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Resumo 

O objetivo deste trabalho é propor um algoritmo para realizar a identificação de 

padrões na vocalização suína, visando determinar o nível do bem-estar do animal. Tal 

análise foi proposta uma vez que o bem-estar animal é um assunto cada vez mais 

abordado no mundo todo, principalmente quando os animais são criados para o abate. 

Dessa forma, a criação de um método em que haja o mínimo de contato com os 

animais se faz importante, evitando que tal contato altere o comportamento do animal 

e, conseqüentemente, o resultado da análise de seu bem-estar. Por essas 

características, foi proposto um método de análise dos sons emitidos pelos suínos 

com base na utilização de uma Rede Neural Artificial do tipo Radial Basis Function, a 

qual possui como elementos de treinamento e operação um conjunto de 

características extraídas através da Transformada Discreta Wavelet de sinais sonoros 

pré-gravados. As características obtidas dos sinais foram as energias das bandas 

críticas relativas à Escala Bark e a diferença entre as energias das bandas adjacentes, 

além dimensão fractal do sinal. Através desse método foram analisados dois tipos de 

sinais sonoros: a vocalização de leitões saudáveis e de leitões acometidos por uma 

doença chamada Artrite Traumática; e a vocalização de suínos adultos em situações 

de conforto e desconforto. 

Os resultados demonstram que a análise proposta atingiu bons patamares de acerto 

na determinação do bem-estar do animal. 

 

Palavras-chave: Processamento Digital de Sinais, Suínos, Redes Neurais Artificiais, 

Transformada Discreta Wavelet 
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Abstract 

This work describes an algorithm which was created and applied to classify 

patterns of swine vocalizations, in order to determine the animal's welfare, since this is 

an issue increasingly discussed, becoming a priority in management of these animals, 

especially for slaughter. Thus, it is necessary to have a method in which there  is no 

contact with the animals, avoiding modifications of the animal's behavior and, 

consequently, the results. The proposed approach implements the above-mentioned 

analysis by using an Artificial Neural Network and the Discrete Wavelet Transform. The 

characteristics obtained from the signals are: energies of the critical bands of the Bark 

scale; the differences between energies of the adjacent bands; and the fractal 

dimension of the signal. Through this method, two types of signals were analyzed: the 

vocalization of healthy piglets and sick piglets, which had Traumatic Arthritis; and the 

vocalization of adult pigs in situations of comfort and discomfort. The results show that 

the proposed method achieves good levels of accuracy in determining the animal's 

welfare. 

 

Keywords: Digital Signal Processing, Swines, Artificial Neural Networks, Discrete 
Wavelet Transform  
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1. Introdução 

No contexto deste trabalho, vocalização é a emissão de sons pelo animal 

diante de alguma situação comportamental. Neste trabalho, as situações analisadas 

serão a ocorrência, ou não, da doença denominada Artrite Traumática e do ambiente 

proporcionando conforto ou desconforto térmico aos animais. 

A vocalização, segundo Appleby et al. (1999), representa uma ferramenta 

precisa que permite avaliar o bem-estar dos animais, uma vez que suas chamadas 

traduzem seu estado emocional ou suas necessidades. Manteuffel et al. (2004) 

concluíram que a tensão e gritos podem indicar alterações no bem-estar dos animais.  

Outro ponto importante são as Redes Neurais Artificiais (RNAs) que, segundo 

Braga (2000), são sistemas paralelos distribuídos e compostos por unidades de 

processamento simples, dispostas em uma ou mais camadas e interligadas por um 

grande número de conexões, associadas a pesos, e que calculam determinadas 

funções matemáticas, tendo seu funcionamento inspirado na estrutura biológica do 

cérebro humano. 

Também são importantes os conceitos de Transformada Wavelet e Dimensão 

Fractal, sendo que o primeiro consiste na decomposição de um sinal no tempo para o 

domínio da freqüência; e o segundo é um valor que diz o quão uma parte específica 

do sinal é similar ao sinal como um todo. Desta forma, os sinais sonoros obtidos da 

gravação dos sons emitidos pelos suínos serão decompostos no domínio da 

freqüência e analisados com base em uma Rede Neural Artificial que, por sua vez, 

possui como elementos de análise um conjunto de energias relativas ao sinal, além de 

sua dimensão fractal. 

2. Objetivos 

Conforme Lee et al. (2006), animais de uma mesma espécie utilizam a 

vocalização para a comunicação entre membros de seu grupo. Assim, como principal 

objetivo, este trabalho visa propor um algoritmo de análise dos sons emitidos por 

suíno. Analisar o som significa estudar os arquivos de áudio gerados pelas respostas 

dos animais diante de algum comportamento conhecido.  
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Testes iniciais foram realizados com sons provenientes de leitões sadios e 

leitões acometidos pela Artrite Traumática, com a finalidade de se identificar o padrão 

sonoro de cada situação para a posterior classificação de um sinal sonoro entre 

ambas as situações. Também foi testada a separação entre os sons advindos de uma 

matriz (fêmea reprodutora suína) em quatro situações de ambiente: alta e baixa 

entalpia e alto e baixo Índice de Temperatura de Globo e Umidade (ITGU). Neste 

último caso, a análise se deu na determinação das diferenças entre os níveis de ITGU 

e de entalpia de forma separadas. Tais índices foram escolhidos por serem índices de 

conforto muito utilizados em animais, principalmente em suínos, que são os animais 

estudados neste trabalho. Estes índices levam em consideração a temperatura do 

ambiente, sua umidade e radiação que, comparados com tabelas pré-estabelecidas, 

fornecem faixas de conforto e estresse para cada tipo de animal. 

3. Conceitos Iniciais 

3.1. Bem-estar de Suínos 

Cada vez mais, os métodos de abate de animais criados em granjas1, assim 

como a criação em si, estão sendo debatidos por todo o mundo. O bem-estar, mais do 

que nunca, está se tornando prioridade na criação dos animais. Logo, é interessante 

desenvolver um método para avaliar os agentes relacionados ao bem-estar do animal, 

como o estresse, por exemplo. Mais do que isso, o método deve possuir o menor grau 

possível de contato com o animal sob análise. 

Nessa área, várias pesquisas têm sido realizadas com diversos tipos de 

animais para buscar tais métodos de avaliação. E, uma vez que a vocalização animal 

permite medir seu nível de estresse, é possível então analisar detalhadamente sua 

vocalização para obter um indicativo de seu bem-estar (Manteuffel et al.,2004). 

Ambientes ou condições estressantes podem alterar o estado afetivo do 

animal, que, por sua vez, pode influenciar o modo como o mesmo reage aos estímulos 

do ambiente (Boissy et al., 2007). Logo, essas ocorrências devem ser monitoradas, 

pois podem representar o início de uma doença, por exemplo, o que se torna 

altamente preocupante quando vários animais são criados juntos, como em uma 

granja. Nesse sentido, e novamente segundo Manteuffel et al. (2004), os sons são 

                                                
1 Granja é uma construção fechada na qual se abrigam aves ou mamíferos (suínos 

especialmente) para o futuro abate. 
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transmitidos rapidamente e a grandes distâncias, sendo relativamente imunes a 

objetos que possam obstruir seu caminho. Por isso, são ideais para carregar sinais 

que serão enviados, por exemplo, a um alarme, que pode estar a uma grande 

distância. 

Outro trabalho interessante foi realizado por Algers e Jensen (1985), no qual 

foram analisados os efeitos de um ambiente com ruído contínuo sobre leitões, sendo 

que três leitões foram colocados em um ambiente silencioso e outros três em um 

ambiente ruidoso. Para todos eles, foram reproduzidos grunhidos previamente 

gravados de sua matriz, os quais sofriam alterações em determinado momento. Os 

animais que estavam no ambiente silencioso responderam às alterações dos 

grunhidos reproduzidos, enquanto que os animais colocados no ambiente ruidoso não 

responderam à variação. Logo, foi sugerido que os animais expostos ao barulho 

podiam receber menos leite que os outros por terem dificuldade em responder a sinais 

sonoros da matriz, influenciando seu crescimento. 

Na mesma linha de pesquisa sobre bem-estar animal, um trabalho sobre a 

adaptabilidade de suínos a diferentes temperaturas ambiente foi realizado por 

Hillmann et al. (2004). Alguns suínos foram testados no inverno, enquanto outros 

foram testados no verão. Os sons emitidos por cada grupo foram gravados à noite, 

evitando, assim, os efeitos e sons de atividades realizadas durante o dia. Através de 

redes neurais artificiais e de aplicativos como o LabVIEW®, os sons foram analisados 

e chegou-se à conclusão de que o ambiente afeta claramente o comportamento vocal 

dos animais, sendo que os mesmos emitem uma maior quantidade de sons em alta 

freqüência quando estão desconfortáveis, ou seja, em temperaturas mais elevadas ou 

mais baixas. Desta forma, seria possível o monitoramento dos sons emitidos para se 

verificar a adaptação dos animais referente às variações de temperatura. 

Ainda nesse sentido, um experimento foi realizado para se verificar a emissão 

de sons em altas freqüências pelos suínos quando submetidos à castração a fim de se 

averiguar quais aspectos do processo são mais dolorosos ao animal (Taylor e Weary, 

2000). Notavelmente, os animais emitiram maior quantidade de altas freqüências 

durante a incisão, mostrando que as mesmas também podem indicar, além de 

desconforto, a dor sentida pelo animal. 

Em um trabalho realizado por Branco et al. (2006), no qual foram analisados os 

choros de dor emitidos por crianças recém-nascidas, constatou-se, entre outras 

coisas, a ocorrência de freqüências hiper-agudas, ou seja, altas freqüências, 
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mostrando que os bebês também podem exprimir seu desconforto através da emissão 

de altas freqüências. 

Outro trabalho envolvendo altas freqüências analisou os sons emitidos por 

leitões quando os mesmos são separados de suas matrizes (Weary et al., 1999). 

Descobriu-se que os leitões mais novos emitem maiores quantidades de sons em altas 

freqüências que leitões mais velhos, pois, instintivamente, sabe-se que os leitões mais 

novos precisam de maiores cuidados de sua matriz, pois são mais frágeis. Outro fator 

que pode ter influenciado na emissão dos sons em alta freqüência é a variação de 

temperatura sofrida pelo leitão, uma vez que sem os cuidados de sua mãe e com a 

redução de alimento - amamentação - o mesmo perde temperatura corporal. Desse 

modo, o animal fica com mais frio e desconfortável, emitindo, como supracitado, sons 

em alta freqüência. 

Em resumo, os trabalhos citados evidenciam que existe uma relação entre a 

análise de freqüências emitidas pelos animais e o bem-estar do mesmo, podendo 

aquela ser utilizada para a determinação deste. 

 

3.2. Digitalização de Sinais 

Sabe-se que os sons encontrados na natureza são conhecidos como 

contínuos, inclusive os que exprimem a comunicação entre os animais, alvo do 

presente trabalho. Dessa forma, existem infinitos valores entre dois valores discretos 

do sinal. Assim, o som que atinge o sistema auditivo dos animais causa movimentos 

no sistema auditivo, que, associados a mecanismos neurais, permitem distinguir 

dentre os diferentes tipos de sons encontrados na natureza. 

Para que o som seja processado por sistemas computacionais, é preciso, 

inicialmente, convertê-lo para um formato de números que possa ser quantificado pelo 

computador, isto é, o formato digital. Tal processo é conhecido como conversão 

analógica-digital ou simplesmente CAD. A Figura 3.2.1 ilustra uma amostragem de um 

sinal sonoro hipotético. 
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Figura 3.2.1 - Amostragem de um sinal sonoro qualquer 

 

Como o sinal analógico possui infinitos valores nos intervalos mencionados, o 

processo de discretização resolve este problema atribuindo valores discretos para o 

novo sinal que está se formando. Desse modo, é necessária uma amostragem do 

sinal, que consiste em obter os valores do sinal analógico, contínuo no tempo, em 

períodos constantes de tempo, obtendo, assim, uma série de valores discretos. 

Porém, pelo Teorema de Nyquist, a freqüência de amostragem deve ser, no 

mínimo, duas vezes a máxima freqüência encontrada no sinal, evitando assim o 

aliasing no sinal. Além disso, se o microfone utilizado possuir uma freqüência de 

amostragem baixa, o som será capturado e convertido poucas vezes, fazendo com 

que o arquivo digitalizado seja ruim, como ilustra a Figura 3.2.2. 

A  imagem não pode ser exibida. Talv ez o computador não tenha memória suficiente para abrir a imagem ou talv ez ela esteja corrompida. Reinicie o computador e abra o arquiv o nov amente. Se ainda assim aparecer o x v ermelho, poderá ser necessário excluir a imagem e inseri-la nov amente.
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Figura 3.2.2 - Discretização do som 

 

3.3. Filtros 

Um conceito importante para o trabalho é a filtragem digital de sinais. Um filtro 

digital pode ser entendido como um sistema que, através de combinações lineares do 

sinal de entrada com certos coeficientes, gera uma saída com determinadas 

características de freqüência. Alguns dos parâmetros mais relevantes, como mostrado 

na Figura 3.3.1, são: 
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Figura 3.3.1 - Parâmetros de um filtro (Júnior, 2007) 

 
- Freqüência de corte: freqüência na qual a saída apresenta uma 

atenuação de 3dB em relação à entrada e separa a banda de 

passagem da banda de transição. 

 

- Freqüência de rejeição: freqüência na qual a saída apresenta um valor 

com considerável atenuação em relação ao do valor de entrada; 

normalmente 5% do valor de entrada. Analogamente, separa a banda 

de transição da banda de rejeição. 

  

- Função: está relacionada com o tipo do filtro. Há os filtros passa-altas, 

passa-baixas, passa-faixas e rejeita-faixas, sendo que os filtros passa-

altas permitem a passagem de altas freqüências e atenua as baixas 

freqüências. Analogamente, os filtros passa-baixas fazem o oposto: 

permitem a passagem de baixas freqüências e atenuam as altas 

freqüências. Do mesmo modo, os filtros passa-faixas e rejeita-faixas 

permitem a passagem de uma determinada faixa de freqüências e 

atenuam todas as outras, e vice-versa, respectivamente. 

 

- Ordem: é o número de pólos da função de transferência do filtro, uma vez 

que uma função de transferência é, basicamente, uma função que 

relaciona a saída de um sistema com sua entrada, descrita adiante. 

Quanto maior o número de pólos da função de transferência, ou seja, 
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quanto maior a ordem do sistema, melhor é a resposta do filtro, 

aproximando-se de um filtro ideal, que é aquele no qual não há banda 

de transição, a banda de passagem não é atenuada e a banda de 

rejeição é totalmente atenuada, possuindo saída nula. 

 

Outro conceito é a determinação da energia do sinal. Tendo-se um sinal 

discreto, de amplitude e duração finitas, pode-se calcular sua energia, ([݊]ݔ)ܧ, como 

sendo 

ܧ = ෍ݔ௜ଶ
ேିଵ

௜ୀ଴

 [3.3.1] 

no qual xi é o i-ésimo componente do sinal discreto. 

Além disso, existe um importante teorema no processamento de sinais, o 

Teorema da Convolução, que mostra que a multiplicação de dois sinais discretos no 

domínio da freqüência, H[z] e X[z], corresponde à convolução dos mesmos no domínio 

do tempo, h[n] e x[n], e pode ser descrita por 

y[n] = x[n] * h[n] =  

 
1

0

M

k knk xh  [3.3.2] 

no qual o símbolo * representa a convolução e M o número de amostras de x[.]. 

 

3.4. Redes Neurais Artificiais 

Conforme Silva et al. (2010), as Redes Neurais Artificiais (RNAs) podem ser 

entendidas como uma tentativa de simular nos computadores a estrutura e o 

funcionamento do cérebro, particularmente dos neurônios. Tais neurônios podem ser 

vistos, simplificadamente, como sendo células divididas em três partes: os dendritos, o 

corpo celular e o axônio, como mostrado na Figura 3.4.1, abaixo. 
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Figura 3.4.1 - Neurônio simplificado 

 

A principal função dos dendritos é a recepção de estímulos advindos de 

diversos outros neurônios conectados ao mesmo. Tais estímulos são, então, 

processados pelo corpo celular, que produzirá um potencial de ativação para disparar 

um impulso elétrico pelo axônio. Por fim, seu axônio possui a função de conduzir os 

impulsos elétricos gerados pelo corpo celular para outros neurônios que estejam 

conectados ao mesmo. 

Um neurônio, então, recebe pulsos como estímulo, os quais são processados 

e, atingido certo limiar, o neurônio realiza uma ação, que pode ser tanto a emissão de 

pulsos para um neurônio vizinho como a inibição do mesmo. 

Estima-se que a rede neural biológica de um adulto possua cerca de 100 

bilhões de neurônios, cada um fazendo conexões com outros 6.000 neurônios, 

perfazendo um total de 600 trilhões de sinapses (Shepherd, 1990), sendo que as 

sinapses correspondem às regiões de comunicação entre os neurônios. Vale ressaltar 

que tais conexões não são realizadas através de contato físico entre os neurônios, 

mas através de elementos chamados neurotransmissores, que são os responsáveis 

pela transmissão de impulsos elétricos entre um neurônio e outro. 

O modelo de neurônio artificial mais simples foi proposto por McCulloch & Pitts 

e ainda é o modelo mais utilizado nas diversas redes neurais artificiais. Tal modelo 

pode ser visto na Figura 3.4.2. 
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Figura 3.4.2 - Modelo de um neurônio artificial 

 

Sua estrutura é: 

 Sinais de entrada {x1, … , xn}: são os sinais advindos do processo a ser 

analisado. 

 Pesos sinápticos {w1, … wn}: são os valores que permitirão à rede 

neural avaliar a relevância de cada sinal de entrada. 

 Combinador linear {Σ}: agrega todos os sinais de entrada devidamente 

ponderados pelos seus respectivos pesos sinápticos a fim de produzir 

um valor de potencial de ativação. 

 Limiar de ativação {θ}: valor que especifica qual o limiar que deve ser 

atingido pelo potencial de ativação para que a saída do neurônio seja 

ativada. 

 Potencial de ativação {u}: diferença produzida entre o combinador linear 

e o limiar de ativação. Caso o potencial de ativação seja positivo (u≥θ), 

o neurônio produzirá um potencial excitatório; caso contrário, o 

potencial será inibitório. 

 Função de ativação {g}: sua função é modificar e limitar o valor da saída 

do neurônio dentre uma faixa de valores possíveis. 

 Sinal de saída {y}: resultado do processamento do neurônio em relação 

às entradas fornecidas. Tal valor será propagado para os neurônios que 

estão seqüencialmente conectados. 

Desta forma, é fácil verificar que as equações de um neurônio artificial são 

dadas por 

ݑ = ෍ݓ௜ݔ௜ − ߠ 
௡

௜ୀଵ

 [3.4.1] 
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ݕ =  [3.4.2] (ݑ)݃

A função de ativação pode assumir muitas formas, sendo as mais comuns a 

Função Degrau, a Função Degrau Bipolar, a Função Rampa Simétrica, a Função 

Logística (Sigmoidal), a Função Tangente Hiperbólica e a Função Gaussiana. Esta 

última pode ser descrita como 

(ݑ)݃ = eି (୳ିୡ)మ
ଶ஢మ  [3.4.3] 

na qual c representa o centro da função gaussiana e σ denota o desvio padrão 

associado à mesma. A representação gráfica da função gaussiana é vista na Figura 

3.4.3.  

 
Figura 3.4.3 - Função Gaussiana 

 

Já a rede neural artificial é o conjunto de neurônios artificiais conectados entre 

si. Tal arranjo pode ser divido em três partes: a camada de entrada, a camada 

intermediária e a camada de saída. Os neurônios que recebem os sinais de entrada na 

rede constituem o que se chama de camada de entrada. Os neurônios que recebem 

como entrada as saídas daqueles da camada de entrada constituem a segunda 

camada e assim sucessivamente até a camada final, que é a camada de saída. As 

camadas internas que não são nem a de entrada e nem a de saída são geralmente 

referidas como camadas intermediárias ou camadas ocultas, conforme visto na Figura 

3.4.4. 
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Figura 3.4.4 - Esquema de uma Rede Neural Artificial 

 

As principais características envolvidas com a utilização de Redes Neurais 

Artificiais são: 

 Adaptação por experiência: os parâmetros internos da rede, tipicamente 

seus pesos sinápticos, são ajustados através da análise de exemplos 

relacionados com o comportamento do processo considerado. 

 Capacidade de aprendizado: uma vez que os parâmetros internos da 

rede são ajustados conforme novos exemplos são analisados, a rede é 

capaz de extrair os relacionamentos entre as variáveis existentes. Tal 

processo é chamado de treinamento da rede. 

 Generalização: com a rede devidamente treinada, sinais ainda 

desconhecidos pela mesma podem ser analisados, estimando-se a 

solução dos mesmos através dos padrões aprendidos durante a fase de 

treinamento. 

 Tolerância a falhas: a rede torna-se tolerante a falhas quando parte de 

sua estrutura é danificada. Este fato deve-se à grande quantidade de 

interligações entre os neurônios artificiais. 

 Armazenamento distribuído: cada sinapse entre os neurônios artificiais 

realiza parte do processamento do sinal, de forma que o conhecimento 

do comportamento de determinado sinal é distribuído entre os vários 

neurônios artificiais que compõem a rede neural artificial. 

 Facilidade de prototipagem: uma vez treinada a rede, o processamento 

de novos sinais se dará, geralmente, através de operações 

matemáticas elementares, possibilitando sua fácil prototipagem tanto 

em software como em hardware. 
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Uma importante configuração de uma RNA é aquela caracterizada pelas 

Funções de Base Radial (RBF – Radial Basis Function). Sua utilização é ampla em 

problemas que envolvem aproximações de funções e classificação de padrões. Por 

este motivo, esta foi a rede utilizada neste trabalho. Sua estrutura típica consiste na 

utilização de apenas uma camada oculta, como a disposta na Figura 3.4.4, e funções 

de ativação do tipo gaussiana. Sua arquitetura é do tipo feedforward de camadas 

múltiplas, uma vez que o sinal é transmitido unidirecionalmente da camada de entrada 

para a camada de saída; e porque possui mais de uma camada no total. 

O treinamento de uma rede RBF é divido em dois estágios: 

Primeiro Estágio 

Ajuste dos neurônios da camada intermediária: como já mencionado, a 

expressão que define uma função de ativação gaussiana é dada por 

(ݑ)݃ = eି 
(୳ିୡ)మ
ଶ஢మ  [3.4.4] 

em que c define o centro da função gaussiana e σ² denota sua variância 

(σ denota o desvio padrão), a qual denota o quão o potencial de 

ativação (u) está disperso em relação ao seu centro (c).  

Desta forma, considerando a equação acima, os parâmetros livres são 

o centro c e a variância σ². Pela configuração da rede RBF, o centro c 

está diretamente associado aos seus próprios pesos, enquanto os 

valores de entrada estão associados com o próprio sinal da entrada da 

rede. Desta forma, a saída de cada neurônio j da camada intermediária 

é expressa por 

௝݃
(ଵ) ቀݑ௝

(ଵ)ቁ = ௝݃
(ଵ)(ݔ) = ݁

ି 
∑ ቀ௫೔ି௪ೕ೔

(భ)ቁ
మ೙

೔సభ
ଶఙೕ

మ
 

[3.4.5] 

no qual x representa o próprio vetor de entrada; o índice (1) é relativo à 

camada intermediária; j = 1, … , n1 (sendo n1 o número de neurônios na 

camada intermediária). 

Pode-se perceber, através da equação 3.4.4, que quanto mais próximo 

uma determinada amostra está do centro da gaussiana, maior será sua 

contribuição para o valor do potencial de ativação, sendo este valor o 

mesmo para qualquer amostra situada na mesma distancia radial ao 

centro c. 
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 Tratando-se de reconhecimento de padrões, as fronteiras delimitadoras 

– chamadas fronteiras de separabilidade: fronteira entre os padrões 

analisados – são definidas como campos receptivos hiperbólicos, 

conforme mostrado pelas Figura 3.4.5 e Figura 3.4.6 para um problema 

constituído de duas entradas x1 e x2. 

 

 
Figura 3.4.5 - Função de base radial do tipo gaussiana 

 

 
Figura 3.4.6 - Fronteira de separabilidade RBF 

 

Dessa forma, a principal função da camada oculta é posicionar o centro 

de suas gaussianas da forma mais apropriada possível. O 

pseudocódigo para este estágio de treinamento de uma rede RBF é tal 

como se segue: 
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Início {Algoritmo RBF – Primeiro Estágio de Treinamento} 
<1> Obter o conjunto de treinamento {x(k)}; 

<2> Iniciar o vetor de pesos de cada neurônio da camada 

intermediária com os valores das n1 primeiras amostras de 

treinamento; 

<3> Repetir as instruções: 

<3.1> Para todas as amostras de treinamento {x(k)}, fazer: 

<3.1.1> Calcular as distâncias euclidianas entre x(k) e ݓ௝௜
(ଵ), 

considerando-se cada j-ésimo neurônio por vez; 

<3.1.2> Selecionar o neurônio j que contenha a menor 

distância com o intuito de agrupar a referida 

amostra junto ao centro mais próximo; 

<3.1.3> Atribuir a amostra x(k) ao grupo Ω(k); 

<3.2> Para todos ݓ௝௜
(ଵ), onde j=1, … , n1, fazer: 

<3.2.1> Ajustar ݓ௝௜
(ଵ) de acordo com as amostras em Ω(j ): 

௝௜ݓ
(ଵ) =

1
݉(௝) ෍  (௞)ݔ

௫(ೖ)∈Ω(ౠ)

 

{m(j) é o número de amostras em Ω(j )} 

Até que: não haja mudanças nos grupos Ω(j ) entre as iterações; 

<4> Para todos ݓ௝௜
(ଵ), onde j = 1, …, n1, fazer: 

<4.1> Calcular a variância de cada uma das funções de 

ativação gaussianas pelo critério da distancia quadrática 

média: 

ଶߪ =
1

݉(௝) ෍ ෍ቀݔ௜
(௞) − ௝௜ݓ

(ଵ)ቁ
ଶ

௡

௜ୀଵ

 
௫(ೖ)∈Ω(ౠ)

 

Fim {Algoritmo RBF – Primeiro Estágio de Treinamento} 
 

Segundo Estágio 

Ajuste dos neurônios da camada de saída: após a etapa anterior ser 

concluída, o segundo estágio de treinamento deve ser executado. 

Neste estágio, utiliza-se a função linear como função de ativação para 

os neurônios de saída, de modo que 
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௜ݕ = ௝݃
(ଶ) ቀݑ௝

(ଶ)ቁ = ௝ݑ
(ଶ),   [3.4.6] 

no qual j=1, … ,n2 e o índice (2) está relacionado com a camada de 

saída. 

Desta forma, a camada de saída realiza apenas uma combinação linear 

das funções de ativação gaussianas produzidas na camada 

intermediária. 

O pseudocódigo deste estágio é como se segue. 

 

Início {Algoritmo RBF – Segundo Estágio de Treinamento} 

<1> Obter o conjunto original de amostras de treinamento {x(k)}; 

<2> Obter o vetor de saída desejada {d(k)} para cada amostra; 

<3> Iniciar ݓ௝௜
(ଶ) com valores aleatórios pequenos; 

<4> Especificar a taxa de aprendizagem {η} e precisão requerida {}; 

<5> Para todas as amostras {x(k)}, fazer: 

<3.1> Obter os valores ௝݃
(ଵ) em relação a x(k); {conforme 

explicado anteriormente}  

<3.2> Assumir z(k) = [ ଵ݃
(ଵ)  ݃ଶ

(ଵ) …  ݃௡భ
(ଵ)]T; {pseudoamostras] 

<6> Inicializar o contador de número de épocas; {época ← 0} 

<7> Repetir as instruções: 

ெ௔௡௧௘௥௜௢௥ܧ <7.1> ←  ;ெܧ

<7.2> Para todos os pares de treinamento {z(k), d(k)}, fazer: 

Ajustar ݓ௝௜
(ଶ) e θj através do algoritmo backpropagation; 

ெ௔௧௨௔௟ܧ <7.3> ←  ;ெܧ

<7.4> época ← época + 1; 

Até que หܧெ௔௧௨௔௟ ெ௔௡௧௘௥௜௢௥หܧ− ≤  

Fim {Algoritmo RBF – Segundo Estágio de Treinamento} 

 

A variável época pode ser utilizada como critério de parada para 

problemas em que a precisão especificada não pode ser alcançada; EM 

representa o erro quadrático médio, que é definido por: 

 

ெܧ =
1
݌
෍ܧ(݇)
௣

௞ୀଵ

 [3.4.7] 
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No qual p é o número de amostras do conjunto de treinamento e E(k) 

representa o erro quadrático obtido por: 

 

(݇)ܧ =
1
2
෍൬ ௝݀(݇)− ௝ݕ

(ଶ)(݇)൰
ଶ

 
௡మ

௝ୀଵ

 [3.4.8] 

no qual ݕ௝
(ଶ)(݇) é o valor produzido pelo j-ésimo neurônio de saída da 

rede considerando-se a k-ésima amostra de treinamento, enquanto 

௝݀(݇) é o seu respectivo valor desejado. Já o algoritmo backpropagation 

é um método de se calcular os pesos sinápticos e os limiares de 

ativação de forma rápida através de gradientes, porém seu 

funcionamento está além do escopo deste trabalho2. 

 

Uma vez que estas etapas estiverem concluídas, o treinamento está completo. 

Dessa forma, a rede neural está pronta para operar, ou seja, classificar novas 

amostras que são apresentadas à sua entrada. Os passos dessa operação estão 

mostrados abaixo. 

 

Início {Algoritmo RBF – Fase de Operação} 

<1> Apresentar uma amostra {x}; 

<2> Assumir os parâmetros ݓ௝௜
(ଵ), σ, ݓ௝௜

(ଶ) e θj já ajustados durante 

os estágios de treinamento; 

<3> Executar as seguintes instruções: 

<3.1> Obter ௝݃
(ଵ); 

<3.2> Obter ݑ௝
(ଶ); 

<3.3> Obter ݕ௝; 

<4> Disponibilizar as saídas da rede mediante os valores contidos 

em yj; 

Fim {Algoritmo RBF – Fase de Operação} 

 

Segundo Jain et al. (1996), as RNAs são a base de inúmeros avanços no 

desenvolvimento de sistemas inteligentes. Tais redes são bem adequadas para tarefas 

                                                
2 Para maiores detalhes do funcionamento desse método, vide Silva et al. (2010) 
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que incluam problemas como reconhecimento de padrões, predição, otimização, 

memória associativa e controle. Ou seja, são extremamente úteis a este trabalho, uma 

vez que se busca reconhecer os padrões entre os diferentes estados de um animal 

como, por exemplo, se está estressado ou não. O uso de RNAs é vasto, podendo ser 

utilizadas em qualquer situação que necessite de algumas das características 

supracitadas, como o reconhecimento de padrões. Por isso, são usadas desde a 

compressão de áudio até em diagnósticos médicos, assim como em processamento 

de sinais. 

Porém, segundo Smith (1998), o reconhecimento automatizado da fala humana 

é um exemplo clássico de uma ação que o cérebro humano realiza facilmente, mas 

que os computadores possuem enormes problemas para fazê-lo. Os computadores 

digitais podem guardar e acessar vastas quantidades de dados, executar cálculos 

matemáticos em enorme velocidade e fazer tarefas repetitivas sem se aborrecer ou 

tornar-se ineficiente. Porém, são altamente ineficientes quando afrontados por dados 

sensoriais sem tratamento. O Processamento Digital do Sinal geralmente aproxima 

este problema em dois passos: a extração das características seguida pelo 

reconhecimento dos padrões. Os pesos requeridos para a Rede Neural reconhecer um 

padrão são encontrados através de um algoritmo de aprendizagem, junto com 

exemplos de como o sistema deveria operar. 

Tem-se aí um problema, que é a dificuldade de reconhecer os padrões na fala 

humana, e também na “fala animal”. Para contornar a situação, a extração das 

características é feita através da Transformada Discreta Wavelet, descrita abaixo. 

Mas, para um melhor resultado, deve-se entregar à RNA uma quantidade significativa 

de exemplos para cobrir a maior gama de possibilidades possível. 

 

3.5. Transformada Wavelet  

No início do século 19, Jean-Baptiste Joseph Fourier mostrou que qualquer 

função periódica pode ser escrita como uma soma de funções periódicas seno e 

cosseno. Em outras palavras, um sinal periódico pode ser decomposto em freqüências 

específicas que constituem o mesmo. Esta é a definição informal da série de Fourier, 

que, formalmente, pode ser representada da seguinte forma: 

Sendo  
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ݐ)݂ + (ܮ2 = ,(ݐ)݂ ܿ ≤ ݐ ≤ ܿ +  [3.5.1] ܮ2

Então 

(ݐ)݂ =
ܽ଴
2

+ ෍൤ܽ௡. cos ൬
ݐߨ݊
ܮ
൰ + ܾ௡ . ݊݁ݏ ൬

ݐߨ݊
ܮ
൰൨

ஶ

௡ୀଵ

 [3.5.2] 

Em que a0, an e bn são dados por 

ܽ଴ =
1
ܮ
න ݐ݀(ݐ)݂
௖ାଶ௅

௖
 [3.5.3] 

ܽ௡ =
1
ܮ
න (ݐ)݂ cos ൬

ݐߨ݊
ܮ
൰݀ݐ

௖ାଶ௅

௖
 [3.5.4] 

ܾ௡ =
1
ܮ
න (ݐ)݂ sen ൬

ݐߨ݊
ܮ
൰݀ݐ

௖ାଶ௅

௖
 [3.5.5] 

Porém, há a limitação das Séries de Fourier serem aplicadas apenas a funções 

periódicas. Para sinais não periódicos pode-se recorrer à Transformada de Fourier, 

que consiste em uma transformada integral que expressa um dado sinal em termos de 

funções senoidais, assim como suas respectivas amplitudes. Da mesma forma, sua 

definição é a seguinte: 

(߱)ܨ = න ௜ఠ௧ି݁(ݐ)݂
ஶ

ିஶ
 [3.5.6] ݐ݀

(ݐ)݂ = ൯(߱)ܨଵ൫ିܨ =
1

ߨ2
න ௜௧ఠ݁(߱)ܨ
ஶ

ିஶ
݀߱ [3.5.7] 

Desta forma, uma dada função pode ser representada através de seus valores 

no tempo – domínio do tempo – ou através de suas freqüências constituintes – 

domínio da freqüência. Tais domínios são mais ou menos vantajosos para 

determinados tipos de análises, sendo muito comum a passagem de um determinado 

sinal de um domínio para o outro através de séries ou Transformadas de Fourier. 

Todavia, como pode ser percebido, a representação do sinal em determinado 

domínio não fornece os resultados encontrados no outro domínio. Desta forma, 

quando um sinal é analisado através da Transformada de Fourier, ou são conhecidos 

seus valores temporais ou suas freqüências constituintes, de modo que não é possível 

determinar quando (em que intervalo de tempo) tais freqüências aparecem no sinal, 
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uma vez que a relação entre as freqüências presentes no sinal e o domínio temporal é 

inexistente (Fournier, 1995; Gomes et al., 1987; Gasquet et al., 2000). 

Para tentar evitar este problema foi proposta a Transformada de Fourier de 

Tempo Curto (STFT – Short Time Fourier Transform), também conhecida como 

Transformada de Gabor (Gabor, 1953). A idéia principal desta transformada é a 

introdução de um parâmetro de freqüência local, ou seja, o sinal é analisado por 

partes, dentro de “janelas”, sendo aplicada a transformada de Fourier somente no sinal 

contido na janela analisada. Formalmente, a transformada local observa f(t) durante 

uma janela W(t) centrada no instante t e de extensão limitada, ou seja, 

,߱)ܶܨܶܵ ߬) ≔ න ݐ)ܹ(ݐ)݂ − ߬)݁ି௝ఠ௧݀ݐ
ஶ

ିஶ 
 [3.5.8] 

Contudo, uma vez fixada a janela W(t), a resolução permanece constante em 

todo o plano tempo-freqüência. Todavia, considerando por simplificação apenas as 

ondas fundamentais (senóides) de um sinal, pode-se perceber, intuitivamente, que 

dois tons de 1 kHz e 2 kHz são bem mais distintos que outro par de tons de 1,001 MHz 

e 1,002 MHz, embora a distância em ambos os casos seja de 1 kHz. Conforme a 

freqüência analisada é incrementada, a distinção entre dois sinais próximos em 1 kHz 

torna-se mais árduo. Distinguir 1 GHz de 1,000001 GHz é uma tarefa relativamente 

difícil. Logo, trata-se de um problema de valor relativo: quanto 1 kHz significa no sinal 

analisado? 

Para resolver este inconveniente, é utilizada a Análise Multirresolucional (AMR) 

que, como o nome diz, é a análise na qual o sinal é analisado com diferentes 

resoluções para diferentes freqüências (Gomes et al., 1987). Uma comparação de três 

freqüências na resolução no plano tempo-freqüência pela Análise de Gabor (STFT) e 

pela Análise Multirresolucional pode ser vista na Figura 3.5.1, abaixo. 

 
Figura 3.5.1 - Comparação entre as análises (a) de Gabor (STFT) e (b) 

Multirresolucional (Oliveira, 2007) 
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Da mesma forma, uma Transformada Wavelet (WT – Wavelet Transform) é a 

aplicação de uma determinada janela ao sinal, assim como a STFT. A diferença entre 

ambas as transformadas é que a Wavelet utiliza a análise multirresolucional, de modo 

que a janela é expandida e comprimida de acordo com a freqüência em análise, ou 

seja, possui um parâmetro de escala (a), além do parâmetro de descolamento da 

janela (). Formalmente, 

,ܽ)ܹܶܥ ߬) ≔
1

ඥ|ܽ|
න ∗(ݐ)݂ ൬

ݐ − ߬
ܽ

൰݀ݐ
ஶ

ିஶ
 [3.5.9] 

Na qual CWT denota a Transformada Wavelet Contínua (Continuous Wavelet 

Transform) e (t) denota a janela utilizada, chamada de wavelet básica, uma vez que 

todas as outras janelas são versões escalonadas (expandidas ou comprimidas) e 

transladadas desta wavelet (Morettin, 1997). 

Por essa definição, se os parâmetros a e  forem discretizados, as janelas 

utilizadas não serão escalonadas e transladadas continuamente, mas em intervalos 

discretos, dando origem à Transformada Discreta Wavelet (DWT – Discrete Wavelet 

Transform). 

Sendo assim, as wavelets podem ser interpretadas como as transformadas 

lineares locais geradas por um banco de filtros passa-faixas de fator de qualidade 

constante (Meyer et al., 1987), ou seja, uma série de filtros cuja banda passante é 

proporcional à freqüência central do mesmo (ܳ = Δ݂/݂ =  .(݁ݐܿ

Em oposição à Transformada Wavelet, a STFT, por utilizar janelas fixas para 

todas as freqüências analisadas, possui banda passante constante para qualquer 

freqüência do sinal. A comparação da análise espectral entre essas duas 

transformadas pode ser vista na Figura 3.5.2. 
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Figura 3.5.2 - Comparação da análise espectral entre (a) STFT e (b) WT (Oliveira, 

2007) 

 

Essa análise através de um banco de filtros é conhecida como Codificação em 

Sub-bandas (Subband Coding) e os filtros utilizados no cálculo da DTW são filtros 

passa-baixas e filtros passa-altas calculados de forma a dividir o espectro do sinal ao 

meio, ou seja, suas freqüências de corte são ajustadas na metade da máxima 

freqüência presente no sinal. Com isso, as componentes resultantes da filtragem 

passa-altas contêm as freqüências mais altas do sinal, que já fornecem as 

características de forma detalhada, conforme a AMR. Já, as componentes resultantes 

da filtragem passa-baixas contêm as baixas freqüências do sinal, de modo que 

precisam ser analisadas novamente para se obter informações mais acuradas destas 

freqüências (Mallat, 2000). Para isso, basta passar essas componentes de baixa 

freqüência por um novo par de filtros passa-altas e passa-baixas para novamente 

dividir este espectro em duas partes, e assim sucessivamente. Cada vez que o 

processo de filtragem é executado diz-se que se tem um novo nível de decomposição. 

Como é possível perceber, cada sinal gerado pelo DWT possui apenas metade 

das freqüências presentes no sinal anterior. Tal processo é conhecido como sub-

amostragem por 2 (down-sampling). Os coeficientes resultantes dos filtros passa-

baixas e passa-altas são conhecidos por coeficientes de aproximação e detalhamento, 

respectivamente. 

Um sinal contendo n amostras gera uma transformada wavelet de igual número 

de amostras, sendo composta por uma seqüência de coeficientes. Esta seqüência é 

iniciada pelos coeficientes de aproximação do último nível de decomposição, seguidos 

pelos coeficientes de detalhamento dos níveis intermediários e finalizando com os 

coeficientes de detalhamento do primeiro nível de decomposição, como mostrado na 

Figura 3.5.3 (Junior, 2007). 
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Para se realizar esse processo recursivo até o último nível possível, é 

necessário, obviamente, que o número de amostras n do sinal discreto original esteja 

na forma 2୫, ou seja, uma potência de dois, pois em cada decomposição o sinal é 

divido em duas partes. Logo, a quantidade de decomposições possíveis de um sinal 

com n amostras é 

2௠ = ݊  ݉ =
log(݊)
log(2) [3.5.10] 

Assim, um sinal contendo n amostras pode ser decomposto em, no máximo, 

m = ୪୭୥(୬)
୪୭୥(ଶ) níveis. 

Desse modo, pode-se entender o processo da DWT em cada nível como sendo 

um par de filtros, sendo  

ypassa-baixas[n] = x[n] * h[n] = 


 
1

0 2
n

k knk xh
  [3.5.11] 

ypassa-altas[n] = x[n] * g[n] = 


 
1

0 2
n

k knk xg
 [3.5.12] 

onde, obviamente, h[n] e g[n] são os filtros passa-baixas e passa-altas, 

respectivamente. 
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Figura 3.5.3 - Funcionamento de uma DWT (Junior, 2007)  
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3.6. Bandas Críticas 

O ouvido humano é um sistema que detecta as várias freqüências presentes 

em um sinal sonoro. Sua faixa de percepção é dada como entre 20 Hz e 20 kHz, 

porém, conforme a pessoa envelhece, esta faixa diminui, geralmente degradando 

primeiramente os sons com maior freqüência. 

Além disso, o ouvido humano não é perfeito, e como tal apresenta algumas 

características que são estudadas através da Psicoacústica, que estuda como as 

pessoas interpretam os sons, relacionando as características físicas destes com o 

modo em que são interpretadas pela pessoa. 

Na porção interna do ouvido humano existe uma estrutura na forma de um tubo 

ósseo enrolado em espiral chama cóclea, a qual é preenchida por um fluido e possui 

um grande número de células nervosas em forma de cabelo em uma membrana, 

chamada membrana basilar. Estas células são de tamanhos e elasticidade variados, 

que entram em movimento de forma diferente para determinadas freqüências do sinal 

sonoro que atravessam o fluido da cóclea. Tal movimento é relativo à freqüência de 

vibração específica de cada célula. Essa vibração causa um impulso elétrico 

correspondente à amplitude daquela freqüência específica. 

Porém, o ouvido não consegue distinguir muito bem entre freqüências 

próximas, de forma que, através de experimentos, foram definidas bandas críticas, as 

quais consistem em faixas de freqüências com uma particularidade: se duas 

freqüências estiverem na mesma banda crítica, somente a de maior intensidade será 

interpretada (Barbedo, 2004). 

Dessa forma, e como a sensibilidade do ouvido é dependente da freqüência, a 

largura das bandas é variável de acordo com as freqüências em questão. Tais bandas 

foram mapeadas através de experimentos com os quais foi criada a Escala de Bark, 

proposta por Eberhard Zwicker em 1961 (Zwicker, 1961). Tal escala pode ser vista na 

Tabela 3.6.1. 

No presente trabalho, as bandas críticas foram usadas como uma tentativa de 

fazer com que o sistema proposto possa realizar a avaliação de determinado som 

animal de forma mais similar a análise feita pelo ouvido humano. 
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Bark 
Freqüência 

Banda 
Mínima [Hz] Máxima [Hz] Central [Hz] 

0 20 100 60 80 
1 100 200 150 100 
2 200 300 250 100 
3 300 400 350 100 
4 400 510 455 110 
5 510 630 570 120 
6 630 770 700 140 
7 770 920 845 150 
8 920 1080 1000 160 
9 1080 1270 1175 190 

10 1270 1480 1375 210 
11 1480 1720 1600 240 
12 1720 2000 1860 280 
13 2000 2320 2160 320 
14 2320 2700 2510 380 
15 2700 3150 2925 450 
16 3150 3700 3425 550 
17 3700 4400 4050 700 
18 4400 5300 4850 900 
19 5300 6400 5850 1100 
20 6400 7700 7050 1300 
21 7700 9500 8600 1800 
22 9500 12000 10750 2500 
23 12000 15500 13750 3500 
24 15500 20000 17750 4500 

Tabela 3.6.1 – Escala Bark 

 

3.7. Dimensão Fractal 

Harold E. Hurst foi um hidrólogo designado para trabalhar em uma represa no 

rio Nilo. Seu trabalho era estudar uma política de fluxos a ser adotada na represa para 

que esta não ficasse vazia e nem transbordasse. Para isso, suposições sobre o fluxo 

pluvial eram necessárias e, na época, era comum a suposição de que as chuvas 

seguiam o acaso. 

Nesse ambiente, Hurst desenvolveu uma nova técnica seguindo do 

pressuposto que o fluxo pluvial seguia um padrão não aleatório. Desta forma, foi 

criado o Expoente de Hurst, H, que serve para distinguir uma série aleatória de uma 
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não aleatória, ou seja, tal expoente fornece informações sobre a correlação e 

persistência em uma série temporal. Com isto, Hurst descobriu que as chuvas 

seguiam uma tendência com ruído, que poderiam ser medidos de forma estatística 

(SOTERRONI et al., 2008). 

Este expoente é dado no intervalo entre 0 e 1, significando: 

 0 ≤ H < 0,5: o sinal é dito anti-persistente, ou seja, a probabilidade do 

sinal se alternar (um valor “negativo” ser seguido de um valor “positivo”) 

é maior que cinqüenta por cento. 

 H = 0,5: o sinal é completamente aleatório. 

 0,5 < H ≤ 1: o sinal é dito persistente, existindo uma probabilidade maior 

que cinqüenta por cento do sinal se repetir. 

 

Dessa forma, por fornecer informações sobre correlação de uma série, o 

expoente de Hurst é relacionado com a dimensão fractal, a qual é um valor que indica 

o quão uma parte de um dado sinal é similar ao sinal como um todo. 

Por fim, o expoente de Hurst pode ser calculado de diversas formas, incluindo 

através de Transformadas Wavelets. Através destas, o expoente pode ser calculado 

através do algoritmo denominado Power Spectrum: 

Início {Algoritmo Hurst – Cálculo do Expoente Hurst}  
<1> Aplicar no sinal a Transformada Discreta Wavelet no maior nível de 

decomposição possível; 

<2> Elevar ao quadrado cada coeficiente obtido; 

<3> Normalizar o resultado obtido através do maior valor encontrado; 

<4> Aplicar o logaritmo na base 2 em cada valor obtido no passo anterior; 

<5> Calcular o somatório do número de elementos que compõem o sinal 

(sx) e do quadrado dos mesmos (sx²), ou seja, 

ݔݏ = ෍݅
௡

௜ୀଵ

ଶݔݏ  = ෍݅ଶ
௡

௜ୀଵ

 

onde n é o número de elementos do sinal; 

<6> Calcular o somatório do sinal encontrado no passo <4> {x} e o 

somatório do mesmo multiplicado pelo seu índice, ou seja, 

ݕݏ = ෍ݔ௜

௡

௜ୀଵ

ݕݔݏ  = ෍(݅ ∗ (௜ݔ
௡

௜ୀଵ
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no qual xi corresponde ao i-ésimo valor de x, o qual corresponde ao 

resultado encontrado no passo <4>; 

<7> Calcular o Expoente de Hurst através da seguinte equação: 

ܪ = ቮ

݊ ∗ ݕݔݏ − ݕݏ ∗ ݔݏ
݊ ∗ ଶݔݏ − ଶ(ݔݏ) − 1

2
ቮ 

Fim {Algoritmo Hurst – Cálculo do Expoente Hurst} 

4. Descrição das Atividades 

A pesquisa envolveu duas etapas, sendo que a primeira foi adquirir arquivos de 

áudio. Esse trabalho foi realizado por uma médica veterinária pesquisadora do NUPEA 

(Núcleo de Pesquisa em Ambiência, ESALQ, USP). O experimento foi conduzido em 

uma granja comercial de produção de suínos (Granja Querência), localizada no 

município de Elias Fausto, no interior do Estado de São Paulo. Essa granja se 

encontra a 23º12'10" de latitude sul e a 47º17'35" de longitude oeste e altitude média 

de 521 m, no centro de uma região chamada Zona de Depressão Periférica do Estado 

de São Paulo entre o Planalto Atlântico e a escarpa da Serra de Botucatu, com o clima 

caracterizado como mesotérmico. 

Para a realização deste experimento, foram utilizados 12 leitões F1 (Landrace 

X Large White) em fase de amamentação, de ambos os sexos, com idades variando 

entre 10 e 15 dias de vida. Os animais foram escolhidos a partir de avaliações clínicas 

elaboradas por um médico veterinário, permitindo assim selecionar animais doentes e 

animais sadios. Sendo assim, foram selecionados seis animais doentes e seis animais 

sadios, que eram mantidos em celas parideiras junto com suas respectivas matrizes e 

demais animais da ninhada, tendo acesso livre a abrigos escamoteadores. 

 Os animais doentes apresentavam sinais clínicos semelhantes e 

indicativos da ocorrência de artrite traumática, ou seja, dificuldade em se locomover, 

claudicação, aumento de volume e temperatura em uma ou mais articulações dos 

membros, aumento sistêmico de temperatura, prostração e lesões traumáticas na 

porção de pele que recobre a articulação, conforme visto na Figura 4.1. Os animais 

classificados como sadios não apresentaram nenhum destes sinais clínicos. 
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Figura 4.1 - Articulação de leitões acometidos por artrite 

 

O som emitido pelos animais foi coletado por um gravador digital da marca 

Panasonic® RR-US395, que pode ser visto na Figura 4.2, posicionado a uma distância 

de aproximadamente 15 cm da boca dos animais. Para isto, os animais foram 

segurados pelos veterinários, que gravaram as vocalizações. Os sons foram gravados 

com uma taxa de amostragem de 22050 Hz e resolução de 16 bits. 

  
Figura 4.2 - Gravador Digital Diretivo Panasonic®RR-US395 

 

Os leitões que apresentaram artrite foram segurados pelo corpo e os sons 

emitidos coletados pelo gravador. O toque sobre o corpo do animal funcionou como 

um estímulo para que ele vocalizasse. Após essa coleta, o animal foi marcado com 

uma tinta não-tóxica para posterior identificação e foi recolocado junto aos demais 

animais. Os seis leitões sem sinais clínicos de artrite selecionados para o experimento, 

portanto classificados como animais sadios, também foram submetidos ao mesmo 

procedimento para recuperar as chamadas emitidas quando segurados. A cada 

momento em que os animais eram segurados, uma faixa de gritos seqüenciais era 

registrada contendo diversos gritos de suínos. 

Através do software livre Audacity 1.2.6, todos os arquivos foram carregados e 

ouvidos separadamente. O objetivo foi montar um resumo das condições de cada 
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arquivo. Isso se deve porque nem todos os áudios possuíam boas condições de 

análise, sendo que muitos deles carregaram consigo ruídos que poderiam 

comprometer a análise do arquivo, como gritos excessivos dos demais filhotes, voz 

humana em concorrência com os grunhidos dos animais, dentre outros. Após todos os 

arquivos terem sido ouvidos, foram selecionados vinte e dois deles para posterior 

processamento, trabalho este realizado utilizando-se do software Audacity, como visto 

na Figura 4.3. Tais arquivos foram selecionados por apresentarem o menor ruído 

ambiente. 

 
Figura 4.3 - Separação de cada grito 

 

Foi então criado um algoritmo para, a partir das amostras brutas relativas aos 

sinais de áudio capturados, criar um vetor de energias referente às 23 primeiras 

bandas críticas da escala Bark, já discorrido acima. Foram utilizadas apenas 23 

bandas por causa da máxima freqüência do sinal, 11025 Hz, uma vez que a 

freqüência de amostragem do gravador é 22050 Hz e, pelo Teorema de Nyquist, a 

freqüência de amostragem deve ser pelo menos o dobro da maior freqüência presente 

no sinal. 

 Para isso, o algoritmo calcula a Transformada Discreta Wavelet do sinal de 

entrada, extraindo dela os seguintes parâmetros: 

i. 23 valores de energia, cada um correspondente a uma banda crítica;  

ii. 22 valores das derivadas discretas das energias anteriores;  

iii. a dimensão fractal do sinal. 

 

Com isto, cada sinal analisado gera um vetor de 46 valores (23+22+1), 

independentemente da duração do grito do animal, que são salvos para serem 
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utilizados como a entrada de uma Rede Neural Artificial, que é treinada para 

reconhecer os padrões. 

Cada arquivo selecionado, contendo um grito cada, passou pelo software 

acima mencionado, sendo processados todos os arquivos sonoros criados a partir das 

vinte e duas gravações separadas. Com isto, foram analisados um total de 237 gritos 

de animais sadios e 248 de animais doentes, perfazendo a mesma quantia de 

arquivos criados, os quais possuem o vetor de características supracitado. Tais gritos 

foram separados dos vinte e dois arquivos selecionados, uma vez que cada um 

desses arquivos possuía vários gritos do animal. 

 Uma vez caracterizado cada grito, foram separados, para realizar o teste, vinte 

e um arquivos contendo os vetores relativos aos animais sadios e oito de animais 

doentes, sendo processados mais dez sons aleatórios obtidos de um arquivo sonoro 

não utilizado, contendo gritos de um animal doente. Os demais foram submetidos a 

uma Rede Neural Artificial, a fim de treiná-la para que esta possa reconhecer os 

padrões referentes aos dois tipos de entrada: o animal sadio e o animal doente. A 

Rede Neural Artificial foi programada, assim como a Transformada Discreta Wavelet, 

em linguagem C++.  

Os arquivos contendo os vetores foram com o padrão Sadio_X e Doente_X,  

relativos aos animais sadios e doentes, respectivamente, onde “X” representa o 

número do arquivo. O arquivos de teste foram nomeados Teste_X, seguindo o mesmo 

padrão. 

Uma vez treinada, foram passados pela RNA os arquivos anteriormente 

separados para teste e que, por isso, não entraram no treinamento da mesma. O teste 

possui a finalidade de verificar a eficiência do treinamento e reconhecimento dos 

padrões. 

Na fase de operação, a RNA terá como resultado exatamente o valor 

associado ao padrão, quando tiver como entrada um dos padrões a qual foi treinada 

pra reconhecer. Quando o valor de entrada for diferente dos usados em seu 

treinamento, a rede retornará um valor tão mais próximo de um dos valores associado 

a um padrão quanto mais similar a entrada for deste padrão. 

Dessa forma, pode-se dizer que uma entrada qualquer está próxima ou não de 

quaisquer padrões pré-estabelecidos no treinamento da rede, que é o intuito deste 

trabalho.  
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Em suma, de forma esquemática, a metodologia das etapas envolvidas está 

representada na Figura 4.4. 

 
Figura 4.4 - Metodologia de aquisição e análise dos sinais de áudio 

 

Já para os sons das matrizes, foram processados, utilizando os mesmos 

programas utilizados nos sons anteriores, 24 arquivos, sendo 12 de matrizes 

amamentando seus filhotes em um ambiente de conforto térmico e 12 de matrizes 

amamentando em um ambiente de desconforto térmico. Por serem poucos sons, 

foram separados apenas dois arquivos de cada situação para testar a rede, uma vez 

que, deste modo, ainda restam dez amostras de cada situação para treinar a rede. 

Cada arquivo de áudio gerou um arquivo contendo os vetores das características 

supracitadas, exatamente como foi realizado com os sons anteriormente descritos. O 

procedimento dessa etapa é análogo ao procedimento anterior. 

5. Resultados 

Processar uma amostra de som é carregar o referido arquivo de áudio e, na 

seqüência, proceder com lógica matemática suficiente para alterar o comportamento 

do sinal primitivo.  

Dessa forma, os resultados encontrados para cada arquivo de teste relativo 

aos animais doentes estão mostrados na Tabela 5.1, onde os “Di” e os provenientes 

de animais sadios são da forma “Si”, onde, em ambos, i é o número do arquivo. 
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Arquivo Resultado  Arquivo Resultado 
S1 2,08687  D1 0,610853 
S2 2,86066  D2 1,31344 
S3 1,23819  D3 0,562464 
S4 2,00855  D4 0,588281 
S5 1,57017  D5 1,2893 
S6 1,7743  D6 0,877612 
S7 1,69052  D7 1,4017 
S8 1,65086  D8 0,0306016 
S9 1,84504  D9 1,99726 

S10 1,25523  D10 1,39201 
S11 1,6944  D11 1,06653 
S12 2,05436  D12 0,695742 
S13 1,44056  D13 0,902058 
S14 0,962914  D14 1,19993 
S15 1,49017  D15 0,859135 
S16 0,96057  D16 0,737209 
S17 0,568798  D17 0,623897 
S18 0,314624  D18 1,15054 
S19 0,780693    
S20 2,20273    
S21 1,17311    

Esperado: 2  Esperado: 1 
Tabela 5.1 - Escala Bark 

 

Arredondando os valores obtidos para se obter um número natural, encontram-

se, para os animais doentes, 16 valores como o esperado e, para os animais sadios, 

10. Como existem 18 sons de animais doentes e 21 de animais sadios, a porcentagem 

de acerto foi de 88,9% para os doentes e 47,6% para os sadios. 

Destaca-se a quantidade de sons de animais sadios que foram classificados 

como doentes. Esse fato pode ser explicado, entre outras coisas, pela quantidade de 

exemplos que foram utilizados para treinar a RNA e pelo fato dos sons serem 

gravados através do contato de humanos com os animais, o que pode fazer com que 

animais sadios emitam gritos que se assemelham aos gritos de animais doentes, 

fazendo com que a RNA se confunda no reconhecimento dos padrões. Para emitirem 

sons, os animais eram segurados por pessoas, para então ser realizada a gravação. 

Porém o fato do animal ser segurado por uma pessoa pode induzir a gritos de 
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insatisfação do animal, independente de estar doente ou não, fazendo com que a rede 

neural perca muito de sua eficiência em separar os padrões. 

Já para os testes com a entalpia e o ITGU, foram utilizados quatro arquivos 

sonoros, um de cada característica estudada. Desses sons, cada vocalização do 

animal foi gravada em um arquivo separado, os quais foram processados e geraram 

os arquivos contendo os vetores de características correspondentes. Este processo foi 

executado analogamente ao experimento anteriormente descrito. Sendo assim, para a 

menor entalpia, foram gerados 50 arquivos e para a maior, 133. Já para o menor 

ITGU, gerou-se 49 arquivos e para o maior, 137. Com isto, foi escolhido separar 45 

arquivos de cada característica para treinar a rede neural e utilizar os demais para 

testá-la. 

Iniciando pela entalpia, foram separados 45 sons de menor entalpia. Porém, 

como existiam mais arquivos de maior entalpia, estes foram separados em três 

grupos, havendo a intersecção de sons entre eles para que cada grupo possuísse 

exatos 45 arquivos. Com isto, foram gerados três testes de entalpia, sendo que a 

entrada de treinamento da rede neural referente à menor entalpia foi sempre os 45 

arquivos separados anteriormente e a entrada referente à maior entalpia foi cada um 

dos grupos supracitados. Para cada grupo de maior entalpia usado no treinamento da 

rede neural foram utilizados 15 arquivos para testar a rede, sendo os cinco 

previamente separados de menor entalpia e dez de maior entalpia retirados 

aleatoriamente dos outros dois grupos que não foram utilizados para treinar a rede. Os 

resultados estão mostrados nas Figuras 5.1 a 5.4. 

  

 
Figura 5.1 - Resultado utilizando o primeiro grupo de maior entalpia 
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Figura 5.2 - Resultado utilizando o segundo grupo de maior entalpia 

 

 
Figura 5.3 - Resultado utilizando o terceiro grupo de maior entalpia 
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Figura 5.4 - União dos resultados dos teste de entalpia 

 
Analogamente ao procedido com a entalpia, os arquivos sonoros de maior 

ITGU foram separados em três grupos de 45 arquivos cada um. Nessa separação 

sobraram dois arquivos, que foram então utilizados para o teste da rede neural. Como 

dito anteriormente, existiam 49 arquivos sonoros de menor ITGU e, como 45 foram 

utilizados para treinar a rede, sobraram quatro que foram utilizados para testá-la. Com 

isso, existiam 16 arquivos de teste para cada grupo utilizado para treinar a rede, sendo 

4 provenientes dos sons de menor entalpia, 2 excedentes da separação dos grupos de 

maior entalpia e 10 dos outros dois grupos que não foram utilizados no teste. Os 

resultados de cada teste podem ser vistos nas Figuras 5.5 a 5.8. 
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Figura 5.5 - Resultado utilizando o primeiro grupo de maior ITGU 

 

 
Figura 5.6 - Resultado utilizando o segundo grupo de maior ITGU 

  

 
Figura 5.7 - Resultado utilizando o terceiro grupo de maior ITGU 
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Figura 5.8 - União dos resultados dos testes de ITGU 

6. Conclusão 

Diante das ferramentas utilizadas e citadas, pode-se concluir que a 

porcentagem de reconhecimento obtida entre os animais doentes foi satisfatória, 

garantindo a existência de uma semelhança entre os padrões sonoros destes animais. 

No entanto, para os animais sadios, houve uma baixa porcentagem de 

reconhecimento, necessitando assim maior aprofundamento nas pesquisas. 

Porém, os métodos utilizados mostraram-se eficazes na separação de entalpia 

e ITGU, uma vez que pode ser vista a existência de um distanciamento entre os 

resultados obtidos. Contudo, existem alguns pontos que estão fora do resultado geral, 

gerando alguns falsos positivos. Isto pode ser justificado, mais uma vez, pela precisão 

da rede neural, que é tão maior quanto mais exemplos forem utilizados em seu 

treinamento. Em um primeiro momento, poucos exemplos foram utilizados devido à 

dificuldade existente na gravação dos arquivos sonoros. 

Um ponto importante a ser resolvido consiste no treinamento na Rede Neural 

Artificial, uma vez que este treinamento é muito delicado e passível de erros de 

interpretação dos padrões. Por isso será necessária a separação de novos arquivos 
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sonoros contendo os gritos de outros suínos, a fim de se obter uma gama maior de 

exemplos para a Rede poder reconhecer entre esses padrões de uma forma mais 

elaborada e precisa. 

Outro ponto é a forma de gravação dos sons, que exige contato físico do 

animal com humanos, que, como já discutido, pode influenciar nas características do 

grito, confundindo assim a RNA. Logo, seria interessante a obtenção dos gritos dos 

animais sem interferências humanas, para assim haver uma melhor separação efetiva 

entre os sons de animais doentes e sadios. 
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