sequenciamento de agoes,
instrugoes explicitas, realimentagao e seguranga operacional — aparecem aqui em escala
embarcada. No sistema proposto, nés com ESP32 executam o ciclo senso—decisao—acao:
sensores fornecem dados, a logica organiza comandos e estados por toépicos MQTT, e os

atuadores realizam as tarefas de iluminagao e irrigagao de forma previsivel.

3.3 Plataforma ESP32

A plataforma ESP32 tem se consolidado como base de projetos embarcados conectados,
gragas a combinagao de processador de 32 bits, Wi-Fi 802.11 b/g/n, Bluetooth classico/BLE
e um conjunto amplo de periféricos (GPIOs, ADCs, DACs, PWM, SPI, I?C e UART).
Segundo a propria documentagao técnica da fabricante, o chip foi projetado para aplicagoes
de Internet das Coisas com modos finos de economia de energia, operacao em 2,4 GHz
até 150 Mb/s e integracao que reduz a quantidade de componentes externos (Espressif
Systems, 2021). Esses recursos permitem construir nds compactos, de baixo custo e com
conectividade nativa, o que atende diretamente as demandas deste trabalho.

Do ponto de vista historico, o ESP32 sucede o ESP8266 e marca a transi¢ao, na familia

14

da Espressif, de solucoes “Wi-Fi com microcontrolador auxiliar” para um System-on-Chip
mais completo, com CPU dual-core Tensilica X6, coprocessador de baixo consumo e
blocos analogicos integrados. Essa evolugao incorporou BLE, ampliou o ntimero de GPIOs
e trouxe periféricos que normalmente exigiam circuitos externos, tornando o projeto de
placas e produtos finais mais simples. O principal motivo pratico de adogao ¢é a relagao
custo-beneficio: em uma tnica placa, o ESP32 oferece conectividade Wi-Fi e BLE integrada,
clock de até 240 MHz, SRAM na casa de centenas de kilobytes e periféricos suficientes
para a maioria das aplicagoes de automagao. Em comparagao com plataformas cléssicas
baseadas em AVR, como Arduino Uno/Nano (8 bits, 16 MHz, SRAM na ordem de kilobytes
e sem rede nativa), o ESP32 entrega mais processamento, mais memoria e conectividade
embutida, reduzindo a necessidade de modulos adicionais e, portanto, o custo total do
sistema. Vale destacar ainda que a velocidade de desenvolvimento é favorecida por uma
comunidade ampla, documentagao extensa e exemplos oficiais. A combinagao de hardware
acessivel, conectividade embarcada, desempenho superior as placas 8-bit tradicionais e um
ecossistema maduro explica por que o ESP32 se tornou a escolha preferencial em projetos

de IoT e automagao nos tltimos anos (Espressif Systems, 2021).

3.4 Seguranca em Sistemas Embarcados

No plano da aplicagao, o protocolo MQTT atende bem a dispositivos embarcados
por combinar modelo publish/subscribe com baixa sobrecarga de rede. A organizacao
por topicos permite separar telemetria, comandos e estados, enquanto o controle de
qualidade de servi¢o (QoS) e o last will ajudam a lidar com links instaveis. Em termos
de seguranca, a pratica corrente é autenticar clientes no broker e restringir permissoes
por topico, evitando publicagao ou assinatura indevida. Uma apresentagao estruturada
desses elementos, organizados em camadas, papéis e padroes de troca de mensagens, é
apresentada no manual didatico de Bahga e Madisetti (2015), que também discute a
integragao do MQTT com servigos em nuvem e painéis de visualizacao.

A protecao do canal é garantida pelo protocolo TLS, sucessor do SSL. De forma geral,
o TLS negocia algoritmos, autentica o servidor por meio de certificados X.509 e estabelece
chaves de sess@o. A cifragem simétrica protege o trafego de dados, enquanto a criptografia
assimétrica é utilizada para a troca de chaves e para a autenticagao. Esse conjunto
de mecanismos assegura, de maneira eficiente, os trés pilares classicos da seguranca da
informagao: confidencialidade, integridade e autenticidade. Tanenbaum (2011) descreve
essa combinacao de técnicas, como o uso de chaves publicas, certificados, handshake e
HMAC, como a base pratica para o estabelecimento de sessoes seguras em redes piublicas.

Na pratica embarcada, as duas camadas se complementam: o MQTT organiza a
comunicacao por topicos entre sensores e atuadores, enquanto o TLS impede interceptacao

e adulteracao do contetido. A combinacao recomendada é autenticar cada dispositivo no

15

broker, validar a cadeia de certificacao do servidor e manter politicas minimas de acesso
por topico. Com isso, reduz-se a superficie de ataque sem penalizar a laténcia de forma
relevante, preservando o carater leve do MQTT ao mesmo tempo em que se herda a base
criptografica madura do TLS (Bahga e Madisetti, 2015; Tanenbaum, 2011).

16

Capitulo 4

Metodologia do Projeto

4.1 Materiais e Equipamentos

Os itens listados foram selecionados para compor uma arquitetura IoT completa, do
processamento local & conectividade externa, passando por sensoriamento e atuacao. O
ESP32 (DevKit V1) cumpre o papel de n6 de borda, concentrando processamento e
conectividade Wi-Fi para telemetria e comandos. O RTC DS3231 prové temporizacao
precisa e estavel ao longo do dia, requisito para agendamentos, e também atua como
sensor de temperatura. A malha de sensoriamento inclui o sensor capacitivo de
umidade do solo, a camada de atuacao ¢ realizada pelos médulos de relé de 4
canais, que oferecem comutacao elétrica isolada para cargas de iluminacao e para a
valvula solenédide do sistema de irrigacdo. A infraestrutura de rede é atendida
pelo roteador Mercusys (MW301R) para a LAN local e pelo ELSYS AmpliMax,
que integra modem e antena direcionais para levar conectividade 3G/4G a areas com
cobertura limitada, disponibilizando Ethernet ao ESP32 02(ESP 32 rural). O cabeamento
é composto por 80m de fio de 1,5mm?2, que asseguram a conexao elétrica dos modulos, até
as lampadas e a valvula, e por um cabo de rede RJ45 de 30,m, responséavel por interligar
o ELSYS AmpliMax ao roteador Mercusys (MW301R). Para prototipagem e testes, as
protoboards, o kit de jumpers, os pushbuttons e o kit de LEDs facilitam montagem,
depuracao e sinalizacao de estados; as fontes ajustaveis para protoboard alimentam os
circuitos de baixa tensdo com 3,3/5V. Em conjunto, esses materiais viabilizam um sistema
hibrido (residencial e rural) capaz de monitorar variaveis ambientais, acionar cargas e
operar rotinas automaticas com sincronizagao temporal e acesso remoto seguro via MQTT,

conforme resumido na Tabela 4.1.

17

Tabela 4.1: Materiais e custos do protétipo

Item Quantidade Prego total (R$)
ESP32 DevKit V1 2 77,98
Fontes ajustaveis para protoboard 2 17,94
Push-buttons 3 5,00
RTC DS3231 2 78,00
Sensor capacitivo de umidade do solo 1 3,89
Cabo 1,5mm? (energia) 80 m 104,00
Valvula solen6ide 1 20,44
Modulos relé 4 canais 2 100,00
Cabo de rede RJ45 30 m 22,56
Roteador Mercusys MW301R 1 78,00
Elsys AmpliMax 1 679,90
Kit de 10 LEDs coloridos 1 10,00
Kit de jumpers 1 30,00
Protoboards 2 24,12
Total 1.251,83

18

4.2 Diagrama do Sistema

A arquitetura proposta é composta por dois nés ESP32 fisicamente separados: um
no6 urbano (“ESP32 017) instalado na residéncia da cidade e um né rural (“ESP32 02”)
instalado no sitio, a aproximadamente 7 km de distancia. Ambos controlam trés lampadas;
o no6 rural acrescenta a automacao da irrigacao e a telemetria de umidade do solo e
temperatura. A conectividade local é feita via Wi-Fi; o transporte de dados e o controle

remoto utilizam o protocolo MQTT com canal seguro (TLS), permitindo supervisao e por
meio de um servigo de dashboard /SCADA.

Casa Automacao cidade
ESP32 01

N

/

/

N\

i)

o

trés
lampadas

N\ /

|
/Q\
umidade trés
solo lampadas

Automacao Rural horta.
ESP32 02 x

Figura 4.1: Topologia fisica: n6 urbano (ESP32 01) e né rural (ESP32 02)

19

O diagrama da Figura 4.1 evidencia os dois dominios: no lado urbano, o ESP32 01
aciona trés lampadas; no lado rural, o ESP32 02 aciona trés lampadas e a valvula solenoide
da horta. Sensores de temperatura complementam o contexto ambiental. A sincronizacao

temporal é garantida por RTC (DS3231), essencial para registros e rotinas programadas.
\@/ \@/ \@/ ‘UTU’ NPLY. NP, NP,
_I _ -/ _ -/ _ i'z i.g -/@_ -/@\- -/@\-

MQTT e TLS
site
3 push bottons

*

AL AR M Telemetria
I \ ESP32 Rural
H T,
‘a‘. .,

Figura 4.2: Fluxo logico de telemetria e controle do projeto

A Figura 4.2 detalha o ciclo de dados:

1. Aquisicao local: o ESP32 02 lé¢ a umidade do solo (sensor capacitivo) e a tempera-

tura; ambos os nés mantém relogio estavel com o DS3231 para carimbar eventos.

2. Publicagao MQTT: as leituras e estados sao publicados em toépicos hierarquicos
(por exemplo, tcc/sitio/umidade, tcc/cidade/lampadas/estado). Niveis de QoS

e retengao podem ser ajustados conforme a criticidade do dado.

3. Broker e seguranca: a sessao ocorre sobre TLS na porta segura do servico,
com verificagao da CA pelo cliente, assegurando confidencialidade, integridade e

autenticidade dos pontos.

4. Supervisao e historico: o SCADA-LTS/dashboard assina os topicos de interesse

para fazer os graficos séries e armazenar historico.

5. Atuagao: os ESP32 consomem os comandos e acionam os modulos de relé (ilumi-
nagao e valvula), respeitando logicas locais como modo automdtico, e janelas de

horario.

20

4.3 Configuracao do Hardware

4.3.1 Protétipo urbano (ESP32-01): acionamento local e remoto

O protoétipo urbano integra um ESP32 DevKit V1 em protoboard, um médulo de
alimentacgao dedicado s6 para ele com 5V, botoes de teste e um médulo de relés de 4
canais alimentado por 5V para comandar as cargas residenciais (lampadas). A montagem
valida a arquitetura do sistema: leitura de entradas locais, lo6gica de controle embarcada

e comutagao das saidas, preparando a integracao com a infraestrutura de nuvem via

Wi-Fi /MQTT.

Composigcao do protoétipo.

e ESP32 DevKit V1: controlador principal, responsavel pelo ciclo de leitura das

entradas, temporizagoes e publicagao/assinatura de topicos MQTT.

e Protoboard com alimentagao: fornece trilhos de 5 V/3,3 V para logica e periféri-

cos; LED de diagnostico para verificagao rapida do estado.

e Botoes de teste: permitem acionar localmente as saidas e validar o firmware sem

a interface remota.

e Modulo de relés (4 canais): estagio de poténcia para o acionamento das cargas;

recebe sinais de nivel l6gico do ESP32 e isola a comutagao das lampadas.

e Rede de desacoplamento: capacitores para estabilidade dos sinais durante chave-

amentos.

e RTC DS3231: relogio de tempo real com sensor de temperatura integrado.

Funcionamento: no firmware, os botoes locais e os comandos recebidos por MQTT
atualizam o estado das saidas digitais. O moédulo de relés comuta as trés lampadas

previstas para o n6 urbano.

Observacgoes de integracao e segurancga.

e Manter o aterramento comum entre a logica e o moédulo de relés, respeitando a

isolagao recomendada pelo fabricante do médulo de relés.

e Separar fisicamente os condutores de baixa tensao dos condutores das cargas de rede.

21

Figura 4.4: Vista superior do arranjo: ESP32 01, fileira de botoes de teste e periféricos
conectados ao barramento.

22

Figura 4.5: Modulo de relés interligado ao ESP32 01.

4.3.2 Prototipo rural (ESP32-02): irrigacao e iluminagao

O no6 rural implementa um ESP32 DevKit V1 em protoboard conectado a um
modulo de relés de 4 canais, preparado para o acionamento das cargas do sitio (trés
lampadas e uma valvula solenoide). A comunicagao de controle ¢ feita via Wi-Fi/MQTT

(com TLS quando ativado), integrando-se ao fluxo Node-RED.

Composigao do protoétipo.

e ESP32 DevKit V1: unidade de controle, responsavel por ler comandos remotos

(MQTT) e aplicar rotinas locais de seguranga (temporizagoes e estados).

Protoboard: fornece trilhos de 5 V/3,3 V para logica e periféricos;

Modulo de relés (4 canais): estagio de comutagao das cargas de campo (valvula

e iluminagao), isolando a logica do lado de poténcia.

Cabeamento de bancada: organizagao que prioriza separagao entre sinais de

controle e condutores de carga, facilitando medigoes e depuracao.

RTC DS3231: relogio de tempo real com sensor de temperatura integrado; fornece

base de tempo estavel para agendamentos e carimbo de tempo das leituras. Comuni-

23

cacao via I?C (SDA/SCL) em 3,3 V, com bateria de reserva (CR2032) para manter

a hora em caso de falta de energia.

e Sensor de umidade do solo (HW390): moédulo de trés pinos conectado pelo
fio amarelo ao sinal analogico do ESP32 (saida AO do mo6dulo), com GND ao terra
comum e VCC em 3,3 V (tensao de operagao). Utilizado para estimar o teor de

umidade do solo.

e Roteador WiFi Mercusys: atua como ponto de acesso local para o né rural, forne-
cendo a rede WiFi utilizada pelo ESP32 e pelo notebook /smartphone de supervisao.
Realiza a fungao de gateway entre a LAN do protétipo e a Internet, encaminhando
o trafego MQTT/TLS até o servidor remoto.

e Amplimax: equipamento de comunicacao de longa distancia instalado na area
rural, responséavel por estabelecer o enlace 4G com a operadora celular e criar a rede
IP que atende o n6 agricola (ESP32). Opera como roteador de borda, garantindo
conectividade estavel para o envio de telemetria e o recebimento de comandos

remotos.

Funcionamento: O firmware do ESP32 recebe comandos do broker MQTT para
abrir /fechar a vélvula e acionar a iluminagao. Este né esta preparado para integrar

sensores de umidade do solo e temperatura.

Integracao e seguranca.

e Elétrica: manter terra comum entre a logica e o moédulo de relés, respeitando a

isolagao do fabricante;

e Comunicagao: quando em produgao, utilizar MQTT com TLS (porta 8883),

autenticacao de usuério/senha e certificado vélido.

A Figura 4.6 apresenta o ESP32-02 montado em protoboard e interligado ao médulo
de relés, enquanto a Figura 4.7 detalha o estagio de comutacao das cargas. A Figura 4.8
ilustra o sensor de umidade do solo HW-390 utilizado nos ensaios e as Figuras 4.9 e 4.10
mostram a valvula de irrigagao empregada no prototipo. Por ultimo as Figuras 4.11 e

4.12 mostram respectivamente o roteador mercusys e o amplimax instalado

24

Figura 4.7: Detalhe do modulo de relés (4 canais) com retornos de carga.

25

Figura 4.9: Valvula de irrigacao Vista Frontal

26

Figura 4.10: Valvula de irrigacao Vista Lateral

Figura 4.11: Amplimax instalado

27

Figura 4.12: Roteador Mercusys configurado.

4.3.3 Configuracao do roteador para encaminhamento de porta
segura (TLS)

Para permitir a comunicagao remota entre os moédulos ESP32 e o servidor MQTT
instalado na méquina virtual, foi necessario realizar a configuracao do roteador da operadora
Vivo, responsavel pela rede local do sistema. O objetivo foi liberar a porta 8883 /TCP,
utilizada pelo protocolo MQTT sobre TLS (MQTTS), garantindo a criptografia e a

integridade dos dados trafegados entre os dispositivos e o servidor.

Procedimento de configuragao: O acesso ao roteador foi feito por meio do navegador,
digitando o endereco IP local do equipamento. Em seguida, acessou-se o menu *‘Configu-
ragoes — Rede Local”, onde o sistema exige autenticagao (Figura 4.13). Apods o login
com o nome de usuério e senha do administrador, foi aberta a aba ‘‘Encaminhamento
de Porta’’, responsavel por redirecionar conexoes externas a dispositivos especificos da
rede interna.

Na tela de encaminhamento, foi criada a regra para o servigo MQTT_TLS, utilizando
o protocolo TCP, com a porta externa e interna 8883, ¢ o endereco IP interno
192.168.15.60, correspondente a maquina virtual onde o broker Mosquitto estd hos-

pedado (Figura 4.14). Dessa forma, todo pacote destinado & porta 8883 do roteador é

28

automaticamente redirecionado para o servidor MQTT dentro da rede local.

Importancia da configuracao: Esse procedimento é essencial para o funcionamento

da comunicag¢ao remota no projeto, pois:

e possibilita que os dispositivos ESP32 (urbano e rural) publiquem e recebam mensagens
MQTT através da internet;

e mantém a camada de seguranga do TLS ativa, evitando interceptacoes e adulteragoes

no trafego de dados;

e permite a integracao entre o ambiente fisico de automacao e o sistema de supervisao

hospedado na nuvem.

Boas praticas de seguranca.

e Utilizar senha de administrador forte no roteador para impedir acesso nao autorizado

as configuragoes.
e Manter a porta 8883 exclusiva para o trafego do servico MQTT seguro.

e Monitorar o log de conexdes no roteador e no servidor Mosquitto para detectar

acessos suspeitos.

English | Portugués

vivo

AUTENTICAGAO
> Status A

Vock niio estd logado
v Configuragoes
Para acessar a configuracio, vocé deve se logar.

Internet
Rede Local

Rede Wi-Fi
Jogos e Aplicativos
Firewall

Modo da WAN

> Gerenciamento

> Sobre o Dispositivo

Figura 4.13: Tela de autenticacao do roteador Vivo antes do acesso as configuragoes de
rede.

29

vivw

REDE LOCAL

> Status

DHCP Mz UPNP DONS

~ Configuracoes
Encaminhamento de Porta

Internet

Configure como as portas do dispositivo podem ser redirecionadas para o seu dispositivo,
Rede Local
TCP v
Rede Wi-Fi

Jogos e Aplicativos

Firewall

Modo da WAN

> Gerenciamento

> Sobre o Dispositivo

Figura 4.14: Criagao da regra de encaminhamento da porta 8883/ TCP para o servidor
interno (IP 192.168.15.60).

4.4 Programacao dos Moédulos

4.4.1 Firmware e servidor web do n6 urbano (ESP32 01)

O n6 urbano é implementado com um microcontrolador ESP32 DevKit V1, responsével
pelo acionamento de trés lampadas instaladas em ambiente residencial. O firmware
desenvolvido integra, em um tunico dispositivo, a conexao Wi-Fi, a comunicacao MQTT
segura com o broker, o controle local por botoes fisicos e um servidor web embarcado
para acionamento via navegador, o médulo DS3231 é utilizado como relégio de tempo real
(RTC) para viabilizar o modo automético baseado em janela horaria.

O ESP32 opera como estacao Wi-Fi, conectando-se ao roteador doméstico por meio
da funcao WiFi.begin(). Apos o estabelecimento do enlace na camada de enlace/rede, o
firmware cria um cliente TLS (WiFiClientSecure) e inicializa a biblioteca PubSubClient
para comunicagao MQTT na porta 8883. O certificado da autoridade certificadora do
broker é armazenado no coédigo em formato PEM e carregado em tempo de execugao com
setCACert(), permitindo a autentica¢ao do servidor e a criptografia de todos os frames
MQTT. A sessao MQTT ainda é protegida por autenticagao com usuario e senha, de modo
que somente dispositivos autorizados conseguem publicar e assinar topicos do projeto.

A organizacao dos topicos MQTT segue a hierarquia tcc/esp01/casa/. Foram de-
finidos quatro topicos de comando, destinados a receber mensagens de aplicacoes ex-
ternas (aplicativo MQTT no smartphone), a saber: tcc/esp01/casa/ll, 12, 13 e auto.
De forma complementar, o n6 publica seu estado em topicos de telemetria do tipo
tee/esp01 /casa/state/varivel, permitindo que qualquer cliente reconstrua o estado atual
das saidas digitais. Todas as publicacoes de estado utilizam a opgao retain, de maneira

que o ultimo valor permaneca armazenado no broker e seja reenviado automaticamente a

30

novos clientes assinantes. Configura-se uma mensagem de status (tcc/esp01/casa/status
com os valores “online” /“offline”), que indica aos supervisorios quando o n6é urbano perde
a conexao com o servidor.

O mapeamento de hardware associa os GPIOs do ESP32 aos trés relés (LAMP1, LAMP2
e LAMP3), aos botoes de comando local e a um LED indicador do modo automaético.
O firmware mantém varidveis booleanas para representar o estado de cada lampada
(estadoLampl, estadoLamp2 e estadoLamp3) e quando uma mensagem MQTT é recebida,
a funcao de callback interpreta o payload textual (‘“on”, “off””, <17, “0”, etc.), atualiza as
variaveis internas e aciona imediatamente os respectivos GPIOs com digitalWrite(). Em
seguida, a func¢do publishState() publica o novo estado em todos os topicos de telemetria,
garantindo a sincronizagao entre o no fisico, o painel MQTT.

Para suportar o modo automéatico, o ESP32 é conectado a um modulo RTC DS3231
via barramento I12C. O relégio ¢ inicializado no setup e, a cada iteracao do laco principal,
a funcdo dentroJanela BRT 1830a0500() consulta o horario em formato BRT. Quando
o modo automético esté habilitado e o horario corrente encontra-se na janela 18h30--5h00,
o firmware forca as trés lampadas para o estado ligado; fora dessa janela, as saidas sao
desligadas. Assim, mesmo na auséncia de conexao com a nuvem, o n6é urbano mantém um
comportamento previsivel, alinhado a uma rotina de iluminacao residencial noturna.

Vale destacar ainda que além da interface MQTT, o ESP32 disponibiliza um servidor
HTTP embarcado na porta 80, responsavel pela pagina de acionamento ilustrada na
Figura 4.15. A fungao relay wifi() monitora se hé clientes conectados ao objeto WiFiServer
e processa manualmente as requisi¢oes recebidas. Quando a linha de requisicao contém
GET /lampl/on, /lampl/off e comandos equivalentes para as demais saidas, o firmware
altera o estado interno da lampada correspondente e atualiza o LED de modo automatico
quando aplicavel.

O conteido HTML é gerado dinamicamente e enviado ao navegador linha a linha
via httpclient.println(). A pagina utiliza uma folha de estilo CSS simples, com a classe
.parl definindo o formato dos botoes e as classes .btOn e .btOff diferenciando visualmente
os estados ‘‘ligar’” e “‘desligar”. O cabegalho exibe o titulo ‘“Servidor de acionamento”
e, abaixo, sao mostrados o estado textual de cada lampada e um botao correspondente.
Quando a saida esta desligada, o botao aparece em verde com o texto “lamp X turn on’’;
quando esta ligada, o botao passa para cinza com o texto “‘lamp X turn off”, permitindo
ao usuario alternar o estado com um tnico clique. Um bloco adicional apresenta o estado
do modo automatico e um botao dedicado para sua ativacao ou desativacao.

No lago principal (loop()), o firmware gerencia, a cada iteracao, a selegao entre controle
manual e automético, além dos servigos de comunicacao. Primeiro, 1é-se o botao dedicado
ao modo automético (BOTAO_AUTO) com uma janela minima de antirruido (debounce)
baseada em millis(); quando pressionado, a varidvel modoAutomatico é alternada e o

LED de indicagao (LED_MODO_AUTO) ¢ atualizado. Em seguida, se o modo automético estiver

31

desativado, o codigo verifica os trés botdes locais (BOTA0O1-3). Um botao pressionado forga o
respectivo estado da lampada (estadoLampX) para true; quando solto, caso o espelho logico
proveniente das interfaces remotas (lampX_status) esteja em false, a saida é mantida
desligada. Apos computar esses estados, os GPIOs dos relés (LAMP1-3) sao atualizados
com digitalWrite(), garantindo que o estado interno reflita o hardware.

Por fim, o lago assegura a robustez da conectividade. Se o Wi-Fi cair, uma tentativa
de reconexao é feita a cada 5 s e o lago retorna cedo, evitando processamento inutil de
MQTT/HTTP sem rede. Quando a interface esta ativa, o cliente MQTT é mantido
com mqtt.loop() e, se necessério, é restabelecido por mgttReconnect(), que refaz as
assinaturas e republica os estados. Em todas as iteracgoes, o servidor HI'TP embarcado
é atendido pela chamada relay_wifi(), que processa requisigoes GET para ligar/desligar
cada lampada e o modo automatico, também invocando publishState() apo6s qualquer

mudanga. Os codigos completos estao no Apéndice A.

Figura 4.15: servidor de acionamento ESP32 01.

32

Inicio / setup()

]|l\(\ihli GPIOs, RTC, Wi-Fi, MQTT (TLS) e HTTT’]

nio

é%

sim

=

sim

Reconecta Wi-Fi(aguarda 5 s)

[R(‘l‘()\’l(‘,((d MQTTrefaz assinaturas e estados

[Li‘ BOTAO_AUTO (debounce) e atualiza modoAutomatico LED]

J

[Lﬁ BOTAOT-3Atualiza estadoLampXe GPIDs (LAMP1-3) Lé RTC (BRT)Verifica janela 18h30--5h00Liga/desliga]_:\,\IPI--I}]

[Exr‘cmu mqtt.loop() (tratamento de andos)

l

[Atcndc servidor HTTP (relay_wifi())

l

Fim da iteragio de loop()

Figura 4.16: Fluxograma simplificado da logica do n6 urbano (ESP32 01).

4.4.2 Firmware do no rural (ESP32 02)

4.4.3 Moédulo de comunicagao Wi-Fi do né rural

A conectividade sem fio do n6 rural foi encapsulada em um componente especifico
denominado wifi, responsavel por inicializar a interface de rede do ESP32 em modo estagao,
gerenciar o processo de conexao ao roteador do sitio e disponibilizar para o restante do
firmware uma sinalizagao simples de estado da rede. O coédigo-fonte completo desse
componente encontra-se no Apéndice B, identificado como ‘“Modulo de Wi-Fi (componente
wifi)”

O arquivo CMakelLists. txt do componente declara que o moédulo wifi é composto pelo

n n

arquivo connect.c, expoe seu cabegalho na propria pasta (INCLUDE_DIRS) e depende
diretamente de bibliotecas do ESP-IDF relacionadas a pilha de rede, sistema e registro
de eventos, tais como esp_wifi, esp_netif, esp_event, nvs_flash e freertos. Essa
organizagao permite que o mesmo componente de Wi-Fi seja reutilizado em diferentes nos
da automacao.

A interface publica do médulo é definida em connect.h. Esse cabegalho declara trés
funcoes principais: wifi_init(), wifi_connect_sta() e wifi_disconnect(). A primeira
prepara a infraestrutura de rede e registra os tratadores de evento; a segunda estabelece a
conexao em modo estagao com um ponto de acesso Wi-Fi, recebendo como parametros
o SSID, a senha e um tempo méaximo de espera; a terceira encerra de forma ordenada a
CONexao.

A implementacao dessas fungoes encontra-se em connect.c. Logo no inicio, é declarada

33

a variavel global volatile bool wifiOnline, utilizada por outras tarefas do sistema para
saber se 0 no esta efetivamente conectado e com endereco IP valido. Esse arquivo também
define um event group (wifi_events) e dois bits de sincronizagao: CONNECTED_GOT_IP e
DISCONNECTED. Esses bits sao acionados pelos tratadores de evento conforme o estado da
conexao evolui.

A funcao wifi_event_handler () atua como ponto central de tratamento dos eventos ge-
rados pelo Wi-Fi e pela pilha de IP. Quando o médulo entraem WIFI EVENT STA START,
a fungao inicia a tentativa de conexao ao roteador. Em WIFI EVENT STA CONNECTED,
registra-se o sucesso de associagao fisica ao ponto de acesso, ainda sem IP. Em caso de
WIFI EVENT STA DISCONNECTED, o cédigo decodifica o motivo da desconexao,
registra mensagens de log e sinaliza o bit de desconexao no event group. Ja o evento
IP_EVENT STA GOT _IP indica que o n6 recebeu um enderego IP do roteador; nesse
momento, a varidvel wifiOnline ¢é ajustada para true e o bit CONNECTED_GOT_IP ¢ acio-
nado, liberando as tarefas que dependem de conectividade para prosseguir.

A funcao wifi_init() executa a configuracao inicial da pilha de rede. Nela sao
chamados, em sequéncia, os procedimentos de inicializagao do esp_netif, a criacao
do loop de eventos padrao, a inicializacao do driver de Wi-Fi e o registro da propria
wifi_event_handler() tanto para eventos de Wi-Fi quanto para o evento de obtengao de
IP. Também ¢é definido que as configuracgoes de Wi-Fi serao mantidas em RAM e criado o
event group utilizado para sincronizacao com a fungao de conexao.

A funcao wifi_connect_sta() é responsavel por, de fato, conectar o ESP32 ao roteador
do sitio. Ela cria a interface padrao em modo estacao, preenche a estrutura wifi_config_t
com o SSID e a senha informados, configura o dispositivo em modo WIFI_MODE_STA, aplica
a configuragao (esp_wifi_set_config()) e inicia o Wi-Fi com esp_wifi_start(). Em
seguida, a funcao bloqueia em xEventGroupWaitBits(), aguardando até que um dos bits
CONNECTED_GOT_IP ou DISCONNECTED seja acionado, dentro de um tempo limite estabelecido
pelo parametro timeout. Caso o IP seja obtido a tempo, a funcao devolve ESP_OK; em caso
de falha ou estouro de tempo, retorna ESP_FAIL.

A funcao wifi_disconnect() oferece um encerramento explicito da conexao, chamando
esp_wifi_disconnect() e esp_wifi_stop(). Embora o no rural permaneca normalmente
conectado para suportar a recepcao continua de comandos MQTT e o envio periédico de
dados, essa funcao permite desligar a interface sem fio em cenarios de teste, depuragao ou

economia de energia.

4.4.4 Arquitetura principal e médulo de temporizacao do né rural

O firmware do no rural (ESP32 02) foi organizado como um componente do ESP-IDF,
de forma a agrupar em um tunico médulo o arquivo principal da aplica¢do (main.c), a

logica de comunicacao MQTT, o agendador de tarefas e o driver do RTC externo DS3231.

34

O arquivo CMakelLists.txt associado a esse componente declara, por meio da instrucao
idf_component_register, que o conjunto de fontes é composto pelos arquivos main.c,
MQTT.c, ds3231.c e scheduler.c. Esse mesmo arquivo define que os cabegalhos do com-
ponente se encontram na propria pasta (INCLUDE_DIRS ".") e especifica as dependéncias
internas e externas, como os modulos de Wi-Fi, JSON, MQTT, drivers de hardware e
pilha TCP/IP. Com isso, o ESP-IDF ¢é capaz de compilar o n6 rural como um bloco coeso,
reaproveitavel e com suas bibliotecas de suporte claramente declaradas. O codigo-fonte
completo desse componente encontra-se reunido no Apéndice B.

Dentro dessa arquitetura, o par de arquivos ds3231.h e ds3231.c implementa o médulo
responsavel pela contagem de tempo e pela medigao de temperatura com o circuito integrado
DS3231, conectado ao ESP32 por meio do barramento I2C. O cabecalho ds3231.h define
o endereco I?C do dispositivo (0x68) e os registradores utilizados para acesso a informagao
de tempo e de temperatura, também declara as fungoes publicas do médulo: inicializagao
do RTC, leitura e escrita da data e hora, e leitura da temperatura.

A implementacao em ds3231.c encapsula a logica de acesso ao hardware. Inicialmente,
sao declaradas fungoes auxiliares para conversao entre o formato BCD (Binary Coded
Decimal), utilizado pelo DS3231 para armazenar segundos, minutos, horas e demais campos
de data, e valores inteiros comuns. Em seguida, sao definidas duas rotinas de leitura e
escrita genéricas sobre o barramento I2C, responsaveis por montar os comandos com inicio,
endereco do escravo, registrador alvo e finalizacao da transacgao.

A funcdo ds3231_init() recebe como parametros a porta I2C a ser utilizada, os pinos
SDA e SCL e a frequéncia de operagao do barramento. Ela configura o ESP32 como
mestre 12C, associa os pinos fisicos, instala o driver de comunicacdo e realiza uma leitura
de teste no registrador de segundos. Essa leitura inicial serve como verificagao simples de
que o DS3231 esta presente e respondendo corretamente no barramento, permitindo que a
aplicacao registre um erro caso o médulo de relégio em tempo real esteja desconectado ou
com defeito.

Para leitura da hora e da data, a fungao ds3231_get_time() lé em sequéncia os sete
registradores que armazenam segundos, minutos, horas, dia da semana, dia, més e ano.
Os valores em BCD sao convertidos para a estrutura struct tm, utilizada pelas funcoes
padrao de tempo da linguagem C, incluindo o tratamento do formato de 12 ou 24 horas e
os ajustes de indice de més e ano. Essa funcao é usada, posteriormente, pelo agendador de
tarefas do no rural para calcular o horéario atual em minutos desde a meia-noite e decidir,

por exemplo, quando ligar ou desligar automaticamente as lampadas e a irrigacao.

4.4.5 Lobgica principal e agendamento do né rural

A organizacao da logica principal do né rural foi estruturada a partir de um pe-

queno conjunto de arquivos que se complementam: general.h, main.c, scheduler.c e

35

scheduler.h. Esses arquivos retinem a configuragao fisica do n6 (mapeamento de GPIOs,
parametros de sensores e topicos MQTT), o fluxo de inicializagao do firmware, a criagao
das tarefas do sistema e a logica de agendamento automatico de lampadas e irrigagao. O
codigo-fonte completo dessa estrutura pode ser consultado no Apéndice B.

O arquivo general.h concentra as definigoes que descrevem o mundo fisico e logico
do no6 rural. Nele sao declarados o nome da rede Wi-Fi e a respectiva senha utilizados
para conectar o ESP32 ao roteador do sitio, os GPIOs associados as trés lampadas e a
saida de irrigacao, e também de parametros de operagao do conversor analogico-digital
utilizados para leitura do sensor de umidade do solo. O arquivo também define dois pontos
de calibracao para o solo seco e imido, que sao empregados em uma interpolagao linear
para converter o valor cru do ADC em porcentagem de umidade. Ainda em general.h,
é estabelecido um namespace coerente de topicos MQTT para o né rural, separando
claramente comandos (tcc/esp@2/rural/l1, /irrig, /auto, /irr_auto) de tépicos de
estado (tcc/esp@2/rural/state/), além da declaracao da variavel wifiOnline, utilizada
por outras partes do firmware para saber se h& conectividade disponivel.

A funcgao principal de inicializacao encontra-se em main.c. Nesse arquivo, a rotina
setup() executa a sequéncia de preparacao do né: inicializa a NVS, ajusta o nivel de
detalhamento dos logs, chama wifi_init() e, em seguida, wifi_connect_sta() para
estabelecer a conexao a rede local. Apds garantir a conectividade basica, o firmware inicia
o processo de sincronizagao de horério via SNTP, configura o fuso horario do sistema para
UTC-3 e invoca ds3231_init() para habilitar o uso do RTC externo. Com isso, mesmo
que a conexao com a internet seja perdida posteriormente, o né passa a contar com uma
base de tempo local estavel para acionar as agendas automaéticas.

O mesmo arquivo main.c contém a func¢ao io_init(), responséavel por configurar os
GPIOs associados as lampadas e & irrigacao como saidas digitais, assegurando que todas as
cargas iniciem desligadas no momento do boot. Na funcao app_main(), apds a chamada a
setup() e io_init(), sao criadas as tarefas FreeRTOS que compoem o comportamento
do no6 rural: uma tarefa dedicada ao controle MQTT (MQTTControlTask), o agendador
automético (SchedulerTask), a tarefa de envio de dados (MQTTSenderTask) e duas tarefas
de aquisigao das grandezas monitoradas (taskTemperatureQueue e taskHumidityQueue).
Essa divisao em tarefas especializadas permite que o n6 execute, em paralelo, a recep¢ao
de comandos, o acionamento de cargas, a leitura de sensores e o envio de telemetria, sem
que uma funcao interfira diretamente na responsividade das demais.

Ja a logica de agendamento automatico esta concentrada nos arquivos scheduler.c e
scheduler.h. O cabegalho scheduler.h expoe apenas o protdtipo da fungao SchedulerTask(),
enquanto a implementacao em scheduler.c utiliza o horario fornecido pelo RTC DS3231
para calcular os minutos decorridos desde a meia-noite e, a partir disso, decidir se o sistema
deveria estar em um periodo de lampadas ligadas ou de irrigacao ativa. Fungoes auxiliares

como minutes_since_midnight() e in_window() encapsulam esses calculos, incluindo o

36

caso em que uma janela de funcionamento cruza a meia-noite (por exemplo, das 18h30 até
as 5h do dia seguinte).

A tarefa SchedulerTask() é executada com periodo de um segundo e avalia conti-
nuamente duas janelas de funcionamento: a irrigacao, configurada entre 9h00 e 9h10, e
a iluminacao, configurada das 18h30 até as 5h00 da manha seguinte. Quando o modo
automatico de irrigacao esta habilitado, a tarefa compara o horario atual com a janela
definida e liga ou desliga a saida de irrigagao por meio da funcao set_irrig(), que
também atualiza o toépico MQTT de estado correspondente. De forma analoga, quando o
modo automatico de iluminacao esta ativo, a tarefa comanda o conjunto de trés lampadas
simultaneamente, utilizando set_all_lamps() para refletir o estado fisico das cargas e

publicar o estado atualizado nos topicos de state.

4.4.6 Mobdulo de comunicacao MQTT e formatacao de dados

A comunicagao com o broker MQTT, bem como o empacotamento e o envio dos dados
de sensores, foi organizada no conjunto formado por MQTT.h, mqtt_cert.h e MQTT.c. Esses
arquivos definem tanto a interface de alto nivel usada pelas demais partes do firmware
(tarefas de leitura de sensores, agendador e funcao principal) quanto os detalhes da conexao
segura via TLS, da assinatura de topicos de comando e da publicagao periédica dos valores
de temperatura e umidade do n6 rural. O cédigo-fonte completo desses arquivos esta
reunido no Apéndice B.

O cabecalho MQTT.h descreve a interface piblica do médulo de comunicacao. Nele
sao definidas duas estruturas de dados de uso recorrente: MgttQueueFloat_t, utilizada
como fila de envio para o cliente MQTT de telemetria, e SysDataFloat_t, empregada
como buffer circular interno para armazenar séries temporais de leituras de sensores. Cada
estrutura guarda um rétulo (tag), o identificador 16gico (1ocal), o valor de ponto flutuante
medido e um carimbo de tempo em segundos. O arquivo também declara constantes que
determinam o tamanho méaximo dessas filas e retine as variaveis globais que representam o
estado das cargas e dos modos de operacao do n6 (lamp1_state, auto_mode, irrig_state,
auto_irrig), além do identificador da tarefa responséavel pelo envio MQTT. Por fim,
MQTT.h expoe os prototipos das fungoes de inicializagao de tempo, armazenamento em
fila, tarefas de leitura de sensores e tarefas de comunicacao, permitindo que o restante do
firmware utilize o moédulo sem conhecer os detalhes de implementacao.

O arquivo mgtt_cert.h armazena o certificado da autoridade certificadora utilizado
para verificar a identidade do broker MQTT na conexao segura. O certificado é incluido no
firmware como uma cadeia em formato PEM e é associado aos campos de configuragao do
cliente MQTT responséaveis pela verificacao do servidor remoto. Ao utilizar a URI mqtts://
e preencher o parametro broker.verification.certificate com esse certificado, o n6

rural passa a estabelecer uma sessao TLS em que o broker é autenticado antes da troca de

37

dados. Essa abordagem protege os comandos e as leituras de telemetria contra interceptagao
e alteracao durante o trafego na rede, reforcando a seguranca da automacao rural.

A implementacao central do modulo encontra-se em MQTT.c. Esse arquivo comeca com
fungoes auxiliares para sincronizagao de horario via SNTP e conversao de carimbos de
tempo para o formato [SO 8601, que serao utilizados na construcao dos JSON enviados ao
backend. Também sao definidos um manipulador genérico de eventos MQTT e uma funcao

payload_is_on(), que interpreta mensagens de comando simples ("on", true”) e as

myn
converte em valores booleanos. A tarefa MQTTControlTask() cria o cliente MQTT dedicado

ao controle, configurado com o endereco do broker, credenciais de acesso e certificado TLS.

Uma vez conectado, esse cliente assina os topicos de comando das lampadas, da irrigagao

e dos modos automaticos. Sempre que uma mensagem é recebida nesses topicos, a fungao
mqtt_control_event() identifica qual carga esta sendo comandada, atualiza as varidveis

de estado correspondentes, aciona os GPIOs fisicos por meio de fun¢oes internas e publica,

nos topicos de state, o novo estado logico com a flag de retencao ativada.

O mesmo arquivo também implementa o caminho da telemetria. As tarefas taskHumidityQueue ()
e taskTemperatureQueue(), descritas anteriormente, preenchem os buffers circulares com
as leituras mais recentes de umidade do solo e temperatura. A tarefa MQTTSenderTask()
observa essas filas e, sempre que ha dados novos e conectividade Wi-Fi disponivel, copia as
amostras mais recentes para o vetor generalDataQueue, marcando que h& dados a enviar.
Em seguida, essa tarefa notifica a fungao MQTTSender(), que cria um segundo cliente
MQTT, dedicado apenas & publicagao, reutilizando o mesmo certificado de confianca.
Esse cliente constroi dois tipos de payload: um formato textual compacto, no padrao
{TAG:VAL:TIMESTAMP, ...}, publicado no tépico tcc/esp@2/rural/raw para depuragao em
ferramentas como o MQTTBox, e dois objetos JSON separados, com valor numérico e times-
tamp em ISO 8601, enviados aos topicos tcc/esp@2/rural/temp e tcc/esp@2/rural/hum,
compativeis com os fluxos de processamento no backend.

Além do envio de dados, MQTT. c também contém rotinas para leitura pontual de valores
assinados e para gerenciamento das filas. A fungdo storeFloatQueue() implementa uma
fila circular de tamanho fixo, descartando as medi¢oes mais antigas quando o buffer esta
cheio e registrando cada nova amostra com um carimbo de tempo obtido a partir do relégio
DS3231. A funcao convertData() realiza o parse de mensagens recebidas em formato
textual, extraindo o valor numérico mesmo quando o payload possui prefixos ou outros
campos auxiliares. Por fim, ap6s a confirmagao de publicacao (ACK do broker), o modulo
limpa as estruturas internas, zera os indices e ajusta as variaveis de controle para evitar
acumulacao de dados redundantes na memoria.

Em conjunto, MQTT.h, mgtt_cert.h e MQTT. c estruturam o subsistema de comunicagao
do no6 rural de forma a combinar controle e envio periédico de telemetria, sempre sobre

uma conexao cifrada e autenticada.

38

a horéirio via SNTPajusta fuso (L l(—!\d&323|,mﬂ()]

[w,\mm:vw de lampadas e imigagio uh\h«;,u]nw]
[m,. tarefus FreeRTOS (SchedulerTask, MQTTControlTask taskTenperatureQueve, taskumidi tyQueue. mrrsenderhsk\]
SchedulerTask O D323 janclas dc I« igaioset oLl Larps Q). set_irrig)] [MTControlTask Oeliente MQTT de conrleasing comadosatui stados ¢ GPIOS] [taskTerpratureQuevetaskhumd tyQuese QI senores, comverte par salorsprenche s de tlemetia
[mqnsmsyv“mwmm filasmonta payload bruto e JSONpublica telemetria om topicos MQT A}

Figura 4.17: Fluxograma simplificado da légica de inicializagao e tarefas do né rural

(ESP32 02).

4.5 Aplicativo Mobile(IoT MQTT Panel)

O Aplicativo utilizado neste trabalho foi o IoT MQTT Panel. Este aplicativo transforma
o smartphone em cliente MQTT para supervisao e comando dos nés Casa (urbano, ESP32-
01) e Sitio (rural, ESP32-02). As Figuras 4.18 a 4.23 mostram a criagdo da conexao segura

com o broker e os painéis utilizados no projeto.
Lista de conexoOes: Na tela Connections (Figura 4.18) o usudrio visualiza, cria e

gerencia conexoes MQTT. O item IOT indica a conexao ja cadastrada, os botoes flutuantes

permitem importar/exportar configuragoes e criar novas conexoes.

39

22:01

= Connections

10T

Figura 4.18: Tela Connections do IoT MQTT Panel com a conexao IOT.

Edicao da conexao segura: Na tela Edit Connection (Figura 4.19) s@o definidos:
Connection name (I0T), Client ID (iphone-gabriel), Broker address (IP publico do
servidor Mosquitto), Port (8883) e Network protocol (TCP-SSL). A secao Manage SSL

configuration armazena certificado/ chaves TLS. Em Add Dashboard vinculam-se os
painéis Casa e Sitio.

22:03

& Edit Connection

Gonn,
I

Client ID
iphone-gabriel

Broker address

189.110.217.58

Port Network protocol

8883 TCP-SSL

Manage SSL configuration

Add Dashboard

55 A casa

25 sitio

Additional options

CANCEL

Figura 4.19: Edicao da conexao MQTT segura e associacao dos dashboards.

40

Painel do n6é urbano (Casa): A Figura 4.20 apresenta o painel Casa, com quatro
widgets: ldmpada 1, ldmpada 2, ldmpada 3 € modo automadtico. Esses controles publicam
comandos MQTT para as trés cargas de iluminagao do né urbano e para a comutacao

entre operagao manual e a rotina automatica (18:30-05:00, conforme firmware).

Figura 4.20: Painel Casa com widgets de comando.

Painel do né rural (Sitio): A Figura 4.21 mostra o painel Sitio com seis widgets:
lampada 1, lampada 2, lampada 3, modo automdtico, irriga¢io (acionamento manual da
valvula) e irrigagao automdtica (rotina diaria 09:00-09:10). Na parte inferior, o grafico

Temperatura exibe dados publicados pelo sensor do né rural.

41

Figura 4.21: Painel Sitio com controles de iluminagao e irrigacao e grafico de temperatura.

Graficos de temperatura e umidade ilustrativos no Aplicativo: A Figura 4.22
foca o monitoramento feito pelos dois graficos de linha. Nos graficos é possivel ver a
Temperatura (°C) e a Umidade (%), permitindo acompanhar a evolugao temporal. Os

dados apresentados nos graficos sao dados de testes.

Figura 4.22: Monitoramento no painel Sitio: graficos de temperatura e umidade.

42

Operacgao ativa com broker conectado. Por fim, a Figura 4.23 registra o painel em
operagao, com conexao estabelecida ao broker (icone de nuvem em destaque). Observam-se
os mesmos widgets de comando e o grafico Temperatura com leituras em tempo real,

evidenciando a troca continua de mensagens MQTT entre smartphone e ESP32.

09:28 -l = g
= sitio O :

lampada 1
lampada 2

lampada 3

) modo automético

irrigacéo

irrigac&o automatica

Temperatura

Figura 4.23: Painel durante operagao: conexao ativa com o broker e grafico de temperatura.

43

4.6 Envio de Dados para a Nuvem

4.6.1 Configuracao e Explicacao do MQTTBox

Esta secao descreve a configuracao do cliente MQTTBox para envio de dados ao
broker MQTT hospedado em méaquina virtual. Na Figura 4.24a, observa-se que a conexao
ainda nao foi estabelecida, pois a méaquina virtual (VM) no Oracle VirtualBox permanece
desligada. Consequentemente, o endereco IP publico e a respectiva porta do broker nao
respondem até que a VM seja inicializada e as regras de rede (NAT /port forwarding)
estejam ativas.

A Figura 4.24b apresenta os parametros definidos no cliente, que serao efetivos assim

que a VM estiver operacional e o broker acessivel.

e MQTT Client Name: identificador tnico do cliente no broker.

e Protocol (MQTTS/TLS): habilita sessao segura com autenticagao e criptografia.
e SSL/TLS Version: versao minima/negociada do TLS utilizada na sessao.

e Username e Password: credenciais de autenticacao do cliente no broker.

e Certificate Type: tipo de certificado para validar o servidor (por exemplo, CA do
broker).

e Host: IP publico ou FQDN do broker; indisponivel enquanto a VM estiver desligada.

Observacaol: O endereco IP utilizado na configuracao do servidor corresponde ao IP
publico da conexao com a internet, distinto do IP interno atribuido a méquina virtual ou
ao roteador local. Esse valor pode ser obtido por meio de servigos de consulta, como o site
whatismyip.com. O uso do IP publico é essencial, pois o ESP32 poderé estar conectado
em outra rede Wi-Fi e, portanto, precisaré acessar o servidor pela internet a partir desse
endereco.

Observagao2: O certificado da autoridade certificadora (CA) utilizado pelo broker
MQTT foi gerado diretamente na maquina virtual Linux por meio do utilitdrio openssl.
Em um diretorio dedicado (por exemplo, ~/certs), foram executados os comandos mkdir
-p /certs && cd /certs, openssl genrsa -out ca.key 2048 e, em seguida, openssl
req -x509 -new -nodes -key ca.key -sha256 -days 365 -out ca.crt. O arquivo
ca.crt resultante corresponde ao certificado publico da CA e deve ser copiado para o
codigo do ESP32, permitindo que o cliente MQTT valide a identidade do servidor durante

o estabelecimento da conexao TLS.

44

MaTTBox Edi Help

Paylosd

(a) Cliente MQTTBox sem conexao, com a VM ainda desligada.

=1 MQTTBox - o x
MQTTBox Edit Help

Shenu |+ MQTTCLIENT SETTNGS 0 client sttings Help

QT Clent Name WaTT Clent i ‘Append timestamp to MQTT clent a7

Wi - Topic Wil Gos. Wil -Retain Wil Payload

(b) Parametros de conexao: nome do cliente, protocolo TLS, versao,
credenciais, certificado e host.

4.6.2 Configuracao da Maquina Virtual

As Figuras 4.25 e 4.26 apresentam os detalhes da configuracao da méquina virtual
CentOS10 no Oracle VirtualBox. A VM é nomeada como "CentOS10" e executa um
sistema operacional Linux, utilizando a opc¢ao Red Hat 64-bit como sistema convidado. A
memoria principal foi configurada para 2048 MB, com dois processadores atribuidos. A
ordem de boot inclui disquete, unidade 6ptica e disco rigido, e a aceleragao de hardware

permanece habilitada.

o g B »

il centosto
© Desiigada

Figura 4.25: Configuragoes gerais da méaquina virtual CentOS10 no VirtualBox.

45

% CentOS10 - Settings

] ceral ‘

Identity ~ Features Descrigio Criptografia de Disco
n Sistema

VM Name Cent0S10

I:l Display

Armazenamento 0S Distribution Red Hat

0S Linux

’ Audio OS Version Red Hat (64-bit)

P Rede

B Portas seriais Sistema
& uss Placa-Mée Processador Aceleragio

[R —— Base Memary S it 1 11| 2VABMB A
4 M

i Interface do Usudrio Boot Device Order (BIOS only) (@)

| Cancelar Ajuda (H)

Figura 4.26: Detalhes adicionais da configuragao de sistema da VM, incluindo memoria,
placa-mae e dispositivos de boot.

4.6.3 Configuracao e Ativagao da Maquina Virtual

Apobs o primeiro acesso a maquina virtual com o usuario root e a senha definida na
instalacao, foi realizada a configuracao inicial do ambiente na distribuicao Linux, incluindo
a instalacao do Docker por meio do gerenciador de pacotes. Esse mesmo usuario é utilizado
para criar e ajustar os contéineres necessarios ao projeto (broker MQTT, banco de dados
e Scada-L'TS), que serao apresentados nas figuras mostradas na sequéncia. Ao iniciar a
maquina virtual, como ilustrado na Figura 4.27, o sistema solicitara as credenciais de login.

Utilize o usuério root e a senha correspondente para acessar o sistema.

e

Arquivo Maquina Visualizar Entrada Dispositivos Ajuda

ent0S Stream 18 (Coughlan)
Jkernel 6.12.8-128.e118.x86_64 on xB6_64

eb console: https://localhost :9898/

localhost login: _

Figura 4.27: Tela de login da méaquina virtual CentOS10.

Em seguida, execute o comando nmtui para acessar a interface de configuracao de rede.
Escolha a opgao "Edit a connection", conforme demonstrado na Figura 4.28.

Apos selecionar "Edit a connection", a tela de configuracao de rede sera exibida

46

NetworkManager TUI

Please =select an option

Edit a commection

fictivate a connection

Set system hostname
Radio

Quit

Figura 4.28: Interface do nmtui para edi¢ao de conexoes.

(Figura 4.29). Nessa tela, ajuste o endereco IP, o gateway e o servidor DNS, marcando a

opcao "Available to all users"antes de confirmar.

47

Arquivo Miquina Visualizar Entrada Dispositivos Ajuda

Edit Connect ion

Profile name ZITEE)
PO 053 (88100 :27 :ED:65:12)

= ETHERNET <Show>
= 882.1X SECURITY <Show>

Gateway [EASTERE
DNS servers EZBECIEL <Remove>
<Remove>

Search domains Add...>

Routing (No custom routes) <Edit...>
[1 Never use this metwork for default route

[1 Ignore automatically obtained routes

[1 Ignore ically obtained DNS

[1 Require IPu# addressing for this comection

7 IPv4 CONFIGURATION <Manual> <Hide>
l Addresses [EZRTEINERIIZZ) <Remove>
<A

= IPv6 CONFIGURATION <Disabled> <Show>

[1 Automatically comnect
IX] fAvailable to all users

<Cancel> <OK>

Figura 4.29: Ajuste das configuragoes de rede na VM.

Dessa forma, a maquina virtual estaré configurada e pronta para uso.

Com as configuracoes de rede ajustadas, retornamos ao menu principal do nmtui, como
ilustrado na Figura 4.28. Nesse menu, selecione a opcao "Activate a connection"para
ativar a conexao recém-configurada. A Figura 4.30 demonstra o processo de ativagao.

Ao prosseguir e confirmar a ativacao, conforme a Figura 4.30, a maquina virtual estaré

finalmente conectada e pronta para ser utilizada.

48

Figura 4.30: Confirmagao da ativagao da conexao na maquina virtual.

Na etapa final, conforme ilustrado na Figura 4.31, o cliente MQTTBox aparece
devidamente conectado ao broker, indicando que a méaquina virtual foi iniciada com

sucesso e as configuracoes foram aplicadas.

& MarTBox
MQTTBox Edit Help

e 4]

© Ada publisher

® Aga subscriber

2

Topic to publish
Topic o publsh
Qes
1- Atleast Once
Retain (0
Payload Type
Stings / JSON / XMIL / Characters
&g (nello" worla)

Payload

Publsh

3

Topic to publish
teclespo2imuralt
Qos
1- Atleast Once:
Retain 0
Payload Type

Stings JSON / XMIL / Characters
&g (nello"worla)

Payioad

o

Publsh

Topic to publish
teclespoziruraliz
Qos
1- Atleast Once:
Retain 0
Payload Type
Stings 1 JSON / XML / Characters
e (hello world)

Payioad

Figura 4.31: Estado de conexao estabelecida no MQTTBox.

As figuras subsequentes mostram a configuracao dos publishers e subscribers, respecti-

vamente, para os topicos de controle e monitoramento definidos no projeto.

49

Figura 4.32: Configuragao de publishers e subscri- Figura 4.33: Configuracao de publishers e subscri-
bers do projeto parte 1. bers do projeto parte 2.

Figura 4.34: Configuracao de publishers e subscri- Figura 4.35: Configuracao de publishers e subscri-
bers do projeto parte 3. bers do projeto parte 4.

Essas imagens ilustram os tépicos configurados para publicacao e assinatura de mensa-
gens entre os dispositivos ESP32.

Caso o MQTTBox nao estabeleca conexao, deve-se acessar a maquina virtual e executar
o Comando 01, responsavel por inicializar o servi¢o do broker e verificar seu estado. Esse

procedimento esté ilustrado na Figura 4.36.

Listing 4.1: Comando 01 para reativacao do servigo do broker e verificagao

do contéiner.

1 docker start scadalts-mqtt-1

2 docker ps

A primeira instrugao inicia o contéiner scadalts-mqtt-1; a segunda lista os contéineres
em execugao, permitindo confirmar o estado do servigo apés a tentativa de reconexao
(vide Figura 4.36).

CREATED

Figura 4.36: Tela de referéncia do procedimento de contingéncia para reconexao do
MQTTBoz.

20

4.6.4 Fluxo de Dados e Integragao com o Node-RED

O Node-RED foi utilizado como plataforma intermediaria para o tratamento e rotea-
mento das mensagens publicadas pelo broker MQTT na méquina virtual. Essa ferramenta
permitiu integrar o sistema de automacao desenvolvido com os bancos de dados do
SCADA-LTS e com as interfaces de visualizacao em tempo real.

A Figura 4.37 apresenta o fluxo criado no ambiente do Node-RED, responsavel por
receber os dados enviados pelos modulos ESP32, realizar o processamento das informagoes
e repassa-las ao banco de dados MySQL. Cada n6 do fluxo foi configurado de acordo com

a funcao desempenhada:

e MQTT In: subscreve aos tépicos definidos para leitura de temperatura e umidade,

recebendo as mensagens publicadas pelos dispositivos ESP32;

e Function Nodes: convertem as mensagens JSON recebidas em estruturas compati-

veis com os comandos SQL utilizados pelo banco de dados;

e MySQL Out: executa as instrugoes de inser¢ao (INSERT) no banco sensorData,

garantindo o armazenamento continuo dos valores coletados;

e Debug Nodes: exibem o status de transmissao e eventuais erros de comunicagao

durante o teste do fluxo.

Esse arranjo garante a interoperabilidade entre o nivel de campo (ESP32 e sensores) e
o nivel de supervisao (SCADA-LTS e dashboards), permitindo tanto o envio quanto a
leitura dos dados em tempo real. O uso do Node-RED simplifica o desenvolvimento de
integragoes complexas por meio de blocos visuais e fluxos logicos, vale a pena perceber
que o Node-RED pode oferecer alta flexibilidade para futuras expansoes do sistema de

automacao.

51

v 2 Node-RED: Flow 1 X+

<« c A\ Nao seguro 192.168.15.6(#flow/f6f2187df17ca8

£<) Node-RED

Flow 1

WARNING: please check you have started this container with a volume that is mounted to /data
otherwise any flow changes are lost when you redeploy or upgrade the container

(e.g. upgrade to a more recent node-red docker image).

Ifyou are using named volumes you can ignore this warning.

Double click or see info side panel to learn how to start Node-RED in Docker to save your work

debug temp | =
setugth |-
MQTT temp nom temp
® cone
pair (temp+hum) function final u debug final E
@ conn
MQTT hum nnorm hum
® conecia
debug hum E

Figura 4.37: Fluxo de integracao do Node-RED entre o broker MQTT e o banco de dados
MySQL.

A configuragao dos blocos mgqtt in e do né de broker no Node-RED que viabilizam
a recepcao de dados de temperatura e umidade publicados pelo ESP32 via MQTT com
autenticagao e TLS (porta 8883). As Figuras 4.38 a 4.42 registram as telas de configuragao

adotadas.

4.6.5 Assinatura do topico de temperatura

O n6 mgqtt in para temperatura foi configurado para assinar um tnico tépico, com
decodificacao automatica de JSON e QoS 1, conforme a Figura 4.38. Os principais campos

sao:

Servidor: Broker ;

Acao: Assinar um tdpico unico;

e Topico: tcc/esp@2/rural/temp;

QoS: 1 (entrega pelo menos uma vez);

e Saida: um objeto JSON analisado sintaticamente.

52

Editar mqtt in no

Deletar Cancelar

1+ Propriedades & B =H
@ Servidor Broker v | # +
Acédo Assinar um topico Unico hd
= Topico tco/esp02irural/temp
& QoS 1 -
= Saida um objeto JSON analisado sintaticamente ~
% Nome MQTT temp
& | O Habilitar

Figura 4.38: N6 mgqtt in para temperatura.

4.6.6 Assinatura do tépico de umidade

De forma analoga, o n6 mgqtt in para umidade assina o topico tcc/esp@2/rural/hum,
com QoS 1 e saida em JSON (Figura 4.39). Os campos espelham a configuragao anterior,

alterando apenas o nome e o topico.

23

Editar mqtt in no

Deletar Cancelar

1+ Propriedades & 3=
@ Servidor Broker v | & +

Acéo Assinar um topico Unico hd

= Tdpico tcc/esp02/rural/hum

& QoS 1 v

= Saida um objeto JSON analisado sintaticamente v

% Nome MQTT hum

& | O Habilitar

Figura 4.39: N6 mgtt in para umidade.

4.6.7 Configuracao do broker MQTT

O n6 mgqtt-broker concentra os parametros de conexao, seguranga e sessao.

Parametros de conexao

A Figura 4.40 mostra a aba Conexao que vale tanto para o né de temperatura quanto
para o n6 de umidade. Foi utilizado o IP publico do broker na porta segura 8883, com

reconexao automatica e uso de TLS habilitado:

e Servidor: 189.110.217.58;

Porta: 8883 (MQTT sobre TLS);

Protocolo: MQTT V3.1.1;

Conectar automaticamente: habilitado;

Usar TLS: habilitado, associado a uma configura¢ao TLS (vide Secao 4.6.8).

Keep-alive: 60 s;

54

e Sessao limpa: habilitada.

Editar mqtt in no = Editar mqtt-broker né

Excluir Cancelar Atualizar

#+ Propriedades & =
% Nome Broker

Conexao Seguranca Mensagens
@ Servidor 189.110.217.58 Porta | 8883

Conectar automaticamente

Usar TLS Configuracéo TLS vl | & +
£ Protocolo MQTT V311 ¥

% 1D do cliente

® Mantenha-se

Vivo 60
1 Sesséo Usar sess&o limpa
& || O Habilitar a2 Em todos os fluxos v

Figura 4.40: N6 mgtt-broker (Conexao).

Credenciais de autenticagao

A aba Seguranca que vale tanto para o n6 de temperatura quanto para o no de
umidade(Figura 4.41) define as credenciais do cliente MQTT:

e Nome de usuario: gabriel;

e Senha: cadastrada no broker (campo oculto na interface).

95

Editar mgtt in nd = Editar mgtt-broker né

Excluir Cancelar Atualizar

#* Propriedades & 3

% Nome Broker

Conex&o Seguranga Mensagens

& Nome de
usuario gabriel

& Senha | seseene

& || O Habilitar a? Em todos os fluxos v

Figura 4.41: N6 mgtt-broker (Seguranga).

4.6.8 Configuracao TLS

A Figura 4.42 documenta o né tls-config associado ao broker. Os itens essenciais sao:

e Certificado CA: arquivo server.crt carregado para validar o certificado apresen-

tado pelo broker;

e Verifique o certificado do servidor: habilitado, assegurando validacao do lado

cliente;

e Certificado/Chave privada do cliente: nao utilizados nesta configuragao (au-

tenticagdo mutua nao requerida).

26

Com essa configuracao, a sessao MQTT opera cifrada (TLS), com verifica¢ao do certificado

do servidor e autenticacao por usuario e senha.
Editar mgtt in né = Editar mgti-broker no = Editar tls-config né

Excluir Cancelar Atualizar

#* Propriedades & 3

[] Use a chave e os certificados dos arquivos locais

[3) Certificado X. Subir x

[21 Chave privada X Subir x
Frase de passe

3 Certificado CA & Subir server.crt x

Verifique o certificado do servidor

£ Nome do
servidor

£ Protocolo ALPN

¥ Nome

Figura 4.42: N6 tls-config: CA server.crt carregada.

4.6.9 Resumo operacional dos blocos MQTT

Com o broker definido (Segao 4.6.7) e a camada TLS ativa (Segao 4.6.8), os nés mgqtt

in das Figuras 4.38 e 4.39 consomem, com QoS 1, os topicos:
e tcc/esp@2/rural/temp (temperatura, JSON);
e tcc/esp@2/rural/hum (umidade, JSON).

A opcao de saida como objeto JSON permite que as fungoes subsequentes do fluxo
manipulem diretamente campos como msg.payload. temp e msg.payload.hum, reduzindo

a necessidade de parsing manual e evitando erros de conversao.

o7

4.6.10 Funcoes do Fluxo Node-RED: Normalizacao, Pareamento

e Insercao

Esta secao descreve, em ordem de execugao, as fungoes JavaScript do Node-RED
utilizadas no fluxo: norm temp, norm hum, pair (temp+hum) e function final. Para cada
funcao, apresentam-se a captura de configuracao no editor do Node-RED e a listagem do

co6digo empregado.

4.6.11 Funcao norm temp

A Figura 4.43 mostra o editor do n6 function norm temp. A funcao recebe a mensagem

publicada no toépico de temperatura e:
1. realiza parse opcional de JSON quando o payload chega como string;
2. extrai a temperatura (aceita temperature, temp ou nimero direto);
3. obtém o carimbo de tempo timestamp/ts (ou gera um ISO 8601);
4. valida o valor numérico (Number.isFinite);

5. padroniza a saida em msg.topic="temp’ e msg.payload={val, ts}.

2] Node-RED

debug temp

MQTT termp nom tomp.
pair (tsmp+ht

MQTT hum nom hum

debug hum

B8 Q Pesquisar

Figura 4.43: N6 norm temp no editor do Node-RED.

A implementacao completa da funcao norm temp encontra-se no Apéndice C.

4.6.12 Funcao norm hum

A Figura 4.44 apresenta o n6 function norm hum. Ele aplica a mesma estratégia
de saneamento para a variavel de umidade, aceitando chaves humidity/hum ou nimero

direto, e produz como saida msg.topic="hum’ e msg.payload={val, ts}.

28

Editar function no

sck you have started this container with a volume that is mounted to /data

wnges are lost when you redeploy or upgrade the container & Propriedades NIRIE
‘@ recent node-red docker image)
1 volumes you can ignore this warning. @ Nome norm hum re

o side panel to leam how to start Node-RED in Docker to save your work

/E-
_— norm temp :
\ " pair (temp+hl °
/ S |
ST
norm hum M

— _J 9
\ 0 i (m
| on
- agnum [5]0) 2o

 Configurar Noinicio Na mensagem Na parada

ic="hun’, msg.payload={val, ts}

string') { try { p = JSON.parse(p); } catch { /* deixa como string */ } }

mber(
idity 22 p.hum)) ?? (typeof p === 'number’ ? p : Nah)

= (p 8& (p-timestamp ?? p.ts)) || new Date().toISOString();

.isFinite(val)) {
midade invilida', msg);

vslj ts: String(ts) };

Figura 4.44: N6 norm hum no editor do Node-RED.

A funcao norm hum é apresentada integralmente no Apéndice C.

4.6.13 Funcgao pair (temp+hum)

A Figura 4.45 exibe o n6 function pair (temp-+hum). Ele mantém, no contexto do
no, a ultima leitura de cada variavel e s6 emite uma mensagem combinada quando os
timestamps de temperatura e umidade diferem em no méaximo 15 s. Leituras vencidas sao

expiradas para evitar pareamentos defasados.

Editar function no

u have started this container with a volume that is mounted to /data

are lost when you redeploy or upgrade the container @ Proprisdades IR
+nt node-red docker image)
mes you can ignore this warning * Nome pair (temp+hum) 8-

panel to lean how to start Node-RED in Docker to save your work
 Configurar No inicio Na mensagem Na parada

|
pair (temp-+ht
| Rasladiai |

N/

8 | O Habiitar

Figura 4.45: N6 pair (temp+hum): pareamento com janela temporal de 15 s.

O codigo responsavel pelo pareamento entre temperatura e umidade pode ser consultado

no Apéndice C.

4.6.14 Funcao function final

A Figura 4.46 mostra o n6 function function final, que recebe o par {temp, hum} e

prepara a insergao parametrizada no MySQL. A funcao escolhe um timestamp (prioriza o

29

da temperatura), converte para o formato YYYY-MM-DD HH:MM:SS e preenche msg. topic

com o INSERT e msg.payload com os valores. O codigo esta na Listagem 19.

Editar function no

s container with a volume that is mounted to /data Deleta B
1 loy or upgrade ineé r
redeploy or upgrade the container © Proprisdades NI
erimage),
o this warning. ® Nome function final a-
Wto start Node-RED in Docker to save your work
Configurar Noinicio Namensagem Na parada
dobug tomp 1 /7 nsgpayload = { temp? hun? (val.
2 const p = msg.payload ||

const t = p.temp;
4 const h = p.hum;

norm temp
6 // escolhe un ts: prioriza o da temp; sendo o da hun
pair (temp-+ht 7 const tsISO = (t & t.ts) || (h & h.ts);
8
9 function toMysoL(s){
G 10 const d = new Date
1 return isNaN(d.getTine()) 2 null : d.tolsOString().slice(e,19).replace(*T'," *);
2)
debug hum 13

14 const when = toMySQL(tsISO);
15 if (twhen) { node.error(‘tinestanp invalido’, msg); return null; }

17 msg.topic = 'INSERT INTO "sensort Data® ("sensor”,”local’, temperature’,”hunidity’, timestamp’) VALUES (2,2,2,2,2)
18 msg.payload = [

19 *combo’, /1 ou “temperaturasunidade’

20 ‘Lag’, // seu loca

2n €2 twal : null, // temperature

2 h 2 hoal :null, /7 humidity

2 when 17 YYYY-HA-DD HH::SS
@
25 return msg;

8 | O Habiltar

Figura 4.46: N6 function final: preparacao do INSERT parametrizado no MySQL.

A funcao function final, que monta o comando INSERT para a tabela sensorData, esté

documentada no Apéndice C.

4.6.15 Pipeline MySQL — SCADA-LTS (configuracao passo a

passo)
1) Acesso ao phpMyAdmin (login)

O phpMyAdmin foi instalado na maquina virtual Linux como um servig¢o definido no
arquivo docker-compose.yml, integrado ao contéiner do MySQL e exposto para acesso
via navegador a partir do host pelo endereco 192.168.15.60/mysql/.

A Figura 4.47 mostra a tela de autenticagao do phpMyAdmin. Neste ponto, utiliza-se
o usuério e senha definidos na instalagdo (na VM), com o idioma ajustado para Portugués
(Brasil). Apos a autenticagao, navega-se até o servidor MySQL para criar (ou conferir) o

banco e a tabela do projeto.

60

php
Bem-vindo ao phpMyAdmin

Idioma (Language)

Portugués (Brasil) - Portuguese (Brazil) v
Entrar &
Usuario:
Senha:
Entrar

Figura 4.47: Tela de login do phpMyAdmin.

2) Criagao/Verificagao do banco SCADA e da tabela sensorData

A Figura 4.48 apresenta a visao do banco SCADA no phpMyAdmin, ja contendo a tabela

sensorData. Caso precise criar do zero, utilize o script no apéndice D.

- a X

v *2 Node-RED: Flow 1 X b 192.168.15.60 / 127.00.1 /SCA X +

= C A Naoseguro 192.168.15. sql/ ?route icture&db=SCADA Q * & Anénima

B 7 Servidor 127.0.0.1 » @ Banco de dados: SCADA

php
eElel#e

Recente Favoritos

4 Estutura [J SQL A Procurar Consulta =} Exportar [} Importar J* Operagdes =7 Privilégios o Rotinas (& Eventos 3 Acionadores 2 Designer

Filtros

[Nowo
-1 information_schema
#- mysal

Contendo a palavra:

(R G Tabela + Agdo Linhas @ Tipo Colagio Tamanho Sobrecarga
.
P9 SCADA O sensorData Visualizar [Estrutura & Procurar % Inserir §® Limpar @ Eliminar 1.541 InnoDB utf8mb4_0900_ai_ci 112.0 KB .
#0 5
P 1 tabela Soma 1.541 InnoDB latin1_bin 112.0 KB © Bytes
t_ O Marcartodos Com marcados -

(&) Imprimir & Dicionario de dados
3 Criar nova tabela

Nome da Tabela Namero de colunas.

4 Criar

Figura 4.48: Banco SCADA no phpMyAdmin com a tabela sensorData.

Observacao pratica. O Node-RED insere linhas nesta tabela por meio do n6 mysql
usando INSERT (vide fungao function final descrita em segao anterior), preenchendo sensor,

local, temperature, humidity e timestamp.

3) Instalacao do SCADA-LTS

O SCADA-LTS foi instalado na maquina virtual Linux por meio de um contéiner Docker
definido no arquivo docker-compose.yml, apontando para o banco de dados MySQL e

expondo a porta de acesso HT'TP na VM(8082). Apos a inicializagao dos contéineres, a

61

interface web foi acessada via navegador usando o IP da VM, com autenticacao inicial

pelas credenciais padrao do sistema: usuario admin e senha admin.

4) Criagao dos Data Sources SQL no SCADA-LTS

A Figura 4.49 mostra dois Data Sources do tipo SQL, chamados hum_rural e temp_rural,

ambos conectados ao banco SCADA via JDBC. O connection string utiliza o com.mysql.cj.jdbc.Driver

e define parametros de codificagao e tempo limite.

»S Node-RED : Flow X ik 192.168.15.60 / 127.0.0.1 / SC x @ Scada-LTS
c /\ Nio seguro 192.168.15. 1a-1TS/data_sources.shtrm
LI I N ATROR YA Bl) a0 User: admin edLa
Data sources @ 1-vire v
mm—
hum_rural SQU jdbc:mysdl://192.168.15.60:3306/SCADA 7usel BsocketT 3 The user has changed the on/off status of datasource 14 &
temp_rural SQU jdbe:mysql://192.168.15.60:3306/SCADA 2usel & 1 £D & = 5000 &socketT @ The user has changed the on/off status of datasource 15 § & 14 14

Figura 4.49: SCADA-LTS: lista de Data Sources hum_rural e temp_rural (tipo SQL).

5) Data Source hum_rural: consulta e ponto de medigao

A Figura 4.50 detalha a configuracao do hum_rural. O periodo de atualizagao esta em
10 s e a consulta retorna sempre o tltimo registro de umidade (humidity) de sensorData,
mapeando colunas para o SCADA-LTS conforme: valueCol (valor numérico) e timeCol
(carimbo de tempo). O Point Humidity esta configurado como Numeric, com Column

name — valueCol e Time override column — timeCol.

v % Node-RED: Flow 1 X | My 192168.1560/127.001/SCA X (@ Clickand setinstance descriptic X +

G A Naoseguro 192.168.15.60:8082/Scada-LTS/data_source editshtm?dsid=12 8 Q % & Anonima

Po ada-LTS team v2.7.3 build 3514684054 (GitHub ref: 87899b8); runs on Linux6.12.0-128.e110.x86_64 Click and set instance descriptio
du@Oet+4 &M T 2= (] 40 User: admin ed2a

Current alarms 3
No active alarms for this data source

' SQL properties @ | |Statement test
Name W Execute|
ExportID (XID) [DS 611308 |
Update period
Driver class name com mysqlcj jdbc Driver |
Connection string jdbc mysql/192.168.15.60:3308/SCADA |
Password [Root@123456204 |

Select statement |SELECT "hum’ AS pointld,
humidity AS valueCol,
“timestamp® AS timeCol
FROM sensorData
ORDER BY “timestamp DESC, id DESC

LINIT 1;
4
Row-based query O Point details @ =Q
| Event alarm levels Name | Humidity \
Data source exception| Urgent v| ' Export ID (XID) |DP_168354]
Statement exception | Urgent v || Data type | Numeric -
Points Column name | valueCol
“-- Time overrde column [gmeCol

©2012-2025 Scada-LTS All rights reserved. Update statement

Figura 4.50: SCADA-LTS — hum_rural: propriedades SQL, Select Statement e Point
details.

62

6) Data Source temp_rural: consulta e ponto de medigao

De forma anéloga, a Figura 4.51 apresenta o temp_rural, cuja consulta obtém a tltima
temperatura (temperature) registrada. O Point Temperatura também é Numeric, com

Column name = valueCol e Time override column — timeCol.

v € Node-RED: Flow 1 50 / 127.0.0.1 / SC © Clickand setinstance descriptic X+

<« C A Naoseguro 192.168.15.60:8 da-LTS/data_source_edit.shtm?dsid=13 & aQ & Anonima

D4

Scada-LTS team v2.7.3 build 3514684054 (GitHub ref:
B uOe+4| daB T/

runs on Linux6.12.0-128.e110.x86_64 Click and set instance descriptior
User: admin ed2w

Current alarms
No active alarms for this data source

4 SQL properties @ O | |statement test
Name temp_rural Execute]
Export ID (XID) DS 264775
Update period [10 second(s) v

Driver class name _|com mysalcjjdbc Driver |

Connection string |jdbcmysql//192.168.15.60:3306/SCADA |
Username [scada
Password [Root@123456204

Select statement [SELECT
“temp" AS pointTd,
temperature AS valueCol,
“timestamp® AS timeCol

FROM sensorData
ORDER BY “timestamp™ DESC, id DESC
LIMIT 1;

Row-based query @ Point details @ =
| Event alarm levels Name ‘

Data source exception| Urgent || Export 1D (x10) |DP_325901]

Statement exception | Urgent v/ Datatype [Numerc v

Points u @ Column name | valueCol

“W-Q- Time override column [gmeCol

©2012-2025 Scada-LTS All rights reserved Update statement

Figura 4.51: SCADA-LTS — temp_rural: propriedades SQL, Select Statement e Point
details.

Validagao e notas de seguranga

Com os Data Sources habilitados e conectados (icone verde em Status na Figura 4.49),
os Points passam a refletir, a cada 10 s, o ultimo par {valor, timestamp} gravado na

tabela sensorData. Recomenda-se:

e criar um usuario dedicado no MySQL (por exemplo, scada) com permissdes minimas
de SELECT sobre SCADA.sensorData;

e manter o fuso horario do connectionTimeZone e do sistema alinhados para evitar

drift nos painéis e alarmes;

e testar as consultas pelo botao Erzecute (Statement test) nas telas dos Data Sources
(Figuras 4.50 e 4.51).

4.6.16 Resultado final: grafico em tempo real no SCADA-LTS
(Modern Watch List)

A Figura 4.52 sintetiza o funcionamento completo da arquitetura implementada ---

do ESP32 ao supervisorio --- exibindo a série temporal de temperatura atualizada em

63

tempo real no Modern Watch List do SCADA-LTS. Os dados percorrem o pipeline ESP32
— MQTT (TLS) — Node-RED — MySQL — SCADA-LTS, onde:

e 0s nos norm temp e norm hum padronizam as medidas;

e 0 16 pair (temp+hum) garante sincronismo por janela temporal;

o no function final realiza o INSERT parametrizado na tabela SCADA.sensorData;

os Data Sources SQL temp_rural e hum_rural (atualizacao a cada 10 s) publicam
os pontos no SCADA-LTS.

O grafico apresenta navegacao temporal interativa (controle deslizante superior),
tooltips por amostra e a curva de tendéncia da varidvel monitorada ao longo do dia,
evidenciando a variagao térmica tipica: resfriamento na madrugada seguido de aquecimento

progressivo no periodo diurno.

— Temperarura

Figura 4.52: SCADA-LTS Modern Watch List: série de temperatura atualizada em tempo
real a partir da tabela sensorData.

Os scripts SQL completos utilizados na configuracao do pipeline MySQL — SCADA-

LTS foram reunidos no Apéndice D, de forma a nao sobrecarregar o texto principal.

64

Capitulo 5

Resultados e Discussoes

5.1 Testes Realizados

Esta secao registra os ensaios funcionais executados nos nés urbano (ESP32 01) e rural
(ESP32 02), abrangendo controle por servidor web, aplicativo MQTT no smartphone e
acionamento local por push button, além da opera¢ao do modo automatico (agendas). A

Tabela 5.1 sintetiza os resultados.

65

Tabela 5.1: Sintese dos testes funcionais por nd, canal de comando e alvo

ID Né Canal Alvo Resultado/Observagao

1 ESP01 Servidor web Lampada 1 OK: comutagao executada

2 ESPO01 Servidor web Lampada 2 OK: comutagao executada

3 ESPO01 Servidor web Lampada 3 OK: comutagao executada

4 ESP01 Servidor web Modo automaético (lampadas) OK: ativacao/desativagao funcionou

5 ESP01 MQTT (smartphone) Lampada 1 OK: comutagao executada

6 ESP01 MQTT (smartphone) Lampada 2 OK: comutagao executada

7 ESP01 MQTT (smartphone) Lampada 3 OK: comutagao executada

8 ESP01 MQTT (smartphone) Modo automatico (lampadas) OK: ativagdo/desativacdo funcionou

9 ESPO1 Push button Lampada 1 OK: comutagao local

10 ESPO1 Push button Lampada 2 OK: comutagao local

11 ESPO1 Push button Lampada 3 OK: comutagao local

12 ESPO1 Push button Modo automético (lampadas) OK: ativagdo/desativagdo funcionou

13 ESP02 MQTT (smartphone) Lampada 1 OK: comutagao executada

14 ESP02 MQTT (smartphone) Lampada 2 OK: comutagao executada

15 ESP02 MQTT (smartphone) Lampada 3 OK: comutagao executada

16 ESP02 MQTT (smartphone) Modo automético (lampadas) Parcial: agenda liga com desloca-
mento de 3 h

17 ESP02 MQTT (smartphone) Irrigacdo (manual) OK: comutagao executada

18 ESP02 MQTT (smartphone) Modo automético (irrigacao) Parcial: agenda liga com desloca-

mento de 3 h

5.2 Analise dos Resultados

Controle distribuido e coeréncia de estados

No n6 urbano (ESP01), o controle por servidor web, aplicativo MQTT e push button

apresentou comportamento consistente, com comutacao correta das trés lampadas e ativa-

¢ao do modo automatico. A redundéncia de canais de comando reforga a disponibilidade

operacional: em auséncia temporéria de rede, o acionamento local permanece funcional, e

quando a rede esta presente, o controle remoto é efetivo.

No n6 rural (ESP02), as comutagoes por aplicativo MQTT funcionaram para lampadas e

irrigagao. A ativa¢ao do modo automatico (lampadas e irriga¢ao) também foi bem-sucedida,

porém com deslocamento de 3 horas em relagao ao horéario planejado.

66

Anomalia de agendamento: deslocamento de 3 horas

O offset de 3 h observado em agendas do ESP02 é tipico de mismatch de fuso/relogio

entre os elementos do sistema. Hipoteses provaveis:

e ESP32 sem ajuste de timezone apos sincronizacao SNTP/NTP (relogio interno em

UTC e agenda interpretada como local).

e RTC externo descalibrado ou gravado em horério local enquanto o software espera

UTC (ou vice-versa).

Registro: a anomalia nao impediu a comutacao; o sistema executou as agendas, porém
em horario deslocado. A corregao sera tratada na segao de trabalhos corretivos (Capi-
tulo de Conclusoes/Trabalhos Futuros), alinhando todos os componentes para o fuso
America/Sao_Paulo e padronizando o armazenamento em UTC com exibigao local.
Observou-se, durante os ensaios, que o ESP32-02 registrava no SCADA-LTS timestamps
coerentes com o horario configurado na méquina virtual, isto é, os gréaficos de temperatura,
umidade do solo e estados de valvula apresentavam o tempo correto. No entanto, as
agendas automaticas de iluminagao e irrigagao eram executadas com um deslocamento
de aproximadamente 3 horas em relacao ao horario esperado. Isso indica que a base
de tempo utilizada para o registro histérico no supervisério estava alinhada ao fuso
adotado pelo servidor, enquanto a logica de agendamento local no né rural utilizava uma
referéncia distinta (por exemplo, UTC sem ajuste de fuso ou RTC configurado em horério
diferente), gerando o descompasso entre o horério “visto” nos gréaficos e o momento efetivo

de acionamento das cargas.

Séries temporais e evidéncias visuais (SCADA-LTS)

Os graficos desta secao tém a finalidade de evidenciar, de forma ilustrativa, as funcio-

nalidades implementadas no sistema até o nivel de integracao com o Scada-LTS.

Temperatura em tempo real (LIVE): A Figura 5.1 apresenta o registro de tempe-
ratura em modo LIVE no Modern Watch List. Observa-se uma tnica curva em verde,
associada a temperatura, variando aproximadamente de 22,5 °C no inicio da manha para
um pico em torno de 30--31 °C no inicio da tarde, seguido de resfriamento gradual até cerca
de 25 °C proximo das 18:00. A evolugao ao longo do periodo exibido (aproximadamente

de 07:00 a 18:00) é suave, com pequenas flutua¢oes pontuais.

67

Values from last...

LIVE STATIC 1 Hour(s) v Update every 10 seconds v [ik, e

08:00 09:00 10:00 11:00 1200 13:00 14:00 1500 16:00 17:00 18:00

— temperatura Humiade

Figura 5.1: Temperatura em tempo real no SCADA-LTS (Modern Watch List).

Umidade em tempo real (LIVE): Durante o acompanhamento em tempo real da
umidade no no6 rural, a Figura 5.2 exibe a série da variavel hum_rurall em modo LIVE
no Modern Watch List.

Valuesfromss.

LIvE STATIC : Hour(s) ~ Update every 10 seconds - (] ik -4

21000 2500 25000 25500 200 2050 2100 21500 2200 2250 23000 23500

— nume - Humidace temperatra

Figura 5.2: Umidade relativa no no6 rural em modo LIVE no SCADA-LTS (Modern Watch
List).

Temperatura e umidade diarias (24 h, sobrepostas). A Figura 5.3 apresenta, em
modo LIVE no Modern Watch List, as séries de temperatura e umidade ao longo do dia.
As duas variaveis sdo mostradas em verde, em faixas distintas de valores: a temperatura
varia de aproximadamente 26 °C no final da manha até um maximo em torno de 29--30 °C
proximo de 13:00, decrescendo gradualmente para cerca de 25 °C no fim da tarde. A
umidade relativa permanece concentrada na faixa de 56--59 %, com oscilagdes suaves ao
redor de um patamar quase constante, sem tendéncia marcada de aumento ou reducao ao

longo do intervalo observado.

68

Values fromtas,
LIVE STATIC Week(s) ~ Update every 10 seconds - o ik &

1100 1200 1300 1400 1500 1600 1700 1800

— temperature humidade

Figura 5.3: Temperatura e umidade no SCADA-LTS (Watch List, 24 h).

Temperatura diaria (histérico): A Figura 5.4 mostra a evoluc¢do da temperatura ao
longo do dia no modulo de grafico do Watch List do SCADA-LTS, ou seja, é a reconstrugao

do grafico na faixa de tempo selecionada.

Chart @ mintets)] ® reom [2025]

/

06:20 06:40 07:00 07:20 07:40 08:00 08:20 08:40 09:00 09:20 09:40 10:00 10:20 10:40 11:00 11:20 11:40 12:00 12:20 12:40 1300 1320 1340 14:00 14:120 14:40 15:00 1520 1540 16:00 16:20 16:40 17:00 17:20 17:40 18:00 18:20

‘temperatura — Humiade

Figura 5.4: Temperatura diaria no SCADA-LTS (Watch List, 24 h).

Umidade diaria (histoérico). A Figura 5.5 mostra a evolu¢ao da umidade ao longo do
dia no moédulo de grafico Watch List do SCADA-LTS, ou seja, ¢ a reconstrugao do grafico

na faixa de tempo selecionada.

chart® s o S

59.0
se. ;
58.6 po~AN
58.4 4
s8.2
s8.0 . .
57.8 AW AT

57.6 NN A M \ N

57.4 g f N A~ o

o J \ L
57.0 g i\
s6.8
56.6
s6.4
s6.2 - B
56.0 W/ Vi P
55.8 A
s56
s5.4

1110 11:20 11:30 11:40 11:50 12:00 1210 12:20 12:30 12:40 12:50 1300 1310 13:20 1330 1340 1350 14:00 1410 14:20 1430 14:40 14:50 15:00 15:10 15:20 15:30 15:40 15:50 16:00 16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20

22012-2025 Scada-LTS All rihts resarvad,

Figura 5.5: Umidade diaria no SCADA-LTS (Watch List, 24 h).

69

Temperatura e umidade diarias (historico): A Figura 5.6 apresenta, a partir de
06:00, as séries de temperatura e umidade registradas no médulo de grafico do Watch List
do SCADA-LTS. A curva de temperatura (em vermelho) inicia o periodo em torno de 20--
21 °C, eleva-se de forma quase continua ao longo da manha, passando pela faixa de 24--27 °C
entre aproximadamente 09:00 e 11:00, e atinge um méaximo em torno de 30 °C por volta de
14:00. Em seguida, observa-se leve decréscimo, encerrando o intervalo em cerca de 27--28 °C.
A curva de umidade relativa (em azul) aparece na faixa de 55--59 %, iniciando proximo de
55--56 % por volta das 11:00 as 11:30, subindo até aproximadamente 59--60 % proximo de
14:00 e retornando gradualmente para cerca de 56--57 % no final do periodo, caracterizando
oscilagoes moderadas em torno de um patamar quase constante(desconsiderar dados antes

do horario 6:00, pois eram apenas dados de teste).

Chart @ hows) | &

Figura 5.6: Umidade diaria no SCADA-LTS (Watch List, 24 h).

5.3 Eficiéncia Energética e Confiabilidade

5.3.1 Metodologia de estimativa

A energia foi estimada a partir da poténcia ativa e do tempo de acionamento obtido

nos logs de estados/comandos. Adotou-se

PIW] -t [h]

P &~ Vi Lims €OS e E [kWh] = 1000

As janelas fixas do modo automaético consideradas na consolidacao foram: iluminacao
diaria das 18:30 as 05:00 e irrigagao das 09:00 as 09:10. O overhead (no6s ESP32, relés e
conversores) foi contabilizado conforme detalhado nas premissas da planilha Cdlculo da

energia.

5.3.2 Premissas utilizadas (planilha Cdlculo da energia)

e ESP32 (dissipagao no regulador): queda de AV ~ 1,7V com I = 0,5 A por no, logo
Pipo ~ 0,85 W = 0,00085 kW.

70

e Relés 5 V: poténcia por canal P =~ 0,36 W (bobina 5 V). Na casa foram considerados 3

relés e no sitio 4 relés.

e Valvula solendide 3/4”” (DN20), 110 V AC, NC: poténcia tipica de 20-25 W

quando energizada (valor de referéncia de 22 W na planilha).

e Iluminacgao: casa com duas lampadas frias de 15 W e uma lampada amarela de 9 W

(total 39 W); sitio com duas lampadas frias de 15 W e um conjunto tubular com duas
de 18 W (total 66 W).

5.3.3 Resultados consolidados (modo automaético)

Tabela 5.2: Estimativa de poténcia, energia mensal e custo por item (cenario de modo
automatico).

Item Entrada (V) Saida (V) AV (V) Corrente (A) Poténcia (kW) Energia (kWh) Custo (RS$)
ESP32-01 funcionamento 5 3,3 -- 0,5 0,00165 0,0495 0,03
ESP32-01 energia dissipada 5 3,3 1,7 0,5 0,000850 0,612 0,43
ESP32-02 funcionamento 5 3,3 - 0,5 0,00165 0,0495 0,03
ESP32-02 energia dissipada 5 3,3 1.7 0,5 0,000850 0,612 0,43
4 relés (casa) - - - - 0,001440 1,0368 0,73
4 relés (sitio) - - - - 0,001440 1,0368 0,73
Valvula solenoide (modo automatico) - - - - 0,022 0,11 0,08
3 lampadas (casa, modo automatico) - - - - 0,039 12,285 8,60
3 lampadas (sitio, modo automatico) - - - - 0,066 20,79 14,55

TOTAL més 25,61
TOTAL ano 307,29

5.3.4 Fontes das poténcias nominais (links de referéncia)

Tabela 5.3: Poténcias nominais e links utilizados na planilha.

Item Quantidade Poténcia (W) Link

Lampada fria (casa) 2 15 Kian A60 15 W 6500 K
Lampada amarela (casa) 1 9 Kian 9W 3000 K (ML)
Lampada fria (sitio) 2 15 Kian A60 15 W 6500 K
Lampada fria tubular (sitio, T8) 2 18 T8 18 W 6500 K 120 cm
Born relé (SRD-05VDC-SL-C) 8 0,36 Songle SRD-05VDC-SL-C
Valvula solenodide 3/4” 110 V AC 1 22 Plastic Solenoid Valve

5.3.5 Explicagcoes complementares

1. Fonte do n6 ESP32: o ESP32 nao regula corrente, apenas tensdo. Assim, mesmo

que a fonte forneca 1 A em 5 V, o microcontrolador consome apenas o necessario

71

(tipicamente 80-250 mA, podendo chegar a ~500 mA com Wi-Fi ativo). Corrente
disponivel acima disso nao causa problema; o risco estéd em exceder a tensao de entrada,

nao a capacidade de corrente.

. Valvula solendide 3/4”” 110 V AC: bobinas AC dessa familia (DN20, corpo plastico,
NC) operam tipicamente na faixa de 20-25 W (ex.: especificagao comercial de 20 VA

para modelo plastico 3/4”).

Esse valor deve ser considerado no dimensionamento de fonte, fiagao, relé/driver e

dissipacao térmica.

5.4 Adocao do ESP32

A opgao pelo microcontrolador ESP32, em detrimento de plataformas classicas como
o Arduino Uno ou Mega, esté diretamente ligada as exigéncias de conectividade e
processamento do projeto. O ESP32 integra, em um tnico componente, interfaces
Wi-Fi e Bluetooth, eliminando a necessidade de modulos adicionais para acesso a rede e
reduzindo custo, espaco fisico e complexidade de cabeamento O ESP32 dispoe de maior

capacidade de memoéria, frequéncia de operacao mais elevada.

5.5 Adocao do SCADA-LTS

Optou-se pela utilizacao do SCADA-LTS em vez de plataformas em nuvem como
ThingSpeak, Firebase ou Blynk porque, além de se aproximar do ambiente de supervisao
industrial que se deseja simular no protoétipo, atende ao carater educacional do projeto,
permitindo ao autor ter contato direto com ferramentas e conceitos mais proximos da

realidade da automacao industrial.

5.6 Adocgao do RTC DS3231 e do sensor HW-390

A adocao conjunta do RTC DS3231 e do sensor de umidade do solo HW-390, em vez
de sensores convencionais como o DHT11 ou DHT?22, esta ligada a necessidade de
medicOes mais consistentes e tteis para o contexto de automacao proposto. O DS3231
fornece nao apenas uma base de tempo em tempo real, independente de conexao a
Internet ou do estado da rede elétrica, como também dispoe de um sensor interno de
temperatura, permitindo associar cada leitura a um carimbo de tempo confidvel. Isso
facilita o registro historico, a comparacao entre dias e a implementagao de rotinas de
agendamento no protétipo. Ja o HW-390 foi escolhido por ser um sensor capacitivo de

umidade do solo, mais adequado para monitoramento.

72

Capitulo 6

Conclusao

6.1 Sintese dos Resultados

Esta secao sintetiza os principais achados experimentais do sistema de automacao
residencial (ESP32-01) e de irrigagao rural (ESP32-02), considerando comando local e

remoto, agendas automaticas, telemetria/visualizacao e custos energéticos.

Atuacgao e controle

e ESP32-01 (n6 urbano): as trés formas de comando de iluminagao (servidor web
embarcado, aplicativo MQTT no smartphone e push button local) operaram corretamente.
O modo automdtico executou as janelas programadas conforme esperado, mantendo a

redundancia entre comando remoto e contingéncia local.

e ESP32-02 (n6 rural): o comando de lampadas via MQTT apresentou funcionamento
consistente. O modo automdtico funcionou parcialmente, registrando deslocamento
de 3 horas na execucao das agendas. Esse mesmo deslocamento ocorreu ao agendar
pelo aplicativo MQTT no smartphone e também na irrigagao automatica. A irrigacao

via MQTT (on demand) funcionou corretamente.

Telemetria e visualizagao
e Modern WatchList: exibiu temperatura e umidade;

e WatchList (padrao): apresentou séries em uma determinada faixa de tempo para
temperatura e umidade separadamente e, posteriormente, ambas as varidveis no mesmo

grafico operando.

73

Eficiéncia energética e custo

e Com base na planilha Cdlculo da energia e na Tabela 5.2, o cenario de operagao em modo
automdtico apresentou baixo custo operacional: R$ 25,61/més e R$ 307,29/ano
(incluindo cargas principais e overhead de nos/relés/fonte). Esse resultado indica

viabilidade econdémica para operagao continua.

Sintese

Em conjunto, os resultados confirmam a viabilidade técnica do controle distribuido:
servidor web e MQTT atenderam ao comando remoto, enquanto o push button garantiu
contingéncia local. A visualizagao dos graficos no Modern WatchList para um monito-
ramento consolidado com séries e grafico unificado de temperatura e umidade teve
resultado positivo. Do ponto de vista energético, o sistema apresentou consumo e custo
mensais reduzidos, compativeis com a proposta de automacao acessivel. O principal
desvio observado foi o deslocamento de 3 horas nas agendas do n6 rural (ESP32-02) e

nos agendamentos via smartphone.

6.2 Limitacoes do Projeto

1. Dependéncia de infraestrutura local e ponto tinico de falha: o broker MQTT
foi executado em méquina virtual (PC pessoal). A disponibilidade do sistema depende
do computador estar ligado e da VM estar integra, criando um ponto tnico de falha e

auséncia de alta disponibilidade.

2. Instabilidade da supervisao: o SCADA-LTS apresentou oscilagoes (ex.: Modern
WatchList deixou de atualizar algumas vezes), o que impactou a observabilidade conti-
nua.O WatchList também apresentou alguns problemas na apresntagao dos graficos(Os
graficos nao apareciam mesmo selecionando a faixa de tempo correta e fazendo as

configuragoes corretas).

3. Desalinhamento temporal nas agendas: no ESP32-02 e no agendamento via
aplicativo MQTT no smartphone observou-se deslocamento de 3 horas na execucao
do modo automético, evidenciando problemas de sincronizagao de tempo/fuso ao longo

da cadeia (no, servidor e interface).

4. Critério de irrigagcao predominantemente temporal: a irrigacao automatica foi
baseada em horario fixo (09:00-09:10). Na auséncia de inibigdo por chuva ou solo
ja imido, hé risco de acionamento desnecessario em condigoes climéticas adversas, a

situacao de controle nao foi implementada por conta da limitagao da verba do projeto.

5. Medigao energética indireta: a estimativa de energia/custo baseou-se em poténcias

74

10.

nominais e tempos de acionamento (Tabela 5.2), sem medigao elétrica dedicada. Optou-

se por esse caminho por conta da insuficiéncia de verba do projeto.

. Eficiéncia da alimentacao dos nds: o uso de regulador linear (LDO) com AV ~ 1,7V

e I =~ 0,5 A implica dissipagao térmica relevante no regime continuo, reduzindo eficiéncia

e margem térmica em ambientes quentes.

Robustez elétrica e fisica do atuador/comutagao: faltam elementos de protecao
e de supressao de surtos/transientes (fusiveis, MOV /TVS, snubber em cargas indutivas
AC), bem como encapsulamento com grau de protegao adequado (IP) para operagao

em ambiente rural.

Manutenibilidade e escalabilidade: a arquitetura atual exige intervencao manual
em caso de falhas de componentizagao (relés, valvulas, cabeamento) e nao contempla

mecanismos de auto-recovery ou backup /restore automatizados de configuragao e dados.

Controle de tomada: nao foi implementado um ponto de tomada com acionamento

remoto via MQTT, em funcao das limitagoes orcamentarias do projeto.

Sistema de controle por umidade do solo: nao foi implementado o acionamento
automatico da valvula de irrigacao a partir do sensor de umidade do solo via MQTT,
também devido as restri¢oes de orgamento na fase de prototipagem (falta de cabos até

a véalvula de irrigacao).

6.3 Sugestoes para Trabalhos Futuros

A partir das limitacoes mapeadas e dos resultados experimentais, sao propostos os

seguintes desdobramentos:

1.

Supervisao mais estavel e observavel: migrar do SCADA-LTS para solu¢do mais
robusta (p.ex., SCADA-BR).

. Alta disponibilidade e independéncia do PC: hospedar o broker em dispositivo

dedicado 24/7 (Raspberry Pi/NUC) ou VPS; empregar watchdogs, reinicio automético

e bridging entre brokers; proteger a energia com UPS.

Sincronizagao de tempo ponta a ponta: padronizar armazenamento e agenda-
mento em UTC, reforgar SNTP/RTC (DS3231) como fonte de tempo; incluir testes

automatizados para impedir o deslocamento de 3 horas.

. Irrigagao orientada a dados ambientais: integrar sensor de chuva e o sensor de

umidade do solo como condigao de habilitagao (com histerese); incorporar previsao do

tempo/ET, para skip de irrigacdo desnecesséria e ajuste dinamico do tempo de valvula.

75

. Medicao elétrica dedicada e validacao metrologica: incluir médulos de medig¢ao
(p.ex., PZEM-004T/HLW8012 para CA; INA219 para CC), calibrar, estimar incerteza

e comparar com o método indireto, refinando a Tabela 5.2.

. Alimentacao mais eficiente e robusta: substituir LDO por conversor buck (5 V—3,3 V)
para aumentar eficiéncia e reduzir aquecimento; revisar dimensionamento térmico/ven-

tilagao e adicionar protecao a transientes.

. Endurecimento de seguranga: habilitar mTLS (certificados cliente), Secure Boot,
Flash Encryption, OTA autenticado, rotacao de credenciais e segmentacao de rede
(VLAN IoT) com ACLs e firewall no host do broker.

. Resiliéncia offline e retomada: implementar store-and-forward no ESP32 para
eventos/telemetria durante indisponibilidade do broker, além de logica de reexecugao

de agendas perdidas ap6s reconexao.

76

Referéncias Bibliograficas

GILL, K.; YANG, S.; YAO, F.; LU, X. A ZigBee-Based Home Automation System.
IEEE Transactions on Consumer Electronics, v. 55, n. 2, p. 422--430, 2009. DOI:
10.1109/TCE.2009.5174403.

SRISKANTHAN, C.; TAN, D. T.; KARANDE, A. An Overview of Home Automation

Systems. International Journal of Computer Applications, vol. 19, no. 2, 2011.

AL-KUWARI, M.; RAMADAN, A.; ISMAEL, Y.; AL-SUGHAIR, L.; GASTLI, A.;
BENAMMAR, M. Smart-home automation using loT-based sensing and monitoring
platform. In: 2018 12th IEEE International Conference on Compatibility, Power
FElectronics and Power Engineering (CPE-POWERENG). Doha, 2018. p. 1--6. DOI:
10.1109/CPE.2018.8372548.

PRAVALIKA, V.; PRASAD, C. R. Internet of things based home monitoring and device
control using ESP32. International Journal of Recent Technology and Engineering
(IJRTE), v. 8, n. 154, p. 58--62, 2019.

AGHENTA, L. O.; IQBAL, M. T. Low-Cost, Open Source loT-Based SCADA System
Design Using Thinger.IO and ESP32 Thing. Electronics, v. 8, n. 8, art. 822, 2019. DOI:
10.3390/ electronics8080822.

LEKIC, M.; GARDASEVIC, G. IoT sensor integration to Node-RED platform. In: 2018
17th International Symposium INFOTEH-JAHORINA (INFOTEH). East Sarajevo: IEEE,
2018. p. 1--5. DOI: 10.1109/INFOTEH.2018.8345544.

SAJID, A.; ABBAS, H.; SALEEM, K. Cloud-assisted IoT-based SCADA systems security:
a review of the state of the art and future challenges. IEFEE Access, v. 4, p. 1375--1384,
2016. DOI: 10.1109/ACCESS.2016.2549047.

BAHGA, Arshdeep; MADISETTI, Vijay. Internet of Things: A Hands-On Approach.
Hyderabad: Universities Press, 2015. ISBN 978-8173719547.

HERON OF ALEXANDRIA. The Pneumatics of Hero of Alexandria: From the Original
Greek. Translated by Joseph George Greenwood; edited by Bennet Woodcroft. London:
Taylor, Walton and Maberly, 1851.

77

AL-JAZARI, Ibn al-Razzaz. The Book of Knowledge of Ingenious Mechanical Devices
(Kitab fi marifat al-hiyal al-handasiyya). Translated and annotated by Donald R. Hill.
Dordrecht: D. Reidel Publishing Company, 1974.

COLUMBIA UNIVERSITY. The Jacquard Loom. Computing History, Columbia
University, s.d. Disponivel em: <https://www.columbia.edu/cu/computinghistory/

jacquard.html>. Acesso em: 19 nov. 2025.

BENNETT, Stuart. A History of Control Engineering 1800--1930. London: Peter
Peregrinus Ltd., 1979.

DEVOL, George C. Programmed Article Transfer. U.S. Patent 2,988,237, 13 jun. 1961.

NOF, Shimon Y. (ed.). Handbook of Industrial Robotics. 2. ed. New York: John Wiley &
Sons, 1999.

Espressif Systems. ESP32 Series Datasheet, Version 3.5. 2021. Disponivel em: <https:
/ /www.espressif.com /sites/default/files/documentation/esp32 datasheet en.pdf>

TANENBAUM, Andrew S.; WETHERALL, David J. Redes de Computadores. 5. ed. Sao
Paulo: Pearson, 2011.

78

10

11

12

13

14

15

16

17

18

19

20

21

22

23

APENDICE A -- Firmware e pagina
web do n6 urbano (ESP32 01)

Este apéndice apresenta o codigo completo do n6 urbano (ESP32 01), incluindo o
firmware responsavel pela conexao Wi-Fi, comunicacao MQTT, controle das lampadas e

servidor web, bem como a folha de estilos CSS utilizada na interface HT'TP embarcada.

Firmware principal do ESP32 01

Listing 1: Firmware principal do né urbano (ESP32 01)

// --- Bibliotecas Auxiliares ---
#include <WiFi.h> //inclui biblioteca WiFi
#include <WiFiClientSecure.h>

#include <PubSubClient.h>

#include <Wire.h>

#include <RTClib.h>

// Broker

const char* mgtt_host = "179.145.53.227";
const uint16_t mgtt_port = 8883;

unsigned long lastWiFiAttempt = 0;

const char* mgtt_user = "gabriel”;

n n

const char* mqtt_pass Lo

static const char mqtt_ca_cert_pem[] PROGMEM = R"PEM(

MIIDsTCCApmgAwWIBAgIUVNoWnkWogd

79

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

J1cwAsIhrfKNc9QaSMboHEZz3knK6822jEFTCDgH4+nRD6ROD2A==

YPEM";

WiFiClientSecure wifimqttTLS;
PubSubClient mgtt(wifimqttTLS);

!/ =
// Topicos de comando (subscribe)

const char* TOPIC_L1_CMD = "tcc/esp@l1/casa/ll";

const charx TOPIC_L2_CMD = "tcc/esp@1/casa/l2";

const char* TOPIC_L3_CMD = "tcc/esp@l1/casa/l3";

const charx TOPIC_AUTO_CMD = "tcc/esp@1/casa/auto”;

RTC_DS3231 rtc;

//

// Tpicos de estado (publish)

const charx TOPIC_L1_STATE

"tcc/esp@1/casa/state/11";

const charx TOPIC_L2_STATE = "tcc/esp@l1/casa/state/12";

const char*x TOPIC_L3_STATE

"tcc/esp@1/casa/state/13";

const charx TOPIC_AUTO_STATE = "tcc/esp@1/casa/state/auto”;

//

// --- Mapeamento de Hardware ---

#tdefine
#tdefine
#tdefine

#tdefine

#tdefine

f#tdefine

f#tdefine

f#tdefine

f#tdefine

LAMPT 16
LAMP2 17
LAMP3 18

BOTAO1 4
BOTAO2 5
BOTAO3 19
BOTAO_AUTO 23 // Botao para ativar/desativar o modo automatico

LED_MODO_AUTO 27 // LED que indica se o modo automatico esta ativado

RTC_EM_UTC true

//

// --- Constantes Auxiliares ---

80

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

const char *ssid = "Gabriel”; //atribuir nome da rede WiFi

const char *password = "senhadowifi123"; //atribuir senha da rede
//
// --- Objetos ---

WiFiServer server(80); //define a porta que o servidor ir utilizar

//

// --- Prottipo das Funes ---

void relay_wifi(); //function para gerar web server e controlar os rels

!/

// --- Variveis Globais --

String header;

//manual

bool estadoLampl = false;

bool estadoLamp2 = false;

bool estadoLamp3 = false;

// Auxiliar variables to store

bool lampl_status = false;

false;

bool lamp2_status

bool lamp3_status = false;

bool auto_status = false;

bool agendamentoAtivo = false; // espelha se "as lmpadas deveriam estar ligadas”

— pela janela de tempo

the current output state

bool ultimoAgendamento = false; // para detectar transies

// Variveis de controle dos botes

static bool lastBotaol = HIGH, lastBotao2 = HIGH, lastBotao3 = HIGH;

static unsigned long lastDebouncel = @, lastDebounce2 = @, lastDebounce3 = 0;

const unsigned long debounce = 200;

// Current time
unsigned long tempoAtuall
// Previous time

unsigned long tempogravado

0;

0;

// Define timeout time in milliseconds (example: 2000ms

81

2s)

106

107

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

140

141

142

143

144

145

const long timeoutTime = 2000;

// === === === === === ===

bool modoAutomatico = false; // flag do modo automtico

10;
0,

unsigned long debounceDelay

unsigned long lastPressAuto

// Controle do ciclo automtico
unsigned long tempoAtual = 0;
unsigned long tempoCiclo = 0;
bool ledAutolLigado = false;

// === === === === === ===

//RTC-DS3231

static DateTime toBRT(const DateTime& t) {
if (RTC_EM_UTC) return t - TimeSpan(@, 3, @, 0);

return t;

static bool dentroJanela_BRT_1830a0500() {
DateTime nowBRT = toBRT(rtc.now());
int h = nowBRT.hour();

int m = nowBRT.minute();

int s = nowBRT.second();
// Se for entre 18:30 (inclusive) e 23:59:59 ou entre 00:00 e 04:59:59
if (h > 18) {
// qualquer hora depois de 18:00 j automaticamente dentro
return true;
}
if (h == 18 && m >= 30) {
// exatamente das 18:30 em diante
return true;
}
// agora trata o intervalo aps a meia-noite
if (h <5) {

return true;

82

146 // se estivermos exatamente h==5, no inclumos minuto @
147 // normal h<5 j cobre at 4:59
148 return false;

149 }

150

151 // === === === === === === =
152

153 void setup() {

154 Serial.begin(115200); //inicializa Serial em 115200 baud rate

155

156 pinMode (LAMP1, OUTPUT);

157 pinMode (LAMP2, OUTPUT);

158 pinMode (LAMP3, OUTPUT);

159 pinMode (LED_MODO_AUTO, OUTPUT);

161 pinMode (BOTAO1, INPUT_PULLUP);

162 pinMode (BOTAO2, INPUT_PULLUP);

163 pinMode (BOTAO3, INPUT_PULLUP);

164 pinMode (BOTAO_AUTO, INPUT_PULLUP);

165

166 Wire.begin(21, 22);

167 if (!rtc.begin()) {

168 Serial.printIn(”"ERRO: DS3231 no encontrado (0x68). Confira fiao.");
169}

170

171 rtc.adjust(DateTime (2025, 10, 25, 10, 48, 00));

172

173 DateTime now = rtc.now(); // leitura cannica da RTClib
174 if (now.year() < 2020) {

175 Serial.println(”"RTC invalido; ajuste uma vez com rtc.adjust(...)");
176 //rtc.adjust(DateTime (2025, 10, 6, 10, 26, 00)); // exemplo de ajuste pontual
177 }

178

179 // Sincroniza o estado inicial do modo automtico com a janela 1011 BRT
180 ultimoAgendamento = dentroJanela_BRT_1830a0500();

181

182 digitalWrite(LAMP1, LOW);

183 digitalWrite(LAMP2, LOW);

184 digitalWrite(LAMP3, LOW);

185 digitalWrite(LED_MODO_AUTO, LOW);

186

83

187

188

189

191

192

193

194

195

196

197

198

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Serial.println(); //
Serial.print(”"Conectando-se a "); //
Serial.println(ssid); //
WiFi.begin(ssid, password); //inicializa WiFi, passando o nome da rede e a

< senha

while(WiFi.status() != WL_CONNECTED) //aguarda conexo (WL_CONNECTED wuma

— constante que indica sucesso na conexo)

delay(741); //

Serial.print(”."); //vai imprimindo pontos at realizar a conexo...

Serial.println(""); //mostra WiFi conectada
Serial.println("WiFi conectada”); //
Serial.println("Endereo de IP: "); //
Serial.println(WiFi.localIP()); //mostra o endereco IP

server.begin(); //inicializa o servidor web

// -—=- MQTT

wifimgttTLS.setCACert(mgtt_ca_cert_pem); //carrega o certificado CA para
— WIFIClientSecure

mgtt.setServer(mgtt_host, mqtt_port);

mgtt.setCallback(mgttCallback);

mgtt.setKeepAlive(60);

mgtt.setSocketTimeout (20);

mgttReconnect(); // faz a primeira conexo e assina os tpicos

publishState(); // publica o estado atual com retain

}

// =

// --- MQTT: publicar estados com retain = true ---

void publishState() {
mgtt.publish(TOPIC_L1_STATE, estadoLampl ? "on" : "off", true);
mgtt.publish(TOPIC_L2_STATE, estadoLamp2 ? "on" : "off", true);
mgtt.publish(TOPIC_L3_STATE, estadoLamp3 ? "on" : "off", true);
matt.publish(TOPIC_AUTO_STATE, modoAutomatico ? "on” : "off", true);

}

84

225

226

227

228

229

230

231

232

233

234

235

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

258

259

260

// --- MQTT: callback de mensagens recebidas ---

void mgttCallback(charx topic, byte* payload, unsigned int length) {
String msg;
for (unsigned int i = @; i < length; i++) msg += (char)payload[i];

msg. toLowerCase();

n n

bool isOn = (msg == "on” || msg == "1" || msg == "true");

if (String(topic) == TOPIC_L1_CMD) { estadoLampl = isOn; lamp1_status = isOn;
—» digitalWrite(LAMP1, estadolLampl); }

else if (String(topic) == TOPIC_L2_CMD) { estadoLamp2 = isOn; lamp2_status
<5 1sOn; digitalWrite(LAMP2, estadolLamp2); }

else if (String(topic) == TOPIC_L3_CMD) { estadoLamp3 = isOn; lamp3_status
<5 1sOn; digitalWrite(LAMP3, estadoLamp3); }

else if (String(topic) == TOPIC_AUTO_CMD) { modoAutomatico = isOn; auto_status =

<5 1isOn; digitalWrite(LED_MODO_AUTO, modoAutomatico); }

publishState(); // sempre que mudar algo, publica o novo estado (retain)

// --- MQTT: reconectar e refazer subscriptions ---
void mgttReconnect() {
while (!mgtt.connected()) {
// Clientld nico para evitar briga no broker
String id = "esp32-esp@l-casa-" + String((uint32_t)ESP.getEfuseMac(), HEX);

// LWT: se o ESP cair sem DISCONNECT, o broker publica "offline”
const char* willTopic = "tcc/esp@1/casa/status”;

const charx willPayload = "offline”;

int willQoS = 1;

bool willRetain = true;

// connect(clientId, username, password, willTopic, willQoS, willRetain,
— willMessage, cleanSession)
if (mgtt.connect(id.c_str(),
mqtt_user, mqtt_pass,
willTopic, willQoS, willRetain, willPayload, true)) {

// Marca presena para quem assina status

mgtt.publish("tcc/esp@1/casa/status”, "online"”, true);

85

261

262 // Reassina seus comandos

263 mgtt.subscribe(TOPIC_L1_CMD);

264 mgtt.subscribe(TOPIC_L2_CMD);

265 mgtt.subscribe(TOPIC_L3_CMD);

266 mgtt.subscribe(TOPIC_AUTO_CMD);

267

268 // Reenvia os estados (retain) para sincronizar painel/SCADA

269 publishState();

270

271 } else {

272 Serial.printf ("MQTT falhou, state=%d. Tentando de novo...\n", mqtt.state());
273 delay(1000);

274 }

275 }

276}

277

278

279

280 // ============SSSSSSSSSSSSsSSS=ss

281 void loop() {

282

283 tempoAtual = millis();

284 // --- Boto que ativa/desativa o modo automtico ---

285 if (digitalRead(BOTAO_AUTO) == LOW && tempoAtual - lastPressAuto >
< debounceDelay) {

286 modoAutomatico = !modoAutomatico;

287 lastPressAuto = tempoAtual;

288 while (digitalRead(BOTAO_AUTO) == LOW); // espera soltar
289 }

290

201 // LED indicador do modo automtico

202 digitalWrite(LED_MODO_AUTO, modoAutomatico);
293

294

295

206 if (!modoAutomatico) {

207 if (digitalRead(BOTAO1) == LOW) {

298 estadoLamp1 = true;

299 } else if (lampl_status == false) {

300 estadoLampl = false;

86

301 }

302

503 if (digitalRead(BOTAO2) == LOW) {
304 estadoLamp2 = true;

305 } else if (lamp2_status == false) {
306 estadoLamp2 = false;

307 }

308

so9 1f (digitalRead(BOTAO3) == LOW) {

310 estadolLamp3 = true;

311 } else if (lamp3_status == false) {

312 estadolLamp3 = false;

313}

314}

315

316

317

318 else {

319

320 }

321

322

323 digitalWrite(LAMP1, estadoLampl);

324 digitalWrite(LAMP2, estadolLamp2);

325 digitalWrite(LAMP3, estadoLamp3);

326

s27 // —--- CONTROLE AUTOMTICO POR JANELA HORRIA ---

328 1f (modoAutomatico) {

329 agendamentoAtivo = dentroJanela_BRT_1830a0500();
330

331 // **xSe dentro da janela, mesmo que no tenha mudado, ligue as luzes**
332 if (agendamentoAtivo) {

333 // no momento em que estiver na janela e modo automtico
334 estadoLamp1 = estadoLamp2 = estadoLamp3 = true;

335 } else {

336 // fora da janela, desligue
337 estadolLampl = estadoLamp2 = estadoLamp3 = false;
338 }

339
340 // Aplique e publique sempre que estiver no modo automtico
341 digitalWrite(LAMP1, estadoLampl);

87

3.2 digitalWrite(LAMP2, estadolLamp2);

343 digitalWrite(LAMP3, estadoLamp3);

344 publishState();

345

346 // atualiza histrico para prximas comparaes
347 ultimoAgendamento = agendamentoAtivo;
348} else {

349 // MODO MANUAL: seu cdigo existente
350 }

351

352

353

354

355 if (WiFi.status() != WL_CONNECTED) {

356 if (millis() - lastWiFiAttempt > 5000) {

357 WiFi.begin(ssid, password);

358 lastWiFiAttempt = millis();

359 } //chama function para controle dos rels por wifi
360 // sem Wi-Fi no adianta processar MQTT/HTTP

361 return;

362}

363

364 if (!mgtt.connected()) {

365 mgttReconnect();

s66)

367 mgtt.loop(); // TEM que rodar o tempo todo
368

369 // TELEMETRIA: imprime no Serial a cada 30 s
s7o static uint32_t tLog = 0;

371 if (millis() - tLog >= 30000) {

372 tlog = millis();

373 DateTime nowBRT = toBRT(rtc.now()); // usa function utilitria

374 Serial.printf ("[BRT] %04d-%02d-%02d %02d:%02d:%02d | janelal18:30-5:00=%s |
< modoAuto=%d | L1=%d L2=%d L3=%d\n",

375 nowBRT.year (), nowBRT.month(), nowBRT.day(),

376 nowBRT . hour (), nowBRT.minute(), nowBRT.second(),

377 dentroJanela_BRT_1830a0500() ? "ON" : "OFF",

378 modoAutomatico,

379 estadoLamp1, estadolLamp2, estadolLamp3

380)5

81}

88

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

relay_wifi();
3

void relay_wifi()

{

WiFiClient httpclient = server.available(); //verifica se existe um cliente

< conectado com dados a serem transmitidos

if(httpclient) //existe um cliente?

{
tempoAtuall = millis();
tempogravado = tempoAtuall; //armazena tempo atual
Serial.println(”"Novo cliente definido”); //informa por serial

nn

String currentlLine = ; //string para aguardar entrada de dados do cliente

while(httpclient.connected() && tempoAtuall - tempogravado <= timeoutTime)

— //executa enquanto cliente conectado

tempoAtuall = millis(); //atualiza tempo atual
mgtt.loop();
if(httpclient.available()) //existem dados do cliente a serem lidos?
{ //sim
char ¢ = httpclient.read(); //salva em c
Serial.write(c); //imprime via serial

header += c; //acumula dados do cliente em header

if (c == '\n') // um caractere de nova linha?
{ //sim

if (currentLine.length() == @) //se final da mensagem. ..

{

httpclient.println("HTTP/1.1 200 OK"); //HTTP sempre inicia com este
— cdigo de resposta

httpclient.println(”"Content-type:text/html”);

httpclient.println(); //imprime nova linha

// Controle das Sadas do ESP32:
if(header.indexOf ("GET /lamp1/on") >= @) //liga Rel 1

89

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

458

459

460

lampi_status = true; //atualiza status

estadoLamp1 = true; //ativa sada

publishState();
} //end if lamp1l ON

else if(header.indexOf ("GET /lampl1/off") >= @) //desliga Rel 1

{

lampi_status = false; //atualiza status

estadoLamp1 = false; //desativa sada

publishState();
} //end else if lampl OFF

else if(header.indexOf ("GET /lamp2/on") >= @) //liga Rel 2

{

lamp2_status = true; //atualiza status

estadoLamp2 = true; //ativa sada

publishState();
} //end else if lamp2 ON

else if(header.indexOf ("GET /lamp2/off") >= @) //desliga Rel 2

{

lamp2_status = false; //atualiza status

estadolLamp2 = false; //desativa sada

publishState();
} //end if lamp2 OFF

else if(header.indexOf ("GET /lamp3/on") >= @) //liga Rel 3

{

lamp3_status = true; //atualiza status

estadoLamp3 = true; //ativa sada

publishState();
} //end else if lamp3 ON

else if(header.indexOf ("GET /lamp3/off") >= @) //desliga Rel 3

{

lamp3_status = false; //atualiza status

estadolLamp3 = false; //desativa sada

publishState();
} //end if lamp3 OFF

90

461

462

463

464

465

466

467

468

469

470

471

472

473

474

476

477

479

480

481

482

483

484

485

486

487

489

490

491

492

493

494

495

496

else if(header.indexOf ("GET /auto/on”) >= @) //liga automtico
{
auto_status = true;
modoAutomatico = true; //atualiza status
digitalWrite(LED_MODO_AUTO, HIGH); //ativa sada
publishState();
} //end else if auto ON

else if(header.indexOf ("GET /auto/off") >= @) //desliga automtico
{
auto_status = false;
modoAutomatico = false; //atualiza status
digitalWrite(LED_MODO_AUTO, LOW); //desativa sada
publishState();
} //end else if auto OFF

//Gera a pgina HTML

httpclient.println(”"<!DOCTYPE html><html>");
httpclient.println(”<head><meta name=\"viewport\"

— content=\"width=device-width, initial-scale=1\">");
httpclient.println(”"<link rel=\"icon\" href=\"data:,\">");

httpclient.println("<style>html { font-family: Verdana; margin: 0px
— auto; text-align: center; background-color: #QOFFFF;3}");
httpclient.println(”.par1 { border: none; color: #000000; padding: 20px
— 40px;");
httpclient.println("text-decoration: none; font-size: 30px; margin:
< 5px; cursor: pointer; font-family: Tahoma;3}");
httpclient.println(”.btOn { background-color: #2fbe@4d; }");
httpclient.println(”.btOff { background-color: #616161; }");
httpclient.println("</style>");
httpclient.println(”<title>SERVIDOR DE ACINAMENTO</title></head>");

httpclient.println("<body><h1>SERVIDOR DE ACINAMENTO</h1>");
//Imprime status atual do lamp 1

httpclient.println("<p>status lampl: " + String(lampl_status ? "ON" :
C_> IIOFFII) + Il</p>ll);

91

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

//Gera o boto conforme o status do Rel 1
if(!lampli_status)
httpclient.println(”<p><button class=\"parl
— btOn\">lamp 1 turn on</button></p>");
else
httpclient.println("<p><button class=\"parl
— btOff\">lamp 1 turn off</button></p>");

//Imprime status atual do lamp 2
httpclient.println("<p>status lamp2: " + String(lamp2_status ? "ON" :
(_> ”OFFH) + H</p>”);

//Gera o boto conforme o status do Rel 2
if(!lamp2_status)
httpclient.println(”<p><button class=\"par1l
— btOn\">lamp 2 turn on</button></p>");
else
httpclient.println(”<p><button class=\"parl
— btOff\">lamp 2 turn off</button></p>");

//Imprime status atual do lamp 3
httpclient.println("<p>status lamp3: " + String(lamp3_status ? "ON" :
(_> IIOFFII) + II</p>II);

//Gera o boto conforme o status do Rel 3
if(!lamp3_status)
httpclient.println("<p><button class=\"par1
< btOn\">lamp 3 turn on</button></p>");
else
httpclient.println(”<p><button class=\"parl
— btOff\">lamp 3 turn off</button></p>");

//Imprime status atual do auto
httpclient.println("<p>status auto: " + String(auto_status ? "ON" :
(% IIOFF”) + Il</p>ll);

//Gera o boto conforme o status do auto
if('auto_status)
httpclient.println(”"<p><button class=\"par1
— btOn\">auto turn on</button></p>");

else

92

528 httpclient.println(”"<p><button class=\"parl
— btOff\">auto turn off</button></p>");
529

530

531 httpclient.println(”"</body></html>");
532 httpclient.println();

533 break;

534 }

535

536 else currentLine = "";

537

538 } //end if ¢

539

540 else if (c != '\r")

541 currentLine += ¢; //adiciona caractere como parte da mensage
542

543

544 } //end if client.available

545

546 } //end while client.connected

547

548 header = ""; //limpa header

549

550 httpclient.stop(); //finaliza conexo
551 Serial.println(”"Cliente desconectado”); //
552 Serial.println(""); //

553
554 } //end if client
555
556

s57 } //end relay_wifi

Folha de estilos CSS da pagina web (ESP32 01)

Listing 2: Folha de estilos CSS da interface web do ESP32 01

1 /* Documento CSS */

2

3 html {
4 font-family: Verdana;
5 margin: Qpx auto;

93

11

12

13

14

15

16

17

18

19

20

text-align: center;
background-color: #@0FFFF;

.parl {
border: none;
color: #000000;
padding: 20px 40px;
text-decoration: none;
font-size: 30px;
margin: 5px;
cursor: pointer;

font-family: Tahoma;

.bton {
background-color: #2fbo4d;

.btoff {
background-color: #616161;

94

Apéndice B -- Firmware do no6 rural
(ESP32 02)

Este apéndice apresenta os principais arquivos de firmware utilizados no né rural
(ESP32 02), organizados por modulo: Wi-Fi, temporizagdo com o RTC DS3231, logica
geral de hardware, tarefas de agendamento, envio e recebimento de dados via MQTT e

funcao principal da aplicacao.

B.1 Médulo de Wi-Fi (componente wifi)

B.1.1 CMakeLists.txt do componente wifi

Listing 3: Arquivo CMakeLists.txt do componente de Wi-Fi

idf_component_register(
SRCS "connect.c”
INCLUDE_DIRS "."
REQUIRES esp_wifi esp_netif esp_event nvs_flash freertos esp_system log

B.1.2 Arquivo connect.h

Listing 4: Cabegalho do modulo de conexao Wi-Fi (connect.h)

#ifndef __CONNECT_H
#define __CONNECT_H

#include "esp_err.h”

#include "esp_wifi.h"
void wifi_init(void);

esp_err_t wifi_connect_sta(const char * ssid, const char * pwd, int timeout);

void wifi_disconnect(void);

95

11

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

ftendif

B.1.3 Arquivo connect.c

Listing 5: Implementacao do modulo de conexao Wi-Fi (connect.c)

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>

<string.h>

<stdbool.h>

"esp_log.h"
"freertos/FreeRT0S.h"
"freertos/task.h"
"esp_netif.h"
"freertos/event_groups.h”
"esp_event.h"

"connect.h"

f#tdefine TAG "WIFI"”

volatile

bool wifiOnline = false;

esp_netif_t *wifi_netif;

static EventGroupHandle_t wifi_events;
static const int CONNECTED_GOT_IP = BITO;
static const int DISCONNECTED = BIT1;

char *get_wifi_err(uint8_t errcode)

{

switch (errcode)

{

case WIFI_REASON_UNSPECIFIED:

return "WIFI_REASON_UNSPECIFIED";
case WIFI_REASON_AUTH_EXPIRE:

return "WIFI_REASON_AUTH_EXPIRE";
case WIFI_REASON_AUTH_LEAVE:

return "WIFI_REASON_AUTH_LEAVE",
case WIFI_REASON_ASSOC_EXPIRE:

return "WIFI_REASON_ASSOC_EXPIRE";
case WIFI_REASON_ASSOC_TOOMANY:

return "WIFI_REASON_ASSOC_TOOMANY";
case WIFI_REASON_NOT_AUTHED:

96

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

return "WIFI_REASON_NOT_AUTHED";
case WIFI_REASON_NOT_ASSOCED:

return "WIFI_REASON_NOT_ASSOCED";
case WIFI_REASON_ASSOC_LEAVE:

return "WIFI_REASON_ASSOC_LEAVE";
case WIFI_REASON_ASSOC_NOT_AUTHED:

return "WIFI_REASON_ASSOC_NOT_AUTHED";
case WIFI_REASON_DISASSOC_PWRCAP_BAD:

return "WIFI_REASON_DISASSOC_PWRCAP_BAD";
case WIFI_REASON_DISASSOC_SUPCHAN_BAD:

return "WIFI_REASON_DISASSOC_SUPCHAN_BAD";
case WIFI_REASON_BSS_TRANSITION_DISASSOC:

return "WIFI_REASON_BSS_TRANSITION_DISASSOC";
case WIFI_REASON_IE_INVALID:

return "WIFI_REASON_IE_INVALID";
case WIFI_REASON_MIC_FAILURE:

return "WIFI_REASON_MIC_FAILURE";
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:

return "WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT";
case WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT:

return "WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT";
case WIFI_REASON_IE_IN_4WAY_DIFFERS:

return "WIFI_REASON_IE_IN_4WAY_DIFFERS";
case WIFI_REASON_GROUP_CIPHER_INVALID:

return "WIFI_REASON_GROUP_CIPHER_INVALID";
case WIFI_REASON_PAIRWISE_CIPHER_INVALID:

return "WIFI_REASON_PAIRWISE_CIPHER_INVALID";
case WIFI_REASON_AKMP_INVALID:

return "WIFI_REASON_AKMP_INVALID";
case WIFI_REASON_UNSUPP_RSN_IE_VERSION:

return "WIFI_REASON_UNSUPP_RSN_IE_VERSION";
case WIFI_REASON_INVALID_RSN_IE_CAP:

return "WIFI_REASON_INVALID_RSN_IE_CAP";
case WIFI_REASON_802_1X_AUTH_FAILED:

return "WIFI_REASON_802_1X_AUTH_FAILED";
case WIFI_REASON_CIPHER_SUITE_REJECTED:

return "WIFI_REASON_CIPHER_SUITE_REJECTED";
case WIFI_REASON_INVALID_PMKID:

return "WIFI_REASON_INVALID_PMKID";
case WIFI_REASON_BEACON_TIMEOUT:

return "WIFI_REASON_BEACON_TIMEOUT";

97

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

97

98

100

101

102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

case WIFI_REASON_NO_AP_FOUND:

return "WIFI_REASON_NO_AP_FOUND";

case WIFI_REASON_AUTH_FAIL:

return "WIFI_REASON_AUTH_FAIL";

case WIFI_REASON_ASSOC_FAIL:

return "WIFI_REASON_ASSOC_FAIL";

case WIFI_REASON_HANDSHAKE_TIMEOUT:

return "WIFI_REASON_HANDSHAKE_TIMEOUT";

case WIFI_REASON_CONNECTION_FAIL:

return "WIFI_REASON_CONNECTION_FAIL";

case WIFI_REASON_AP_TSF_RESET:

return "WIFI_REASON_AP_TSF_RESET";

case WIFI_REASON_ROAMING:

}

return "WIFI_REASON_ROAMING";

return "WIFI_REASON_UNSPECIFIED";

int32_t event_id, void *event_data)

if (event_base == WIFI_EVENT) {

switch (event_id)

{

case WIFI_EVENT_STA_START:
ESP_LOGI(TAG, "Conectando...");
wifiOnline = false;
esp_wifi_connect();
break;

case WIFI_EVENT_STA_CONNECTED:

wifiOnline = false;

ESP_LOGI(TAG, "Conectado com sucesso..

break;
case WIFI_EVENT_STA_DISCONNECTED:
{

wifi_event_sta_disconnected_t *disc

(wifi_event_sta_disconnected_t *)event_data;

wifiOnline = false;

char xerr = get_wifi_err(disc->reason);
if (disc->reason != WIFI_REASON_ASSOC_LEAVE)

void wifi_event_handler(void *arg, esp_event_base_t event_base,

n)‘
. ’

ESP_LOGE(TAG, "Desconectado %s", err);

98

119 else

120 ESP_LOGI(TAG, "Desconectado...");

121

122 xEventGroupSetBits(wifi_events, DISCONNECTED);
123 break;

124 3

125 }

126 } else if (event_base == IP_EVENT) {

127 if (event_id == IP_EVENT_STA_GOT_IP) {

128 ESP_LOGI(TAG, "IP obtido com exito");

129 wifiOnline = true;

130 xEventGroupSetBits(wifi_events, CONNECTED_GOT_IP);
131 }

132 }

133}

134

135 void wifi_init(void)

136 {

137 wifiOnline = false;

138 wifi_init_config_t wifiCfg = WIFI_INIT_CONFIG_DEFAULT();

139 ESP_ERROR_CHECK(esp_netif_init());

140 ESP_ERROR_CHECK (esp_event_loop_create_default());

141 ESP_ERROR_CHECK (esp_wifi_init(&wifiCfg));

142 ESP_ERROR_CHECK (esp_event_handler_register(

143 WIFI_EVENT, ESP_EVENT_ANY_ID, wifi_event_handler, NULL));
144 ESP_ERROR_CHECK (esp_event_handler_register(

145 IP_EVENT, IP_EVENT_STA_GOT_IP, wifi_event_handler, NULL));
146 ESP_ERROR_CHECK (esp_wifi_set_storage(WIFI_STORAGE_RAM));

147

148 wifi_events = xEventGroupCreate();

149}

151 esp_err_t wifi_connect_sta(const char *ssid, const char *pwd, int timeout)

152 {

153 wifi_netif = esp_netif_create_default_wifi_sta();
154

155 wifi_config_t wifiCfg = {0};

156 memset (&wifiCfg, 0, sizeof(wifi_config_t));

157 strncpy((char *)wifiCfg.sta.ssid, ssid,

158 sizeof(wifiCfg.sta.ssid) - 1);

159 strncpy((char *)wifiCfg.sta.password, pwd,

99

161

162

164

165

166

167

168

169

170

171

172

173

174

175

176

178

179

181

182

183

184

10

11

esp_wifi_set_mode(WIFI_MODE_STA);
esp_wifi_set_config(WIFI_IF_STA, &wifiCfg);

sizeof(wifiCfg.sta.password) - 1);

esp_wifi_start();

EventBits_t evnt_result = xEventGroupWaitBits(

);

wifi_events,

CONNECTED_GOT_IP | DISCONNECTED,

pdTRUE,
pdFALSE,
pdMS_TO_TICKS(timeout)

if (evnt_result & CONNECTED_GOT_IP) {

}

return ESP_OK;

return ESP_FAIL;

void wifi_disconnect(void)

{

esp_wifi_disconnect();

esp_wifi_stop();

B.2 Arquivo principal main.c e CMakeLists.txt do projeto

Listing 6: Arquivo principal da aplica¢ao (main.c)

#include <stdio.h>
#include <time.h>

#include "connect.h”

#include "esp_log.h”

#include "scheduler.h”

#include "general.h”

#include "MQTT.h"

#include "ds3231.h"

#include "freertos/FreeRTOS.h"

#include "freertos/task.h”

#include

"freertos/event_groups.

hll

100

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

#include "freertos/queue.h”
#include "esp_event.h"
#include "nvs_flash.h"
#include "driver/gpio.h”
#include "esp_wifi.h"

#include "mqtt_cert.h”

static const char *TAG = "APP";

static esp_err_t wifi_connect(void)
{
esp_err_t err = wifi_connect_sta(WIFI_SSID, WIFI_PASS, 10000);
if (err != ESP_OK) {
ESP_LOGE (TAG, "Conexao Wi-Fi falhou");
return err;
}
ESP_LOGI(TAG, "Conexao Wi-Fi ativa");
return ESP_OK;

static void setup(void)

{
ESP_ERROR_CHECK (nvs_flash_init());

esp_log_level_set("*", ESP_LOG_INFO);
esp_log_level _set("”SOIL", ESP_LOG_WARN);

wifi_init(Q);
ESP_ERROR_CHECK(esp_wifi_set_ps(WIFI_PS_NONE));
ESP_ERROR_CHECK (wifi_connect());

time_sync_start();

setenv("TZ", "<+03>-3", 1);
tzset();

esp_err_t err = ds3231_init(I2C_NUM_@, GPIO_NUM_21,
GPIO_NUM_22, 100000);
if (err != ESP_OK) {
ESP_LOGE (TAG, "DS3231 init falhou: %s", esp_err_to_name(err));

101

53

54

57

58

59

60

61

62

63

64

66

67

68

69

70

71

72

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

static void io_init(void) {

gpio_config_t io = {

.pin_bit_mask = (1ULL<<LAMP1_GPIO) |
(TULL<<LAMP2_GPIO) |
(TULL<<LAMP3_GPIO) |
(TULL<<IRR_GPIO),

.mode = GPIO_MODE_OUTPUT,

.pull_up_en = 0,

.pull_down_en = @,

.intr_type = GPIO_INTR_DISABLE

b

gpio_config(&io);
gpio_set_level (LAMP1_GPIO, 0);
gpio_set_level (LAMP2_GPIO, 0);
gpio_set_level (LAMP3_GPIO, 0);
gpio_set_level (IRR_GPIO, 0);

void app_main(void)

setup();

io_init();

xTaskCreatePinnedToCore(MQTTControlTask, "MQTTControlTask”,
6*4096, NULL, 6, NULL, @);
xTaskCreatePinnedToCore(SchedulerTask, "SchedulerTask”,
3%4096, NULL, 5, NULL, @);
BaseType_t ok = xTaskCreate(MQTTSenderTask, "MQTTSenderTask”,
5%x4096, NULL, 5, &mqttTaskHandle);
xTaskCreate(taskTemperatureQueue, "taskTemperatureQueue”,
configMINIMAL_STACK_SIZE * 5, NULL, 5, NULL);
xTaskCreate(taskHumidityQueue, "taskHumidityQueue",
configMINIMAL_STACK_SIZE * 5, NULL, 5, NULL);
if (ok != pdPASS) {
ESP_LOGE (TAG, "Falha ao criar MQTTSenderTask.");

Listing 7: Arquivo CMakeLists.txt do projeto principal (main)

102

10

11

12

13

14

10

idf_component_register (SRCS "main.c” "MQTT.c"” "ds3231.c" "scheduler.c”

INCLUDE_DIRS "."
PRIV_REQUIRES wifi json mqgtt driver lwip
REQUIRES wifi mgtt json nvs_flash esp_event esp_adc

B.3 Médulo DS3231 (RTC e temperatura)
B.3.1 Arquivo ds3231.h

Listing 8: Cabecalho do médulo DS3231

#pragma once
#include "driver/i2c.h”
#include <time.h>

#define DS3231_ADDR 0x68

#define DS3231_REG_SEC 0x00
#tdefine DS3231_TEMP_MSB 0x11
#define DS3231_TEMP_LSB 0x12

esp_err_t ds3231_init(i2c_port_t port, gpio_num_t sda,
gpio_num_t scl, uint32_t freq_hz);

esp_err_t ds3231_get_time(struct tm *out_tm);

esp_err_t ds3231_set_time(const struct tm *in_tm);

esp_err_t ds3231_get_temperature(float *out_celsius);

B.3.2 Arquivo ds3231.c

Listing 9: Implementacao do moédulo DS3231

#include <time.h>
#include <stdbool.h>
#include "ds3231.h"
#include "esp_log.h"

static i2c_port_t s_port;

static uint8_t bcd2bin(uint8_t v) { return (v & 0x0F) + ((v >> 4) % 10); }
static uint8_t bin2bcd(uint8_t v) { return ((v / 10) << 4) | (v % 10); }

103

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

static esp_err_t i2c_wr(uint8_t reg, const uint8_t xdata, size_t len) {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();

i2c_master_start(cmd);

i2c_master_write_byte(cmd, (DS3231_ADDR<<1) | I2C_MASTER_WRITE, true);

i2c_master_write_byte(cmd, reg, true);
if (len) i2c_master_write(cmd, (uint8_tx)data, len, true);

i2c_master_stop(cmd);

esp_err_t err = i2c_master_cmd_begin(s_port, cmd, pdMS_TO_TICKS(100));

i2c_cmd_link_delete(cmd);

return err;

static esp_err_t i2c_rd(uint8_t reg, uint8_t *data, size_t len) {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();

i2c_master_start(cmd);

i2c_master_write_byte(cmd, (DS3231_ADDR<<1) | I2C_MASTER_WRITE, true);

i2c_master_write_byte(cmd, reg, true);
i2c_master_start(cmd);

i2c_master_write_byte(cmd, (DS3231_ADDR<<1) | I2C_MASTER_READ, true);
i2c_master_read(cmd, data, len, I2C_MASTER_LAST_NACK);

i2c_master_stop(cmd);

esp_err_t err = i2c_master_cmd_begin(s_port, cmd, pdMS_TO_TICKS(100));

i2c_cmd_link_delete(cmd);

return err;

esp_err_t ds3231_init(i2c_port_t port, gpio_num_t sda,
gpio_num_t scl, uint32_t freq_hz) {
s_port = port;
i2c_config_t cfg = {
.mode = I2C_MODE_MASTER,
.sda_io_num = sda,
.scl_io_num = scl,
.sda_pullup_en = GPIO_PULLUP_DISABLE,
.scl_pullup_en = GPIO_PULLUP_DISABLE,
.master.clk_speed = freq_hz ? freq_hz : 100000
b
ESP_ERROR_CHECK (i2c_param_config(s_port, &cfg));
ESP_ERROR_CHECK(i2c_driver_install(s_port, I2C_MODE_MASTER,
9, 0, 0));
uint8_t ping;

104

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

77

78

79

80

81

82

83

84

85

86

87

return i2c_rd(DS3231_REG_SEC, &ping, 1);

esp_err_t ds3231_get_time(struct tm *out_tm) {
uint8_t b[7];
esp_err_t err = i2c_rd(DS3231_REG_SEC, b, sizeof(b));

if (err != ESP_OK) return err;

out_tm->tm_sec = bcd2bin(b[@] & 0x7F);
bcd2bin(b[1] & Ox7F);
uint8_t hr = b[2];
if (hr & 0x40) {

uint8_t h12 = bcd2bin(hr & Ox1F);

(hr & 0x20) 2 (h12 % 12) + 12 :

out_tm->tm_min

out_tm->tm_hour
} else {

out_tm->tm_hour

bcd2bin(hr & 0x3F);
3

out_tm->tm_wday

(b[3] & 0x07) - 1;
bcd2bin(b[4] & 0x3F);
out_tm->tm_mon = bcd2bin(b[5] & @0x1F) - 1;
out_tm->tm_year = bcd2bin(b[6]) + 100;
return ESP_OK;

out_tm->tm_mday

esp_err_t ds3231_set_time(const struct tm *in_tm) {
uint8_t b[7];
b[o] bin2bcd(in_tm->tm_sec);
b[1] = bin2bcd(in_tm->tm_min);
b[2] = bin2bcd(in_tm->tm_hour);
b[3] = bin2bcd(in_tm->tm_wday + 1);
b[4] = bin2bcd(in_tm->tm_mday);
b[5] = bin2bcd(in_tm->tm_mon + 1);
b[6] = bin2bcd(in_tm->tm_year - 100);
return i2c_wr(DS3231_REG_SEC, b, sizeof(b));

esp_err_t ds3231_get_temperature(float *out_celsius) {
uint8_t msb, 1lsb;
esp_err_t err = i2c_rd(DS3231_TEMP_MSB, &msb, 1);
if (err != ESP_OK) return err;
err = i2c_rd(DS3231_TEMP_LSB, &lsb, 1);

105

(h12 % 12);

93

94

95

96

97

98

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

if (err != ESP_OK) return err;
int8_t whole = (int8_t)msb;
float frac = (Isb >> 6) * 0.25f;
*out_celsius = whole + frac;
return ESP_OK;

B.4 Arquivo general.h

Listing 10: Definigoes gerais de hardware e topicos MQTT (general.h)

#ifndef __GENERAL_H

#tdefine

_GENERAL_H

#include <stdbool.h>

#include "driver/gpio.h”

f#tdefine
#tdefine

#define
#define
#define
#define

#tdefine
#define

#define
#define
#define
#define

f#tdefine
f#tdefine

#define
#define
#define
#define
#define

WIFI_SSID "Wi-Fi Sitio”
WIFI_PASS "senhadowifisitio”

LAMP1_GPIO GPIO_NUM_16
LAMP2_GPIO GPIO_NUM_17
LAMP3_GPIO GPIO_NUM_18
IRR_GPIO GPIO_NUM_19

IRR_ON_MS 8000
IRR_OFF_MS 4000

SOIL_ADC_UNIT ADC_UNIT_1
SOIL_ADC_CHANNEL ADC_CHANNEL_6
SOIL_ATTEN ADC_ATTEN_DB_12
SOIL_BITWIDTH ADC_BITWIDTH_12

SOIL_RAW_DRY 1860
SOIL_RAW_WET 950

MQTT_NS_RURAL "tcc/esp@2/rural”
TOPIC_L1_CMD_RURAL MQTT_NS_RURAL "/11"
TOPIC_L2_CMD_RURAL MQTT_NS_RURAL "/12"
TOPIC_L3_CMD_RURAL MQTT_NS_RURAL "/13"
TOPIC_AUTO_CMD_RURAL MQTT_NS_RURAL "/auto"

106

31

32

33

34

35

36

37

38

39

40

41

42

43

10

11

12

13

14

16

17

18

19

20

21

#define TOPIC_L1_STATE_RURAL MQTT_NS_RURAL "/state/11"
#define TOPIC_L2_STATE_RURAL MQTT_NS_RURAL "/state/12"
#define TOPIC_L3_STATE_RURAL MQTT_NS_RURAL "/state/13"
#define TOPIC_AUTO_STATE_RURAL MQTT_NS_RURAL "/state/auto”

#define TOPIC_IRR_CMD_RURAL MQTT_NS_RURAL "/irrig"

#define TOPIC_IRR_STATE_RURAL MQTT_NS_RURAL "/state/irrig"

#define TOPIC_IRR_AUTO_CMD_RURAL MQTT_NS_RURAL "/irr_auto”

#define TOPIC_IRR_AUTO_STATE_RURAL MQTT_NS_RURAL "/state/irr_auto”

extern volatile bool wifiOnline;

#tendif

B.5 Protocolo MQTT
B.5.1 Arquivo MQTT.h

Listing 11: Cabegalho do modulo MQTT (MQTT.h)

#pragma once

#include "freertos/FreeRTOS.h"
#include "freertos/event_groups.h”
#include "freertos/task.h”
#include <math.h>

#include <time.h>

#define SensorQueuelLength 100
#define generalDataQueuelLength 10

typedef struct t_MgttQueueFloat {
char tag[30];
char local[30];
float val;
long long int timestamp;
} MgttQueueFloat_t;

typedef struct t_SysDataFloat {

char local[30];
float val;

107

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

long long int timestamp;
} SysDataFloat_t;

extern TaskHandle_t mqgttTaskHandle;
extern bool lampl_state, lamp2_state, lamp3_state, auto_mode;

extern bool irrig_state, auto_irrig;

#define NETWORK_CONNECTED BIT1
#define MQTT_CONNECTED BIT2
#define MQTT_PUBLISHED BIT3
#define MQTT_SUBSCRIBED BIT4
#define MQTT_ERROR BIT5

extern int humidityIndexProcess;

extern int temperaturelndexProcess;

extern MqgttQueueFloat_t generalDataQueue[generalDataQueuelength];
extern SysDataFloat_t humidityDatal[SensorQueuelLength];
extern SysDataFloat_t temperatureDatal[SensorQueuelLength];

extern SysDataFloat_t subscribedData;

void time_sync_start(void);

void epoch_to_iso8601_utc(time_t t, char out[21]);
void MQTTSenderTask(void =*args);

float convertData(char datal[], int lenght);

void getSubscribed(void);

int storeFloatQueue(float data, char local[], SysDataFloat_t *internalData);
void taskHumidityQueue(void *args);

void taskTemperatureQueue(void *args);

void MQTTControlTask(void *args);

void publish_state_all(void);

void IrrigationAutoTask(void x*args);

void publish_irrig_state(void);

B.5.2 Arquivo MQTT.c

Listing 12: Implementacao do médulo MQTT do n6 rural (MQTT.c).

#include <stdio.h>
#include <string.h>
#include <time.h>

#include <stdlib.h>

108

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

39

40

41

42

43

44

#include "MQTT.h"
#include "connect.h”
#include "mqtt_client.h”
#include "cJSON.h"
#include "general.h”
#include "esp_log.h"
#include "driver/gpio.h"
#include "esp_adc/adc_oneshot.h”
#include "esp_sntp.h”
#include "ds3231.h"
#include "mqgtt_cert.h”

static adc_oneshot_unit_handle_t s_adc = NULL;
static void set_lamp(gpio_num_t gpio, bool on);

int humidityIndexProcess = 0;

int temperaturelndexProcess = 0;

float retSubscribedValue = 0;
static bool COMSTATUS = 0;
bool dataToSend = 0;

bool humSended = 0;

bool tmpSended = 0;

bool lampl_state=false, lamp2_state=false, lamp3_state=false, auto_mode=false;

bool irrig_state=false, auto_irrig=false;

static long long now_epoch_ds3231(void);

// --= SNTP helpers ---

void time_sync_start(void) {
esp_sntp_setoperatingmode (ESP_SNTP_OPMODE_POLL);
esp_sntp_setservername(@, "pool.ntp.org");
esp_sntp_setservername(1, "time.google.com");
sntp_set_sync_mode (SNTP_SYNC_MODE_SMOOTH) ;
esp_sntp_init();

// Espera simples (mx ~5s) pela primeira sync

for (int i = 0; i < 100 && esp_sntp_get_sync_status() == SNTP_SYNC_STATUS_RESET

— ;i) {
vTaskDelay (pdMS_TO_TICKS(100));

109

45

46

47

48

49

50

51

52

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

80

81

82

83

84

85

void epoch_to_is08601_utc(time_t t, char out[21]) {
struct tm tm_utc;
gmtime_r(&t, &tm_utc);
strftime(out, 21, "%Y-%m-%dT%H:%M:%SZ", &tm_utc);

static bool payload_is_on(const charx p, int len) {
// aceita on/1/true (case-insensitive)
if (!p || len<=0) return false;
if (len==1 && (p[@]=='1")) return true;
if (len==4 && (p[@]=='t'||p[@]=='T"')) return true; // true
if (len==2 && (p[@]=='o'||p[@]=='0"')) return true; // on

return false;

static esp_mgtt_client_handle_t ctrl_client = NULL;
MgttQueueFloat_t generalDataQueue[generalDataQueuelLength] = {0};
SysDataFloat_t humidityData[SensorQueuelLength] = {0};
SysDataFloat_t temperatureDatal[SensorQueuelLength] = {0};
SysDataFloat_t subscribedData = {0};

#define TAG "MQTT"
#define BASE_TOPIC "tcc”

#define TOPIC_TEMP "tcc/esp@2/rural/temp”
#define TOPIC_HUM "tcc/esp@2/rural/hum”
#define TOPIC_RAW "tcc/esp@2/rural/raw”

TaskHandle_t mqttTaskHandle = NULL;

void mgtt_event_handler_cb(esp_mqtt_event_handle_t event_data){
switch (event_data->event_id){

case MQTT_EVENT_CONNECTED:
ESP_LOGI(TAG, "MQTT CONECTADO");
xTaskNotify(mgttTaskHandle, MQTT_CONNECTED, eSetValueWithOverwrite);
break;

case MQTT_EVENT_DISCONNECTED:
ESP_LOGI(TAG, "MQTT DESCONECTADO");

110

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

1

[

3

114

1

=
ot

116

117

118

119

120

121

122

123

break;

case MQTT_EVENT_SUBSCRIBED:
ESP_LOGI(TAG, "MQTT ASSINADO, msg_if=%d"”, event_data->msg_id);
break;

case MQTT_EVENT_UNSUBSCRIBED:
break;

case MQTT_EVENT_PUBLISHED:
ESP_LOGI(TAG, "MQTT PUBLICADO, msg_id=%d", event_data->msg_id);
xTaskNotify(mgttTaskHandle, MQTT_PUBLISHED, eSetValueWithOverwrite);
break;

case MQTT_EVENT_DATA:
ESP_LOGI(TAG, "DADO LIDO EM SUBSCRICAQ");

ESP_LOGI("MQTT", "TOPICO=%.*s", event_data->topic_len, event_data->topic

=)
ESP_LOGI("MQTT", "DADO=%.*s", event_data->data_len, event_data->data);

retSubscribedValue = convertData(event_data->data, event_data->data_len)

5
xTaskNotify(mgttTaskHandle, MQTT_SUBSCRIBED, eSetValueWithOverwrite);
break;
case MQTT_EVENT_ERROR:
ESP_LOGI(TAG, "ERRO GERAL");
xTaskNotify(mgttTaskHandle, MQTT_ERROR, eSetValueWithOverwrite);
break;
default:
ESP_LOGI(TAG, "OUTRO EVENTO - id:%d", event_data->event_id);

break;

static void mqtt_control_event(voidx handler_args, esp_event_base_t base, int32_t

—» eid, void* event_data) {

esp_mgtt_event_handle_t e = (esp_mqtt_event_handle_t)event_data;

switch (eid) {

case MQTT_EVENT_CONNECTED:
esp_mqtt_client_subscribe(ctrl_client, TOPIC_L1_CMD_RURAL, 1);
esp_mqtt_client_subscribe(ctrl_client, TOPIC_L2_CMD_RURAL, 1);
esp_mqtt_client_subscribe(ctrl_client, TOPIC_L3_CMD_RURAL, 1);
esp_mqtt_client_subscribe(ctrl_client, TOPIC_AUTO_CMD_RURAL, 1);
esp_mqtt_client_subscribe(ctrl_client, TOPIC_IRR_CMD_RURAL, 1);
esp_mqgtt_client_subscribe(ctrl_client, TOPIC_IRR_AUTO_CMD_RURAL, 1);
esp_mqgtt_client_subscribe(ctrl_client, TOPIC_TEMP, 2);

111

124

125

126

127

128

129

130

131

132

133

134

135

136

137

139

140

141

142

143

144

145

146

147

148

149

151

152

153

154

155

esp_mqtt_client_subscribe(ctrl_client, TOPIC_HUM, 2);
publish_state_all(); // publica estado atual ao conectar (retain)
publish_irrig_state();

break;

case MQTT_EVENT_DATA: {
// topic e data NO so null-terminated
const charx t = e->topic; int tlen = e->topic_len;
const charx p = e->data; int plen = e->data_len;

bool is_on = payload_is_on(p, plen);

if (tlen == (int)strlen(TOPIC_TEMP) && strncmp(t, TOPIC_TEMP, tlen) == Q) {
ESP_LOGI(TAG, "JSON recebido em %.*s: %.*s", tlen, t, plen, p);
return;
}
if (tlen == (int)strlen(TOPIC_HUM) && strncmp(t, TOPIC_HUM, tlen) == @) {
ESP_LOGI(TAG, "JSON recebido em %.*s: %.*s", tlen, t, plen, p);

return;

if (tlen == strlen(TOPIC_L1_CMD_RURAL) && strncmp(t, TOPIC_L1_CMD_RURAL,
— tlen)==0) {
lamp1_state = is_on; set_lamp(LAMP1_GPIO, lampl_state);
esp_mqtt_client_publish(ctrl_client, TOPIC_LT1_STATE_RURAL, lampl_state?”
<~ on":"off", @, 1, true);
} else if (tlen == strlen(TOPIC_L2_CMD_RURAL) && strncmp(t,
< TOPIC_L2_CMD_RURAL, tlen)==0) {
lamp2_state = is_on; set_lamp(LAMP2_GPIO, lamp2_state);
esp_mqtt_client_publish(ctrl_client, TOPIC_L2_STATE_RURAL, lamp2_state?”
< on":"off", @, 1, true);
} else if (tlen == strlen(TOPIC_L3_CMD_RURAL) && strncmp(t,
<+ TOPIC_L3_CMD_RURAL, tlen)==0) {
lamp3_state = is_on; set_lamp(LAMP3_GPIO, lamp3_state);
esp_mgtt_client_publish(ctrl_client, TOPIC_L3_STATE_RURAL, lamp3_state?"
<~ on":"off", @, 1, true);
} else if (tlen == strlen(TOPIC_AUTO_CMD_RURAL) && strncmp(t,
<+ TOPIC_AUTO_CMD_RURAL, tlen)==0) {
auto_mode = is_on;
esp_mqtt_client_publish(ctrl_client, TOPIC_AUTO_STATE_RURAL, auto_mode?"

— on":"off", @, 1, true);

112

156 } else if (tlen == strlen(TOPIC_IRR_CMD_RURAL) && strncmp(t,
<+ TOPIC_IRR_CMD_RURAL, tlen)==0) {

157 irrig_state = is_on; set_lamp(IRR_GPIO, irrig_state);

158 publish_irrig_state();

159 } else if (tlen == strlen(TOPIC_IRR_AUTO_CMD_RURAL) && strncmp(t,
— TOPIC_IRR_AUTO_CMD_RURAL, tlen)==0) {

160 auto_irrig = is_on;

161 esp_mqtt_client_publish(ctrl_client, TOPIC_IRR_AUTO_STATE_RURAL,

< auto_irrig ? "on" : "off", @, 1, true);

162 if (lauto_irrig) {

163 set_lamp(IRR_GPIO, irrig_state);

164 publish_irrig_state();

165 }

166 }

167

168 break;

169 }

170 default:

171 break;

172 }

173}

174

175 void MQTTControlTask(void *args){

176 const esp_mqtt_client_config_t cfg = {

177 .broker.address.uri = "mqtts://179.145.53.227:8883",

178 .credentials.client_id = "esp32-esp@2-rural”,

179 .credentials.username = "gabriel”,

180 .credentials.authentication.password = "root123456204",
181 .broker.verification.certificate = mgtt_ca_cert_pem,
182 .session.keepalive = 30,

183 .network.disable_auto_reconnect = false

184 3

185 ctrl_client = esp_mqtt_client_init(&cfg);

186 esp_mgtt_client_register_event(ctrl_client, ESP_EVENT_ANY_ID,

— mgtt_control_event, NULL);
187 esp_mgtt_client_start(ctrl_client);
188
189 while (1) {
190

191 vTaskDelay (pdMS_TO_TICKS(200));
192 }

113

193

194

195

196

197

198

199

200

201

202

203

204

205

207

208

210

211

212

213

214

215

2

=
[}

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

static void mgtt_event_handler(void* event_handler_arg, esp_event_base_t event_base
<~ , int32_t event_id, void* event_data){

mgtt_event_handler_cb(event_data);

static void set_lamp(gpio_num_t gpio, bool on) {

gpio_set_level(gpio, on ? 1 : @);

void MQTTSender (MgttQueueFloat_t *sensorFloatReading, bool subscribe){
uint32_t command = 0;
const esp_mqtt_client_config_t mgttConfig = {
.broker.address.uri = "mqtts://179.145.53.227:8883",

.broker.verification.certificate = (const charx)mqtt_ca_cert_pem,

.credentials.username = "gabriel”,
.credentials.authentication.password = "root123456204",
.credentials.client_id = "esp32-esp@2-rural-sender”,

.session.keepalive = 60,
.network.disable_auto_reconnect = false
b
esp_mgtt_client_handle_t client = NULL;

while(1){

char local[30];

char dataBuff[15];

char outBuff[1000];

char tag[30];

char timestamp[15];

xTaskNotifyWait (@, @,&command, portMAX_DELAY);

switch (command)

{

case NETWORK_CONNECTED:
COMSTATUS = 0;
client = esp_mgtt_client_init(&mqttConfig);
esp_mqtt_client_register_event(client, ESP_EVENT_ANY_ID,
— mqgtt_event_handler, client);

esp_mqtt_client_start(client);
ESP_LOGI(TAG, "ONLINE");

break;

114

232

233

234

236

237

238

239

240

241

242

243

244

245

246

247

248

249

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

267

268

269

case MQTT_CONNECTED:
COMSTATUS = 0;
if(subscribe){
strcpy(local, sensorFloatReading[@].1local);
esp_mqtt_client_subscribe(client, local, 1);
}else {

/] === MONTA O PAYLOAD ANTIGO PARA O VISOR ----------

// usa as variveis j declaradas acima (outBuff, tag, dataBuff,
— timestamp)

// zera o buffer

outBuff[e] = '\o';

strcat(outBuff, "{");

// contador para vrgula apenas entre pares vlidos
int wrote = 0;
for (int i = @; i < generalDataQueuelLength; i++) {
if (sensorFloatReading[i].timestamp == @) continue; // slot

— vazio

// monta "TAG:VAL:TIMESTAMP"
strcpy(tag, sensorFloatReading[i].tag);
sprintf(dataBuff, "%.2f", sensorFloatReading[i].val);

sprintf(timestamp, "%11d", sensorFloatReading[i].timestamp);

if (wrote > @) strcat(outBuff, ",");
strcat(outBuff, tag);
strcat(outBuff, ":");
strcat(outBuff, dataBuff);
strcat(outBuff, ":");
strcat(outBuff, timestamp);

wrotet+;

}
strcat(outBuff, "}");

// PUBLICA O PAYLOAD ANTIGO (para o visor do MQTTBox)
esp_mqtt_client_publish(client, TOPIC_RAW, outBuff, @ /* strlen
— auto %/, 2, false);

/] —=—mmmmme- MONTA E PUBLICA 0S JSONs PARA O BACKEND ----------

const MgttQueueFloat_t *hum = NULL, *tmp = NULL;

for (int i = @; i < generalDataQueuelLength; i++) {

115

271

272

273

274

275

276

277

278

279

280

281

282

284

285

287

288

289

290

291

292

293

294

295

296

297

299

300

301

302

303

304

if (sensorFloatReading[i].timestamp == @) continue;

if (strncmp(sensorFloatReading[i].tag, "HUM", 3) == @) hum

<~ &sensorFloatReading[i];

if (strncmp(sensorFloatReading[i].tag, "TMP", 3) == @) tmp

<~ &sensorFloatReading[i];

char jsonBuf[160];

if (tmp) {
char iso_temp[21];

epoch_to_is08601_utc((time_t)tmp->timestamp, iso_temp);

snprintf(jsonBuf, sizeof(jsonBuf),
%.2f, \"timestamp\": \"%s\"}", tmp

— —->val, iso_temp);
esp_mqgtt_client_publish(client, TOPIC_TEMP, jsonBuf, @, 1,

"{\"temperature\":

epoch_to_iso08601_utc((time_t)hum->timestamp, iso_hum);

snprintf(jsonBuf, sizeof(jsonBuf),

"{\"humidity\": %.2f, \"timestamp\”: \"%s\"}",

< val, iso_hum);

hum->

esp_mgtt_client_publish(client, TOPIC_HUM, jsonBuf, @, 1,

— false);
}
if (hum) {
char iso_hum[21];
— false);
3
3
break;

case MQTT_PUBLISHED:
ESP_LOGI(TAG, "PARANDO");
if (client) ¢

esp_mqtt_client_stop(client);

esp_mqtt_client_destroy(client);

client = NULL;
}
COMSTATUS = 1;
return;
case MQTT_SUBSCRIBED:

116

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

sensorFloatReading[@].val
if (client) {

= retSubscribedValue;

ESP_ERROR_CHECK(esp_mqtt_client_stop(client));
ESP_ERROR_CHECK(esp_mqtt_client_destroy(client));

client = NULL;
}
COMSTATUS = 1;
return;
case MQTT_ERROR:

ESP_LOGE(TAG, "ERRO DE CONEXAQ");

if (client) {

esp_mqtt_client_stop(client);

esp_mqtt_client_destroy(client);

client = NULL;
}
COMSTATUS = 0;
default:
break;

void publish_state_all(void) {

if (!ctrl_client) return;

esp_mgtt_client_publish(ctrl_client,
— off"”, @, 1, true);

esp_mgtt_client_publish(ctrl_client,
— off"”, @, 1, true);

esp_mqtt_client_publish(ctrl_client,
< off", @, 1, true);

esp_mqtt_client_publish(ctrl_client,
— off"”, @, 1, true);

void publish_irrig_state(void) {
if (!ctrl_client) return;
esp_mqgtt_client_publish(ctrl_client,
— off"”, @, 1, true);

static void soil_adc_init_once(void){

TOPIC_L1_STATE_RURAL, lampl1_state?"on":”

TOPIC_L2_STATE_RURAL, lamp2_state?”on":"

TOPIC_L3_STATE_RURAL, lamp3_state?”on":"

TOPIC_AUTO_STATE_RURAL, auto_mode?"on":"

TOPIC_IRR_STATE_RURAL, irrig_state?”on"”:"

117

341 static bool inited = false;

342 if (inited) return;

343

344 adc_oneshot_unit_init_cfg_t unit_cfg = {

345 .unit_id = SOIL_ADC_UNIT,

346 b

347 ESP_ERROR_CHECK (adc_oneshot_new_unit(&unit_cfg, &s_adc));

348

349 adc_oneshot_chan_cfg_t chan_cfg = {

350 .bitwidth = SOIL_BITWIDTH,

351 .atten = SOIL_ATTEN,

352 b

353 ESP_ERROR_CHECK (adc_oneshot_config_channel (s_adc, SOIL_ADC_CHANNEL, &chan_cfg))
—

354 inited = true;

355}

356
357 // Mediana simples de N leituras para reduzir rudo

358 static int read_soil_raw_multisample(void){

359 const int N = 15;

360 int v[NJ];

361 for (int i = 0; i < N; i++){

362 ESP_ERROR_CHECK (adc_oneshot_read(s_adc, SOIL_ADC_CHANNEL, &v[il));
363 }

364 // insertion sort

365 for (int i = 1; i < N; i++){

366 int key = v[i], j =1 - 1;

367 while (j >= 0 && v[j] > key){ v[j+1] = v[jl; j-—; }
368 v[j+11 = key;

369 }

370 return v[N/2];

371}

372
ar3 // Mapeia leitura para % de umidade (0..100)

s7a static float soil_percent_from_raw(int raw){

375 float dry = SOIL_RAW_DRY, wet = SOIL_RAW_WET;

376 if (dry < wet){ float t = dry; dry = wet; wet = t; } // por via das dvidas
377 float pct = (dry - raw) / (dry - wet);

378 if (pct < @) pct = 0;

379 if (pct > 1) pct = 1;

380 return pct *x 100.0f;

118

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

void MQTTSenderTask(void *args){
mgttTaskHandle = xTaskGetCurrentTaskHandle();
ESP_LOGI(TAG, "INICIADO SENDER TASK");

while (1)
{
static int index = 0;

index = 0;

ESP_LOGI(TAG, "INICIANDO REDE WIFI");
ESP_ERROR_CHECK (esp_wifi_start());

while(!wifiOnline){
vTaskDelay(20);

if (humidityIndexProcess > @ && wifiOnline){

strcpy(generalDataQueue[index].tag, humidityDatalhumidityIndexProcess
— -1].1ocal);

strcpy(generalDataQueue[index].local, "tcc/esp@2/rural/hum");

generalDataQueue[index].val = humidityDatalhumidityIndexProcess-1].val;

generalDataQueue[index].timestamp = humidityDatal[humidityIndexProcess
— =1].timestamp;

index++;

dataToSend = 1;

humSended = 1;

if (temperaturelndexProcess > @ && wifiOnline){
strcpy(generalDataQueue[index].tag, temperatureDatal
— temperatureIndexProcess-1].local);
strcpy(generalDataQueuel[index].local, "tcc/esp@2/rural/temp”);
generalDataQueuel[index].val = temperatureDatal[temperaturelndexProcess
— =-1].val;
generalDataQueuel[index].timestamp = temperatureDatal
— temperatureIndexProcess-1].timestamp;
index++;
dataToSend = 1;

119

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

tmpSended = 1;
3
vTaskDelay (pdMS_TO_TICKS(30000));

if(dataToSend == 1){
xTaskNotify(mgttTaskHandle, NETWORK_CONNECTED, eSetValueWithOverwrite);
MQTTSender (generalDataQueue,9);
dataToSend=0;

if (COMSTATUS == 1){
if(humidityIndexProcess > @ && humSended ==1){
humidityDatalhumidityIndexProcess-1].timestamp = 0;
humidityDatalhumidityIndexProcess-1].val = 0;
humidityIndexProcess--;
humSended = 0;

if(temperatureIndexProcess > 0 && tmpSended ==1){
temperatureDatal[temperatureIndexProcess-1].timestamp = 0;
temperatureDatal[temperatureIndexProcess-1].val = 0;
temperatureIndexProcess--;
tmpSended = 0;

for(int i = 0; i<generalDataQueuelLength; i++){
strcpy(generalDataQueuel[i].tag, " ");
strcpy(generalDataQueuel[i].local, " ");
generalDataQueuel[i].val=0;

generalDataQueue[i].timestamp=0;

3
vTaskDelay (pdMS_TO_TICKS(30000));

void getSubscribed(){
MgttQueueFloat_t temp[1];

strcpy(subscribedData.local, "tcc/esp@2/rural/temp”);
xTaskNotify(mgttTaskHandle, NETWORK_CONNECTED, eSetValueWithOverwrite);

120

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

476

477

479

480

481

482

483

484

485

486

487

488

490

491

492

493

494

495

496

497

498

strcpy(temp[@].tag, " ");

strcpy(temp[@].local, " ");

temp[@].val = 0;

temp[@]. timestamp=0;

strcpy(temp[@].1local, subscribedData.local);
MQTTSender (temp, 1);

subscribedData.val = temp[@].val;

printf("Valor lido: %f \n\r", subscribedData.val);

int storeFloatQueue(float data, char locall[], SysDataFloat_t xinternalData){

int indexLocal = 0;

if (internalData[SensorQueuelLength-1].timestamp != 0){
for(int i=0; i<(SensorQueuelLength-1); i++){
internalDatal[i].val = internalDatal[i+1].val;
internalDatal[i].timestamp = internalDatal[i+1].timestamp;
internalDatal[i].timestamp = internalDatal[i+1].timestamp;
strcpy(internalDatali].local,internalDatali+1].local);
indexLocal = SensorQueuelLength-1;
}
Jelse{
for(int i=0; i<SensorQueuelLength;i++){
if(internalDatal[i].timestamp == 0) {
indexLocal = i;

break;

3

internalDatal[indexLocal].val = data;
internalDatal[indexLocal].timestamp = now_epoch_ds3231();

strcpy(internalDatalindexLocal].local,local);

return(indexLocal+1);

void taskHumidityQueue(void *args){
humidityIndexProcess = 0;

soil_adc_init_once();

121

499 while(1){

500 int raw = read_soil_raw_multisample();

501 float hum_pct = soil_percent_from_raw(raw); // 0..100 %

502

503 humidityIndexProcess = storeFloatQueue(hum_pct, "HUM@1", humidityData);
504 vTaskDelay (pdMS_TO_TICKS(2000));

505 }

506}

507
sos void taskTemperatureQueue(void *args){
509 temperatureIndexProcess = 0;

510

511 while(1){

512 float tC = 0.0f;

513 if (ds3231_get_temperature(&tC) == ESP_OK) {

514 temperaturelndexProcess = storeFloatQueue(tC, "TMPQ1", temperatureData);
515 }

516 vTaskDelay (pdMS_TO_TICKS(2000)); // RTC atualiza

517 }

518}

519
520
521

s22 float convertData(char datal[], int lenght){

523 bool negative = 0;

524 bool dot = 0;

525 int factorMult = 0;
526 int factorDiv = 0;

527 int factorDivAux = 0;
528 float valor = 0;

s31 for(int i=9; i<lenght-1; i++){

532 if(datalil=="."){
533 dot=1;

534 }

535

536 if (datalil =='-"){
537 negative = 1;

538 }Yelse{

539 if (dot==0){

122

540 factorMult++;

541 Jelse{

542 factorDiv++;
543 }

544 }

545 }

546 //Se no achou o . ento precisa subtrair um para ajustar o comprimento
547 if(dot==0){

548 factorMult--;
549 }
550 dot = 0;

551

552 factorDivAux = factorDiv-1;

ssa for(int i=9; i<lenght-1; i++){
555 if(datalil=="."){

556 dot=1;

557 Yelse{

558 if (datali] > 47 && datali] < 58){

559 if(dot == @){

560 factorMult--;

561 valor = (float) (((int)datal[i]) -48) * pow(10,factorMult) + valor;

562 }

563 if(dot == 1){

564 valor = (float) (((int)datal[i]-48)) / pow(10,factorDiv-factorDivAux) +
— valor;

565 factorDivAux--;

566 }

567 }

568 }

569 }

570

571 if(negative){

572 valor = -valor;

573 }

574

575 return valor;

576}

577

s7s static long long now_epoch_ds3231(void){

579 struct tm t;

123

580

581

582

583

584

585

586

10

11

10

if (ds3231_get_time(&t) == ESP_OK) {
// TZ=UTC@ -> mktime() devolve epoch UTC
return (long long) mktime(&t);
}
// fallback: se o RTC falhar, devolve @ (ou um erro)

return (0);

B.5.3 Arquivo mqtt_cert.h

Listing 13: Certificado da autoridade certificadora (mqtt_cert.h)

#ifndef MQTT_CERT_H
#define MQTT_CERT_H

static const char mqtt_ca_cert_pem[] =
Bt BEGIN CERTIFICATE----- \n"
"MIIDsTCCApmgAwWIBAgIUVNoWnkWO8LN+bo8boufYy4Ap8agwDQYJKoZIhvcNAQEL\N"
/* linhas intermediarias do certificado omitidas para brevidade */
"J1cwAsIhrfKNc9QaSMboHEZz3knK6822jEFTCDgH4+nRD6ROD2A==\n"
Mo END CERTIFICATE----- \n";

#endif // MQTT_CERT_H

B6 Arquivo scheduler.h e scheduler.c

Listing 14: Cabegalho do agendador de tarefas (scheduler.h)

#pragma once
#ifdef __cplusplus
extern "C" {
#endif

void SchedulerTask(void *args);

#ifdef __cplusplus

3
ftendif

Listing 15: Implementagao do agendador de iluminagao e irrigagao (scheduler.c)

124

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

#include <stdbool.h>

#include "freertos/FreeRTOS.h"
#include "freertos/task.h”
#include "driver/gpio.h”
#include "esp_log.h"

#include "ds3231.h"

#include "general.h”

#include "MQTT.h"

static const char *xTAG = "SCHED";

static int minutes_since_midnight(void) {
struct tm t = {03};
if (ds3231_get_time(&t) != ESP_OK) {
ESP_LOGW(TAG, "RTC falhou; assumindo 00:00");
return 9;

}

return t.tm_hour * 60 + t.tm_min;

static bool in_window(int now_min, int start_min, int end_min) {
if (start_min <= end_min) {
return (now_min >= start_min) && (now_min < end_min);
} else {

return (now_min >= start_min) || (now_min < end_min);

static void set_all_lamps(bool on) {
lamp1_state = lamp2_state = lamp3_state = on;
gpio_set_level (LAMP1_GPIO, on);
gpio_set_level (LAMP2_GPIO, on);
gpio_set_level (LAMP3_GPIO, on);
publish_state_all();

static void set_irrig(bool on) {
irrig_state = on;
gpio_set_level (IRR_GPIOQ, on);
publish_irrig_state();

125

42

43 void SchedulerTask(void *args) {

44 const TickType_t period = pdMS_TO_TICKS(1000);
45

16 const int IRR_START = 9%60 + 0;

a7 const int IRR_END = 9%*60 + 10;

48 const int LMP_START = 18%60 + 30,

49 const int LMP_END = 5%60;

50

51 for (5;) {

52 int now = minutes_since_midnight();

53

54 if (auto_irrig) {

55 bool want_irrig = in_window(now, IRR_START, IRR_END);
56 if (want_irrig != irrig_state) {

57 set_irrig(want_irrig);

58 }

59 }

60

61 if (auto_mode) {

62 bool want_lamps = in_window(now, LMP_START, LMP_END);
63 bool group_on = lampl_state || lamp2_state || lamp3_state;
64 if (want_lamps != group_on) {

65 set_all_lamps(want_lamps);

66 }

67 }

68

69 vTaskDelay(period);

70 }

7}

126

10

11

12

13

14

15

16

17

18

19

20

21

22

APENDICE C -- Cédigos das funcoes
Node-RED

Este apéndice apresenta os cddigos completos dos nos function utilizados no Node-RED,
descritos na Secao 3.5. As listagens a seguir correspondem, respectivamente, as funcoes
norm temp, norm hum, pair (temp-+hum) e function final, associadas as subsegoes 3.5.11,
3.5.12, 3.5.13 e 3.5.14 do texto principal.

Funcao norm temp

Listing 16: Funcao de normalizagdo da temperatura (norm temp)

// Normaliza TEMPERATURA -> msg.topic='temp', msg.payload={val, ts}
let p = msg.payload;
if (typeof p === 'string') {
try {
p = JSON.parse(p);
} catch {

// deixa como string

const val = Number(

(p && (p.temperature ?? p.temp)) ?? (typeof p === 'number' ? p : NaN)
);
const ts = (p && (p.timestamp ?? p.ts)) || new Date().toISOString();

if (!Number.isFinite(val)) {
node.error('Temperatura invlida', msg);

return null;

msg.topic = 'temp';

msg.payload = { val, ts: String(ts) };

127

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

return msg;

Funcao norm hum

Listing 17: Fungao de normaliza¢ao da umidade (norm hum)

// Normaliza UMIDADE -> msg.topic='hum', msg.payload={val, ts}
let p = msg.payload;
if (typeof p === 'string') {
try {
p = JSON.parse(p);
} catch {

// deixa como string

const val = Number(

(p && (p.humidity ?? p.hum)) ?? (typeof p === 'number' ? p : NaN)
)
const ts = (p && (p.timestamp ?? p.ts)) || new Date().toISOString();

if (!Number.isFinite(val)) {
node.error('Umidade invlida', msg);

return null;

msg.topic = 'hum';
msg.payload = { val, ts: String(ts) }I;

return msg;

Fungao pair (temp+hum)

Listing 18: Fungao de pareamento de temperatura e umidade (pair (temp+hum))

const windowMs = 15_000; // 15s

let t = context.get('t') || null;
let h = context.get('h') || null;

if (msg.topic === 'temp') {

128

7 t = { ...msg.payload };

8 context.set('t', t);

9 } else if (msg.topic === 'hum') {
10 h ={ ...msg.payload };

11 context.set('h', h);

} else {

13 return null;

1}

15

6 if (t && h) {

17 const timeT

—
V]

[N

Date.parse(t.ts);
18 const timeH = Date.parse(h.ts);

19

20 if (!Number.isNaN(timeT) && !Number.isNaN(timeH)) {

21 const diff = Math.abs(timeT - timeH);

22

23 if (diff <= windowMs) {

24 const out = { payload: { temp: t, hum: h } };

25 context.set('t', null);

26 context.set('h', null);

27 return out;

28 }

29

30 // opcional: expirar leitura velha para no empacar
31 const now = Date.now();

32 if (now - timeT > windowMs) context.set('t', null);
33 if (now - timeH > windowMs) context.set('h', null);
4}

35}

36 return null;

Funcao function final

Listing 19: Fungao de montagem do comando SQL para inser¢ao em sensorData (function
final)

1 // msg.payload = { temp?:{val,ts}, hum?:{val,ts} }
2 const p = msg.payload || {};

3 const t = p.temp;

4 const h = p.hum;

129

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

// escolhe um ts: prioriza o da temp; seno o da hum
const tsISO = (t && t.ts) || (h && h.ts);

function toMySQL(s) {
const d = new Date(s);
return isNaN(d.getTime())

? null

: d.toISOString().slice(@, 19).replace('T',

const when = toMySQL(tsISO);
if (!when) {

node.error('timestamp invlido', msg);

return null;

msg.topic = 'INSERT INTO "~sensorData”

< ("sensor™, local”, temperature™, humidity™, timestamp~) VALUES (?,?7,?,?,7)';

msg.payload = [
‘combo', // ou 'temperatura+umidade
"LAB', // seu local
t ? t.val : null, // temperature
h ? h.val : null, // humidity
when // YYYY-MM-DD HH:MM:SS
1

return msg;

);

130

APENDICE D -- Pipeline MySQL —
SCADA-LTS

Este apéndice apresenta os codigos em SQL utilizados na configuracao do pipeline entre
o banco de dados MySQL (tabela sensorData) e o SCADA-LTS, conforme descrito na
Segao 3.5.15. As listagens a seguir correspondem, respectivamente, a criagao/verifica¢ao
do banco e da tabela (passo 2), e as consultas associadas aos Data Sources hum_rural

(passo 4) e temp_rural (passo 5).

Criagao/verificacao do banco SCADA e da tabela sensorData

Listing 20: Criagao/verifica¢do do banco SCADA e da tabela sensorData

1 CREATE DATABASE IF NOT EXISTS SCADA
2 DEFAULT CHARACTER SET utf8mb4

3 COLLATE utf8mb4_0900_ai_ci;

4 USE SCADA;

¢ CREATE TABLE IF NOT EXISTS sensorData (

7 id INT AUTO_INCREMENT PRIMARY KEY,

8 sensor VARCHAR(3@) NOT NULL,

9 “local® VARCHAR(50) NOT NULL,

10 temperature DECIMAL(5,2) NULL,

11 humidity DECIMAL(5,2) NULL,

12 “timestamp™ DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP
3) ENGINE=InnoDB;

[

Data Source hum_rural: consulta e ponto de medicao

Listing 21: Select Statement do hum_rural

1 SELECT 'hum' AS pointId,
2 humidity AS valueCol,

131

“timestamp™ AS timeCol
FROM sensorData
ORDER BY "“timestamp~ DESC, id DESC
LIMIT 1;

Data Source temp_rural: consulta e ponto de medigao

Listing 22: Select Statement do temp_rural

SELECT
"temp' AS pointld,
temperature AS valueCol,
“timestamp™ AS timeCol
FROM sensorData
; ORDER BY “timestamp~ DESC, id DESC
LIMIT 1;

132

