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RESUMO

MOREIRA, L. F. Controle Fuzzy Utilizando A Linguagem Python Para Motores
Elétricos Brushless. 2021. 103 f. Monografia (Trabalho de Conclusdo de Curso) — Escola
de Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2021.

Esse trabalho tem como objetivo substituir a necessidade de um acelerador manual
para que as bicicletas elétricas possam se adequar a legislagdo vigente no Brasil. Para se
realizar a simulagdo foi utilizado o ambiente virtual “Jupyter Notebook™ usando a linguagem
Python 3 e com as ferramentas para logica fuzzy da biblioteca SIMPFUL. Com esse
embasamento teorico, € realizada a simulagdo para 3 tipos de trajetos comparando o sistema
fuzzy ao sistema PID e a um sistema fuzzy discretizado que pode ser implementado em
microcontroladores. Os trajetos sdo: trajeto com partida de 0 até inclinagao de 8 graus, trajeto
partindo inclinado de 3 a 8 graus e trajeto com inclinagdo constante de 2 graus. Foram
calculadas as métricas do tempo: overshoot, tempo de subida, tempo de pico, tempo de
acomodacao e erro de regime. Além de ser realizada uma estimativa da autonomia da bateria
em tempo e em distancia. O sistema Fuzzy apresentou para os trés trajetos comportamentos
semelhantes ao sistema PID, porém com um tempo de acomodagdo maior, mostrando-se um
sistema de controle um pouco mais lento, cerca de 8%, o que representa cerca de 600 ms.
Porém, para o caso de alteragdes nas caracteristicas do sistema, em especifico, massa do
conjunto, resisténcia e indutancia do motor, o sistema fuzzy conseguiu um desempenho
melhor do que o PID, diminuindo as suas métricas no tempo como tempo de acomodacgao e
overshoot, além de aumentar a autonomia da bateria. Esses resultados se mantiveram para o
caso do sistema fuzzy discreto. Mostrando que, mesmo com limitagdes quanto a velocidade
de resposta, a simplicidade de implementac¢do e a robustez de um sistema fuzzy sdo adequadas

para o controle de velocidade de sistemas complexos como o de uma bicicleta elétrica.

Palavras-chave: Sistemas de controle. Python. Légica Fuzzy. Logica difusa, Controle difuso,

Controle Fuzzy, Controle PID, Bicicleta elétrica, Motores brushless



ABSTRACT

MOREIRA, L. F. Fuzzy Control Using Python Language For Brushless Electric Motors.
2021. 198 f. Monografia (Completion of course work) — Escola de Engenharia de Sao
Carlos, Universidade de Sdo Paulo, Sdao Carlos, 2021.

This work aims to replace the need for a manual accelerator so that electric bicycles
can adapt to the current legislation in Brazil. To carry out the simulation, the “Jupyter
Notebook™ virtual environment was used, using the Python 3 language and the tools for fuzzy
logic from the SIMPFUL library. With this theoretical foundation, a simulation is performed
for 3 types of paths, comparing the fuzzy system to the PID system and to a fuzzy system in a
discrete domain that can be implemented in microcontrollers. The paths are: path starting
from 0 to an incline of 8 degrees, path starting with an incline of 3 to 8 degrees and path with
a constant incline of 2 degrees. Time metrics were calculated: overshoot, rise time, peak time,
settling time and steady-state error. In addition to being carried out an estimate of the battery's
autonomy in time and distance. The Fuzzy system presented behaviors similar to the PID
system for the three paths, but with a longer settling time, showing it as a slightly slower
control system, around 8%, which represents around 600 ms. However, in the case of changes
in system characteristics, specifically, mass of the system, resistance and motor inductance,
the fuzzy system achieved a better performance than the PID, decreasing its time metrics such
as settling time and overshoot, in addition to increasing battery’s autonomy. These results
were maintained for the case of the discrete fuzzy system. Showing that, even with limitations
in response speed, the simplicity of implementation and the robustness of a fuzzy system are

adequate for the speed control of complex systems such as an electric bicycle.

Keywords: Control systems. Python. Fuzzy-Logic. Fuzzy Logic, Fuzzy Control, Fuzzy
Control, PID Control, Electric Bike, Brushless Motors






LISTA DE ILUSTRACOES

Figura 1 — Gréafico da quantidade de emissdes em equivalente carbono (toneladas) por
atividade no estado de SA0 Paulo..........cccoeiiiiiiiiiiiiiii e 21
Figura 2 — Grafico Populagdo residente por situagdo domiciliar (urbana/rural) ( Unidade:
PESSOAS ).eeeuurreeierreesreeeateeeaseeeasseeaassseaasseeasssaseassesaasseeeasseeesssaeeasseeeasseeaassaeansseeaassaeesaaeensreensees 23

Figura 3 — Interesse pelo termo “Sistema de Controle difuso” no Brasil ao longo de 1 ano.

Figura 5 — Interesse pelo termo “Fuzzy Control” no brasil ao longo de 1 ano por regido....26

Figura 6 — Interesse pelo termo “Fuzzy Control” no mundo ao longo de 1 ano por regido...26

Figura 7 — Fluxograma do conteudo do trabalho de conclusdo de curso........................ 27
Figura 8 — Representacgao geral de um sistema de controle.................ooooviiiiiiiii. 28
Figura 9 — Representacio da resposta transitoria € de estado estacionario...................... 30
Figura 10 — Configuragdo de um sistema de controle geral com feedback unitério........... 36

Figura 11 — Tabela de relacdo entre tipo de sistema, entrada e erro de regime estacionario..36

Figura 12 — Margens de ganho (GM) e de fase(®M) no diagrama de Bode ................... 38
Figura 13 — Margens de ganho (GM) e de fase(®M) no diagrama de Nyquist................. 39
Figura 14 — Exemplo de funcionamento da logica fuzzy................ccoooiiiiiiiiii. 40
Figura 15 — Fungdes de pertinéncia para a qualidade da comida......................coon 46
Figura 16 — Fungdes de pertin€ncia para 0 SEIVICO.......ouuirterrereentenreaneereaneaneannann. 47
Figura 17 — Fungdes de pertinéncia para a GOrjeta. .. .......cvuviuiueiuiiuintineiiaiennineanannes 47
Figura 18 — Resultado da aplicacio das regras para as entradas no grupo
qualidade Comida. ... .....ouuiniit e 48
Figura 19 — Resultado da aplicagdo das regras para as entradas no grupo servico.............48
Figura 20 — Areas usadas no célculo da centréide para a defuzzificagio....................... 49
Figura 21 — Sistema de controle fuzzy em diagrama de blocos......................ooooiiai. 50

Figura 22 — Fluxograma da classificacdo de uma bicicleta elétrica pelo codigo de transito
Brasileiro. . ... e 54
Figura 23 — Fita métrica utilizada para medicdes das dimensdes da bicicleta. ................. 63

Figura 24 — Dimensao do aro da bicicleta utilizada na simulag@o......................coeeeen. 64



Figura 25 — Dimensao do pneu da bicicleta utilizada na simulagao.............................. 64

Figura 26 — Dimensdes da roda da bicicleta utilizada na simula¢do........................... 65
Figura 27 — Vista lateral do prototipo de bicicleta BUE (Bicicleta Urbana Elétrica)............... 65
Figura 28 - Vista em perspectiva do motor frontal brushless HUBmotor........................ 66
Figura 29 — Controlador Externo de velocidade(ESC) para36V..........ccoooiiiiiiiiin.n. 67
Figura 30 — Bateria de polimero de litio a base de grafeno, do tipo 6s(seis células)................ 68
Figura 31 — Esquema de montagem dos elementos de controle..................c.oooiiiinn. 70
Figura 32 — Grafico da fungdo de pertinéncia para classe Erro da velocidade................... 73
Figura 33 — Grafico da fungao de pertinéncia para classe Aceleragao...................ooeeuvees 74
Figura 34 — Grafico da funcdo de pertinéncia para classe Variacao_Tensao...................... 74
Figura 35 — Grafico da resposta do sistema com controlador PID para o trajeto 1.............. 78
Figura 36 — Grafico da resposta do sistema com controlador PID para o trajeto 2.............. 79
Figura 37 — Grafico da resposta do sistema com controlador PID para o trajeto 3.............. 79
Figura 38 — Grafico da resposta do sistema com controlador Fuzzy para o trajeto 1............ 80
Figura 39 — Grafico da resposta do sistema com controlador Fuzzy para o trajeto 2............ 81
Figura 40 — Grafico da resposta do sistema com controlador Fuzzy para o trajeto 3............ 81

Figura 41 — Comparagdo das métricas de controle no tempo entre os controladores no trajeto

L e 82
Figura 42 — Comparagao das métricas de controle no tempo entre os controladores no trajeto
e 83
Figura 43 — Comparacao das métricas de controle no tempo entre os controladores no trajeto
e 84

Figura 44 — Comparagdo do consumo da bateria do sistema usando um dos controladores no
181 ] (o T P 86
Figura 45 — Comparacao do consumo da bateria do sistema usando um dos controladores no
1301 0 0P 87

Figura 46 — Comparagdo do consumo da bateria do sistema usando um dos controladores no

1061 <0 K P 88
Figura 47 — Espago de controle com as respostas do controlador Fuzzy.......................... 89
Figura 48 — Resposta do sistema para o controlador Fuzzy em espaco discreto................. 89
Figura 49 — Efeito da discretizacdo sobre a resposta do sistema...............ccoeveiiiiinnne.. 90

Figura 50 — Comparagdo das métricas de controle no tempo usando um dos trés controladores

L0 I 21 100 90



Figura 51 — Comparacdo do consumo da bateria do sistema usando um dos trés controladores
LTI 217 T 91
Figura 52 — Grafico comparando resposta do sistema com controlador Fuzzy e PID para o
13 1111 200 92
Figura 53 — Gréfico comparando resposta do sistema com controlador Fuzzy e PID para o
trajeto 3 com La=0,3 H. ..o 92
Figura 54 — Compara¢do do consumo da bateria do sistema modificado usando um dos
controladores NO traJeto 3. ... i.iii it e e 93
Figura 55 — Comparacao das métricas de controle no tempo entre os controladores no trajeto 3

do SIStEMA MOAITICAUO. . ..ottt e e e e, 94






LISTA DE TABELAS

Tabela 1 — Caracteristicas dimensionais da bicicleta.............. cccccceeeicieenieeceieeennen.l .65
Tabela 2 — Caracteristicas d0 MOTOT........c.eeeriireriieeiiee ettt et e e e e e e eaeee e 66
Tabela 3 — Caracteristicas do controlador de rotacdo do motor............cccceeeevveercieeerneens 67
Tabela 4 — Caracteristicas da bateria de alimentagao............ccueeevuveeeveeeeceeeeiieeeiiee e, 68
Tabela 5 — Caracteristicas do ciclista e da carga de transporte...........ccccveeeeveeeeereenveeennee. 69
Tabela 6 — Massa e preco dos componentes do sistema bicicleta urbana elétrica .........69
Tabela 7 — Valores das constantes adotadas para a simulagao.................cc.ooeennn.n 77

Tabela 8 — Métricas de controle para o trajeto 1 com os controladores PID e Fuzzy......82
Tabela 9 — Métricas de controle para o trajeto 2 com os controladores PID e Fuzzy......83
Tabela 10 — Métricas de controle para o trajeto 3 com os controladores PID e Fuzzy......84
Tabela 11 — Consumo da bateria para o trajeto 1 com os controladores PID e Fuzzy......85
Tabela 12 — Consumo da bateria para o trajeto 2 com os controladores PID e Fuzzy......86
Tabela 13 — Consumo da bateria para o trajeto 3 com os controladores PID e Fuzzy......87

Tabela 14 — Métricas de controle para o trajeto 3 com os controladores Fuzzy discreto, PID e

Tabela 16 — Consumo da bateria para o trajeto 1 com os controladores PID e Fuzzy......93
Tabela 17 — Métricas de controle para o trajeto 3 com os controladores PID e Fuzzy e sistema

F00TeTe b8 Tor:Te Lo J R 94






SUMARIO

1 INTRODUCAO

1.1 Questdao Ambiental

1.2 Questdo Social

1.3 Questao Econdmica

1.4 Questao Tecnologica
1.6 Organizagdo do trabalho

2 REVISAO BIBLIOGRAFICA

2.1 Controle de Sistemas
2.1.1 - Tempos da resposta transiente
2.1.2 - Tempo de subida
2.1.3 - Tempo de pico
2.1.4 - Tempo de acomodacao
2.1.5 - Overshoot
2.1.6 - Estabilidade
2.1.7 - Erro de regime
2.1.8 - Sensitividade
2.2 Logica Fuzzy - Logica difusa
2.2.1 - Historico
2.2.2 - A logica fuzzy
2.2.2.1 - Operadores logicos fuzzy
2.2.2.2 - Conectivos fuzzy
2.2.2.3 - Regras de base SE - ENTAO (IF - THEN)
2.2.2.4 - Técnicas de Inferéncia
2.2.2.5 - Métodos de defuzzificagdo
2.2.3 - O sistema de controle fuzzy
2.2.3.1 - Hipéteses para o controle
2.2.3.2 - Etapas do processo de projeto do controlador
2.2.4 - O controle fuzzy em Python
2.2.4.1 - Descrigao da biblioteca SIMPFUL
2.3 O cddigo de transito brasileiro
2.4 - O modelo matematico da bicicleta elétrica
2.4.1 A propulsao humana
2.4.2 O motor elétrico
2.4.3 A dinamica da bicicleta

3 MATERIAIS E METODOS

3.1 Caracteristicas do sistema a ser estudado
3.2 Condigdes de aplicacao
3.3 Restrigdes adotadas

21
22
23
24
25
27

29
29
33
33
33
34
34
34
35
37
41
41
41
43
43
44
45
46
50
51
51
52
53
54
57
57
60
61

64
64
71
72



3.4 O controle fuzzy 73

3.4.1 Identificagdo das variaveis de entrada, saida e de estado 73

3.4.2 Configuracao das classes ou subgrupos fuzzy 73

3.4.3 Obtencao da fung¢do indicadora (funcao de pertinéncia) 74

3.4.4 Configuracdo das regras de base IF-THEN 76

3.4.5 Normalizagao ¢ fatores de escala 77

3.4.6 Fuzzificacao 77

3.4.7 Identificagdo da saida 77

3.4.8 Defuzzificagao 77

3.5 Simulagao e Aplicag¢ao 77
3.5.1 Cdédigo de controle fuzzy em Python 77

3.5.2 Equagdes do modelo e dados utilizados 77

3.5.3 Codigo completo da simulagdo 78

4 RESULTADOS 78
4.1 - Resultados do controlador PID 79
4.2 - Resultados do controlador Fuzzy 81
Figura 40 - Grafico da resposta do sistema com controlador Fuzzy para o trajeto 3 82

4.3 - Métricas de controle 83
4.4- Consumo de energia 86

4.5 - Controlador Fuzzy no espaco discreto 89
4.5.1 - Métricas de controle 91

4.5.2 - Consumo de energia 92

4.6 - Comparacao entre os Controladores 93

5 CONCLUSAO 95
REFERENCIAS 98

ANEXO A - Tabela com os dados do motor fornecidos pelo fabricante 102






20

1 INTRODUCAO

O mundo do século XXI vive um momento singular: A busca por alternativas viaveis
para os problemas relacionados as tecnologias ndo sustentaveis. Tecnologias que ao longo
prazo irdo acabar por impedir o seu proprio uso e, possivelmente, colocar em risco a
existéncia dos sistemas naturais da terra.

Um desses problemas estd relacionado aos meios de transporte que utilizam a
combustdo interna de combustiveis fosseis. Problemas esses que se tornam mais evidentes em
centros urbanos (grandes ou pequenos). Eles sdo, por exemplo:

e Polui¢do do ar atmosférico da cidade;

e Polui¢do sonora do ambiente urbano;

e Dificuldades de locomogao devido ao espaco ocupado por esses meios de
transporte;

e Impactos financeiros provocados pelos gastos com manuten¢do € impostos
sobre esses meios de transporte.

Como apontado pelo professor Paulo Saldiva, “um em cada dez infartos na capital
paulista esta ligado a poluicao do ar”. Mostrando que a poluicdo afeta diretamente a saude
humana.

Dessa forma, uma solugdo apontada para as cidades por cientistas e engenheiros ¢ a
adocdo do sistema de bicicletas assistidas eletricamente (LIMA, 2019). Esse sistema ndo sera
0 Unico que ird solucionar os problemas citados acima, porém ira fazer parte do quadro geral
da solugdo. Tais bicicletas assistidas irdo necessitar de um sistema de controle para que ela
seja capaz de apresentar um resultado que seja o mais eficiente possivel dentro de uma
margem de erro aceitavel.

Assim, esse trabalho visa estudar a criacdo e implementacdo de um sistema de
controle para os motores elétricos usados em bicicletas assistidas. O sistema de controle sera
baseado na logica Fuzzy implementada de forma aberta usando a linguagem Python. Podendo
ser posteriormente exportada para microcontroladores. Para que assim, o sistema permita que
o proprio usuario (caso ele queira) possa promover mudangas em seu veiculo por meio do
sistema de controle. Essa técnica também visa facilitar e baratear a atualizagao do sistema de
controle.

De uma forma geral o objetivo técnico desse trabalho ¢ verificar se o controle
desenvolvido em Python usando fuzzy-logic é mais ou tao eficiente quanto um sistema PID

no consumo de energia da bateria, uma vez que o sistema baseado em fuzzy-logic (logica
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difusa) ndo depende das caracteristicas do modelo, o que pode baratear o processo de

desenvolvimento do sistema de controle.

1.1 Questao Ambiental

“A convivéncia dos seres vivos, em especial a do homem, com a polui¢do do ar tem
trazido consequéncias sérias para a saude.” (BRAGA et al 2001)

Problemas como a poluigdo do ar e sonora nas cidades podem provocar inimeros
problemas de satde.

A poluicdo pode ter diversas origens, em especifico para o estado de Sdo Paulo a
polui¢do medida em equivalente de carbono (CO2 GWP ARS) tem como principal fonte a
atividade de transportes (transporte de passageiros, transporte de carga, transportes e produgao

de combustiveis). Como podemos ver na Fig. 1 elaborada pelo SEEG Brasil.
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@ Transporte de Carga Transporte de Passageiro @ Transporte

Figura 1 - Grafico da quantidade de emissdes em equivalente carbono (toneladas) por atividade no estado de Sao
Paulo

Fonte : SEEG BRASIL
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Outro ponto analisado ¢ a relagdo entre poluicdo e problemas de saude, mais

especificamente doengas respiratorias e cardiovasculares, que foram estudadas ao longo das

ultimas décadas do século XXI. Um estudo feito em 2016 na regido metropolitana de Sao

Paulo conclui que

[...]Jo risco de adoecimento devido a poluigdo do ar no conjunto de municipios da
Regido Metropolitana de Sdo Paulo. As estimativas globais do efeito da exposi¢do a
poluicdo na regido indicaram associagdes somente com as doengas respiratorias.

Apenas Sio Paulo e de Sdo Bernardo do Campo mostraram associagdo entre os
niveis de PM10 e as internagdes por doencas cardiovasculares. (GOUVEIA;
CORRALLO; PONCE DE LEON, 2017, p.1)

Em outro estudo de 2015 foi feita uma projecdo das internagdes entre 2012 e 2030

provocadas pela poluicdo atmosférica. Internagdes essas que podem em parte serem evitadas

por meio da adogcao de novas tecnologias que diminuam a producao de agentes poluidores.

A magnitude dos resultados aponta para a necessidade de implementacdo de
medidas mais rigorosas para o controle da poluicdo do ar, formas alternativas de

energia limpa de transporte, entre outras agdes, como forma de reduzir os danos a

satide da populagio e os gastos governamentais. (RODRIGUES;
VORMITTAG; CAVALCANTE, 2015, p.1)

Desse modo, a poluicao do meio ambiente nas cidades ¢ um problema sério que deve

ser abordado de maneira que solugdes viaveis possam ser implantadas. Assim, uma dessas

solucdes sera a mudanca na forma como nos locomovemos nas cidades. Uma nova forma de

realizar o transporte € por meio das bicicletas assistidas eletricamente. Essas bicicletas irdo

precisar de um sistema de controle robusto o suficiente para ser capaz de lidar com as

adversidades urbanas e manter o nivel de consumo da bateria sempre o menor possivel. Mais

detalhes sobre o processo adotado serdo feitos no capitulo de “Materiais e Métodos”.

1.2 Questao Social

De acordo com o ultimo censo IBGE de 2010 cerca de mais de 95% da populacio do

estado de Sdo Paulo vive na zona urbana. Como nos mostra a Fig. 2.
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Figura 2 - Grafico Populagdo residente por situacao domiciliar (urbana/rural) (Unidade: pessoas)

Fonte: IBGE - https://cidades.ibge.gov.br/brasil/sp/panorama

Dessa forma, buscar solucdes para as cidades deve ser uma das prioridades no
momento atual. Tais como, buscar solu¢des que diminuam os desconfortos e melhorem a
convivéncia social no espaco urbano.

O sistema de controle que serd desenvolvido ao longo deste trabalho ird fazer com que
o veiculo “Bicicleta assistida eletricamente” se encaixe como tal perante o codigo de transito.
Permitindo assim que sejam evitados gastos com impostos obrigatdrios e demais
regularizacdes existentes para os veiculos a combustdo ou totalmente elétricos e inexistentes

para as bicicletas.

1.3 Questao Econdmica

O ponto de vista econdmico constitui um dos principais fatores para o projeto do
sistema de controle para o motor brushless. Pois ele sera desenvolvido visando sempre a
maior acessibilidade para o usuario. Com isso, serdo adotados estratégias para escolha da
linguagem de programagao, controladores e sensores que permitam que o sistema de controle
seja o mais eficiente ¢ adaptavel possivel com o menor custo. Dessa forma, o cidadao que usa
a tecnologia que utiliza o sistema controle ira aproveitar de um veiculo com comportamento
similar ao de uma motocicleta, porém com gastos anuais semelhantes ao de uma bicicleta.

Apenas a titulo de exemplo, serdo comparados os gastos diarios entre uma moto 150
cc e uma bicicleta elétrica. Esses gastos sdo apenas estimados e incluem:

e (Gastos com combustivel: Eletricidade ou combustivel {ossil;

e (astos com impostos e documentagao;
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e (astos com manuten¢do (valor de seguranca para gastos ndo previstos de 253
reais anuais para ambos os veiculos).
As condicdes para a comparacao serao:
e Distancia diaria de 15 km;
e Autonomia da bicicleta elétrica de 15 km;

e Numero de 253 dias uteis de 2021.

As condi¢des da moto combustio sao:
Moto honda NXR BROS 150cc
e Consumo: 30 km/l e gasolina a R$ 7,00/ e 15 km por 253 dias tem-se
R$ 885,5 por ano;
e Impostos: R$ 112,00 (IPVA NXR150 BROS ESD ano 2011 em Minas Gerais)
+ R$ 98,91 (Taxa de licenciamento) + R$ 53,00 (Taxa de renovacdo CNH e
exame médico a cada cinco anos - Detran Minas Gerais) = R$ 264,00 anuais
com impostos;
e manuten¢do: R$ 253,00 anuais.

Gasto total por ano: R$ 1372,50.

As condigdes da bicicleta assistida eletricamente sdo:
Bicicleta Urbana Eletrica (BUE)
e Consumo: Carga completa de SAh, 36V, por 253 dias a R$ 1,00 kWh tem-se:
45,54 kWh por ano entdo R$ 45,54 por ano;
e Impostos: 0;

e manutengdo: R$ 253,00 + R$ 500,00 (troca da bateria a cada 3 anos).

Gasto total por ano: R$ 800,00.

1.4 Questao Tecnologica

O controle de sistemas serve para que possamos garantir que ele tenha um certo
resultado dentro de uma margem de erro conhecida. Assim, o desenvolvimento de técnicas
que sejam ao mesmo tempo robustas e eficientes é de grande importancia para o bom

funcionamento do sistema. Porém, a identificagdo ¢ a modelizacdo dos sistemas dinamicos
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nem sempre ¢é facil ou trivial. Dependendo muito das hipoteses simplificadoras para descrever
o sistema real, ou dos pardmetros especificos do sistema real caso seja usado algum método
numeérico.

Nesse sentido, uma alternativa a utilizagdo somente do sistema PID ¢ a utilizacdo de
um controle fuzzy, ou mesmo um controle fuzzy junto a um controle PID. Essa técnica de
controle ndo necessita de uma modelizag¢do do sistema real para a implementagdo do controle.
Ela necessita, entretanto, da experiéncia do operador do sistema para que assim, as regras de
controle possam ser escritas e com isso o controle criado. Mais sobre técnicas de controle e
controle fuzzy estao no capitulo Revisao bibliografica.

Utilizando a ferramenta Google Trends vemos que o nimero de pesquisas pelas
palavras: Fuzzy, controle fuzzy, logica fuzzy no Brasil ¢ ainda pequeno. Porém, essa
tecnologia de controle ja ¢ usada em outros paises como a China com um crescente interesse.

Em especifico o interesse para o termo de pesquisa: “Sistema de Controle difuso”

Interesse ao longo do tempo ¥ o <

Figura 3 - Interesse pelo termo “Sistema de Controle difuso” no Brasil ao longo de 1 ano

Fonte: https://trends.google.com.br/trends/?geo=BR

Interesse por sub-regidao Sub-egido + #* <> .<:

1 Sdo Paulo =

Figura 4 - Interesse pelo termo “Sistema de Controle difuso” no Brasil ao longo de 1 ano por regido

Fonte: https://trends.google.com.br/trends/?geo=BR
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Agora, comparando com os dados de pesquisa mundiais por “fuzzy control”

|4
°
A

Interesse ao longo do tempo

Figura 5 - Interesse pelo termo “Fuzzy Control” no Brasil ao longo de 1 ano por regido

Fonte: https://trends.google.com.br/trends/?geo=BR

Interesse por regido Regido » % <> -<:
1 China |

2 Ira |

* 3 india n

4 Taiwan [

5 Maldsia 1

Figura 6 - Interesse pelo termo “Fuzzy Control” no mundo ao longo de 1 ano por regido

Fonte: https://trends.google.com.br/trends/?geo=BR

1.6 Organizacdo do trabalho
O trabalho ira abordar os seguintes temas:
e Construcdo de um sistema de controle de malha fechada;
e (riacdo de um sistema de controle Fuzzy usando a linguagem Python;
e (Comparacdo do sistema com um sistema classico PID;
e Limitagdes e possiveis estudos que podem melhorar o sistema proposto.

Os temas serdo abordados nessa ordem distribuidos no conteudo do trabalho através
dos capitulos. O capitulo Revisdo bibliografica tem como objetivo preparar a base tedrica que
sera usada no capitulo Materiais e métodos e discutida nos capitulos Resultados e Conclusao.

O fluxograma da Fig. 7 mostra como o trabalho estd organizado e sobre o que cada

capitulo ird abordar.
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2 REVISAO BIBLIOGRAFICA

2.1 Controle de Sistemas

Primeiramente serdo definidos alguns topicos importantes para a compreensao das
discussdes feitas neste trabalho.

Sistemas dindmicos e trés possiveis representagdes: Um sistema dindmico pode ser
definido como “uma fun¢do que descreve a dependéncia no tempo de um ponto em um
espaco determinado"”. O tema dos sistemas dindmicos ¢ bastante extenso e o trabalho ird focar
em sistemas fisicos. O sistema dinamico pode ser representado por meio de um sistema de
equacdes diferenciais, fungdo transferéncia e diagrama de blocos ou por equacgdes de estado
na forma matricial caso seja linear. Para a explicagdo dos conceitos de controle que serdo
utilizados nas analises do sistema de controle Fuzzy, sera utilizada a representagdo por
diagrama de blocos para ilustrar um sistema dindmico e seus componentes.

O controle de um sistema dinamico, se ele for controlavel, pode ser feito por diversas
técnicas dependendo do comportamento e das caracteristicas do sistema. Realiza-se o controle
de um sistema para obter-se um resultado desejado com uma performance desejada para uma
dada entrada (NISE, 2011, p.2). No caso deste trabalho sera utilizado o controle por meio do
“FeedBack Negativo”, ou seja, o controlador ird receber como entrada o erro que ¢ a diferenga
entre o sinal de entrada a ser seguido e a leitura dos sensores que descrevem o sistema real.

Dessa forma, a Fig. 8 representa um sistema dindmico com feedback negativo e seus

principais componentes no dominio da frequéncia.

D(s) Disturbio

+ 4
+ o)
c(s) o F(s) )
Entrada { E(s) —»@—» Controlador @—» Plani R(s)} Saida
- H(s) b
sensor =
T +

N(s)

Ruido

Figura 8 - Representacgdo geral de um sistema de controle
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Na figura 8 pode-se definir:

Entrada - E(s): Pode ser entendida como o estimulo, a resposta desejada, o sinal de
entrada, uma grandeza que pode ser medida usando-se o sistema internacional de medidas.
(NISE, 2011, p.2)

Saida - R(s): Resposta, resposta real do sistema, variavel de controle.

Controlador - C(s): Sistema dinamico que fornece uma entrada para a planta, fazendo
com que ela alcance a resposta desejada seguindo critérios de desempenho e estabilidade. A
entrada ¢ fornecida baseando-se no erro.

Planta - F(s): “Qualquer objeto fisico a ser controlado” cuja “finalidade ¢
desempenhar uma determinada opera¢ao”. (OGATA, 2011, p.2)

Sensor - H(s): “diz-se de ou dispositivo que responde a estimulos fisicos (calorifico,
luminoso, sonoro, pressional, magnético, motor, etc.) e transmite um impulso (mensuravel ou
operante) correspondente”. (Dicionario OXFORD). Esse impulso ¢ lido e interpretado por um
transdutor, que ¢ “um dispositivo que converte um sinal de uma forma fisica para um sinal
correspondente de outra forma fisica. Portanto, também se trata de um conversor de energia”.
(BALBINOT; BRUSAMARELLO, 2010, p.10)

Distiarbio - D(s): “Um distarbio ou perturbagdo ¢ caracterizado por um sinal que
tende a afetar de modo adverso o valor da variavel de saida de um sistema”. (OGATA, 2011,
p-2)

Ruido - R(s): “O ruido ¢ um sinal interferente de natureza aleatdéria que provoca a

degradacao de sinal durante seu processamento”.

Com esses conceitos e defini¢des € possivel definir:

Malha fechada: Um sistema ¢é classificado como malha fechada, ou sistema com
controle de feedback, quando ¢ capaz de receber como entrada a medida da variavel de
controle (saida), do sinal de referéncia e realizar a corre¢ao para que a planta tenha uma saida
de acordo com a entrada (NISE, 2011, p.9). Como exemplo, tem-se a imagem da Fig.8 para
representar um sistema de malha fechada.

Critérios de Desempenho: A figura 9 ilustra a resposta de um sistema para uma dada
entrada (exemplo de um elevador). Nessa imagem tem-se um grafico do sinal de saida em que
pode-se destacar duas regides importantes para o desempenho de um sistema: Resposta

transitoria e a resposta do estado estaciondrio. (NISE, 2011, p.2)
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E{:_‘--|".HI.|. do elevador

Tempo

Figura 9 - Representagdo da resposta transitdria e de estado estacionario

fonte: Nise, 2011, p.2

De acordo com Nise, podem-se elencar os seguintes critérios durante o projeto de um

sistema de controle e com eles medir o seu desempenho: (NISE, 2011, p.10)

Produzir a resposta transiente desejada;

Reduzir o erro de regime;

Alcancar a estabilidade;

Levar em consideragdo o custo para produgdo do sistema de controle;

Levar em consideracdo a sensitividade (para mudanga dos parametros).

Porém, o papel de um engenheiro ¢ de, também, realizar a “traducao” entre os critérios

que serdo “medidos” pelo usudrio para as métricas de projeto de um sistema de controle.

Pode-se descrever esses critérios como “métricas do usuario” ou atributos. Elas serdo as

métricas qualitativas do projeto, sdo elas que serdo "medidas" (sentidas) pelo consumidor

final. As métricas do usuario sao:

Tempo de resposta;
Duracao da bateria;
Conforto;
Robustez;

Custo.
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Fazendo a tradugdo para as métricas do controle:
e Tempo de resposta ~ Tempo da resposta transiente;
e Duracdo da bateria ~ Erro de regime;
e Conforto ~ Estabilidade;
e Robustez ~ sensitividade;

e (usto ~ Simplicidade do sistema e dos componentes eletronicos usados.

Também ¢ importante definirmos brevemente o equacionamento geral de sistemas de

“primeira ordem” (derivada de maior ordem na representacdo por sistemas de equagdes

diferenciais ¢ de ordem 1) e de “segunda ordem” (derivada de maior ordem na representa¢ao

por sistemas de equagdes diferenciais € de ordem 2).

Sistemas de primeira ordem:

Sao representados pela seguinte fungao transferéncia G,(s) no dominio de Laplace:

G1(S) - rslfl-l (1)

Onde:
K = Ganho do sistema;

T = 1/a = Constante de tempo do sistema.

Sistemas de segunda ordem:
Sédo representados pela seguinte fungao transferéncia G,(s) no dominio de Laplace:
2
w

G,(5) = — 2)

2 2
s +28w s+w
n n

Onde:

o, = Frequéncia natural do sistema. E a frequéncia de oscilacdo do sistema sem

amortecimento.

¢ = Fator de amortecimento do sistema. Descreve o amortecimento do sistema, ¢ a

razdo entre a frequéncia de decaimento exponencial e a frequéncia natural em rad/s. Um

sistema de segunda ordem pode ser classificado em trés categorias

e Subamortecido: 0 <({<1
e C(Criticamente amortecido: { =1

e Superamortecido: > 1
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2.1.1 - Tempos da resposta transiente

Para caracterizar o “tempo de resposta” do sistema serdo utilizados os conceitos de
tempo de subida, tempo de pico, tempo de acomodagdo e overshoot. Essas métricas podem ser
medidas empiricamente, algumas calculadas analiticamente e assim, podem ser utilizadas para

comparar o quao rapido um sistema de controle ird responder a uma dada entrada.

2.1.2 - Tempo de subida

Definicdo: Tempo de subida ¢ o tempo para a resposta do sistema ir de 0,1 a 0,9 do
valor da resposta final (NISE, 2011).
Para sistemas de primeira ordem
Para sistemas de primeira ordem o tempo de subida ¢ definido a partir da constante de
tempo. Se usarmos as equacdes diferenciais pode-se encontrar uma expressao analitica para

calcular o tempo de subida:

Tr = (3)

Para sistemas de segunda ordem

O tempo de subida ndo pode ser calculado analiticamente por uma equacdo. Porém,
em (NISE, 2011) ¢ proposto a utilizagdo de um método numérico através da solucdo da
resposta do sistema de ordem dois. Usando como variavel normalizada m,t e resolvendo para
cada coeficiente de amortecimento até que o sistema tenha a resposta c(t) = 0,1 ¢ em seguida

c(t) = 0,9. A subtragdo desses dois valores de m,t para cada c(t) serda ®,T, .

2.1.3 - Tempo de pico

Definicao: Tempo requerido para a resposta alcangar o primeiro pico. (NISE, 2011,

p-178). Para sistemas de segunda ordem pode ser calculado analiticamente como:

T =—F—— (4)
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2.1.4 - Tempo de acomodagao

Definicao: Tempo para a resposta do sistema alcancar e permanecer dentro de uma

margem de erro de 2% em torno do valor de regime permanente. (NISE, 2011, p.178)

Para sistemas de primeira ordem
Fazendo com que a resposta analitica do sistema de equagdes diferenciais seja c(t) =

0,98 tem-se o resultado seguinte dependente da constante de tempo “a” :
T = — )

Para sistemas de segunda ordem
Para os sistemas de segunda ordem os seus parametros sdao expressos em funcao da
frequéncia natural ®, e do coeficiente de amortecimento { . Usando a aproximagdo proposta

por NISE (NISE, 2011, p.181) tem-se:

T =—t 6)

Essas trés métricas: Tempo de acomodacao, tempo de subida ¢ tempo de pico irdo

determinar a velocidade da resposta do sistema.

2.1.5 - Overshoot

Defini¢ao: Quantidade que a resposta do sistema ultrapassa o valor final de regime da
resposta no primeiro tempo em que se atinge um pico. Essa quantidade ¢ expressa em
porcentagem em relagao ao valor final de regime. (NISE, 2011, p.178). O overshoot pode ser
calculado usando-se a frequéncia natural e o coeficiente de amortecimento como mostra a

equagdo a seguir:

2
e—(Eﬂ/Vl—E ). 100

%0S = (7)

2.1.6 - Estabilidade

O conceito de estabilidade sera definido para um sistema linear invariante no tempo.
Seja a resposta desse sistema, c(t), dada como a combinagdo dos termos de resposta natural

(n2o depende da entrada do sistema) e resposta for¢ada (depende da entrada do sistema):
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c(t) = c(t)

Dessa forma, segundo NISE, pode-se definir estabilidade em conceitos como:

+ c(t) (8)

forcada natural

° Um sistema ¢ estavel quando sua resposta natural tende a zero para o tempo
tendendo ao infinito.

° Um sistema ¢ instavel quando sua resposta natural tende ao infinito para o
tempo tendendo ao infinito.

° Um sistema ¢ marginalmente estavel quando a sua resposta natural

permanece constante ou oscila para o tempo tendendo ao infinito.

° Um sistema ¢é estdvel quando para uma entrada limitada a resposta ¢é
limitada.
° Um sistema ¢ instdvel quando para uma entrada limitada a resposta ¢

ilimitada. (NISE, 2011, p.303)

Além disso, existem varias técnicas para “prever” a estabilidade de um sistema usando
ferramentas matematicas para isso. Como, por exemplo, o critério de Routh-Hurwitz. Esse
critério pode ser aplicado tanto para o polindmio caracteristico do sistema de malha aberta
quanto para a equacdo caracteristica da matriz de representacdo de estados. O critério ira
determinar quantos polos o sistema possui em cada lado do plano s, ou seja, quantos polos do
lado “direito” (parte real positiva, entdo instabilidade) e do lado “esquerdo” (parte real

negativa, entdo estabilidade).

2.1.7 - Erro de regime

Definicao: Erro de regime ¢ a diferenca entre a entrada e a saida de um sistema para
uma dada entrada teste, para o tempo tendendo ao infinito (NISE, 2011, p.340). Os tipos de
entrada teste irdo determinar qual tipo de erro sera analisado.

Fontes de erro de regime: Para sistemas em geral a fonte mais comum de erro sao as
nao linearidades que podem estar envolvidas. (NISE, 2011, p.343)

Tipos de erro: O erro pode ser calculado usando-se a funcdo transferéncia de malha
fechada e a entrada. Por meio do teorema do valor final, temos que o erro para tempo no
infinito sera:

e(0) = lim e(t) = lim sE(s)[1 — T(s)] 9)
t—>o0 s—0
Sendo:

e(o): Erro de regime;
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e(t): Erro no tempo;
E(s): Entrada do sistema;

T (s): Funcdo transferéncia de malha fechada.

Para calcular o erro em termos da funcdo transferéncia de malha aberta com feedback

unitario ¢ utilizada a seguinte equacao:

e() = lim ;ET(Z) (10)
s—™0
Sendo:
e(o0): Erro de regime;
E(s): Entrada do sistema;

G(s): Fungao transferéncia de malha aberta.

Dessa forma, é possivel definir as constantes de erro e os tipos de sistema. Tem-se o
erro de regime:

Para entrada tipo degrau unitario:

1

e(oo) - edegrau(oo) ~ 1+1lim G(s) (1 1)
s—0
Para entrada tipo rampa:
. . 1
e(OO) _ erampa(oo) - lim SG(S) (12)
s—0
Para entrada tipo parabola:
1
e(0) =e ) = ——F—— 13
( ) parébola( ) lim 52(;(5) ( )
s—0
Com isso, sdo definidas as constantes:
Constante de posi¢do K,
K = lim G(s) (14)
P s—™0
Constante de velocidade K,
Kv = lim sG(s) (15)

s—™0
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Constante de aceleracao K,

K = lim s°G(s) (16)

s—™0

. . , . . 1
O tipo de sistema sera correspondente a quantidade de integradores — puros na

fungdo transferéncia de G(s). Sendo do tipo 0 para nenhum integrador (n = 0, na figura 10) na
funcdo transferéncia, 1 para um integrador (n = 1, na figura 10) e 2 para dois integradores (n =

2, na figura 10).

R(s) + E(s)

K(s +zy)(s+25) - C(.\')F

sUs+ ps + py) -

Figura 10 - Configuragdo de um sistema de controle geral com feedback unitario

Fonte: NISE, 2011, p.353

Com isso, tem-se a seguinte tabela com a relacdo entre o tipo de entrada, tipo de

sistema e qual sera o erro de regime.

Tipo 0 Tipo 1 Tipo 2
Formula do erro Constante Constante de Constante
Entrada de regime de erro Erro erro Erro de erro Erro
1 1
Degrau. u(t) T2 K, = Constante 7K, K, =00 0 Ky=o0 0
1 1
Rampa, tu(t) = K,=0 oo K, = Constante = K,=00 0
K, K,
" 1 1 ]
Pardbola 5! u(r) X K,=0 o K; =0 %) K, = Constante —
i i

Figura 11 - Tabela de relagdo entre tipo de sistema, entrada e erro de regime estacionario

Fonte adaptado: NISE, 2011, p.353

2.1.8 - Sensitividade

Definicdo: O grau com o qual a funcdo transferéncia, e consequentemente
performance, ¢ afetada pelas mudangas nos pardmetros do sistema ¢ chamado Sensitividade.

Dessa forma, quanto maior for a sensitividade menos desejavel sera a performance do sistema
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devido as mudangas nos seus parametros. De uma maneira mais formal pode ser definida
Sensitividade como a razao entre o valor de mudanca no valor da fun¢do e a mudanga de valor
no parametro, para a mudanga no parametro tendendo a zero (NISE, 2011, p.362).

_ P ST
St p= o (17)

Onde:

S, p= Sensitividade do sistema modelado por T(s) em relacdo ao parametro P;

T = Funcao transferéncia de malha fechada no dominio de laplace para o sistema;

P = Parametro do sistema analisado;

6T

—p — Derivada parcial da fungdo de transferéncia de malha fechada em relagdo ao

parametro P.

Com isso, a sensitividade pode ser calculada como o produto entre a razdo do
parametro pela fun¢do transferéncia de malha fechada e a derivada parcial da funcao
transferéncia de malha fechada com relacao ao parametro.

A sensitividade para um certo parametro pode ser estudada utilizando-se também
outras técnicas como “O lugar das Raizes”. Porém, a explicacdo de como funciona o método

do lugar das raizes ndo fara parte desse trabalho.

Margens de ganho e de fase:

Elas s3o duas métricas quantitativas no dominio da frequéncia do quao estavel ¢ um
sistema. Elas também podem ser usadas para dizer o quanto um sistema possui de “margem”
para a variacdo de um certo parametro. Para realizar a andlise desses dois conceitos sao
usados dois principais diagramas: Diagrama de Bode e Diagrama de Nyquist. Ambos o0s
diagramas utilizam a fung¢do transferéncia de malha aberta para realizar as andlises do sistema
no dominio da frequéncia.

Dessa forma, tem-se as seguintes defini¢cdes tedricas para margem de ganho e margem
de fase:

Margem de ganho:

A margem de ganho ¢ a mudanca no ganho de malha aberta, expressa em

decibéis (dB), necessarios em 180° de mudanca de fase para fazer o sistema

de malha fechada instavel. (NISE, 2011, p.574)
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Margem de fase:
“A margem de fase ¢ a mudanca na mudanga de fase em malha aberta necesséria no

ganho de unidade para tornar o sistema de malha fechada instavel.” (NISE, 2011, p.574)

Com isso, pode-se encontrar qual ¢ a margem de ganho e de fase graficamente

utilizando os diagramas de Nyquist ¢ de Bode no dominio da frequéncia.

M {dB)

A
Diagrama
de ganho

0dB — = log @
| Gm
Dingrmim
o fase
Fase {graus)
i

= log m

|80

Figura 12 - Margens de ganho (GM) e de fase(®y,) no diagrama de Bode
Fonte: NISE, 2011
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Plano GH Circulo unitdrio

Diagrama de

I
Diferenca de ganhf\ﬁ Diferenca de fase
antes da instabilidade antes da instabilidade

Margem de ganho =Gy =20loga Margemde fase=0 =

Figura 13 - Margens de ganho (GM) e de fase(®,,) no diagrama de Nyquist
Fonte: NISE, 2011

Com essas definigdes pode-se criar um sistema ideal, que serd a referéncia para o
sistema de controle. Dessa forma, pode-se medir o quao proximo o sistema real esta do ideal
e, assim, inferir sobre a eficiéncia global do sistema de controle sobre o projeto da bicicleta

elétrica. Mais detalhes em Materiais e Métodos.



2.2 Loégica Fuzzy - Logica difusa
2.2.1 - Histoérico
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Fuzzy vem do inglés “fuzzy” que significa literalmente “aquilo que nao ¢ claro,

incerto, impreciso”

(dicionério

de cambridge

https://dictionary.cambridge.org/pt/dicionario/ingles/fuzzy). O primeiro artigo escrito sobre o

assunto foi introduzido por Lotfali Askar-ZADEH em 1965 no trabalho “Fuzzy Sets”. Nele

ZADEH propde a utilizacdo de uma “funcdo de pertinéncia” que realiza a transcrigdo entre

valores continuos para valores entre zero e um, assimilando um grau de verdade a uma

variavel. ZADEH também mostrou que a logica fuzzy ¢ uma generalizacdo da logica

booleana.

2.2.2 - A logica fuzzy

A logica fuzzy, ou difusa, trabalha com operadores continuos que se encontram entre

zero e um. Essa é a grande diferenga em relagdo a légica Booleana que trabalha com valores

certos como zero e um, TRUE ou FALSE (ROSS, 2011). O exemplo da Fig. 14 representa a

resposta de um mesmo sistema usando a logica fuzzy e a Booleana.

Sistema Booleano

(Valores exatos TRUE ——»

ou FALSE)

Sistema Fuzzy
(Valores difusos e
continuos entre 0 e 1)

E—

O café esta
guente?

O café esté
quente?

——— Sim
——» Nao

Muito
guente

— > Quente

—» Frio

1Muito

frio

Figura 14 - Exemplo de funcionamento da logica fuzzy.

Fonte: elaborado pelo autor
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Entretanto, os operadores logicos, as relagdes, as composi¢des € os conectivos da
logica booleana ainda sdo validos para a l6gica fuzzy. Ha, porém, a defini¢do de uma “fun¢ao
de pertinéncia”, ou critério de filiagdo. Essa fun¢do assimila um “grau de verdade” a uma
variavel, conforme a defini¢do proposta por ZADEH em 1965:

A nogdo de um conjunto fuzzy fornece um ponto de partida conveniente para a
construgdo de uma estrutura conceitual que se assemelha em muitos aspectos a
estrutura usada no caso de conjuntos comuns, mas ¢ mais geral do que o ultimo e,
potencialmente, pode vir a ter um escopo muito mais amplo de aplicabilidade,
particularmente nos campos de classificacdo de padrdes e processando informagao.
Essencialmente, tal estrutura fornece uma maneira natural de lidar com problemas
em que a fonte de imprecisdo € a auséncia de critérios bem definidos de filiagdo a

classe, em vez da presenga de variaveis aleatorias. (ZADEH, 1965)

Nesse trabalho a notagdo utilizada para o critério de filiagdo sera (x), em que
p: Funcao de pertinéncia - critério de filiagcao

X : vetor com os elementos do conjunto
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2.2.2.1 - Operadores logicos fuzzy

Seja R e S duas relacdes no universo dos conjuntos AxB, sendo a€A e bEB. Pode-se
definir as seguintes operagdes logicas (ZIMMERMANN, 2013, p.203):
Unido: pryus(a,b) = max(ur(a,b); ps(a,b)) => maximo entre pi(a,b); ps(a,b)

Interseccio: zng(a,b) = min(pr(a,b); ps(a,b)) => minimo entre pg(a,b); pg(a,b)

Complementar: iiz(a,b) =1 - uz(a,b)

Composicao: T =RoS
Sendo:
e R relagdo no universo X e'Y
e S rclagdo no universo Y ¢ Z
e T relagdo no universo X ¢ Z
A composi¢ao pode ser feita por dois métodos:
e Composi¢do Max-Min: pg,.s(a,b) = max,cy[min(ug(a,b); ps(a,b))]
e Composi¢do Max - Produto: pg.s(a,b) = max,ey[(1r(a,b); ps(a,b))]

Sendo que essas operagdes serdo usadas durante o processo do proejto do controlador

fuzzy.

2.2.2.2 - Conectivos fuzzy

Os conectivos usados na légica fuzzy sdo os mesmos usados na ldgica classica. Sendo
eles:

Disjuncdo(v): Termo usado para representar o “inclusive OR” (OU inclusivo) na
logica;

Conjuncao(”): Termo usado para representar o “AND” (E) na logica;

Negagao(~): Termo usado para representar o complementar na logica;

implicagcdo( =): Quando se tem uma premissa (hipdtese) P e uma conclusao Q tem-se:
P=Q como: Se P entdo Q.

Equivaléncia(<): Tem-se uma implicacdo dual da forma: P=Q AND Q=P
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2.2.2.3 - Regras de base SE - ENTAO (IF - THEN)

Na logica fuzzy tem-se a implicacdo da seguinte forma:
IF premissa, THEN conclusao
Onde:
e Premissa - antecedente
e Conclusao - Consequéncia
Com isso, ¢ possivel construir um conjunto de regras que serdo as “Regras de Base”
para a tomada de decisao do sistema fuzzy.
Regra 1: IF condig¢do C1, THEN restricdo R1
Regra 2: TF condigdo C2, THEN restrigao R2

etc.

Pode-se para multiplos antecedentes realizar a Unido ou a Intersec¢ao de acordo com
as respectivas operagdes Unido e Interseccao.

Também ¢ possivel realizar a agregacdo de mais de uma regra de dois modos
diferentes:

1 - Usando um sistema conjuntivo de regras;

Para esse caso de sistema todas as regras devem ser satisfeitas integralmente. As
regras sdo conectadas por AND. Nesse caso a saida y é encontrada realizando a intersecc¢ao
fuzzy de todas as regras individuais:

y=yl,y2,...,yn

py(y) = min[py, (¥); fya(¥); -5 Bya(Y)]

2 - Usando um sistema disjuntivo de regras;

Para esse caso de sistema pelo menos uma regra deve ser satisfeita integralmente. As
regras sdo conectadas por OR. Nesse caso a saida y ¢ encontrada realizando a unido fuzzy de
todas as regras individuais.

y=yl,y2, .., yn

Hy(Y) = max[p,(¥); 1y2(¥)s -5 Hya(Y)]
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2.2.2.4 - Técnicas de Inferéncia

Existem trés principais métodos de inferéncia. Esses métodos sdo técnicas graficas de
inferéncia que podem ser implementadas computacionalmente. Elas sdo:
e M¢étodo de Mamdami;
o Sistema possui regra na seguinte forma:
IF x1 ¢ A1 ANDx2 ¢ A2, THENy ¢ B
e Mc¢étodo de Sugeno;
o IFx1¢é¢Al ANDx2¢ A2, THENy ¢y =f(x1,x2)
Onde y = f(x1,x2) ¢ uma fung¢ao logica booleana.
e M¢étodo de Tsukamoto;
o IFx1¢é¢Al ANDx2¢é A2, THENy¢B
Onde B ¢ um conjunto fuzzy que possui uma fungdo indicadora
monotona.
Onde:
x1, x2 : sdo as variaveis de entrada;
Al, A2 e B: Conjuntos fuzzy;
y : Saida
Cada um desses métodos pode ser usado de acordo com cada uma das suas hipoteses
de implementagdo. Porém, para esse trabalho serd usado o método de Mamdami por ser o

mais robusto entre os trés métodos, mesmo sendo o mais lento computacionalmente.

Método de Mamdami:
Para o método de Mamdami tem-se dois métodos que podem ser aplicados para
realizar a inferéncia das regras base fuzzy. Eles sao:
e Meétodo Max-Min: E um método que ira truncar o valor de saida na fungo
indicadora da saida como a resposta da agregacao das regras de base fuzzy.
e Meétodo Max-produto: E um método que ira escalar o valor de saida na funcio

indicadora da saida usando a resposta da agrega¢ao das regras de base fuzzy.
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2.2.2.5 - Métodos de defuzzificacao

Para ser possivel interpretar o valor computado pela légica fuzzy, ou seja,
transforma-lo em um valor “exato” € necessario realizar um processo de “defuzzificagdo” que
ira agregar todas as contribuigdes dos elementos dados pela funcao de pertinéncia. Existem
métodos para transformar matrizes de valores fuzzy em valores ldgicos booleanos e para
transformar valores fuzzy em escalares. Esses métodos sdo:

Fuzzy para Booleano:

e método A-cut

o Utiliza um valor A de referéncia para determinar se o valor fuzzy sera
TRUE ou FALSE. Seja “a” um escalar, “a” serd TRUE se:
a= A
Fuzzy para escalar:

e M¢étodo da centroide;

e M:¢étodo do principio de afiliagdo maxima;

e M¢todo da média com pesos;

e M¢étodo do meio maximo;

e M¢todo do centro de soma;

e Mc¢todo do centro de maior area;

e Mc¢todo do primeiro ou ultimo maxima.

O método que serd implementado sera o método do centroide. Nele o valor escalar ¢
encontrado através do célculo do centroide da area formada pelas fun¢des de pertinéncia do
conjunto fuzzy. Esse valor ¢ conhecido como z*, ou centro de gravidade. Ele pode ser

calculado usando-se a férmula do centroide como (ROSS, 2010, p.99):

fpk.zdz
z* = f— (18)
ukdz

Por exemplo, deseja-se encontrar qual o valor de gorjeta que deve-se oferecer a um
servico tendo como entrada uma nota para qualidade do servico e uma para qualidade da

comida. Usando a biblioteca scikit-fuzzy para ilustrar o processo.
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https://github.com/scikit-fuzzy/scikit-fuzzy
O valor defuzzificado do controlador sera o centroide da area formada pelas fungdes
de pertinéncia que foram acionadas pelas regras.
Sejam as regras:
Se a comida ¢ RUIM ou o servigo ¢ RUIM entdo gorjeta ¢ PEQUENA
Se a comida é OK entdo gorjeta ¢ MEDIA
Se a comida ¢ BOA ou servico ¢ BOM entdo gorjeta ¢ ALTA

Sejam as fungdes de pertinéncia para grupo do antecedente (Comida e servigo) e para

a consequéncia (gorjeta):

o
Vi

\

| |
=
S

i

Membership
e
g 2
[+1)

021 /

0.0

qualidade_Comida

Figura 15 - Fungdes de pertinéncia para a qualidade da comida
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1.0 4
0.8 A
'_% 0.6 -
—— ruim
E ok
£
= —— bom
1]
= 0.4+
0.2
0.0 |
4] 10

servico

Figura 16 - Fungdes de pertinéncia para o servigo
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gorjeta

Figura 17 - Fungdes de pertinéncia para a gorjeta

Para a entrada:
Comida = 6,5
Servigo =9,8
Utilizando o método de Mamdami de inferéncia de max-min, o valor para a

consequéncia sera determinado como:
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qualidade_Comida

Figura 18 - Resultado da aplicag@o das regras para as entradas no grupo qualidade Comida
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0 2 4 6 8 9.8 10

servico

Figura 19 - Resultado da aplicagdo das regras para as entradas no grupo servico

Para regra 2: Como ndo ha operador logico unindo os dois grupos serd valido o
minimo entre os valores da funcdo pertinéncia de cada grupo que sera fixado para a subclasse

Média. Com isso, o valor sera:

p = min (0,05;0,7) = 0,05
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Para regra 3: Como ha o operador lo6gico “OU”, sera adotado o valor maximo entre os
valores das func¢des de pertinéncia de cada grupo para as entradas dadas. Ele seréd o valor que
sera fixado para a subclasse Alta. Com isso, o valor sera:

p = max (0,3;0,98) = 0,98

Agora, através do método do Centroide pode-se realizar a defuzzificagdo, pelo célculo

do centroide da area formada pelo resultado da inferéncia, para encontrar o valor da gorjeta:

1.0 4 1 2

| /

2 0.6 4
ﬁ _— Pquena
g Media
£ — Alta
L]
= 0.4 y
4
0.2
0.0 T T T T 1
4] 5 10 15 20 25

gorjeta

Figura 20 - Areas usadas no calculo do centroide para a defuzzificagio

Que sera de 19,85 %

2.2.3 - O sistema de controle fuzzy

Como a logica fuzzy simula a forma da tomada de decisao humana, ela pode ser usada
no desenvolvimento de um sistema de controle para uma planta de um sistema dindmico
complexo (ZIMMERMANN, 2013, p.203). O sistema de controle fuzzy esta representado na
Fig. 21.
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Sensores 4

Figura 21 - Sistema de controle fuzzy em diagrama de blocos

Fonte: elaborada pelo autor

Para o projeto de um controlador fuzzy sdo feitas as seguintes hipoteses

A planta ¢ observavel e controlavel;

Existéncia do sistema real para testagem;

Existéncia de uma solugao para o controle;

Nao se pode garantir uma solucao 6tima global;

modo que permitam atualizacdo constante do sistema de controle.

2.2.3.2 - Etapas do processo de projeto do controlador
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Saida

Questoes relacionadas a estabilidade e otimizacdo devem ser “abertas” de

As seguintes etapas sdo propostas para a concep¢do de um controlador fuzzy

(ZIMMERMANN, 2013, p.220):

I.

Identificagdo das variaveis de entrada, saida e de estado;

2. Configuragao das classes ou subgrupos fuzzy;

Dentro do universo estudado cada variavel ¢ dividida em um subgrupo

fuzzy e a cada subgrupo ¢ designada uma variavel linguistica.

Por exemplo, o grupo “Temperatura” sera dividido em subgrupos como

2% 99

“quente”,

morno” e “frio”.

3. Obtencao da funcao indicadora;
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a. Uma fun¢do indicadora deve ser atribuida para cada subgrupo fuzzy. A
sua escolha deve ser validada pelos testes do sistema de controle.
4. Configuracao das regras de base IF-THEN;
a. Cria-se o conjunto de regras de base estabelecendo relagdes entre as
entradas e saidas do sistema.
5. Normalizagao e fatores de escala;
a. Sdo escalares que irdo normalizar as entradas e saidas dentro do
intervalo [0,1] ¢ [-1,1].
6. Fuzzificagao;
7. Identificagdo da saida;

8. Defuzzificacao.

2.2.4 - O controle fuzzy em Python

O principal ambiente para implementagdo de algoritmos baseados na logica fuzzy ¢ a
interface MATLAB. Porém, existem bibliotecas e aplicativos disponiveis em outras
linguagens. No trabalho “Simpful: A User-Friendly Python Library for Fuzzy Logic” de 2020
os autores fazem a andlise e comparagdo entre as principais ferramentas usadas para
programacao com Fuzzy Logic.

O trabalho serd usado como referéncia para a escolha da biblioteca Python que sera
usada para implementagao da logica de controle fuzzy. O nome da biblioteca utilizada ¢
SIMPFUL. Ela foi a biblioteca analisada no artigo e ¢ a que oferece atualmente as melhores

condig¢des para implementagao de controladores fuzzy em linguagem aberta.
Simpful é uma nova biblioteca que aborda a necessidade de ter uma API Python leve
e de codigo aberto para suportar a criagdo de FISs (Fuzzy Inference System -

Sistema de Inferéncia Fuzzy) legiveis, com base no raciocinio nebuloso de Mamdani

ou Takagi - Sugeno. (SPOLAOR, FUCHS, CAZZANIGA; 2020; p.1694)
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2.2.4.1 - Descri¢ao da biblioteca SIMPFUL

A biblioteca SIMPFUL necessita dos seguintes pré requisitos do sistema para que a
programacao fuzzy logic possa ser feita:
e Python 3 instalado;
e Biblioteca NumPy instalado;

e Biblioteca SciPy instalado.

Em seguida, basta realizar a instalacdo da biblioteca SIMPFUL. Os modulos da
biblioteca sdo:
e simpful module - simpful.simpful
o Usado para criar um objeto Fuzzy (um objeto que possui como fungdes
as funcoes de inferéncia e outras ferramentas da logica fuzzy), para
criar as variaveis linguisticas e para criar uma funcdo de pertinéncia
triangular padrao.
e fuzzy sets module - simpful.fuzzy sets
o Usado para criar os grupos fuzzy e para criar fungdes de pertinéncia.
e fuzzy aggregation module - simpful.fuzzy aggregation
o Usado para realizar modificagdes nos grupos fuzzy como acrescentar
ou retirar elementos.
Maiores detalhes e exemplos, além da descricdo do cddigo da biblioteca estdo
disponiveis em seu github:

https://github.com/aresio/simpful

A documentacao de sua biblioteca esta disponivel em :

https://simpful.readthedocs.io/en/latest/fuzzy _sets _module.html
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2.3 O codigo de transito brasileiro

O cddigo de transito brasileiro define bicicleta como:

“BICICLETA - veiculo de propulsdao humana, dotado de duas rodas, ndo sendo, para
efeito deste Codigo, similar a motocicleta, motoneta e ciclomotor” (CODIGO DE
TRANSITO BRASILEIRO, 2020, Anexo 1)

J4 a definicdo de ciclomotor, atualizada pela lei 14.071/2020, diz:
“CICLOMOTOR - veiculo de 2 (duas) ou 3 (trés) rodas, provido de motor de
combustdo interna, cuja cilindrada ndo exceda a 50 c¢cm® (cinquenta centimetros
cubicos), equivalente a 3,05 pol® (trés polegadas cubicas e cinco centésimos), ou de
motor de propulsdo elétrica com poténcia méxima de 4 kW (quatro quilowatts), e

cuja velocidade méaxima de fabricagdo ndo exceda a 50 Km/h (cinquenta quilémetros

por hora).” (CODIGO DE TRANSITO BRASILEIRO, 2020, Anexo 1)

Ja de acordo com as Resolugoes do Conselho Nacional de Transito n. 465/13 e 842/21
a bicicleta elétrica ¢ equiparada a ciclomotor, exceto se, cumulativamente, apresentar as
seguintes caracteristicas:

e Poténcia nominal maxima de até 350 Watts;

e Velocidade maxima de 25 km/h;

e Serem dotadas de sistema que garanta o funcionamento do motor somente
quando o condutor pedalar;

e Naio dispor de acelerador ou de qualquer outro dispositivo de variagdo manual
de poténcia.

Com isso, essas caracteristicas serdo levadas em conta para a criagdo do sistema de
controle como condi¢des de operagdo. Porém, o sistema serad feito de modo que possam ser
feitas alteracdes em seu codigo, visto que a legislagdo brasileira de transito evolui com certa
frequéncia. Possibilitando que o sistema de controle se adeque a legislagdo vigente no
momento.

Dessa forma, pode-se elaborar um fluxograma para descrever quais sao as
caracteristicas e acessorios de uma bicicleta elétrica e quais sdo as resolugcdes do Conselho

Nacional de Transito (CONTRAN) que as regularizam:



circulagao

Cadigo de Conselho
transito Nacional de
Brasileiro transito(CONTRAN)

Bicicleta

Anexo 1. Veiculo de
propuls&o humana,
dotado de duas rodas,
néo sendo, para efeito
deste Cadigo, similar
a motocicleta,
motoneta e ciclomotor

1" o .
Art. 58. Nas vias urbanas e nas rurais

de pista dupla, a circulacao de
bicicletas devera ocorrer, quando nao
houver ciclovia, ciclofaixa, ou
acostamento, ou quando nao for

de < possivel a utilizacdo destes, nos
bordos da pista de rolamento, no
mesmo sentido de circulacao
regulamentado para a via, com
preferéncia sobre os veiculos

\. automotores.

Definicéo

Vias
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Atende as

Resolugéo n°

465/13

Resolugéo n°

842/18

]

caracteristicas

NAO

A

Ciclomotor

A

Bicicleta
elétrica

J

Caracteristicas <

Acessorios <

» Poténcia nominal maxima de até 350
Waltts;

» Velocidade maxima de 25 km/h;

» Serem dotadas de sistema que
garanta o funcionamento do motor
somente quando o condutor pedalar;

» Nao dispor de acelerador ou de
qualguer outro dispositivo de variacdo
manual de poténcia;

a) indicador de velocidade;

b) campainha;

c) sinalizacdo noturna dianteira, traseira e
lateral;

d) espelhos retrovisores em ambos os
lados;

€) pneus em condi¢des minimas de
seguranca;

) uso obrigatdrio de capacete de ciclista.

Figura 22 - Fluxograma da classificagcdo de uma bicicleta elétrica pelo codigo de transito Brasileiro

Com isso, podemos ter como condicdes de projeto as caracteristicas definidas pelas

resolucdes do CONTRAN. Para que assim, o veiculo continue se enquadrando dentro da

categoria de bicicleta elétrica e dessa forma dispense a necessidade de gastos com

documentagdo do veiculo, impostos sobre ele € necessidade de habilitagdo para dirigi-lo.

Em resumo elas serdo:

e Poténcia nominal maxima de até 350 Watts;

e Velocidade maxima de 25 km/h;

e Serem dotadas de sistema que garanta o funcionamento do motor somente

quando o condutor pedalar;
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e Nao dispor de acelerador ou de qualquer outro dispositivo de variagdo manual
de poténcia;

Com o veiculo tendo os seguintes acessorios:

e Indicador de velocidade;

e (Campainha;

e Sinalizacdo noturna dianteira, traseira e lateral;
e [Espelhos retrovisores em ambos os lados;

e Pneus em condigdes minimas de seguranca;

Uso obrigatdrio de capacete de ciclista.
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2.4 - O modelo matematico da bicicleta elétrica
Tem-se que uma parte do sistema de simulagdo consiste no “Modelo da bicicleta
Elétrica”. Esse bloco modela a bicicleta elétrica como sendo uma combinagao de trés fatores:
e A propulsdo humana
e A propulsdo do motor elétrico
e A dindmica da bicicleta elétrica
Essa abordagem de modelagem para uma simulagdao ¢ proposta em "E-Bike System
Modeling and Simulation" (Thejasree and Maniyeri, 2019). Ela também ¢ utilizada em
"System Level Modelling and Simulation of an Electric Bicycle" (Dimitrov and D.
Hvarchilkov, 2018) e em (Nguyen and Octaeck, 2019).
Nesses trés trabalhos a bateria também ¢ modelada e faz parte do bloco “Modelo da
bicicleta elétrica”. Entretanto, para simplificacdo da simulagdo ela serd considerada “ideal”

em um primeiro momento.

2.4.1 A propulsdo humana

A propulsdo humana sera modelada baseando-se no trabalho "The relationship
between power output and endurance: a brief review" (Morton and Hodgson, 1996). Nele a
poténcia exercida pelo individuo ¢ modelada como uma fungao exponencial decrescente no

tempo da seguinte forma:

P =85 + -2
t

Onde:
P = poténcia em Watts (W)

t = tempo em segundos (s)

Entretanto, essa equagdo modela a poténcia exercida por um ciclista com nivel de
condicionamento fisico préximo ao de um atleta. Para aproximar a equagdo para representar
uma pessoa com condicionamento médio foi utilizado em “Performance factors in bicycling:
Human power, drag, and rolling resistance” (MULLER & HOFMANN, 2008). Com isso, serd
utilizada como poténcia maxima média de longa duragdo o valor de 65W. Assim, a equagao

que modela a poténcia humana e que serd utilizada sera:

P — 85 + t6—55 (19)

humana



57

Vale ressaltar que outros fatores tém influéncia na determinagdo exata da poténcia
média e da poténcia maxima produzida durante o exercicio. Eles sdo por exemplo: sexo,
idade, condicionamento fisico (tamanho e quantidade de musculos presentes no corpo),
capacidade de absorver o oxigénio ao sangue (V02max), etc. Muitos modelos sdo propostos
para conseguirem realizar uma boa previsdo da poténcia humana méaxima e média para dadas
condi¢des. Porém, para esse trabalho a aproximacdo de poténcia humana como um
decaimento exponencial sera suficiente. Visto que, na pratica, o sistema fuzzy ndo ira
necessitar ter modelado a poténcia humana.

Para determinar o torque exercido pela propulsdo humana serd utilizado a seguinte
equagdo que relaciona poténcia e cadéncia (V. Dimitrov, D. Hvarchilkov; 2018):

P
_ humana
pedal S (20)

Onde:
Feqa = forga exercida nos pedais em Newtons (N)
PLumana = poténcia em Watts (W)

S = cadéncia nos pedais em metros por segundo (m/s)

Como a bicicleta estudada possui um comprimento de 165 mm de pedivela (manivela
de apoio para os pedais), uma relacdo de transmissdo aproximada de 2:1; 1 = 0,5; e roda de

diametro 0,5 metros o torque de saida sera (V. Dimitrov, D. Hvarchilkov; 2018):

2mn
. * (Sen(epedal + 0 ) (21)

=F *T*R
ro

humano pedal d

Onde:

Thumane = Torque exercido pelo ciclista no contato da roda com o asfalto em Newton
metro (N.m)

F,eqa = Forga exercida pelo ciclista no pedal em Newtons (N)

0 pedal = Angulo inicial do pedal em radianos (rad)

R,.4. = Raio da roda traseira em metros (m)

t = Tempo de percurso em segundos (s)

n = Cadéncia do pedal em rotagdes por minuto (rpm)

1 =relacao de transmissao entre coroa e catraca.
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Realizando a conversdo da cadéncia de rpm para m/s sabendo-se o comprimento do
pedivela de 165 mm tem-se:

__ 2mn*0,165
S = T (22)

Onde:
S = Cadéncia em metros por segundo (m/s)

n = Cadéncia em rotagdes por minuto (rpm)

Por fim, a equacdo que modeliza o torque humano como:

0__ (85

humano = 0,165*m*n ¢

2Tn
. * (sen(Gpedal + o ) (23)

65 \ % : %
0,025 ) l RT‘Od

Onde:

Thumane = Torque exercido pelo ciclista no contato da roda com o asfalto em Newton
metro (N.m)

F,.qa = For¢a exercida pelo ciclista no pedal em Newtons (N)

0 pedal = Angulo inicial do pedal em radianos (rad)

R,.4. = Raio da roda traseira em metros (m)

t = Tempo de percurso em segundos (s)

n = Cadéncia do pedal em rotagdes por minuto (rpm)

Para a simulacdo, o valor do torque humano sera ainda simplificado por um modelo
discreto. Pois, a funcdo sen(t) presente no modelo ndo ird contribuir para o comportamento
geral do sistema e fard com que o tempo de simulacdo aumente consideravelmente. Como o
torque varia de maneira exponencial serd adotado um valor constante para o intervalo de
tempo t, a uma cadéncia de 60 rpm, de forma que a média rotacdo representa a faixa em que o
ciclista consiga entregar a poténcia maxima na pedalada. Conforme a classificacdo da
cadéncia da pedalada de um ciclista de acordo com a idade estudado em (SACCHETTI et al.,
2010).
e Baixa rotagdo - At¢ 40 rpm
e M¢édia rotagdo - Entre 40 rpm ¢ 80 rpm
e Altarotagdo - Acima de 80 rpm.

O valor constante do torque serd para n = 60 rpm;

= 12, parals <t < 50s (24)

humano
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2.4.2 O motor elétrico

A propulsdo do motor elétrico sera modelada utilizando-se as curvas de Torque x

Corrente, de Torque x Rotagdo e de eficiéncia fornecidas pelo fabricante. Existem muitas

formas de se levar em consideragdo todas as nao linearidades presentes nos motores elétricos

Brushless, sem escovas (BLDC - BrushLess Direct Current). Porém, neste trabalho as nao

linearidades serdo levadas em consideracdo dentro dos resultados obtidos pelos ensaios do

fabricante.

Um motor elétrico de corrente continua com imas permanentes pode ser modelizado

utilizando-se a seguinte equacdo que fornece o torque de saida de um motor elétrico BLDC

(DC Motors, Speed Controls, Servo Systems; p.6-23; 1972):

carga.

(N.m);

p2-19;

_ _ dw_
=K, .I =( +])g +Bo+T (25)

elétrico perdas motor perdas carga

Sendo:

Teeuico = Torque produzido pela corrente no enrolamento do motor (N.m)
K, = Constante de torque do motor (N.m/A)

I = Corrente na armadura do motor (A)

J,, = momento de inércia do motor (kg.m?)

J. = momento de inércia da carga acoplada ao motor (kg.m?);

® = rotagdo do motor em func¢do do tempo (rad/s)

B = Coecficiente de atrito viscoso representando todo o atrito viscoso do motor e da
T,m = Torque de perdas no motor por atrito, resisténcia do rolamento e perdas no ferro
T, = Torque de perdas da carga (N.m)

Para relacionar o torque elétrico do motor e a corrente sera usada a seguinte equacao:

= K, .1 (26)

elétrico
Subtraindo os torques de perda tém-se:

_ _ _ _ do
T = Kt v Tpm TpL = Um+]L) — + Bw (27)

m

Ja& a funcdo transferéncia serd (DC Motors, Speed Controls, Servo Systems; p.2-17 a

1972):
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Com as informagodes do datasheet do fabricante(presente em anexo A) sera possivel
determinar o valor de Kt, Tpm e TpL. Sendo

T.=T +T, (28)

Plotando a curva de torque x corrente para a parte linear (corrente na armadura até 19
A) tem-se a seguinte equagao:

T = 149.] — 1,71 (29)

real
Com isso, Tf = 1,71N.m e kt = 1,49 N.m/A

J& para descrever a relagdo entre a corrente I e a tensdo da armadura Va sera utilizada a

seguinte equacao (DC Motors, Speed Controls, Servo Systems; p6-23;1972)

di 1
== oWV, — k .o® —R.I() (30)

Para determinar La e Ra serd usado o datasheet do fabricante (anexo A). Para
determinar Ra ¢ utilizada a resisténcia para o caso de torque nulo. Com o valor da corrente e
da poténcia de saida ¢ possivel determinar Ra como:

R

- (31)

a
Usando os valores do datasheet tem-se R =0,1733 Q
Para se determinar o valor aproximado de La para equacao 30 foi adotado um valor
inicial de 0,001H e em seguida a equagdo diferencial foi resolvida numericamente para um

dado intervalo de tempo com passo At = t, — t. O valor de incremento de La foi de

0,001H. A equacao foi resolvida até que o erro da diferenga entre a resposta da equagao e da
corrente medida no datasheet fosse menor do que 1%.

Parat1 = 8s e t, = 8,75725,com1a2 = 7,8029 A chegou-se ao valor de

La = 0,002 H

2.4.3 A dinamica da bicicleta

As diferentes for¢as que agem na bicicleta sao (Thejasree & Maniyeri, 2019):

dv _ _ _
MS-=F —F —F —F. (32)
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Onde

M = Massa total do conjunto bicicleta ciclista [kg]
v = velocidade do conjunto bicicleta ciclista [m/s]
F, = Forga de tragao do motor e do ciclista [N]

F, = Forca de resisténcia do ar [N]

F.. = Forca de resisténcia do atrito de rolamento [N]

F, = Forga de resisténcia gravitacional [N]

Sendo definido a Forga de resisténcia do ar (F,, ) como:

F = 5AC p v? (33)

S wW ar
Em que:
F,, = Forca de resisténcia do ar [N]
A, = Area frontal de contato do ciclista [m?]
C,, = Coeficiente de arrasto para o ar ¢ o conjunto ciclista e bicicleta

pa.. = Densidade do ar a temperatura 25°C e pressdo atm [kg/m?]

Sendo definido a Forga de resisténcia do atrito de rolamento (F,, )como:

F = CrngCOS(O() (34)

rr
Em que:
F.. = Forca de resisténcia do atrito de rolamento [N]
C,, = Coeficiente de atrito de rolamento entre o asfalto e o pneu de borracha
g = Aceleracdo da gravidade [m/s?]

a = angulo de inclinagdo do percurso [radianos]

Sendo definido a Forga de resisténcia gravitacional (F, )como:

Fa = Mgsen(a) (35)

Em que:
F, = Forca de resisténcia gravitacional [N]
g = Aceleracdo da gravidade [m/s?]

o = angulo de inclinagdo do percurso [radianos]

Ja o torque necessario para mover o conjunto serd (G. Thejasree,R. Maniyeri;2019):
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T =r[MS-+F +F +F]—T (36)

pedal
Onde

M = Massa total do conjunto bicicleta ciclista [kg]
v = Velocidade do conjunto bicicleta ciclista [m/s]

r = Raio da roda [m]

Tooor = Torque exercido pelo motor [N.m]

Tyeqa = Torque exercido pelo ciclista [N.m]

F,, = Forga de resisténcia do ar [N]

F.. = Forca de resisténcia do atrito de rolamento [N]

F, = Forga de resisténcia gravitacional [N]

Reorganizando para que a equagao fique em fun¢ao da velocidade angular ®

dv d(w.r)
M- - =rM—_— (37)

Dessa forma:

(T +T : do
m pe

~r[F, +F +FDo-=- (38)

dal
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3 MATERIAIS E METODOS

3.1 Caracteristicas do sistema a ser estudado

O sistema a ser estudado ¢ o de uma bicicleta elétrica e seu ciclista. Os seguintes
parametros sdo conhecidos: Massa, sensores utilizados, caracteristicas do motor, exigéncias
do ciclista e restri¢gdes impostas pela legislagao.

O controle de velocidade de rotagcdo do motor ¢ feito por uma unidade externa ESC
(External Speed Controller), ficando a cargo do controlador desenvolvido neste trabalho
controlar a forma como a velocidade do motor deve ser variada.

De uma maneira simples, o sistema de controle geral da bicicleta ird substituir o
acelerador manual (um potencidmetro por exemplo) por um método de tomada de decisdo
automatico baseado na leitura da situacao atual.

Bicicleta

Para as medi¢oes das dimensoes da bicicleta foi utilizada a fita métrica “milwaukee

5m

Figura 23 - Fita métrica utilizada para medi¢oes das dimensdes da bicicleta

Nas figuras seguintes tém-se as medidas do aro e do pneu e a medig¢do da roda da

bicicleta.
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Figura 24 - Dimensdes do aro da bicicleta utilizada na simulagao

ﬂous

Figura 25 - Dimensoes do pneu da bicicleta utilizada na simulagao
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Figura 26 - Dimensoes da roda da bicicleta utilizada na simulagéo

As caracteristicas da bicicleta sdo:
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Caracteristicas técnicas Medida
Aro (didmetro) 406 mm
Pneus (largura-diametro interno) 57-406
Diametro roda final 0,5m
Sistema de transmisséo 2,3.1*
Massa 12 kg

Tabela 1 - Caracteristicas dimensionais da bicicleta

*Numero de dentes da coroa dividido pelo nimero de dentes da catraca.

Figura 27 - Vista lateral do prototipo de bicicleta BUE (Bicicleta Urbana Elétrica)
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As caracteristicas do motor sao:
Motor do tipo brushless da marca EMFI, modelo EMF BL-05-36-250-225, com as

seguintes caracteristicas técnicas representadas na tabela 2.

Caracteristicas técnicas Medida
Poténcia nominal 250W
Tensao nominal 36V
Torque nominal 11 N.m
Massa 3 kg
Eficiéncia 0,8
Rotagdo nominal 225 rpm

Tabela 2 - Caracteristicas do motor

A seguir temos na figura 28, a imagem do motor que ¢ montado na roda dianteira da

bicicleta no lugar do cubo.

Figura 28 - Vista em perspectiva do motor frontal brushless HUBmotor



As caracteristicas do controlador ESC sdo:
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Caracteristicas técnicas Medidas
Corrente de operagao 50A
Tens&o da bateria de entrada 8Vv/60V
Massa 50g

Tabela 3 - Caracteristicas do controlador de rotagdo do motor

Figura 29 - Controlador Externo de velocidade(ESC) para 36V




As caracteristicas da bateria sdo:
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Serdo usadas duas baterias em série do tipo Polimero de litio a base de grafeno 6s ou

22,2V. Suas caracteristicas individuais estdo na tabela 4.

Caracteristicas técnicas Medidas
Carga 5000 mAh
Tensao 22,2V
Massa 7399
Corrente maxima 50A

Tabela 4 - Caracteristicas da bateria de alimentagdo

O fator de carga “C” da bateria representa qual é a capacidade maxima que a bateria

pode oferecer no seu uso ou receber durante o carregamento. Sendo 1C igual a corrente que a

bateria fornece em uma hora.

Notlce

1. Pia

Froa Service Faadnacit suggent
Facuboos Pags HAB s Battary

Packing List

Figura 30 - Bateria de polimero de litio a base de grafeno, do tipo 6s (seis células)



Os sensores que serao utilizados para a simulagao so:

o Sensor de velocidade;

e Sensor de pedal.

As caracteristicas da pessoa sdo:
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Caracteristicas técnicas Medida
Massa 75 kg
Carga extra 15 kg

Tabela 5 - Caracteristicas do ciclista e da carga de transporte

Resumo:
Item Massa (kg) Preco (R$)
Bicicleta 12 1400
Motor 3 1000
ESC 0,05 400
Bateria 1,5 1100
sensores 0,1 300
Ciclista 75 /1 /1 /]
Carga extra 15 /l /l //
Total veiculo 16,65 4200
Total conjunto 106,65 4200

Tabela 6 - Massa ¢ prego dos componentes do sistema bicicleta urbana elétrica

Os valores adotados serdo:

Massa total = 107 kg
Gravidade = 9,81 m/s?

Coeficiente de atrito de rolamento = 0,01



70

3.2 Condigdes de aplicacao

Montagem dos componentes

Os componentes mostrados na se¢do anterior serdo montados da forma representada

na imagem da figura 15. O esquema de montagem permite compreender melhor qual € o

papel de cada um dos componentes e onde serd implementado o sistema de controle Fuzzy.

Cadigo fuzzy

Valor do erro

Bateria
|
Tensdo
Ganho kf ESC
» Micro D (External
controlador | - Speed
o ——Novo valor de tensao—p| Controller)
valor da aceleragao

A

Posicédo Tensédo e
dos polos controle

Y

d/dt

L-—Velocidad e— Motor

-a—Torque externo

Figura 31 - Esquema de montagem dos elementos de controle

Terreno para uso

O sistema de controle serd desenvolvido para um terreno:

Urbano;
A inclinagdo das vias serdo aquelas previstas pelo DNIT;
A inclinagdo maxima da via sera adotada como 10° ou 18% .

Trajeto com inclinagdo variavel igualmente espagada.
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Autonomia
A autonomia da bateria serd estimada usando-se os seguintes conceitos:
e (arga da bateria;
e Eficiéncia da bateria;
e Massa do conjunto ciclista e bicicleta;
e Trajeto médio com distancias e inclinagdes;

e C(Corrente positiva consumida no trajeto.

Para se calcular o trajeto médio e suas inclinagdes sera utilizada uma fungdo que cria
um vetor com angulos de inclinagdo igualmente espagados. Para calcular o valor total
percorrido sera feita a integral numérica da velocidade escalar no tempo.

Para se calcular a poténcia consumida no trajeto serd utilizada a integral numérica da
corrente no tempo. Considerando apenas os valores positivos da corrente. Rejeitando assim,

os valores negativos, que podem representar geracao de corrente.

3.3 Restri¢coes adotadas

As restricdes adotadas fazem parte das hipdteses que serdo usadas para criar o sistema

de regras de base fuzzy.

Inclina¢do maxima:
A inclinagcdo maxima de uma subida de um percurso sera adotada como sendo de 20°,

ou 36% de inclinagao.

Condig¢oes de motor operando:

e O motor so estard em operacao para velocidades entre Okm/h e 25 km/h, para
velocidades superiores a essa ele estara desligado.

e O motor so estard funcionando quando o sensor de pedal estiver indicando a
rotagdo do pedivela da bicicleta.

e O motor s6 ird funcionar para a faixa de temperatura entre -50°C e 100°C. Pois
a partir de 100°C os seus imas permanentes de neodimio comegam a reduzir o
valor do seu campo magnético, podendo inclusive chegar a sua completa perda
de campo.

e O motor estara desligado quando o sensor de inclinagao indicar uma “descida”.
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3.4 O controle fuzzy

Criacdo das regras de base na forma linguistica, para isso serd seguido o passo a passo
proposto no capitulo 2.2.3.2. Mas para construir um controlador fuzzy ¢ preciso que ele tenha
como entrada no minimo o erro da variavel que deve atingir um valor de referéncia e sua

variag@o no tempo (ROSS, 2010).

3.4.1 Identificacdo das variaveis de entrada, saida e de estado

As variaveis de entrada serdo:
e Erro entre a velocidade de referéncia e a velocidade medida

e Aceleragdo angular do motor elétrico

As variaveis de saida sdo:

e Ganho kf para alterar a tensdo na armadura

As variaveis de estado sao:
e Velocidade Angular do motor elétrico

e Corrente na armadura do motor elétrico

3.4.2 Configuracdo das classes ou subgrupos fuzzy

Erro da Velocidade
As categorias foram escolhidas de modo que o valor do erro relativo da velocidade
representasse o quao distante estd a velocidade real da velocidade de referéncia. Além de
indicar se a velocidade real estd acima ou abaixo da velocidade de referéncia. As categorias
propostas para o erro da velocidade sdo:
e Negativo - abaixo de 0%
e Ok - entre -5% e 5%

e Positivo - acima de 0%

Aceleracio
A aceleragdo serd necessaria para

e Negativa - entre -0,3 e 0 rad/s?
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e Zero - entre -0,03 rad/s? e 0,03 rad/s?

e Positiva - entre 0 e 0,3 rad/s?

Ganho kf para tensdo da armadura
Os valores de ganho foram adotados de tal forma que a tensdo da bateria ird sofrer
alteracdes de no maximo 1,65V e de no minimo 0 V.
e diminuirMuito - ganho entre -1,65 ¢ -0,65 V
e diminuir - ganho entre -0,5 ¢ -0,3
e Manter - ganho entre -0,1 ¢ 0,1
e aumentar - ganho entre 0,5 ¢ 0,3

e aumentarMuito - ganho entre 1,05 e 1,15

3.4.3 Obtencao da fun¢ao indicadora (funcdo de pertinéncia)

Para cada dos subgrupos serdo atribuidas fungdes de pertinéncia que melhor irdo
representar o comportamento real de variacdo de cada uma das varidveis de entrada, saida e

de estado.

Erro da velocidade

1.0 4
0.8 1
Q
g
o
o 0.6 4 z
'g_ —— negativo
% ok
o positivo
£ 0.4
E
Lk}
=
0.2 +
L | mrmemrsrr e T e e

=-1.00 -0.75 =050 -=0.25 0.00 0.25 0.50 0.75 1.00
Erro da velocidade da bicicleta em km/h

Figura 32 - Grafico da fungdo de pertinéncia para classe Erro da velocidade



Aceleracao
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Aceleracdo angular da bicicleta em rad/s?
Figura 33 - Grafico da funcao de pertinéncia para classe Aceleracdo
Ganho kf para tensao
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Figura 34 - Grafico da fungdo de pertinéncia para classe Variacao_Tensao
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3.4.4 Configuragdo das regras de base IF-THEN

As regras serdo construidas de forma que o erro seja minimizado. O total de regras
serd o produto entre o nimero de classes dos antecedentes (Erro velocidade e Aceleragdo). A

quantidade de regras sera:

N°regras = N°classes para Erro velocidade . N°classes para Aceleragdo

Assim, tem-se

N°regras = 3.3 = 9

Porém, para o sistema desse trabalho um conjunto de apenas cinco regras serd adotado
inicialmente. Elas irdo descrever doi principais momentos da simulagao:
e Controle de um Erro grande

e Controle de um Erro pequeno e com Aceleragao

Na forma linguistica as regras de base sdo:

1. IF (ErroVelocidade IS positivo) THEN Variacao_Tensao IS aumentarMuito

2. IF (ErroVelocidade IS negativo) THEN Variacao Tensao IS diminuirMuito

3. IF (ErroVelocidade IS ok) AND (Aceleracdo IS zero) THEN Variacao Tensao
IS manter

4. IF (ErroVelocidade IS ok) AND (Aceleragcio IS negativa) THEN
Variacao_Tensao IS aumentar

5. TIF (ErroVelocidade IS ok) AND (Aceleracdo IS positiva) THEN

Variacao_Tensao IS diminuir

Na forma matricial temos as combinagdes possiveis de leitura do erro da velocidade e
aceleracdo e a resposta em tensdo. Vale ressaltar que a matriz sé ¢ valida se as condicdes de
Temperatura Fria e Pedal forem satisfeitas. Ou seja, se o ciclista estiver pedalando e se a

temperatura do motor for abaixo de 100°C:
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3.4.5 Normalizacao e fatores de escala

O valor final da tensdo serd a soma entre valor de resposta do controlador fuzzy e o
valor atual da tensdo que estd sendo aplicada ao motor. Portanto, o valor da tensdo atual serd o

fator de escala de saida do controlador.

3.4.6 Fuzzificacao

Para realizar o processo de fuzzificagdo ¢ adotado o método de inferéncia de

Mandami.

3.4.7 Identificacado da saida

A saida do sistema fuzzy sera um nimero que ird determinar qual ¢ a quantidade de

tensao que sera aplicada no motor quando ele se encontra em um dado estado.

3.4.8 Defuzzificacao

O método de Defuzzificagdo escolhido ¢ o método do “Centro de Gravidade”.

3.5 Simulagao e Aplicagao

3.5.1 Cddigo de controle fuzzy em Python

Criar uma fun¢ao que se chama fuzzyControl e passar para ela como entrada os sinais.

3.5.2 Equagdes do modelo e dados utilizados

Modelo construido de forma que o ciclista mantenha uma cadéncia constante durante
0 percurso.

Para o circuito de teste, vetor com as inclina¢des para cada metro de percurso:

Para o torque fornecido pelo ciclista, em fun¢do de sua cadéncia:

=12N.m

humano
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Para a velocidade do conjunto, em fun¢do dos torques do motor, do ciclista e da
velocidade:
do 1

=————(k.l +T — B.o—-1rlF +F +F
dt (]t+M.T2) ( t a humano [ w rr a])
J& para a equagdo da corrente, que ira relacionar a tensdo na armadura e a corrente na

armadura:

dl_ L
L= (V. =k .o(t) —R.I(t)

Os valores adotados para simulagao serdo:

M - Massa total do conjunto bicicleta 100
ciclista [kg]
r - Raio da roda da bicicleta [m] 0,25
n - Cadéncia no pedal [rpm] 60
kt - Constante de torque do motor 1,49
elétricolN.m/A]
Tf - Torque resistivo do motor [N.m] 1,71
As - Area frontal do ciclista [m?] 0,509
Crr - Coeficiente de atrito de rolamento 0,76
Cw - Coeficiente de arrasto do ar 0,0025
Par - Densidade do ar [kg/m?] 1,2
g - Aceleragao da gravidade [m/s?] 9,81

Tabela 7 - Valores das constantes adotadas para a simulagio

3.5.3 Cédigo completo da simulacao

Codigo completo disponivel no link:

https://github.com/Luisf3-moreira/Controlador-Fuzzy-de-velocidade-



78

4 RESULTADOS

Foram feitos os calculos das métricas do tempo e de uma estimativa da autonomia da
bicicleta elétrica para 3 trajetos: Partida do plano e aumento da inclinacdo, partida inclinado e
aumento da inclinagdo, inclinagdo constante. Sendo um teste com trajeto constante e variagao

nos parametros do sistema para checar a robustez do controlador.

4.1 - Resultados do controlador PID

Utilizando-se os seguintes valores, obtidos através da regra de Ziegler-Nichols
modificada, para o ganho do PID :

ke =0,55

tc = 0,04s

kp =0,5%kc =0,27515

taul = 0,005*(1/ts) = 0,0125

tauD = 0,0009*(1/ts) = 0,0225

Para o trajeto 1: partindo do plano, com inclinagao de 0°, até a inclinagdo méaxima de

8°. Trajeto com 350 pontos:

Resposta do sistema com controlador PID
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Figura 35 - Grafico da resposta do sistema com controlador PID para o trajeto 1
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Para o trajeto 2: partindo inclinado, com inclinagdo de 3°, até a inclinagcdo maxima de

8°. Trajeto com 350 pontos:

Resposta do sistema com controlador PID
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Figura 36 - Grafico da resposta do sistema com controlador PID para o trajeto 2

Para o trajeto 3: inclinagao constante, com inclinagao de 2°. Trajeto com 350 pontos:

Resposta do sistema com controlador PID
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Figura 37 - Grafico da resposta do sistema com controlador PID para o trajeto 3
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4.2 - Resultados do controlador Fuzzy
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Para o trajeto 1: partindo do plano, com inclinag@o de 0°, até a inclinagdo maxima de

8°. Trajeto com 350 pontos:

Resposta do sisterma com controlador fuzzy
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Figura 38 - Grafico da resposta do sistema com controlador Fuzzy para o trajeto 1
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Para o trajeto 2: partindo inclinado, com inclinagdo de 3°, até a inclinagcdo maxima de

8°. Trajeto com 350 pontos:



Resposta do sistema com controlador fuzzy
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Figura 39 - Grafico da resposta do sistema com controlador Fuzzy para o trajeto 2

Para o trajeto 3: inclinacao constante, com inclinagao de 2°. Trajeto com 350 pontos:

Resposta do sistema com controlador fuzzy
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Figura 40 - Grafico da resposta do sistema com controlador Fuzzy para o trajeto 3
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4.3 - Métricas de controle

As métricas que sdo medidas sdo:

Para o trajeto 1:

PID Fuzzy
Overshoot (%) 6,2298 6,8445
Tempo de subida (s) 1,1232 1,9656
Tempo de Pico (s) 3,2464 3,808
Tempo de acomodagao (s) 7,318 7,7392
Erro de regime (%) 0 0

Tabela 8 - Métricas de controle para o trajeto 1 com os controladores PID e Fuzzy

Visualizando os resultados temos na figura a seguir:

Métricas de controle

B PD B Fuzzy

0 0

Overshoot (%) Tempo de subida Tempo de Pico Tempo de Erro de regime
(s) (s) acomodacao (s) (%)

Métricas de Controle

Figura 41 - Comparagio das métricas de controle no tempo entre os controladores no trajeto 1



Para trajeto 2:
PID Fuzzy
Overshoot (%) 6,06 6,7095
Tempo de subida (s) 1,2636 2,106
Tempo de Pico (s) 3,2464 3,9484
Tempo de acomodagéo (s) 7,4584 7,8786
Erro de regime (%) 0 0

Tabela 9 - Métricas de controle para o trajeto 2 com os controladores PID e Fuzzy

Visualizando os resultados temos a figura a seguir:

Métricas de Controle
B PID | Fuzzy

7,8786
7,4584

0 0

83

Overshoot (%) Tempo de subida Tempo de Pico Tempo de Erro de regime
(s) (s) acomodacao (s) (%)

Métricas de Controle

Figura 42 - Comparagdo das métricas de controle no tempo entre os controladores no trajeto 2



Para trajeto 3:

PID Fuzzy
Overshoot (%) 6,3483 7,744
Tempo de subida (s) 1,2636 1,9656
Tempo de Pico (s) 3,2464 3,9484
Tempo de acomodagéo (s) 7,5988 8,722
Erro de regime (%) 0 0

Tabela 10 - Métricas de controle para o trajeto 3 com os controladores PID e Fuzzy

Visualizando os resultados temos a figura a seguir:

Métricas de controle

B PID | Fuzzy

0 0

Overshoot (%) Tempo de subida Tempo de Pico Tempo de Erro de regime
(s) (s) acomodacao (s) (%)

Métricas de controle

Figura 43 - Comparagdo das métricas de controle no tempo entre os controladores no trajeto 3

84
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4.4- Consumo de energia
O consumo da bateria foi medido através da quantidade de corrente que foi utilizada
no trajeto em questdo. Foram computadas apenas os valores positivos da corrente,

desconsiderando em primeiro momento a possibilidade de se utilizar o freio regenerativo.
Com isso, como Q = [ Idt, onde Q = carga [C], I = corrente variando no tempo [A] e t =

tempo [s]. Pode-se calcular de maneira numérica qual o consumo da bateria. Para se estimar
qual o valor relativo da carga que foi consumido e qual a porcentagem restante da bateria,
adotou-se um valor “nbat” para representar a eficiéncia da bateria, no caso da simulagao nbat
= 0,9. O produto desse valor pela carga nominal representa a quantidade de carga que fica
disponivel para a utilizagdo do motor.

Também sdo fornecidas estimativas da autonomia da bateria em tempo[minutos] e em

distancia [km], caso as condig¢des do trajeto se assemelham as condic¢des do trajeto simulado.

Para o trajeto 1 tem-se os seguintes resultados:

PID Fuzzy
Carga (C) 386,9812 383,269
Valor consumido (%) 2,39 2,37
Distancia percorrida (m) 579,3 572,3
Valor restante de carga (%) 97,61 97,63
Autonomia em distancia (km) 24,25 24,19
Autonomia em tempo (min) 35 35

Tabela 11 - Consumo da bateria para o trajeto 1 com os controladores PID ¢ Fuzzy
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Visualizando os resultados temos a figura a seguir

Consumo e autonomia da bateria
B PD B Fuzzy

100

75

50

25

Valor restante de carga (%) Autonomia em distancia (km) Autonomia em tempo (min)

Figura 44 - Comparagdo do consumo da bateria do sistema usando um dos controladores no trajeto 1

Para o trajeto 2 tem-se os seguintes resultados:

Com o controlador PID:

PID Fuzzy
Carga (C) 584,027 585,21
Valor consumido (%) 3,61 3,61
Distancia percorrida (m) 579,2 570,3
Valor restante de carga (%) 96,39 96,39
Autonomia em distancia (km) 16,07 15,79
Autonomia em tempo (min) 23 23

Tabela 12 - Consumo da bateria para o trajeto 2 com os controladores PID e Fuzzy
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Visualizando os resultados temos a figura a seguir:

Consumo da bateria
B PD B Fuzzy
100

75

50

25

Valor restante de carga (%) Autonomia em distancia (km) Autonomia em tempo (min)

Figura 45 - Comparagdo do consumo da bateria do sistema usando um dos controladores no trajeto 2

Para o trajeto 3 tem-se os seguintes resultados:

PID Fuzzy
Carga (C) 62,764 68,091
Valor consumido (%) 0,39 0,42
Distancia percorrida (m) 580,5 570,9
Valor restante de carga (%) 99,61 99,58
Autonomia em distancia (km) 149,84 135,84
Autonomia em tempo (min) 215 198

Tabela 13 - Consumo da bateria para o trajeto 3 com os controladores PID e Fuzzy
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Visualizando os resultados temos a figura a seguir:

Consumo da bateria

B PD B Fuzzy
250
200
150

100

50

Valor restante de carga (%) Autonomia em distancia (km) Autonomia em tempo (min)

Figura 46 - Comparagdo do consumo da bateria do sistema usando um dos controladores no trajeto 3

4.5 - Controlador Fuzzy no espaco discreto
Para aumentar a velocidade de céalculo da simulag@o e para permitir que o controlador
possa ser implementado em um microcontrolador a posteriori, o espago dos pontos de andlise
foi discretizado. Dessa forma, os resultados do controlador fuzzy para os pontos do espago
discretizado estdo armazenados em uma estrutura do tipo “Array”, na forma matricial. Com
isso, ¢ possivel implementar o controlador em qualquer microcontrolador e também aumentar
a velocidade com que os calculos para o controle sdo feitos.
O espago discretizado possui as seguintes dimensoes:
e Para a aceleracdo: A acelerag@o possui 350 pontos entre -2,5 rad/s? e 2,5 rad/s?
e Para o erro da velocidade: O erro possui 350 pontos entre -1 e 1.
Apobs a criacdo do espaco discretizado foi utilizado um ciclo “For” para que o
controlador simulasse todas as entradas possiveis do estado. A seguir, os valores do
controlador foram armazenados em um “array” que foi salvo com o nome:

“Espaco_de Controle fuzzy”. Esse “array” pode ser exportado como um arquivo .csv ou

.npy.
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Para esse trabalho foi utilizado a extensdo .npy para que ele pudesse ser importado
novamente para o codigo Python. Na figura a seguir estd a representagdo do espaco de

controle:

Ganho para Tensé&o

-0.5
Valaor d 0.0
a aceleracy, 05

10

15 -1.00

Figura 47 - Espaco de controle com as respostas do controlador Fuzzy
O resultado da simulagdo para o trajeto 3 usando o espaco discretizado esta na figura a

seguir:

Resposta do sistema com controlador fuzzy discreto

— velocidade real
[\ — referéncia

12 4— —

10 4

tempo [s]
Figura 48 - Resposta do sistema para o controlador Fuzzy em espago discreto
A discretizacdo introduz na resposta do sistema pequenas oscilagdes na condigdo de

regime. Porém essas oscilagdes ndo sdo de valor consideravel e ndo atrapalham o

comportamento geral do sistema. A figura a seguir mostra em detalhe esse efeito:
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Resposta do sistema com controlador fuzzy discreto

— velocidade real
— referéncia

1244

12.2 +

12.0

Velocidade [km/h]

5 6 7 8 9 10 11
tempo [s]

Figura 49 - Efeito da discretizaggo na resposta do sistema para o controlador Fuzzy

4.5.1 - Métricas de controle

Fuzzy discreto PID Fuzzy
Overshoot (%) 7,6382 6,3483 7,744
Tempo de subida (s) 1,9656 1,2636 1,9656
Tempo de Pico (s) 3,9484 3,2464 3,9484
Tempo de acomodacgéo (s) 8,8624 7,5988 8,722
Erro de regime (%) 0 0 0

Tabela 14 - Métricas de controle para o trajeto 3 com os controladores Fuzzy discreto, PID e Fuzzy

Métricas de controle

B Fuzzydiscreto [ PID [ Fuzzy

L 8,8624 572

0 0
Overshoot (%) Tempo de subida Tempo de Pico Tempo de Erro de regime
(s) (s) acomodagao (s) (%)

Metricas de controle

Figura 50 - Comparagdo das métricas de controle no tempo usando um dos trés controladores no trajeto 3



4.5.2 - Consumo de energia

Fuzzy discreto |PID Fuzzy
Carga (C) 37,3796 62,764 68,091
Valor consumido (%) 0,23 0,39 0,42
Distancia percorrida (m) 570,3 580,5 570,9
Valor restante de carga (%) 99,77 99,61 99,58
Autonomia em distancia (km) 24717 149,84 135,84
Autonomia em tempo (min) 361 215 198

Tabela 15 - Consumo da bateria para o trajeto 3 com os controladores Fuzzy discreto, PID e Fuzzy

Consumo da bateria

B Fuzzy discreto

400

300

200

100

Valor restante de carga (%) Autonomia em distancia (km) Autonomia em tempo (min)

Figura 51 - Comparagio do consumo da bateria do sistema usando um dos trés controladores no trajeto 3

B FPD

Fuzzy
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Percebe-se que o consumo de energia da bateria foi reduzido consideravelmente em

comparagdo ao controlador fuzzy continuo e ao controlador PID para o mesmo trajeto.

Provavelmente provocada pela menor quantidade de correcdes que sdo feitas em relacdo a

tensdo da armadura, uma vez que os valores do espaco sdo “truncados”. J& em relacdo as

métricas de controle os valores para todas as métricas permaneceram proximos em

comparagdo ao controlador fuzzy discreto e ao controlador PID, mas com um sistema discreto

alguns centésimos de segundo mais lento.
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4.6 - Comparagao entre os Controladores

Serdo comparados o controlador PID e o controlador Fuzzy no espaco continuo.

Para o trajeto inclinagdo constante, com inclinagdo de 2°. Trajeto com 350 pontos:

Comparacao entre controladores PID e Fuzzy
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<
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=
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0 10 20 30 40 50

tempo [s]

Figura 52 - Grafico comparando resposta do sistema com controlador Fuzzy ¢ PID para o trajeto 3

Para o trajeto inclina¢do constante, com inclinacdo de 2°. Valor da indutancia maior

com La = 0,02 Henry, massa de 100kg e Ra = 0,55 Ohms . Trajeto com 350 pontos:

Comparacao entre controladores PID e Fuzzy

1_6 4= - -
—— Velocidade PID

14 - —— velocidade Fuzzy

A2

10 A

Velocidade [km/h]

0 10 20 30 40 50
tempo [s]

Figura 53 - Grafico comparando resposta do sistema com controlador Fuzzy e PID para o trajeto 3 com

La=0,02H

Para o trajeto 3 com La = 0,02 H, tem-se os seguintes resultados para a autonomia:



PID Fuzzy
Carga (C) 73,6554 70,9151
Valor consumido (%) 0,45 0,44
Distancia percorrida (m) 580,6 566,1
Valor restante de carga (%) 99,55 99,56
Autonomia em distancia (km) 127,7 129,32
Autonomia em tempo (min) 183 190

Tabela 16 - Consumo da bateria para o trajeto 1 com os controladores PID e Fuzzy

Consumo da bateria

B PID | Fuzzy

200
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Valor restante de carga (%) Autonomia em distancia (km) Autonomia em tempo (min)
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Figura 54 - Comparagdo do consumo da bateria do sistema modificado usando um dos controladores no trajeto 3



E os valores das métricas no tempo foram:

PID Fuzzy
Overshoot (%) 24,1448 19,2653
Tempo de subida (s) 1,5444 2,5272
Tempo de Pico (s) 4,2292 5,3524
Tempo de acomodacgéo (s) 19,673 17,848
Erro de regime (%) 0 0
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Tabela 17 - Métricas de controle para o trajeto 3 com os controladores PID e Fuzzy e sistema modificado

Métricas de controle

B PD B Fuzzy

24,1448

Métricas de controle

Overshoot (%) Tempo de
subida (s)

Figura 55 - Comparagio das métricas de controle no tempo entre os controladores no trajeto 3 do sistema

Tempo de Pico

(s)

modificado

0

0

Tempo de
acomodacao (s)

Erro de regime

Todos os dois sistemas atingiram a condi¢do de erro de regime zero para todos os trés

trajetos. O que pode indicar que o sistema € de ordem 1 em relagdo as constantes de erro. O

que ird levar a uma condi¢do de erro de velocidade constante para uma entrada do tipo rampa.

Outra caracteristica importante € o fato do sistema possuir uma inércia muito grande

devido a massa que ¢ transportada: 100 kg. Essa grande inércia tem influéncia nos valores dos

resultados das métricas do tempo. Deixando em geral o sistema mais lento e com um

“overshoot” maior.

E possivel notar que com a utilizagdo de um sistema fuzzy hd uma autonomia da

bateria semelhante ao se utilizar o controle PID, porém o sistema fuzzy é em geral mais lento
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em rela¢do ao tempo de acomodacdo. Entretanto, a diferenga de tempo se encontra na ordem
dos centésimos de segundo, o que ndo ¢ percebido pelo usudrio comum, com tempo de reagdo
de 265 ms (BRUZI et al, 2013) . Pode-se dizer que a autonomia da bateria esta para a média
de 30 km para a carga completa e com assisténcia de pedal. O sistema com controle Fuzzy
apresentou um comportamento semelhante ou superior ao controle PID, implicando em certos
casos em economia da energia utilizada na bateria mas com uma resposta ligeiramente mais

lenta.
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5 CONCLUSAO

Dado os resultados da simula¢@o do controlador Fuzzy em comparacao ao controlador
PID, percebe-se uma vantagem em utilizar o método Fuzzy no controle de velocidade de
veiculos elétricos.

O controle com logica Fuzzy possui a vantagem de ndo necessitar de um modelo
matematico para ser implementado. Desenvolver um modelo matemadtico ¢ algo que ira
consumir recursos € tempo de desenvolvimento. Como para desenvolver o controle fuzzy nao
ha essa necessidade, a etapa de desenvolvimento do modelo matematico detalhado pode ser
“ignorada”.

Em especifico para o caso dos veiculos elétricos com duas rodas o seu comportamento
¢ descrito por meio de equagdes ndo lineares e envolvem muitas incertezas com relagdo a
adocdo das hipdteses simplificadoras. Nesse sentido, o controle fuzzy seria eficaz ao ser
implementado como um “substituto” do controle humano da velocidade, ou de um controle
PID. Permitindo assim, que o veiculo tenha uma maior autonomia, maior velocidade de
resposta, que se adapte a varios modelos de veiculos (pois ndo depende de um modelo
especifico) e que se adeque a legislacao de transito atual no Brasil.

Outro aspecto ¢ o fato do sistema ter sido desenvolvido e simulado em Python. Uma
linguagem aberta e que ndo necessita de custos adicionais de implementagdo de suas
bibliotecas. Permitindo que o codigo seja posteriormente implementado em
microcontroladores para o controle do sistema real.

Para o sistema real ¢ vantajoso implementar um controle fuzzy que ¢ representado por
uma matriz do tipo “array” que contém todas as respostas possiveis para os possiveis valores
de entrada. Fazendo com que o microcontrolador procure o resultado nessa matriz ao invés de
realizar os calculos, aumentando a velocidade de resposta do controlador. Para se realizar ¢
necessario uma simulacdo com pontos contendo os valores de entrada e em seguida o
armazenamento da resposta em um array de dimensao 3.

Para a questdo ambiental, o menor consumo da bateria implica em menor uso de
energia elétrica e maior autonomia da bateria implica em maior ado¢do do veiculo elétrico.

Para a questdo social, o sistema adequa-se a legislacdo de transito e o veiculo continua
se comportando como uma bicicleta. Mantendo as vantagens de uma bicicleta, como a de
produzir baixo nivel de ruido e ocupar pouco espaco no transito. Além de, devido a massa

total do veiculo, ele poder ser utilizado como bicicleta, ao contrario de outros produtos
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disponiveis hoje, que sdo muito pesados e acabam se tornando “cicloelétricos” pois sdo muito
pesados para serem propulsionados apenas por tracdo humana.

Para a questdo econdmica, o sistema se mostrou robusto o suficiente para ndo precisar
de adaptacdes se o veiculo for diferente ou se o trajeto mudar. Além de ndo precisar da
identificacdo do modelo do veiculo que serd controlado. O que reduz os custos de
implementagdo de um sistema de controle, que pode ser implementado em um
microcontrolador e operando junto a uma ESC. Fazendo assim com que o veiculo possa ter
um desempenho de um veiculo totalmente elétrico, porém com o valor final de venda
reduzido, pois ird necessitar de menos capacidade de carga na bateria ¢ menor investimento
para implementac¢ao do controle.

Para a questdo tecnoldgica, o sistema foi implementado em Python ao invés do
tradicional MATLAB. Além disso, o sistema fuzzy, que pode ser visto como um tipo de
inteligéncia artificial, conseguiu se equiparar ou ser melhor do que um método matematico
como o PID. O sistema PID ¢ mais trabalhoso para se determinar o valor de seus ganhos, ja o
sistema Fuzzy, uma vez determinada as regras e os intervalos de suas classes ndo sao
necessarias grandes atualizagdes, embora elas sejam necessarias. Outro ponto ¢ o fato de o
sistema fuzzy ja levar em consideracdo o fato de que em um sistema real os dados serdo
numéricos € amostrados, o que pode influenciar no resultado do controlador PID que depende
da caracteristica do sistema, mas ndo do fuzzy que depende dos resultados do sistema.

Desvantagens observadas nessa técnica de controle estdo relacionadas ao fato de se ter
que conhecer o comportamento do sistema a ser controlado e ao fato de que as regras
precisam ser atualizadas caso se descubra uma nova forma de operar o sistema. Para isso, em
trabalhos futuros, ¢ proposto usar um algoritmo genético para resolver o problema da
necessidade de atualizagdo, eles irdo criar novas classes. Algoritmos de machine learning para
classificar os dados ja obtidos nas classes criadas e filtro de kalman para decidir entre o fuzzy
e o modelo do motor cléssico.

Enfim, vale ressaltar que o sistema fuzzy ndo encontra a melhor solu¢ao, mas encontra
uma das melhores solu¢des possiveis. Ou seja, o sistema encontra um maximo local e ndo
necessariamente um maximo global. O mesmo vale caso seja implementado com algum
algoritmo genético. Uma boa solugdo sera aquela que for vidvel economicamente e que utilize

técnicas que se complementam.
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ANEXO A — Tabela com os dados do motor fornecidos pelo fabricante

Tensao(V)
36,087
36,085
36,076
36,066
36,031
36,095
36,097
36,098
36,098
36,097
36,097
36,096
36,095

36,09
36,078
36,091
36,094
36,093
36,095
36,095
36,095
36,104
36,096
36,094
36,094
36,095

Corrente
(A)

1,3528
1,3972
1,54
1,8446
3,1301
51171
6,2679
7,8029
8,184
9,4495
10,565
12,337
14,169
14,607
15,538
17,6
19,744
20,392
20,565
20,522
20,47
20,412
20,335
20,301
20,381
18,688

Poténcia de Torque Rotagdo Poténcia de

Entrada (W)
48,8184936
50,417962
55,55704
66,5273436
112,7806331
184,7017245
226,2523863
281,6690842
295,426032
341,0986015
381,364805
445,316352
511,430055
527,16663
560,579964
635,2016
712,639936
736,008456
742,293675
740,74159
738,86465
736,954848
734,01216
732,744294
735,631814
674,54336

(N.m)

0
0,2
0,6
1,1
2,9

6
8,1

10
10,5

12
14,2
16,6
19,2

20
21,7
24,5
27,4

30
33,1
36,3
39,4
42,9
46,2
49,3
47,2
20,8

(rpm)
255,2
254,6
2537
2523
2477

240
234,8
2294
2281

224
218,5
212,4
205,7
203,7
199,3
192,1
183,8
166,7
139,7
114,2

91,7
69,7
50,6
29
14,1
3

Saida (W)
0,3171
4,8594
14,888
29,458

76,14
150,41
198,15
240,25

250
281,73
325,27
369,09
413,01
425,54
452,18
492,99
526,88
522,69
483,72
433,77

377,8
312,95
244,87
149,93
69,731
15,892

0,6495489242
9,638231708
26,79768397
44,27953741
67,51159123
81,43399874
87,57918678

85,2951259
84,62355139
82,59488569

85,2910378
82,88265148
80,75591099
80,72210489
80,66289005
77,61158032
73,93354952
71,01684712
65,16558288
58,55888286
51,13250444
42,46528819
33,36048275
20,46143535
9,479062579
2,355964189

Eficiéncia (%) Tempo(s)

0
2,391
3,172
3,985
5,694
7,172

8

8,7572
8,9499
9,594
10,391
11,188
12
12,25
12,781
13,594
14,391
15,091
15,985
16,781
17,578
18,391
19,172
19,985
20,797
21,594
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