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Resumo

O objetivo deste trabalho é propor um algoritmo para realizar a identificagdo de
padrbes na vocalizagao suina, visando determinar o nivel do bem-estar do animal. Tal
analise foi proposta uma vez que o bem-estar animal € um assunto cada vez mais
abordado no mundo todo, principalmente quando os animais séo criados para o abate.
Dessa forma, a criagdo de um método em que haja o minimo de contato com os
animais se faz importante, evitando que tal contato altere o comportamento do animal
e, consequentemente, o resultado da andlise de seu bem-estar. Por essas
caracteristicas, foi proposto um método de anadlise dos sons emitidos pelos suinos
com base na utilizagdo de uma Rede Neural Artificial do tipo Radial Basis Function, a
qual possui como elementos de treinamento e operagdo um conjunto de
caracteristicas extraidas através da Transformada Discreta Wavelet de sinais sonoros
pré-gravados. As caracteristicas obtidas dos sinais foram as energias das bandas
criticas relativas a Escala Bark e a diferenga entre as energias das bandas adjacentes,
além dimensao fractal do sinal. Através desse método foram analisados dois tipos de
sinais sonoros: a vocalizagdo de leitdes saudaveis e de leitbes acometidos por uma
doenca chamada Artrite Traumatica; e a vocalizagdo de suinos adultos em situagoes
de conforto e desconforto.

Os resultados demonstram que a analise proposta atingiu bons patamares de acerto

na determinacao do bem-estar do animal.

Palavras-chave: Processamento Digital de Sinais, Suinos, Redes Neurais Atrtificiais,

Transformada Discreta Wavelet
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Abstract

This work describes an algorithm which was created and applied to classify
patterns of swine vocalizations, in order to determine the animal's welfare, since this is
an issue increasingly discussed, becoming a priority in management of these animals,
especially for slaughter. Thus, it is necessary to have a method in which there is no
contact with the animals, avoiding modifications of the animal's behavior and,
consequently, the results. The proposed approach implements the above-mentioned
analysis by using an Artificial Neural Network and the Discrete Wavelet Transform. The
characteristics obtained from the signals are: energies of the critical bands of the Bark
scale; the differences between energies of the adjacent bands; and the fractal
dimension of the signal. Through this method, two types of signals were analyzed: the
vocalization of healthy piglets and sick piglets, which had Traumatic Arthritis; and the
vocalization of adult pigs in situations of comfort and discomfort. The results show that
the proposed method achieves good levels of accuracy in determining the animal's

welfare.

Keywords: Digital Signal Processing, Swines, Artificial Neural Networks, Discrete
Wavelet Transform
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1. Introducgao

No contexto deste trabalho, vocalizacdo é a emissdo de sons pelo animal
diante de alguma situagdo comportamental. Neste trabalho, as situagbes analisadas
serao a ocorréncia, ou ndo, da doenga denominada Artrite Traumatica e do ambiente

proporcionando conforto ou desconforto térmico aos animais.

A vocalizagdo, segundo Appleby et al. (1999), representa uma ferramenta
precisa que permite avaliar o bem-estar dos animais, uma vez que suas chamadas
traduzem seu estado emocional ou suas necessidades. Manteuffel et al. (2004)

concluiram que a tensao e gritos podem indicar alteragdes no bem-estar dos animais.

Outro ponto importante sdo as Redes Neurais Atrtificiais (RNAs) que, segundo
Braga (2000), sao sistemas paralelos distribuidos e compostos por unidades de
processamento simples, dispostas em uma ou mais camadas e interligadas por um
grande numero de conexdes, associadas a pesos, e que calculam determinadas
fungdes matematicas, tendo seu funcionamento inspirado na estrutura biolégica do

cérebro humano.

Também sdo importantes os conceitos de Transformada Wavelet e Dimenséo
Fractal, sendo que o primeiro consiste na decomposi¢ao de um sinal no tempo para o
dominio da frequiéncia; e o segundo é um valor que diz 0 quao uma parte especifica
do sinal é similar ao sinal como um todo. Desta forma, os sinais sonoros obtidos da
gravacao dos sons emitidos pelos suinos serdo decompostos no dominio da
freqUiiéncia e analisados com base em uma Rede Neural Artificial que, por sua vez,
possui como elementos de analise um conjunto de energias relativas ao sinal, além de

sua dimensao fractal.

2. Objetivos

Conforme Lee et al. (2006), animais de uma mesma espécie utilizam a
vocalizagdo para a comunicagao entre membros de seu grupo. Assim, como principal
objetivo, este trabalho visa propor um algoritmo de analise dos sons emitidos por
suino. Analisar o som significa estudar os arquivos de audio gerados pelas respostas
dos animais diante de algum comportamento conhecido.



Testes iniciais foram realizados com sons provenientes de leitdes sadios e
leitdes acometidos pela Artrite Traumatica, com a finalidade de se identificar o padrao
sonoro de cada situagdo para a posterior classificagdo de um sinal sonoro entre
ambas as situagcdes. Também foi testada a separagéo entre os sons advindos de uma
matriz (fémea reprodutora suina) em quatro situagbes de ambiente: alta e baixa
entalpia e alto e baixo indice de Temperatura de Globo e Umidade (ITGU). Neste
ultimo caso, a analise se deu na determinacgao das diferengas entre os niveis de ITGU
e de entalpia de forma separadas. Tais indices foram escolhidos por serem indices de
conforto muito utilizados em animais, principalmente em suinos, que sdo os animais
estudados neste trabalho. Estes indices levam em consideragdo a temperatura do
ambiente, sua umidade e radiacdo que, comparados com tabelas pré-estabelecidas,

fornecem faixas de conforto e estresse para cada tipo de animal.

3. Conceitos Iniciais

3.1.Bem-estar de Suinos

Cada vez mais, os métodos de abate de animais criados em granjas’, assim
como a criagdo em si, estdo sendo debatidos por todo o mundo. O bem-estar, mais do
que nunca, esta se tornando prioridade na criagdo dos animais. Logo, € interessante
desenvolver um método para avaliar os agentes relacionados ao bem-estar do animal,
como o estresse, por exemplo. Mais do que isso, o0 método deve possuir o menor grau

possivel de contato com o animal sob analise.

Nessa area, varias pesquisas tém sido realizadas com diversos tipos de
animais para buscar tais métodos de avaliacdo. E, uma vez que a vocalizagdo animal
permite medir seu nivel de estresse, é possivel entdo analisar detalhadamente sua

vocalizagéo para obter um indicativo de seu bem-estar (Manteuffel et al.,2004).

Ambientes ou condigbes estressantes podem alterar o estado afetivo do
animal, que, por sua vez, pode influenciar o modo como o mesmo reage aos estimulos
do ambiente (Boissy et al., 2007). Logo, essas ocorréncias devem ser monitoradas,
pois podem representar o inicio de uma doencga, por exemplo, 0 que se torna
altamente preocupante quando varios animais sao criados juntos, como em uma

granja. Nesse sentido, e novamente segundo Manteuffel et al. (2004), os sons séo

' Granja é uma construgdo fechada na qual se abrigam aves ou mamiferos (suinos
especialmente) para o futuro abate.



transmitidos rapidamente e a grandes distancias, sendo relativamente imunes a
objetos que possam obstruir seu caminho. Por isso, sdo ideais para carregar sinais
que serao enviados, por exemplo, a um alarme, que pode estar a uma grande

distancia.

Outro trabalho interessante foi realizado por Algers e Jensen (1985), no qual
foram analisados os efeitos de um ambiente com ruido continuo sobre leitdes, sendo
que trés leitdes foram colocados em um ambiente silencioso e outros trés em um
ambiente ruidoso. Para todos eles, foram reproduzidos grunhidos previamente
gravados de sua matriz, os quais sofriam alteragbes em determinado momento. Os
animais que estavam no ambiente silencioso responderam as alteragbes dos
grunhidos reproduzidos, enquanto que os animais colocados no ambiente ruidoso nao
responderam a variagdo. Logo, foi sugerido que os animais expostos ao barulho
podiam receber menos leite que os outros por terem dificuldade em responder a sinais

sonoros da matriz, influenciando seu crescimento.

Na mesma linha de pesquisa sobre bem-estar animal, um trabalho sobre a
adaptabilidade de suinos a diferentes temperaturas ambiente foi realizado por
Hillmann et al. (2004). Alguns suinos foram testados no inverno, enquanto outros
foram testados no verao. Os sons emitidos por cada grupo foram gravados a noite,
evitando, assim, os efeitos e sons de atividades realizadas durante o dia. Através de
redes neurais artificiais e de aplicativos como o LabVIEW®, os sons foram analisados
e chegou-se a conclusdo de que o ambiente afeta claramente o comportamento vocal
dos animais, sendo que os mesmos emitem uma maior quantidade de sons em alta
frequéncia quando estdo desconfortaveis, ou seja, em temperaturas mais elevadas ou
mais baixas. Desta forma, seria possivel o monitoramento dos sons emitidos para se

verificar a adaptacdo dos animais referente as variagbes de temperatura.

Ainda nesse sentido, um experimento foi realizado para se verificar a emisséo
de sons em altas freqiéncias pelos suinos quando submetidos a castragéo a fim de se
averiguar quais aspectos do processo sdao mais dolorosos ao animal (Taylor e Weary,
2000). Notavelmente, os animais emitiram maior quantidade de altas freqUéncias
durante a incisdao, mostrando que as mesmas também podem indicar, além de

desconforto, a dor sentida pelo animal.

Em um trabalho realizado por Branco et al. (2006), no qual foram analisados os
choros de dor emitidos por criangas recém-nascidas, constatou-se, entre outras

coisas, a ocorréncia de frequéncias hiper-agudas, ou seja, altas frequéncias,



mostrando que os bebés também podem exprimir seu desconforto através da emissao
de altas freqiiéncias.

Outro trabalho envolvendo altas freqiiéncias analisou os sons emitidos por
leitbes quando os mesmos sao separados de suas matrizes (Weary et al., 1999).
Descobriu-se que os leitdbes mais novos emitem maiores quantidades de sons em altas
frequiéncias que leitdes mais velhos, pois, instintivamente, sabe-se que os leitdes mais
novos precisam de maiores cuidados de sua matriz, pois sdo mais frageis. Outro fator
que pode ter influenciado na emissao dos sons em alta freqiiéncia é a variagdo de
temperatura sofrida pelo leitdo, uma vez que sem os cuidados de sua mae e com a
reducdo de alimento - amamentag¢édo - o mesmo perde temperatura corporal. Desse
modo, o animal fica com mais frio e desconfortavel, emitindo, como supracitado, sons

em alta frequiéncia.

Em resumo, os trabalhos citados evidenciam que existe uma relagéo entre a
analise de freqiiéncias emitidas pelos animais e o bem-estar do mesmo, podendo
aquela ser utilizada para a determinacéo deste.

3.2.Digitalizagao de Sinais

Sabe-se que os sons encontrados na natureza sdo conhecidos como
continuos, inclusive os que exprimem a comunicagao entre os animais, alvo do
presente trabalho. Dessa forma, existem infinitos valores entre dois valores discretos
do sinal. Assim, o som que atinge o sistema auditivo dos animais causa movimentos
no sistema auditivo, que, associados a mecanismos neurais, permitem distinguir

dentre os diferentes tipos de sons encontrados na natureza.

Para que o som seja processado por sistemas computacionais, € preciso,
inicialmente, converté-lo para um formato de nimeros que possa ser quantificado pelo
computador, isto €, o formato digital. Tal processo € conhecido como conversao
analogica-digital ou simplesmente CAD. A Figura 3.2.1 ilustra uma amostragem de um
sinal sonoro hipotético.
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Figura 3.2.1 - Amostragem de um sinal sonoro qualquer

Como o sinal analégico possui infinitos valores nos intervalos mencionados, o
processo de discretizagdo resolve este problema atribuindo valores discretos para o
novo sinal que estd se formando. Desse modo, € necessaria uma amostragem do
sinal, que consiste em obter os valores do sinal analdgico, continuo no tempo, em

periodos constantes de tempo, obtendo, assim, uma série de valores discretos.

Porém, pelo Teorema de Nyquist, a freqliéncia de amostragem deve ser, no
minimo, duas vezes a maxima freqliéncia encontrada no sinal, evitando assim o
aliasing no sinal. Além disso, se o microfone utilizado possuir uma freqiéncia de
amostragem baixa, o som sera capturado e convertido poucas vezes, fazendo com

que o arquivo digitalizado seja ruim, como ilustra a Figura 3.2.2.
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Figura 3.2.2 - Discretizacdo do som
3.3.Filtros

Um conceito importante para o trabalho é a filtragem digital de sinais. Um filtro
digital pode ser entendido como um sistema que, através de combinagdes lineares do
sinal de entrada com certos coeficientes, gera uma saida com determinadas
caracteristicas de frequiéncia. Alguns dos parametros mais relevantes, como mostrado

na Figura 3.3.1, sdo:
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Figura 3.3.1 - Parametros de um filtro (Junior, 2007)

- Freqiiéncia de corte: freqiiéncia na qual a saida apresenta uma

atenuacdo de 3dB em relagcdo a entrada e separa a banda de
passagem da banda de transigéo.

- Freqiiéncia de rejeigao: freqiiéncia na qual a saida apresenta um valor
com consideravel atenuacdo em relagdo ao do valor de entrada;
normalmente 5% do valor de entrada. Analogamente, separa a banda
de transicao da banda de rejeigao.

- Funcgao: esta relacionada com o tipo do filtro. Ha os filtros passa-altas,
passa-baixas, passa-faixas e rejeita-faixas, sendo que os filtros passa-
altas permitem a passagem de altas frequéncias e atenua as baixas
freqiéncias. Analogamente, os filiros passa-baixas fazem o oposto:
permitem a passagem de baixas freqiéncias e atenuam as altas
freqiiéncias. Do mesmo modo, os filtros passa-faixas e rejeita-faixas
permitem a passagem de uma determinada faixa de freqiéncias e

atenuam todas as outras, e vice-versa, respectivamente.

- Ordem: é o numero de podlos da fungao de transferéncia do filtro, uma vez
que uma funcdo de transferéncia é, basicamente, uma fungdo que
relaciona a saida de um sistema com sua entrada, descrita adiante.

Quanto maior o numero de pdlos da fungéo de transferéncia, ou seja,



quanto maior a ordem do sistema, melhor é a resposta do filtro,
aproximando-se de um filtro ideal, que é aquele no qual ndo ha banda
de transicdo, a banda de passagem ndo é atenuada e a banda de

rejeicdo é totalmente atenuada, possuindo saida nula.

Outro conceito € a determinagdo da energia do sinal. Tendo-se um sinal
discreto, de amplitude e duragéo finitas, pode-se calcular sua energia, E(x[n]), como

sendo

-1

E= Z X2 [3.3.1]

1=
no qual x; & o i-€simo componente do sinal discreto.

Além disso, existe um importante teorema no processamento de sinais, o
Teorema da Convolugdo, que mostra que a multiplicagao de dois sinais discretos no
dominio da freqliiéncia, H[z] e X[z], corresponde a convolugao dos mesmos no dominio

do tempo, h[n] e x[n], e pode ser descrita por

y[n] = x[n] * h[n] = kM:;Ihkxn_k [3.3.2]

no qual o simbolo * representa a convolugdo e M o nimero de amostras de x[.].

3.4.Redes Neurais Artificiais

Conforme Silva et al. (2010), as Redes Neurais Artificiais (RNAs) podem ser
entendidas como uma tentativa de simular nos computadores a estrutura e o
funcionamento do cérebro, particularmente dos neurénios. Tais neurdnios podem ser
vistos, simplificadamente, como sendo células divididas em trés partes: os dendritos, o

corpo celular e o axnio, como mostrado na Figura 3.4.1, abaixo.
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Figura 3.4.1 - Neurdnio simplificado

A principal fungdo dos dendritos é a recepgdo de estimulos advindos de
diversos outros neurdnios conectados ao mesmo. Tais estimulos sdo, entdo,
processados pelo corpo celular, que produzira um potencial de ativagdo para disparar
um impulso elétrico pelo axénio. Por fim, seu axénio possui a fungdo de conduzir os
impulsos elétricos gerados pelo corpo celular para outros neurbnios que estejam

conectados ao mesmo.

Um neurdbnio, entdo, recebe pulsos como estimulo, os quais sdo processados
e, atingido certo limiar, o neurdnio realiza uma agéo, que pode ser tanto a emissao de

pulsos para um neurdnio vizinho como a inibi¢do do mesmo.

Estima-se que a rede neural biolégica de um adulto possua cerca de 100
bilhdes de neurdnios, cada um fazendo conexdes com outros 6.000 neurdnios,
perfazendo um total de 600 triihdes de sinapses (Shepherd, 1990), sendo que as
sinapses correspondem as regides de comunicagéo entre os neurbnios. Vale ressaltar
que tais conexdes ndo sao realizadas através de contato fisico entre os neurénios,
mas através de elementos chamados neurotransmissores, que sao 0s responsaveis

pela transmissao de impulsos elétricos entre um neurdnio e outro.

O modelo de neurdnio artificial mais simples foi proposto por McCulloch & Pitts
e ainda é o modelo mais utilizado nas diversas redes neurais artificiais. Tal modelo

pode ser visto na Figura 3.4.2.
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Figura 3.4.2 - Modelo de um neurdnio artificial

Sua estrutura é:

e Sinais de entrada {x4, ... , X,}: sd0 os sinais advindos do processo a ser
analisado.
e Pesos sinapticos {w;, ... w,}: sdo os valores que permitirdo a rede

neural avaliar a relevancia de cada sinal de entrada.

e Combinador linear {Z}: agrega todos os sinais de entrada devidamente
ponderados pelos seus respectivos pesos sinapticos a fim de produzir
um valor de potencial de ativagéo.

e Limiar de ativagdo {B}: valor que especifica qual o limiar que deve ser
atingido pelo potencial de ativagdo para que a saida do neurbnio seja
ativada.

e Potencial de ativagéo {u}: diferenga produzida entre o combinador linear
e o limiar de ativagdo. Caso o potencial de ativagado seja positivo (u=68),
0 neurdnio produzird um potencial excitatério; caso contrario, o
potencial sera inibitorio.

e Funcao de ativagdo {g}: sua fungdo é modificar e limitar o valor da saida
do neurénio dentre uma faixa de valores possiveis.

e Sinal de saida {y}: resultado do processamento do neurdnio em relagéao
as entradas fornecidas. Tal valor sera propagado para os neurdnios que
estdo sequencialmente conectados.

Desta forma, é facil verificar que as equagbes de um neurdnio artificial séo

dadas por
n

u= Z WiX; — 0 [341]

i=1

10



y=gw [3.4.2]

A funcgao de ativagdo pode assumir muitas formas, sendo as mais comuns a
Funcao Degrau, a Fungdo Degrau Bipolar, a Fungdo Rampa Simétrica, a Fungao
Logistica (Sigmoidal), a Funcdo Tangente Hiperbodlica e a Fungdo Gaussiana. Esta
ultima pode ser descrita como

(u—c)?

gw) =e 202 [3.4.3]

na qual c representa o centro da fungdo gaussiana e o denota o desvio padrao
associado a mesma. A representagao grafica da fungao gaussiana € vista na Figura
3.4.3.

Y

I
I
I
I
|
|
|
|
|
|
|
C
Figura 3.4.3 - Funcdo Gaussiana

Ja a rede neural artificial € o conjunto de neurdnios artificiais conectados entre
si. Tal arranjo pode ser divido em trés partes: a camada de entrada, a camada
intermediaria e a camada de saida. Os neurdnios que recebem os sinais de entrada na
rede constituem o que se chama de camada de entrada. Os neurdnios que recebem
como entrada as saidas daqueles da camada de entrada constituem a segunda
camada e assim sucessivamente até a camada final, que é a camada de saida. As
camadas internas que ndo s&o nem a de entrada e nem a de saida sdo geralmente
referidas como camadas intermediarias ou camadas ocultas, conforme visto na Figura
3.44.
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Entradas

Neurdnios de Neurdnios Neurdnios de
entrada intermediarios saida

Figura 3.4.4 - Esquema de uma Rede Neural Artificial

As principais caracteristicas envolvidas com a utilizacdo de Redes Neurais
Artificiais sdo:

o Adaptacdo por experiéncia: os parametros internos da rede, tipicamente
seus pesos sinapticos, sdo ajustados através da analise de exemplos
relacionados com o comportamento do processo considerado.

o Capacidade de aprendizado: uma vez que os parametros internos da
rede sdo ajustados conforme novos exemplos sdo analisados, a rede é
capaz de extrair os relacionamentos entre as variaveis existentes. Tal
processo é chamado de treinamento da rede.

e Generalizagdo: com a rede devidamente treinada, sinais ainda
desconhecidos pela mesma podem ser analisados, estimando-se a
solugdo dos mesmos através dos padrdes aprendidos durante a fase de
treinamento.

e Tolerancia a falhas: a rede torna-se tolerante a falhas quando parte de
sua estrutura é danificada. Este fato deve-se a grande quantidade de
interligacdes entre os neurdnios artificiais.

e Armazenamento distribuido: cada sinapse entre os neurbnios artificiais
realiza parte do processamento do sinal, de forma que o conhecimento
do comportamento de determinado sinal € distribuido entre os varios
neurdnios artificiais que compdem a rede neural artificial.

o Facilidade de prototipagem: uma vez treinada a rede, o processamento
de novos sinais se dara, geralmente, através de operagbes
matematicas elementares, possibilitando sua facil prototipagem tanto

em software como em hardwatre.
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Uma importante configuragdo de uma RNA ¢ aquela caracterizada pelas
Funcbes de Base Radial (RBF — Radial Basis Function). Sua utilizacdo ¢ ampla em
problemas que envolvem aproximagdes de fungbes e classificagdo de padrbes. Por
este motivo, esta foi a rede utilizada neste trabalho. Sua estrutura tipica consiste na
utilizacdo de apenas uma camada oculta, como a disposta na Figura 3.4.4, e fungbes
de ativagdo do tipo gaussiana. Sua arquitetura € do tipo feedforward de camadas
multiplas, uma vez que o sinal é transmitido unidirecionalmente da camada de entrada

para a camada de saida; e porque possui mais de uma camada no total.
O treinamento de uma rede RBF ¢é divido em dois estagios:
Primeiro Estagio

Ajuste dos neurbnios da camada intermediaria: como ja mencionado, a

expressao que define uma fungdo de ativagdo gaussiana é dada por

(u—c)?

gw) =e 22 [3.4.4]

em que c define o centro da fungéo gaussiana e 62 denota sua variancia
(o denota o desvio padrdo), a qual denota o quao o potencial de
ativacdo (u) esta disperso em relagédo ao seu centro (c).
Desta forma, considerando a equagao acima, os parametros livres sdo
o centro ¢ e a variancia o2 Pela configuragdo da rede RBF, o centro ¢
estd diretamente associado aos seus proprios pesos, enquanto o0s
valores de entrada estdo associados com o préprio sinal da entrada da
rede. Desta forma, a saida de cada neurdnio j da camada intermediaria
€ expressa por
m ()’ tas

§ () =g = 549
no qual x representa o proprio vetor de entrada; o indice (" é relativo a
camada intermediaria; j = 1, ... , n1 (sendo n4 0 nimero de neurdnios na
camada intermediaria).
Pode-se perceber, através da equagao 3.4.4, que quanto mais proximo
uma determinada amostra estd do centro da gaussiana, maior sera sua
contribuicdo para o valor do potencial de ativagcéo, sendo este valor o
mesmo para qualquer amostra situada na mesma distancia radial ao

centro c.
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Tratando-se de reconhecimento de padrdes, as fronteiras delimitadoras
— chamadas fronteiras de separabilidade: fronteira entre os padroes
analisados — sdo definidas como campos receptivos hiperbdlicos,
conforme mostrado pelas Figura 3.4.5 e Figura 3.4.6 para um problema

constituido de duas entradas x1 e x,.

:'{Ejh

-
o

X4

Figura 3.4.5 - Funcao de base radial do tipo gaussiana

gix) 4

X4

Figura 3.4.6 - Fronteira de separabilidade RBF

Dessa forma, a principal fungdo da camada oculta é posicionar o centro
de suas gaussianas da forma mais apropriada possivel. O
pseudocddigo para este estagio de treinamento de uma rede RBF ¢é tal

Ccomo se segue:
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Inicio {Algoritmo RBF — Primeiro Estagio de Treinamento}
<1> Obter o conjunto de treinamento {x"};
<2> Iniciar o vetor de pesos de cada neurdnio da camada
intermediaria com os valores das n¢ primeiras amostras de
treinamento;
<3> Repetir as instrugdes:
<3.1> Para todas as amostras de treinamento {x}, fazer:

<3.1.1> Calcular as distancias euclidianas entre x* e wj(il),

considerando-se cada j-ésimo neurdnio por vez;
<3.1.2> Selecionar o neurdnio j que contenha a menor
distancia com o intuito de agrupar a referida
amostra junto ao centro mais préximo;
<3.1.3> Atribuir a amostra x* ao grupo Q%;

<3.2> Para todos wj(il), onde j=1, ..., ny, fazer:
<3.2.1> Ajustar wS” de acordo com as amostras em QY

1
wl = — x®)
Jt m(})
x®en®
{m? & o nimero de amostras em QY’}
Até que: ndo haja mudancas nos grupos QU entre as iteragdes;

<4> Para todos wj(il), ondej=1, ..., ny, fazer:

<4.1> Calcular a variancia de cada uma das fungdes de
ativacdo gaussianas pelo critério da distancia quadratica
média:
1 - 2
2 *x _ @
T =D Z Z("i Wji )
x(0enl i=1
Fim {Algoritmo RBF - Primeiro Estagio de Treinamento}

Segundo Estagio

Ajuste dos neurdnios da camada de saida: apds a etapa anterior ser
concluida, o segundo estagio de treinamento deve ser executado.

Neste estagio, utiliza-se a fungao linear como funcao de ativagéo para
os neurdnios de saida, de modo que
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yi=9 () =u?, [3.4.6]
no qual j=1, ... ,n; e o indice ® esta relacionado com a camada de
saida.

Desta forma, a camada de saida realiza apenas uma combinagéo linear
das fungdes de ativagédo gaussianas produzidas na camada
intermediaria.

O pseudocadigo deste estagio € como se segue.

Inicio {Algoritmo RBF — Segundo Estagio de Treinamento}
<1> Obter o conjunto original de amostras de treinamento {x*};

<2> Obter o vetor de saida desejada {d*} para cada amostra;

<3> Iniciar wj(iz)

com valores aleatdrios pequenos;
<4> Especificar a taxa de aprendizagem {n} e precisao requerida {&};
<5> Para todas as amostras {x*)}, fazer:
<3.1> Obter os valores g](.l) em relagao a x%; {conforme
explicado anteriormente}

€0

<3.2> Assumir 24 = [gP gV ... g VT, {pseudoamostras]

<6> Inicializar o contador de numero de épocas; {época « 0}
<7> Repetir as instrucgdes:
<7.1> Eanterior | -
<7.2> Para todos os pares de treinamento {z*, d®, fazer:
Ajustar wj(iz) e 6; através do algoritmo backpropagation;
<7.3> Egual  E, .
<7.4> época < época + 1;
Até que |Egual — ggnterior| < ¢

Fim {Algoritmo RBF - Segundo Estagio de Treinamento}

A variavel época pode ser utilizada como critério de parada para
problemas em que a precisao especificada ndo pode ser alcangada; Ey
representa o erro quadratico médio, que é definido por:

14
Ey = lz Ek) [3.4.7]
pk=1
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No qual p é o numero de amostras do conjunto de treinamento e E(k)

representa o erro quadratico obtido por:

n, 5
EG) =5 . (4,00 - 7)) 3.48]
=

no qual y].(z)(k) é o valor produzido pelo j-ésimo neurdnio de saida da
rede considerando-se a k-ésima amostra de treinamento, enquanto
d;(k) € o seu respectivo valor desejado. Ja o algoritmo backpropagation
€ um método de se calcular os pesos sinapticos e os limiares de
ativagido de forma rapida através de gradientes, porém seu

funcionamento esta além do escopo deste trabalho?.

Uma vez que estas etapas estiverem concluidas, o treinamento estd completo.
Dessa forma, a rede neural esta pronta para operar, ou seja, classificar novas
amostras que sdo apresentadas a sua entrada. Os passos dessa operagdo estao

mostrados abaixo.

Inicio {Algoritmo RBF — Fase de Operagao}
<1> Apresentar uma amostra {x};
<2> Assumir os parametros w, o, w e 6 j4 ajustados durante
os estagios de treinamento;
<3> Executar as seguintes instrucgdes:

<3.1> Obter g*;

<3.2> Obter u®;
<3.3> Obter y;;

<4> Disponibilizar as saidas da rede mediante os valores contidos
emy;

Fim {Algoritmo RBF — Fase de Operagao}

Segundo Jain et al. (1996), as RNAs sdo a base de inumeros avangos no

desenvolvimento de sistemas inteligentes. Tais redes sdo bem adequadas para tarefas

2 Para maiores detalhes do funcionamento desse método, vide Silva et al. (2010)

17



que incluam problemas como reconhecimento de padrbes, predicdo, otimizagéo,
memoria associativa e controle. Ou seja, sdo extremamente Uteis a este trabalho, uma
vez que se busca reconhecer os padrdes entre os diferentes estados de um animal
como, por exemplo, se esta estressado ou ndo. O uso de RNAs é vasto, podendo ser
utilizadas em qualquer situagdo que necessite de algumas das caracteristicas
supracitadas, como o reconhecimento de padrbes. Por isso, sdo usadas desde a
compressao de audio até em diagndsticos médicos, assim como em processamento

de sinais.

Porém, segundo Smith (1998), o reconhecimento automatizado da fala humana
€ um exemplo classico de uma acgdo que o cérebro humano realiza facilmente, mas
que os computadores possuem enormes problemas para fazé-lo. Os computadores
digitais podem guardar e acessar vastas quantidades de dados, executar calculos
matematicos em enorme velocidade e fazer tarefas repetitivas sem se aborrecer ou
tornar-se ineficiente. Porém, sdo altamente ineficientes quando afrontados por dados
sensoriais sem tratamento. O Processamento Digital do Sinal geralmente aproxima
este problema em dois passos: a extragdo das caracteristicas seguida pelo
reconhecimento dos padroes. Os pesos requeridos para a Rede Neural reconhecer um
padrao sdo encontrados através de um algoritmo de aprendizagem, junto com

exemplos de como o sistema deveria operar.

Tem-se ai um problema, que é a dificuldade de reconhecer os padrbes na fala
humana, e também na “fala animal’. Para contornar a situagdo, a extragdo das
caracteristicas é feita através da Transformada Discreta Wavelet, descrita abaixo.
Mas, para um melhor resultado, deve-se entregar a RNA uma quantidade significativa

de exemplos para cobrir a maior gama de possibilidades possivel.

3.5.Transformada Wavelet

No inicio do século 19, Jean-Baptiste Joseph Fourier mostrou que qualquer
fungdo periddica pode ser escrita como uma soma de fungdes periddicas seno e
cosseno. Em outras palavras, um sinal periédico pode ser decomposto em freqiiéncias
especificas que constituem o mesmo. Esta é a definigdo informal da série de Fourier,

que, formalmente, pode ser representada da seguinte forma:

Sendo
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ft+2L) =f@), c<t<c+2L [3.5.1]

Entao

f@) = 70 i [an cos (nnt) + by.sen (nTnt>] [3.5.2]

Em que ag, a, e b, sdo dados por

1 c+2L
ap = Zf f@®)dt [3.5.3]
c+2L
a, = %f f(t) cos (nTnt> dt [3.5.4]
c+2L
b, = %fc f(t) sen (nTnt> dt [3.5.5]

Porém, ha a limitagdo das Séries de Fourier serem aplicadas apenas a fungdes
periddicas. Para sinais nao periédicos pode-se recorrer a Transformada de Fourier,
que consiste em uma transformada integral que expressa um dado sinal em termos de
fungdes senoidais, assim como suas respectivas amplitudes. Da mesma forma, sua

definigdo é a seguinte:

F(w) = foof(t)e‘i“’tdt [3.5.6]

f@&) =F(F(w) = %wa(w)e”“’ dw [3.5.7]

Desta forma, uma dada fungao pode ser representada através de seus valores
no tempo — dominio do tempo — ou através de suas freqiéncias constituintes —
dominio da freqiiéncia. Tais dominios sdo mais ou menos vantajosos para
determinados tipos de analises, sendo muito comum a passagem de um determinado
sinal de um dominio para o outro através de séries ou Transformadas de Fourier.

Todavia, como pode ser percebido, a representagao do sinal em determinado
dominio ndo fornece os resultados encontrados no outro dominio. Desta forma,
quando um sinal é analisado através da Transformada de Fourier, ou sdo conhecidos
seus valores temporais ou suas freqliéncias constituintes, de modo que n&o é possivel

determinar quando (em que intervalo de tempo) tais freqiiéncias aparecem no sinal,
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uma vez que a relagao entre as freqiiéncias presentes no sinal e o dominio temporal é

inexistente (Fournier, 1995; Gomes et al., 1987; Gasquet et al., 2000).

Para tentar evitar este problema foi proposta a Transformada de Fourier de
Tempo Curto (STFT — Short Time Fourier Transform), também conhecida como
Transformada de Gabor (Gabor, 1953). A idéia principal desta transformada é a
introdugdo de um parametro de freqiéncia local, ou seja, o sinal é analisado por
partes, dentro de “janelas”, sendo aplicada a transformada de Fourier somente no sinal
contido na janela analisada. Formalmente, a transformada local observa f(t) durante
uma janela W(t) centrada no instante t e de extenséo limitada, ou seja,

STFT(w,T) = f ) FOW(—1)e/?tdt [3.5.8]

Contudo, uma vez fixada a janela W(t), a resolugdo permanece constante em
todo o plano tempo-freqiiéncia. Todavia, considerando por simplificagdo apenas as
ondas fundamentais (sendides) de um sinal, pode-se perceber, intuitivamente, que
dois tons de 1 kHz e 2 kHz sdo bem mais distintos que outro par de tons de 1,001 MHz
e 1,002 MHz, embora a distdncia em ambos os casos seja de 1 kHz. Conforme a
freqUiéncia analisada é incrementada, a distingdo entre dois sinais proximos em 1 kHz
torna-se mais arduo. Distinguir 1 GHz de 1,000001 GHz é uma tarefa relativamente
dificil. Logo, trata-se de um problema de valor relativo: quanto 1 kHz significa no sinal
analisado?

Para resolver este inconveniente, é utilizada a Analise Multirresolucional (AMR)
que, como o nome diz, € a anadlise na qual o sinal é analisado com diferentes
resolugdes para diferentes freqiiéncias (Gomes et al., 1987). Uma comparacéo de trés
freqUiéncias na resolugéo no plano tempo-freqliiéncia pela Analise de Gabor (STFT) e

pela Analise Multirresolucional pode ser vista na Figura 3.5.1, abaixo.

f,n, f.ii.
.. LE N N ]
i m »
B >y t

Figura 3.5.1 - Comparacao entre as analises (a) de Gabor (STFT) e (b)
Multirresolucional (Oliveira, 2007)
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Da mesma forma, uma Transformada Wavelet (WT — Wavelet Transform) é a
aplicacdo de uma determinada janela ao sinal, assim como a STFT. A diferenga entre
ambas as transformadas & que a Wavelet utiliza a analise multirresolucional, de modo
que a janela é expandida e comprimida de acordo com a freqiiéncia em analise, ou
seja, possui um parametro de escala (a), além do pardmetro de descolamento da

janela (1). Formalmente,

— T
CWT(a,1) = Oy ) t [3.5.9]

= f f
Na qual CWT denota a Transformada Wavelet Continua (Continuous Wavelet
Transform) e y(t) denota a janela utilizada, chamada de wavelet basica, uma vez que
todas as outras janelas sdo versdes escalonadas (expandidas ou comprimidas) e
transladadas desta wavelet (Morettin, 1997).

Por essa definigdo, se os parametros a e 7 forem discretizados, as janelas
utilizadas nao serédo escalonadas e transladadas continuamente, mas em intervalos
discretos, dando origem a Transformada Discreta Wavelet (DWT — Discrete Wavelet

Transform).

Sendo assim, as wavelets podem ser interpretadas como as transformadas
lineares locais geradas por um banco de filtros passa-faixas de fator de qualidade
constante (Meyer et al., 1987), ou seja, uma série de filtros cuja banda passante é
proporcional a freqiiéncia central do mesmo (Q = Af/f = cte).

Em oposigdo a Transformada Wavelet, a STFT, por utilizar janelas fixas para
todas as freqiéncias analisadas, possui banda passante constante para qualquer
freqiéncia do sinal. A comparagdo da analise espectral entre essas duas
transformadas pode ser vista na Figura 3.5.2.
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Figura 3.5.2 - Comparacao da analise espectral entre (a) STFT e (b) WT (Oliveira,
2007)

Essa analise através de um banco de filtros é conhecida como Codificagdo em
Sub-bandas (Subband Coding) e os filtros utilizados no calculo da DTW sao filtros
passa-baixas e filtros passa-altas calculados de forma a dividir o espectro do sinal ao
meio, ou seja, suas freqiéncias de corte sdo ajustadas na metade da maxima
freqiiéncia presente no sinal. Com isso, as componentes resultantes da filtragem
passa-altas contém as freqiéncias mais altas do sinal, que ja fornecem as
caracteristicas de forma detalhada, conforme a AMR. J&, as componentes resultantes
da filtragem passa-baixas contém as baixas frequéncias do sinal, de modo que
precisam ser analisadas novamente para se obter informagdes mais acuradas destas
freqiiéncias (Mallat, 2000). Para isso, basta passar essas componentes de baixa
freqiiéncia por um novo par de filtros passa-altas e passa-baixas para novamente
dividir este espectro em duas partes, e assim sucessivamente. Cada vez que o
processo de filtragem é executado diz-se que se tem um novo nivel de decomposigao.

Como é possivel perceber, cada sinal gerado pelo DWT possui apenas metade
das freqliéncias presentes no sinal anterior. Tal processo é conhecido como sub-
amostragem por 2 (down-sampling). Os coeficientes resultantes dos filtros passa-
baixas e passa-altas sdo conhecidos por coeficientes de aproximagao e detalhamento,

respectivamente.

Um sinal contendo n amostras gera uma transformada wavelet de igual nimero
de amostras, sendo composta por uma sequéncia de coeficientes. Esta seqiiéncia &
iniciada pelos coeficientes de aproximagao do ultimo nivel de decomposigao, seguidos
pelos coeficientes de detalhamento dos niveis intermediarios e finalizando com os
coeficientes de detalhamento do primeiro nivel de decomposigdo, como mostrado na
Figura 3.5.3 (Junior, 2007).
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Para se realizar esse processo recursivo até o ultimo nivel possivel, é
necessario, obviamente, que o numero de amostras n do sinal discreto original esteja
na forma 2™, ou seja, uma poténcia de dois, pois em cada decomposicao o sinal é
divido em duas partes. Logo, a quantidade de decomposi¢des possiveis de um sinal

com n amostras é

_log(n)
™ log)

2m =

[3.5.10]

Assim, um sinal contendo n amostras pode ser decomposto em, no maximo,

_ logm)

log(2) niveis.

Desse modo, pode-se entender o processo da DWT em cada nivel como sendo

um par de filtros, sendo

[n] =x[n] *h[n] = Zk;o P, [3.5.11]

ypassa-baixas

n—1

ypassa-altas[n] = x[n] * g[n] = Zk:o ExXonk [3.5.12]

onde, obviamente, h[n] e g[n] sdo os filtros passa-baixas e passa-altas,

respectivamente.
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Figura 3.5.3 - Funcionamento de uma DWT (Junior, 2007)
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3.6.Bandas Criticas

O ouvido humano é um sistema que detecta as varias freqiiéncias presentes
em um sinal sonoro. Sua faixa de percepgdo é dada como entre 20 Hz e 20 kHz,
porém, conforme a pessoa envelhece, esta faixa diminui, geralmente degradando

primeiramente os sons com maior freqiiéncia.

Além disso, o ouvido humano nao é perfeito, e como tal apresenta algumas
caracteristicas que séo estudadas através da Psicoacustica, que estuda como as
pessoas interpretam os sons, relacionando as caracteristicas fisicas destes com o

modo em que sao interpretadas pela pessoa.

Na porgao interna do ouvido humano existe uma estrutura na forma de um tubo
6sseo enrolado em espiral chama coclea, a qual é preenchida por um fluido e possui
um grande numero de células nervosas em forma de cabelo em uma membrana,
chamada membrana basilar. Estas células sdo de tamanhos e elasticidade variados,
que entram em movimento de forma diferente para determinadas freqiiéncias do sinal
sonoro que atravessam o fluido da coclea. Tal movimento é relativo a freqiiéncia de
vibragdo especifica de cada célula. Essa vibragdo causa um impulso elétrico
correspondente a amplitude daquela freqiiéncia especifica.

Porém, o ouvido ndo consegue distinguir muito bem entre freqiéncias
proximas, de forma que, através de experimentos, foram definidas bandas criticas, as
quais consistem em faixas de freqiéncias com uma particularidade: se duas
frequéncias estiverem na mesma banda critica, somente a de maior intensidade sera
interpretada (Barbedo, 2004).

Dessa forma, e como a sensibilidade do ouvido é dependente da freqiéncia, a
largura das bandas é variavel de acordo com as freqiiéncias em questdo. Tais bandas
foram mapeadas através de experimentos com os quais foi criada a Escala de Bark,
proposta por Eberhard Zwicker em 1961 (Zwicker, 1961). Tal escala pode ser vista na
Tabela 3.6.1.

No presente trabalho, as bandas criticas foram usadas como uma tentativa de
fazer com que o sistema proposto possa realizar a avaliagdo de determinado som

animal de forma mais similar a analise feita pelo ouvido humano.
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Freqliéncia

Bark Banda
Minima [Hz] Maxima [Hz] Central [Hz]

0 20 100 60 80
1 100 200 150 100
2 200 300 250 100
3 300 400 350 100
4 400 510 455 110
5 510 630 570 120
6 630 770 700 140
7 770 920 845 150
8 920 1080 1000 160
9 1080 1270 1175 190
10 1270 1480 1375 210
11 1480 1720 1600 240
12 1720 2000 1860 280
13 2000 2320 2160 320
14 2320 2700 2510 380
15 2700 3150 2925 450
16 3150 3700 3425 550
17 3700 4400 4050 700
18 4400 5300 4850 900
19 5300 6400 5850 1100
20 6400 7700 7050 1300
21 7700 9500 8600 1800
22 9500 12000 10750 2500
23 12000 15500 13750 3500
24 15500 20000 17750 4500

Tabela 3.6.1 — Escala Bark

3.7.Dimensao Fractal

Harold E. Hurst foi um hidrélogo designado para trabalhar em uma represa no
rio Nilo. Seu trabalho era estudar uma politica de fluxos a ser adotada na represa para
que esta néo ficasse vazia e nem transbordasse. Para isso, suposi¢gdes sobre o fluxo
pluvial eram necessarias e, na época, era comum a suposicdo de que as chuvas

seguiam o acaso.

Nesse ambiente, Hurst desenvolveu uma nova técnica seguindo do
pressuposto que o fluxo pluvial seguia um padrdo nido aleatoério. Desta forma, foi
criado o Expoente de Hurst, H, que serve para distinguir uma série aleatéria de uma
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nao aleatéria, ou seja, tal expoente fornece informagdes sobre a correlagdo e
persisténcia em uma série temporal. Com isto, Hurst descobriu que as chuvas
seguiam uma tendéncia com ruido, que poderiam ser medidos de forma estatistica
(SOTERRONI et al., 2008).

Este expoente é dado no intervalo entre 0 e 1, significando:

o 0=H<0,5: 0sinal é dito anti-persistente, ou seja, a probabilidade do
sinal se alternar (um valor “negativo” ser seguido de um valor “positivo”)
€ maior que cinquenta por cento.

e H=0,5: 0 sinal é completamente aleatério.

o 0,5<H<=1:o0sinal é dito persistente, existindo uma probabilidade maior

que cinqlenta por cento do sinal se repetir.

Dessa forma, por fornecer informagdes sobre correlagdo de uma série, o
expoente de Hurst é relacionado com a dimenséo fractal, a qual € um valor que indica

0 quéo uma parte de um dado sinal é similar ao sinal como um todo.

Por fim, o expoente de Hurst pode ser calculado de diversas formas, incluindo
através de Transformadas Wavelets. Através destas, o expoente pode ser calculado

através do algoritmo denominado Power Spectrum:

Inicio {Algoritmo Hurst — Calculo do Expoente Hurst}
<1> Aplicar no sinal a Transformada Discreta Wavelet no maior nivel de
decomposicao possivel;
<2> Elevar ao quadrado cada coeficiente obtido;
<3> Normalizar o resultado obtido através do maior valor encontrado;
<4> Aplicar o logaritmo na base 2 em cada valor obtido no passo anterior;
<5> Calcular o somatério do nimero de elementos que compdem o sinal

(sx) e do quadrado dos mesmos (sx?), ou seja,

n

n
sxzz:i sxzzz:iz
=1

i=1
onde n é o numero de elementos do sinal;
<6> Calcular o somatério do sinal encontrado no passo <4> {x} e o

somatério do mesmo multiplicado pelo seu indice, ou seja,

n
syzz:xi sxyzz:(i*xi)
i i=1

n
i=1
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no qual x; corresponde ao i-€simo valor de x, 0 qual corresponde ao
resultado encontrado no passo <4>;
<7> Calcular o Expoente de Hurst através da seguinte equacgio:
N * SXy — Sy * SX
n*sx% — (sx)2
2

-1

H =

Fim {Algoritmo Hurst — Calculo do Expoente Hurst}

4. Descricao das Atividades

A pesquisa envolveu duas etapas, sendo que a primeira foi adquirir arquivos de
audio. Esse trabalho foi realizado por uma médica veterinaria pesquisadora do NUPEA
(Ndcleo de Pesquisa em Ambiéncia, ESALQ, USP). O experimento foi conduzido em
uma granja comercial de produgdo de suinos (Granja Queréncia), localizada no
municipio de Elias Fausto, no interior do Estado de Sao Paulo. Essa granja se
encontra a 23°12'10" de latitude sul e a 47°17'35" de longitude oeste e altitude média
de 521 m, no centro de uma regido chamada Zona de Depressao Periférica do Estado
de Sao Paulo entre o Planalto Atlantico e a escarpa da Serra de Botucatu, com o clima

caracterizado como mesotérmico.

Para a realizagdo deste experimento, foram utilizados 12 leitdes F1 (Landrace
X Large White) em fase de amamentacédo, de ambos os sexos, com idades variando
entre 10 e 15 dias de vida. Os animais foram escolhidos a partir de avaliagbes clinicas
elaboradas por um médico veterinario, permitindo assim selecionar animais doentes e
animais sadios. Sendo assim, foram selecionados seis animais doentes e seis animais
sadios, que eram mantidos em celas parideiras junto com suas respectivas matrizes e

demais animais da ninhada, tendo acesso livre a abrigos escamoteadores.

Os animais doentes apresentavam sinais clinicos semelhantes e
indicativos da ocorréncia de artrite traumatica, ou seja, dificuldade em se locomover,
claudicagcdo, aumento de volume e temperatura em uma ou mais articulagbes dos
membros, aumento sistémico de temperatura, prostracdo e lesbdes traumaticas na
porgdo de pele que recobre a articulagao, conforme visto na Figura 4.1. Os animais

classificados como sadios ndo apresentaram nenhum destes sinais clinicos.
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Figura 4.1 - Articulacao de leitdes acometidos por artrite

O som emitido pelos animais foi coletado por um gravador digital da marca
Panasonic® RR-US395, que pode ser visto na Figura 4.2, posicionado a uma distancia
de aproximadamente 15 cm da boca dos animais. Para isto, os animais foram
segurados pelos veterinarios, que gravaram as vocalizagdes. Os sons foram gravados

com uma taxa de amostragem de 22050 Hz e resolucao de 16 bits.

Figura 4.2 - Gravador Digital Diretivo Panasonic®RR-US395

Os leitbes que apresentaram artrite foram segurados pelo corpo e os sons
emitidos coletados pelo gravador. O toque sobre o corpo do animal funcionou como
um estimulo para que ele vocalizasse. Apds essa coleta, o animal foi marcado com
uma tinta ndo-toxica para posterior identificacdo e foi recolocado junto aos demais
animais. Os seis leitdes sem sinais clinicos de artrite selecionados para o experimento,
portanto classificados como animais sadios, também foram submetidos ao mesmo
procedimento para recuperar as chamadas emitidas quando segurados. A cada
momento em que 0s animais eram segurados, uma faixa de gritos sequlenciais era

registrada contendo diversos gritos de suinos.

Através do software livre Audacity 1.2.6, todos os arquivos foram carregados e
ouvidos separadamente. O objetivo foi montar um resumo das condi¢gdes de cada
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arquivo. Isso se deve porque nem todos os audios possuiam boas condigbes de
analise, sendo que muitos deles carregaram consigo ruidos que poderiam
comprometer a analise do arquivo, como gritos excessivos dos demais filhotes, voz
humana em concorréncia com os grunhidos dos animais, dentre outros. Apds todos os
arquivos terem sido ouvidos, foram selecionados vinte e dois deles para posterior
processamento, trabalho este realizado utilizando-se do software Audacity, como visto

na Figura 4.3. Tais arquivos foram selecionados por apresentarem o menor ruido

ambiente.
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Figura 4.3 - Separacao de cada grito

Foi entdo criado um algoritmo para, a partir das amostras brutas relativas aos
sinais de audio capturados, criar um vetor de energias referente as 23 primeiras
bandas criticas da escala Bark, j& discorrido acima. Foram utilizadas apenas 23
bandas por causa da maxima freqiéncia do sinal, 11025 Hz, uma vez que a
freqiiéncia de amostragem do gravador é 22050 Hz e, pelo Teorema de Nyquist, a
frequiiéncia de amostragem deve ser pelo menos o dobro da maior freqiiéncia presente

no sinal.

Para isso, o algoritmo calcula a Transformada Discreta Wavelet do sinal de
entrada, extraindo dela os seguintes parametros:

i. 23 valores de energia, cada um correspondente a uma banda critica;
iil. 22 valores das derivadas discretas das energias anteriores;

iii. a dimensao fractal do sinal.

Com isto, cada sinal analisado gera um vetor de 46 valores (23+22+1),
independentemente da duracdo do grito do animal, que s&o salvos para serem
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utiizados como a entrada de uma Rede Neural Atrtificial, que é treinada para

reconhecer os padrdes.

Cada arquivo selecionado, contendo um grito cada, passou pelo software
acima mencionado, sendo processados todos os arquivos sonoros criados a partir das
vinte e duas gravagdes separadas. Com isto, foram analisados um total de 237 gritos
de animais sadios e 248 de animais doentes, perfazendo a mesma quantia de
arquivos criados, 0os quais possuem o vetor de caracteristicas supracitado. Tais gritos
foram separados dos vinte e dois arquivos selecionados, uma vez que cada um

desses arquivos possuia varios gritos do animal.

Uma vez caracterizado cada grito, foram separados, para realizar o teste, vinte
e um arquivos contendo os vetores relativos aos animais sadios e oito de animais
doentes, sendo processados mais dez sons aleatdrios obtidos de um arquivo sonoro
ndo utilizado, contendo gritos de um animal doente. Os demais foram submetidos a
uma Rede Neural Artificial, a fim de treina-la para que esta possa reconhecer os
padrdes referentes aos dois tipos de entrada: o animal sadio e o animal doente. A
Rede Neural Artificial foi programada, assim como a Transformada Discreta Wavelet,

em linguagem C++.

Os arquivos contendo os vetores foram com o padrdao Sadio_X e Doente X,
relativos aos animais sadios e doentes, respectivamente, onde “X” representa o
namero do arquivo. O arquivos de teste foram nomeados Teste X, seguindo o mesmo

padréo.

Uma vez treinada, foram passados pela RNA os arquivos anteriormente
separados para teste e que, por isso, ndo entraram no treinamento da mesma. O teste
possui a finalidade de verificar a eficiéncia do treinamento e reconhecimento dos

padroes.

Na fase de operagdo, a RNA tera como resultado exatamente o valor
associado ao padrdo, quando tiver como entrada um dos padrdes a qual foi treinada
pra reconhecer. Quando o valor de entrada for diferente dos usados em seu
treinamento, a rede retornara um valor tdo mais préximo de um dos valores associado

a um padrao quanto mais similar a entrada for deste padrao.

Dessa forma, pode-se dizer que uma entrada qualquer esta proxima ou ndo de
quaisquer padrbes pré-estabelecidos no treinamento da rede, que é o intuito deste

trabalho.
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Em suma, de forma esquematica, a metodologia das etapas envolvidas esta
representada na Figura 4.4.

1 - Aquisicdo 2 - Andlise |

3 - Interpretacao do dado
(padrdo de comportamento)

informacao ‘ ' dados
/ \ II (som no estado
X \ de numeros)

Artrite

it QOutros comportamentos
Traumatica

Figura 4.4 - Metodologia de aquisi¢édo e analise dos sinais de 4udio

Ja para os sons das matrizes, foram processados, utilizando os mesmos
programas utilizados nos sons anteriores, 24 arquivos, sendo 12 de matrizes
amamentando seus filhotes em um ambiente de conforto térmico e 12 de matrizes
amamentando em um ambiente de desconforto térmico. Por serem poucos sons,
foram separados apenas dois arquivos de cada situagao para testar a rede, uma vez
que, deste modo, ainda restam dez amostras de cada situagédo para treinar a rede.
Cada arquivo de audio gerou um arquivo contendo os vetores das caracteristicas
supracitadas, exatamente como foi realizado com os sons anteriormente descritos. O

procedimento dessa etapa € analogo ao procedimento anterior.

5. Resultados

Processar uma amostra de som é carregar o referido arquivo de audio e, na
seqliéncia, proceder com légica matematica suficiente para alterar o comportamento

do sinal primitivo.

Dessa forma, os resultados encontrados para cada arquivo de teste relativo
aos animais doentes estdo mostrados na Tabela 5.1, onde os “Di” e os provenientes

de animais sadios sdo da forma “Si”, onde, em ambos, i € 0 numero do arquivo.
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Arquivo Resultado Arquivo Resultado

S1 2,08687 D1 0,610853
S2 2,86066 D2 1,31344
S3 1,23819 D3 0,562464
S4 2,00855 D4 0,588281
S5 1,57017 D5 1,2893
S6 1,7743 D6 0,877612
S7 1,69052 D7 1,4017
S8 1,65086 D8 0,0306016
S9 1,84504 D9 1,99726
S10 1,25523 D10 1,39201
S11 1,6944 D11 1,06653
S12 2,05436 D12 0,695742
S13 1,44056 D13 0,902058
S14 0,962914 D14 1,19993
S15 1,49017 D15 0,859135
S16 0,96057 D16 0,737209
S17 0,568798 D17 0,623897
S18 0,314624 D18 1,15054
S19 0,780693
S20 2,20273
S21 1,17311

Esperado: 2 Esperado: 1

Tabela 5.1 - Escala Bark

Arredondando os valores obtidos para se obter um numero natural, encontram-
se, para os animais doentes, 16 valores como o esperado e, para 0s animais sadios,
10. Como existem 18 sons de animais doentes e 21 de animais sadios, a porcentagem
de acerto foi de 88,9% para os doentes e 47,6% para os sadios.

Destaca-se a quantidade de sons de animais sadios que foram classificados
como doentes. Esse fato pode ser explicado, entre outras coisas, pela quantidade de
exemplos que foram utilizados para treinar a RNA e pelo fato dos sons serem
gravados através do contato de humanos com os animais, o que pode fazer com que
animais sadios emitam gritos que se assemelham aos gritos de animais doentes,
fazendo com que a RNA se confunda no reconhecimento dos padrdes. Para emitirem
sons, 0s animais eram segurados por pessoas, para entado ser realizada a gravacgao.

Porém o fato do animal ser segurado por uma pessoa pode induzir a gritos de
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insatisfagdo do animal, independente de estar doente ou ndo, fazendo com que a rede

neural perca muito de sua eficiéncia em separar os padroes.

Ja para os testes com a entalpia e o ITGU, foram utilizados quatro arquivos
sonoros, um de cada caracteristica estudada. Desses sons, cada vocalizagdo do
animal foi gravada em um arquivo separado, os quais foram processados e geraram
os arquivos contendo os vetores de caracteristicas correspondentes. Este processo foi
executado analogamente ao experimento anteriormente descrito. Sendo assim, para a
menor entalpia, foram gerados 50 arquivos e para a maior, 133. Ja para o menor
ITGU, gerou-se 49 arquivos e para o maior, 137. Com isto, foi escolhido separar 45
arquivos de cada caracteristica para treinar a rede neural e utilizar os demais para

testa-la.

Iniciando pela entalpia, foram separados 45 sons de menor entalpia. Porém,
como existiam mais arquivos de maior entalpia, estes foram separados em trés
grupos, havendo a intersec¢ado de sons entre eles para que cada grupo possuisse
exatos 45 arquivos. Com isto, foram gerados trés testes de entalpia, sendo que a
entrada de treinamento da rede neural referente a menor entalpia foi sempre os 45
arquivos separados anteriormente e a entrada referente a maior entalpia foi cada um
dos grupos supracitados. Para cada grupo de maior entalpia usado no treinamento da
rede neural foram utilizados 15 arquivos para testar a rede, sendo os cinco
previamente separados de menor entalpia e dez de maior entalpia retirados
aleatoriamente dos outros dois grupos que nao foram utilizados para treinar a rede. Os
resultados estdo mostrados nas Figuras 5.1 a 5.4.

Teste Entalpia 1

2,5

2,0
-g [ ] n [] . L . )
S 1,5 o
=]
E 10 © Menor entalpia

n
0,5 = Maior entalpia
0,0 o * 7 o ; .
0 2 4 6 8 10
Amostras

Figura 5.1 - Resultado utilizando o primeiro grupo de maior entalpia
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Teste Entalpia 2
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Figura 5.2 - Resultado utilizando o segundo grupo de maior entalpia
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Figura 5.3 - Resultado utilizando o terceiro grupo de maior entalpia
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Resultado

Teste Entalpia Total
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Figura 5.4 - Unido dos resultados dos teste de entalpia

Analogamente ao procedido com a entalpia, os arquivos sonoros de maior
ITGU foram separados em trés grupos de 45 arquivos cada um. Nessa separagao

sobraram dois arquivos, que foram entdo utilizados para o teste da rede neural. Como

dito anteriormente, existiam 49 arquivos sonoros de menor ITGU e, como 45 foram

utilizados para treinar a rede, sobraram quatro que foram utilizados para testa-la. Com

isso, existiam 16 arquivos de teste para cada grupo utilizado para treinar a rede, sendo

4 provenientes dos sons de menor entalpia, 2 excedentes da separagao dos grupos de

maior entalpia e 10 dos outros dois grupos que ndo foram utilizados no teste. Os

resultados de cada teste podem ser vistos nas Figuras 5.5 a 5.8.
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Resultado
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Figura 5.5 - Resultado utilizando o primeiro grupo de maior ITGU
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Figura 5.6 - Resultado utilizando o segundo grupo de maior ITGU
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Figura 5.7 - Resultado utilizando o terceiro grupo de maior ITGU
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Figura 5.8 - Uniao dos resultados dos testes de ITGU

6. Conclusao

Diante das ferramentas utilizadas e citadas, pode-se concluir que a
porcentagem de reconhecimento obtida entre os animais doentes foi satisfatoria,
garantindo a existéncia de uma semelhancga entre os padrées sonoros destes animais.
No entanto, para os animais sadios, houve uma baixa porcentagem de

reconhecimento, necessitando assim maior aprofundamento nas pesquisas.

Porém, os métodos utilizados mostraram-se eficazes na separagéo de entalpia
e ITGU, uma vez que pode ser vista a existéncia de um distanciamento entre os
resultados obtidos. Contudo, existem alguns pontos que estéo fora do resultado geral,
gerando alguns falsos positivos. Isto pode ser justificado, mais uma vez, pela precisdo
da rede neural, que é tdo maior quanto mais exemplos forem utilizados em seu
treinamento. Em um primeiro momento, poucos exemplos foram utilizados devido a

dificuldade existente na gravagao dos arquivos sonoros.

Um ponto importante a ser resolvido consiste no treinamento na Rede Neural
Artificial, uma vez que este treinamento é muito delicado e passivel de erros de

interpretacdo dos padrbes. Por isso serd necessaria a separagdo de novos arquivos
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sonoros contendo os gritos de outros suinos, a fim de se obter uma gama maior de
exemplos para a Rede poder reconhecer entre esses padrbes de uma forma mais
elaborada e precisa.

Outro ponto é a forma de gravagdo dos sons, que exige contato fisico do
animal com humanos, que, como ja discutido, pode influenciar nas caracteristicas do
grito, confundindo assim a RNA. Logo, seria interessante a obtengédo dos gritos dos
animais sem interferéncias humanas, para assim haver uma melhor separacgao efetiva

entre os sons de animais doentes e sadios.
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