GUILHERME DIAS TAVARES

Arquitetura de um ambiente de teste simulado front e
back-end

Sdo Paulo
2025

GUILHERME DIAS TAVARES

Arquitetura de um ambiente de teste simulado front e
back-end

Monografia apresentada ao PECE — Programa
de Educagdo Continuada em Engenharia
da Escola Politécnica da Universidade de
Sao Paulo como parte dos requisitos para a
conclusdao do curso de MBA em Engenharia

de Software.

Sdo Paulo
2025

GUILHERME DIAS TAVARES

Arquitetura de um ambiente de teste simulado front e
back-end

Versao Original

Monografia apresentada ao PECE — Programa
de Educagdo Continuada em Engenharia
da Escola Politécnica da Universidade de
Sao Paulo como parte dos requisitos para a
conclusdo do curso de MBA em Engenharia

de Software.

Area de Concentragao:

Engenharia de Software
Orientador:

Prof. Dr. Jorge Luis Risco Becerra
Co-orientador:

Prof. Alipio Ferro

Sdo Paulo
2025

RESUMO

Este trabalho apresenta o desenvolvimento de um ambiente de teste simulado para sistemas
que adotam arquitetura headless, com base no padrao arquitetural Modelo-Visao-Controlador
(MVC). A proposta central ¢ oferecer uma infraestrutura de teste modular e escalavel que per-
mita simular cendrios reais de uso, garantindo resultados confidveis e replicaveis. A abordagem
pratica incluiu a aplicacao de um modulo CRUD (Create, Read, Update e Delete) genérico como
exemplo ilustrativo, destacando sua interacdo com o ambiente de teste. Embora o trabalho ndo
tenha incluido um levantamento formal de requisitos ou uma avaliagao iterativa, ele demonstra
os beneficios de ambientes de teste proximos as condi¢des de produgdo, abordando questdes
como validagdo de APIs. O estudo conclui destacando a importancia de manter o mock data
alinhado ao back-end real, sugerindo que futuras pesquisas explorem ferramentas para sincro-
niza¢ao automatizada de dados de teste.

Palavras-Chave: teste de software, arquitetura headless, MVC, ambiente de teste simulado,
validag¢ao de API.

ABSTRACT

This study presents the development of a simulated testing environment for systems adopting
a headless architecture, based on the Model-View-Controller (MVC) architectural pattern. The
primary goal is to provide a modular and scalable testing infrastructure capable of simulating
real-world usage scenarios, ensuring reliable and replicable results. The practical approach in-
cluded the application of a generic CRUD module as an illustrative example, highlighting its
interaction with the testing environment. Although the work did not involve a formal require-
ments gathering process or iterative evaluation, it demonstrates the benefits of testing environ-
ments closely resembling production conditions, addressing issues such as API validation. The
study concludes by emphasizing the importance of keeping mock data aligned with the actual
backend, suggesting future research to explore tools for automated synchronization of testing
data.

Keywords — software testing, headless architecture, MVC, simulated testing environment, API
validation.

hn A W N =

LISTA DE FIGURAS

Participagdo do E-commerceno Varejo. 9
Arquitetura MVC L 13
Modelo BPMN das Fases do Processo 22
Representacdo MVC de um sistema de e-commerce genérico 24

Representagdo MVC do um sistema de testes sob a 6tica de um moédulo de ge-
renciamento de carrinho Lo Lo 25

Ponto de Vista de Informagao: Mddulo de gerenciamento de Carrinho 27

LISTA DE SIGLAS

API — Application Programming Interface

BPMN — Business Process Model and Notation

CMO — Chief Marketing Officer

CRM — Customer Relationship Management

CTO — Chief Technology Officer

ERP — Enterprise Resource Planning

MBA — Master in Business Administration

MVC — Model-View-Controller (Modelo-Visao-Controlador)
SAML — Security Assertion Markup Language

TI — Tecnologia da Informacao

SUMARIO

1 Introducao

1.1 ContextolInicial
1.2 Objetivo e e
1.3 Justificativa
1.4 Metodologia e
1.5 Organizagdo e e e e e
2 Fundamentacio tedrica

2.1 Padrao de Arquitetura - Model-View-Controller
2.2 Testedesoftware e e
22.1 TestedelIntegragdo

222 TesteSimulado

3 Desenvolvimento

3.1 Contextoda Aplicagdo
3.1.1 Dominiodaaplicagdo,

3.1.2 Partes Interessadas (Stakeholders) e processos de negocios

3.1.3 Requisitos e limitagdes
3.1.3.1 Requisitos

3.1.32 Limitagdes e

3.1.4 Agentes, sistemas e processos de negocios externos

3.2 Processodedesenvolvimento
32.1 Ciclodaengenharia.,
3.2.1.1 Planejamento e Projeto

32.1.2 Implementagdo

32,13 Validagdo

32.14 Entregafinal,

322 Fasesdoprocesso. it e

3.2.3 Produtos intermedidrios

3.3 Produtoprincipal
3.3.1 Estruturadoproduto

332 Ciclodeoperagdo. v v i e e

34 Implementacdo e e e

10
11
11

12
12
14
14
15

3.4.1 Descrigdo tecnolégica

3.4.2 Resultados

4 Consideracoes finais

Referéncias

1 INTRODUCAO

Este trabalho ¢ desenvolvido como parte do Master in Business Administration - MBA
de Engenharia de Software. Neste capitulo ¢ apresentado o contexto o qual o trabalho esta

inserido, o objetivo, a justificativa, a metodologia e a organizacdo do mesmo.

1.1 Contexto Inicial

A adocgao de sistemas com arquitetura headless vem ganhando relevancia, muito por
conta da flexibilidade e escalabilidade que tal arquitetura fornece, uma vez que o desacopla-
mento total entre back-end e front-end possibilita uma experiéncia de usuario personalizada de
acordo com o dispositivo a ser utilizado, como por exemplo, aplicativos moveis, TVs inteligen-
tes e interfaces proprias.

Abordando um pouco mais a questdo do mercado, aplicagdes de comércio eletronico
(e-commerce) foram um dos principais impulsionadores da transformacao digital nas ultimas
décadas, tornando-se uma fonte importante de faturamento das empresas, sendo responsavel no
ano de 2023 por 8,62% do faturamento total do seguimento de varejo, segundo a Associagdo
Brasileira de Comércio Eletronico (ABComm) (2024). Ainda nesta linha, a previsdo para o
ano de 2024 ¢ de que o faturamento ultrapasse a barreira dos 9%, conforme ilustra a Figura 1 a

seguir:

Figura 1: Participacdo do E-commerce no Varejo

Participacao (Em %)

ﬂ@
10

2010 2012 2014 2016 2018 2020 2022 2024

Fonte: Associagao Brasileira de Comércio Eletronico (ABComm) (2024)

Contudo, essa flexibilidade promovida pela arquitetura headless acabou gerando desa-
fio no que tange aos testes de aplicacdo. Supondo que podemos ter duas aplicagdes visuais, com
experiéncias totalmente distintas, porém com propoésitos (vendas) e conexao iguais (neste caso,
ambas apontam para o mesmo sistema de back-end), qual seria a melhor forma para testar as
duas aplicacdes de forma isolada, ou seja, sem poder contar com o sistema que sustenta todas
operagdes que sio realizadas na plataforma? E justamente neste cenario que o presente trabalho

esta inserido.

1.2 Objetivo

Este trabalho tem como principal objetivo propor uma arquitetura de ambiente de teste
simulado para front-end e back-end, baseada no modelo MVC (Model-View-Controller).

A arquitetura foi gerada considerando um contexto de aplicagdo em uma plataforma de
e-commerce e restringindo um pouco mais o escopo para dentro do médulo de gerenciamento de
carrinho. No mddulo de gerenciamento de carrinho considerou-se quatro agdes principais para
fins ilustrativos: Cria¢dao do Carrinho, Obter dados do Carrinho, Atualizar dados do carrinho
e Deletar carrinho. A escolha pelo médulo de carrinho foi estratégica, uma vez que € uma
pratica comum e desejada no mercado o compartilhamento do mesmo entre as plataformas, isto

¢, quando um cliente final montar um carrinho utilizando um aplicativo moével em seu celular,

10

caso queira o mesmo poderd entrar via navegador de computador e ter os dados ja persistidos

junto ao seu usudrio.

1.3 Justificativa

De acordo com uma pesquisa conduzida pela Censuswide, uma consultoria especiali-
zada em pesquisas de mercado quantitativas e qualitativas, a pedido da WP Engine, em julho de
2024, 73% das empresas entrevistadas ja utilizam a arquitetura headless, representando um au-
mento de 14% em relagdo a 2021 (ENGINE, 2024). Dentre as empresas que ainda ndo adotaram
essa tecnologia, 98% planejam avaliar sua implementacao nos proximos 12 meses. A pesquisa
incluiu respostas de executivos como diretores de tecnologia (CTOs), diretores de marketing
(CMOs) e tomadores de decisdo da area de TI, provenientes de empresas com receita média
anual de aproximadamente 800 milhdes de ddlares. E importante ressaltar que o estudo foi con-
duzido em organizagdes localizadas nos Estados Unidos, Reino Unido e Australia, refletindo
tendéncias regionais especificas na adocao dessa arquitetura (ENGINE, 2024).

Seguindo essa sequéncia, foram examinados diversos artigos que tém ligagao, seja di-
reta ou indireta, completa ou parcial, com os temas abordados nesta monografia. Dentre esses,
foram selecionados trés artigos os quais serdo sintetizados nos paragrafos seguintes.

O desenvolvimento de ambientes de testes que simulam o comportamento real de siste-
mas de producdo ¢ um desafio importante na engenharia de software. O artigo Mimicking Pro-
duction Behavior with Generated Mocks de Tiwari et al. (2024) aborda a utilizagdo de mocks,
isto €, objetos ou componentes simulados que simulam o comportamento de dependéncias re-
ais de um sistema, gerados automaticamente para replicar de forma precisa o comportamento
do sistema em producdo durante os testes. Essa abordagem permite a execugao de testes mais
confiaveis, reduzindo a dependéncia de ambientes de producdo e aumentando a cobertura de
cenarios de falhas e carga. Essa técnica ¢ diretamente aplicavel a proposta desta monografia.

O artigo 4 Method of Automated Mock Data Generation for RESTful API Testing de
Thu et al. (2022) explora a geracdo automatizada de dados mock para testes de APIs, abordando
a criacdo de mocks com base nas especificacdes da API, o que pode ser diretamente relacionado
a construcao de um ambiente de testes simulados descrito na monografia. Embora a monografia
foque na criagdo de um ambiente de teste para sistemas que adotam a arquitetura headless, a
abordagem de geragdo automatizada de dados mock no artigo complementa a proposta de testar

interacdes e respostas do sistema, sem a necessidade de um ambiente de produgao.

11

1.4 Metodologia

A metodologia deste trabalho baseou-se em uma abordagem exploratoria e aplicada,
com foco na criacdo e apresentacdo de um ambiente de teste simulado para sistemas que uti-
lizam arquitetura headless. A primeira etapa envolveu uma revisdo bibliografica direcionada,
abordando conceitos tedricos sobre padroes arquiteturais, como o modelo MVC, e metodologias
de teste de software. Essa revisao fundamentou as escolhas técnicas e conceituais empregadas
ao longo do desenvolvimento do trabalho.

Em seguida, adotou-se uma abordagem pratica com base em um exemplo aplicado de
um modulo CRUD do moédulo de gerenciamento de Carrinho. Este exemplo serviu para ilustrar
como um ambiente de teste simulado pode interagir com um sistema a ser avaliado, mesmo sem
um levantamento formal de requisitos ou itera¢gdes documentadas de avaliagdo. O foco principal
esteve na representacao arquitetural do ambiente de testes.

Apesar de suas limitagdes de escopo, a metodologia aplicada possibilitou a geragdo de
uma arquitetura de um ambiente de testes de acordo com o que era previsto e desejado incial-

mente.

1.5 Organizacao

A organizacao do trabalho ¢ composta da seguinte forma:

O Capitulo 1 INTRODUCAO apresenta o contexto inicial, o objetivo, as justificativas,
a metodologia e a estrutura do trabalho;

O Capitulo 2 FUNDAMENTACAO TEORICA apresenta os principais conceitos para
o desenvolvimento deste trabalho, como Arquitetura, o padrao MVC e Testes de Software;

O Capitulo 3 DESENVOLVIMENTO apresenta o desenvolvimento da monografia,
abordando o contexto da aplicagdo, o processo de desenvolvimento, o produto principal e a
implementagao.

O Capitulo 4 CONSIDERACOES FINAIS apresenta a conclusdo e propostas para tra-
balhos futuros.

12

2 FUNDAMENTACAO TEORICA

O presente capitulo tem como objetivo fornecer o embasamento tedrico necessario para
o desenvolvimento desta monografia, alinhando os conceitos fundamentais ao contexto e aos
objetivos estabelecidos no capitulo anterior.

Para isso, sera realizada uma revisdo bibliografica de um pattern arquitetural muito
difundido e utilizado, o Modelo-Visao-Controlador (Model-View-Controller) ou no acronimo

MVC. Além do mais, também ¢é abordado os conceitos de Teste Web e teste distribuido.

2.1 Padrao de Arquitetura - Model-View-Controller

Arquitetura de software ¢ constantemente definida como uma forma abstrata, de mais
alto nivel de representagao de um projeto, podendo ainda, definir e exibir um projeto com varios
pontos de vistas distintos, oportunizando assim uma ampla gama de aplicacdo e objetivos de se
ter uma arquitetura, como por exemplo usar para documentar um projeto, representar requisi-
tos, etc. E também, segundo Sommerville (2020), como o primeiro estagio no projeto de um
software.

De acordo com Sommerville (2020), um projeto de arquitetura tem preocupacao na
demonstracdo em como um sistema deve ser organizado e sua estrutura geral, uma vez que
¢ o elo critico entre projeto e engenharia de requisitos, uma vez que identifica os principais
componentes do projeto e a forma com que se relacionam.

Com base nisto, ¢ importante e primordial existir modelos e padrdes de arquitetura.
Sommerville (2020) descreve um padrao de arquitetura como um conjunto de boas praticas
testadas em diferentes contextos, que incluem orientagdes sobre sua aplicabilidade, pontos fortes
e limitagoes.

O padrao arquitetural MVC (Model-View-Controller, ou em portugués, Modelo-Visao-
Controlador) ¢ um robusto padrao para desenvolvimento de sistemas de software, que tem ori-
gem no final da década de 70 e inicio da década de 80, durante o desenvolvimento do ambiente
Smalltak-80, uma linguagem de programacao orientada a objetos. Foi concebido para organi-
zar e segregar a logica do sistema, especialmente em sistemas que ha a existéncia de interfaces
graficas e/ou sistemas Web. Este conceito divide e organiza a arquitetura em trés componentes

principais: Modelo, Visao e Controlador, como seu proprio nome sugere.

13

O componente Modelo ¢ a camada responsavel por encapsular os dados e regras de
negodcios que estao associadas aos mesmos. Em outras palavras, € o encarregado de gerenciar o
estado do sistema.

J4 o componente Visdo tem como escopo a forma com que estes dados sdo exibidos ao
usuario.

Por sua vez o componente Controlador € o responsavel por gerenciar a integragao entre
Modelo e Visao, sendo uma espécie de “meio de campo” entre os componentes citados anteri-
ormente.

Uma grande vantagem da abordagem de uma arquitetura MVC ¢ a segregagado entre as
camadas de forma com que as alteragdes possam ser realizadas de forma pontuais e isoladas.

A fim de exemplificar de forma sucinta o conceito, Pressman (2014) apresenta o se-
guinte:

Na arquitetura MVC, o comando do usuario ¢ enviado da janela do navegador
para um processador de comandos (controlador), o qual gerencia o acesso ao
conteudo (modelo) e instrui 0 modelo de renderizagdo [NT] de informagdes
(visdo) a transforma-lo para exibigdo pelo software do navegador.

A Figura 2 demonstra uma ilustragdo visual da arquitetura MVC onde a comunicacdo

e dependéncias entre os componentes sdo exibidas e ressaltadas:

Interface Grafica

Visao ------ »| Controladores

e - Modelo - - - -

Figura 2: Arquitetura MVC
Fonte: Valente (2020)

14

2.2 Teste de software

Um dos grandes desafios de projetos complexos ¢ garantir a estabilidade do mesmo, isto
¢, assegurar de forma consistente que toda alteragdo, por menor que ela seja, ndo gere impactos
e/ou efeitos adversos, indesejados e inesperados no restante do projeto.

De acordo com Sommerville (2020):

O teste ¢ destinado a mostrar que um programa faz o que € proposto a fazer e
para descobrir os defeitos do programa antes do uso. Quando se testa o sofi-
ware, o programa ¢ executado usando dados ficticios. Os resultados do teste
sdo verificados a procura de erros, anomalias ou informagdes sobre os atributos
ndo funcionais do programa.

Os testes de sofiware desempenham um papel fundamental na garantia da qualidade
dos sistemas, sendo definidos como um processo sistematico para identificar defeitos e verificar
se o software atende aos requisitos especificados. Segundo Pressman (2014, p. 466), “Teste ¢
um conjunto de atividades que podem ser planejadas com antecedéncia e executadas sistemati-
camente”. Os testes de soffware tem como preocupagdo garantir que o sistema esteja adequado
ao seu proposito, atendendo as necessidades dos usudrios, sendo executado de forma eficiente
e confiavel e também atendendo aos prazos estabelecidos bem como o orgamento € que 0 uso
destas técnicas aumentou o nivel de qualidade de software nos tltimos anos (SOMMERVILLE,
2020).

O teste de software € composto por diversas técnicas e abordagens que variam de acordo
com o ciclo de desenvolvimento e a complexidade do sistema, como testes unitarios, de integra-
¢do, de sistema e de aceitagdo. Além disso, os testes ndo apenas identificam defeitos técnicos,
mas também servem como uma ferramenta para melhorar a confiabilidade e a seguranga do
software.

Os testes podem ser divididos em quatro etapas: teste de unidade, teste de integragao,
teste de validagao e testes de ordem superior (PRESSMAN, 2014). O teste de unidade ¢ basi-
camente o tipo de teste que se concentra em avaliar uma Unica unidade do projeto, seja ela um
componente, uma classe, etc.). Por sua vez, o teste de integracao tem o foco no projeto e sua
arquitetura. O teste de validacdo verifica se a modelagem de requisitos foi cumprida. Por fim,
teste de ordem superior realiza uma avaliagdo de como o soffware se comporta ¢ interage com

elementos externos.

2.2.1 Teste de Integracao

O teste de integragdo ¢ crucial para garantir que diferentes modulos de um sistema,
funcionem corretamente em conjunto. Em um ambiente de arquitetura headless, onde existe o

desacoplado, ¢ essencial validar a comunicagao entre as APIs e o sistema de interface do usuario.

15

Os testes de integragdo simulam interagdes reais para verificar se os dados sdo processados e
apresentados corretamente, identificando falhas nas interfaces e integrando de maneira eficaz os
componentes do sistema. Esse tipo de teste ajuda a garantir que as funcionalidades end-to-end

atendam aos requisitos esperados.

2.2.2 Teste Simulado

Mocking ¢ uma técnica utilizada para substituir dependéncias externas em testes de
software, permitindo simular o comportamento de sistemas externos como APIs ou servigos.
Conforme avaliado por Valente (2020) o mock permite a implementagdo de teste que ndo precisa
acessar servico remoto, potencialmente lento. Em ambientes de testes de integracao, o uso de
mocks € essencial para isolar os componentes que estdo sendo testados, garantindo que falhas

de integracdo com sistemas externos nao interferirem nos resultados dos testes.

16

3 DESENVOLVIMENTO

Este capitulo tem como objetivo apresentar o processo de construcao de uma arqui-
tetura de ambiente de teste simulado, projetada para se aproximar das condi¢des de producao
em sistemas que adotam a arquitetura headless. A solugdo proposta, fundamentada no modelo
MVC (Model-View-Controller), foi desenvolvida para garantir que os testes sejam realizados
de maneira modular, escalavel e replicaveis. Serdo discutidos neste capitulo as metodologias,
técnicas e ferramentas utilizadas para a criagdo da arquitetura de um ambiente de teste.

No decorrer do capitulo, serdo abordados os detalhes do contexto da aplicagdo, como o
dominio da aplicac¢do, as fases do processo de desenvolvimento, e os entregaveis intermedidrios.
Além disso, sera apresentada a estrutura do produto final, como este se organiza e opera dentro

do ambiente de testes.

3.1 Contexto da Aplicacao

O contexto da aplicagdo ¢ fundamental para compreender o ambiente e os desafios nos
quais a solucao proposta sera implementada. Este subitem busca abordar os principais aspectos
relacionados a aplica¢do do produto desenvolvido nesta monografia, que se insere no dominio
do comércio eletronico, especificamente para plataformas que adotam arquiteturas headless. A
partir dessa analise, serdo detalhados o dominio da aplicagdo, os stakeholders envolvidos, os
processos de negdcios impactados, os requisitos e limitagdes do sistema, e as interagdes com

agentes e sistemas externos.

3.1.1 Dominio da aplicaciao

Levando em considerag@o o que foi discorrido anteriomente, a solugdo proposta sera
aplicada a um hipotético sistema de e-commerce headless, visto que permite que multiplas in-
terfaces interajam com o mesmo nucleo de servicos.

Essa escolha de dominio reforca a relevancia pratica do produto da monografia, con-
siderando as demandas atuais do mercado e a necessidade crescente de ambientes de teste que

simulem com precisdo cenarios de produgao.

17

3.1.2 Partes Interessadas (Stakeholders) e processos de negocios

Os stakeholders diretamente relacionados ao produto desta monografia incluem indi-
viduos e equipes que desempenham papéis essenciais no ciclo de vida de desenvolvimento e

operacao do sistema e-commerce, conforme detalhado abaixo:
1. Stakeholders técnicos

(a) Desenvolvedores front-end: Responsaveis pela criagdo e manutengao das interfaces
visuais que interagem com os usuarios finais. Dependem de um ambiente de teste
para validar o desenvolvimento levando em conta as respostas da integracdo com

APIs e servigos do back-end desacoplado.

(b) Desenvolvedores back-end: Projetam ¢ mantém os servigos ¢ APIs utilizados pelo
front-end. Seu foco esta na garantia de que os endpoints de API funcionem conforme

o esperado e atendam as especificagdes definidas.

(c) Engenheiros de Qualidade: Testam o sistema como um todo, garantindo que tanto o
front-end quanto o back-end operem corretamente em diferentes cenarios de acordo

com a especificagdo so sistema.

(d) DevOps: Garantem que os ambientes de teste e producdo sejam configurados de

forma eficaz.
2. Stakeholders de negocios

(a) Gerentes de Produto: Interessados em validar que os requisitos de negdcio sejam

atendidos e que as funcionalidades entreguem valor ao usuério final.

(b) Executivos e Tomadores de Decisdo: Avaliam os resultados dos testes como parte
do processo de tomada de decisdes estratégicas para otimizagao de custos e aumento

de confiabilidade e expansao do sistema.

(c) Usuarios Finais (Clientes): Embora indiretamente, sdao afetados pela confiabilidade

do sistema, que impacta diretamente a experiéncia de compra e a fidelizagao.

Um sistema de e-commerce possui variados processos de negdcios. A seguir sao apre-

sentados os mais impactantes no ecossistema:

* Gerenciamento de Catdlogo de Produtos: As APIs precisam ser testadas para garantir a
atualizacdo e exibi¢do correta de produtos nas interfaces do usuario, ou seja, uma vez que
o back-end receba uma requisic¢ao de atualizag@o para o banco, que também seja capaz de

entregar o dado ja atualizado para as consultas que sejam realizadas na sequéncia.

18

* Processamento de Pedidos e Transacdes: O back-end deve ser validado para garantir a

integridade das transagdes, como pagamentos ¢ atualizacdes de status de pedidos.

* Gerenciamento de Clientes: O fluxo de gerenciamento de cliente deve ser validado para
que forneca dados com qualidade para servigos externos (como Analytics) mas que prin-
cipalmente também respeite quaisquer regras de negocio atribuidas a este modulo (como
por exemplo liberar compras de bebidas alcoolicas apenas para consumidores maiores de
idade.

3.1.3 Requisitos e limitacoes

Para o desenvolvimento da arquitetura de ambiente de teste simulado proposto nesta
monografia, foi necessario identificar e documentar os requisitos essenciais que guiam sua cons-

trugdo, bem como as limitagdes inerentes a solucdo adotada.

3.1.3.1 Requisitos

Para falar um pouco dos requisitos, decidiu-se dividir entre requisitos funcionais e re-
quisitos ndo funcionais. Os requisitos funcionais determinam o que um sistema deve fazer,
enquanto os requisitos nao funcionais especificam propriedades e restrigdes do sistema. (SOM-
MERVILLE, 2020)

Requisitos funcionais:
* O ambiente de testes deve permitir a simulacao de interagdes entre front-end e back-end.
* Deve suportar a execucao de testes sob condi¢des semelhantes ao ambiente de produgao.
* Deve ser capaz de utilizar mocks para APIs e dados.
* Implementacdo de CRUD para validar operagdes basicas de sistemas.

Requisitos nao funcionais:

Escalabilidade para permitir expansao de testes com diferentes cenarios.
* Manuteng¢do de consisténcia entre dados simulados e dados reais.
3.1.3.2 Limitac¢des
Apesar das vantagens esperadas, algumas limitagcdes foram identificadas:

* Operacional: Exige familiaridade dos desenvolvedores com conceitos de teste automati-

zado e mocks. Custos adicionais para infraestrutura de testes.

19
» Complexidade técnica: Dependéncia de ferramentas especificas para geragdo de mocks.
Dificuldade em sincronizar dados de mock com atualiza¢des no back-end real.

* Escopo do Trabalho: O foco esta na arquitetura para ambientes de teste, ndo no desenvol-

vimento completo de uma solugao.

3.1.4 Agentes, sistemas e processos de negocios externos

O ambiente de teste simulado proposto neste trabalho opera em um ecossistema que in-
terage com diversos agentes, sistemas e processos de negdcios externos. A identificacdo desses

elementos esta listada a seguir.

a) Agentes externos

» Usuarios finais: Interagem com o front-end, sendo responsaveis por realizar agdes e for-

necer dados que acionam processos no back-end.

* Desenvolvedores e equipes de QA: Atuam como operadores e validadores do ambiente de

teste, utilizando o sistema para identificar defeitos, realizar analises e propor melhorias.

* Gestores de produtos: Influenciam as prioridades e escopos dos testes, além de tomar

decisOes com base nos resultados obtidos.

b) Sistemas externos

» APIs de terceiros: Dependéncia de APIs externas para integrar funcionalidades adicio-
nais, como gateways de pagamento, servicos de geolocalizagdo, ou provedores de dados

analiticos.

* Banco de dados e repositorios de dados: Fontes de dados externas que armazenam infor-
magoes criticas, necessarias para validagcdes ou para simular condigdes reais no ambiente

de teste.

¢) Processos de negdocios externos

* Fluxos de integragdo com parceiros: Processos que envolvem o intercambio de dados
entre a aplicacdo e sistemas de parceiros, como logistica, ERP ou CRM, e que precisam

ser simulados no ambiente de teste.

» Cadeia de suporte ao cliente: Inclui processos que ndo sdo diretamente controlados pelo

ambiente de teste, mas impactam a experiéncia geral, como suporte técnico e atendimento

20

poOs-venda.

* Monitoramento e analise de desempenho: Sistemas externos de monitoramento, como
ferramentas de observabilidade ou métricas de uso, que auxiliam na avaliacdo de desem-

penho da aplica¢do em producao.

3.2 Processo de desenvolvimento

A presente se¢do aborda o processo de desenvolvimento do produto proposto por esta
monografia, abordando o ciclo de engenharia dividido em quatro fases: planejamento e projeto,
implementacdo, validagdo e entrega, bem como as fases do processo e quais foram os produtos

intermedidrios gerados durante o desenvolvimento.

3.2.1 Ciclo da engenharia

O desenvolvimento da arquitetura do ambiente de teste simulado seguiu um ciclo de

engenharia estruturado, com foco na modularidade e escalabilidade.

3.2.1.1 Planejamento e Projeto

A fase inicial envolveu a analise dos requisitos levantados no contexto do ambiente de
teste simulado. Nesse estagio, como ja descrito no item 3.1.3, foram identificados requisitos

principais para a elaboracao desta arquitetura.

3.2.1.2 Implementacio

A implementagdo foi realizada em etapas iterativas. Inicialmente, as funcionalidades
basicas do ambiente de teste foram desenvolvidas, como a configuragdo de endpoints simulados
e a automacgao de processos de teste. Cada mddulo foi implementado separadamente, validado

em pequenos ciclos de teste e integrado ao ambiente global de forma incremental.

3.2.1.3 Validacao

Ap6s cada ciclo de implementacgdo, foram realizadas rodadas de testes para garantir a
consisténcia e o alinhamento com os requisitos definidos. Esses testes foram conduzidos em
cenarios que simulavam condig¢des reais de operagdo, incluindo a interacado com APIs externas

e simulagdo de cargas variadas.

3.2.1.4 Entrega final

Com a conclusao das etapas de validacao, o ambiente de teste simulado foi consolidado

e documentado. A documentagdo inclui o detalhamento da arquitetura, o fluxo de operagao do

21

ambiente e as orientagdes para a execucao dos testes, de modo a facilitar a adogao por equipes

de desenvolvimento e QA.

3.2.2 Fases do processo

O ciclo de desenvolvimento foi organizado em fases distintas, com cada etapa produ-
zindo subprodutos que contribuiram para a constru¢do do ambiente de teste simulado. Essas
fases foram representadas por meio de um modelo BPMN (Business Process Model and Nota-
tion), que ilustra os principais passos do processo de desenvolvimento.

Abaixo segue um descritivo com as fases, que posteriormente estardo representadas

num modelo grafico BPMN conforme ilustra a 3:

1. Levantamento de Requisitos

» Atividade: Identificar necessidades técnicas e funcionais da arquitetura.

 Subproduto: Documento de requisitos.
2. Projeto Arquitetural

* Atividade: Projetar o modelo MVC e as interagdes entre as camadas.

» Subproduto: Especificacao arquitetural detalhada.
3. Desenvolvimento

* Atividade: Implementar modulos basicos do ambiente (ex.: simulagdo de endpoints

de criagdo de usuario).

* Subproduto: Protétipo.
4. Validagao

* Atividade: Testar médulos isoladamente para verificar funcionalidade.

 Subproduto: Relatério de validagdo de mddulos.
5. Ajustes e Melhorias

» Atividade: Ajustar de acordo com o que foi identificado no passo anterior e aplicar

as melhorias identificadas.

 Subproduto: Ambiente final.
6. Teste do Ambiente Completo

» Atividade: Realizar testes abrangentes simulando condi¢des reais de produgao.

22

 Subproduto: Relatério de testes finais.

Figura 3: Modelo BPMN das Fases do Processo

Relatério de Testes

elatorio inal
Especificagao Arquitetural
el L .
Documento de Requisitos “‘Bgda : . D D

Processo de Desenvolvimento

Fonte: Autoria propria

3.2.3 Produtos intermediarios

Os produtos intermedidrios foram gerados para assegurar o alinhamento entre os requi-

sitos e o produto final, garantindo a validacdo em diferentes estagios do desenvolvimento.

1. Documento de Requisitos

 Papel: Guiou todas as decisdes do projeto, assegurando que as necessidades do am-

biente fossem atendidas.
2. Especificacdo Arquitetural

* Papel: Serviu como base para a implementagdo do ambiente, detalhando a divisao

em camadas e a integragdo entre modulos.

3. Prototipo

 Papel: Validar os conceitos aplicados e a forma de construgao.
4. Relatorio

» Papel: Fornecer inputs para melhorias e correcdes do prototipo.
5. Ambiente Final

* Papel: Permitiu a execugao dos testes.
6. Relatorio de Testes

» Papel: Relatorio dos testes realizados.

23

3.3 Produto principal

O produto principal desta monografia ¢ a arquitetura de um ambiente de teste simulado
projetado para se aproximar das condi¢des reais de producdo em sistemas baseados na arquite-

tura headless. A seguir, sdo detalhados a estrutura e o funcionamento do ambiente.

3.3.1 Estrutura do produto

O ambiente de teste foi concebido utilizando a arquitetura em camadas baseada no
modelo MVC (Model-View-Controller). Esta abordagem foi escolhida por sua capacidade de
modularizagdo e separacao de responsabilidades, o que facilita a manutengao, escalabilidade e

testes independentes. A seguir estdo listadas as camadas MVC da arquitetura:

1. Model (Modelo):

* Responsavel pela simulacao de dados e respostas das APIs.

* Inclui endpoints representando diferentes cenarios (ex.: respostas esperadas, erros

simulados e variagdes de carga).
* Implementado com ferramentas que permitem criar APIs REST simuladas e repro-
dutiveis.

2. View (Visao):

* Representa a camada de interface do usuario.

 Simula a interag¢do do front-end com os endpoints, incluindo cendrios como varia-

¢oes de dispositivos (desktop, mobile).
» Utiliza frameworks de teste automatizado para verificar a exibi¢do correta das res-
postas da API.

3. Controller (Controlador):

* Realiza a coordenagdo entre as interagdes do front-end e back-end.

* Processa as solicitagdes enviadas pela visdo, repassando-as ao modelo e retornando

as respostas apropriadas.

* Inclui logica de tratamento de erros e simulagdo de laténcia.

A figura 4 ilustra a montagem da arquitetura de um ecossistema e-commerce headless,
considerando agdes genéricas a serem performadas pelos usudrios diretamente em contato com

a camada de visdo, seja ela um Web App ou um aplicativo mével (Mobile App):

24

Figura 4: Representacdo MVC de um sistema de e-commerce genérico

=
B Web App Mobile App
=
Realizar acdes
=]
=
=
*E v
Qo Propagacao da aco
o
[E]
=
= .
= Repaositorio

Fonte: Proprio autor

Por sua vez a figura 5 ja ilustra e exemplifica a arquitetura do ambiente de teste propri-
amente dito, focando na forma com que ha interagdo nos modulos. Para esta representacao foi

eleito um CRUD para criacao, leitura, atualizacao e deletar um carrinho:

25

Figura 5: Representagdo MVC do um sistema de testes sob a otica de um moddulo de gerencia-

mento de carrinho

Interface

\fisdo

Atualizar dados do Deletar carrinho

Obter dados do
Carrinho

Criar Carrinho Carrinho

h 4 h 4

h 4 4
Ingerir Carrinho no Buscar dados do Realizar update de dados Apagar Carrinho
Carrinho no Carrinho

Contorlador

repositario

Repositario de
Pedidos

Modelo

Fonte: Proprio autor

3.3.2 Ciclo de operacao
O ciclo de operagdao do ambiente de teste € projetado para replicar fluxos reais de in-
teragdo entre o front-end e o back-end de sistemas headless. Abaixo, detalhamos as etapas e

seu funcionamento no contexto de aplicagdo levando em conta o mddulo de gerenciamento de

carrinho:
1. Configuracdo inicial:
* O usuario define os cendrios de teste no ambiente, incluindo configuracdes de end-

points, simulacao de cargas e casos de erro.

» Ferramentas de orquestracao automatizam a criacao do ambiente, como por exemplo
um docker.
2. Execugao dos testes:
» A camada de visdo inicia solicitagdes para os endpoints do modelo, simulando inte-

ragOes reais de usuarios.

* O controlador coordena as respostas, processando casos como dados incompletos,

laténcia e timeouts.

26

3. Coleta de resultados:

* Os registros de eventos (logs) sdo gerados automaticamente, contendo informagdes
detalhadas sobre cada solicitacdo e resposta, tempos de execugao e erros encontra-

dos.
4. Analise e iteragao:

* Os resultados sdo analisados para identificar falhas ou inconsisténcias entre o front-

end e back-end.

» As configuragdes do ambiente podem ser ajustadas para simular novos cendrios ou

refinar os testes existentes.

3.4 Implementacio

A presente se¢ao demonstra um pouco da forma de como foi implementada a arquitetura

para um ambiente de testes.

3.4.1 Descricao tecnologica

Conforme descrito ao longo do capitulo 3, optou-se por uma abordagem de uma ar-
quitetura representada em MVC e como forma de apoio a concepgao da arquitetura, foi elegido
um moddulo “genérico”de gerenciamento de carrinho, que apresenta uma aplicagdo de CRUD
(Create, Read, Update, Delete) no sistema a ser testado e avaliado.

Com base no mddulo, foi elaborado de forma simples e superficial, um diagrama de
classes para apresentagdo da arquitetura do ponto de vista da informacgao, de forma que agrega
e facilita o entendimento de como o ambiente de testes pode estar interagindo com o sistema a

ser testado em si. A figura 6 traz esta representacao:

27

Figura 6: Ponto de Vista de Informagao: Modulo de gerenciamento de Carrinho

1
Status
<<Enfidade=>
- uuid: String Carrinho
- Descricao_Status: String
~1d_Carinho: String
- Status: List==
- Data_Criacao: Date
- Data_Atualizacao: Date
Item - Id_Cliente: String
- ltems: List <>
- uuiditem: String
- Nome_ltem: String L + criarCarrinho(show): Carrinho
- Quantidade: Integrer |~ + atualizarCarrinho(show): Carrinho
- PrecoUnitario: Number + deletarCarrinho(show): Carrinho
- PrecoTotal: Number + cadastrarltem(ID: uuid, item: Item)

<<Repositorio==
CarrinhoRepository

+ getCartByld(ID: uuid): Carrinho
+ getCartByCliente(ID: uuid): Carrinho
+ listarCarrinhosAbandonados(): List{Carrinho]

Fonte: Préprio autor

Pensado ainda em uma forma de deixar de uma maneira mais palpavel o que estd sendo
dito, e visto que o back-end elegido utiliza NodeJS e o front-end React, foram escolhidos Fra-
meworks padrao de mercado, como por exemplo Jest, SonnarQube e Jenkins. Ainda seguindo
por esta dire¢do, o modulo de carrinho possui relevancia para negocios, uma vez que € o inicio
do processo de conversao de venda, ou seja, de geracao de receitas.

Considerando o diagrama de classes apresentado, os testes foram modelados de forma
com que a resposta da parte do back-end fosse totalmente mockada e preparada para respeitar
os possiveis cendrios identificados como parte do requisito, incluindo também os cenarios de

€110S.

3.4.2 Resultados

No contexto da arquitetura MVC adotada neste trabalho, a sistematica de teste foi de-
senvolvida com base em padroes amplamente aceitos na industria de software, como teste de
integracao e uso de mock objects, para assegurar a validacdo de interagdes entre os componentes

Modelo, Visao e Controlador.

28

Os testes de integragao foram realizados para verificar a comunicagao entre as diferen-
tes camadas da arquitetura MVC. Por exemplo, foi validado que as requisi¢des do front-end ao
back-end retornam os dados esperados no formato correto.

Mock objects foram implementados para simular comportamentos do back-end durante
o teste das funcionalidades do front-end. Esse padrdo foi essencial para avaliar a consisténcia
do front-end, mesmo em cenarios onde o back-end estava indisponivel ou retornava erros inten-
cionais.

Para validar o comportamento do modulo de gerenciamento de carrinho, o padrao de
teste de integragdo foi aplicado em conjunto com mock objects, simulando respostas da API para
cenarios de sucesso, falha e dados incompletos. Isso garantiu que a camada Controlador lidasse
corretamente com diferentes tipos de respostas antes de envia-las para a camada de Visao.

O uso de padrdes de teste como mock objects e testes de integracdao ndo apenas assegu-
rou a confiabilidade das interagdes no ambiente de teste, mas também proporcionou uma base
reutilizdvel para a validagdo de futuras funcionalidades, adaptagdes do sistema e escalabilidade

para distintas plataformas.

29

4 CONSIDERACOES FINAIS

Ao longo deste trabalho, buscou-se desenvolver e documentar uma proposta de ambi-
ente de teste simulado baseado em uma arquitetura MVC, voltado para sistemas que adotam a
abordagem headless. Embora o objetivo inicial de explorar os fundamentos e propor uma es-
trutura escaldvel tenha sido cumprido, ¢ importante reconhecer que o nivel de detalhamento e
implementac¢do foi limitado, focando mais na concepgao teodrica e na validagao conceitual do
ambiente.

Durante o estudo, foram destacadas as vantagens de adotar arquiteturas modulares,
como 0 MVC, para ambientes de teste, mas a aplicagdo de frameworks e ferramentas especificas
foi tratada de forma superficial. Isso reflete as limitagcdes do trabalho, que, devido a restricdes
de tempo e escopo, priorizou a elaboragdo de um modelo conceitual em detrimento de uma
implementagdo pratica mais abrangente.

De toda forma, a utilizacdo de um moédulo CRUD como exemplo aplicado demonstrou-
se uma abordagem valiosa para ilustrar o conceito de arquitetura de teste no contexto da mo-
nografia. A implementacdo de um mddulo de gerenciamento de carrinho permitiu explorar, de
maneira pratica e simplificada, como as interagdes tipicas entre front-end e back-end podem
ser representadas e testadas em um ambiente simulado. Essa escolha facilitou a demonstragao
de como um ambiente de teste pode reproduzir cenarios reais de uso, mesmo que em menor
escala, refor¢ando a viabilidade da proposta e evidenciando os beneficios da arquitetura MVC
para modularidade e escalabilidade. Apesar das limitagdes inerentes ao escopo do trabalho,
essa aplicagdo pratica agregou valor ao estudo, contribuindo para a validagao parcial do modelo
tedrico apresentado.

Para trabalhos futuros, sugere-se investigar estratégias para garantir que os dados si-
mulados (mock data) estejam sempre atualizados em relacdo ao estado real do back-end em
desenvolvimento. Essa ¢ uma questdo critica, pois mocks desatualizados podem comprometer
a eficacia dos testes ao introduzir inconsisténcias que ndo refletem o comportamento real do
sistema. Algumas possiveis abordagens incluem a automatizacdo do processo de sincronizagao
de mocks por meio de pipelines de integragdo continua e entrega continua, a integracdo com
ferramentas que geram dados simulados a partir de esquemas de API atualizados, ou o uso de
contratos automatizados para validar a compatibilidade entre os mocks e o back-end. Essa li-

nha de pesquisa pode contribuir significativamente para a confiabilidade de ambientes de teste

simulados, sobretudo para cenarios similares ao apresentando no presente trabalho.

30

31

REFERENCIAS

Associacao Brasileira de Comércio Eletronico (ABComm). Participacdo no Varejo. 2024.
Acesso em: 15 out. 2024. Disponivel em: <https://dados.abcomm.org/participacao-no-varejo>.

ENGINE, W. The State of Headless 2024 - Defining the Future of Digital Engagement. 2024.
Disponivel em: <https://wpengine.com/blog/state-of-headless-2024/>.

PRESSMAN, R. S. Engenharia de Software: Uma Abordagem Pratica. 9°. ed. Sao Paulo:
McGraw-Hill, 2014.

SOMMERVILLE, I. Engenharia de Software. 10°. ed. Sao Paulo: Pearson Education, 2020.

THU, D. T. H.; QUANG, L. D.; NGUYEN, D.-A.; HUNG, P. N. A method of automated mock
data generation for restful api testing. In: 2022 RIVF International Conference on Computing
and Communication Technologies (RIVF). [S.L.: s.n.], 2022. p. 376-381.

TIWARI, D.; MONPERRUS, M.; BAUDRY, B. Mimicking production behavior with generated
mocks. IEEE Transactions on Software Engineering, v. 50, n. 11, p. 2921-2946, 2024.

VALENTE, M. T. Engenharia de Software Moderna: Principios e Praticas para Desenvol-
vimento de Software com Produtividade. [S.1.]: Editora: Independente, 2020.

https://dados.abcomm.org/participacao-no-varejo
https://wpengine.com/blog/state-of-headless-2024/

