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RESUMO

N&o sédo raras situagdes no mundo computacional, onde encontram-se agregados de
computadores que possuam a necessidade de um balanceamento de carga, capaz de
garantir um bom desempenho com o menor nimero de recursos possiveis. Este
trabalho tem justamente o objetivo de explorar o Algoritmo Genético como uma
alternativa para tais problemas. O pleno entendimento das etapas do AG, juntamente
com as varia¢Oes de cada uma delas, traz para o analista uma visdio mais proxima do
que ¢ realmente possivel aplicar e também quais as reais condigBes necessarias para a
utilizagdo de um algoritmo. Espera-se que apos a leitura o analista tenha uma visfio
do que € o AG ¢ quais s3o as vertentes de pesquisa para uma possivel aplicagfio.

Palavras-Chave: Algoritmo Genético, Escalonamento de Tarefas, NP-Completo



ABSTRACT

It is easy to find situations in the computer world, where there are computer clusters
that need to balance overflow. Balanced overflow provides the giarantee of good
performance with the smallest number of resources. This work explores the Genetic
Algorithm (GA) as an alternative for such problems. The full understanding of all
GA stages and the variations of each one bring the analyst a clearer vision of which
algorithm to apply in different realworld conditions. Finally, we hope the analyst

has a vision of what GA is, and which possibility would be most appropriate for a
given application.

Key-Words: Genetic Algorithm, Scheduler Task, NP-Complete
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1. INTRODUGCAO

O crescente avanco das tecnologias de hardware e software, juntamente com
a necessidade de desempenho computacional cada vez maior das organizagdes, tem
impulsionado o uso de sistemas paralelos e distribuidos. Uma solu¢io normalmente
utilizada ¢ os agregados de computadores, também conhecidos como clusters
computacionais.

Um dos grandes problemas em tais sistemas € o desenvolvimento de técnicas
efetivas de distribuigio de processos entre os nds, pois desta forma existe uma
grande probabilidade de um 6 ficar sobrecarregado, enquanto outros ficam ociosos.
Tal problema, conhecido como desbalanceamento de carga, degrada o desempenho
do sistema como um todo. Uma vez que uma distribui¢iio de processos mais efetiva
diminui o tempo de resposta computacional dos processos.

Para tentar minimizar tal problema, pode ser utilizado o escalonamento de
tarefas juntamente com um algoritmo capaz de agilizar a tomada de decisdo, de qual
processador ou computador que serd utilizado para o processamento daguela tarefa.

A andlise do problema do escalonamento de tarefas normalmente recai nos
problemas NP completos, o qual freqiientemente requer o uso de aproximagdes, ja
que a obtencfio da solucdo Otima €, em geral, computacionalmente inviavel.
Entretanto, aplicando-se técnicas de inteligéncia artificial em conjunto com os ja
conhecidos métodos heuristicos, é possivel proporcionar um modelo computacional
mais flexivel, capaz de produzir resultados de boa qualidade em um tempo
satisfatério.

Este trabalho descreve os passos do escalonamento de tarefas através do
algoritmo genético, explicando cada um deks através de um problema de
escalonamento sugerido, com o objetivo de minimizar o tempo requerido para se
executar um conjunto de tarefas, mostrando também como um algoritmo genético
pode ser utilizado para determinar as prioridades relativas entre as tarefas que
competem por um mesmo recurso de hardware, permitindo assim, selecionar em que
instante de tempo cada tarefa serd executada em um determinado recurso.

Como todo o trabalho € baseado em dois principais topicos, Escalonamento

de Tarefas ¢ Algoritmos Genéticos, iremos abordar os conceitos de ambos para
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conseguir desenvolver melhor o assunto de escalonamento de tarefas através do
Algoritmo Genético.

E importante também ressaltar que antes da escolha de qualquer solug3o para
o problema proposto, deve-se realizar primeiramente a anélise do projeto conforme
descrito no item 2, a fim de entender melhor a complexidade envolvida. Isso pode
ajudar na escolha de qual algoritmo pode ser empregado para resolver o problema.

Para entender a importancia do tema escolhido, verificamos que a utilizacfo
de Algoritmo Genético como ferramenta para solugdes de escalonamento de tarefas
com restriglio de recursos, pode ser aplicado em diversas dreas do conhecimento. Na
area de redes, por exemplo, ha a necessidade de escolha de rotas de transmissio de
dados, onde os custos e desempenho da rede sdo considerados para a escolha de uma
solugdo com boa qualidade em um tempo satisfatério, ou mais adaptada para o

problema, entre outros problemas similares.
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2. ANALISE DO PROJETO

A andlise do projeto juntamente com o algoritmo ¢ uma metodologia que
permite viabilizar a escolha do melhor algoritmo para um problema. Podemos
considerar alguns critérios sobre a complexidade no desempenho de algoritmos,
como [TOSCANI, 2002]:

- Quantidade de trabalho requerido (Complexidade do Algoritmo);

- Quantidade de espago requerido;

- Simplicidade;

- Exatidao de resposta;

- Otimalidade;

2.1. A complexidade no desempenho de Algoritmos

Quando um algoritmo gualguer, rodando em uma maquina com memoria ¢
capacidade de processamento suficientes, produz uma resposta correta, para qualquer
entrada, esse algoritmo ndo é necessariamente aceitdvel na pratica, pois os recursos
de memoria e capacidade de processamento podem ser escassos nos casos praticos.

O crescente avango tecnoldgico permite a criagdo de maquinas
computacionais cada vez mais rapidas. Isso pode distorcer a importincia da escotha
de um algoritmo mais adaptado para o problema em questfio. Para um algoritmo
rapido, qualquer melhoria na velocidade de processamento da maquina é sentida

imediatamente. Essa melhoria fica ainda mais evidente no caso de algoritmos menos

eficientes [TOSCANI, 2002].

2.1.1. Medidas de Complexidade

A complexidade do algoritmo nfio pode ser representada simplesmente por
um numero, pois geralmente o mimero de operaces basicas efetuadas ndo € o
mesmo para qualquer entrada.

Mesmo em casos com entradas do mesmo tamanho, pode haver entradas

especials que exijam um processamento maior. Para ordenar uma lista quase
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classificada, pode néo ser necessdrio o mesmo esforgo comparado com uma lista de
mesmo tamanho, mas com os elementos em maior desordem.

Essa complexidade pode variar para um mesmo problema ¢ uma mesma
entrada aplicada em algoritmos distintos. Isso pode ser de grande utilidade em casos
de problemas pré- fixados com finitas entradas.

Se a complexidade ¢ tomada como a méaxima para qualquer entrada de um
dado “tamanho™, a complexidade € chamada complexidade no pior caso ou
simplesmente complexidade. Se, entretanto, € levada em conta a probabilidade de
ocorréncia de cada entrada de um mesmo “tamanho”, a complexidade é chamada de
complexidade esperada ou complexidade média.

Complexidade de um algoritmo ¢ o esforgo (quantidade de trabalho) de um
algoritmo. As principais medidas de complexidade séo tempo e espago, relacionadas
a velocidade € quantidade de meméria, respectivamente. A complexidade depende da

entrada em particular: os principais critérios sfo pior caso ¢ caso médio.

2.1.1.1. Complexidade de Tempo

Uma das medidas de complexidade mais importante é a complexidade de
tempo. Para a sua medida pode-se utilizar diversos critérios como a utilizago de um
computador especifico para medir o tempo de execugdo de um algoritmo. Entretanto
uma medida como essa ¢ fortemente dependente do ponto de execugio do algoritmo,
sendo assim qualquer alteragdo no codigo pode alterar consideravelmente o

desempenho do programa.

2.1.1.2. Complexidade de Espaco

A memoria usada por um programa, bem como o tempo requerido para
execucio de um programa, dependem da implementagdo em particular. Um
programa requer uma area para guardar suas instrugles, suas constantes, suas
variaveis e os dados, mas pode também utilizar uma édrea de trabalho para manipular
os dados e guardar informagGes para levar adiante a computacéo.

A forma de representag@o dos dados devem ser considerados, pois isso pode

exigir maior ou menor espago de memoria.
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2.1.2. Critérios de Complexidade

Para medir a quantidade de trabalho realizado por um algoritmo, é escothida
uma operagdo, chamada operag@io fundamental, ¢ entdo é contado o namero de
execugdes dessa operagdo na execugdo do algoritmo. A operagio escolhida como
fundamental deve ser tal que a contagem do nimero de vezes que cla é executada
expressa a quantidade de trabatho do algoritmo, dispensando outras medidas. As
vezes, se faz necessario mais de wma operagio fundamental, com pesos diferentes.

Por exemplo, para um algoritmo de ordenagio, uma operagéo fundamental

natural € a comparagio entre elementos quanto a ordem.

2.1.2.1. Complexidade de algoritmo

O tempo requerido por um algoritmo em dada entrada pode ser medido
através de suas seqii€ncias de execugo, ou seja, a complexidade pode ser
determinada com base em operagdes fundamentais e no tamanho da entrada.

Seja E o conjunto de todas as seqiiéncias de execugdes fundamentais.
e exec: AxD?7 E;
exec(a, d) := seqiiéncia de execucdes de operagdes findamentais efetuadas na
execncio do algoritmo a, com entrada d.
e custo: E ? IN (Conjunto dos Numeros Naturais);
custo(s) := comprimento da seqiiéncia s, definido conforme o peso

estabelecido para as operagdes fundamentais.

» desemp(d):=custo (exec(A,D)).

O desempenho do algoritmo A com a entrada D pode ser dado por custo
(exec (A,D)). No contexto de um algoritmo A fixado, podemos referir-nos ao

desempenho em D.
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CXeC

Figura 1: Desempenho do algoritmo

Note que desemp : D 7 IN da informagdo sobre cada entrada especifica. Em
geral, essa informag3o ¢ demasiadamente detalhada ¢ a andlise de tal fungdo é
bastante dificil.

Por exemplo, considere um algoritmo de busca (seqiiencial) em uma tabela
com n elementos. Em certos casos, encontra-se¢ a chave apés uma comparagfo; em
outros, s30 necessarias vdrias, até mesmo n comparagdes.

Deseja-se condensar a informagio dada pela fungdo desempenho em termos
das entradas de um tamanho dado.

Para tanto, seleciona-se uma fungio:

e tam: D7 IN;
tam (D) := tamanho da entrada D.

De posse de tal fungfio tam, pode-se considerar a informagfio dada pela
funcdo desemp:

D7 1IN em uma fungfo aval : IN 7 IN tal que aval(n)=desemp(D) para tam (D) = n.
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desemp

Figura 2: Avaliacdo de algoritmo

2.2. A complexidade do problema e a intratabilidade

A complexidade também pode ser vista como uma propriedade do problema,
o que significa dar uma medida independente do tratamento dado ao problema,
independente do caminho percorrido na busca da solugfo, portanto independente do
algoritmo.

Alguns problemas séo “bem comportados™ e permitem chegar a limites de
complexidade, mas outros sfo tdo dificeis de serem resolvidos que parecem
intrativeis. Nesse contexto, surgem os problemas NP-Compietos, que, segundo Cook
[TOSCANI, 2002], podem ser considerados como um limite de complexidade.
Entretanto, esses problemas existem, sdo usados no dia-a-dia e, portanto, precisam

ser tratados, € 0 que é mais importante € que precisam ser identificados.

2.2.1. Complexidade do Problema

O mais importante questionamento sobre um problema € a sua
computabilidade, isto é, se ele pode ser resolvido mecanicamente (por um

algoritmo). Para identificar ¢ definir questionamento como esse, surgiram varios
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formalismos ¢ maquinas abstratas. Entre esses, o mais conhecido ¢ a Maguina de
Turing.

A maquina de Turing é um dispositivoe tedrico, conhecido como maquina
universal, que foi concebido pelo matemadtico britinico Alan Turing (1912-1954),
muitos anos antes de existirem os modernos computadores digitais. E um modelo
abstrato & um computador, que se restringe apenas aos aspectos légicos do seu
funcionamento {memoria, estados e transi¢es) e ndo a sua implementagéo fisica,
sendo possivel em uma maquina de Turing modelar qualquer computador digital.
Uma maquina de Turing consiste em [DIVERIO, 2003]:

e Uma fita gue é divida em células, uma adjacente a outra. Cada célula contém um
simbolo de algum alfabeto finito. O alfabeto contém um simbolo especial branco e
um ou mais outros simbolos. Assume-se que a fita € arbitrariamente extensivel para a
esquerda e para a direita, isto €, a maquina de Turing possui tanta fita quanto ¢
necessario para a computacdo. Assume-se também que células que ainda néo foram
escritas estdo preenchidas com o simbolo branco;

o Um cabegote, que pode ler € escrever simbolos na fita e mover-se para a esquerda
e para a direita;

e Um registrador de estados, que armazena o estado da maquina de Turing. O
numero de estados diferentes € sempre finito ¢ ha um estado especial denominado
estado inicial com o qual o registrador de estado ¢ inicializado;

e Uma tabela de acfio (ou fungéio de transigdo) que diz & maquina que simbolo
escrever, como mover o cabegote ('E' para esquerda ¢ "D’ para direita) e qual sera seu
novo estado, dados o simbolo que ele acabou de ler na fita e o estado em que se
encontra. S¢ ndo houver nenhuma entrada na tabela para a combinagdo atual de

simbolo e estado entdo a maquina péra.
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O modelo formal de uma Maquina de Turing ¢ uma 8upl, como segue

abaixo:

M =(Z,Q.,I1,q0.F, V.8, °)

Onde:

¥ = alfabeto de simbolos de entrada;

) = conjunto de estados possiveis da maquina, o qual € finito;
I1 = programa ou fungdo de transi¢io

qo = estado inicial da maquina tal que qo € elemento de Q;

F = conjunto de estados finais tal que F esta contido em Q;

YV = alfabeto auxiliar;

3 = simbolo especial branco;

° = simbolo especial marcador de inicio ou simbolo de inicio da fita

A Méquina de Turing tornou-se a mais utilizada definigdo de algoritmo e
assim deu-se a definicdo de “Computavel”: um problema ¢ computdvel se € resolvido
em uma Maquina de Turing [DIVERIO, 2003}.

Quando se acrescenta  computabilidade uma propriedade de eficiéncia, além
de um algoritmo que resolve o problema, quer-se um algoritmo eficiente (uma
definigio aceitavel para “eficiente” é “cuja complexidade seja polinomial”), tém-se
também duas classes de problemas: P, a classe de problemas para 0s quais existe
algoritmo (Maquina de Turing) de ordem polinomial, que resolve o problema; NP, a
classe de problemas para os quais existe algoritmo (Méquina de Turing) de ordem
polinomial, que, dada uma entrada para o problema, verifica (faz a certificagio) se

tem resposta SIM (deterministico) ou NAO (ndo deterministico) [DIVERIO, 2003].
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2.2.2. Intratabilidade

Historicamente, a expressdo “algoritmo ndo eficiente” € associada a condigéio
de algoritmo de complexidade nio polinomial, ou simplesmente algoritmo ndo
polinomial, como € mais comumente dito. Essa associagio de problema intratavel,
algoritmo ndo eficiente ¢ algoritmo nfo polinomial justifica-se, porque um algoritmo
com complexidade, por exemplo, 2" tem um tempo de execugdo que cresce tio
rapidamente com n que, para um n razoavelmente grande, torna-se proibitivo, € o
problema que tem esse algoritmo como melhor opgéio de solugdo torna-se intratavel
para entradas razoavelmente grandes.

Os algoritmos podem entfo ser particionados em duas classes: os razoaveis
{polinomiais) ¢ os nfio razodveis (exponenciais) [TOSCANI, 2002].

Um problema é dito tratavel se o limite superior de complexidade ¢é
polinomial, isto &, conhece-se um algoritmo razoavel que o resolve. Um problema ¢
dito intratavel se o limite superior de complexidade é exponencial. Hd problemas
cujas respostas sdo tdao longas, que se precisa de um tempo exponencial para
descrevé-la. Mas, nesse caso, costuma-se dizer que o problema nio estd bem posto,
isto é, nao esta definido realisticamente.

Os chamados “NP-Completos” sdo problemas que t€m a questdo da
complexidade ou tratabilidade ndo resolvida, pois ndo se sabe se existe ou ndo

algoritmo polinomial que os resolva.
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3. CONCEITOS DE ESCALONAMENTO

O termo escalonamento (“scheduling™) identifica o procedimento de ordenar
tarefas. Uma escala de execugdo (“schedule™) é uma ordenacgéio ou lista que indica a
ordem de ocupagiio do processador por um conjunto de tarefas disponiveis.

Os primeiros sistemas computacionais nfio permitiam que mais de um
programa compartithasse o tempo de processamento disponivel. Com a evolugdo dos
sistemas veio a possibilidade de carregar multiplos programas para a memoria ¢
executa-los concorrentemente, com isso surgiu 3 necessidade de um controle mais
rigido, resultando na noglio de processo como um programa em CXecugdo
[FARINES,20007.

Um programa pode ser encarado como uma série de instrugles que sdo
executadas seqiiencialmente por um processador. Cada processo contém duas partes:
a primeira ¢ a tarefa que contém as instrugdes que devem ser executadas, ¢ a scgunda
guarda informagdes relativas A execuglio da tarefa. Quando se executa miltiplos
processos, observa-se uma pseudo-paralelizagdo da execugdio, conseguida com o
rapido escalonamento desses processos em execugao.

Os escalonadores (“scheduler”) podem ser encontrados em diversos niveis do
sistema. desde o niicleo dos sistemas operacionais modernos, controlando acesso ao
processador, ou seja, ¢ responsavel pela gestdo do processador, até o nivel das
aplicagdes com escalonamento para dividir a carga entre as diferentes atividades de
uma aplicagdo [MELLO,2005}. E o escalonador também que implementa uma
politica de escalonamento ao ordenar para execugdo sobre o processador um
conjunto de tarefas.

Essas politicas de escalonamento definem critérios ou regras para a ordenago
das tarefas. Utilizando-se dessas politicas os escalonadores produzem escalas, € se
essas escalas forem “realizaveis” garantem o cumprimento das restrigdes temporais
impostas as tarefas. Uma escala ¢ dita 6tima se a ordenagdo do conjunto de tarefas de
acordo com os critérios pré-estabelecidos € a melhor possivel no atendimento das

restri¢des temporais.
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O escalonador é parte integrante do kernel, ou seja, do niicleo do sistema
operacional. Podemos dividir os algoritmos de escalonamento em duas categorias:
preemptivos € cooperativos.

O escalonamento preemptivo define qual tarefa deve possuir a CPU e até
quando. Dessa forma, a tarefa em execugfio pode ser interrompida pelo escalonador e
outra colocada em seu lugar. Existem varios algoritmos preemptivos que definem
quais siio as regras de preempedo das tarefas.

No escalonamento cooperativo as tarefas cedem o seu tempo de
processamento quando nd@o podem prosseguir na execugdo. Este algoritmo ¢ mais
simples de ser implementado, mas as interagdes entre as tarefas devem ser bem
elaboradas para nfo causar laténcia na execugdo € um possivel crash do sistema. Os
algoritmos descritos fazem uso de um escalonador para controlar as interagdes de
escolha e troca das tarefas. Em um sistema microcontrolado nem sempre € possivel
ter espago de codigo o suficiente para codificar um escalonador, mesmo que simples,
pode custar alguns recursos importantes como timers € meméria [FARINES,2000].

Um problema de escalonamento, na sua forma geral, envolve um conjunto de
processadores, recursos compartilhados e um conjunto de tarefas especificadas
através de restrigoes de tempo, precedéncia e exclusdo. O escalonamento de tempo
real, na sua forma geral, é dito como um problema intratdvel (NP-Completo). Os
algoritmos existentes representam uma solugo polinomial para um problema de
escalonamento particular, onde em um conjunto de hipSteses podem surgir
simplificagdes no conjunto de tarefas, com o intuito de diminuir a complexidade do
problema. Um algoritmo ¢é identificado como 6timo se minimiza algum custo ou
alguma métrica definida na sua classe de problema. No entanto, quando nenhum
custo ou métrica é definida, a tnica preocupagdo ¢é encontrar alguma escala

“realizavel”, sendo assim, o algoritmo € dito 6timo quando encontra essa escala.

3.1. Tarefas

O conceito de tarefa faz partc do que chamamos de um problema de
escalonamento. Tarefas tornam as unidades de processamento seqiiencial que

concorrem sobre um ou mais recursos computacionais de um sistema. Uma simples
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aplicagiio € constituida de varias tarefas, onde uma tarefa deve satisfazer seus prazos
e restricdes temporais [FARINES,2000].

As restrigdes temporais, as relagdes de precedéncia e de exclusio usualmente
sd0 impostas sobre tarefas que sdo determinantes na definicio de um modelo de
tarefas, que € parte integrante de um problema de escalonamento.

Todas as tarefas possuem um prazo, ou seja, seus “deadlines”, que
normalmente devem ser concluidas antes de seu ‘deadline”. A conseqiiéncia de uma

tarefa ser concluida ap6s o seu “deadline” define dois tipos de tarefas
[FARINES,2000}:

- Tarefas Criticas (“hard”). Uma tarefa ¢ chamada critica, quando ela ¢
completada apés o seu prazo, causando falhas catastroficas no sistema e no ambiente,

podendo apresentar prejuizos para as empresas;

- Tarefas Brandas ou Nio-Criticas (“soff”): As tarefas sfio chamadas brandas
quando também sdo terminadas apds o prazo, mas causam apenas uma diminuic¢do no
desempenho do sistema, geralmente sem causar prejuizos graves.

Qutra caracteristica das tarefas é a regularidade de suas ativagles. Os

modelos de tarefas comportam dois tipos de tarefas:

- Tarefas Periodicas: Ocorrem em uma seqiiéncia infinita e regular, possuem
uma previsibilidade, sendo ativadas por periodo formando um conjunto de diferentes
instincias da tarefa. Normalmente, sfio associadas a ‘Headline hard”, ou seja, sdo

tarefas criticas;

- Tarefas Aperidicas: Sdo tarefas que correspondem a eventos internos ou
externos definindo uma caracteristica aleatoria na ativagdo. Normalmente, so

associadas a “deadline soff” nas suas execugdes.

Outras restrigdes sdo importantes na defini¢io do comportamento temporal de

uma tarefa:
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- Tempo de computagdo: é o tempo necessario para execugdo completa da

tarefa;

- Tempo de inicio: corresponde ao instante de inicio do processamento da

tarefa em uma ativacio;

- Tempo de término: corresponde ao tempo em que se completa a execugdo

da tarefa;

- Tempo de chegada: corresponde ao instante em que o escalonador recebe a
ativagio dessa tarcfa. Nas tarefas periodicas, o tempo de chegada coincide com o
inicio do periodo de ativagdo. As tarefas aperiodicas apresentam o tempo de chegada

coincidindo com o tempo da requisi¢cio do processamento;

- Tempo de liberagdo: corresponde com o instante de sua inclusdo na fila de

tarefas prontas para execugao.

3.1.1. Relagbes de Precedéncia e de Exclusiio

Na maioria das vezes, os processamentos ndo podem executar tarefas em
ordem arbitréaria, por isso sdo definidas as relagdes de precedéncia entre as tarefas da
aplicago, determinando ordens entre as mesmas. Uma tarefa T; ¢ precedida por uma
outra Ty (Tx » Ti ), se Ti pode iniciar sua execuglio somente apds o término da
execucdo de Ty

Rehcdes de precedéncia expressam a dependéncia entre as tarefas. Em alguns
casos, as relagdes sio representadas na forma de um grafo aciclico orientado, onde os
nés correspondem as tarefas do conjunto e os arcos descrevem as relagbes de
precedéncia existentes entre as tarefas.

Outra forma de relacdes entre tarefas s3o as relagdes de exclusdo. Uma tarefa
T; exclui Ty quando a execugfio de uma segdo critica de Ty que manipula o recurso

compartithado ndo pode executar porque T, j4 ocupa o recurso [FARINES,2000].
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4. CONCEITOS DE ALGORITMO GENETICO

Neste trabalho abordamos os conceitos do Algeritmo Genético, bem como
sua estrutura e caracteristicas. Mas existem outros tipos de algoritmos genéticos com
caracteristicas especificas para resolverem outros tipos de problemas: esses
algoritmos sdo detalhados no Apéndice A.

A primeira teoria sobre a origem da variabilidade das formas de vida foi
desenvolvida por kan Baptiste Lamark, que sugeriu uma teoria evoluciondria no
"uso e desuso" de orgdos; e de Thomas Robert Malthus, que propds que fatores
ambientais tais como doengas e caréncia de alimentos, limitavam o crescimento de
uma populagio.

Algumas décadas depois, Charles Darwin apresentou em 1858 sua teoria de
evolugio através de selegfo natural, simultaneamenic com outro naturalista inglés
Alfred Russel Wallace. No ano seguinte, Darwin publica a sua grande obra: On the
Origin of Species by Means of Natural Selection com a sua teoria completa.

Darwin niio conseguiu explicar de onde vinham as variagdes das espécies e
como eram herdadas. Por volta de 1900, o trabalho de Gregor Mendel, desenvolvido
em 1865, sobre os principios bédsicos de heranga genética, foi redescoberto pelos
cientistas e teve grande influéncia sobre os futuros trabathos relacionados & evolucgo.
A moderna teoria da evolugio combina a genética ¢ as idéias de Darwin ¢ Wallace
sobre a selegfio natural, criando o principio basico de Genética Populacional: a
variabilidade entre individuos em uma populagio de organismos que se reproduzem
sexualmente ¢ produzida pela mutagdo e pela recombinagio genética [DAMM,
2005].

Este principio foi desenvolvido durante os anos 30 e 40, por biologos e
matematicos de importantes centros de pesquisa. Nos anos 50 ¢ 60, muitos bidlogos
comecaram a desenvolver simulagdes computacionais de sistemas genéticos.
Entretanto, foi o professor John Holland da Universidade de Michigan a partir de
experiéncias com implementagdes de redes neurais artificiais, percebeu um nitido elo
entre a biologia e a computagdo, ou seja, as maquinas podiam ser levadas a adaptar-
se a0 meio ambiente, tais como os seres vivos. Publicados inicialmente em 1975

(ddaptation in Natural and Artificial Systems) os Algoritmos Genéticos sdo
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algoritmos de otimizagio global, baseados nos mecanismos de selecdo natural ¢ da
genética, procurando solucionar problemas complexos de otimizagio e aprendizado
computacional, sem exigir muito conhecimento prévio destes. Trata-se de um
método de resolugdo de propésitos gerais, cujo principio € independente da natureza
do problema especifico [HOLLAND. 1975}].

A Teoria da Evolugdo supde que a evolugdo das espécies esta diretamente
ligada a capacidade dos individuos se adaptarem ao seu habitat, onde apenas os mas
aptos sobrevivem e deixam descendentes. Nesse processo seletivo sdo gerados
individuos com algumas caracteristicas salientes, que se destacam dos demais de sua
espécie. Com isso aumentam sua probabilidade de sobrevivéncia e geram
descendentes ainda melhores, evoluindo a espécie quanto a sua adaptagdo ao meio
ambiente. Por outro lado, individuos que nfo se destacam fendem a ndo
sobreviverem ¢ a nio gerar descendentes, sendo gradativamente eliminados. Os
algoritmos genéticos procuram imitar, de uma forma computacional, algumas ctapas
desse processo evolutivo das espécies. Recebem esse nome porque assumem como
referéncia a codificagdo de DNA, encontrada no ntcleo da célula de cada individuo.
Esse codigo genético é representado por cromossomos, que sfo cadeias de genes
[HOLLAND, 1975].

Toda tarefa de busca e otimizagio possui varios componentes, entre eles: o
espaco de busca, onde sdo consideradas todas as possibilidades de uma solugdo de
um problema ¢ a fungéio de avaliacfo (ou fungfio de custo), uma maneira de avaliar
os membros do espago de busca. As técnicas de busca e otimizagfio tradicionais
iniciamrse com um unico candidato que, iterativamente, ¢ manipulado associado ao
problema a ser solucionado. Geralmente, a simulagdo em computadores pode ser
muito complexa. No entanto, as técnicas de computacdo evoluciondria operam sobre
uma populagdo de candidatos em paralelo. Assim, elas podem fazer a busca em
diferentes 4reas do espago de solugdo, alocando um numero de membros apropriado
para a busca em varias regides. Portanto, os Algoritmos Genéticos (AGs) diferem
dos métodos tradicionais de busca e otimizagfio, principalmente em quatro aspectos
[HOLLAND, 1975]:
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-AGs trabalham com uma codificagio do conjunto de paridmetros e ndo com
QS proprios parametros;

-AGs trabalham com uma populagfo ¢ ndo com um Unico ponto;

-AGs utilizam informacdes de custo ou recompensa e ndo derivadas ou outro
conhecimento auxiliar;

-AGs utilizam regras de transigido probabilisticas € ndo deterministicas;

- As modificacdes de um AG a fim de modelar variagdes do problema

original sdo muito faceis de ser implementadas, diferentemente de muttos outros

sistemas de otimizagéo.

O principal beneficio dos Algoritmos Genéticos ¢ que sio mmito eficientes
para busca de solugBes Otimas, ou aproximadamente oOtimas em uma grande
variedade de problemas, pois ndo impSem muitas das limitagSes encontradas nos
métodos de busca tradicionais, como exemplo, o detalhamento dos parametros para
iniciar a busca.

Outra vantagem ¢ a simplificacdo que eles permitem na formulacio ¢ solugéo
de problemas de otimizacHo, os algoritmos simples normalmente trabalham com
descrigdes de entradas formadas por cadeias de bits de tamanho fixo, outros tipos
podem trabalhar com cadeias de bits de tamanho varidvel, como exemplo, AG's
usados para Programacio Genética. AG's possuem um paralelismo implicito
decorrente da avaliagfio independente de cada uma dessas cadeias de bits, ou seja,
pode-se avaliar a viabilidade de um conjunto de pardmetros para a solucio do
problema de otimizag#io em questio. O AG ¢ indicado para a solugfo de problemas
de otimizacdo complexos, NP-Completos, como exemplo, o problema do "caixeiro
viajante”, que envolvem um grande numero de varidveis e, conseqilentemente,
espacgos de solugdes de dimensdes elevadas.

O problema do caixeiro viajante € um caso tipico de otimizac¢do combinaiéria,
onde o caixeiro viajante deseja visitar N cidades (vértices) de uma certa localizacéo
sendo que, entre alguns pares de cidades existem rotas (arcos ou arestas), atraves das
quais o mesmo pode viajar a partir de uma cidade para outra. Cada rota tem um
niimero associado que pode representar a distincia ou o custo necessario para

percorré-la. Assim, o caixeiro viajante deseja encontrar um caminhe que passe por
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cada uma das N cidades apenas uma vez ¢ além disso, que tenha um custo menor
que certo valor; onde o custo do caminho ¢ a soma dos custos das rotas percorridas
[CUNHA,2000].

Além disso, em muitos casos onde outras estratégias de otimizacdo falham na
busca de uma solugio, os AGs convergem, sendo numericamente robustos, ou seja,
nfo sdo sensiveis a erros de arredondamento no que se refere aos seus resultados

finais [IMIRANDA,2004].

4.1. Terminologia dos Algoritmos Genéticos

A terminologia utilizada pelos Algoritmos Genéticos consiste basicamerte de

analogias extraidas da Biologia. Os termos mais utilizados sdo [MITCHELL,1996]:

Aptidao (Fitness)

Probabilidade que um organismo possui para reproduzir ou uma funcio do niimero
de descendentes (fertilidade) que este organismo possui;

Cromossomo ou Individuo

Uma estrutura de solucio, uma cadeia de simbolos candidata para o problema;
Populacio

Conjunto dos cromossomos ou individuos que compde cada geragéo;

Gene

Divisdo conceitual ou bloco funcional de um cromossomo, capaz de codificar uma
caracteristica;

Posicio

Posi¢do em que um gene se localiza no cromossomo;

Genétipo

Refere-se ao jogo particular de genes contido em um genoma (colegido completa de
material genético de um organismo, envolvendo todos os cromossomos);
Cruzamento

Troca de partes entre dois cromossomos;

Mutaciao

Mudanga ou troca de uma ou mais posi¢do de um cromossomo;
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4.2. Estrutura do Algoritmo Genético

O Algoritmo Genético inicia-se com uma estrutura onde se replicam os
mecanismos da natureza € espera-se emergir um comportamento espontaneamente,
sendo um procedimento iterativo que mantém sempre uma populacdo de estruturas
que sdo candidatas a solugdo do problema.

Inicialmente, ¢ gerada uma populagdo formada por um conjunto aleatério de
individuos que podem ser vistos como possiveis solugdes do problema. Durante o
processo evolutivo, esta populacdo € avaliada: para cada individuo ¢ dado uma nota,
ou indice, refletindo sua habilidade de adaptacio a determinado ambiente. Uma
porcentagem dos mais adaptados € mantida, enquanto os outros sdo descartados
(darwinismo). Os membros mantidos pela selecdo podem sofrer modificages em
suas caracteristicas fundamentais através de mutagBes ¢ cruzamento (crossover) ou
recombinagao genética gerando descendentes para a proxima geragéo. Este processo,
chamado de reproducio, € repetido até que uma solugfio satisfatoria seja encontrada.

Embora possam parecer simplistas do ponto de vista biologico, estes
algoritmos s@o suficientemente complexos para fornecer mecanismo de busca

adaptativo poderoso ¢ robusto.

Abaixo segue uma seqii€ncia de passos ilustrando o ciclo do algoritmo

genético:

- Defini¢do do problema a ser fratado € uma possivel solugio para o mesmo;

- Criagfo da representagfo cromossOmica;

- Construcéo da populagio inicial;

- Definigio de um mecanismo de avaliagdo e seleg@o dos cromossomos ou
individuos;

- Definiciio dos operadores genéticos de crossover (reproducéo) ¢ mutagio;

- Selegdio de pardmetros para uma boa convergéncia de evolugdo: tamanho da
populagdo, selecdo dos cromossomos reprodutores ¢ descarte dos menos aptos,
critério de sobrevivéncia dos cromossomos e critério de parada do algoritmo genético
[AZAMBUIJA,2001].
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Abaixo na Figura 3, segue o ciclo de execugdio do Algoritmo Genético,

mostrando todas as etapas do processo de evolugéio:

Gera-se a Populagdoe Inicial com Tp individuos

Populagao atingiu
Critério de Término?

Figura 3: Ciclo do Algoritmo Genético [AZAMBUIJA,2001]

4.2.1. Operadores Genéticos

O cromossomo ou individuo é formado por uma cadeia de simbolos que
representa uma possivel solugiio para o problema a ser resolvido. Na maioria das
aplicagtes sdo representados por um vetor ou um conjunto de vetores, cujos
elementos podem ser: binarios, inteiros ou reais de acordo com o tipo de problema. A
essa representagiio define-se o alfabeto do AG, a representag@o de cada parémetro de
acordo com o alfabeto adotado é chamada de gene. Define-se a populagio como um

conjunto de pontos no espaco de busca utilizado, representada por um conjunto de

individuos.
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O AG inicia-se com uwma definiciio aleatéria da populagio inicial com n
individuos que representam possiveis solugdes para o problema. Para cada individuo
calcula-se a aptiddo através da fungdo objetivo, que mensura a adaptagio do
individuo como soluc@io do problema. Verifica-se entfio se os critérios de parada
foram atingidos, sendo que estes critérios geralmente sfo a aptiddo atingida pelo
melhor individuo, em conjunto com o nimero de geragdes. A geragdo representa
uma iteragdo completa do algoritmo genético, gerando uma nova populagio
[MIRANDA,2003]. O processo de selecio é composto basicamente por dois
métodos: o crossover € a mutagéo.

O Crossover, também chamado de Recombinagfio CromossOmica consiste na
troca de genes entre dois pais para gerar um ou mais filhos, formando uma nova
populagdo com filhos provenientes de recombinagdes [DAMM, 2005]. Quando se
utiliza a codificagdo bindria, a recombinagdo consiste na troca de partes dos
cromossomos dos pais para gerar os fithos, essa troca pode ser definida por um ou
mais pontos sorteados aleatoriamente, segue exemplo na Figura 4 utilizando-se um

Unico ponto de crossover:

Panto de Crossover

Pai 2:

Figura 4: Exemplo de Crossover Simples

Os métodos de vetores bindrios podem ser aplicados para vetores reais,
entretanto o nivel de recombinacfo seria inferior, pois a troca no alteraria os valores
reais. Por isso, existem alguns métodos especificos, como: Recombinagio Discreta,
Recombinagio Intermedidria ¢ Linear [DAMM, 2005].
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A Recombinag@o Discreta cria uma mascara de cada filho que € sorteada

independentemente, segue abaixo o exemplo [DAMM, 2005]:

Mascara Filho 1: I Mascara Filho 2:

Pai 1: 12255 Filho 1:

Pai 2: Filho 2:

A

Figura 5: Exemplo de Recombinagdio Discreta

No exemplo, a formagdo do filho 1 segue a mascara Filtho 1 definida, onde o
filho namero 1 é formado pelas duas primeiras posi¢des do Pai niimero 2 e a ltima
posi¢do do Pai numero 1 [DAMM, 2005].

Na Recombinagdo Intermediaria, as mascaras sdo sorteadas para definirem os
pesos a da equagio, por exemplo:

Filho = Pail + a* (pai2-pail), para o Filho 1 utiliza-se o al e sucessivamente.

al=0,5/1,1/-0,1

a2=0,1/08/0,5

A Recombinagiio Linear € bem parecida com a Recombinagio Intermediaria,
a tmica diferenca é que ao invés da mascara é sorteado apenas um valor escalar por
filho, para definirem os pesos a da equagio [DAMM, 2005]:

Filho = Pail + a* (pai2-pail)

al = 0,5

aZ2=-0,1

Para vetores inteiros (problemas de permutagdo) € utilizado o Crossover
Ciclico ou 0 PMX (Partially Matched Crossover). Permutagfio ¢ simplesmente uma
seqiiéncia ordenada sem duas ou mais repeti¢des de cada elemento retirado de um

conjunto fixo de simbolos, e com comprimento méximo, ou seja, a ordem € relevante
[MIRANDA,2003].
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O Crossover ciclico € iniciado a partir da troca de uma tnica posigdo,
verificando até que gene sera alterado formando um ciclo, segue abaixo exemplo do
Crossover Ciclico. Neste exemplo, a posigio de nimero 3 foi escolhida e o gene foi
alterado, o numero 8 do Pai 2 foi para a terceira posigio do Pai 1, mas como ja
existia um niimero 8 na posicgio 7, este mimero foi para o Pai 2 ¢ o nimero 6 foi para

o Pai 1 e assim sucessivamente, at¢ ndo repetir nenhum nimero e encerrar o ciclo.

Pail: | 7|5 pE]4]3]|¢]|8]2 Posigfo sorteada =3

Pail: [7]|s|1]a]s]e]s]z2] Filoi: | 7|5 8]4]3]2]6]1]
b 1 1/1

Pai2:13|4|;]71512r6l’ Filho2: [ [ 17 [s]els]2]

Figura 6: Exemplo de Crossover Ciclico

O crossover PMX (Partially Matched Crossover) € realizado através da
selecdo de uma secdo no cromossomo (através de dois pontos de Crossover), onde o
material genético dos 2 pais sera integralmente trocado. Depois, sdo feitas mudangas

de posicdo a posigdo para ndo existirem repeticdes nos fithos que serdo gerados
[MIRANDA,2003].

Pai2 | 314 /8|7|5/|2|6]1

Filho 1

Fitho 2

!
Figura 7: Exemplo do Crossover PMX
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A mutagiio é um operador genético que consiste em substituir genes em um
mesmo cromossomo. Existem varios tipos de mutagdo, como exemplo, podemos
citar a mutagio para vetor bindrio, vetor real e inteiro [MIRANDA,2003].

No vetor bindrio altera-se um ou mais bits do cromossomo pelo seu
complemento bindrio, por exemplo, onde ¢ 0 altera-se para 1.

Nos vetores reais altera-se um gene do cromossomo através de v sorteio de
incremento ou decremento, sendo que este valor devera ser pequeno, segue exemplo:

Incremento = 0,1 ou Decremento = 0,7

7,5

\ 7.5-0,7=63
o[ [1a [ 50

Figura 8: Exemplo Mutacfo com Vetor Real

A posi¢io (1) sorteada possui o valor 7,5, e o decremento sorteado possui o
valor 0,7, entdo o valor 7,5 sera trocado por 6,8, ou seja, 7,5 — 0,7 = 6,8 novo valor
da posicfio (1).

Para valores inteiros utilizamos o método da permutagéo ocorrendo  troca de

dois ou mais genes, como exemplo:

Figura 9: Exemplo de Mutagio com Vetor Inteiro

4.2.2. Selegdo para o Crossover

Apos a geragdo da populagdo inicial e avaliacdo dos individuos € realizada a
sele¢do dos individuos que farfio parte do Crossover, ou seja, quais individuos serfio

pares para o cruzamento. Existem varios métodos de selegdo dos individuos com
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maior capacidade de sobrevivéncia para a escolha do crossover (processo de
reproducfio), sdio eles: Truncamento, Ranking, Roleta, Amostragem Universal
Estocéstica e Torneio.

No método de Truncamento ordenam-se todos os individuos de acordo com a
aptiddo. Selecionam-se os N primeiros individuos para o Crossover que sfo alocados
em pares aleatoriamente, o valor de N depende da taxa utilizada para o Crossover.
Exemplo: Tamanho da Populagfo Inicial ¢ 100 e a taxa utilizada ¢ de 40%. sendo
assim, 0s 40 melhores individuos formarfo os pares para o Crossover [DAMM,
2005].

No método Ranking (Rank-Based Fitness Assignment) ordena-se todos os
individuos de acordo com a aptiddo, ou seja, a probabilidade de um individuo ser
sorteado depende unicamente da sua aptidéo.

O método da Roleta consiste em somar as avaliacdes dos individuos
selecionados para a reprodugio e dividir a roleta entre os individuos selecionados de
acordo com a sua avaliagdo. A probabilidade de um individuo ser sorteado para o
cruzamento € o valor da sua avaliagdo, pois se o valor da sua avaliacio € alto, o
individuo pode ter uma porcentagem maior na roleta, sendo assim, ao “girar” a roleta
a fim de obter aleatoriamente um individuo a parte maior serd do individuo que

possui uma avaliagiio melhor [MIRANDA,2003].
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Segue abaixo figura 10 ilustrando 0 méiodo da Roleta.

(1) 18,75 %
(2 4375%
3 125%
25 9%

Figura 10: Exemplo do Método da Roleta [SILVA,2003]

O método Amostragem Universal Estocastica ¢ semelhante ao método da
Roleta, a distribuigdo e divisdo dos individuos é a mesma, a forma de selecionar ¢é
diferente. Na roleta temos uma tnica “agulha™ (cursor) que ao girar a roleta scleciom
um tnico individuo, j& na Amostragem Universal Estocastica utiliza-se n ““agulha”
igualmente espagada girando-as em conjunto uma s6 vez. Segue abaixo, figura 11

ilustrando o método de Amostragem Universal Estocastica.

Figura 11: Exemplo de Amostragem Universal Estocdstica [LOPES,2003]

No método do Torneio utilizam-se sucessivas disputas para realizar a selecao,
existe o Tour que é uma varidvel que indica o nimero de individuos que serdo

envolvidos em cada torneio. A cada torneio um sub-grupo de four individuos €
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selecionado da populagio, o melhor individuo do sub-grupo € selecionado como
resultado do torneio. Por exemplo, se é definido o tour = 3, significa que serdo
sorteados trés individuos verificando qual serd o melhor entre eles, o melhor ¢
armazenado e o sorteio é realizado novamente até que se obtenha o nimero desejado
de individuos [LOPES,2003}.

4.2.3. Sele¢do dos individuos para a préxima geragao
(Reinserc¢ao}

O Operador de Selegio dos Algoritmos Genéticos ¢ uma analogia com a
selecdio biologica natural de Darwin. Realizar uma selegéo significa escolher dentre
os individuos pertencentes a populagdo, aqueles que servirdo para criar descendentes
para a proxima geragdo e quantos descendentes cada um deveré gerar. Uma selecdo
pode ser denominada “muito fraca”, se resultar em evolugdio muito baixa e “muito
forte” se resuliar em populages de individuos mais fortes (o termo “forie” aqui
utilizado refere-se aos individuos mais adaptados ao meio ambiente; esta adaptagdo €
que direciona o processo evolutivo). Isto significa que os individuos mais adequados
vivem mais e geram mais descendentes, os quais herdam suas qualidades. Ficando
evidente, que o mecanismo da slegdo tem por finalidade enfatizar um filtrador de
individuos na populagio, para aumentar a perspectiva de gerar individuos melhores
segundo algum critério. Os critérios utilizados sdo: Reinsergiio Pura, Uniforme,
Baseado na Aptidio e Elitismo [ICHIHARA,1998].

A Reinsercdo Pura consiste na troca de toda populagiio (substituigdo da
populagio artiga pelos filhos), a cada ciclo N novos individuos s&o criados
substituindo a populacéio anterior. Uma vez que a Reinsergdo Uniforme selecionam-
se (a partir de qualquer um dos métodos vistos na selegdo para o Crossover) os
melhores individuos da populagio total (Fithos + Pais).

No entanto, o critério Baseado na aptiddo seleciona os melhores individuos da
populagiio, sendo que a populagio total ¢ ordenada. No Elitismo uma parte da
populagio (os melhores pais-Elite) € mantida para a proxima geragfo
[PACHECO,2006].
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4.3. Aplicacoes do Algoritmo Genético

Os AGs possuem uma larga aplicagdo em muitas 4reas cientificas, seguem
algumas delas [MIRANDA,2004],|[PACHECO,2006]:

- Alocagiio e Escalonamento de Tarefas;

- Data Mining (Mineracdo dos Dados): Classificacio de Clientes;

- Aprendizagem de Maquina, problemas com muitas variaveis e espagos das
dimens&es elevadas: Gerenciamento de Carteiras de Fundos de Investimento;

- Problemas de Otimizagio Complexos: Otimizacdo de Fungdes Matematicas,
Otimizagdo Combinatorial, Otimizagio de Planejamento, Otimizagdo de Distribuicéo
e de Negocios;

- Selecdo de rotas: Otimizagdo de Rota de Veiculos ¢ Problema do Caixeiro
Viajante;

- Programacdo Genética: gera a listagem de um programa, em uma
determinada linguagem para que um determinado conjunto de dados de entrada
forneca uma saida desejada;

- Computa¢do Evolutiva: gera programas que se adaptam a mudangas no
sistema ao longo do tempo;

- QOtimizagdo Evolutiva Multi-Critério: otimiza fungdes com maltiplos
objetivos que sgjam conflitant es;

- Ciéncias Biologicas: modela processos biologicos para o entendimento do
comportamento de estruturas genéticas;

- Autdmatos autoprogramaveis;

- Sintese de Circuitos Analdgicos: para uma certa entrada € uma saida
desejada, tensdo, o AG gera a topologia, o tipo € o valor dos componentes do
circuito; Sintese de Circuitos Eletrdnicos e Otimizagio de Layout de Circuitos;

- Sintese de Protocolos: determina quais funcdes do protocolo devem ser
implementadas em hardware e quais devem ser implementadas em software para que
v certo desempenho seja alcangado;

- Gerenciamento de redes: supervisiona o trafego nos links e nas filas dos
"buffers" de roteadores para descobrir rotas otimas e para reconfigurar as rotas

existentes no caso de falha de algum link.
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5. ESCALONAMENTO DE TAREFAS ATRAVES DO AG

O problema de escalonamento de tarefas consiste em encontrar um
ordenamento de tarefas ao longo do tempo, obedecendo a restrigdes de precedéncias
(tarefas) e recursos (processadores) [HOLLAND, 1975]. E um problema de
otimizagdo combinatéria bem conhecido pertencente 3 classe de problemas
intrataveis (NP completos) [AZAMBUIJA,2003}.

O problema de escalonamento de tarefas ¢ formulado como um problema de
minimizagiio do tempo requerido para se executar um conmjunto de arefas com

restricdes [AZAMBUJA,2003].

5.1. Motivagdo para utilizar o AG no Escalonamento

Nio se conhecem algoritmos com complexidade polinomial que garantam
sempre a obtengdo de uma solugdo 6tima global para o problema de escalonamento
de tarefas. Os algoritmos exatos conhecidos tém complexidade exponencial. Por isso,
a utilizagdo de algoritmos exatos restringe-se a pequenas instdncias do problema,
pois do contréario, o tempo computacional necessario seria invidvel.

As diferentes heuristicas utilizadas em métodos encontrados na literatura
[AZAMBUIJA,2001], embora tenham se mostrado eficientes, para vérias instincias
do problema de escalonamento hé situages onde a solugio encontrada ndo € de boa
qualidade. A deficiéncia dessas abordagens ¢ que uma Onica solugfo é gerada, ndo
existindo a possibilidade de se explorar solugdes alternativas que, eventualmente,
poderiam levar a um menor custo [AZAMBUJA,2001}.

Comparando-se os algoritmos exatos com os algoritmos genéticos percebe-se
que o algoritmo genético proporciona diversas solugdes para o mesmo problema,
podendo existir a solugfo 6tima ou ndo, e também os AGs trabalham com uma
populagdo e ndo com um Gnico ponto como no caso dos algoritmos exatos.

Para um melhor entendimento da diferenga entre os algoritmos exatos e o
AG, vemos uma demonstragdo do algoritmo genético da figura 12, sé que adaptado
para demonstrar uma cituacdo que pode ocorrer em um escalonamento, esta figura
contém as tarefas (1, 2, 3 € 7) e mais uma precedéncia entre a tarefa (3 > 7) e (1 ->

3) com custo 0 para simplificar o problema.
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Figura 12: Exemplo de grafo para um escalonador de tarefas simplificado

Os grafos das figuras 12 € 13 sfo representados da seguinte forma: os circulos
(nés) representam as tarefas, a lado esquerdo do grafo temos o tempo de exccuglo
de cada tarefa, o qual corresponde a todas as tarefas daquele mesmo alinhamento. Os
links entre os nos representam as precedéncias, por exemplo, a tarefa 9 s6 pode ser
iniciada apds as execugdes das tarefas 3 e 7.

Os nimetros ao lado de cada link apresentam o custo de comunicago entre as
tarefas, caso estejam alocadas em processadores diferentes. Assim, se a tarefa 7
estiver alocada no mesmo processador da tarefa 9, esta ultima pode ser iniciada
imediatamente apds a realizagio de 7. Porém, se estiverem em processadores
distintos, a tarefa 9 s6 podera ser realizada 5 unidades de tempo apos o término da
tarefa 7.

Seguindo as regras de precedéncia ilustradas na figura 12 do problema

proposto, vemos que para as quatro tarefas em questdo, temos somente duas

possibilidades. Conforme tabela abaixo:

Tabela 1: Tarefas possiveis para o problema da figura 12

Tarefas
Possibilidade 1 1 2 3 7

Possibilidade 2 1 3 2 7
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Dentre as possibilidades vistas na tabela acima, existem variactes dos dois
processadores para cada tarefa, podendo somente executar uma tarefa por vez ou
executar a comunicagio entre eles. Observe também que ndio ha concorréncia de
processamento com qualquer atividade externa, sendo assim, os processadores estdo
totalmente dedicados a execucfio das quatro tarcfas em questéo.

Calculando as possiveis combinagbes, chtemos um total de 16 individuos
para cada possibilidade de tarefas, ou seja, para as duas possibilidades temos um total
de 32 individuos.

A avaliagdo dos individuos nesse escalonador torna-se viavel, pois as tarefas
envolvidas foram reduzidas, ficando apenas quatro tarefas. Isso permite a
visualiza¢do de quais sdo as solugdes 6timas, sendo que no caso da execugéo de um
algoritmo exato teriamos necessariame nte somente uma das solugdes otimas.

A capacidade do AG em mostrar uma solugdo otima global, torna-o
interessante porque ndo buscamos somente a methor solugfio, mas vm conjunto de
boas solugdes. Veja a ilustracio da tabela 2, onde foram encontradas todas as
solugdes possiveis para o problema, incluindo a melhor solugdo com custo de 7,

destacadas em negrito.
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Tabela 2: Avaliagdo do custo para o problema da figura 12

Tarefas
individuos Avaliagdo do Custo
Possibilidade 1 i1 2| 3|7
Tempo
Processadores Comunicacéo Custo Total
11 1] 1] 4 0 8
21 4| 1] 1] 2 2 10
31 1] 1) 2| 1 1 10
41 1) 1 21 2 3 7
51 1| 21 11 1 3 9
6l 1] 2] 1] 2 1 7
Tl 1§21 211 4 12
8|11 2| 2] 2 2 10
9| 2| 1t 1} 1 2 10
10 21 11 1] 2 4 12
111 2 1] 27 1 1 7
i2p 2| 1| 2| 2 3 8
131 2] 21 1] 1 3 11
14 2] 2} 1} 2 1 7
151 2| 2| 2| 1 2 10
16| 21 21 2] 2 0 8
Tarefas
Individuos Avaliacéo do Custo
Possibilidade 2 11 3t 21 7
Tempo
Processadores Comunicagéo Custo Total
17111 1111 1 0 8
18] 1] 1] 1] 2 2 10
191 1] 1 2 1 3 10
200 1] 1] 21 2 1 7
211 1] 2] 1| 1 1 9
21 1| 2] | 2 3 7
23] 1] 2121 1 4 12
24| 1| 23 2| 2 2 10
25 21 11 111 2 10
261 2] 1] 1} 2 4 12
27 2y 1] 211 3 7
281 2| 1} 2| 2 1 8
201 24 21 111 1 11
301 2] 21 1] 2 3 7
Ml 2] 2] 2] 14 2 10
32| 21 2] 2] 2 0 8
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Para esse problema temos um total de quatro individuos para cada
possibilidade da tabela 1, com o menor custo possivel que iremos analisar em
especial de dois individuos, o nimero 4 ¢ o 6, na tabela 3.

Nessa demonstagio vamos supor uma hipotética sitvagéo, em que o algoritmo
genético escolha justamente o individuo 6 para ser executado, mas mquanto as
tarefas sdo executadas ocorre uma interrupgiio da comunicagdo entre oS
processadores | ¢ 2, somente no segundo instante de tempo, marcado em vermelho
na tabela 3. Esse erro de comunicagdo levaria o custo de execugho subir de 7 para 8.
Observe que esse atraso poderia ser evitado caso a segunda opgdo encontrada pelo
AG fosse justamente o individuo nimero 4, pois no segundo instante de tempo ndo
ha comunicagdo entre os processadores ¢ ja que no individuo niimero 6 também foi
exccutado a tarefa nimero 1 no processador 1, entdo, ndo ha qualquer problema na
troca do individuo 6 para o 4.

Tabela 3: Avaliagio dos individuos 4 e 6 com problema de comunicago

Individuo 6 Individuo 4

' Processador 1 Processador 1
Tarefas - Tempos de execugito Taﬁs - _Tem_pos d;;e_cu_s;ﬁa
Is”_ Iz | 4s | S8 _65 r"s .85‘ I .”s "3_3 [43 5; 65 _"; Ea_
Tarefal - | Tarefat - |
Comunicagio | : _ Tarefa 2 j I }
Comunicacio - | Comumnicacao |5 L
Tarefa 3 BN -] - | Tarefa 7 L - -1~ L_
LY . Processader 21 el l Processador 2
Tarefas T Tempos ﬂe_exﬂ“;;w " Tarefas | Teiﬁpog de execucgao .
1s [ 28 | 3s | 4s 5§ [ 6 | 7s | 3s 1 | 28 . 3s | 4e | 53| 65 | 7 | Ss-
tﬁm_icagio_ il N il i 1 __Comtfp_ifagéo i e )
Comunicagao s - _:_ 1 Tarefad | - L]
Tarefa 2 R - - 1 Tarefa 7 B - -1 - T
Tarefa i‘ D - - T 1
_T;r"e}a 7 i ]
Tarefa 7 L - -
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5.2. Estrutura para a constru¢do de um escalonador através do
AG

Este trabalho demonstra a estrutura para a construgio de um escalonador
através do Algoritmo Genético, com o objetivo de escolher o melhor caminho
(menor tempo) para executar determinadas tarefas, seguindo determinadas regras
(precedéncia). Essa estrutura serd utilizada para determinar as prioridades relativas
entre as tarefas que competem por um mesmo recurso de hardware, permitindo
assim, selecionar em que instante de tempo cada tarefa serd executada por um
determinado recurso.

O problema proposto aqui é um escalonamento de 12 tarefas entre dois
processadores distintos de estrutura paralela sem restrigiio ou balanceamento de

carga. A Figura 13 apresenta vm grafo do problema.

Figura 13: Exemplo de grafo para um escalonador de tarefas

Existem trabalhos com solugées diferentes para esse problema, sendo que a
maioria das técnicas encontradas para resolvé-los estdo baseadas em métodos
heuristicos, ou s¢ja, o algoritmo garante encontrar uma solugfio proxima da 6tima em

menos tempo que o exponencial [AZAMBUIJA,2003].
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A técnica de algoritmo genético para resolver esses problemas consiste em
gerar possiveis solugdes codificadas na forma de individuos, que interagem com
outros na mesma populagdo, procurando através de operagdes genéticas, gerar
individuos mais aptos, ou seja, obter a solugéio étima [AZAMBUJA,2001].

Os métodos propostos que utilizam algoritmo genético mostram que seu
desempenho pode ter grande dependéncia do nlimero de processadores e tarefas que

serdo executadas, bem como, dos pardmetros internos [AZAMBUIJA,2003].

5.2.1. A escolha da Representacdo Cromossémica

A forma de representagdo do cromossomo pode variar conforme o problema
em questio. No caso do escalonamento de tarefas através do Algoritmo Genético
entre processadores, adotaremos as seguintes formas de representagio:

Representacdo 1: Os individuos sio representados através de uma matriz
dupla contendo as tarefas ¢ os respectivos processadores, sdo 12 tarefas (1-12) que
podem ser alternadas entre 2 processadores (1 ou 2).

Representagido 2: Os individuos sio representados através de uma matriz Sij,
onde para cada tarefa i existe um processador j associado. O cromossomo € estitico,
ou seja, com um tamanho conhecido. Nesse caso, o niimero de tarefas sera de 12 que
poderdo ser executadas no processador 1 ou 2. Os individuos ou cromossomos, em
ambas as abordagens, sdo representados através de uma matriz, onde para cada tarefa
existe um processador associado. Essa matriz é composta por 12 tarefas variando de
1 a 12, sem repetigdes, que podem ser executadas tanto no processador 1 quanto no
processador 2.

Como o problema ¢ bem conhecido e limitado a 12 tarefas, opta-se por um
Cromossomo estatico, ou seja, com um tamanho conhecido e pré-determinado. A

Tabela 4 mostra um exemplo da representagéio adotada.

Tabela 4: Representagdo 1 - Exemplo da representacdo do individuo

Tarefas 1212 14 te J10}7 13 (8 111]5 [9 |1
Processadores |1 |1 i2 |t f2 [2 J1 [t j1 J1 jt {2
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Tabela 5: Representagio 2 - Exemplo da representagio de n individuos

Tarefas
Individue 1 1212 14 16 11017 13 |8 |11[5 |9 |1
Individuo 2 1 4 15 |6 {7 |8 |9 [10]11]12
Individuo 3 12131871019 |8 {7 |6 15 |4 |3 1
Individuo n 1 4 15 |16 (1211119 |8§ |7 (10
Processadores
Individuo 1 Prroj2 4012 12 {t |1 1 btk o2
Individuo 2 2 12912 |1 2 12 |1 {1t §1 |2 |1 |2
Individuo 3 201y t2 11 |12 2 v §1 (2 11 |1 (2
Individuo n 12§21y 12 (211 ]2 (112 1 }2

Ao implementar uma determinada aplicagio em um software, deve-se levar
em consideragdo a escolha da representagio do cromossomo. Uma vez que em
algumas linguagens ha restri¢des do tipo de varidvel a ser utilizado, obrigando-nos a

escolher outras formas de representacéo.

5.2.2. Populacéo Inicial

Para a criacio da populagfio inicial pode-se criar uma rotina especifica, a fim
de validar as possiveis tarefas para cada posigdo da matriz. Imaginando-se que a
posi¢@o seja como no exemplo de 1 a 12 da matriz do individuo, isso representa
justamente a seqiiéncia a ser seguida na execugfio das tarefas.

Conforme podemos ver na tabela abaixo a seqiéncia das tarefas sdo vélidas
seguindo o grafo proposto da figura 13, ou seja, a execugio das tarefas atende as
restrigdes de precedéncia do escalonador de tarefas.

Tabela 6: Individuo para 12 tarefas e suas respectivas posigoes

Posicio 1 12 13 141516 |7 (819 |10]10}12
Tarefas 112 1314|516 |7 (8 (9 1011112

Para gerar uma populagiio inicial seguindo os critérios de precedéncia, pode-
se gerar inicialmente uma varidvel que guardard as possiveis das tarefas a serem
executadas naquele instante de tempo, sem repeti-las. Com essas opgles de tarcfas
geradas, podemos fazer o sorteio da primeira 4 @ltima posicéo, até que acabem todas
as opgBes das tarefas. Segue a tabela 7 com um dos possiveis individuos da

populagdo inicial:
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Tabela 7: Opg¢des de tarefas por ciclo

I° Ciclo Opcoes de Tarefas
Posiciio 1 1

2° Ciclo Opcies de Tarefas
Posicio 2 2|3 [4 |5 ]6
Posicao 3 J 4415 |6
Posicao 4 4 |5 16
Posiciio 5 516
Posicdo 6 6
3° Ciclo Opcies de Tarefas
Tarefas 7

4° Ciclo Opcies de Tarefas
Posicdo 8 8 |9 {10(11]12
Posicio 9 9 [lo]1L]]12
Posi¢io 10 1011112
Posicio 10 11| 12
Posigiio 12 12

Outra forma de gerar a populagdo inicial é sorteando de 1 a 12 e garantindo
que os nimcros ndo sejam repetidos. Nesse caso a validagdo pode ser realizada
posteriormente em uma segunda etapa, descartando assim os individuos invélidos.

Como na geragio da populagdo inicial dos processadores ndo ha qualquer
restricio referente ao escalonamento proposto da figura 13, logo ndo € necessario
qualquer tipo de validagdo. Mas poderfamos considerar alguma restricio para a
escolha do processador a ser validado, como por exemplo, o processador 1 deve
executar sempre a segunda tarefa, assim j& na populagio inicial poderfamos seguir
essa regra. Observe que isso ndo garantird que a solugdo final obedeca tal critério,
pois para isso fazse necessario uma validagdo final.

Adotaremos aqui para exemplificar o problema do AG do escalonador da

figura 13 uma populago inicial de 100 individuos.

5.2.3. Avaliacao da Populacédo

Depois de gerar a populagdo inicial deve-se fazer a avaliagfio da populagdo,
com o objetivo de medir a sua performance dentro do problema a ser tratado. No

caso do problema do escalonador de tarefas os individuos sdo avaliados de acordo
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com o custo da tarefa e o tempo de comunicago entre elas, se houver mudanca de
processador e se as tarefas tiverem precedéncias.
O methor individuo € aquele que possui o menor tempo para distribuir as tarefas
entre dois processadores. A avaliacfo € realizada verificando se existe precedéncia
entre as tarefas, se existir € verificado se houve alteracdo de processador e qual o
tempo de comunicacgfio entre as tarefas, ou seja, € necessario aguardar o tempo de
comunicagiio para iniciar a proxima execugdo. Se ndo houver precedéncia a tarefa é
executada imediatamente,

Veja na tabela 8 um exemplo de vm individuo a ser avaliado utilizando o

escalonador de tarefas da figura 13.

Tabela 8: Avaliagiio de um individuo

Tarefas 112341531617 (8% 10{11]12
Processalderes Ij2y1j1j2)12¢1(11p21111]2
Tempo de cada Tarefa tl212(21212131414141414
Tempo de comunicagio gf{ijojojtj1j1}jo}j1j0]0;}1

Na tabela 9 temos os tempos de execuclio de cada tarefa escalonados no
tempo, observe que cada quadrado representa uma unidade do custo da tarefa ou de
comunicagio entre os processadores. Baseando-se na divisdo das tarefas entre os
processadores 1 e 2 , temos que o custo total desse individuo é 27, pois somente

quando o processador 1 terminar a tarefa nimero 11 ¢ que as atividades realmente

serdo concluidas.



Tabela 9: Avaliagio de um individuo
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Processader 1

Tarefas

Tempos de execu¢io

819110 11

12

13

14

15

16

17

181 19120}21

Tarefa 1

Tarefa 3

Tarefa 4

Tarefa 7

Tempo de
Comunicacio

Tarefa 8

Tarefa 10

Tarefa 11

Processador 2

Tarefas

Tempos de execugiio

g191i01 1

12

i3

14

15

16

17

18] 19]20] 21

Tarefa 2

Tempo de
Comunicagéo

Tarefa &

Tempo de
Comunicacao

Tarefa 6

Tempo de
Comunicacao

Tarefa 8

Tempo de
Comunicacéo

Tarefa 12

Tempo de
Comunicacio

Para o problema proposto iremos chamar o tempo total de custo, como uma

forma de simplificagdo da notagdo. Uma vez que a idéia de avaliagiio serd bem

empregada nesse trabalho.
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5.2.4. Critério de Término

E preciso definir um nimero de geragbes que deverdo ser pesquisadas pelo
algoritmo evoluciondrio. Inicialmente deverdo ser definidos valores para testar a
qualidade dos resultados. Normalmente ¢ utilizada entre 20 ¢ 50 geragBes, podendo
este niimero variar conforme o nimero de vértices do grafo a ser escalonado, bem
COMO 08 recursos computacionais utilizados.

Torna-se muito importante que o algoritmo seja implementado, observando a
evolucio das solugGes encontradas, podendo ser encerrado apoOs algumas geragdes
em que os resultados apresentam-se estagnados.

O critério de término ¢ a etapa que define quando ¢ finalizado o algoritmo
com o objetivo de fornecer uma solugdio Gtima. Esse critério ¢ geralmente definido
através de um pardmetro pré-configurado pelo programador com as quantidades de
geracdes necessarias para obter um resultado satisfatorio (convergéncia).

Esse parimetro além de afetar diretamente na qualidade do resultado obtido
também afetara o tempo de convergéncia do algoritmo. O que em alguns casos pode
ser decisivo no critério da escolha do pardmetro.

Como m problema proposto o resultado final € a minimizagio do tempo de
execucio das tarefas por dois processadores. A escolha da configuragdo de um bom
critério de término pode determinar o qudio proximo o resultado estard da melhor
solugio, ou seja, o methor individuo da populagéo.

Adotaremos como exemplo um critério de término de 200 geragles para a
finalizagéio do algoritmo, mas esse valor tanto pode ser alterado quanto se tornar uma

vartavel de sistema.
5.2.5. Método de Sele¢cao

Pode-se empregar diversas solugdes para o método de selegdo, sendo que
neste trabalho foi escolhido como exemplo o método conhecido como Torneio™.
Esse método foi escothido por apresentar uma baixa pressio seletiva e, assim, evitar

uma convergéncia prematura j& que os critérios para geragio da populagéo inicial sdo
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elitistas. Além disso, é um método mais simples para implementagfo ¢ mais facil
para alteragBes, caso necessario.

Uma das formas de implementar tal solugfio ¢ utilizar o método Torneio
Simples com tour de trés. Para realizagdo desse processo € feito um sorteto de trés
individuos verificando qual é o melhor entre ¢les, o melhor é armazenado, e entdo é
realizado o sorteio novamente até que se obtenha os nimeros desejados de
individuos. Os individuos sorteados sfo escolhidos para a sclecdo podendo ser
sorteados ¢ escolhidos mais de uma vez, pois a cada sorteio o melhor individuo de
uma rodada pode ndo ser o methor individuo da proxima.

Depois dessa etapa os individuos escolhidos que formardo os pares estio
prontos para o crossover, que € a proxima etapa do algoritmo genético.

Na tabela 10 temos um exemplo pritico de trés individuos escolhidos
aleatoriamente na populagfio para realizar o torneio de trés. Para os trés individuos da
figura, o torneio ird escother o individuo nimero 1 o qual possui o menor custo (21)
entre eles.

Tabela 10: Exemplo do método Torneio com tour de 3

Tarefas — Individuo 1 1121345367 }8|2|10}11]12 Total do Tempo
Tempo de cada Tarefa tl2)2{2]1212[3]41414]141}4

Processadores ttattr 2121121111713 21
Tempo de comunicacio cfi1jofofjtjijtjojriofolt

Tarefas — Individue 2 L 3[a2]53]6) 71819101112 Total de Tempo
Tempo de cada Tarefa 1227221231444 ]14}4

Precessadores thyvprjrj1jiftrjej211]1]2 28
Tempo de comunicacio cjojojofo|o0(0jO0|YrY|OFO]Y1

Tarefas — Individue 3 165|432 (712111109} 28 Total do Tempo
Textpo de cada Tarefa 2212121234141 4141}4

Processadares 22122 {2|2|12121212}12]23 34
Tempo de comunicacio glojpjojnjijojojojojo]o
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5.2.6. Crossover

Entres os métodos demonstrados no item de introducdo do algoritmo
genético, vimos diversas opg¢bes de crossover, mas para o problema sugerido iremos
escolher o método do Crossover Ciclico.

Nesse método € escolhida uma posigio através de um sorteio e essa posigio €
alterada com o outro par formando um ciclo, todos os genes dentro do ciclo serfio
trocados € 0s que permanecerem fora do ciclo ndo serio trocados. Foi adotado neste
trabalho que os processadores dos individuos também iram acompanhar as tarefas,
mas isso & opcional. Podemos considerar alternativas como manter os processadores
na mesma seqiiéncia.

Seguindo a segiiéncia de exemplos dos individuos para o problema de
escalonamento de tarefas sugerido, temos na tabela 11 o individuo 3 escolhido no
método de selegiio com o seu respectivo crossover com outro individuo escolhido em
outro torneio de 3.

Para o crossover ciclico temos como exemplo que a posiglio sorteada seja a

nomero 4, Segue abaixo o resultado do crossover ciclico na tabela 11.

Tabela 11: Exemplo do Crossover Ciclico

Tarvefas — Individue 3 -Pai i|613(4]3|2]7112|11]10;91} 8

Processadores 1111t je 221212121242
Tarefas — Individuo X -Pai 116413131217 i1)i0y12
Processadores 21212121}t ]l2¢1 212121

Tarefas ~Individuo3-Filko 11 |6 |4 |3 |53 |2 |7 |12j11 |10} |8
Processadores 11|22t ]2 2

Tavefas —Individue X Filhe |1 [6 |53 V4 3 12 }7 |8 11110112
Processadores 21211111

[
tey
—
b
)
b
e
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5.2.7. Mutacéo

Para a realizagio da mutagio no caso do problema do escalonamento de
tarefas ¢ selecionado um individuo e uma posic¢éo através de um sorteio. O individuo
escolhido tem swa posiciio alterada com a préxima.

Ap0s esse processo, podem existir problemas de novos individuos invélidos,
entdo uma maneira € verificar e corrigir, ou descartar esses individuos invélidos.
Esse processo de correcio verifica se existe alguma precedéncia entre as tarefas e se
existir verifica a ordem, até que todas as posigbes sejarn corrigidas, sendo assim €
garantido que no final, todos os individuos sejam validos.

Assim como no processo de crossover fica a critério do desenvolvedor
verificar se existe a necessidade de fazer a mutacdo da tarefa juntamente com o
processador ou ndo. Neo nosso exemplo da tabela 12 temos um individuo valido e
veremos um individuo sofrer o processo de mutagdio descrito na tabela 12,
juntamente com o processador. Apés a escolha aleatoria da posigdo da mutagéo, ¢
gerado o individuo vélido da tabela 13 ou um invélido da tabela 14.

Na tabela 15 temos o mesmo individuo da tabela 14 s6 que depois de passar

pelo processo de verificagéio € correcdo do mesmo.

Tabela 12: Exemplo de um individuo valido

Tarefas 1 121314 |5 16 |7 18 |9 i10)i1[12
Processadores | {1 |1 [2 {1 [2 |2 |1 {2 |1 |V |1 |2

Tabela 13: Exemplo de um individuo vélido depois da mutacéo

Tarefas P 12 ({4 131516 |7 [8 ]9 j10f{11]12
Processadores |} {1 |1 t2 92 12 |1 {2 |1 |1 [1 {2

Tabela 14: Exemplo de um individuo invélido depois da mutagéo
Tarefas 112 |3 (41516 |8 [7 |9 |10]1112
Processadores {1 |1 |2 |1 |2 2 |2 fJ1 {1 J1 J1 j2

Tabela 15: Exemplo de um individuo corrigido apds a mutagéo

Tarefas Y12 [3 |4 [5 16 |7 |8 19 |10[11}12
Processadores |1 [1 12 |1 (2 (2 11 {2 J1 41 jt |2




53

Observe que a idéia da mutagiio é justamente a troca de dois ou mais
elementos em posigies proximas, como nos exemplos acima onde foi sorteada uma
posic¢io ¢ trocada com a posiglio mais proxima. Podemos também utilizar posicdes

distintas, ou seja, trocar um individuo por outro em uma posi¢io também sortcada.

5.3. Desempenho dos algoritmos genéticos

A fim de identificar o desempenho sugerido no item 2.1.2.1. — Complexidade
do Algoritmo, o qual vimos que o desempenho de um algoritmo para uma
determinada entrada estd diretamente relacionado com o0s custos versus a execucio

do algoritmo para essa determinada entrada, conforme a seguir:

E = Entrada= Variavél=parimetros

AG = Algoritmo Genético

Desempenho (E):=custo {execucdes(AG,E))

Onde, o custo € o peso estabelecido para as operagdes fundamentais, ou seja,
qual é o impacto dessa operagio no tempo total de execugdo. Sendo que o
exec(AG,E) representa a seqiiéncia de execucgdes de operagdes fundamentais
efetuadas pelo algoritmo genético para uma entrada E. Em termos préticos, podemos
através da tabela 16 identificar as operagdes e variaveis envolvidas no algoritmo
genético. Este exemplo segue o escalonador de tarefas demonstrado no item 5, onde

foram definidos os operadores ¢ parAmetros para 0 exemplo da figura 13.
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Tabela 16: Operagdes envolvidas no Desempenho do Algoritmo Genético

OPERACOES ENVOLVIDAS NO DESEMPENHO DO ALGORITMO GENETICO

OPERAGAQO DESCRICAQ ENTRADA
Sorteio das tarefas e Numero de tarefas;
. processadores, respeitando Ndmero de processadores;
GERAGAOQO DA restricdes de precedéncia. Tarefa sorteada;

POPULAGAO INICIAL

Processador sorteado;
Tamanho da populagao;
Precedéncia;

Atribui o tempo de execugao do
individuo com o seu respectivo

Tamanho da populagio;
Nimero de tarefas;

AVALIAGAO processador. Nimero de processadores;

Quantidade de troca de processadores;
SELEGAO DO Método de escolha do melhor Tamanho da Populagio Inicial;
TORNEIO DE 3 individuo entre trés. Resultado da Avaliagéo;

CROSSOVER CICLICO

Operacio de alteracéo de tarefas
até que tfodas as tarefas sejam
diferentes para cada individuo.

Individuos da Sele¢do do Torneio de 3;
Porcentagem dos individuos para o
crossover;

Tamanho da populagdo;

Numero de tarefas;

Sorteio da posi¢cao de inicio do
Crossover,;

MUTAGAO DE 1 TAREFA
E 1 PROCESSADOR

Alieracio da posicdo de uma
tarefa e de um processador.

Porcentagem dos individuos para
mutacio;
Tamanho da Populagao;

CONDICAO TERMINO

Numero de gerages a ser
realizado.

Quantidade de geragao para o término;
Critério de reinsergo;

Ordena os individuos conforme a

2523:2\%%0 B sua avaliagdo do melhor para o {Tamanho da Populagao;
pior.
Gera nimeros aleatérios para a [Universc das Tarefas;
SORTEIO geracao da populacao inicial, Universo das Posicdes;

posicdo do torneio e posicdo do
crossover.

Universo do Torneio;
Tipo de Sorteio;

AVALIACAO DA
PRECEDENCIA

Avalia entre os nimeros
sorteados conforme a
precedéncia.

Precedéncia;

Vimos também que a entrada do algoritmo influencia o desempenho do

algoritmo pelo seu tamanho, valor e caracteristica em uma determinada operagéo

fundamental. Veremos na tabela 17 as entradas escolhidas, a descricio ¢ a

quantidade como exemplo de uma solug#o para o problema sugerido.
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Tabela 17: Entradas envolvidas no Desempenho do Algoritmo Genético

ENTRADAS ENVOLVIDAS NO DESEMPENHO DO ALGORITMO GENETICO

ENTRADAS DESCRICAO EX. REFERENTE A FIGURA 13
ENTRADA QUANTIDADEVALOR ADOTADO
NUMERO DE Quantidade de tarefas a
TAREFAS serem executadas pelo 12
escalonador.
- Quantidade de 2
:gg‘ggg SE\IIEJ ORES processadores existentes no

sistema.

TAREFA SORTEADA

Possiveis tarefas para gerar a
populacio inicial.

Depende da precedéncia

PROCESSADOR
SORTEADO

Processador sorteado para
execuiar uma determinada
tarefa.

Processador 1 ou Processador 2

PRECEDENCIA

Indica a relagio de
dependéncia entre as tarefas.

0 a 3 precedéncias conforme figura 12

QUANTIDADE DE Nimero de vezes que o
TROCA DE processador & aiterado no 0a12
PROCESSADORES mesmo individuo.

RESULTADO DA

E o valor atribuido 20

AVALIAGAO individuo, ou seja, o custo do | Valor de cada tarefa do individuo + tempo de
mesmo. comunicacéo.

INDIVIDUOS DA Individueos selecionados para

SELECAOQ DO participar do crossover. =i

TORNEIO DE 3

PORCENTAGEM DOS
INDIVIDUOS PARA O
CROSSOVER

Indica o namero de individuos
que serdo selecionados para
participar do crossover.

Taxa de crossover =50% da populac&o.

SORTEIO DA
POSIGAO DE INICIO
DO CROSSOVER

Indica a posigéo inicial da
execugdo do crossover.

1 a 12 posigbes

PORCENTAGEM DOS

Namero de individuos que

INDIVIDUOS PARA sofreram a mutagao. Taxa de mutacdo= 10% da populagao
MUTACAQ

TAMANHO DA Numero de individuos 100

POPULAGAO existentes no AG.

QUANTIDADE DE Nimero de vezes que o 200 geracbes

GERAGAO PARA O |algoritmo é executado.

TERMINO

CRITERIO DE Escotha do tipo de reinsercio |Os melhores individuos da populagao total.
REINSERGAO do AG.

UNIVERSO DAS Tipo de representacac Nimero inteiro entre 1 e 12.

TAREFAS numeérica das tarefas ou

numero de tarefas.

UNIVERSO DAS

Nimero de posicdes do

POSIGOES individuo. 12
UNIVERSO DO Numero de individuos
TORNEIO pertencentes a populagéo 100

TIPO DE SORTEIO

Nimero de participantes do
torneio.

Torneio de 3
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6. TRABALHOS FUTUROS

Devido a limitagbes & tempo ¢ escopo do trabalho, vemos que nem tudo
pode ser abordado ou desenvolvido. Sendo assim gostaria de colocar alguns pontos
que considero importante ou relevante para um trabatho futuro.

Para um melhor entendimento das diferentes formas e corstrugdo de um
algoritmo genético, pode-se desenvolver em uma linguagem de programagdo, um
sistema de AG flexivel o suficiente para obter resultados comparativos entre os
diversos operadores genéticos como: definigio de diferentes taxas de crossover e
mutagédo, escolha do tipo de crossover e mutagio (Método da roleta, Torneio,
Ranking, etc), escolha do tipo de selegdo para reinser¢do de novos individuos,
definigdo da populagéo inicial e de seu tamanho.

Uma boa avaliagio de um algoritmo deve sempre ser atrelada a um
comparativo tedrico e pratico, com objetivo de mostrar o quanto o AG € realmente
melhor ou pior que os outros algoritmos.

O item de Anélise do Projeto tratado neste trabalho pode ser melhor
desenvolvido, com o objetivo de tornar mais pratica a escolha do tipo de solugdo
abordada para cada tipo de problema. Pode-se também fazer essa amilise

considerando o fator desempenho e precisdo necessaria para cada aplicagdo.
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7. CONCLUSAOQ

Para qualquer problema proposto sendo ou ndo um escalonador de tarefas é
sempre importante conhecer muito bem o problema, quanto & sua complexidade por
exemplo. Isso s leva a entender a necessidade de se considerar o Escalonador de
Tarefas ou o Algoritmo Genético como parte da solugdo do problema conforme
ilustrado nesse trabalho.

As etapas do AG aplicado ao escalonamento de tarefas nos ajudam a obter
um melhor entendimento do funcionamento do sistema como um todo, € quais sdo as
diferengas basicas entre os algoritmos exatos e os AGs, motivando a escotha do AG
para esse tipo de problema.

Portanto, através deste trabalho verificamos que o Algoritmo Genético € uma
solugo eficaz, pois proporciona diversas solugdes, podendo existir 2 melhor solugio

durante as iniimeras geragdes executadas no processo de evolugio dos individuos.
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9. APENDICE A — OUTROS TIPOS DE ALGORITMOS

Todos os fundamentos apresentados até o momento basearam-se nos
algoritmos genéticos simples. Existem outros tipos de algoritmos genéticos que
foram desenvolvidos para problemas mais especificos, como exemplo, podemos
citar: Genitor, CHC e Algoritmos Hibridos. Podemos citar também um algoritmo
inovador: Programagdo de Expressio Genética (PEG) [FERREIRA,2006].

O Genitor € um algoritmo cujos melhores pontos encontrados sdo preservados
na populagdo, este procedimento ¢ denominado elitismo. Na pratica isto resulta em
uma busca mais agressiva, geralmente bastante efetiva podendo existir uma
convergéncia prematura. Cada individuo selecionado e cruzado com seu parceiro é
colocado no Iugar do pior individuo da populagdo anterior, a aptiddo ¢ atribuida de
acordo com um "rawking", ou seja, a aptiddo de cada individuo assume valores
discretos.

Outro AG que coleciona os melhores individuos da populagdo atuat é o CHC
(Cross  Generational Elitist  Selection, Heterogeneous Recombination and
Cataclysmic Mutation). Ap6s o cruzamento, feito aleatoriamente, os N melhores
individuos sfo coletados levando-se em consideragdo a populagio atual e a
populagio gerada apds o cruzamento, retirando-se os individuos duplicados. Este
método impde uma busca mais agressiva, assim como no Genitor. O ponto de
crossover utilizado ¢ sempre a metade do cromossomo. Para solucionar o problema
de convergéncia prematura ¢ utilizada uma alta taxa de mutagfo, sempre preservando
o methor individuo da populacdo.

No entanto, os AG's nem sempre sdo a melhor solugdo para problemas de
otimizagéo especifico. Desta forma, os algoritmos hibridos utilizam os AG's como
ponto de partida juntamente com as técnicas tradicionais de otimizagfio. Essa mistura
de téenicas tradicionais com os AG's introduzem uma espécie de aprendizado no AG,
pois os cromossomos utilizados foram resultado da técnica denominada "hill-
climbing", utilizada nos métodos de otimizagio tradicionais, que utilizam derivadas
resultando em wuma melhor solugiio para problemas mais especificos
[MIRANDA,2004].
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A Programacfo de Expressiio Genética (PEG) foi criada pela Dra. Cindida
Ferreira no ano de 2000 [FERREIRA,2006) ¢ também um algoritmo genético, pois
utiliza o mesmo principio darwiniano da selecfio natural para evoluir modelos
computacionais ou, de forma mais geral, descobrir solugdes para problemas. Assim,
todos os algoritmos genéticos (Algoritmo Genético, Programacgio Genética,
Programacio Expressdo Genética, ¢ outros) tém pelo menos trés coisas em comum:
(1) utilizam populagdes de individuos (solugdes para o problema); (2) introduzem
variago genetica na populagfio usando um ou mais operadores genéticos como, por
exemplo, a mutagiio ou a recombinagio; e (3) selecionam, de acordo com a aptidio,
os individuos que depois se¢ reproduzem para criar a nova geragdo
[FERREIRA,2006].

Quanto as diferengas, existem varias, mas a PEG, por ser um algoritmo tdo
inovador e tdo versatil, oferece algumas vantagens ndo sé relativamente 2
Programagfio Genética (o algoritmo mais proximo da PEG), mas também aos
Algoritmos Genéticos. Por exemplo, os Algoritmos Genéticos sdo essencialmente
usados em problemas de otimizagdo de parimetros, com os parimetros representados
de uma forma muito simples em um genoma linear. Este sistema funciona bastante
bem ¢ até melhor que a maior parte dos métodos mateméticos que existem para
resolver o mesmo tipo de problema, mas mesmo assim, por vezes a evolugdo do AG
em um determinado ponto ndo consegue encontrar melhores solugdes. A PEG,
devido ao fato de evoluir estruturas em arvore e por ser um sistema multigénico (isto
€, podem evoluir multiplas arvores), pode também ser utilizada para otimizagio de
parametros (a PG ndo pode, pois s6 consegue evoluir sistemas com uma arvore sé).

A PEG ¢ uma nova técnica da computacio evolutiva para criacio de
programas de computador que utiliza cromossomos lineares compostos por genes
organizados estruturalmente numa cabeca ¢ numa cauda. Os cromossomos
funcionam como genoma ¢ estdio sujeitos a modificagdes por meio de mutacgio,
transposigéio, inversio e recombina¢do. Os cromossomos codificam arvores de
expressdo, sendo estas o objeto da sele¢lo. A criagio destas duas entidades distintas
(cromossomos e drvores de expressdo) com fungles diferentes permite que o
algoritmo tenha um grande desempenho, superando a Programagio Genética entre
100 a 60.000 vezes [FERREIRA,2006].
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No sistema genétipo/fendtipo da PEG, o cromossomo e as arvores
correspondem respectivamente ao DNA e as proteinas. Os cromossomos da PEG sdo
também estruturas lineares compostas por genes que depois sdo €Xpressos em
arvores. Estas arvores exibem um grau de complexidade muito superior as estruturas
lineares que the deram origem e, similarmente as proteinas, podem desempenhar um
nimero virtualmente infinito de fungbes. Assim, no sistema da PEG temos
programas de computador extremamente sofisticados codificados em sistemas
simples lineares. E como na natureza, é mutando os cromossomos que na PEG se
consegue uma grande diversidade de programas. Mas tanto na Programagéo Genética
como nos Algoritmos Genéticos niio existe um sistema genotipo/fendtipo definido e
as estruturas basicas destes algoritmos (cromossomos nos AG e 4rvores na PG) sdo
aquilo que o Richard Dawkins chama replicadores simples, isto €, estruturas que
funcionam ao mesmo tempo como genétipo e fenétipo. As estruturas usadas nos AG
= 08 cromossomos - sdo semethantes a0 DNA na medida em que sdo estruturas
lincares extremamente simples. F dada a sua simplicidade, a diversidade de funcoes
que estas estruturas podem desempenhar € bastante limitada.

Na Programagdo Genética, os replicadores (as arvores) sdo consideravelmente
mais complexos, mas como estas estruturas niio sio codificadas num genoma linear,
elas s6 podem ser transformadas através de modificacdes nelas aplicadas
diretamente. Isto faz lembrar um pouco o que se pensa ter acontecido nos primérdios
da vida na terra, onde replicadores simples do tipo do RNA acumulavam tanto a
funcio de genétipo como fenétipo. No entanto, a explosio da vida na Terra, em toda
a sua diversidade e esplendor, sé foi possivel quando estes replicadores simples
evoluiram para sistemas mais complexos com um gendtipo ¢ um fendtipo
perfeitamente definidos e autdnomos. A escala dos algoritmos gencéticos artificiais (a
Vida ¢ obviamente o algoritmo genético supremo), foi mais ou menos isto que
aconteceu com a invengdo da PEG: os replicadores rudimentares dos AG e da PG
foram suplantados pelos replicadores sofisticados da PEG com gendtipo e fenotipo
definidos [FERREIRA,2006).



