
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Marcos Paulo Souto Monteiro

Portaria eletrônica com reconhecimento facial

São Carlos

2020

Marcos Paulo Souto Monteiro

Portaria eletrônica com reconhecimento facial

Monografia apresentada ao Curso de Enge-
nharia Elétrica com Ênfase em Eletrônica,
da Escola de Engenharia de São Carlos da
Universidade de São Paulo, como parte dos
requisitos para obtenção do título de Enge-
nheiro Eletricista.

Orientador: Prof. Dr. Maximiliam Luppe

São Carlos
2020

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Monteiro, Marcos Paulo Souto

 M313p Portaria eletrônica com reconhecimento facial /
Marcos Paulo Souto Monteiro; orientador Maximiliam
Luppe. São Carlos, 2020.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2020.

1. Controle de acesso. 2. Reconhecimento facial. 3.

Sistemas embarcados. 4. Detecção facial. 5.
Multithreading. 6. Sistemas Web. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

FOLHA DE APROVAÇÃO

Nome: Marcos Paulo Souto Monteiro

Título: “Portaria eletrônica com reconhecimento facial”

Trabalho de Conclusão de Curso defendido e aprovado
em_08_/_12_/_2020_,

com NOTA__9,3__(nove , três), pela Comissão

Julgadora:

Prof. Dr. Maximiliam Luppe - Orientador - SEL/EESC/USP

Prof. Associado Evandro Luis Linhari Rodrigues - Professor

Aposentado - SEL/EESC/USP

Mestre Jovander da Silva Freitas - Professor do IFSP - Instituto

Federal de São Paulo, Campus Barretos

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Associado Rogério Andrade Flauzino

À minha mãe, Luciana, e ao meu pai, Alan

RESUMO

MONTEIRO, M. P. S. Portaria eletrônica com reconhecimento facial. 2020. 63p.
Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2020.

Este projeto se propôs a desenvolver um sistema que controle a entrada de indivíduos a um
determinado estabelecimento por meio do reconhecimento facial. O sistema também conta
com uma plataforma Web de alteração e visualização de dados e funcionalidades como
interação com o usuário. Durante o trabalho, foram realizados uma série de experimentos
para definir a melhor implementação de detecção e reconhecimento facial de forma embar-
cada. Como resultado, foi obtido um tempo de resposta médio entre 0, 40s e 0, 77s, uma
acurácia positiva entre 76% e 100% e uma acurácia negativa acima de 95%. Além disso, as
funcionalidades adicionais foram implementadas de forma integrada com o sistema, mas
ainda havendo espaço para melhorias, especialmente com relação à confiabilidade.

Palavras-chave: Sistemas Embarcados. Reconhecimento Facial. Detecção Facial. Mul-
tithreading. Sistemas Web.

ABSTRACT

MONTEIRO, M. P. S. Electronic door with facial recognition. 2020. 63p.
Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2020.

The proposition of this project was to develop a system that controls the entrance of
individuals to a certain facility through the recognition of their faces. The system should
also be accompanied by a platform for alteration and visualization of data and features
such as interaction with the user. Throughout the project, a series of experiments have
been conducted to define the best implementation of facial detection and recognition in an
embedded form. As a result, it was obtaines an average of response time between 0, 40s
e 0, 77s, a positive accuracy between 76% e 100% and a negative accuracy above 95%.
Besides, additional functionalities have been implemented integrated with the system, but
still keeping space for improvements, specially when it comes to reliability.

Keywords: Embedded Systems. Facial Recognition. Facial Detection. Multithreading.
Web Systems.

LISTA DE FIGURAS

Figura 1 – Exemplo de equipamento de controle de acesso 16
Figura 2 – Diagrama em alto nível do sistema . 19
Figura 3 – Raspberry Pi 4B . 20
Figura 4 – Pi Camera . 21
Figura 5 – Campo de visão vertical da câmera . 21
Figura 6 – Eletroímã como fechadura de porta . 22
Figura 7 – Esquemático de ligações para fazer abertura da porta por meio de relé 22
Figura 8 – Sensor de distância HC-SR04 . 23
Figura 9 – Exemplos do banco de imagens LFW 25
Figura 10 – Resultados dos testes de acurácia com a AWS 26
Figura 11 – Resultado do teste de tempo com a AWS para imagens do LFW 27
Figura 12 – Resultados dos testes de tempo com a AWS para imagens da câmera . 27
Figura 13 – Esquema de processamento da imagem em um descritor de face 29
Figura 14 – Resultados dos testes de acurácia com a Dlib para o LFW 30
Figura 15 – Exemplos do banco de imagens AT&T 31
Figura 16 – Resultados dos testes de acurácia com a Dlib para o AT&T 31
Figura 17 – Varredura da imagem pela janela ao longo de sucessivos redimensiona-

mentos no algoritmo de detecção facial 33
Figura 18 – Marcações de possíveis faces em vizinhanças de uma imagem analisada

pela detecção facial . 33
Figura 19 – Face de uma pessoa de 1, 64m de altura a 1, 5m da câmera 35
Figura 20 – Resultado dos testes de acurácia da detecção 36
Figura 21 – Resultado do teste de tempo da detecção 36
Figura 22 – Gráfico do tempo médio para detecção de uma face 37
Figura 23 – Exemplos do banco próprio de imagens com diferentes graus de nitidez 38
Figura 24 – Resultado dos testes de acurácia com o filtro de nitidez 38
Figura 25 – Diagrama entidade-relacionamento do banco de dados 39
Figura 26 – Estrutura de componentes do Spring Boot 41
Figura 27 – Esquema de páginas da plataforma Web 42
Figura 28 – Fluxograma da implementação sequencial 45
Figura 29 – Configuração do hardware . 46
Figura 30 – Número de imagens utilizadas por iteração no teste sequencial 47
Figura 31 – Arquitetura concorrente do subsistema embarcado 49
Figura 32 – Tempo de resposta com a implementação concorrente para um percurso

retilíneo e outro livre . 50

Figura 33 – Banco de dados implementado no MySQL, com destaque para as tabelas
associadas às entidades . 51

Figura 34 – Mapeamento das páginas Web para os controladores 52
Figura 35 – Relacionamento entre componentes Web para as páginas de usuário . . 52
Figura 36 – Relacionamento entre componentes Web para as páginas de pessoas . . 53
Figura 37 – Relacionamento entre componentes Web para as demais páginas 53
Figura 38 – Exemplos das páginas Web construídas (1) 54
Figura 39 – Exemplos das páginas Web construídas (2) 54
Figura 40 – Relacionamento para requisições ao servidor da página Web 55
Figura 41 – Exemplo da página Web de registros 56
Figura 42 – Relacionamento para requisições ao servidor da Raspberry 56
Figura 43 – Exemplo de tela exibida na interface gráfica 57
Figura 44 – Exemplo de e-mail enviado pela portaria 57
Figura 45 – Arquitetura final do subsistema embarcado 58

SUMÁRIO

1 INTRODUÇÃO . 15
1.1 Motivação . 15
1.2 Objetivos . 16
1.3 Organização . 17

2 DESENVOLVIMENTO . 19
2.1 Hardware Principal . 19
2.1.1 Computador . 19
2.1.2 Câmera . 20
2.1.3 Periféricos . 22
2.2 Reconhecimento Facial . 23
2.2.1 Aprendizagem de Máquina . 23
2.2.2 OpenCV . 24
2.2.3 AWS . 25
2.2.4 Dlib . 28
2.3 Detecção Facial . 32
2.3.1 Modelo . 32
2.3.2 Parâmetros . 34
2.3.3 Filtro de Nitidez . 37
2.4 Núcleo Web . 39
2.4.1 Banco de Dados . 39
2.4.2 Plataforma Web . 40
2.5 Integração . 42
2.5.1 Comunicação . 42
2.5.2 Interação . 43
2.5.3 Notificação . 43

3 IMPLEMENTAÇÃO . 45
3.1 Embarcado . 45
3.1.1 Sequencial . 45
3.1.2 Concorrente . 47
3.2 Web . 50
3.3 Integração . 55

4 CONCLUSÃO . 59

REFERÊNCIAS . 61

15

1 INTRODUÇÃO

Ao longo da revolução de tecnológica em curso já há algumas décadas, o potencial
de aplicação de algoritmos e eletrônica para aprimorar processos e tornar as atividades
cotidianas mais práticas tem crescido imensamente. Dentre essas aplicações, temos a
evolução e automatização de sistemas de controle de acesso. Saindo do uso de chaves
convencionais, passou-se para a utilização de cartões ou senhas e, nos últimos anos, tem-se
uma expansão do uso da biometria (DIVYA; MATHEW, 2017).

Atualmente, a forma mais popular de biometria é a de varredura de impressão
digital, que consegue eliminar problemas de tecnologias anteriores, uma vez que senhas
podem ser adivinhadas ou esquecidas e cartões podem ser roubados ou perdidos. Entretanto,
essa abordagem traz consigo alguns problemas (ALSAADI, 2012), como a necessidade de
um hardware específico para leituras de alta qualidade, a precisão dependente da limpeza
do dedo e a falta de praticidade em certos casos, como quando se está usando luvas. Além
disso, o sistema com essa característica demanda a presença física de uma pessoa para que
possa ser feito o seu cadastro, o que pode ser um problema em cenários em que o acesso
da pessoa ao ambiente controlado não é frequente.

Com isso, outros modos de biometria vem crescendo de modo a suprimirem essas
complicações, dentre os quais temos o reconhecimento facial. Em termos de hardware,
basta uma câmera, a qual é um dispositivo comum, e em termos de usabilidade, basta que
o usuário pare em frente à câmera, tornando a experiência ainda mais prática que a que
ocorre com impressão digital. Além disso, para cadastrar uma pessoa, basta obter fotos da
mesma, o que pode ser feito de forma remota, seja por imagens públicas em redes sociais
ou pela própria pessoa enviando uma foto.

1.1 Motivação

Na seção anterior, apresentou-se os benefícios do controle de acesso por reconheci-
mento facial em termos gerais. De forma aplicada, um sistema com essa característica pode
ainda solucionar problemas específicos de um determinado estabelecimento. Nesse sentido,
este projeto foi desenvolvido no contexto do escritório de uma empresa de tecnologia. Para
dissertar sobre o controle de acesso atual e como poderia ser aprimorado, descreve-se, a
seguir, como se dá o acesso de um cliente que vá atender a uma reunião presencial na
empresa.

O escritório da empresa em São Paulo é distribuído ao longo de alguns andares
de um edifício. Dessa forma, para que um cliente possa atender a uma reunião marcada,
ele deve primeiramente passar pela portaria do edifício. Assim, um dos funcionários da

16

portaria solicita o nome do cliente e utiliza um interfone para entrar em contato com uma
funcionária específica do departamento financeiro, a qual será referida como Maria no
restante do texto.

Passada a portaria do edifício, o cliente deve se direcionar para o 2o andar, onde
se encontram as salas de reunião principais. A entrada no escritório é controlada por um
aparelho que faz leitura de impressões digitais; porém, a digital geralmente é cadastrada
apenas para funcionários, que são aqueles que tem de ter acesso recorrente. De outra
forma, o que acontece é que a Maria abre a porta, de modo que o cliente pode esperar na
antessala, ou avisa o gerente responsável pela reunião que o faça.

Nesse cenário, uma das atribuições do sistema proposto é de substituir a Maria
nas tarefas de recepcionista para as quais ela é improvisada, já que o seu trabalho está
atrelado ao departamento financeiro. Uma outra complicação que pretende-se eliminar é a
dependência da portaria do edifício da autorização da Maria, que pode estar ausente da
sua sala quando for necessária. Com isso, o cliente acaba tendo que esperar ou que buscar
a autorização por meios indiretos, como um telefone celular.

Essa trajetória de acesso descrita para o cliente pode acontecer também para outros
indivíduos, como funcionários recém-contratados e prestadores de serviço ocasionais, como
um profissional de entregas ou de reparos. Além disso, como já citado, o sistema proposto
torna a experiência dos funcionários ainda mais prática.

1.2 Objetivos

Dado o contexto geral de acesso por biometria, o sistema desenvolvido neste
projeto teve como principal objetivo realizar o controle de acesso de indivíduos a um
estabelecimento a partir de um equipamento posicionado ao lado da porta de entrada, tal
qual ocorre na Figura 1.

Figura 1 – Exemplo de equipamento de controle de acesso

Fonte: (ASSISTA INFOCOMM, 2020)

17

Além disso, dado o cenário específico de aplicação, este projeto propôs-se a atingir
os seguintes objetivos adicionais:

• interagir com o usuário por meios audiovisuais de modo a recepcioná-lo ou direcionar
a resolução de eventuais complicações;

• notificar os funcionários interessados com relação à chegada de usuários específicos;

• disponibilizar uma plataforma para cadastro e atualização de dados de pessoas
autorizadas;

• permitir a consulta ao banco de dados de pessoas cadastradas pela portaria do
edifício.

Além disso, por estar relacionado à segurança de um estabelecimento, deveria
dispor de um alto grau de confiabilidade, possuindo, dentre outros elementos, mecanismos
de auto-teste e de registro de movimentações.

1.3 Organização

Este trabalho é organizado nos seguintes capítulos:

1. Introdução: introduz o contexto da aplicação, descreve o problema e traça os objetivos.

2. Desenvolvimento: define a arquitetura do sistema, analisando, justificando a escolha
e determinando os parâmetros de cada um dos componentes, o que é feito por meio
de revisão da literatura e da realização de experimentos.

3. Implementação: descreve a implementação do sistema e expõe os resultados obtidos.

4. Conclusão: reflete sobre o trabalho realizado, ponderando acerca do cumprimento
dos objetivos e das possibilidades de melhoria para futuros trabalhos.

19

2 DESENVOLVIMENTO

Os requisitos levantados para o sistema permitiram que se esboçasse um diagrama
em alto nível do mesmo, o qual é usado como referência para a forma como esta seção
se organiza. Para que possa haver reconhecimento facial, é preciso, primeiramente, que
haja captura de imagens por uma câmera e, após isso, a análise de cada imagem por
um detector facial a fim de localizar a face a ser identificada. Além disso, junto com os
elementos associados à abertura da porta, podem ser necessários sensores adicionais.

Para cadastrar e alterar dados dos usuários, optou-se pelo desenvolvimento de uma
plataforma Web; esses dados, por sua vez, devem estar armazenados em um banco de dados.
Configuraram-se, portanto, dois subsistemas distintos, os quais tem de se comunicar de
alguma maneira. Por fim, eram necessários ainda mecanismos de interação com o usuário
e notificação a interessados, que inicialmente são associados ao subsistema embarcado mas
que podem depender também de procedimentos no outro subsistema. Com isso, temos o
diagrama da Figura 2, de modo que esta seção partirá dos componentes do embarcado,
passando para o núcleo do Web e, por fim, tratará dos elementos de integração.

Figura 2 – Diagrama em alto nível do sistema

Fonte: própria

2.1 Hardware Principal

2.1.1 Computador

A fim de projetar o núcleo do subsistema embarcado, iniciou-se pela escolha
do computador que será responsável pelo processamento central e controle dos demais
elementos. Desejava-se que o hardware do sistema compusesse, ao final, um aparelho

20

portátil, que pudesse ser instalado, por exemplo, na parede em que se encontra a porta;
assim, tornou-se necessário que o computador fosse de pequeno porte. Além disso, ele
precisava possuir uma capacidade de processamento considerável, uma vez que esse projeto
poderia envolver algoritmos de processamento de imagens e de inteligência artificial,
eliminando a possibilidade de uso de um microcontrolador. Com isso, a melhor opção
acabou sendo a utilização de um computador de placa única.

Figura 3 – Raspberry Pi 4B

Fonte: (TOM’S HARDWARE, 2020)

Nesse sentido, o sistema utilizou uma placa Raspberry Pi 4B (Figura 3), que faz parte
de uma de linha de computadores de placa única de baixo custo, utilizada mundialmente
em projetos de sistemas embarcados e robótica. Dentre outras características, pode-se
conectar por Wi-Fi e Bluetooth, suporta a execução de sistemas operacionais derivados da
família Linux e possui os seguintes conectores: Ethernet, portas USB, portas de entrada e
saída de uso geral, saída de áudio, saídas de vídeo HDMI, entrada de câmera serial, saída
de vídeo serial e alimentação USB-C.

O ambiente de desenvolvimento foi baseado no sistema operacional Raspbian,
da família Linux, e na linguagem de programação Python. Esses dois elementos são os
oficialmente apoiados pelo fabricante, de forma que possuem a maior quantidade de
recursos para desenvolvimento, característica importante para um projeto que precisa
agregar uma gama de componentes de hardware e software distintos.

2.1.2 Câmera

A fabricante da Raspberry Pi suporta também uma linha de módulos de câmera
chamada Pi Camera. A vantagem de se utilizar um desses módulos é que eles são conectados
na entrada serial e, com isso, gerenciados pela placa gráfica da Raspberry, permitindo
uma resolução e taxa de quadros maiores do que webcams tradicionais, que se conectam
às portas USB. Neste projeto, foi utilizado o modelo V1 (Figura 4), que, além do custo
menor, suporta imagens com resoluções de até 2592 × 1944 e captura vídeos HD em até
30FPS (JONES, 2016b). Além disso, é pequeno, leve e possui um cabo de comunicação

21

flexível, o que permite ser ajustado a qualquer invólucro que venha a conter a Raspberry
Pi.

Figura 4 – Pi Camera

Fonte: (TOM’S HARDWARE, 2020)

Figura 5 – Campo de visão vertical da câmera

Fonte: própria

Dado que o equipamento deve se encontrar fixado na parede ao lado da porta,
uma especificação que deve ser levada em conta é a de campo de visão, já que deve ser
possível capturar imagens de pessoas de diferentes tamanhos. Essa especificação é dada
como o ângulo de “abertura” da lente da câmera, retratado na Figura 5 como α. Assim,
a uma distância d, a câmera registra imagens em uma faixa y = 2d tan(α2). Com isso,
considerando uma distância de 1, 5m e dado que o campo de visão vertical da Pi Camera
é de 41, 41◦, temos uma faixa y = 113cm, o que é suficiente para atender às estaturas de
adultos (OUR WORLD IN DATA, 2019).

Com relação à interface de programação da câmera, tem-se disponível a biblioteca
picamera, a qual, em sua documentação, apresenta uma série de exemplos descrevendo
diversas formas e condições de captura de uma imagem. Dentre elas, temos duas funções que
se aproximam ao que era necessário para a aplicação neste projeto: capture_continuous e
capture_sequence. A primeira seria a escolha mais intuitiva, pois permite que se obtenha
imagens continuamente, sendo possível, a cada iteração, fazer o processamento da imagem
e encerrar o laço de execução caso uma determinada condição seja atingida. No entanto,
utilizar esse método faz com que o codificador da câmera seja reinicializado a cada iteração,
diminuindo sensivelmente o FPS que pode ser obtido (JONES, 2016a). Assim, o que é
proposto na documentação para um melhor desempenho neste tipo de aplicação é executar
capture_sequence de forma concorrente com o restante do programa, destinando uma
thread especificamente para a captura de imagens.

22

2.1.3 Periféricos

Um outro componente vital para os fins deste projeto é justamente a porta que
se quer fazer o controle, ou, mais especificamente, o eletroímã que atua como fechadura
dessa porta, cujo exemplo pode ser observado na Figura 6. Para manter a porta fechada,
deve-se aplicar uma corrente elétrica no eletroímã (INTELBRAS, 2020), de modo que o
campo gerado provoca uma força magnética de atração entre as partes metálicas; para
abrir a porta, basta cortar a corrente de alimentação.

Figura 6 – Eletroímã como fechadura de porta

Fonte: (SEGURANÇAJATO, 2018)

Nesse sentido, foi utilizado um módulo relé para chavear a corrente, a qual foi
fornecida por uma bateria 12V , cujo esquemático pode ser observado na Figura 7. O
módulo em questão foi alimentado pela Raspberry Pi e controlado por um de seus pinos
de uso geral, sendo que o estado normal do relé mantém o circuito de alimentação fechado.
Assim, para abrir a porta, coloca-se o pino digital de entrada em nível baixo, acionando o
opto-acoplador, o qual ativa o transistor, que por sua vez aciona o relé, abrindo o circuito.

Figura 7 – Esquemático de ligações para fazer abertura da porta por meio de relé

Fonte: própria

Foi adicionado, ainda, um sensor ultrassônico de distância ao projeto, de modo a
limitar o alcance do aparelho, evitando que a porta abra para uma pessoa que se encontra

23

no ambiente em frente à porta mas não pretende entrar. O sensor utilizado foi o HC-SR04
(Figura 8), o qual possui um alcance entre 2cm e 4m. Esse sensor funciona emitindo uma
onda de ultrassom e medindo quanto tempo ela demora para ser refletida pelo objeto e
voltar ao sensor. Nesse sentido, a função do controlador é enviar um pulso de gatilho ao
sensor e receber um pulso de retorno com duração proporcional à distância percorrida,
fazendo o cálculo a partir da velocidade do som no ar.

Figura 8 – Sensor de distância HC-SR04

Fonte: (TOM’S HARDWARE, 2020)

Ambos os periféricos descritos trabalham com 5V , fazendo com que fosse preciso
fazer alguns ajustes para utilizá-los com a Raspberry sem danificar os pinos digitais, que
são 3, 3V . No caso do módulo relé, o fechamento da porta foi feito colocando o pino em
estado de alta impedância ao invés de nível alto. Já no caso do sensor, foi utilizado um
divisor de tensão com resistores para o sinal de eco, o qual corresponde ao período entre a
transmissão e a recepção da onda. Por fim, tratando da programação, esses pinos podem
ser comandados a partir da biblioteca RPi.GPIO; um detalhe é que para obter o estado de
alto impedância é necessário configurar o pino como entrada sem resistores pull-up/down.

2.2 Reconhecimento Facial

2.2.1 Aprendizagem de Máquina

Estabelecido o hardware, partiu-se para a definição do principal elemento do
núcleo embarcado, o reconhecimento facial. Este foi realizado por meio de algoritmos de
aprendizagem de máquina, a qual é uma subárea da inteligência artificial que trabalha
com técnicas que permitem que computadores possam “aprender” (PAIVA, 2013). Nesse
sentido, modelos de aprendizagem de máquina são treinados a extrair informações de
dados automaticamente através de técnicas computacionais e estatísticas. Esse treinamento
consiste em fornecer amostras de dados pré-classificadas de modo a “calibrar” os parâmetros
internos do modelo, permitindo que o mesmo possa fazer previsões quando novos dados
forem apresentados.

24

Para avaliar o desempenho de um modelo, existe uma gama de métricas utilizadas
na literatura, muitas delas se baseando nos estados que podem ser assinalados ao teste de
uma amostra, os quais são:

• verdadeiro positivo (VP), em que a amostra pertence a uma determinada classe e é
identificada pelo modelo como tal;

• falso negativo (FN), em que a amostra pertence a uma determinada classe mas é
identificada como não-pertencente;

• verdadeiro negativo (VN), em que a amostra não pertence a uma determinada classe
e é identificada como tal;

• falso positivo (FP), em que a amostra não pertence a uma determinada classe mas é
identificada como pertencente.

Neste trabalho, foram utilizadas as métricas sensibilidade, especificidade e acurácia
(PAIVA, 2013). Entretanto, considerou-se que os dois primeiros termos não são intuitivos ao
leitor no sentido de informar o significado da métrica associada, preferindo-se adotar uma
nomenclatura própria, em que sensibilidade é chamada de acurácia positiva e especificidade
é chamada de acurácia negativa. Com isso, temos as fórmulas das métricas utilizadas
listadas a seguir.

acurácia positiva = V P

V P + FN

acurácia negativa = V N

V N + FP

acurácia = V P + V N

V P + V N + FN + FP

2.2.2 OpenCV

Primeiramente, analisou-se a viabilidade de se empregar a OpenCV, a biblioteca
de processamento de imagens mais utilizada para projetos embarcados, a qual dispõe de
implementações de três algoritmos: Eigenfaces, Fisherfaces e LBPH (OPENCV, 2020b).
Os dois primeiros não são adequados para utilização em casos em que se dispõe de apenas
uma imagem por pessoa (TAN, 2006). Com isso, foram descartados previamente, uma vez
que, neste trabalho, pretende-se que o cadastro no sistema seja prático, não sendo preciso
coletar várias imagens distintas do indivíduo a ser cadastrado.

Com relação ao LBPH, não foram encontradas informações assertivas sobre a sua
precisão nas condições em questão. Nesse sentido, decidiu-se usar um banco de imagens
para verificar o seu desempenho. O banco escolhido foi o Labeled Faces in the Wild
(HUANG, 2007), ou LFW, da Universidade de Massachusetts, que possui 13233 imagens
pré-existentes de 5749 pessoas diferentes, personalidades famosas e líderes mundiais, em

25

geral. A escolha se deu devido ao grande número de pessoas com duas fotos ou mais (1680)
e à variedade étnica do banco, como pode ser observado na Figura 9. Esse último requisito
se mostrou difícil de atender já que muitos bancos são compostos por imagens capturadas
na própria universidade.

Figura 9 – Exemplos do banco de imagens LFW

Fonte: própria

Durante o desenvolvimento do teste, notou-se que várias fotos possuíam mais de
uma face, às vezes havendo pessoas com rostos lado-a-lado; entretanto, cada foto estava
assinalada à apenas uma pessoa, o que prejudicava o desempenho do algoritmo no teste.
Assim, para este projeto, foi construído um subconjunto do LFW fazendo-se o recorte
das imagens que possuíam mais de uma face. Foram escolhidas 200 pessoas, de modo
que o teste possua um número de faces de referência próximo àquele da aplicação final;
a escolha se deu de modo aleatório desde que cada pessoa possuísse pelo menos 2 fotos,
totalizando 622 amostras de faces para teste. A partir disso, pôde-se realizar testes com
várias combinações de parâmetros do LBPH, sendo que o melhor resultado obtido foi
uma acurácia de 19%, atestando que esse algoritmo também não atende às condições de
projeto.

2.2.3 AWS

Além do OpenCV, existem outras bibliotecas de código aberto comumente utilizadas
para reconhecimento facial como a OpenFace, FaceRecLib e a OpenBR; porém, essas opções
apresentaram pouco ou nenhum suporte à instalação no Raspbian, impossibilitando a
execução na Raspberry Pi. A partir disso, a ideia inicial deste projeto era de se utilizar o
serviço de reconhecimento facial da Amazon Web Services, ou AWS, o qual realiza sua
computação na nuvem. Nesse sentido, decidiu-se implementar testes para verificar o seu
desempenho em função do banco de imagens construído anteriormente, para os quais foi
utilizada a biblioteca boto3 disponibilizada pela AWS para desenvolvimento em Python.

Com relação à acurácia, foram realizados dois testes, também utilizando o sub-
conjunto do LFW construído anteriormente. No primeiro, analisou-se a acurácia positiva,

26

em que espera-se que o algoritmo seja capaz de identificar a face de um indivíduo que
se encontra presente no banco de de referência; assim, as 622 amostras de faces eram
analisadas com relação às 200 faces de referência, esperando que a saída seja, de fato, o
nome da pessoa presente na amostra. Já no segundo analisou-se a acurácia negativa, no
qual espera-se que o algoritmo trate como desconhecido um indivíduo que não se encontra
no banco; nesse sentido, cada subconjunto de amostras de uma mesma pessoa era analisado
com relação a um conjunto de referência com 199 faces, excluindo a pessoa em análise.

Figura 10 – Resultados dos testes de acurácia com a AWS

Fonte: própria

Os resultados podem ser observados na Figura 10, nos quais o eixo horizontal
corresponde ao nível de similaridade, um parâmetro que representa o quanto se tem certeza
de que a face apresentada de fato corresponde à pessoa identificada. Esse parâmetro
é fornecido para ser um limiar configurável, de forma que o serviço identifica como
“desconhecido” um caso no qual a similaridade fica abaixo do mesmo; o seu valor padrão
é definido como 80% na documentação da própria AWS (AMAZON WEB SERVICES,
2020). Pode-se notar que, para o valor padrão, o serviço de reconhecimento apresentou
uma acurácia positiva de 98, 8% e uma acurácia negativa de 100%, o que certamente é
adequado para este projeto.

Durante os testes citados, coletou-se também o tempo de resposta do algoritmo,
ou seja, o período decorrido entre o envio da imagem à AWS e o recebimento do resultado,
cuja média foi de 1, 13s. Entretanto, utilizando o serviço em outros momentos, observou-se
que essa média aparentava ter um resultado distinto. Sendo assim, foi elaborado um
novo teste que consistia em analisar 100 imagens diferentes de uma mesma pessoa, a
qual foi adicionada às 200 faces do LFW cadastradas na AWS. Para isso, o conjunto
Raspberry/câmera foi fixado em uma parede a uma altura que seria adequada para a

27

implementação da portaria e capturava imagens frontais da pessoa a 1, 5m do mesma a
partir de um detector de faces; a cada captura, a pessoa mudava um pouco de posição
para diferenciação das fotos. A ideia de se utilizar imagens capturadas pela própria câmera
surgiu de uma suposição de que estas imagens poderiam ter uma resolução e nitidez
sensivelmente diferentes das encontradas no LFW, o que poderia influenciar no tempo de
resposta.

Figura 11 – Resultado do teste de tempo com a AWS para imagens do LFW

Fonte: própria

Figura 12 – Resultados dos testes de tempo com a AWS para imagens da câmera

Fonte: própria

O novo teste foi realizado em dois dias distintos e os resultados podem ser observados
nos histogramas das Figuras 11 e 12, que contém também aquele relativo aos tempos

28

coletados com o LFW. O ponto que mais chama a atenção é a variabilidade dos valores
registrados, tanto nos tempos individuais, que podem chegar a até 10s, quanto na média
dos testes, que são diferentes entre si. Para explicar esse comportamento, poderia-se
levantar a hipótese de que o reconhecimento demora mais para imagens de pior qualidade;
entretanto, as fotos capturadas nos testes com a câmera possuíam resolução e nitidez
semelhantes entre si e, ainda assim, os tempos variaram entre 0, 6s e 5s.

Essa alta dispersão traz dois problemas com relação à experiência do usuário. O
mais latente deles é que, em alguns casos, o tempo de resposta poderia ser muito alto, o
que talvez poderia ser mitigado com o envio de uma nova requisição ao servidor a partir
de um limiar de timeout. Um outro ponto importante é que os usuários podem sentir que
a implementação do novo equipamento piorou o desempenho da portaria. Atualmente, o
acesso é controlado a partir da biometria por impressão digital, cujo tempo de resposta fica
em torno de 1s; em contrapartida, como é exposto nos histogramas, o reconhecimento facial
analisado apresenta uma parcela de tempos acima de 1, 5s entre 16% e 20%. Portanto, a
utilização do serviço da AWS carrega consigo uma insegurança com relação à aprovação
dos usuários, os quais poderiam ficar insatisfeitos mesmo com os benefícios decorrentes da
mudança do tipo de biometria apresentados na Introdução.

2.2.4 Dlib

Durante o desenvolvimento deste projeto, foi encontrada uma biblioteca que não
havia sido considerada na pesquisa feita inicialmente, a Dlib. Esta é composta por uma
série de algoritmos de aprendizagem de máquina, dentre os quais se encontra um de
reconhecimento facial feito a partir de uma rede neural do tipo residual (DLIB, 2020b), ou
ResNet. Efetuando o mesmo teste de tempo descrito anteriormente, obteve-se um tempo
de processamento praticamente constante de 0, 3s, sendo 4 vezes mais rápida do que a
AWS, em geral.

Essa rede é composta por camadas para identificação de características físicas da
mesma forma que o cérebro humano o faz (HE, 2016). Assim, uma camada pode captar
desde atributos mais simples, como bordas, até características mais complexas, como
texturas. Ao passar pela rede, a imagem, que vai sendo decomposta por suas características
mais relevantes até que seja reduzida a um vetor de 128 elementos, o descritor da face. A
partir disso, pode-se fazer o reconhecimento ao calcular distância Euclidiana normalizada
entre dois descritores de face; caso ela seja menor que um determinado limiar, considera-se
que as faces são da mesma pessoa. Este limiar é configurável, sendo definido neste trabalho
por meio de experimentos.

29

Figura 13 – Esquema de processamento da imagem em um descritor de face

Fonte: própria

Além disso, visando aumentar a performance do mesmo, o autor recomenda que se
utilize dois algoritmos como pré-processamento. O primeiro é um preditor de formato de
face, que recebe a localização da face na imagem (vinda de um detector facial) e detecta
pontos de referência associados a partes do corpo como olhos, boca e queixo (DLIB, 2020a).
O segundo, a partir do resultado do primeiro, realiza o alinhamento, reposicionamento e
redimensionamento da face para a resolução 150 × 150, a qual foi utilizada para treinar o
modelo de reconhecimento. Com isso, o esquema do processamento de uma imagem em
um descritor de face pode ser observado na Figura 13.

Para que a aplicação da Dlib pudesse ser viável, seria necessário que também que se
obtivesse um bom desempenho com relação à taxa de acerto na identificação. Inicialmente,
esse aspecto aparentou ser um problema também resolvido, uma vez que a biblioteca foi
atestada oficialmente como tendo uma acurácia de 99, 4% para o LFW (UNIVERSITY
OF MASSACHUSETTS, 2020). Entretanto, essa avaliação foi feita para o problema de
verificação de faces, não podendo ser estendida para o problema de identificação de faces,
o qual é tratado neste projeto. Isso porque cada instância de verificação consiste na análise
de um par de faces de modo a dizer se são da mesma pessoa ou não; por outro lado, uma
instância de identificação compõe-se de uma verificação para cada pessoa cadastrada no
banco de referência. Assim, em um acurácia negativa com 200 pessoas cadastradas, por
exemplo, caso a face analisada (de uma pessoa que não está no banco) seja tida como
semelhante a apenas 1 das faces cadastradas, teríamos uma acurácia de 199/200 = 99, 5%
para a verificação e de 0/1 = 0% para a identificação.

Nesse sentido, a acurácia da Dlib foi avaliada da mesma forma que ocorreu com a
AWS, com o subconjunto do banco LFW. Foram obtidos os resultados exibidos na Figura
14, na qual o eixo horizontal corresponde à distância Euclidiana normalizada entre as faces,
que, da mesma forma que o nível de similaridade da AWS, pode ser usada como limiar

30

Figura 14 – Resultados dos testes de acurácia com a Dlib para o LFW

Fonte: própria

configurável. Nota-se que existe um claro compromisso na escolha do limiar com relação às
acurácias analisadas. Examinando esse elemento, temos que uma acurácia positiva baixa
gera muitos falso negativos, ou seja, faces de pessoas que estão no banco mas são tidas
como desconhecidas; de forma análoga, uma acurácia negativa baixa gera muitos falso
positivos, ou seja, faces de pessoas que não estão no banco mas são tidas como conhecidas.
A consequência prática do primeiro caso é um tempo de espera maior do usuário para
conseguir o acesso, enquanto a do segundo é uma pessoa desconhecida obtendo acesso, o
que julga-se um ponto mais crítico. Sendo assim, considera-se que a melhor escolha de
limiar seria 0, 5, em que tem-se uma acurácia positiva de 76, 6% e uma acurácia negativa
de 99, 03%.

Com os resultados obtidos, tem-se que a acurácia negativa da Dlib se encontra
com um valor próximo do observado na AWS. Porém, pode-se argumentar que a acurácia
positiva da Dlib faz com que o seu tempo de resposta real seja maior do que apresentado
anteriormente, uma vez que seria preciso mais de uma imagem para que o algoritmo
atestasse que uma pessoa é conhecida. Mais do que isso, como as imagens capturadas de
uma pessoa em frente ao equipamento seriam semelhantes entre si, pode-se supor que, em
uma parte dos casos, o algoritmo não conseguiria identificar o usuário de forma alguma, o
que também causaria uma grande insatisfação.

No entanto, durante os testes de tempo realizados a partir de capturas da câmera,
notou-se que a frequência de falha do reconhecimento aparentava ser menor que aquela
revelada pelo experimento. Esse comportamento levantou a suposição de que esse algoritmo
tem um desempenho superior para o tipo de imagem gerado pela aplicação com a câmera,
em que temos apenas registros frontais das faces, com uma pequena angulação no eixo

31

normal ao topo da cabeça proveniente da diferença de altura entre a câmera e a pessoa.
No caso das imagens do LFW, temos faces com diferentes orientações e poses, além de
obstruções por objetos como óculos escuros e microfones, o que certamente não aconteceria
na aplicação deste trabalho.

Figura 15 – Exemplos do banco de imagens AT&T

Fonte: (RUBIOLO; STEGMAYER; MILONE, 2013)

Nesse sentido, buscou-se realizar o mesmo teste utilizando um banco de imagens
que tivesse duas ou mais fotos frontais de uma grande quantidade de pessoas; idealmente, o
banco também deveria possuir um grande diversidade étnica. Entretanto, não foi encontrada
nenhuma opção que atendesse plenamente a todos os critérios; o que julgou-se mais
adequado foi o banco de imagens AT&T (GEORGIA INSTITUTE OF TECHNOLOGY,
2020), produzido originalmente pela Universidade de Cambridge, que possui 10 fotos de 40
pessoas distintas. Nem todas as fotos eram frontais, mas, fazendo uma filtragem, pôde-se
obter um subconjunto desse banco com 2 a 5 fotos de cada uma das 40 pessoas, algumas
das quais podem ser observadas na Figura 15.

Figura 16 – Resultados dos testes de acurácia com a Dlib para o AT&T

Fonte: própria

32

Os resultados podem ser observados na Figura 16; apesar de não poderem ser
tomados como definitivos, dado o número menor de pessoas e a baixa variedade étnica,
pode-se observar que o desempenho do algoritmo se torna melhor quando se trata de
faces frontais, com uma acurácia positiva de 100% para o limiar escolhido. Portanto,
considerando todos os aspectos, o reconhecimento facial da Dlib se mostrou a melhor
opção para utilização neste projeto.

2.3 Detecção Facial

2.3.1 Modelo

Em geral, a ação do reconhecimento facial é precedida pela de um algoritmo de
detecção facial, o qual recebe as imagens capturadas pela câmera e retorna as caixas
delimitadoras contendo a localização das faces. Uma alternativa muito usada para este
fim é a utilização dos algoritmos fornecidos pela biblioteca de processamento de imagens
OpenCV ; nesse caso, tem-se disponíveis os classificadores Haar e Local Binary Patterns,
ou LBP (OPENCV, 2020a).

As implementações dos mesmos foram comparadas em (KADIR, 2014), utilizando
a mesma metodologia para treinamento e testes. Com os resultados obtidos, o LBP obteve
um tempo médio de processamento 140% menor e uma taxa de acerto 4% maior que o
Haar ; além disso, o LBP se mostrou mais robusto à mudanças na iluminação. Ambos os
algoritmos apresentaram uma taxa de acerto acima de 80% e não apresentaram distinção
significativa de desempenho para diferentes tipos de face, como aquelas com óculos ou
com muitos pelos.

O classificador LBP consiste em utilizar uma janela de pixels 3 × 3 que é convertida
em um binário de 8 bits a partir da comparação entre o pixel central com os demais
(AHONEN; HADID; M., 2006). Nessa operação, caso o pixel em questão seja mais claro
que o central, é assinalado um bit 1; caso contrário, assinala-se um bit 0. Repetindo esse
processo ao longo de toda a imagem, tem-se uma nova representação da imagem em 256
níveis referenciadas no pixel central, a qual é utilizada como um descritor de textura a
partir de histogramas. Assim, pode-se fazer a detecção comparando as texturas de imagem
com a de uma face humana.

Na implementação desse algoritmo no OpenCV, temos que a imagem é varrida
por uma janela de tamanho determinado buscando faces a partir da comparação de
texturas. Para que possa ser possível detectar faces com diferentes dimensões, faz-se um
redimensionamento sucessivo da imagem a cada iteração de varredura. Assim, não é a
janela de busca que diminui e, sim, a própria imagem; essa dinâmica pode ser observada
na Figura 17. Com a análise de várias sub-imagens, temos a possibilidade de detectar uma
mesma face várias vezes. Quanto mais vezes uma vizinhança de uma face é marcada com
uma detecção, mais certeza se tem de que, de fato, a região marcada contém uma face;

33

essa característica é exibida na Figura 18.

Figura 17 – Varredura da imagem pela janela ao longo de sucessivos redimensionamentos
no algoritmo de detecção facial

Fonte: (MATHWORKS, 2020)

Figura 18 – Marcações de possíveis faces em vizinhanças de uma imagem analisada pela
detecção facial

Fonte: (STACKOVERFLOW, 2014)

Com isso, essa implementação é regida por três parâmetros, os quais estão direta-
mente associados com o desempenho em termos de acurácia e tempo de processamento:

• tamanho mínimo do objeto, o qual define que tamanhos de face serão descartadas
pelo algoritmo e, com isso, o tamanho da janela de varredura (OPENCV, 2016); este
influencia no tempo de processamento, já que uma janela maior percorre as imagens
mais rapidamente;

• fator de escala, pelo qual a imagem é reduzida durante o redimensionamento sucessivo
(OPENCV, 2013); este influencia em ambos os aspectos, uma vez que se aumento
faz com que o processo de redimensionamento tenha menos etapas, o que gera
menos sub-imagens a serem analisadas, melhorando o tempo de processamento mas
prejudicando a acurácia;

34

• número mínimo de vizinhos, que determina o número de vezes que uma vizinhança
de pixels deve ser marcada para se considerar que ela contém uma face (STACKO-
VERFLOW, 2014); este último influencia apenas na acurácia, já que sua diminuição
aumenta a detecção de positivos, sejam eles verdadeiros ou falsos.

Para alimentar o algoritmo, escolheu-se o modelo desenvolvido por (PUTTEMANS;
ERGUN; GOEDEMÉ, 2017), em que foram propostas modificações no modo como o
detector facial do OpenCV é treinado visando aprimorar a taxa de acerto do modelo
padrão dessa biblioteca. Como resultado, obteve-se uma acurácia positiva de 68% para
uma acurácia negativa de 90%, enquanto o padrão do OpenCV apresentava acurácias de
40% e 40%, respectivamente. Definido o modelo, é preciso determinar quais valores serão
utilizados para os parâmetros do algoritmo.

2.3.2 Parâmetros

Com relação ao tamanho mínimo, o objeto que estamos tratando é a face de uma
pessoa posicionada em frente à câmera. Assim, é preciso definir qual o tamanho mínimo,
em pixels, dessa face, o que está relacionado com a distância à câmera, o que já foi definido
anteriormente, a resolução da imagem e a altura da pessoa. Para a resolução, o ideal é que a
escolha faça com que uma face tenha um tamanho próximo ao que é utilizado como entrada
para o modelo de reconhecimento facial da Dlib (150 × 150), fazendo com que haja pouca
modificação na informação contida na imagem original por meio do redimensionamento.
Nesse sentido, foi preciso levantar as resoluções suportadas pela câmera e verificar qual
delas estaria mais próxima dessa condição.

Segundo a documentação da Pi Camera, a câmera captura em alguns tamanhos
determinados mas pode-se solicitar qualquer um que se queira uma vez que é feito uma
conversão pelo próprio periférico da câmera. Assim, temos que, na verdade, a imagem
original passar por dois redimensionamentos até a sua análise final: um pela própria câmera
e outro pelo algoritmo de reconhecimento facial. Julga-se que o segundo é mais prejudicial,
uma vez que recebe uma imagem já modificada, fazendo com que gere uma imagem que
não é baseada diretamente na informação contida na imagem original, como é feito pelo
primeiro; com isso, mantém-se a condição definida no parágrafo anterior, de modo que a
face resultante do processamento da câmera tenha um tamanho próximo a 150 × 150.

Nesse sentido, foi capturada uma imagem com resolução 1856×1392 de uma pessoa
de 1, 64m de altura posicionada a 1, 5m da câmera para ser tomada como referência;
considera-se que esse tamanho de face estaria próximo ao da média da população, já que
as médias de altura feminina e masculina de um adulto no Brasil são de 1, 62cm e 1, 74cm,
respectivamente. Essa imagem é exposta na Figura 19, em que é feita a distinção entre a
caixas delimitadoras usadas pelo OpenCV (em azul), de tamanho 151 × 151, e pela Dlib
(em verde), de tamanho 204 × 219. Essa última possui dimensão média de 211, de modo

35

Figura 19 – Face de uma pessoa de 1, 64m de altura a 1, 5m da câmera

Fonte: própria

que, para atingir a condição estabelecida, a resolução deve ser 1, 41 vezes menor, passando
para 1316 × 987, o que faz com que a caixa delimitadora do OpenCV passe para 107 × 107.
Para definir o tamanho mínimo do objeto, deve-se levar em conta a menor face que seria
capturada pelo sistema; como não foi encontrado nenhum estudo que correlacionasse altura
com tamanho da face, considerou-se que o tamanho mínimo deveria ser 90% do tamanho
da caixa delimitadora de uma pessoa de 1, 64m de altura, sendo, portanto, 96 × 96.

Para definir os outros dois parâmetros da detecção, é preciso fazer uma análise
conjunta da acurácia positiva, da acurácia negativa e do tempo de processamento para cada
combinação; nesse sentido, de forma semelhante ao que foi feito para o reconhecimento,
foram feitos testes para avaliar essas grandezas. Os testes para as acurácia se deram com
relação ao banco de imagens Face Detection Dataset and Benchmark (JAIN; LEARNED-
MILLER, 2010), ou FDDB, da Universidade de Massachusetts, que contém 5171 faces em
2845 imagens retiradas do banco Faces in the Wild (que deu origem também ao LFW).
Esse banco disponibiliza um programa em C++ para gerar a avaliação de desempenho, o
que não é algo trivial como no reconhecimento, uma vez que é preciso fazer uma associação
entre as caixas delimitadoras reais e detectadas, o que feito a partir da resolução de um
problema de emparelhamento em um grafo bipartido.

Infelizmente, não foi possível instalar esse programa, uma vez que ele requeria o
OpenCV e drivers associados em versões específicas, com problemas de compatibilidade
sendo reportados pela comunidade acadêmica. Assim, foi necessário implementar uma
versão própria desse programa, fazendo a associação das caixas delimitadoras por uma
varredura sequencial do grafo, assinalando cada caixa real à caixa detectada mais próxima;
essa simplificação faz com que as acurácias obtidas sejam inferiores às reais. A partir disso,

36

foram avaliadas todas as combinações para um fator de escala entre 1, 1 e 1, 9, com passo
de 0, 1, e um número mínimo de vizinhos de 1 a 5. Os resultados podem ser observados na
Figura 20.

Figura 20 – Resultado dos testes de acurácia da detecção

Fonte: própria

Figura 21 – Resultado do teste de tempo da detecção

Fonte: própria

Antes de examinar os resultados das acurácias, é preciso também avaliar o tempo
de processamento em função dos fatores de escala em questão (o número de vizinhos não
influencia no tempo), de forma a fazer um compromisso entre as grandezas avaliadas. Para
esse novo teste, o algoritmo de detecção processou 50 imagens para cada um dos fatores de
escala, utilizando o tamanho mínimo definido anteriormente, já que este também influencia

37

no tempo; os resultados são exibidos na Figura 21. Vale destacar que, a partir deste teste,
passou-se a recortar as imagens horizontalmente antes da detecção de modo a conterem
apenas o terço central, fazendo com que a imagem a ser analisada seja menor. Isso se
justifica pelo fato de que o sistema pretende analisar apenas um indivíduo que se encontra
à sua frente, não sendo preciso capturar todo o ambiente.

Com isso, se interpretarmos a acurácia positiva como a chance de que, dada uma
face em uma imagem, o algoritmo seja capaz de detectá-la, podemos calcular o tempo
médio para que uma face seja detectada como sendo t = TP +TC

A+
, em que TP é o tempo de

processamento, A+ a acurácia positiva e TC é o tempo de captura de uma imagem, que
por sua vez é TC = 1

FPS
, sendo que, para a resolução escolhida, FPS = 19, 44. A partir

disso, traça-se o gráfico dessa grandeza na Figura 22; nota-se que temos um ponto de
mínimo para o fator de escala 1, 2, o qual se torna o escolhido. Com relação ao número de
vizinhos, temos uma queda na acurácia negativa com o mesmo crescendo de 1 para 4; de 4
para 5 não há alteração, de modo que define-se o valor de 4 para esse parâmetro.

Figura 22 – Gráfico do tempo médio para detecção de uma face

Fonte: própria

2.3.3 Filtro de Nitidez

Durante testes com a Dlib, notou-se que os poucos casos em que havia-se um
erro no reconhecimento geralmente se davam com imagens em que a face da pessoa está
borrada devido à sua movimentação. Assim, visando evitar esse tipo de erro, buscou-se
uma forma de mensurar a nitidez das imagens e eliminar aquelas que estivessem borradas
a ponto de “enganar” o algoritmo de reconhecimento. Nesse sentido, em (PERTUZ; PUIG;
GARCIA, 2013) são listadas uma série de métricas para a grandeza em questão, sendo
que optou-se por utilizar a variância do Laplaciano de uma imagem, uma vez que o filtro

38

Laplaciano é justamente utilizado como detector de bordas, fazendo com que a variância
acabe representando o quão marcantes essas bordas são na imagem, ou seja, o quão nítida
essa imagem é.

Figura 23 – Exemplos do banco próprio de imagens com diferentes graus de nitidez

Fonte: própria

Figura 24 – Resultado dos testes de acurácia com o filtro de nitidez

Fonte: própria

Para verificar a acurácia do reconhecimento em função da nitidez, foi construído
um banco de imagens próprio, já que não se encontrou um banco de faces com amostras
borradas por movimento. Para isso, foram capturadas 200 imagens de 2 pessoas, as quais
ficavam andando para em frente e para trás em frente à câmera fixada na parede, variando
a velocidade da caminhada e fazendo alguns movimentos com a cabeça em determinados
momentos. Com isso, foi possível obter imagens com variados níveis de nitidez, sendo que
alguns exemplares podem ser vistos na Figura 23.

39

Feito isso, passou-se para o reconhecimento de cada uma das imagens, no qual se
utilizou o limiar de 0, 5 (definido anteriormente para a Dlib) e foram registrados, para cada
imagem, o grau de nitidez e se o reconhecimento foi correto. Realizando esse procedimento
de forma a obter as acurácias positiva e negativa, foram obtidos os resultados exibidos
na Figura 24. Nota-se que as acurácias são de 100% a partir do valor 42, de modo que é
escolhido 45 como limiar de corte para a implementação deste filtro.

2.4 Núcleo Web

2.4.1 Banco de Dados

Figura 25 – Diagrama entidade-relacionamento do banco de dados

Fonte: própria

O banco de dados foi estabelecido em um computador pessoal por meio do geren-
ciador de banco de dados relacional MySQL. Um gerenciador implementa um banco no
sistema de armazenamento de um computador e realizam funções que tornam a utilização
mais prática, como a integração com outros componentes e a possibilidade de acesso pela
rede. Como a maioria dos gerenciadores, utiliza a linguagem SQL para fazer acessos ao
banco. Além disso, o MySQL é disponibilizado de forma gratuita e apresenta uma interface
gráfica que permite operações e visualização dos dados de forma mais prática. O diagrama

40

entidade-relacionamento que representa o banco deste projeto pode ser observado na
Figura 25.

A entidade principal do banco de dados é PESSOA, a qual contém os campos id,
nome, sobrenome e foto, sendo id um número de identificação para cada entrada do banco.
Para categorizar um indivíduo cadastrado, PESSOA possui as derivações FUNCIONÁRIO
e CLIENTE. O primeiro possui os campos adicionais slack e e-mail, para fins de notificação
(Slack é a plataforma de mensagens utilizada internamente na empresa), e o segundo
possui uma mensagem de voz para sua recepção. Temos ainda um relacionamento entre
eles, indicando que cada cliente deve possuir um funcionário responsável, sendo que um
funcionário pode ser responsável por qualquer quantidade de clientes (incluindo nenhum).

Além disso, temos a entidade REGISTRO, que registra as tentativas de acesso de
indivíduos ao estabelecimento; nesse sentido, essa entidade deve estar relacionada a uma
instância de PESSOA, a qual pode aparecer em múltiplos registros. Além disso, o registro
deve conter a imagem com a face utilizada para reconhecimento e a data/hora em que
a tentativa ocorreu. Por fim, deve-se registrar o login e a senha dos usuários que podem
acessar a plataforma Web, além do tipo de permissão que eles possuem, o que é feito pela
entidade USUÁRIO.

2.4.2 Plataforma Web

Para a plataforma Web, foi utilizado o framework Spring Boot, o qual trata de
aplicações na linguagem Java. Um framework é uma plataforma que abstrai diversos
processos necessários para o funcionamento de uma aplicação de modo a facilitar o seu
desenvolvimento. Além disso, assim como um biblioteca, um framework disponibiliza
coleções de módulos padrão que podem ser integrados à aplicação pelo desenvolvedor. Para
este projeto, o Spring Boot simplifica a implementação de uma aplicação Web abstraindo
procedimentos como a implantação de um servidor e a comunicação com o banco de dados.

A estrutura de desenvolvimento no Spring Boot se baseia em três elementos
principais, os quais podem ser observados na Figura 26. Os controladores lidam com
requisições feitas por uma outra aplicação (cliente); assim, este tipo de componente
promove um mapeamento de cada caminho possível de ser acessado pela URL da aplicação
em seus métodos, os quais devem comunicar com os demais componentes e devolver a
resposta adequada. Por exemplo, no caso do cliente ser um navegador, o controlador
responde com o arquivo de uma página Web.

Os repositórios são a representação do banco de dados na aplicação, fazendo
a abstração das consultas (geralmente na linguagem SQL) ao banco; além disso, eles
também são responsáveis por informar possíveis exceções que possam ter ocorrido no
banco. Já os serviços processam a lógica necessária para operar os dados fornecidos
pelos repositórios para entregá-los aos controladores, aplicando restrições e fazendo as

41

Figura 26 – Estrutura de componentes do Spring Boot

Fonte: própria

formatações necessárias.

Vale destacar também a presença de outros dois elementos: as entidades e os
templates. Os primeiros são uma imagem das entidades do banco de dados, mas sendo
representadas por objetos da linguagem Java; assim, quando é feita uma consulta ao banco,
o repositório em questão formata os dados obtidos nesses objetos e os retorna à aplicação.
Já os templates são modelos para as páginas Web, sendo parametrizados pelo estado
atual do banco de dados; esses elementos estão associados que fornece essas funções de
parametrização e os processa de modo a renderizar uma página que pode ser enviada ao
cliente; no caso deste projeto, é utilizada a ferramenta padrão Thymeleaf.

Com relação à estrutura da aplicação Web, tem-se, na Figura 27, o esquema das
páginas que buscou-se construir. A primeira é a de login, em que o usuário deve se
identificar; caso os seus dados estejam cadastrados no sistema, ele é redirecionado de
acordo com o seu tipo de acesso: normal ou administrador. O primeiro caso corresponde
ao funcionário da portaria do prédio descrito na Introdução, que deve utilizar o sistema
apenas para saber quais pessoas estão cadastradas; sendo assim, esse tipo de acesso é
redirecionado para uma página de listar pessoas. Já o outro caso, correspondendo a um
funcionário autorizado da empresa, tem-se acesso a todos os dados do sistema; para isso, é
feito um redirecionamento para uma página índice, que elenca novas opções de navegação.

A partir do índice, pode-se acessar as pessoas cadastradas para reconhecimento ou
os usuários da plataforma Web. Para ambos os casos, tem-se uma página de subíndice que

42

Figura 27 – Esquema de páginas da plataforma Web

Fonte: própria

permite listar, inserir ou deletar elementos do banco de dados. Vale destacar que, no caso
em que se trata de pessoas, as páginas devem fazer uma distinção entre operações com
funcionários ou com clientes. Além disso, o índice permite acessar os registros, redirecio-
nando para uma página que faz a listagem dos mesmos; não deve haver disponibilidade
para outras operações, uma vez que quem gera os registros é o próprio sistema a partir
dos processos que ocorrem na parte embarcada.

2.5 Integração

2.5.1 Comunicação

Dadas as funcionalidades traçadas como objetivo para este projeto, temos que os
subsistemas terão de interagir nas seguintes situações:

• na inicialização do sistema, o embarcado faz uma requisição para receber todas as
faces cadastradas no momento na plataforma Web;

• a cada aproximação de um cliente com a câmera, o embarcado faz uma requisição
para receber a mensagem de voz e o dados para notificação do funcionário responsável
por este cliente;

• a cada aproximação de uma pessoa com a câmera, o embarcado faz uma requisição
para enviar um registro contendo o resultado do reconhecimento e a imagem capturada
para tal;

• quando há alteração nas pessoas cadastradas no banco de dados enquanto a Raspberry

43

está ligada, a plataforma Web faz uma requisição para enviar os dados dessa alteração
para ocorrerem também nas estruturas de dados embarcadas.

Dado que ambos os subsistemas podem se conectar à rede local, optou-se por
utilizar o protocolo HTTP como interface de comunicação entre os mesmos. Para isso, é
preciso, em ambos os lados, desenvolver meios de enviar requisições HTTP e estabelecer
um servidor para receber essas requisições. Nesse sentido, o subsistema embarcado utilizará
os módulos requests e flask do Python e o Web apenas reservará um serviço para fazer
requisições e um controlador para receber, uma vez que o Spring Boot já estabelece um
servidor para a aplicação desenvolvida.

2.5.2 Interação

Como foi exposto anteriormente, o sistema demanda meios de comunicação com o
usuário, de modo a comunicar sobre a sua autorização para acesso e fazer uma saudação
caso necessário. É importante frisar que este trabalho não tratou de interação com pessoas
com deficiência, como auditiva ou visual; entretanto, cabe reconhecer a importância
da acessibilidade para uma aplicação final do mesmo. Para comunicação visual, foram
construídas 4 telas simples: “APROXIME-SE”, estado inicial do sistema, “ANALISANDO”,
que aparece após um indivíduo entrar na região de reconhecimento, “DESCONHECIDO”,
caso o indivíduo não tenha sido identificado, e uma outra tela contendo nome e sobrenome
caso contrário. Apesar da simplicidade, mostrou-se necessário utilizar uma biblioteca
própria para desenvolvimento de interfaces gráficas, a PyQt, uma vez que bibliotecas
simples não permitiam a execução concorrente da interface com o restante da aplicação.

Para a comunicação auditiva, tinha-se basicamente que transmitir uma mensagem
de voz quando um cliente for reconhecido, saudando-o e informando que o funcionário
responsável foi notificado. Para gerar essa mensagem, foi utilizado o serviço de sintetização
de voz Polly da AWS, o qual será acionado a cada vez que um cliente for cadastrado,
armazenando o áudio no banco de dados. Para reproduzir a mensagem pela Raspberry,
será utilizado o OMXPlayer.

Com relação ao hardware necessário para suportar essas funcionalidades, foi utili-
zada uma tela de toque LCD de 7 polegadas, a qual recebe dados por um conector HDMI,
e um par falante da marca C3Tech, o qual recebe sinais por um conector de áudio P2,
ambos sendo alimentados por portas USB.

2.5.3 Notificação

Quando um cliente é identificado pela portaria, além de receber a saudação por
voz, é preciso também notificar o funcionário responsável pelo mesmo, de modo que possa
recepcioná-lo. Nesse caso, a notificação se deu por e-mail, enviando uma mensagem de
texto simples informando qual cliente chegou, e pelo Slack, a plataforma de mensagens

44

utilizada pela empresa. O desenvolvimento desses meios de comunicação em Python se
deu pelas bibliotecas slack e smtplib, respectivamente. O detalhe é que é preciso fazer
um cadastro no sistema do Slack para autorizar a integração da conta com aplicações
externas.

45

3 IMPLEMENTAÇÃO

3.1 Embarcado

De modo a agilizar o teste de uma primeira versão, em que poderia-se observar o
comportamento do sistema em uma forma mais primitiva, optou-se por fazer a implementa-
ção em duas etapas. Na primeira, o programa foi executado de modo totalmente sequencial;
avaliado o desempenho do sistema nessa versão, partiu-se para o aprimoramento do mesmo,
introduzindo elementos de programação concorrente. É preciso destacar que, como exposto
anteriormente, a execução sequencial diminui o valor do FPS, o qual foi utilizado para
escolher o fator de escala da detecção; no entanto, mesmo com essa alteração, o melhor
desempenho ainda reside no fator 1, 2.

3.1.1 Sequencial

O fluxograma da implementação sequencial pode ser observado na Figura 28.

Figura 28 – Fluxograma da implementação sequencial

Fonte: própria

46

Primeiramente, o programa espera que uma pessoa se aproxime, medindo sucessi-
vamente a distância até que seja menor que 1, 5m. Com a aproximação, é executado um
laço até que se encontre uma face nas imagens; após a captura pela câmera, cada imagem
é recortada horizontalmente para o terço central e convertida para a escala de cinza, já
que este é um requisito de entrada dos classificadores do OpenCV. Com isso, a imagem é
examinada pelo detector facial, gerando um vetor de faces. Caso haja mais de uma face,
escolhe-se a face cuja caixa delimitadora tem maior área; a face escolhida passa pelo filtro
de nitidez, e caso não esteja borrada, é tida como resultado da busca. Já caso o vetor
esteja vazio ou a face escolhida não passou pelo filtro, continua-se com a execução do laço.

A face resultante da busca passa para o escopo do reconhecimento facial, em
que os 68 pontos de referência faciais são gerados, a face é alinhada e redimensionada
para 150 × 150 e é gerado o vetor descritor da face. A partir disso, pode-se comparar o
descritor desta face com aqueles cadastrados no sistema, calculando a distância Euclidiana
normalizada para cada uma delas. Então, escolhe-se a menor distância e verifica se é menor
que o limiar de 0, 5; caso seja, conclui-se que o nome associado à essa menor distância é o
da pessoa presente em frente à câmera, sendo conhecida; caso contrário, a pessoa presente
é desconhecida. Por fim, se a pessoa for conhecida, o relé é acionado para abrir a porta e,
antes de continuar a execução do laço, espera-se 2s para que a pessoa possa passar pela
porta.

Figura 29 – Configuração do hardware

Fonte: própria

A configuração do hardware pode ser observada na Figura 29. Como não havia
uma porta com eletroímã disponível para o desenvolvimento deste projeto, o mesmo foi

47

substituído, de forma equivalente, por uma fita de LEDs 12V ; para isso, bastou inverter a
lógica de chaveamento do relé, mantendo a fita desligada para representar a porta fechada.

Figura 30 – Número de imagens utilizadas por iteração no teste sequencial

Fonte: própria

Com o que foi desenvolvido, foi feito um teste para avaliar o número de imagens
necessárias para que ocorresse um reconhecimento, uma vez que algumas são descartas
durante o fluxo de execução por não ter sido possível detectar a face ou por não passar
pelo filtro de nitidez. Neste teste, o laço foi executado 100 vezes para o reconhecimento de
uma pessoa de 1, 64m de altura; os resultados podem ser vistos na Figura 30. Durante os
testes com a câmera, notou-se que a primeira captura de imagem sempre durava 100ms a
mais que as demais, o que ocorre devido à inicialização da função de captura. Somando
isso à média de imagens obtidas, de 2, 42, tem-se que o tempo de detecção médio seria
de 0, 31s considerando o FPS máximo da câmera, fazendo com que o tempo de resposta
médio do sistema fosse de 0, 61s.

O tempo adicional da primeira imagem pode ser removido desse resultado caso
considere-se que a função de captura seria executada sem parar; porém, para isso, seria
necessária uma outra instância de execução concorrente para fazer uma “limpeza” do
buffer de imagens, já que a maioria delas não seria aproveitada pelo sistema. Dados os
resultados obtidos e as considerações feitas, pôde-se, então, remodelar o sistema, agora
utilizando elementos de programação concorrente.

3.1.2 Concorrente

Nessa nova versão, foi proposto fazer a captura de imagens e detecção de faces de
forma contínua em um programa separado. A ideia é que, além de eliminar o problema de
inicialização da função de captura, o sistema seja capaz de processar imagens do usuário
antes que ele entre na região de reconhecimento, a 1, 5m de distância da câmera. Com

48

isso, pode-se obter uma melhora adicional no tempo de resposta com relação à percepção
do usuário, já que este só nota a ação do sistema quando a sua interface gráfica (a ser
implementada) muda de estado, o que só ocorrerá dentro da região definida. Vale destacar
também que essa mudança não resulta em abertura da porta para pessoas distantes, já que,
da mesma maneira, o relé só poderá ser acionado com a aproximação de um indivíduo.

Antes de tratar desse programa separado, deve-se definir uma nova resolução para
a imagem capturada, o que está relacionado com a ampliação do alcance da detecção de
faces. Nesse sentido, capturou-se novamente uma imagem 1856 × 1392 de uma pessoa de
1, 64m, dessa vez a 2m da câmera, o que resultou em uma caixa delimitadora de 150 × 152
para a Dlib, o que é muito próximo do tamanho requerido pelo modelo de reconhecimento.
Com isso, dado que o FPS para essa resolução é de 9, 38 e que uma pessoa caminha
com velocidade média de 1, 4m/s (CAREY, 2005), tem-se que seria possível analisar uma
média de 3, 34 imagens antes que o indivíduo adentre a região de reconhecimento, o que é
próximo da média de imagens utilizadas pelo sistema registrada no último teste.

Foram capturadas também imagens a distâncias maiores; porém, julga-se que não
é possível assumir que aumentar o alcance em maiores proporções resultaria em uma
melhora no desempenho do sistema, uma vez que, para isso, estamos assumindo que a
pessoa se deslocará frontalmente ao longo de toda essa distância, o que é razoável para 2m
de distância mas que torna-se cada vez mais improvável para distâncias maiores. Portanto,
definiu-se 1856 × 1392 como a nova resolução da captura; um detalhe é que essa mudança
não altera o parâmetro de tamanho mínimo do objeto, já que o tamanho da face em pixels
se mantém o mesmo.

Como foi exposto anteriormente, a documentação da Pi Camera sugere que, para
obter um desempenho melhor em termos de FPS, deve-se fazer a captura utilizando a
função capture_sequence sendo executada em uma thread separada; para isso, utilizou-se
o módulo threading. Fazendo isso, precisamos também de uma estrutura de dados que
faça o armazenamento de imagens de modo seguro, não permitindo interferência entre
as threads para acesso aos dados; para isso, é utilizada uma fila do módulo queue, que é
implementada de modo a bloquear threads competindo por acesso.

Além disso, é necessário haver um canal de comunicação entre o programa da
detecção e o principal; isso é feito por meio de soquetes de comunicação entre processos.
Nessa comunicação, o processo principal faz uma requisição de face ao processo de detecção
quando uma pessoa se aproxima, o qual deve estar preparado para ser solicitado a qualquer
momento. Assim, é introduzida uma nova thread no programa de detecção que suportará
um servidor de soquete; da mesma maneira, utiliza-se uma outra fila para estabelecer o
fluxo de imagens entre a thread principal e o servidor soquete. Com isso, temos o sistema
esquematizado na Figura 31, o qual será descrito em mais detalhes a seguir.

Primeiramente, tem-se a thread de captura, que fica continuamente executando

49

Figura 31 – Arquitetura concorrente do subsistema embarcado

Fonte: própria

a função capture_sequence, a qual é reiniciada a cada vez que termina a captura de
um número de imagens fixo; este número foi escolhido arbitrariamente como 100. A cada
captura, é chamada uma função auxiliar para transferir os bytes do buffer de captura para
a fila de imagens e limpar esse buffer. Na thread de detecção, cada imagem que é retirada
da fila passa pelo mesmo procedimento da detecção descrito na implementação sequencial,
resultando, ao fim, em uma caixa delimitadora que representa a face.

Para alimentar a segunda fila, esta thread deve gerar uma estrutura de face,
composta pela caixa delimitadora, o instante de tempo em que ela foi gerada e um recorte
da imagem original, contendo apenas a cabeça da pessoa na imagem; esse recorte visa
diminuir o número de dados para a transmissão, tornando-a mais rápida. Já o registro de
tempo serve para garantir que a face coletada para reconhecimento é recente, de modo
que aquelas que não foram geradas no último segundo são descartadas. Além disso, a fila
de faces é implementada com apenas 1 posição, garantindo que tem-se sempre o registro
mais recente. Caso, não houvesse essa preocupação, seria possível que o reconhecimento da
iteração atual se desse com base nas faces utilizadas na anterior, “enganando” o sistema.

No processo principal, são executados os demais procedimentos primários do sistema
da mesma maneira que foi feito na implementação anterior. A diferença é que, após o
sensor de distância constatar uma aproximação, faz-se uma requisição soquete ao processo
de detecção. Este, por sua vez, recebe a sinalização pela thread do servidor soquete, que
prontamente retira uma face da fila, realiza a sua serialização, ou seja, codifica-a como
bytes para transmissão, e faz o envio. Do outro lado do canal, os bytes recebidos são

50

decodificados e seguem para os procedimentos usuais de reconhecimento.

A partir da implementação dessa versão do sistema, realizou-se o mesmo teste feito
com a versão anterior, novamente com uma pessoa de 1, 64m sendo analisada 100 vezes,
agora registrando o tempo de resposta, ou seja, o tempo decorrido entre a aproximação e
a resposta do reconhecimento. Neste caso, além do usual percurso retilíneo, ou seja, em
que a pessoa caminha em linha reta em direção ao protótipo, fez-se também um teste
com um percurso livre, em que a pessoa era posicionada no lado oposto do aposento e era
solicitada a caminhar até o protótipo de forma natural, como ela faria em um dia comum.

Figura 32 – Tempo de resposta com a implementação concorrente para um percurso
retilíneo e outro livre

Fonte: própria

Os resultados são exibidos na Figura 32; para o percurso retilíneo, em que o tempo
médio de resposta foi de 0, 398s; nota-se que a dispersão dos valores foi muito baixa, com
a grande maioria ficando entre 0, 3s e 0, 5s. A exceção fica por conta de dois tempos em
torno de 0, 8s, que correspondem justamente a dois casos em que o reconhecimento falhou
na sua primeira execução. Já para o percurso livre, o tempo de resposta cresce para 0, 771s,
o que era esperado, já que a pessoa entra na área de análise com a face em semi-perfil,
diminuindo a acurácia tanto da detecção quanto do reconhecimento. Entretanto, mesmo
nessas condições, o sistema tem desempenho superior ao do equipamento atual (com
biometria por impressão digital) em mais de 70% dos casos e, nos demais, não ultrapassa
o tempo de 1, 4s.

3.2 Web

Dado o diagrama entidade-relacionamento construído no capítulo anterior, pôde-se
implementar o banco de dados no MySQL. Na Figura 33, pode-se visualizar uma captura

51

do MySQL Workbench, em que são destacadas as tabelas correspondentes a cada entidade
e, além disso, mostra-se o conteúdo de uma delas.

Figura 33 – Banco de dados implementado no MySQL, com destaque para as tabelas
associadas às entidades

Fonte: própria

Dado o esquema de páginas construído no capítulo anterior, pode-se mapeá-las
aos controladores que deverão tratar das requisições de acesso às mesmas. Neste caso, são
utilizados três controladores: WebController, PersonController e UserController. Os
dois últimos gerenciam os subíndices e as operações relativas a pessoas e usuários, respec-
tivamente, enquanto o primeiro trata das demais páginas. Para completar a arquitetura
Spring Boot, temos também os serviços PersonService, UserService e LogService e os
repositórios PersonRepository, UserRepository e LogRepository, correspondendo aos
dados de pessoas, usuários e registros, respectivamente. O mapeamento das páginas em
função dos controladores é exibido na Figura 34.

Tratando primeiramente das páginas relativas a usuários, temos o esquema de liga-
ções exposto na Figura 35. A exibição das páginas é mapeada pelos métodos insertPage,
listPage e deletePage. Além destes, o controlador apresenta os métodos insert e
delete para efetuar uma ação de inserir ou deletar caso o usuário interaja nesse sentido.
Estes, por sua vez, acionam saveCommand e remove no serviço e save e removeById no
repositório, respectivamente, para concretizar suas alterações no banco de dados. Tem-se

52

Figura 34 – Mapeamento das páginas Web para os controladores

Fonte: própria

ainda os métodos getAll e findAll, que retornam todos os elementos do tipo em questão,
o que obviamente deve estar associado à pagina Listar mas também à Deletar, já que
o usuário precisa saber quais são os elementos disponíveis para operação. Um detalhe é
que, quando um usuário faz um inserção, a página correspondente gera um objeto que
comporta os dados desta operação, chamado de comando, o qual deve ser convertido para
um objeto do banco de dados pelo serviço.

Figura 35 – Relacionamento entre componentes Web para as páginas de usuário

Fonte: própria

Para as operações relativas a pessoas, o esquema é muito semelhante ao de usuários,
mas com algumas alterações, como pode ser visto na Figura 36. As páginas de pessoas fazem
diferenciação entre funcionários e clientes; assim, elas chamam os métodos getAllEmployee
e getAllClient para obter esses dois subconjuntos separadamente. Além disso, essas

53

páginas também exibem as fotos das pessoas, o que requer um método específico para
fazer a formatação e permitir a renderização da imagem, o que ocorre com photo; este, por
sua vez, deve ser chamado para cada foto, de modo que as obtém por meio de getPhoto e
findById, que fazem a seleção pelo identificador da pessoa no banco.

Figura 36 – Relacionamento entre componentes Web para as páginas de pessoas

Fonte: própria

Para as demais páginas, temos o diagrama da Figura 37. Login é exibida por
loginPage e solicita verificação de usuário e senha inseridos com login; este, por sua
vez, aciona verify, que pega todos os usuários presentes no banco de dados e verifica se
algum deles corresponde ao que foi fornecido; caso haja uma correspondência, retorna-se
o tipo do usuário em questão. Além disso, temos a exibição de Índice por indexPage e
da listagem de pessoas e registros por personPage e registerPage, respectivamente, os
quais chamam getAll e findAll para coletar todos os dados. Vale destacar que, nesse
caso, não é preciso distinção entre pessoas, já que basta a sua foto e o seu nome para um
usuário normal.

Figura 37 – Relacionamento entre componentes Web para as demais páginas

Fonte: própria

54

Nas Figuras 38 e 39, podemos observar alguns exemplos de páginas construídas
por meio da implementação dos relacionamentos expostos ao longo desta seção.

Figura 38 – Exemplos das páginas Web construídas (1)

Fonte: própria

Figura 39 – Exemplos das páginas Web construídas (2)

Fonte: própria

55

3.3 Integração

Como foi exposto na seção anterior, as requisições HTTP necessárias para comu-
nicação entre os subsistemas requerem a implantação de servidores em ambos os lados.
Com relação àquele presente na plataforma Web, tem-se que ele corresponde a mais
um controlador, o HttpController; os relacionamentos para o mesmo estão expostos
na Figura 40. Quando a Raspberry quer receber as faces presentes no banco durante a
sua inicialização, faz uma requisição get-web-faces, que por sua vez chama faces e os
métodos associados. Nesse procedimento, o serviço deve converter um objeto Pessoa em um
novo objeto, chamado Face, que contém apenas informações relevantes para a Raspberry,
diminuindo o tamanho da mensagem a ser transmitida.

Figura 40 – Relacionamento para requisições ao servidor da página Web

Fonte: própria

Quando um cliente obtém acesso do sistema, faz-se uma requisição get-client,
que por sua vez chama client e os métodos associados. Nesse caso, o serviço deve coletar
os objetos do cliente e de seu funcionário responsável e, a partir disso, gerar um novo objeto
chamado ClienteInfo, que deve conter a mensagem de voz e os contatos do responsável
para notificação. Já para adicionar um novo registro ao banco após uma movimentação, a
Raspberry faz uma requisição add-log, que por sua vez chama log e os métodos associados.
Aqui é necessário que o serviço receba a mensagem com o registro, formate a imagem para
ser aceita pelo banco e faça uma busca para encontrar a pessoa associada a partir do seu
nome. Um exemplo da página de registros construída pode ser observado na Figura 41.

Com relação ao servidor presente na Raspberry, implantado com o módulo flask,
tem-se que ele recebe requisições da plataforma Web informando alterações de pessoas
no banco, de modo que a Raspberry as faça também no seu armazenamento local. Com
isso, temos os relacionamentos da Figura 42, que partem das páginas Web e chegam até a
Raspberry, que, nesse caso, se coloca no lugar que usualmente é dos repositórios.

Por fim, tratemos da implementação dos elementos de interação e notificação.

56

Figura 41 – Exemplo da página Web de registros

Fonte: própria

Figura 42 – Relacionamento para requisições ao servidor da Raspberry

Fonte: própria

Para a interface gráfica, foi preciso adicionar duas threads no programa principal, pois a
biblioteca PyQt exige que uma thread contenha o seu gerenciador, o qual permite que se
exiba a interface ao mesmo tempo em que se executa o restante do programa. Além disso,
renderizar a tela demanda um tempo considerável, o que prejudicaria o tempo de resposta
caso fosse esse procedimento estivesse junto da thread de reconhecimento; assim, precisa
de uma thread separada. Um exemplo tela exibida na interface gráfica pode ser vista na
Figura 43.

57

Figura 43 – Exemplo de tela exibida na interface gráfica

Fonte: própria

Para a comunicação auditiva, foi preciso criar um novo serviço na plataforma Web
que fica responsável por fazer uma requisição de sintetização de voz ao AWS Polly a
cada vez que um cliente for adicionado. Em se tratando da reprodução da mensagem de
voz, basta executar o OMXPlayer na Raspberry por meio de uma chamada ao sistema
operacional utilizando a biblioteca os.

Figura 44 – Exemplo de e-mail enviado pela portaria

Fonte: própria

Como a notificação se trata apenas do envio de uma mensagem de texto simples,
basta que se utilize as bibliotecas smtplib e slack de modo a fazer o login com as contas
criadas para a portaria e enviar uma mensagem para os contatos obtidos pela requisição
ao banco de dados; um exemplo de e-mail enviado pode ser observado na Figura 44. A
partir do que foi exposto, tem-se o diagrama final dos processos executados na Raspberry
na Figura 45.

58

Figura 45 – Arquitetura final do subsistema embarcado

Fonte: própria

59

4 CONCLUSÃO

Neste trabalho, foi proposto um sistema para realizar o controle de acesso a um
estabelecimento empresarial por meio do reconhecimento facial. A utilização desse tipo
de biometria traria benefícios como uma maior praticidade de acesso ao usuário e a
possibilidade de cadastro de uma pessoa no sistema sem que fosse a necessária a sua
presença física. Além disso, pretendia-se lidar com problemas específicos do ambiente
do qual se trata a aplicação, facilitando a entrada de indivíduos que não frequentam o
estabelecimento de forma recorrente, em especial, clientes da empresa.

Em se tratando do objetivo principal, obteve-se uma acurácia positiva no intervalo
entre 76% e 100%, uma acurácia negativa acima de 95% e um tempo de resposta médio no
intervalo entre 0, 40s e 0, 77s. Esse último, por sinal, sendo menor que o tempo de resposta
em torno de 1s para equipamento de controle de acesso atual do estabelecimento, que usa
biometria por impressão digital. Além disso, pôde-se manter a dispersão desse tempo em
um faixa aceitável em termos de não prejudicar a experiência do usuário, com o maior
valor registrado sendo de 1, 4s no pior caso.

Em se tratando dos demais objetivos, foi possível desenvolver uma plataforma Web
que gerencia um banco de dados, permitindo cadastro, alteração e visualização de dados.
Além disso, foram implementados procedimentos simples de interação e notificação que
funcionam de forma integrada com o sistema. Entretanto, o aspecto de confiabilidade do
sistema não foi abordado em um nível suficiente para o que uma aplicação como esta requer,
havendo carência de restrições para alterações nos dados, de mecanismos de autoteste e
de camadas de segurança no protocolo de comunicação.

Por fim, por ter sido realizado, em sua maioria, durante a pandemia de COVID-19,
não foi possível fazer testes no estabelecimento tomado para aplicação, o que poderia ser
de muito proveito no sentido de verificar se o sistema de fato atende às necessidades de
todos os envolvidos e promovendo aprimoramentos conforme fossem ocorrendo conflitos.
Vale destacar também que não foi encontrado um banco de imagens que representasse
da melhor maneira possível o caso de uso deste projeto, o que provocou uma incerteza
com relação à real acurácia do reconhecimento facial. Esses aspectos que eram previstos
e não foram abordados satisfatoriamente ficam como sugestões para serem tratados por
trabalhos futuros. Além destes, deve-se atentar à questão da acessibilidade, buscando
adicionar elementos que permitam o uso do sistema por pessoas com deficiência, e pode-se
aprimorar a plataforma Web de modo a torná-la mais prática para os funcionários que a
operam, como se utilizando de imagens da rede social profissional Linkedin e desenvolvendo
um aplicativo mobile para acesso à plataforma.

61

REFERÊNCIAS

AHONEN, T.; HADID, A.; M., P. Face description with local binary patterns: Application
to face recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, v. 28, n. 12, p. 2037–2041, 2006.

ALSAADI, I. M. Physiological biometric authentication systems, advantages,
disadvantages and future development : A review. International Journal of Scientific
and Technology Research, v. 1, 2012.

AMAZON WEB SERVICES. SearchFacesByImage - Reference. 2020. Disponível
em: <https://docs.aws.amazon.com/rekognition/latest/dg/API_SearchFacesByImage.
html>. Acesso em: 14 dez. 2020.

ASSISTA INFOCOMM. Face Recognition Biometrics Door Access System from
Assista Singapore. 2020. Disponível em: <http://www.assista.com.sg/dooraccess/face_
recognition_fingerprint_door_access_control_system_singapore.htm>. Acesso em: 02
nov. 2020.

CAREY, N. Establishing Pedestrian Walking Speeds. 2005. Disponível em:
<https://www.westernite.org/datacollectionfund/2005/psu_ped_summary.pdf>. Acesso
em: 16 oct. 2020.

DIVYA, R. S.; MATHEW, M. Survey on various door lock access control mechanisms. 2017
International Conference on Circuits Power and Computing Technologies,
p. 1–3, 2017.

DLIB. Dlib Face Landmark Detection. 2020. Disponível em: <http://dlib.net/face_
landmark_detection_ex.cpp.html>. Acesso em: 03 nov. 2020.

. Dlib Face Recognition. 2020. Disponível em: <http://dlib.net/dnn_face_
recognition_ex.cpp.html>. Acesso em: 03 nov. 2020.

GEORGIA INSTITUTE OF TECHNOLOGY. The Database of Faces (AT&T). 2020.
Disponível em: <https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/>.
Acesso em: 27 sep. 2020.

HE, K. e. a. Deep residual learning for image recognition. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), p. 770–778, 2016.

HUANG, G. B. e. a. Labeled Faces in the Wild: A Database for Study Face
Recognition in Unconstrained Environments. [S.l.], 2007.

INTELBRAS. KT 740 - Ficha Técnica. 2020. Disponível em: <https://backend.
intelbras.com/sites/default/files/2019-06/Datasheet\%20KT\%20740\%20Prata.pdf>.
Acesso em: 14 dez. 2020.

JAIN, V.; LEARNED-MILLER, E. FDDB: A Benchmark for Face Detection in
Unconstrained Settings. [S.l.], 2010.

https://docs.aws.amazon.com/rekognition/latest/dg/API_SearchFacesByImage.html
https://docs.aws.amazon.com/rekognition/latest/dg/API_SearchFacesByImage.html
http://www.assista.com.sg/dooraccess/face_recognition_fingerprint_door_access_control_system_singapore.htm
http://www.assista.com.sg/dooraccess/face_recognition_fingerprint_door_access_control_system_singapore.htm
https://www.westernite.org/datacollectionfund/2005/psu_ped_summary.pdf
http://dlib.net/face_landmark_detection_ex.cpp.html
http://dlib.net/face_landmark_detection_ex.cpp.html
http://dlib.net/dnn_face_recognition_ex.cpp.html
http://dlib.net/dnn_face_recognition_ex.cpp.html
https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/
https://backend.intelbras.com/sites/default/files/2019-06/Datasheet\%20KT\%20740\%20Prata.pdf
https://backend.intelbras.com/sites/default/files/2019-06/Datasheet\%20KT\%20740\%20Prata.pdf

62

JONES, D. Rapid Capture and Processing - Picamera Documentation. 2016.
Disponível em: <https://picamera.readthedocs.io/en/release-1.13/recipes2.html#
rapid-capture-and-processing>. Acesso em: 14 dez. 2020.

. Sensor Modes - Picamera Documentation. 2016. Disponível em:
<https://picamera.readthedocs.io/en/release-1.13/fov.html#sensor-modes>. Acesso em:
14 dez. 2020.

KADIR, K. e. a. A comparative study between lbp and haar-like features for face detection
using opencv. 2014 4th International Conference on Engineering Technology
and Technopreneuship (ICE2T), p. 335–339, 2014.

MATHWORKS. vision.CascadeObjectDetector - Documentation.
2020. Disponível em: <https://www.mathworks.com/help/vision/ref/vision.
cascadeobjectdetector-system-object.html>. Acesso em: 20 nov. 2020.

OPENCV. How does the parameter scaleFactor in detectMultiScale affect
face detection? 2013. Disponível em: <https://answers.opencv.org/question/10654/
how-does-the-parameter-scalefactor-in-detectmultiscale-affect-face-detection/>. Acesso
em: 20 nov. 2020.

. CascadeClassifier::detectMultiScale alogical influence of minSize
parameter. 2016. Disponível em: <https://answers.opencv.org/question/87371/
cascadeclassifierdetectmultiscale-alogical-influence-of-minsize-parameter/>. Acesso em: 20
nov. 2020.

. Cascade Classifier. 2020. Disponível em: <https://docs.opencv.org/3.4/db/
d28/tutorial_cascade_classifier.html>. Acesso em: 03 nov. 2020.

. Face Recognition with OpenCV. 2020. Disponível em: <https:
//docs.opencv.org/3.4/da/d60/tutorial_face_main.html>. Acesso em: 03 nov. 2020.

OUR WORLD IN DATA. Distribution of adult heights. 2019. Disponível em:
<https://ourworldindata.org/human-height#:~:text=Globally\%2C\%20the\%20mean\
%20height\%20of,present\%20everywhere\%20in\%20the\%20world.> Acesso em: 14 dez.
2020.

PAIVA, R. P. Machine Learning: Applications, Process and Techniques. 2013.
Disponível em: <https://eden.dei.uc.pt/~ruipedro/publications/Tutorials/slidesML.pdf>.
Acesso em: 20 nov. 2020.

PERTUZ, S.; PUIG, D.; GARCIA, M. A. Analysis of focus measure operators for
shape-from-focus. Pattern Recognition, Elsevier, v. 46, p. 1415–1432, 2013.

PUTTEMANS, S.; ERGUN, C.; GOEDEMÉ, T. Improving open source face detection by
combining an adapted cascade classification pipeline and active learning. Proceedings
of the 12th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP 2017), p. 396–404,
2017.

RUBIOLO, M.; STEGMAYER, G.; MILONE, D. Compressing arrays of classifiers using
volterra-neural network: Application to face recognition. Neural Computing and
Applications, v. 6, n. 23, p. 1687–1701, 2013.

https://picamera.readthedocs.io/en/release-1.13/recipes2.html#rapid-capture-and-processing
https://picamera.readthedocs.io/en/release-1.13/recipes2.html#rapid-capture-and-processing
https://picamera.readthedocs.io/en/release-1.13/fov.html#sensor-modes
https://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-system-object.html
https://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-system-object.html
https://answers.opencv.org/question/10654/how-does-the-parameter-scalefactor-in-detectmultiscale-affect-face-detection/
https://answers.opencv.org/question/10654/how-does-the-parameter-scalefactor-in-detectmultiscale-affect-face-detection/
https://answers.opencv.org/question/87371/cascadeclassifierdetectmultiscale-alogical-influence-of-minsize-parameter/
https://answers.opencv.org/question/87371/cascadeclassifierdetectmultiscale-alogical-influence-of-minsize-parameter/
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/da/d60/tutorial_face_main.html
https://docs.opencv.org/3.4/da/d60/tutorial_face_main.html
https://ourworldindata.org/human-height#:~:text=Globally\%2C\%20the\%20mean\%20height\%20of,present\%20everywhere\%20in\%20the\%20world.
https://ourworldindata.org/human-height#:~:text=Globally\%2C\%20the\%20mean\%20height\%20of,present\%20everywhere\%20in\%20the\%20world.
https://eden.dei.uc.pt/~ruipedro/publications/Tutorials/slidesML.pdf

63

SEGURANÇAJATO. Kit KT753 Automatiza p/ Porta Deslizante usado em
Fechadura FS150. 2018. Disponível em: <https://www.segurancajato.com.br/
kit-fechadura-eletroim-automatiza-fs150-kt753-para-porta-deslizante>. Acesso em: 02
nov. 2020.

STACKOVERFLOW. OpenCV detectMultiScale() minNeighbors para-
meter. 2014. Disponível em: <https://stackoverflow.com/questions/22249579/
opencv-detectmultiscale-minneighbors-parameter>. Acesso em: 20 nov. 2020.

TAN, X. e. a. Face recognition from a single image per person: A survey. Pattern
Recognition, Elsevier, v. 39, p. 1725–1745, 2006.

TOM’S HARDWARE. Raspberry Pi 4: Review, Buying Guide and How to Use.
2020. Disponível em: <https://www.tomshardware.com/reviews/raspberry-pi-4>. Acesso
em: 07 oct. 2020.

UNIVERSITY OF MASSACHUSETTS. Labeled Faceds in the Wild - Results. 2020.
Disponível em: <http://vis-www.cs.umass.edu/lfw/results.html>. Acesso em: 03 nov.
2020.

https://www.segurancajato.com.br/kit-fechadura-eletroim-automatiza-fs150-kt753-para-porta-deslizante
https://www.segurancajato.com.br/kit-fechadura-eletroim-automatiza-fs150-kt753-para-porta-deslizante
https://stackoverflow.com/questions/22249579/opencv-detectmultiscale-minneighbors-parameter
https://stackoverflow.com/questions/22249579/opencv-detectmultiscale-minneighbors-parameter
https://www.tomshardware.com/reviews/raspberry-pi-4
http://vis-www.cs.umass.edu/lfw/results.html

	Folha de rosto
	Dedicatória
	Resumo
	Abstract
	Lista de figuras
	Sumário
	Introdução
	Motivação
	Objetivos
	Organização

	Desenvolvimento
	Hardware Principal
	Computador
	Câmera
	Periféricos

	Reconhecimento Facial
	Aprendizagem de Máquina
	OpenCV
	AWS
	Dlib

	Detecção Facial
	Modelo
	Parâmetros
	Filtro de Nitidez

	Núcleo Web
	Banco de Dados
	Plataforma Web

	Integração
	Comunicação
	Interação
	Notificação

	Implementação
	Embarcado
	Sequencial
	Concorrente

	Web
	Integração

	Conclusão
	Referências

