
GUILHERME DIAS TAVARES

Arquitetura de um ambiente de teste simulado front e
back-end

São Paulo
2025

GUILHERME DIAS TAVARES

Arquitetura de um ambiente de teste simulado front e
back-end

Monografia apresentada ao PECE – Programa
de Educação Continuada em Engenharia
da Escola Politécnica da Universidade de
São Paulo como parte dos requisitos para a
conclusão do curso de MBA em Engenharia
de Software.

São Paulo
2025

GUILHERME DIAS TAVARES

Arquitetura de um ambiente de teste simulado front e
back-end

Versão Original

Monografia apresentada ao PECE – Programa
de Educação Continuada em Engenharia
da Escola Politécnica da Universidade de
São Paulo como parte dos requisitos para a
conclusão do curso de MBA em Engenharia
de Software.

Área de Concentração:

Engenharia de Software

Orientador:

Prof. Dr. Jorge Luis Risco Becerra

Co-orientador:

Prof. Alípio Ferro

São Paulo
2025

RESUMO

Este trabalho apresenta o desenvolvimento de um ambiente de teste simulado para sistemas
que adotam arquitetura headless, com base no padrão arquitetural Modelo-Visão-Controlador
(MVC). A proposta central é oferecer uma infraestrutura de teste modular e escalável que per-
mita simular cenários reais de uso, garantindo resultados confiáveis e replicáveis. A abordagem
prática incluiu a aplicação de ummódulo CRUD (Create, Read,Update eDelete) genérico como
exemplo ilustrativo, destacando sua interação com o ambiente de teste. Embora o trabalho não
tenha incluído um levantamento formal de requisitos ou uma avaliação iterativa, ele demonstra
os benefícios de ambientes de teste próximos às condições de produção, abordando questões
como validação de APIs. O estudo conclui destacando a importância de manter o mock data
alinhado ao back-end real, sugerindo que futuras pesquisas explorem ferramentas para sincro-
nização automatizada de dados de teste.

Palavras-Chave: teste de software, arquitetura headless, MVC, ambiente de teste simulado,
validação de API.

ABSTRACT

This study presents the development of a simulated testing environment for systems adopting
a headless architecture, based on the Model-View-Controller (MVC) architectural pattern. The
primary goal is to provide a modular and scalable testing infrastructure capable of simulating
real-world usage scenarios, ensuring reliable and replicable results. The practical approach in-
cluded the application of a generic CRUD module as an illustrative example, highlighting its
interaction with the testing environment. Although the work did not involve a formal require-
ments gathering process or iterative evaluation, it demonstrates the benefits of testing environ-
ments closely resembling production conditions, addressing issues such as API validation. The
study concludes by emphasizing the importance of keeping mock data aligned with the actual
backend, suggesting future research to explore tools for automated synchronization of testing
data.

Keywords – software testing, headless architecture, MVC, simulated testing environment, API
validation.

LISTA DE FIGURAS

1 Participação do E-commerce no Varejo . 9
2 Arquitetura MVC . 13
3 Modelo BPMN das Fases do Processo . 22
4 Representação MVC de um sistema de e-commerce genérico 24
5 Representação MVC do um sistema de testes sob a ótica de um módulo de ge-

renciamento de carrinho . 25
6 Ponto de Vista de Informação: Módulo de gerenciamento de Carrinho 27

LISTA DE SIGLAS

API – Application Programming Interface

BPMN – Business Process Model and Notation

CMO – Chief Marketing Officer

CRM – Customer Relationship Management

CTO – Chief Technology Officer

ERP – Enterprise Resource Planning

MBA – Master in Business Administration

MVC – Model-View-Controller (Modelo-Visão-Controlador)

SAML – Security Assertion Markup Language

TI – Tecnologia da Informação

SUMÁRIO

1 Introdução 8
1.1 Contexto Inicial . 8
1.2 Objetivo . 9
1.3 Justificativa . 10
1.4 Metodologia . 11
1.5 Organização . 11

2 Fundamentação teórica 12
2.1 Padrão de Arquitetura - Model-View-Controller 12
2.2 Teste de software . 14

2.2.1 Teste de Integração . 14
2.2.2 Teste Simulado . 15

3 Desenvolvimento 16
3.1 Contexto da Aplicação . 16

3.1.1 Domínio da aplicação . 16
3.1.2 Partes Interessadas (Stakeholders) e processos de negócios 17
3.1.3 Requisitos e limitações . 18

3.1.3.1 Requisitos . 18
3.1.3.2 Limitações . 18

3.1.4 Agentes, sistemas e processos de negócios externos 19
3.2 Processo de desenvolvimento . 20

3.2.1 Ciclo da engenharia . 20
3.2.1.1 Planejamento e Projeto . 20
3.2.1.2 Implementação . 20
3.2.1.3 Validação . 20
3.2.1.4 Entrega final . 20

3.2.2 Fases do processo . 21
3.2.3 Produtos intermediários . 22

3.3 Produto principal . 23
3.3.1 Estrutura do produto . 23
3.3.2 Ciclo de operação . 25

3.4 Implementação . 26

3.4.1 Descrição tecnológica . 26
3.4.2 Resultados . 27

4 Considerações finais 29

Referências 31

8

1 INTRODUÇÃO

Este trabalho é desenvolvido como parte doMaster in Business Administration - MBA
de Engenharia de Software. Neste capítulo é apresentado o contexto o qual o trabalho está
inserido, o objetivo, a justificativa, a metodologia e a organização do mesmo.

1.1 Contexto Inicial

A adoção de sistemas com arquitetura headless vem ganhando relevância, muito por
conta da flexibilidade e escalabilidade que tal arquitetura fornece, uma vez que o desacopla-
mento total entre back-end e front-end possibilita uma experiência de usuário personalizada de
acordo com o dispositivo a ser utilizado, como por exemplo, aplicativos móveis, TVs inteligen-
tes e interfaces próprias.

Abordando um pouco mais a questão do mercado, aplicações de comércio eletrônico
(e-commerce) foram um dos principais impulsionadores da transformação digital nas últimas
décadas, tornando-se uma fonte importante de faturamento das empresas, sendo responsável no
ano de 2023 por 8,62% do faturamento total do seguimento de varejo, segundo a Associação
Brasileira de Comércio Eletrônico (ABComm) (2024). Ainda nesta linha, a previsão para o
ano de 2024 é de que o faturamento ultrapasse a barreira dos 9%, conforme ilustra a Figura 1 a
seguir:

9

Figura 1: Participação do E-commerce no Varejo

Fonte: Associação Brasileira de Comércio Eletrônico (ABComm) (2024)

Contudo, essa flexibilidade promovida pela arquitetura headless acabou gerando desa-
fio no que tange aos testes de aplicação. Supondo que podemos ter duas aplicações visuais, com
experiências totalmente distintas, porém com propósitos (vendas) e conexão iguais (neste caso,
ambas apontam para o mesmo sistema de back-end), qual seria a melhor forma para testar as
duas aplicações de forma isolada, ou seja, sem poder contar com o sistema que sustenta todas
operações que são realizadas na plataforma? É justamente neste cenário que o presente trabalho
está inserido.

1.2 Objetivo

Este trabalho tem como principal objetivo propor uma arquitetura de ambiente de teste
simulado para front-end e back-end, baseada no modelo MVC (Model-View-Controller).

A arquitetura foi gerada considerando um contexto de aplicação em uma plataforma de
e-commerce e restringindo um pouco mais o escopo para dentro do módulo de gerenciamento de
carrinho. No módulo de gerenciamento de carrinho considerou-se quatro ações principais para
fins ilustrativos: Criação do Carrinho, Obter dados do Carrinho, Atualizar dados do carrinho
e Deletar carrinho. A escolha pelo módulo de carrinho foi estratégica, uma vez que é uma
prática comum e desejada no mercado o compartilhamento do mesmo entre as plataformas, isto
é, quando um cliente final montar um carrinho utilizando um aplicativo móvel em seu celular,

10

caso queira o mesmo poderá entrar via navegador de computador e ter os dados já persistidos
junto ao seu usuário.

1.3 Justificativa

De acordo com uma pesquisa conduzida pela Censuswide, uma consultoria especiali-
zada em pesquisas de mercado quantitativas e qualitativas, a pedido da WP Engine, em julho de
2024, 73% das empresas entrevistadas já utilizam a arquitetura headless, representando um au-
mento de 14% em relação à 2021 (ENGINE, 2024). Dentre as empresas que ainda não adotaram
essa tecnologia, 98% planejam avaliar sua implementação nos próximos 12 meses. A pesquisa
incluiu respostas de executivos como diretores de tecnologia (CTOs), diretores de marketing
(CMOs) e tomadores de decisão da área de TI, provenientes de empresas com receita média
anual de aproximadamente 800 milhões de dólares. É importante ressaltar que o estudo foi con-
duzido em organizações localizadas nos Estados Unidos, Reino Unido e Austrália, refletindo
tendências regionais específicas na adoção dessa arquitetura (ENGINE, 2024).

Seguindo essa sequência, foram examinados diversos artigos que têm ligação, seja di-
reta ou indireta, completa ou parcial, com os temas abordados nesta monografia. Dentre esses,
foram selecionados três artigos os quais serão sintetizados nos parágrafos seguintes.

O desenvolvimento de ambientes de testes que simulam o comportamento real de siste-
mas de produção é um desafio importante na engenharia de software. O artigoMimicking Pro-
duction Behavior with Generated Mocks de Tiwari et al. (2024) aborda a utilização de mocks,
isto é, objetos ou componentes simulados que simulam o comportamento de dependências re-
ais de um sistema, gerados automaticamente para replicar de forma precisa o comportamento
do sistema em produção durante os testes. Essa abordagem permite a execução de testes mais
confiáveis, reduzindo a dependência de ambientes de produção e aumentando a cobertura de
cenários de falhas e carga. Essa técnica é diretamente aplicável à proposta desta monografia.

O artigo A Method of Automated Mock Data Generation for RESTful API Testing de
Thu et al. (2022) explora a geração automatizada de dados mock para testes de APIs, abordando
a criação de mocks com base nas especificações da API, o que pode ser diretamente relacionado
à construção de um ambiente de testes simulados descrito na monografia. Embora a monografia
foque na criação de um ambiente de teste para sistemas que adotam a arquitetura headless, a
abordagem de geração automatizada de dados mock no artigo complementa a proposta de testar
interações e respostas do sistema, sem a necessidade de um ambiente de produção.

11

1.4 Metodologia

A metodologia deste trabalho baseou-se em uma abordagem exploratória e aplicada,
com foco na criação e apresentação de um ambiente de teste simulado para sistemas que uti-
lizam arquitetura headless. A primeira etapa envolveu uma revisão bibliográfica direcionada,
abordando conceitos teóricos sobre padrões arquiteturais, como o modeloMVC, e metodologias
de teste de software. Essa revisão fundamentou as escolhas técnicas e conceituais empregadas
ao longo do desenvolvimento do trabalho.

Em seguida, adotou-se uma abordagem prática com base em um exemplo aplicado de
um módulo CRUD do módulo de gerenciamento de Carrinho. Este exemplo serviu para ilustrar
como um ambiente de teste simulado pode interagir com um sistema a ser avaliado, mesmo sem
um levantamento formal de requisitos ou iterações documentadas de avaliação. O foco principal
esteve na representação arquitetural do ambiente de testes.

Apesar de suas limitações de escopo, a metodologia aplicada possibilitou a geração de
uma arquitetura de um ambiente de testes de acordo com o que era previsto e desejado incial-
mente.

1.5 Organização

A organização do trabalho é composta da seguinte forma:
O Capítulo 1 INTRODUÇÃO apresenta o contexto inicial, o objetivo, as justificativas,

a metodologia e a estrutura do trabalho;
O Capítulo 2 FUNDAMENTAÇÃO TEÓRICA apresenta os principais conceitos para

o desenvolvimento deste trabalho, como Arquitetura, o padrão MVC e Testes de Software;
O Capítulo 3 DESENVOLVIMENTO apresenta o desenvolvimento da monografia,

abordando o contexto da aplicação, o processo de desenvolvimento, o produto principal e a
implementação.

O Capítulo 4 CONSIDERAÇÕES FINAIS apresenta a conclusão e propostas para tra-
balhos futuros.

12

2 FUNDAMENTAÇÃO TEÓRICA

O presente capítulo tem como objetivo fornecer o embasamento teórico necessário para
o desenvolvimento desta monografia, alinhando os conceitos fundamentais ao contexto e aos
objetivos estabelecidos no capítulo anterior.

Para isso, será realizada uma revisão bibliográfica de um pattern arquitetural muito
difundido e utilizado, o Modelo-Visão-Controlador (Model-View-Controller) ou no acrônimo
MVC. Além do mais, também é abordado os conceitos de Teste Web e teste distribuído.

2.1 Padrão de Arquitetura - Model-View-Controller

Arquitetura de software é constantemente definida como uma forma abstrata, de mais
alto nível de representação de um projeto, podendo ainda, definir e exibir um projeto com vários
pontos de vistas distintos, oportunizando assim uma ampla gama de aplicação e objetivos de se
ter uma arquitetura, como por exemplo usar para documentar um projeto, representar requisi-
tos, etc. É também, segundo Sommerville (2020), como o primeiro estágio no projeto de um
software.

De acordo com Sommerville (2020), um projeto de arquitetura tem preocupação na
demonstração em como um sistema deve ser organizado e sua estrutura geral, uma vez que
é o elo crítico entre projeto e engenharia de requisitos, uma vez que identifica os principais
componentes do projeto e a forma com que se relacionam.

Com base nisto, é importante e primordial existir modelos e padrões de arquitetura.
Sommerville (2020) descreve um padrão de arquitetura como um conjunto de boas práticas
testadas em diferentes contextos, que incluem orientações sobre sua aplicabilidade, pontos fortes
e limitações.

O padrão arquitetural MVC (Model-View-Controller, ou em português, Modelo-Visão-
Controlador) é um robusto padrão para desenvolvimento de sistemas de software, que tem ori-
gem no final da década de 70 e início da década de 80, durante o desenvolvimento do ambiente
Smalltak-80, uma linguagem de programação orientada a objetos. Foi concebido para organi-
zar e segregar a lógica do sistema, especialmente em sistemas que há a existência de interfaces
gráficas e/ou sistemas Web. Este conceito divide e organiza a arquitetura em três componentes
principais: Modelo, Visão e Controlador, como seu próprio nome sugere.

13

O componente Modelo é a camada responsável por encapsular os dados e regras de
negócios que estão associadas aos mesmos. Em outras palavras, é o encarregado de gerenciar o
estado do sistema.

Já o componente Visão tem como escopo a forma com que estes dados são exibidos ao
usuário.

Por sua vez o componente Controlador é o responsável por gerenciar a integração entre
Modelo e Visão, sendo uma espécie de “meio de campo” entre os componentes citados anteri-
ormente.

Uma grande vantagem da abordagem de uma arquitetura MVC é a segregação entre as
camadas de forma com que as alterações possam ser realizadas de forma pontuais e isoladas.

A fim de exemplificar de forma sucinta o conceito, Pressman (2014) apresenta o se-
guinte:

Na arquitetura MVC, o comando do usuário é enviado da janela do navegador
para um processador de comandos (controlador), o qual gerencia o acesso ao
conteúdo (modelo) e instrui o modelo de renderização [NT] de informações
(visão) a transformá-lo para exibição pelo software do navegador.

A Figura 2 demonstra uma ilustração visual da arquitetura MVC onde a comunicação
e dependências entre os componentes são exibidas e ressaltadas:

Figura 2: Arquitetura MVC
Fonte: Valente (2020)

14

2.2 Teste de software

Umdos grandes desafios de projetos complexos é garantir a estabilidade domesmo, isto
é, assegurar de forma consistente que toda alteração, por menor que ela seja, não gere impactos
e/ou efeitos adversos, indesejados e inesperados no restante do projeto.

De acordo com Sommerville (2020):

O teste é destinado a mostrar que um programa faz o que é proposto a fazer e
para descobrir os defeitos do programa antes do uso. Quando se testa o soft-
ware, o programa é executado usando dados fictícios. Os resultados do teste
são verificados à procura de erros, anomalias ou informações sobre os atributos
não funcionais do programa.

Os testes de software desempenham um papel fundamental na garantia da qualidade
dos sistemas, sendo definidos como um processo sistemático para identificar defeitos e verificar
se o software atende aos requisitos especificados. Segundo Pressman (2014, p. 466), “Teste é
um conjunto de atividades que podem ser planejadas com antecedência e executadas sistemati-
camente”. Os testes de software tem como preocupação garantir que o sistema esteja adequado
ao seu propósito, atendendo as necessidades dos usuários, sendo executado de forma eficiente
e confiável e também atendendo aos prazos estabelecidos bem como o orçamento e que o uso
destas técnicas aumentou o nível de qualidade de software nos últimos anos (SOMMERVILLE,
2020).

O teste de software é composto por diversas técnicas e abordagens que variam de acordo
com o ciclo de desenvolvimento e a complexidade do sistema, como testes unitários, de integra-
ção, de sistema e de aceitação. Além disso, os testes não apenas identificam defeitos técnicos,
mas também servem como uma ferramenta para melhorar a confiabilidade e a segurança do
software.

Os testes podem ser divididos em quatro etapas: teste de unidade, teste de integração,
teste de validação e testes de ordem superior (PRESSMAN, 2014). O teste de unidade é basi-
camente o tipo de teste que se concentra em avaliar uma única unidade do projeto, seja ela um
componente, uma classe, etc.). Por sua vez, o teste de integração tem o foco no projeto e sua
arquitetura. O teste de validação verifica se a modelagem de requisitos foi cumprida. Por fim,
teste de ordem superior realiza uma avaliação de como o software se comporta e interage com
elementos externos.

2.2.1 Teste de Integração

O teste de integração é crucial para garantir que diferentes módulos de um sistema,
funcionem corretamente em conjunto. Em um ambiente de arquitetura headless, onde existe o
desacoplado, é essencial validar a comunicação entre as APIs e o sistema de interface do usuário.

15

Os testes de integração simulam interações reais para verificar se os dados são processados e
apresentados corretamente, identificando falhas nas interfaces e integrando de maneira eficaz os
componentes do sistema. Esse tipo de teste ajuda a garantir que as funcionalidades end-to-end
atendam aos requisitos esperados.

2.2.2 Teste Simulado

Mocking é uma técnica utilizada para substituir dependências externas em testes de
software, permitindo simular o comportamento de sistemas externos como APIs ou serviços.
Conforme avaliado por Valente (2020) omock permite a implementação de teste que não precisa
acessar serviço remoto, potencialmente lento. Em ambientes de testes de integração, o uso de
mocks é essencial para isolar os componentes que estão sendo testados, garantindo que falhas
de integração com sistemas externos não interferirem nos resultados dos testes.

16

3 DESENVOLVIMENTO

Este capítulo tem como objetivo apresentar o processo de construção de uma arqui-
tetura de ambiente de teste simulado, projetada para se aproximar das condições de produção
em sistemas que adotam a arquitetura headless. A solução proposta, fundamentada no modelo
MVC (Model-View-Controller), foi desenvolvida para garantir que os testes sejam realizados
de maneira modular, escalável e replicáveis. Serão discutidos neste capítulo as metodologias,
técnicas e ferramentas utilizadas para a criação da arquitetura de um ambiente de teste.

No decorrer do capítulo, serão abordados os detalhes do contexto da aplicação, como o
domínio da aplicação, as fases do processo de desenvolvimento, e os entregáveis intermediários.
Além disso, será apresentada a estrutura do produto final, como este se organiza e opera dentro
do ambiente de testes.

3.1 Contexto da Aplicação

O contexto da aplicação é fundamental para compreender o ambiente e os desafios nos
quais a solução proposta será implementada. Este subitem busca abordar os principais aspectos
relacionados à aplicação do produto desenvolvido nesta monografia, que se insere no domínio
do comércio eletrônico, especificamente para plataformas que adotam arquiteturas headless. A
partir dessa análise, serão detalhados o domínio da aplicação, os stakeholders envolvidos, os
processos de negócios impactados, os requisitos e limitações do sistema, e as interações com
agentes e sistemas externos.

3.1.1 Domínio da aplicação

Levando em consideração o que foi discorrido anteriomente, a solução proposta será
aplicada a um hipotético sistema de e-commerce headless, visto que permite que múltiplas in-
terfaces interajam com o mesmo núcleo de serviços.

Essa escolha de domínio reforça a relevância prática do produto da monografia, con-
siderando as demandas atuais do mercado e a necessidade crescente de ambientes de teste que
simulem com precisão cenários de produção.

17

3.1.2 Partes Interessadas (Stakeholders) e processos de negócios

Os stakeholders diretamente relacionados ao produto desta monografia incluem indi-
víduos e equipes que desempenham papéis essenciais no ciclo de vida de desenvolvimento e
operação do sistema e-commerce, conforme detalhado abaixo:

1. Stakeholders técnicos

(a) Desenvolvedores front-end: Responsáveis pela criação e manutenção das interfaces
visuais que interagem com os usuários finais. Dependem de um ambiente de teste
para validar o desenvolvimento levando em conta as respostas da integração com
APIs e serviços do back-end desacoplado.

(b) Desenvolvedores back-end: Projetam e mantêm os serviços e APIs utilizados pelo
front-end. Seu foco está na garantia de que os endpoints de API funcionem conforme
o esperado e atendam às especificações definidas.

(c) Engenheiros de Qualidade: Testam o sistema como um todo, garantindo que tanto o
front-end quanto o back-end operem corretamente em diferentes cenários de acordo
com a especificação so sistema.

(d) DevOps: Garantem que os ambientes de teste e produção sejam configurados de
forma eficaz.

2. Stakeholders de negócios

(a) Gerentes de Produto: Interessados em validar que os requisitos de negócio sejam
atendidos e que as funcionalidades entreguem valor ao usuário final.

(b) Executivos e Tomadores de Decisão: Avaliam os resultados dos testes como parte
do processo de tomada de decisões estratégicas para otimização de custos e aumento
de confiabilidade e expansão do sistema.

(c) Usuários Finais (Clientes): Embora indiretamente, são afetados pela confiabilidade
do sistema, que impacta diretamente a experiência de compra e a fidelização.

Um sistema de e-commerce possuí variados processos de negócios. A seguir são apre-
sentados os mais impactantes no ecossistema:

• Gerenciamento de Catálogo de Produtos: As APIs precisam ser testadas para garantir a
atualização e exibição correta de produtos nas interfaces do usuário, ou seja, uma vez que
o back-end receba uma requisição de atualização para o banco, que também seja capaz de
entregar o dado já atualizado para as consultas que sejam realizadas na sequência.

18

• Processamento de Pedidos e Transações: O back-end deve ser validado para garantir a
integridade das transações, como pagamentos e atualizações de status de pedidos.

• Gerenciamento de Clientes: O fluxo de gerenciamento de cliente deve ser validado para
que forneça dados com qualidade para serviços externos (como Analytics) mas que prin-
cipalmente também respeite quaisquer regras de negócio atribuídas a este módulo (como
por exemplo liberar compras de bebidas alcoólicas apenas para consumidores maiores de
idade.

3.1.3 Requisitos e limitações

Para o desenvolvimento da arquitetura de ambiente de teste simulado proposto nesta
monografia, foi necessário identificar e documentar os requisitos essenciais que guiam sua cons-
trução, bem como as limitações inerentes à solução adotada.

3.1.3.1 Requisitos

Para falar um pouco dos requisitos, decidiu-se dividir entre requisitos funcionais e re-
quisitos não funcionais. Os requisitos funcionais determinam o que um sistema deve fazer,
enquanto os requisitos não funcionais especificam propriedades e restrições do sistema. (SOM-
MERVILLE, 2020)

Requisitos funcionais:

• O ambiente de testes deve permitir a simulação de interações entre front-end e back-end.

• Deve suportar a execução de testes sob condições semelhantes ao ambiente de produção.

• Deve ser capaz de utilizar mocks para APIs e dados.

• Implementação de CRUD para validar operações básicas de sistemas.

Requisitos não funcionais:

• Escalabilidade para permitir expansão de testes com diferentes cenários.

• Manutenção de consistência entre dados simulados e dados reais.

3.1.3.2 Limitações

Apesar das vantagens esperadas, algumas limitações foram identificadas:

• Operacional: Exige familiaridade dos desenvolvedores com conceitos de teste automati-
zado e mocks. Custos adicionais para infraestrutura de testes.

19

• Complexidade técnica: Dependência de ferramentas específicas para geração de mocks.
Dificuldade em sincronizar dados de mock com atualizações no back-end real.

• Escopo do Trabalho: O foco está na arquitetura para ambientes de teste, não no desenvol-
vimento completo de uma solução.

3.1.4 Agentes, sistemas e processos de negócios externos

O ambiente de teste simulado proposto neste trabalho opera em um ecossistema que in-
terage com diversos agentes, sistemas e processos de negócios externos. A identificação desses
elementos está listada a seguir.

a) Agentes externos

• Usuários finais: Interagem com o front-end, sendo responsáveis por realizar ações e for-
necer dados que acionam processos no back-end.

• Desenvolvedores e equipes de QA: Atuam como operadores e validadores do ambiente de
teste, utilizando o sistema para identificar defeitos, realizar análises e propor melhorias.

• Gestores de produtos: Influenciam as prioridades e escopos dos testes, além de tomar
decisões com base nos resultados obtidos.

b) Sistemas externos

• APIs de terceiros: Dependência de APIs externas para integrar funcionalidades adicio-
nais, como gateways de pagamento, serviços de geolocalização, ou provedores de dados
analíticos.

• Banco de dados e repositórios de dados: Fontes de dados externas que armazenam infor-
mações críticas, necessárias para validações ou para simular condições reais no ambiente
de teste.

c) Processos de negócios externos

• Fluxos de integração com parceiros: Processos que envolvem o intercâmbio de dados
entre a aplicação e sistemas de parceiros, como logística, ERP ou CRM, e que precisam
ser simulados no ambiente de teste.

• Cadeia de suporte ao cliente: Inclui processos que não são diretamente controlados pelo
ambiente de teste, mas impactam a experiência geral, como suporte técnico e atendimento

20

pós-venda.

• Monitoramento e análise de desempenho: Sistemas externos de monitoramento, como
ferramentas de observabilidade ou métricas de uso, que auxiliam na avaliação de desem-
penho da aplicação em produção.

3.2 Processo de desenvolvimento

A presente seção aborda o processo de desenvolvimento do produto proposto por esta
monografia, abordando o ciclo de engenharia dividido em quatro fases: planejamento e projeto,
implementação, validação e entrega, bem como as fases do processo e quais foram os produtos
intermediários gerados durante o desenvolvimento.

3.2.1 Ciclo da engenharia

O desenvolvimento da arquitetura do ambiente de teste simulado seguiu um ciclo de
engenharia estruturado, com foco na modularidade e escalabilidade.

3.2.1.1 Planejamento e Projeto

A fase inicial envolveu a análise dos requisitos levantados no contexto do ambiente de
teste simulado. Nesse estágio, como já descrito no item 3.1.3, foram identificados requisitos
principais para a elaboração desta arquitetura.

3.2.1.2 Implementação

A implementação foi realizada em etapas iterativas. Inicialmente, as funcionalidades
básicas do ambiente de teste foram desenvolvidas, como a configuração de endpoints simulados
e a automação de processos de teste. Cada módulo foi implementado separadamente, validado
em pequenos ciclos de teste e integrado ao ambiente global de forma incremental.

3.2.1.3 Validação

Após cada ciclo de implementação, foram realizadas rodadas de testes para garantir a
consistência e o alinhamento com os requisitos definidos. Esses testes foram conduzidos em
cenários que simulavam condições reais de operação, incluindo a interação com APIs externas
e simulação de cargas variadas.

3.2.1.4 Entrega final

Com a conclusão das etapas de validação, o ambiente de teste simulado foi consolidado
e documentado. A documentação inclui o detalhamento da arquitetura, o fluxo de operação do

21

ambiente e as orientações para a execução dos testes, de modo a facilitar a adoção por equipes
de desenvolvimento e QA.

3.2.2 Fases do processo

O ciclo de desenvolvimento foi organizado em fases distintas, com cada etapa produ-
zindo subprodutos que contribuíram para a construção do ambiente de teste simulado. Essas
fases foram representadas por meio de um modelo BPMN (Business Process Model and Nota-
tion), que ilustra os principais passos do processo de desenvolvimento.

Abaixo segue um descritivo com as fases, que posteriormente estarão representadas
num modelo gráfico BPMN conforme ilustra a 3:

1. Levantamento de Requisitos

• Atividade: Identificar necessidades técnicas e funcionais da arquitetura.

• Subproduto: Documento de requisitos.

2. Projeto Arquitetural

• Atividade: Projetar o modelo MVC e as interações entre as camadas.

• Subproduto: Especificação arquitetural detalhada.

3. Desenvolvimento

• Atividade: Implementar módulos básicos do ambiente (ex.: simulação de endpoints
de criação de usuário).

• Subproduto: Protótipo.

4. Validação

• Atividade: Testar módulos isoladamente para verificar funcionalidade.

• Subproduto: Relatório de validação de módulos.

5. Ajustes e Melhorias

• Atividade: Ajustar de acordo com o que foi identificado no passo anterior e aplicar
as melhorias identificadas.

• Subproduto: Ambiente final.

6. Teste do Ambiente Completo

• Atividade: Realizar testes abrangentes simulando condições reais de produção.

22

• Subproduto: Relatório de testes finais.

Figura 3: Modelo BPMN das Fases do Processo

Fonte: Autoria própria

3.2.3 Produtos intermediários

Os produtos intermediários foram gerados para assegurar o alinhamento entre os requi-
sitos e o produto final, garantindo a validação em diferentes estágios do desenvolvimento.

1. Documento de Requisitos

• Papel: Guiou todas as decisões do projeto, assegurando que as necessidades do am-
biente fossem atendidas.

2. Especificação Arquitetural

• Papel: Serviu como base para a implementação do ambiente, detalhando a divisão
em camadas e a integração entre módulos.

3. Protótipo

• Papel: Validar os conceitos aplicados e a forma de construção.

4. Relatório

• Papel: Fornecer inputs para melhorias e correções do protótipo.

5. Ambiente Final

• Papel: Permitiu a execução dos testes.

6. Relatório de Testes

• Papel: Relatório dos testes realizados.

23

3.3 Produto principal

O produto principal desta monografia é a arquitetura de um ambiente de teste simulado
projetado para se aproximar das condições reais de produção em sistemas baseados na arquite-
tura headless. A seguir, são detalhados a estrutura e o funcionamento do ambiente.

3.3.1 Estrutura do produto

O ambiente de teste foi concebido utilizando a arquitetura em camadas baseada no
modelo MVC (Model-View-Controller). Esta abordagem foi escolhida por sua capacidade de
modularização e separação de responsabilidades, o que facilita a manutenção, escalabilidade e
testes independentes. A seguir estão listadas as camadas MVC da arquitetura:

1. Model (Modelo):

• Responsável pela simulação de dados e respostas das APIs.

• Inclui endpoints representando diferentes cenários (ex.: respostas esperadas, erros
simulados e variações de carga).

• Implementado com ferramentas que permitem criar APIs REST simuladas e repro-
dutíveis.

2. View (Visão):

• Representa a camada de interface do usuário.

• Simula a interação do front-end com os endpoints, incluindo cenários como varia-
ções de dispositivos (desktop, mobile).

• Utiliza frameworks de teste automatizado para verificar a exibição correta das res-
postas da API.

3. Controller (Controlador):

• Realiza a coordenação entre as interações do front-end e back-end.

• Processa as solicitações enviadas pela visão, repassando-as ao modelo e retornando
as respostas apropriadas.

• Inclui lógica de tratamento de erros e simulação de latência.

A figura 4 ilustra a montagem da arquitetura de um ecossistema e-commerce headless,
considerando ações genéricas a serem performadas pelos usuários diretamente em contato com
a camada de visão, seja ela umWeb App ou um aplicativo móvel (Mobile App):

24

Figura 4: Representação MVC de um sistema de e-commerce genérico

Fonte: Próprio autor

Por sua vez a figura 5 já ilustra e exemplifica a arquitetura do ambiente de teste propri-
amente dito, focando na forma com que há interação nos módulos. Para esta representação foi
eleito um CRUD para criação, leitura, atualização e deletar um carrinho:

25

Figura 5: Representação MVC do um sistema de testes sob a ótica de um módulo de gerencia-
mento de carrinho

Fonte: Próprio autor

3.3.2 Ciclo de operação

O ciclo de operação do ambiente de teste é projetado para replicar fluxos reais de in-
teração entre o front-end e o back-end de sistemas headless. Abaixo, detalhamos as etapas e
seu funcionamento no contexto de aplicação levando em conta o módulo de gerenciamento de
carrinho:

1. Configuração inicial:

• O usuário define os cenários de teste no ambiente, incluindo configurações de end-
points, simulação de cargas e casos de erro.

• Ferramentas de orquestração automatizam a criação do ambiente, como por exemplo
um docker.

2. Execução dos testes:

• A camada de visão inicia solicitações para os endpoints do modelo, simulando inte-
rações reais de usuários.

• O controlador coordena as respostas, processando casos como dados incompletos,
latência e timeouts.

26

3. Coleta de resultados:

• Os registros de eventos (logs) são gerados automaticamente, contendo informações
detalhadas sobre cada solicitação e resposta, tempos de execução e erros encontra-
dos.

4. Análise e iteração:

• Os resultados são analisados para identificar falhas ou inconsistências entre o front-
end e back-end.

• As configurações do ambiente podem ser ajustadas para simular novos cenários ou
refinar os testes existentes.

3.4 Implementação

Apresente seção demonstra umpouco da forma de como foi implementada a arquitetura
para um ambiente de testes.

3.4.1 Descrição tecnológica

Conforme descrito ao longo do capítulo 3, optou-se por uma abordagem de uma ar-
quitetura representada em MVC e como forma de apoio à concepção da arquitetura, foi elegido
um módulo ”genérico”de gerenciamento de carrinho, que apresenta uma aplicação de CRUD
(Create, Read, Update, Delete) no sistema a ser testado e avaliado.

Com base no módulo, foi elaborado de forma simples e superficial, um diagrama de
classes para apresentação da arquitetura do ponto de vista da informação, de forma que agrega
e facilita o entendimento de como o ambiente de testes pode estar interagindo com o sistema a
ser testado em si. A figura 6 traz esta representação:

27

Figura 6: Ponto de Vista de Informação: Módulo de gerenciamento de Carrinho

Fonte: Próprio autor

Pensado ainda em uma forma de deixar de uma maneira mais palpável o que está sendo
dito, e visto que o back-end elegido utiliza NodeJS e o front-end React, foram escolhidos Fra-
meworks padrão de mercado, como por exemplo Jest, SonnarQube e Jenkins. Ainda seguindo
por esta direção, o módulo de carrinho possui relevância para negócios, uma vez que é o início
do processo de conversão de venda, ou seja, de geração de receitas.

Considerando o diagrama de classes apresentado, os testes foram modelados de forma
com que a resposta da parte do back-end fosse totalmente mockada e preparada para respeitar
os possíveis cenários identificados como parte do requisito, incluindo também os cenários de
erros.

3.4.2 Resultados

No contexto da arquitetura MVC adotada neste trabalho, a sistemática de teste foi de-
senvolvida com base em padrões amplamente aceitos na indústria de software, como teste de
integração e uso demock objects, para assegurar a validação de interações entre os componentes
Modelo, Visão e Controlador.

28

Os testes de integração foram realizados para verificar a comunicação entre as diferen-
tes camadas da arquitetura MVC. Por exemplo, foi validado que as requisições do front-end ao
back-end retornam os dados esperados no formato correto.

Mock objects foram implementados para simular comportamentos do back-end durante
o teste das funcionalidades do front-end. Esse padrão foi essencial para avaliar a consistência
do front-end, mesmo em cenários onde o back-end estava indisponível ou retornava erros inten-
cionais.

Para validar o comportamento do módulo de gerenciamento de carrinho, o padrão de
teste de integração foi aplicado em conjunto commock objects, simulando respostas da API para
cenários de sucesso, falha e dados incompletos. Isso garantiu que a camada Controlador lidasse
corretamente com diferentes tipos de respostas antes de enviá-las para a camada de Visão.

O uso de padrões de teste como mock objects e testes de integração não apenas assegu-
rou a confiabilidade das interações no ambiente de teste, mas também proporcionou uma base
reutilizável para a validação de futuras funcionalidades, adaptações do sistema e escalabilidade
para distintas plataformas.

29

4 CONSIDERAÇÕES FINAIS

Ao longo deste trabalho, buscou-se desenvolver e documentar uma proposta de ambi-
ente de teste simulado baseado em uma arquitetura MVC, voltado para sistemas que adotam a
abordagem headless. Embora o objetivo inicial de explorar os fundamentos e propor uma es-
trutura escalável tenha sido cumprido, é importante reconhecer que o nível de detalhamento e
implementação foi limitado, focando mais na concepção teórica e na validação conceitual do
ambiente.

Durante o estudo, foram destacadas as vantagens de adotar arquiteturas modulares,
como oMVC, para ambientes de teste, mas a aplicação de frameworks e ferramentas específicas
foi tratada de forma superficial. Isso reflete as limitações do trabalho, que, devido a restrições
de tempo e escopo, priorizou a elaboração de um modelo conceitual em detrimento de uma
implementação prática mais abrangente.

De toda forma, a utilização de ummódulo CRUD como exemplo aplicado demonstrou-
se uma abordagem valiosa para ilustrar o conceito de arquitetura de teste no contexto da mo-
nografia. A implementação de um módulo de gerenciamento de carrinho permitiu explorar, de
maneira prática e simplificada, como as interações típicas entre front-end e back-end podem
ser representadas e testadas em um ambiente simulado. Essa escolha facilitou a demonstração
de como um ambiente de teste pode reproduzir cenários reais de uso, mesmo que em menor
escala, reforçando a viabilidade da proposta e evidenciando os benefícios da arquitetura MVC
para modularidade e escalabilidade. Apesar das limitações inerentes ao escopo do trabalho,
essa aplicação prática agregou valor ao estudo, contribuindo para a validação parcial do modelo
teórico apresentado.

Para trabalhos futuros, sugere-se investigar estratégias para garantir que os dados si-
mulados (mock data) estejam sempre atualizados em relação ao estado real do back-end em
desenvolvimento. Essa é uma questão crítica, pois mocks desatualizados podem comprometer
a eficácia dos testes ao introduzir inconsistências que não refletem o comportamento real do
sistema. Algumas possíveis abordagens incluem a automatização do processo de sincronização
de mocks por meio de pipelines de integração contínua e entrega contínua, a integração com
ferramentas que geram dados simulados a partir de esquemas de API atualizados, ou o uso de
contratos automatizados para validar a compatibilidade entre os mocks e o back-end. Essa li-
nha de pesquisa pode contribuir significativamente para a confiabilidade de ambientes de teste

30

simulados, sobretudo para cenários similares ao apresentando no presente trabalho.

31

REFERÊNCIAS

Associação Brasileira de Comércio Eletrônico (ABComm). Participação no Varejo. 2024.
Acesso em: 15 out. 2024. Disponível em: <https://dados.abcomm.org/participacao-no-varejo>.

ENGINE,W.The State of Headless 2024 - Defining the Future of Digital Engagement. 2024.
Disponível em: <https://wpengine.com/blog/state-of-headless-2024/>.

PRESSMAN, R. S. Engenharia de Software: Uma Abordagem Prática. 9ª. ed. São Paulo:
McGraw-Hill, 2014.

SOMMERVILLE, I. Engenharia de Software. 10ª. ed. São Paulo: Pearson Education, 2020.

THU, D. T. H.; QUANG, L. D.; NGUYEN, D.-A.; HUNG, P. N. A method of automated mock
data generation for restful api testing. In: 2022RIVF International Conference onComputing
and Communication Technologies (RIVF). [S.l.: s.n.], 2022. p. 376–381.

TIWARI, D.; MONPERRUS,M.; BAUDRY, B. Mimicking production behavior with generated
mocks. IEEE Transactions on Software Engineering, v. 50, n. 11, p. 2921–2946, 2024.

VALENTE, M. T. Engenharia de Software Moderna: Princípios e Práticas para Desenvol-
vimento de Software com Produtividade. [S.l.]: Editora: Independente, 2020.

https://dados.abcomm.org/participacao-no-varejo
https://wpengine.com/blog/state-of-headless-2024/

