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RESUMO

Recentes desenvolvimentos em projeto inverso e em métodos de
otimizagdo abriram novas possibilidades para a indistria aeroespacial. A
combinacéo destes métodos com codigos de CFD possui um enorme impacto
em todo o processo de desenvolvimento, permitindo redugbdes nos custos
computacionais, assim como na duragéo dos ciclos de desenvolvimento.

Dentro destes, o método adjunto é freqiientemente considerado como a
mais promissora abordagem para o problema, ao reduzir dramaticamente o
custo computacional da avaliagdo dos gradientes. Este permite a total
flexibilidade a respeito do modelo de fisica do escoamento, e serve para ambos
os propositos: otimizagiao e projeto inverso.

O objetivo deste trabalho é explorar a fundamentagédo tedrica do método
adjunto, para tanto, fazemos uso de um problema simples, porém de grande
interesse tecnoldgico. Ele consiste em obter a superficie de um bocal de
empuxo que satisfaca a distribuicdo objetivo de uma varidvel de estado
escolhida — no caso, a pressao. Para o estudo foi utilizade o método quasi-1D
de escoamento compressivel.



ABSTRACT

Recent developments in inverse design and optimization methods have
opened up new possibilities for the aerospace industry. The combination of
these methods with CFD codes has an enormous impact in the whole design
process. It allows great reductions in computational costs, as well as in the time
span of the design cycles.

Among those, the so-called adjoint method is frequently considered as
the most promising approach to the problem. For it dramatically reduces the
costs of computing sensitivity gradients, it allows total fiexibility with respect to
the flow physics model, and serves both purposes, optimization and inverse
design.

The purpose of this work is to explore conceptual foundations of the
adjoint method. To that end, the method is used to tackle a simple problem,
which is of great interest in rocket design applications. it consists of obtaining
the surface of a nozzle that satisfies some desired primitive state variables
distribution — this case, the pressure. Under the quasi-1D compressible flow

assumption.
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1. INTRODUCAO

O presente trabalho visa desenvolver uma rotina de otimizacéo de superficies
aerodinamicas utilizando o método adjunto. Para tal foi utilizado como caso de
estudo a geometria do bocal de empuxo de um foguete de sinalizacéo.

O foguete de sinalizagéo fora estudado como escopo de varios projetos de
formatura na universidade nos uitimos anos, dentre estes trabalhos destaca-se o
apresentado por Fabiani [1] o qual trata de simulagfes do escoamento no bocal de
empuxo do foguete, estudando e desenvolvendo um cédigo de simulagéo do fluxo
interno a partir do modelo Quasi-1D Euler [2]

Neste trabalho foi validado o codigo para o bocal do foguete por meio da
comparagéo dos resultados obtidos e simulagies de geometrias completas em
softwares comerciais de CFD". Concluiu-se que o método, embora simplificado,
retrata com fidelidade os efeitos observados em um sistema completo, incluindo a
possibilidade de ondas de choque no escoamento.

Ramalho [7] produziu outro trabalho sobre foguetes com o objetivo de otimizar
sua geometria externa e do bocal de empuxo, utilizando para isso analises
realizadas em softwares comerciais de CFD. Neste as modificages das geometrias
propostas se basearam unicamente na andlise dos resultados das simulagdes.
Portanto sem recorrer a métodos de otimizacéo propriamente ditos.

Em um trabalho anterior, Telles [8] simulou a cdmara de combustio e
analisou suas caracteristicas fisicas, a fim de projetar um foguete com a melhor
relagdo entre capacidade de alcance e peso. Para tal foi estudado o tipo de
combustivel a ser utilizado pelo foguete .

Tomando como base os frabalhos acima referidos, este projeto possui o
intuito de completar o estudo de foguetes através da otimizagdo de seu bocal de
empuxo, utilizando para isso 0 método adjunto.

Para este modelo desenvolveu-se uma fungdo objetivo, a qual se deve
minimizar através de alteragbes nas variaveis de projeto definidas como sendo

! Sigla em inglés para Computational Fuid Dynamics



aquelas que configuram a geomedtria do bocal de empuxo.

O ponto crucial do projeto € avaliar a sensibilidade da fungéo objetivo para
variagbes nos parametros de controle. Pelo método cléssico de calculo do gradiente,
deve-se reavaliar o modelo 3 medida que s3o realizadas alteragdes nas variaveis de
projeto.

Pelo método de diferencas finitas, a analise do gradiente implica em perturbar
cada variavel isoladamente e avaliar as correspondentes mudancas do escoamento.
A principal dificuldade deste método é que normalmente este envolve simulagdes
complexas do escoamento para cada perturbacdo nas variaveis e, a medida que o
nimero de variaveis cresce, o custo computacional torna-se inviavel.

A teoria de controle oferece uma altemativa para tal problema. Utilizando-se
de conceitos da teoria de controle, 0 método permite obter uma série de equacdes
diferenciais adjuntas, cujas solucdes determinam o gradiente desejado de forma
muito mais eficiente e com um custo computacional relativamente baixo, indiferente
ao aumento do niimere de variaveis.

Neste cendrio, o método adjunto é proposto comio uma ferramenta de
otimizagdo de perfis aerodinamicos. Dada uma geometria inicial e determinadas
condicdes de contorno para o escoamento, pode-se modificar o perfil de forma a
atingir, por exemplo, uma distribuicdo de pressio objetivo definida a partir de
fundamentos tedricos ou experimentais.

1.1. MOTIVAGAO

As aplicagdes dos métodos de ofimizagdo na engenharia sdo ilimitadas e
seus resultados oferecem uma perspectiva unica de crescimento na indistria. Para
ilustrar a importancia do método de ofimizacdo pode-se citar um exemplo de
engenharia estruturai, Silva [10].

Neste modelo deseja-se maximizar a rigidez de uma asa de avido. Desta
forma, definem-se 10 propriedades estruturais que poderde assumir 10 diferentes
valores estipulados devido as restricbes de fabricacdo. Para a simulagio da
estrutura da asa, ¢ utilizado um software de elementos finitos (MEF).



Peia abordagem ciassica de andlise dos resultados é necessario rodar todas
as combinagdes possiveis entre os 10 pardmetros de controle e seus respectivos
valores. Para cada combinagdo é realizado o calculo do valor correspondente da
rigidez da asa. Apés todos os calculos sdo construidos graficos que permitirdo a
tomada de decisao para a combinacéo 6tima de valores.

No entanto, para esta abordagem sdo necesséarias 10'° avaliagdes, e para
cada avaliagdo € necessario obter uma convergéncia pelo software de MEF,
considerando um tempo de execucdo médio de cada analise de 10s, seriam
necessarios 10'% para finalizar o método, ou seja, 3200 anos.

E importante acrescentar que se a andlise acima fosse uma otimizacao
aerodindmica da mesma asa em condi¢es semelhantes, o niimero de variagdes
seria, grosso modo, semelhante. Entretanto, o tempo necessario para cada
simulagé@o do escoamento seria algo em torno de 10 horas? o que implicaria em um
tempo total de andlise de 10'°hrs, ou algo préximo de um milhdo de anos.

Portanto, fica claro a importancia de um estudo aprofundado nos métodos de
otimizagdo, uma vez que sua abordagem pode significar um grande custo de
analise, e 0 método adjunto foi desenvolvido para minimizar este custo, oferecendo
uma abordagem racional de busca da melhor solucéo.

1.2. OBJETIVO

O objetivo do projeto & otimizar um bocal de empuxo de um foguete baseado
nas dimensées daqueles obtidos no mercado como sinalizadores, para tal sera
necessario construir uma rotina de otimizagéo, onde se utilizara o método adjunto
para o clculo dos gradientes da fungéo objetivo.

O modelo de estudo sera simplificado por uma parabola a fim de facilitar sua
implementagdo na rotina. O cédigo original desenvolvido por Fabiani [1] e
aperfeicoado por nés, utiliza o modelo quasi-1D Euler, o qual se mostrou eficaz para
fluxos internos em geometrias de simetria axial, sera utilizado para o calculo
escoamento no bocal de empuxo.

? Foi utilizado como exemplo as simlagbes Euler compressiveisdo Projeto EMBRAER (A3) [12]
10



Para estudar o modelo proposto considerar-se-a uma funcdo regida pela
distribuicdo de pressdes do bocal, onde se pretende encontrar uma geometria que
fomega uma distribuicao igual aqueta definida pelo usuario.

A implementagdo do método adjunto na rotina de ofimizagdo visa a
possibilidade de trabalhar com modelos envolvendo ondas de choque, além de ser
capaz de modificar a posicdo da onda ou, até mesmo, expulsd-la do sistema,
melhorando assim as condigées de operacéo do foguete.

De posse da rotina construida podem-se considerar futuras aplicacbes de
otimizagdo como, por exemplo: a minimizagdo do arrasto produzido, a maximizag&o
da fungdo empuxo ou da relacdo entre estas. Além das possiveis aplicagdes no
bocal do foguete, o método também permite o inicio do estudo de sua aplicacao no
escoamento externo do foguete, bem como em aplicagbes mais complexas, o perfil
da asa de um avido, ou até mesmo em toda a fuselagem deste.

1]



2. METODOS DE OTIMIZAGAO

A histéria da otimiza¢do iniciou-se no final do séc. XIX com trabalhos
realizados na otimizagdo estrutural, dentre estes destaca-se o realizado por Michell
em 1904, que consistia essencialmente no célculo das linhas principais de tensdes
em um dominio infinito que esta sujeito a restricbes de deslocamento e a uma forga
aplicada em um ponto. [10]

Seus resultados fornecem bases de estudo, até hoje, em anélises de
otimizacéo topolégica de estruturas. Porém, apés os trabalhos de Michell, ndo houve
avango significativo neste assunto até a década de 60, onde o surgimento dos
computadores viabilizou o inicio de estudos e aplicagdes de métodos de otimizagio
utilizando-se métodos para solugéo de sistemas lineares. Na década de 70, deu-se o
primeiro passo para o desenvolvimento e implementagdo de ofimizagdo em
problemas n&o-lineares que séo os mais utilizados atualmente na industria. [10]

2.1. Conceitos Basicos
21.1. Variaveis de Projeto

As variaveis de projeto sdo basicamente os parametros de controle do
sistema, os quais podem ser modificados, a fim de se obter o resultado esperado.

Um exemplo de varidveis de projetos sdo aquelas utilizadas neste trabalho.
Para a otimizagéo da superficie aerodindmica a rotina ira alterar a geometria do
bocal. No modelo simplificado de estudo este foi aproximado por uma parabola.
Existem trés parametros que definem uma parabola, os coeficientes a, b e c.
Portanto as variaveis de projeto definidas neste trabalho sdo tais coeficientes.

12



Fig. 1 : Geometria do bocal de empuxo

As variaveis de projeto podem ser classificadas em dois tipos: variaveis
continuas e discretas. As continuas sdo aquelas que podem assumir qualquer valor
em um dado intervalo, ja as discretas sdo aquelas que ndo abrangem todos os
possiveis valores, suas caracteristicas devem ser definidas pelo usuario.

Dentro das varidveis continuas existem outros dois grupos, as que definem
um sisterna mecénico continuo e um discreto. Um sistema continuo é aquele que
pode ser representado por uma funcio continua através da variagio de seus
pardmetros. O sistema discreto é aquele que retine urma fungéo discreta, como no
exemplo de otimizagéo de uma estrutura de trelicas, onde cada elemento possui um
valor Unico da variavel do projeto. E possivel também, classificar um sistema onde
existam as duas caracteristicas, tal sistema & chamado de continuo tratado como
discreto. Um exemplo seria o de uma viga seccionada em n partes onde cada parte
possui uma avaliagdo separada de sua fungéo area.

13



2.1.2. Fung¢édo Objetivo

A funcéo objetivo é aquela que o método de otimizacdo devera se preocupar
em minimizar ou maximizar, dependendoe da intengéo do projetista. A funcéo objetivo
deve ser regida pelas varidveis de projeto e deve ser escolhida de forma eficiente
para o projeto. Sua classificacdo pode ser simples ou multiobjetivo e esta
relacionada ao nimero de fungbes que devem ser otimizadas.

Ressalta-se a importancia do cuidado que se deve tomar para definir a fungéio
objetivo, como também a sua importancia imediata, pois é esta que vai definir quai a
solucdo pretendida. Porém é importante analisa-la com cuidado, pois muitas vezes
sua defini¢do pode néo ser facilmente encontrada. Um bom exemplo deste problema
€ posto por Silva [10] onde considera-se o caso de quantificar a dirigibilidade de um
automovel. Por ser um conceito relativo a sua aplicacéo, o problema de otimizar o
projeto do automdvel deve considerar se esta sendo voltado a um piloto de férmula 1
ou a um iniciante no aprendizado da dire¢do, logo um problema aparentemente
simples pode se tornar complexo quando analisado por compieto.

2.1.3. Restrigcoes de Projeto

As restricbes s&o responsaveis por limitar o campo de atuacdo das variaveis
de controle. As restricdes podem ser caracterizadas por 3 tipos:

= Laterais Xy SX<x__

= |gualdade h(x)=0
= Desigualdade g£(x)=20

As restricdes, embora muito importantes, devem ser reduzidas ao menor
numero possivel, pois encarecem o custo computacional consideravelmente. Estas
sdo classificadas em dois tipos: iocais e globais. Restrigies locais sdo aquelas
definidas para um ponto do sistema, por exemplo, poderia-se restringir a abertura do
bocal de empuxo, ou seja, definir uma restricdo aplicada somente para o valor de ¢
na posigdo onde x =0,0

14



Restriges globais sdo aquelas definidas para todos os pontos do dominio, no
mesmo exemplo poder-se-ia construir uma restricio da derivada do bocal, por

exemplo, g(x) =2ax+56>20 .

2.2. Meétodos Analiticos
2.21. Calculo Diferencial

QO método por calculo diferencial consiste em diferenciar a fungéo objetivo e
encontrar o valor da equacéo obfida igualada a zero, ou seja:

Minf(x):>§-f(—x)=0 Maxf(x):.‘»m:0
ox ox

Porém, néo basta encontrar o resuitado da igualdade para afirmar a resposta
do sistema, pois apenas com esta equagio ndo é possivel saber se o ponto € um
minimo ou maximo.

Para isto € necesséario calcular a segunda derivada da funcdo e através de
seu resultado é possivel inferir a resposta.

62 2
# > 0 = minimo 4 6{ Ex) > 0 = mdximo
oo

No caso onde existe mais de uma variave! de controle, € necessario calcular ¢
gradiente e iguala-to a zero, além disto, também é necessario calcular uma matriz
formada pelas segundas derivadas, também conhecida como a matriz Hessiana

ilustrada a seguir:
o o of |
ox®  exox, oxox,
o’ f  &f
H=ov.0r, or,
o°f 2 f
| &x,ox, ox ° ]

15



A analise de ponto de minimo e maximo, neste caso, é definida da seguinte
forma: se a matriz H for positiva-definida € um ponto de minimo, caso for uma matriz
negativa-definida, o ponto encontrado é de maximo.

Um dos métodos para determinar se a matriz é positiva-definida ou negativa-
definida é encontrando seus autovalores, caso todos sejam positivos, pode-se
afirmar que H é positiva-definida, caso sejam todos negativos, H é negativa-definida.
Também, é possivel obter um caso onde os autovalores sio positivos e negativos.
Neste caso H é considerada indefinida, ou seja, o0 ponto ndo é minimo nem maximo,
€ sim, um ponto de sela, onde, dependendo da diregdo considerada, o ponto pode
ser um maximo ou um minimo relativo. A figura 2 abaixo ilustra a situacéo de um
ponto de sela.

fix yy=xy?

Fig. 2 : Exemplo de funcdo com ponto de sela

2.2.2. Multiplicadores de Lagrange

O método de muiltiplicadores de Lagrange é muito utilizado em modelos com
mais de duas variaveis e que possuam restricdes. Sua idéia & inserir as restricées no
calculo da fungéio objetivo. Para exemplificar considera-se um problema com n
variaveis de controle com uma restri¢éo de igualdade h(x), te m-se que:

16




h(x) = o:di_ﬂml s‘hdx2+ ahcix

J?

Multiplicando-se esta equacso por uma variavel ? e somando-a a df, obtém-
se:

of oh of oh of Oh
h = - — |dx, +A-——lx, =0
df + A-dh = ( = +A-— ox, '+[6x2 A- 61) dx, + .. [61 61

i

Portanto, t&ém-se um conjunto de n+1 equagdes para n+1 incognitas:

[af AN -0

ox, o,
(6/ +A- a—h]d
a" 2 ud
of 4.0 oh _0
ox, ox,
A(x) =0

Logo o modelo de otimizagdo foi modificado para um equivalente sem
restricbes, onde a equacéo extra corresponde & propria restrigao.

Min f{(x)

sendo 1 h(x)=0 = Min 7(x)+4-h(x)

A nova equagéo encontrada ¢ chamada de Lagrangeano do problema de
otimizagéo, e a variavel ? de Multiplicador de Lagrange. Para um caso de estudo
com mais de uma restricdo, serdo necessarios outros muitiplicadores, um para cada
restricio.[10]

17



2.2.3. Calculo Variacional

Para encontrar as solugdes de modelos de otimizagdo onde a variavel de
controle & uma fungdo deve-se utilizar o método do célculo varacional. Devido a
restricbes de complexidade do sistema, o método ndo é ilimitado. Porém & bastante
utiizado na modelagem de problemas de otimizagio analitica.

Para entender o método, define-se um funcional (J), tal que:

J((x) = | Fx, y(x), y'(x)dx

() = %(”- Y@=y, yb)=y,

A filosofia por tras do método de calculo variacional € muito bem descrita por
Silva [10] “... partindo-se de uma funcdo y(x), altera-se a forma desta fungdo (mas
mantendo as extremidades fixas) através da soma de uma fungéo e?(x) ou edy(x) as
encontrar a fungdo y*(x) que extremize o funcional...”. Portanto, o problema de
otimizagéo fica reduzido a variavel e.

Facilmente se nota que o valor de e para o ponto de interesse é e=0, e a
condi¢éo necessaria para que tal ocorra é que:

_ daJ(e)

L:}* dE =0 =0

Desenvolvendo tal equagio, chega-se na equagdo de Euler-Lagrange
descrita abaixo, a qual é recorrente nos problemas de engenharia que descrevem o
comportamento dindmico de sistemas mecanicos.

OF d [oF) 0
v dx\ov' )

Portanto, um projeto de otimizagdo que se deseja minimizar um funcional a
partir de uma fungéio y(x) fica reduzido em avaliar a equagéo de Euler-Lagrange.
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2.3. Métodos Numeéricos

2.3.1. Programacgdo Linear

O método de ofimizagdo a partir da programacéo linear & destinado a
problemas onde a fungéo objetivo, assim como suas restrigbes, s&o fungdes lineares

em relagéo as variaveis de projeto.

Embora este seja um modelo mais simples de problema de otimizagao, sua
aplicacdo abrange dversos campos da engenharia, assim como outras areas de

estudo.

A equagao abaixo exemplifica um modelo de otimizacgéo linear:

Min f(x)=ax, +a,x, +...+a,x,

h(x)=bx, +b,x, +...+b x, =0

para :
gx)y=cx +cx, +...+c,x, 20

Fica claro que o célculo das derivadas parciais do sistema resulta em valores
constantes, o que impossibilita a utilizagcdo do método analitico das diferenciais, logo
a resposta do sistema dependera exclusivamente das resfrigbes impostas a ele.

Esta caracteristica pode resuitar em alguns problemas, no caso de uma
restricdo acompanhar a curva de nivel da funcéo f, ou no caso das restricdes nédo
serem suficientes para determinar um ponto de minimo.

2.3.2. Programacgio Nio-Linear

A programagéo néo-linear é dividida em duas partes, aquelas com restrigdes
e as sem. Dentro do conjunto de métodos de modelos sem restricdo existem outros
trés segmentos caracterizados pelo grau da derivada da fungdo disponivel para o
modelo.

O caso onde ndo existe a informacdo da derivada da fungdo objetivo é
chamado de metodo de ordem zero. O modelo onde existe a informagdo do
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gradiente chama-se método de primeira ordem. Os métodos de segunda ordem séo
aqueles onde se pode obter a informacéo do valor da matriz Hessiana.

a. Otimizagdo sem Restrigoes
a.i. Métodos de Ordem Zero
¢ Diregbes Conjugadas de Powell

Neste método a funcdo objetivo € aproximada por uma fungéo quadratica.
Embora muitos problemas possuem fungdes nac quadraticas, sabe-se que toda
funcdo pode ser aproximada por uma fungdo quadratica na regido proxima do

minimo.[10]

Como descrito em Vanderpiaats [11] e em Silva [10}, o conceito basico do
metodo de Powell é primeiro realizar uma busca unidirecional, ou seja, encontrar o
minimo da fungéo objetivo na diregio de cada variavel.

Depois de encerrada a busca unidimensional, encontra-se o indice k da
diregdo que apresentou o maior decréscimo na fungéo indo de k para k-1. E, entso,
calculada a diregéo “padréo” que significa na soma de todas as outra diregdes.

Xy

Ay

Fig. 3 : Exemplo do caminho percorrido através do método de Powell
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a.ii. Métodos de Primeira Ordem
s “SteepestDescent”

Dentre os métodos de primeira ordem, onde é conhecida a informacéo do
gradiente a cada iteragdo, o0 método mais simples é o conhecido como “Steepest
Descent”.

Neste método a diregéo de busca definida pelo algoritmo € igual ao gradiente
naquele ponto. Uma vez que o gradiente representa a dire¢do de maior crescimento
da fungdo. Para os casos de minimizagdo o caminho percorrido é o oposto do
gradiente.

Porém, para este método, é necessario avaliar com cuidado a sua aplicacéo,
uma vez que este pode assumir um padrdo de decréscimo semelhante ao zig-zag
[11], necessitando demuitas iteracbes para convergir.

A figura a seguir mostra uma aplicagdo do método em um caso de
minimizagao.

Fig. 4 : Exemplo do caminho percorrido através do método “Steepest Descent”
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+ Direcoes Conjugadas ou “Fletcher-Reeves”

Este méiodo é semelhante ao “Steepest Descent’, porém ele utiliza a
informagéo da direcéo de busca anterior, evitando assim um padrdo de decréscimo,
e encontrando a resposta do sistema de forma mais rapida. E importante ressalvar
que para a primeira iteragdo, onde ndo ha informacao anterior, o método se torna
igual ao “Steepest Descent”. A equagéo abaixo mostra o célculo das dire¢ées de
busca a partir do método de “Fletcher-Reeves”, onde s é a diregdo na iteragéo k e
gk € a informagéo do gradiente na iteragéo k. [10]

s, =8, =-Vf(x,) para k=0

r
S, =g, + B, s, Sendo : B, = -—%Jﬁ-
18

O metodo de “Fletcher-Reeves” foi utilizado no algoritmo de ofimizagao
desenvolvido neste projeto. A figura a seguir representa um aplicagdo do método.

Fig. 5 : Exemplo do caminho percorrido através do método “Fletcher-Reeves”

22



a.iii. Métodos de Segunda Ordem

Os métodos de segunda ordem sdo aqueles onde a informagdo da matriz
Hessiana € conhecida, o que methora a definigio da direcdo de busca, além de
fornecer, automaticamente, o carater do extremo (maximo ou minimo). Porém caso a
matriz ndo possa ser avaliada de forma simples, este método pode adicionar um
custo muito maior na rotina de otimizacéo.

b. Otimizagdo com Restricdes

Nos métodos de ofimizagdo com restricdes nem sempre é possivel caminhar
na direcdo de busca definida pelos métodos acima descritos, muitas vezes é
necessario corrigir tais direcbes para que o proximo passo da rotina de otimizagéo
esteja dentro do dominio viavel do modelo.

2.4. Calculo do Gradiente

Abaixo estdo descritos os métodos mais conhecidos de célculo do gradiente.
E importante ressalvar que tal calculo é de extrema importancia para se obter uma
rotina de otimizagdo eficiente, ou seja, que encontre a solugdo em urmn nimero
minimo de iteragdes possiveis.

Os métodos de calculo do gradiente podem ser divididos em trés subgrupos
[10], métodos de Diferencas Finitas, Métodos Anaiiticos e Métodos Semi-Analiticos.
Séo descritos abaixo dois destes, uma vez que o terceiro grupo incorpora as idéias

dos outros dois métodos.
2.4.1. Diferengas Finitas

No método de Diferengas Finitas, o gradiente € calculado através de
avaliacbes da fungdo objetivo para variagdes unidimensionais nos parametros de
controle, ou seja, altera-se cada parametro isoladamente e avalia-se o valor da
funcéo objetivo. Uma vez que todas as variaveis forem analisadas, calcula-se o valor
do gradiente através das equagdes de Diferengas Finitas representada abaixo, o
termo O representa a ordem do erro da equacio.
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= Diferenca Progressiva:

du _ u(x+Ax)—u(x)
dx Ax

+ O{Ax)

= Diferen¢a Regressiva:
du _ w(x)—u(x—Ax)
dx ~ Ax

+O(AY)

» Diferenca Central:
du _ m(x+ Ax) —u{x — Ax)

= + O(Ax")
dx 2Ax

Este método admite a avaliagéo do gradiente para qualquer fun¢ao objetivo,
porém, pode-se notar gue a medida que o nimero de varidveis cresce, o custo do

calculo do gradiente se torna inviavel e para casos onde a fungéo objetivo € de dificil
avaliagdo, como no caso deste projeto, o custo do recalculo da fungédo torna esfa

variagao no numero de variaveis de controle muito mais sensivel.

2.4.2. Métodos Analiticos

a. Meétodo Adjunto

O método adjunto foi idealizado para substituir estas reavaliagées da fungéo
objetivo, para tal & desenvolvido um equacionamento da fungdo através da teoria de
calculo variacional, onde as restricdes séo inseridas na fungéo objetivo.

Uma vez que para cada restricio € necessario um novo muitiplicador de
Lagrange, aumenta-se o nimero de equacdes adjuntas a medida que forem sendo
adicionadas restrigdes no modeb.

No caso do estudo deste projeto, as restrigdes sdo determinadas pela fisica
do escoamento, ou seja, conservagdo da massa, energia e quantidade de
movimento, portanto nota-se que o método adjunto, aplicado em probiemas de
ofimizacdo aerodindmica em superficies, &€ extremamente eficaz, uma vez que o
nimero de variaveis de controle pode ser extremamente aito.
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3. FUNDAMENTAGAO TEORICA

A fundamentagao tedrica do método adjunto pode ser dividida em quatro
partes: equacionamento da fisica do modelo, calcuio variacional da fungéo objetivo,
calculo da equagdo adjunta e calculo das condigdes de contorno do sistema.

3.1. Equacionamento da Fisica do Modelo

Para o caso em estudo de escoamento compressivel através de um bocal
com uma leve variag&o na area, pode-se utilizar as equagdes de quase-1D Euler [2).

Sendo S=S(x) a area transversal do bocal, Q e F, as variaveis de estado e
vetor de fluxo na forma conservativa, respectivamente, e o termo S'H, o efeito da
variacdo da area nas equagées de balanco.

A relagdo de pressdo e energia total por unidade de massa para gases
perfeitos é dada por:

Sendo: et = {g; + U?/2), onde e; é a energia interna termodinamica.
3.2. Calculo Variacional da Fungio Objetivo

Defini-se entdo uma medida de mérito como:

Onde g(V) representa uma fungdo escalar genérica em funcgdo das varidveis
primitivas do estado V = (?,u,P)T.

Para dada medida de mérito deve-se encontrar a geometria que a minimize,
portanto deve-se encontrar o variacional de (4), e ainda analisar a possibilidade da
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presenca de uma onda de choque no dominic de estudo. Para poder trabalhar com
tal descontinuidade é recomendado separar o dominio em antes e apés a onda de
choque presente no ponto xs [3), logo a equacéo (4) resulta em:

v i
f '3 s d 1
foaly T i} Lae

Uma vez atingido o regime permanente na solugdo do escoamento, pode-se
reduzir o variacional da eq. (1) para:

¥ H
LLogo, ao inserir os multiplicadores de Lagrange no funcional |, obtém-se:
1=~ f : ¥ I e

b

O terceiro termo da eq. (7) impGe a relagdo de Rankine-Hugoniot {R-H), que
impbe a conservagdo da massa, quantidade de movimento e energia através da
onda de choque e o termo lc representa as restrigdes.

Para a eq. (6) as vaiagdes d(SF) e d{S’H) sdo definidas como sendo:

4
3

Onde A representa a matriz Jacobiana de fluxo e B representa a matriz
Jacobiana do termo RHS da eq. (1).

Ao analisar o variacional referente ao terceiro termo da eq. (6) alcanga-se:

'}
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Substituindo a eq. (11) no calculo do variacional do termo Ic, obtém-se:

I / Flow! WSHode + ¥ [ 5177 4 (SF |

*7 4 5F) {5 ASFI T a ey 2)

Reagrupando os termos referentes & onda de choque, tem-se:

A(ST b ) S(SF) . - @7 1SN dr, 1 [T AT

£

N T oy / i : H

De acordo com Gilles e Pierce [3] é necessario impar uma condigéo de
contorno interna sobre o multiplicador de lagrange na regigo da onda de choque, tal
que:

" W

Logo s&o eliminados os dois primeiros termos da eq. (13), e assim se impde a
continuidade no multiplicador de lagrange através da onda de choque. Ao substituir
as equacdes (8) no variacional de L, tem-se:

I'lrll 03 Ix 'l' .P-J ¥

Unindo a eq. (15) na eq (7), levando em conta que ? & continuo através do
bocal e que as varidveis do escoamento apresentam saltos finitos na onda de
choque.

L
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Esta equagio representa o variacional da medida de mérito para a restrigio
escolhida, ou seja, a eq. satisfaz as equagdes de Euler, assim como as relagdes R-
H.

A partir do termo (a) serdo desenvolvidas as condicdes de contorno de tal
forma que este termo seja nulo, o termo (b) sera utilizado para calcular os valores de
?, o termo (c) contribuira para o célculo do dl no caso de presenca de onda de
chogue, portanto restam os termos (d) e (e) para o calculo do variacional, onde
ambos apenas envolvem variacionais da geometria.

3.3. Calculo da Equagéao Adjunta

Uma vez que dQT sdo variagées realizaveis, ou seja, satisfazem a eq. (6), e
sao arbitrarias, portanto para anular o termo (b) deve-se impor o termo entre
colchetes igual a zero, disso encontra-se a equacéo adjunta:

3.4. Calculo das Condicdes de Contorno

Para resolver as condigbes de contorno da equacéo adjunta, deve-se anular o
termo (a) da eq. (16).

Para tal deve-se estudar o fluxo da informacao do escoamento. O Jacobiano
do fluxo da equagéo adjunta (17) é igual ao da equagio de Euler, com a diferenca
do sinal contrario. Como resuitado tem-se as mesmas velocidades caracteristicas do
escoamento, porém com diregdes opostas. [4,13]
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Fig. 6 : (a) Perfil do bocal; (b)Velocidades caracteristicas do escoamento;
(c) velocidades caracteristicas da equagio adjunta

Na figura acima, a caracteristica u é representada pela linha continua, (u+c),
pela pontilhada e (u-c), linha-ponto. Pode-se observar que devido a inversdo dos
sinais das caracteristicas, para uma entrada subsénica onde duas caracieristicas
influiam no escoamento interno, apenas uma caracteristica adjunta sera transmitida,
a mesma logica vale para as demais situa¢des.

Para uma entrada subsénica sao impostas duas condigées de contorno: TO e
PO. Para facilitar o calculo de dqi escreveremos T0 e PO em fungédo dos elementos qi
da matriz Q:

Calculando o variacionat de TO e PO chega-se em:
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Para vaiores constantes de TO e PO obtém-se dT0 = 0 e dP0 = 0. Portanto,
substituindo esta condicdo e escolhendo dq2 e dq3 expressos em fungdo de dqi,

fem-se:

Pela eq. (23) apresenta-se a condicdo de contorno fisica imposta por TO e PO,
de acordo com o obtido, tem-se dq1 livre e dg2 e dq3 restritos.

Substituindo a eq. (23) no termo (dQT.SAT. ?)0, obtém-se a seguinte
equacéo:

Uma vez que tendo-se [dQT.SAT. ?] = 0, pode-se impor a seguinte condigao:
(dQT.SAT. ?)0 =0 e (dQT.SAT. ?)I = 0.

Uma vez que ndo pode-se impor um valor para dq1, deve-se igualar o
coeficiente multiplicador a zero, sendo o primeiro parénteses determinado
exclusivamente pelo escoamento, obtém-se a seguinte condigao da equacao:

U}

Portanto, tem-se dois graus de liberdade na equagio adjunta (?2 e ?3) e
uma condigao fixa, respeitando as caracteristicas da equagdo ajunta para entrada
subsonica.

Para uma saida subsénica deve-se impor a presséo estatica, escrevendo a
eq. (3) em funcado de qi, obtendo-se:

Sua variagéo é dada por:
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Impondo-se a condi¢éo dP = 0, e resolve ndo a equagio de dq3 em fungéo de
dgq1 e dq2, tem-se:

Da mesma forma, descrita na entrada, na saida obtém-se dq3 fixo e dq1 e
dq2 livres, substituindo a eq. (36) em (dQT.SAT. ?)I, tem-se;

3 {

Como dq1 e dg2 ndo podem ser especificados, deve-se ter cada termo dos
colchetes iguais a zero, resultando em:

Portanto, a tabela seguinte resume as condigdes de contorno para todos os

casos:
Direcio do fluxo regime Variacional do Vetor ?
vetor de estado dQ )
s dg2(dg1), dq3(dq1) ?1(?2,?3)
Entrada Subso? K?o €9. (23) Eq. (25)
Supersénico dgi =0 7i livre
. dq3(dq1, dg2) ?21(?3), 22(?3)
Subsbnico
Saida el eq. (28) Eq. (30)
Supersonico dqi livre ?i=0

Tabela 1 : Condigdes de Contorno
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4. COMPONENTES DO PROJETO
4.1. Solverde CFD

O caso em estudo necessita de simulactes do escoamento compressivel no
bocal de empuxo do foguete, as possiveis situacdes encontradas envolverdo
escoamento subsdnico e supersbnico.

Uma vez necessario um resultado computacional do escoamento satisfatério,
deve-se construr um “solver” que fornega um comportamento adequado e confiavel.

Para tal foi utilizada a rotina de CFD escrita na linguagem computacional C
desenvolvida por Fabiani [1]. Esta rotina baseia-se no método dos Volumes Finitos e
faz uso dos algoritmos de “flux-splitting” de Stegger-Warming, Modified Stegger-
Warming e de Roe.

Entretanto observaram-se algumas inconsisténcias no programa. Ao rodar
algum caso mais complexo percebia-se uma exigéncia muito grande da memoéria no
computador e ao revisar a loégica computacional e foram verificados problemas com
alocagdes de variaveis dindmicas.

Para resoiver o problema utilizouse a biblioteca nrutils.c [2], a qual é
amplamente empregada pela comunidade cientifica por ser de facil utilizacdo e de
baixo custo computacional, além de programas especificos que verificam a alocagéo
de memoria.

Apos consertar os problemas, foram feitas modificagées no codigo de modo a
resolver problemas de equacionamento e condicdes de contorno, as quais estavam
implementadas de forma incorreta.

4.2. O método adjunto

Inicialmente, foi traduzido para a linguagem C, um programa em formato de
desenvolvimento do software Matlab® criado pelo Prof. Dr. Ernani V. Volpe, onde
um caso especifico do método é resolvido analiticamente.
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Para tal, fora necessario a criagéo de uma série de arquivos em linguagem C,
desenvolvendo uma extensa biblioteca que abrange desde manipulagies e
operacGes de matrizes até leitura e geragéo de arquivos de resposta.

O cédigo foi desenvolvido na plataforma Linux, esta escolha se deve ao fato
de que: a impresséo das varidveis no console é de facil manipulagio e mais clara do
que em uma plataforma Windows; a compilagdo de vérios arquivos é de facil
construgdo; e a plataforma Linux fornece ao usuario um maior nimero de
compitadores, bibliotecas e debuggers.

Outra medida realizada a respeito do método foi a alteragdo do calcuio do
gradiente do método explicito para o implicite. Apés a conclusdo desta fase foi
encontrado um problema na regido da condigéo de contorno para a entrada e saida
do sistema.

Estas alteragbes resultaram em um enorme ganho na velocidade de
convergéncia do sistema, uma vez que ao implantar o método implicito é possivel
trabalhar com passos de integragdo temporal maior, ou seja, a velocidade de
informagédo do método computacional pode ser igual ou maior do que a velocidade

do escoamento.

Depois de finalizada a implementagéo do método implicito para a condi¢éo de
contorno, encontrou-se uma instabilidade para alguns casos onde era caracterizado
um escoamento subsdnico na enirada e supersdnico na saida com ou sem onda de
choque.

Embora a onda de choque contribuisse para a instabilidade, esta era mais
significativa na garganta do bocal, onde o valor do numero de Mach se torna
unitario, gerando uma singularidade nas equacgées. Iniciou-se, entdo, um estudo
para a implementagao de dissipagéo artificial através do método Pullian [11] para
resolver a instabilidade, o qual ja fora implementado e estdem funcionamento.
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4.3. Validacao dos Resultados

ra

Para validar os resultados obtidos é utilizado um resultado analitico do
método para os casos de geometria simples, ou seja, no formato de cone e

escoamento supersdnico.

Além do resultado analitico € utilizado o método de diferencas finitas para o
calculo da sensibilidade da fun¢do objetivo em casos mais complexos, ou seja, de
geometria parabdlica com escoamento subsdnico e supersénico.

Os modelos produzidos comercialmente podem ser aproximados aos
simulados pelo método, porém quando finalizado ele sera4 capaz de trabalhar com
qualquer nivel de complexidade da geometria, uma vez que, diferentemente do
método de diferencas finitas, 8 medida que os parametros de controle crescem, o
custo computacional permanece relativamente baixo.
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5. ANALISE DOS RESULTADOS

5.1. Caso bocal conico

Para um caso simples de bocal cénico com entrada subsénica foi possivel
obter um resuitado convergido do método apods 75 interagées com precisédo de 10-5.
A figura abaixo ilustram o caminho percorrido pelo método nas diregdes de a, be c.

A evolugdo dos pardmetros é representada pela variagdo das cores e dos
tamanhos dos pontos, o ponto azul escuro representa a geometria objetivo, o ponto
vermelho escuro, o resultado final do método e o circulo verde, o ponto de partida.
Existem dois caminhos representados: magenta e verde, os quais s&o: o0 método
adjunto e o método de diferencas finitas, respectivamente.

Fig. 7 : Caminho percorrido pela solugio convergida do método

Pode-se notar que o ponto final possui um valor de a ¢ b muito préximos do
objetivo, porém o parametro ¢ nos leva a crer que o resultado néo é convergido.

Uma possibilidade deste comportamento é que n&o ha uma restrigao no
método do fluxo de massa na entrada, logo é possivel que a geometria encontre
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uma solugdo para um bocal com uma abertura diferente do objetivo, porém com um
perfil aproximadamente paralelo ao esperado. A figura a seguir ilustra a geometria
final (vermelho) e a esperada (preto), além de uma translacéo da esperada com ¢
intuito de comparar o paralelismo das geometrias.
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Fig. 8 : Historico da geometria do bocal cénico

A distribuicdo de Pressdo da figura 9 mostra que o caso de fato convergiu, ¢
que corrobora a hipétese descrita.
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Distribuigac de Pressdo
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Fig. 9 : Resultado da Pressdo para o bocal conico

A figura 10 mostra a evolugao do médulo do gradiente. Pode-se notar que ha
uma grande oscilagdo nos valores calculados. Isso se deve ao fato de que, uma vez
definida a diregdo de busca e o tamanho do passo, ndo é possivel garantir que o
novo valor encontrado sera menor que o anterior, uma vez que o modelo lida com
fungdes extremamente nao-lineares.

Em funcgéo disto foi criada uma rotina de verificagdo de convergéncia apos a
analise da geometria modificada na iteragio anterior ¢ antes do calculo do novo
gradiente.

Tal rotina avalia o valor da fungio objetivo para a nova configuragdo da
geometria e compara com o valor da anterior, caso este seja menor, ou seja, a
solucdo esta convergindo, o algoritmo passa para a avaliagdo do gradiente; caso
seja maior, a rotina diminui pela metade o passo e gera uma nova geometria,
retornando ao solver para avaliar 0 escoamento.

Este processo pode acontecer até trés vezes em uma mesma iteragao,
sempre diminuindo pela metade o Gltimo passo realizado. Caso a funcdo néo
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diminua de valor apés as trés iteragGes, ela passa para o célculo do gradiente. Isso
por que, como ¢ utilizado o método de “Fletcher-Reeves”, onde se utiliza também a
informacéo da direcéo anterior e ndo somente o do gradiente, ndo é possivel saber
se na diregéo de busca realmente existe um ponto menor do que o original. Portanto
reduziu-se o risco de muitas avaliagbes do escoamento, sem um avango significativo
na busca do ponto de minimo.

Magnitude da Gradiente

- - — -+ R T - .~ o E—

Fig. 10 : Evolugédo do Médulo do Gradiente para o bocal conico

Apoés a implementagéo da andlise descrita acima, foi definido a configuragao
final da rotina de otimizag&o. A figura 11 mostra através de diagramas de biocos as
diversas etapas do processo.
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Fig. 11 : Rotina final de otimizagdo

5.2. Caso bocal convergente-divergente

O mais importante caso de bocal para foguete € o bocal convergente-
divergente, devido & sua propriedade de gerar uma distribuicdo de pressdo que
maximiza o empuxo do foguete.

Converging Section  Diverging Seetion

————
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e o —  ———
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LT P —

Chamber Nozzie Jet

Fig. 12 : Exemplo de Bocal Convergente-Divergente
Fonte: http://www.engapplets.vt.edu/
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A distribuicdo de pressdo no bocal neste caso pode assumir 4 situacSes
distintas dependendo da presséo na saida pb, da pressdo na entrada pc, da area da

garganta A* assim como sua localizagao.

A figura 13 mostra os possiveis resultados dependendo da presséo de saida.
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Fig. 13 : Possiveis resultados de pressio
Fonte: hitp:/Amwww.engapplets.vt.edu/

Para uma press&o de saida p(b) < pb < pc obtém-se um regime subsénico em
ambas as se¢bes convergente e divergente. Ao aumentar gradualmente pb obtém-
se um fluxo sénico na garganta, curva b.

Apbs a curva b @ reducbes em pb ndo sio sentidas pelo escoamento a
montante da garganta. Tais alteracdes podem resullar em duas outras
configuragdes: curva c, com presenca de onda de choque; e curva d, com o regime,
a jusante da garganta, completamente supersénico.

As caracteristicas da curva d serdo melhores estudadas, uma vez que esta
possui as melhores condicGes de escoamento para um foguete ao analisar o
empuxo resultante. Elas sdo conhecidas na literatura como a “terceira critica”.

Considerando um caso convergente-divergente com o regime da geometria
inicial semelhante ao da curva c, com um perfit objetivo semelhante ao da curva a,
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ou seja, em um estudo de eliminagédo da onda de choque existente no bocal, obtém-
se um resultado convergido com 50 ciclos para uma preciséo de 10-3.

A figura 14 ilustra a evolugao da geometria do bocal.

Evolugdo da Geomelria
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Fig. 14 : Evolugdo da geometria para caso convergente-divergente
Na figura 15 podemos visualizar a evolugéo do perfil de pressdes, onde nota-

se a onda de choque na curva inicial, porém a final coincide com a objetivo, no caso
totalmente subsdnica.
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Evolacdo da Pressdo
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Fig. 15 : Evolugéo do perfil de pressbes obtidos caso convergente-divergente

Na figura 16 observa-se a evolugdo do médulo do gradiente. Este caso foi
rodado apés a implementagéo da rotina de verificagio de convergéncia. Pade-se

notar a diferenga das oscilagdes entre os dois casos mencionados (figuras 10 e 16),
comprovando a reducao do problema.
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Fig. 16 : Evolugio do médulo do gradiente para o bocal convergente-
divergente

E importante destacar que para esta simulagao foi implementada a restricéo o
valor do fluxo de massa maximo, ou seja, o valor de A* foi considerado fixo,
reduzindo o nimero de variaveis de controle paraapenasaeb:

02
At= - +c0 {31}
4 a0
k3
ol =A'+ :’11 (32)
a

Esta medida impediu que se alcancasse um resultado semelhante ao caso do
bocal conico, onde para diferentes valores de a, b e ¢ fora encontrado um resultado
convergido. Porém, vale ressaltar que esta restrigio sé é vélida para os casos de
bocais supersdnicos, onde o0 Mach na garganta é um, nos casos subsdnicos a vazio
massica varia, reduzinde seu valor para velocidades menores.

Uma outra anélise pesquisada & o tipo da funcéo que esta sendo otimizando,
para assim compreender melhor os pontos em que o método pode considerar obter
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uma solugéo convergida. A figura abaixo ilustra o comportamento da fungéo objetivo
para uma geometria parabélica.

Fig. 17 : Superficie da fungado objetivo para um caso de geometria parabdlica

Pode-se observar que a fungdo possui um vale na regiso de minimo com um
eixo paralelo 4 coordenada em c, portanto é possivel encontrar um resultado
convergido com a e b muito préximos do esperado, porém com o pardmetro ¢ longe
do objetivo.
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6. CONCLUSAO

O trabalho apresentou um resultado final satisfatorio, visto que fodas as
atividades previstas foram concluidas. Existem meihorias possiveis de serem
realizadas no método de busca do algoritmo, porém o software desenvolvido
apresenta um comportamento estavel e confidvel capaz de encontrar uma solugéo
convergida para casos de alta complexidade.

O gradiente avaliado pelo método adjunto foi comparado ao calculado por
diferencas finitas. Ambos parecem convergir para a mesma geometria, porém com
pequenas diferengas. Entretanto, & importante ressalvar que no método de
diferengas finitas o custo computacional cresce de forma invidvel a medida que sao
adicionadas variaveis de controle, o que néo acontece com o método adjunto. Além
disso, 0 método de diferengas finitas sofre de imprecisées numéricas, uma vez que
este & muito sensivel ao tamanho da variagao de cada variavel.

Inicialmente fora proposto, como uma atividade extra, o estudo de otimizagéo
estrutural do bocal resultante do método. Porém, diante do cronograma proposto,
néo foi possivel realizar tal analise.

A intencdo desta atividade seria iniciar um modelo de otimizagéo
multidisciplinar, algo novo no meio tecnoldgico, porém visto como o futuro dos
algoritmos de ofimizac&o. Portanto, & posto como sugestiio para proximos projetos
esta analise multidisciplinar do bocal de empuxo.

Ressalta-se a importancia de que o programa desenvolvido é uma base muito
forte para novas aplicagdes. Algo de imediato seria aumentar as varidveis de
controle para se obter geometrias mais complexas e mais realistas. Qutra medida
seria modificar a fungdo objetivo, com a intencdo de se encontrar bocais com o
maior empuxo possivel, menor arrasto ou com a maior velocidade ou temperatura de
saida.

Alem destas medidas imediatas, ha a possibilidade de se iniciar um projeto de
otimizagdo em superficies externas, como, por exemplo, em um foguete, ou no perfil
de asa ou na fuselagem de um avido.
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Desta forma, diante do objetivo proposto de se otimizar um bocal de empuxo
de um foguete baseado nas dimensdes daqueles obtidos no mercado como

sinalizadores, os resultados esperados foram alcangados, fazendo com que este
trabalho contribuisse para o desenvolvimento de novos métodos de ofimizacdo no

meio tecnolégico.
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