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RESUMO

A interação entre luz e matéria é uma ferramenta poderosa para investigar propriedades dos materi-
ais e obter informações sobre seus níveis de energia, estrutura e graus de liberdade. A espectroscopia
multidimensional tem recebido grande destaque na literatura pois, nessa técnica, investiga-se o sinal
emitido pelo sistema de interesse ao ser irradiado com vários pulsos eletromagnéticos emitidos em
tempos distintos. Ela é, em geral, capaz de fornecer mais informações sobre o sistema do que técnicas
unidimensionais.Nesse trabalho, investigamos espectros lineares e multidimensionais dos chamados
anéis de Hubbard. Eles podem ser interpretados como modelos simplificados para moléculas aro-
máticas. São necessários, também, desenvolvimentos teóricos sobre sistemas de partículas idênticas,
neste caso férmions, e do formalismo de segunda quantização, pois estudamos sistemas de muitos
corpos. Observa-se que a resposta não-linear contém as informações da resposta linear e também so-
bre transições que não aparecem no caso anterior. Além disso, notamos que, nesse estudo, a resposta
2D não está presente para casos de NS par, sendo necessário ir a ordens maiores.
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I. INTRODUÇÃO

A espectroscopia é um conjunto de técnicas que nos permite revelar informações microscópicas de
um sistema através da sua interação com a luz [1, 2]. Ao analisar o sinal emitido por um sistema após a
interação com um campo eletromagnético incidente, é possível obter informações sobre seus níveis de
energia, estrutura interna, graus de liberdade e interações. O sinal emitido pode depender linearmente
com a amplitude do campo incidente, o que corresponde à resposta (ou espectro) linear do sistema ou,
para campos intensos o suficiente, exibir uma dependência em potências mais elevadas do mesmo,
caracterizando respostas não lineares do sistema. Dentre os diversos tipos de respostas não lineares,
na espectroscopia multidimensional, discutida em mais detalhes na Seção I A, investiga-se o sinal
emitido pelo sistema de interesse ao ser irradiado com um trem de pulsos eletromagnéticos espaçados
temporalmente. Essa técnica, em geral, é capaz de fornecer mais informações sobre o sistema do
que técnicas espectroscópicas envolvendo a interação com um único pulso eletromagnético, e tem
recebido grande destaque em física e em química [1].

Nesse trabalho, investigamos, de maneira teórica, os espectros lineares e multidimensionais dos
chamados anéis de Hubbard. Estes consistem em elétrons em uma rede unidimensional de Ns sítios
e Ne elétrons com condições periódicas de contorno, como esquematizados na Fig.(1). Os elétrons
nos anéis são modelados pelo modelo de Hubbard, ou extensões desse modelo (vide Seção II). Eles
podem ser interpretados como modelos simplificados para moléculas aromáticas. Nosso objetivo prin-
cipal é calcular o espectro linear e multidimensional desses sistemas e identificar, nessas respostas,
assinaturas únicas de interações intereletrônicas.

Esse trabalho está organizado da seguinte forma: nas Seções I A e I B, apresentamos uma des-
crição do que é espectroscopia multidimensional e como calcular as respostas ópticas associadas a
ela. Na Seção II apresentamos a modelagem teórica utilizada nesse trabalho. Apresentamos nossos
resultados na Seção III. Veremos que a espectroscopia multidimensional aplicada a esses anéis pro-
porciona assinaturas únicas de diferentes tipos de interação intereletrônicas consideradas no modelo,
ao passo que evidências espectroscópicas dessas interações são muito mais sutis em resposta linear.

Figura 1. Ilustração de anéis de Hubbard de (a) Ns = 3, (b) Ns = 4, (c) Ns = 5 e (d) Ns = 6 sítios. Em (a), Ri é
o vetor posição de um sítio i, e θi é o ângulo que ele forma com o eixo x.
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Na Seção IV resumimos as nossas conclusões e em V listamos as referências bibliográficas.

A. Espectroscopia Multidimensional

A espectroscopia multidimensional surge como uma extensão da espectroscopia convencional,
permitindo explorar interações de ordem superior entre luz e matéria. A sua característica principal é
a utilização de pulsos emitidos em tempos distintos que interagem sequencialmente com o sistema de
interesse. O caso mais simples está ilustrado na Fig.(2), onde dois pulsos interagem com o sistema nos
instantes t = 0 e t = t1, e o sinal emitido pelo sistema é medido em um instante posterior t = t1+ t2. O
sinal emitido pelo sistema depende do campo elétrico dos dois pulsos. Portanto, o sistema responde
aos pulsos incidentes de forma nao linear. Essa resposta não linear depende dos intervalos de tempo
t1 e t2, que são independentes e, ao realizar sua transformada de Fourier, encontramos uma função de
duas frequências ω1 e ω2 associadas aos tempos t1 e t2. Essa resposta defini o espectro bidimensional
do sistema e será um dos focos desse trabalho. É possível identificar no espectro bidimensional picos
localizados em (ω1,ω2), que estão relacionados às diferenças de energias entre estados eletrônicos
cujas transições são induzidas pelo luz incidente. Justamente porque temos agora dois valores de
frequência para cada pico, essa abordagem permite correlacionar diretamente diferentes característi-
cas espectrais, permitindo a identificação, por exemplo, de acoplamentos entre estados quânticos que
muitas vezes não podem ser identificadas em técnicas espetroscópicas unidimensionais [1].

B. Caminhos Quânticos

Quando um feixe de radiação eletromagnética incide em um material, ele perturba o sistema,
gerando uma polarização dependente do tempo que, pode ser expandida em séries de potência do
campo elétrico incidente [3]

P(t) =
∫

∞

0
χ
(1)(s)E(t − s)ds+

∫
∞

0
ds1

∫
∞

0
ds2χ

(2)(s1,s2)E(t − s1)E(t − s2)+ · · · . (1)

Figura 2. (a) Dois pulsos emitidos em tempos distindos t1 e t2.(b) Representação visual dos dois pulsos
interagindo com a amostra, com uma emissão posterior S .Figura(b) retirada da Ref. 1
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O primeiro termo da Eq(1). corresponde a uma polarização que oscila com a mesma frequência da
radiação incidente e

χ
(1)
ab (t) =

i
N

θ(t)⟨0|[µ̂a(t), µ̂b(0)]|0⟩ (2)

é a susceptibilidade elétrica linear do sistema. Nessa equação |0⟩ é o estado fundamental do sistema,
N é o número de sítios no caso de um sistema cristalino, θ(t) é a função degrau de Heaviside e µ̂a

é a componente a (a = x,y,z) do operador de momento dipolar de transição [4]. Seu elemento de
matrix ⟨m |µ̂|n⟩ nos dá o momento de dipolo elétrico associado à transição de um estado |m⟩ para
um estado |n⟩ do sistema. Além disso, µ̂a(t) = eiHt µ̂ae−iHt . O termo ⟨0|[µ̂a(t), µ̂b(0)]|0⟩ pode ser
reescrito como:

⟨0|[µ̂a(t), µ̂b(0)]|0⟩= Tr(µa(t)µbρ0)−Tr(µbµa(t)ρ0) , (3)

onde ρ0 = |0⟩⟨0| é a matriz densidade do sistema e Tr(A) = ∑i⟨i|A|i⟩ é o traço do operador A. Rear-
ranjando os termos, temos então que :

χ
(1)
ab (t) =

i
N

θ(t)(P1(t)+P2(t)) , (4)

onde
P1(t) = Tr(µae−iHt

µbρ0eiHt), (5)

P2(t) = Tr(µae−iHt
ρ0µbeiHt). (6)

Podemos interpretar P1(t) e P2(t) como uma sequencia de perturbações à matriz densidade inicial de-
vido às interações com os pulsos seguidas de evoluções temporais. Eles recebem o nome de caminhos
quânticos e podem ser representados esquematicamente de acordo com a Figura (3). Esses diagramas
são chamados de diagramas de Feynman [2].

Utilizando a relação de completeza nas equações (5) e (6), ∑n|n⟩⟨n| = I, onde |n⟩ são os autoes-
tados do sistema na ausência da luz, encontramos

P1(t) = ∑
n
⟨n|µb|0⟩⟨0|µa|n⟩e−it(En−E0), (7)

P2(t) =−∑
n
⟨0|µb|n⟩⟨n|µa|0⟩e−it(E0−En) . (8)

Tomando a transformada de Fourier da Eq.(2), temos o espectro linear do sistema:

χ
(1)
ab (ω) =

i
N

∫ +∞

−∞

dt eiωt (P1(t)+P2(t))θ(t) =
i
N

∫ +∞

0
dt eiωt (P1(t)+P2(t)) =

i
N
[P1(ω)+P2(ω)] .

(9)

No cálculo dessa integral, encontramos termos do tipo∫
∞

0
dteiωte−i∆E t = lim

Γ→0

∫
∞

0
dteiωte−i∆E te−Γt = gΓ(ω ±∆E) , (10)
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onde
gΓ(ω ±∆E) =

i
ω ±∆E + iΓ

. (11)

Na Eq.(10), o termo e−Γt é usado para garantir a convergência da integral. Γ é um parâmetro real que
dá uma largura finita aos picos da resposta linear [1]. Encontramos, então

P1(ω) = ∑
i
⟨i|µb|0⟩⟨0|µa|i⟩gΓ(ω −∆E), (12)

P2(ω) = ∑
i
⟨0|µb|i⟩⟨i|µa|0⟩gΓ(ω +∆E). (13)

No segundo termo da Eq.(1)

χ
(2)
abc(t1, t2) =

i2

N
θ(t1)θ(t2)⟨0|[[µ̂a(t1 + t2), µ̂b(t1)], µ̂c(0)]|0⟩ (14)

é o tensor susceptibilidade elétrica que nos dá o espectro bidimensional. Seguindo passos semelhantes
ao da resposta linear discutida anteriormente, encontramos

χ
(2)
abc(ω1,ω2) =− 1

N
(P1(ω1,ω2)+P2(ω1,ω2)+P3(ω1,ω2)+P4(ω1,ω2)) (15)

onde
P1(ω1,ω2) = ∑

i,l
⟨i|µc|0⟩⟨l|µb|i⟩⟨0|µa|l⟩gΓ(ω1 −∆Ei0)gΓ(ω2 −∆El0), (16)

P2(ω1,ω2) =−∑
i,l
⟨i|µc|0⟩⟨0|µb|l⟩⟨l|µa|i⟩gΓ(ω1 −∆Ei0)gΓ(ω2 −∆Eil), (17)

P3(ω1,ω2) =−∑
i,l
⟨0|µc|i⟩⟨l|µb|0⟩⟨i|µa|l⟩gΓ(ω1 +∆Ei0)gΓ(ω2 +∆Ei0), (18)

P4(ω1,ω2) = ∑
i,l
⟨0|µc|i⟩⟨i|µb|l⟩⟨l|µa|0⟩gΓ(ω1 +∆Ei0)gΓ(ω2 +∆El0), (19)

são os caminhos quânticos para o espectro bidimensional, cujos diagramas de Feynman estão exibios
na Fig.(4).

Figura 3. Caminhos quânticos P1 e P2, respectivamente, para χ(1). Em resposta linear, há duas interações com
o campo, representadas pelos círculos pretos, que dão origem aos elementos de matriz do tipo ⟨i|µb|0⟩⟨0|µa|i⟩
na P1. Entre dois degraus consecutivos, temos a evolução temporal, que leva uma fase de e−it1(Ei−E0 na P1. Um
número ímpar de círculos à direita dá um sinal −1 global ao caminho quântico.
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Figura 4. Caminhos quânticos para P1, P2, P3 e P4, respectivamente, para χ(2). A leitura dos diagramas é
análoga à Fig.(3)

Os termos representados com · · · na Eq.(1) são termos envolvendo potências mais altas nos campos
elétricos e vão além do escopo desse trabalho.

II. MODELAGEM TEÓRICA

Nesse trabalho, estudamos respostas ópticas de anéis de Hubbard, os quais correspondem a elé-
trons em uma rede unidimensional de NS sítios com condições periódicas de contorno descritos pelo
modelo de Hubbard. Nosso foco será em anéis com 3 ≤ NS ≤ 6 sítios. O modelo de Hubbard é o
modelo mais simples para descrever a física de um sistema de elétrons interagentes no potencial pe-
riódico de uma rede cristalina. Nessa seção apresentamos uma breve introdução a esse modelo (vide
Sec.II C). Apresentamos também os principais conceitos de mecânica quântica necessários para tratar
um sistema de mais de uma partícula (Sec. II A)).

A. Sistema de Partículas Idênticas

Em mecânica quântica, partículas idênticas são indistinguíveis umas das outras. Isso significa
que se uma partícula A está na posição ra, e outra partícula idêntica B está na posiçãp rb, caso elas
troquem de posição, não há nenhum experiment que possa detectar isso [4, 5]. Consequentemente,
para um sistema de duas particulas idênticas, a função de onda deve satisfazer algumas propriedades
de simetria. Para o caso de férmions, como é o caso de elétrons, que estamos interessados nesse
trabalho, a função de onda no espaço de Hilbert deve ser totalmente anti-simétrica por permutação
das duas partículas. Para bósons, ela deve ser totalmente simétrica por permutação de duas partículas.

Vamos considerar dois férmions de spin 1/2, cada um ocupando um orbital atômico centrado em
uma posição r do espaço e com projeção do spin no eixo ẑ σ ∈ {↑,↓}. Seja ψa(r) a componente
orbital das funções de onda de um único elétron elétrons no orbital a e χσ (s), as componentes do seu
spinor, o estado de partícula única para o elétron 1 é dada por

φa,α(r1,s1) = ψa(r1)χα(s1). (20)
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Analogamente, para o elétron 2 no orbital b, temos

φb,β (r2,s2) = ψb(r2)χβ (s2). (21)

Agora, a função de onda que caracteriza o sistema de dois férmions é:

Ψ(r1,s1; r2,s2) =
1√
2

[
φa,α(r1,s1)φb,β (r2,s2) − φa,α(r2,s2)φb,β (r1,s1)

]
. (22)

Esse estado satisfaz Ψ(r2,s2; r1,s1) =−Ψ(r1,s1; r2,s2), O que corresponde ao princípio da exclusão
de Pauli [6].Como a antissimetrização deve ser obedecida pela função de onda total φ(ri,si), caso o
sistema seja antissimétrico sob troca de s1 e s2 (estado singleto), então a parte espacial da função de
onda ψ(r1,r2) deve ser simétrica sob a troca de r1 e r2. Da mesma forma, caso a parte spinorial da
função de onda seja simétrica sob troca de s1 e s2 (estado tripleto), então deverá ser antissimétrica sob
troca der1 e r2 [5]. Para um sistema de Ne férmions, e sendo xi coordenadas que englobam spin e
posição, a função de onda totalmente anti-simétrica é dada pelo determinante de Slater:

ψ(x1,x2, . . . ,xNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) · · · φNe(x1)

φ1(x2) φ2(x2) · · · φNe(x2)

...
... . . . ...

φ1(xNe) φ2(xNe) · · · φNe(xNe)

∣∣∣∣∣∣∣∣∣∣∣∣
. (23)

B. Formalismo da segunda quantização

Quando se trabalha com sistemas de poucas partículas idênticas, como descrito na Seção II A, não
é difícil construir explicitamente funções de ondas simétricas ou antissimétricas. Para sistemas muito
numerosos, como, por exemplo, elétrons em metais, esse procedimento pode ser bem trabalhoso.
O formalismo de segunda quantização leva em conta a simetria das funções de onda do sistema de
maneira mais compacta e oferece, portanto, ferramentas poderosas para tratar de tais sistemas [4–6].
Como o objeto de estudo deste trabalho envolve sistemas de férmions idênticos, são esses sistemas
que focaremos nesta parte.

O formalismo da segunda quantização é construído em termos de operadores que removem ou adi-
cionam partículas ao sistema. Considere um nível de energia caracterizado por um número quântico
a = 0 que pode ser ocupado por férmions. Pelo princípio da exclusão de Pauli, esse nível pode conter
nenhuma partícula (estado |0⟩) ou conter, no máximo, um férmion (estado |1⟩). Os operadores de
criação e destruição a†

0 e a0 são tais que

a0|0⟩= 0, a0|1⟩= |0⟩, (24)
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a†
0|0⟩= |1⟩, a†

0|1⟩= 0, (25)

e obedecem relações de anti-comutação {a0,a
†
0}= a0a†

0 +a†
0a0 = 1. [5]:

Até agora, entretanto, falamos de um sistema de um nível. Em um sistema de muitos níveis, o
estado Ne férmions pode ser representado pelo ket |n0,n1,n2, · · · ⟩, onde nk representa o número de
férmions no estado k. O número quântico k pode representar graus de liberdade orbitais e de spin e,
pelo princípio da exclusão de Pauli, nk só pode assumir valores nk = 0 ou nk = 1, e ∑

k
nk = Ne. O

estado |n0,n1,n2, ...⟩ é construído criando-se férmions sobre o vácuo de partículas |0,0,0, · · · ⟩ := |0⟩
pelos operadores de criação e destruição:

|n0,n1,n2, · · · ⟩= · · ·(a†
2)

n2(a†
1)

n1(a†
0)

n0|0⟩. (26)

Na representação de posição, ⟨r1r2 · · ·rNe|n0,n1,n2 · · · ⟩ nos dá a função de onda de Ne férmions
completamente anti-simetrizada em que n0 férmions ocupam o nível 0, n1 ocupam o nível 1, e assim
por diante. Os operadores de criação e aniquilação obedecem as seguintes relações de anticomutação:

{ai,a
†
j}= δi j, {ai,a j}= {a†

i ,a
†
j}= 0 (27)

onde δi j é o delta de Kronecker. O número de férmions num estado i é dado por [5]:

n̂i = a†
i ai, (28)

Também podemos definir os operador de campo de criação e de destruição [5, 6],

ψ̂
†
σ (r) =

N

∑
j=1

ϕ
∗
j (r)c†

jσ , (29)

ψ̂σ (r) =
N

∑
j=1

ϕ j(r)c jσ , (30)

que denotaam, respectivamente, os operadores que criam e destroem um elétron com spin σ na posi-
ção r. Na Eq.(29), ϕ j(r) é uma função do problema de um elétron. No contexto de elétrons em uma
rede, que é o foco desse trabaho, ϕ j(r) é uma função de onda centrada no sítio j, ou seja, que decai
rapidamente como função de

∣∣r−R j
∣∣. Além disso, N corresponde ao número de sítios da rede.

Temos, também, um procedimento para escrever operadores que atuam em um sistema de muitas
partículas em termos dos operadores de criação e destruição. Um operador de um corpo atua somente

sobre uma partícula por vez, O1 =
Ne
∑

i=1
O(ri), e apresenta a forma geral, em segunda quantização, dada

por

Ô1 = ∑
σ=↑,↓

∫
drψ̂

†
σ (r)O(r)ψ̂σ (r) . (31)
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Um exemplo é a energia cinética de um sistema de partículas (vide Seção.II C). Um operador de dois

corpos atua sobre duas partículas por vez V2 =
Ne
∑

i, j=1
v(ri,r j), e em segunda quantização, é escrito

como
V̂ =

1
2 ∑

σ ,σ
′

∫
dr

∫
dr

′
ψ̂

†
σ (r)ψ̂

†
σ
′ (r)V (r,r

′
)ψ̂

σ
′ (r)ψ̂σ (r). (32)

C. O modelo de Hubbard

Nessa seção, apresentaremos o modelo de Hubbard, o modelo mais simples para descrever elé-
trons interagentes em uma rede cristalina. Em primeira quantização, o Hamiltoniano de Ne elétrons
interagentes em uma rede cristalina é dado por

H0 =
Ne

∑
i=1

(
Pi

2

2m
+Vc(ri)

)
+

1
2

Ne

∑
j ̸=i=1

e2

|ri − r j|
, (33)

onde Pi denota o momento do elétron i e ri seu vetor posição, e é a carga elementar e Vc(ri) é o po-
tencial periódico com a simetria da rede cristalina, gerado pelos íons do cristal e pelos elétrons mais
fortemente ligados a ele. O primeiro termo do lado direito de H0 é o termo cinético do Hamiltoniano
e o segundo é o termo de repulsão Coulombiana. O termo cinético é um operador de um corpo, en-
quanto que o termo de interação é um operador de dois corpos, de forma que em segunda quantização
temos

Ĥ0 = ∑
σ=↑,↓

∫
drψ̂

†
σ (r)h(r)ψ̂σ (r)+

1
2 ∑

σ ,σ
′

∫
dr

∫
dr

′
ψ̂

†
σ (r)ψ̂

†
σ
′ (r)u(r,r

′
)ψ̂

σ
′ (r)ψ̂σ (r) , (34)

onde

h(r)≡ p2

2m
+Vc(r) =− h̄2

2m
∇

2 +Vc(r) , (35)

u(r,r
′
)≡ e2

|ri − r j|
. (36)

Agora, substituindo as equações (29) e (30) na equação (34), encontramos

Ĥ0 =
N

∑
i, j=1

∑
σ=↑,↓

ti j c†
iσ c jσ +

1
2

N

∑
i, j,k,l=1

∑
σ ,σ ′=↑,↓

Ui jkl c†
iσ c†

jσ ′ckσ ′clσ , (37)

onde
ti j ≡ ⟨i|h| j⟩=

∫
drϕ

∗
i (r)h(r)ϕ j(r) (38)

é o parâmetro de hopping e está associado à probabilidade de um elétron tunelar do i-ésimo sítio da
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rede para o j-ésimo sítio, e

Ui jkl ≡ ⟨i j|u|lk⟩=
∫

dr
∫

dr′ϕ∗
i (r)ϕ

∗
j (r)u(r,r′)ϕk(r′)ϕl(r) (39)

é o elemento de matriz da repulsão Coulombiana [7].

O Hamiltoniana na equação (37) é geral. A seguir, faremos duas aproximações importantes para
derivar um Hamiltoniano mais simplificado que corresponde ao modelo de Hubbard [8]. Como as
funções de onda φ j(r) são espacialmente localizadas em torno do sítio j, conforme discutido na
Seção I A, o termo de hopping na equação (38) cai rapidamente à medida que nos afastamos do
sítio. Fisicamente, isso significa que um elétron num sítio j possui uma amplitude de probabilidade
negligível de "pular"para um sítio i distante, o que nos permite considerar que apenas os termos de
hopping entre primeiros vizinhos:

ti j ≈ ⟨i|h|i+1⟩δ j,i+1 + ⟨i|h|i−1⟩δ j,i−1 =−t(δ j,i+1 +δ j,i−1). (40)

Na equação acima, considera-se um termo de hopping uniforme, ou seja, ⟨i|h|i+1⟩= ⟨i|h|i−1⟩=−t
independente do sítio [8]. Além desta aproximação, no modelo de Hubbard aproximamos a repulsão
Coulombiana por uma interação local, que só atua entre elétrons ocupando o mesmo sítio da rede,
ou seja Ui jkl =Uδ jiδkiδli e independente do sítio. Essa aproximação pode ser feita pois os elementos
de matriz na equação (39) são maiores quando considerarmos ⟨ii|u|ii⟩. Utilizando as aproximações
mencionadas acima e as relações de anticomutação dos operadores de criação e destruição eletrônicos
definidos na equação (27), chegamos ao Hamiltoniano do modelo de Hubbard

Ĥ0 =−t
N

∑
j=1

∑
σ

(
c†

jσ c j+1,σ +h.c.
)
+U

N

∑
j=1

n̂ j↑n̂ j↓, (41)

onde “h.c” denota o Hermitiano Conjugado e n̂ jσ é o operador número de elétrons no sítio j com spin
σ (vide Eq. ( 28)). Os termos de hopping e repulsão local estão representados na Fig.(5).

Também podemos escrever operador de momento dipolar de transição introduzido na Seção I B

no formalismo da seguinda quantização. Ele é um operador de um corpo dado por [4] µ =−e
Ne
∑
j=1

ri.

Portanto,
µ̂ = ∑

i, j,σ
⟨i |r| j⟩c†

iσ c jσ . (42)

Novamente usando que ϕi(r) é uma função localizada ao redor do sítio i, podemos utilizar a aproxi-
mação ⟨i |r| j⟩ ≈ Riδi j, onde Ri = R(cosθi,sinθi) é a posição do sítio i e R = Na

2π
no anel. Alinhando

a posição do sítio 1 com o eixo x, θi = 2π
i−1
N (vide Fig.1). Portanto,

µ̂ =−eNa
2π

∑
i
(cosθi,sinθi)

(
n̂i↑+ n̂i↓

)
, (43)
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Figura 5. (a) Ilustração dos termo de hopping e repulsão coulombiana intra-sítio do modelo de Hubbard definido
na Eq.(41). Ilustrações dos termos proporcionais a λ que aparecem na extensão do modelo de Hubbard na
Eq.(44) são apresentados nos painéis (b) e (c). (b) mostra o "termo de bolha"e (c) o termo extendido. (b) e (c)
foram retirados da Ref. 11.

D. Extensão do modelo de Hubbard

Também existem extensões do modelo de Hubbard, onde podemos considerar também termos de
hopping entre segundos vizinhos e repulsão Coulombiana entre elétrons em sítios vizinhos. Nesse
trabalho, consideraremos uma estensão do modelo de Hubbard que foi proposta como um modelo
mínimo para descrever propriedades de moléculas aromáticas [9, 10]. Além dos termos de hopping e
interação intra-sítio do modelo de Hubbard usual, adiciona-se um termo de interação atrativa entre os
elétrons,

Ĥ = − t
N

∑
j=1

∑
σ

(
c†

jσ c j+1,σ + h.c.
)
+ U

N

∑
j=1

n̂ j↑ n̂ j↓

− λ

(
U
t

)2 N

∑
j=1

∑
σ ,σ ′

[(
c†

jσ c†
j+1,σ ′ c j,σ ′ c j+1,σ + h.c.

)
+

(
c†

jσ c†
j−1,σ ′ c j−2,σ ′ c j−1,σ + h.c.

)]
.

(44)

Esse Hamiltoniano descreve os elétrons que ocupam o anel aromático da molécula, e o termo atrativo
proporcional a λ (U/t)2 vêm da interação desses elétrons com os elétrons de ligação mais fortemente
ligados aos íons que formam o anel, dando origem a uma atração efetiva entre os elétrons no anel [9].
Essa interação extra tem dois termos, o primeiro é um termo do tipo "bolha", conforme ilustrado
na Fig.5(b). O segundo termo favorece o movimento dos elétrons ao longo do anel, como ilustrado
na Fig.5(c). Um dos objetivos desse trabalho é buscar por assinaturas desse termo de interação em
respostas ópticas, algo que ainda não foi explorado na literatura.
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III. RESULTADOS

Analisamos agora as respostas lineares e os espectros bidimensionais dos anéis de 3 ≤ Ns ≤ 6
sítios e Ne elétrons modelados pelo Hamiltoniano da Eq.(44). Focamos no regime de semipreen-
chimento, onde Ne = Ns, e procuramos assinaturas espectroscópicas das interações intereletrônicas,
tanto da repulsão intra-sítio (proporcional à U) quanto da interação atrativa efetiva entre os elétrons
(proporcional à λ ). Para tal, compararemos, em cada caso, os espectros calculados tomando-se (i)
U = λ = 0, (ii) U/t = 1 e λ = 0 e (iii) U/t = 1 e λ/t = 0.2.

Para o cálculo dos espectros, obtivemos os autovalores e autoestados do Hamiltoniano Ĥ dado pela
Eq. (44) utilizando diagonalização exata. Construímos uma rotina em Python que calcula os elemen-
tos de matriz de Ĥ no espaço de Fock da forma |n1↑,n1↓,n2↑,n2↓, ...⟩ e calcula os seus autovetores
e autovalores para cada escolha de U e λ . Sabendo os autovalores e autoestados, calculamos os es-
pectros lineares e bidimensionais usando a Eq.(1), os quais serão discutidos a seguir. Nesse trabalho,
focamos nas componentes xx de χ

(1)
ab (ω) e xxx de χ

(2)
abc(ω1,ω2). Dividimos nossa análise em Ns par e

Ns ímpar.

A. NS par

Começaremos discutindo o caso Ns = Ne = 4. O espectro de energia como função de U está
mostrado na Fig.(6) com (a) λ = 0 e (b) λ/t = 0.2 . Quando U = λ = 0, temos cinco níveis de
energia distintos, correspondentes às diferentes maneiras de distribuir quatro elétrons em quatro níveis
de energia de um corpo obedecendo ao princípio da exclusão de Pauli. Todos esses estados são
degenerados. Ao considerarmos valores finitos de U , algumas degenerescências são levantadas, como
podemos ver em Fig.6(a). Além disso, ao tomarmos, além de U ̸= 0, λ ̸= 0, o espectro de energia
sofre modificações e levantamentos adicionais de degenerescência, como mostrado na Fig.6(b). Como
veremos a seguir, as evidencias das modificações nos estados eletrônicos causadas por λ são sutis em
resposta linear, porém batante evidentes no espectro bidimensional.

Os espectros lineares χ
(1)
xx (ω) do sistema estão mostrados na Fig.(7) para para U = λ = 0 nos

painéis (a) e (d), U/t = 1 e λ = 0 em (b) e (e) e U/t = 1 e λ/t = 0.2 em (c) e (f). Na Figura 7(a),

Figura 6. Espectro de energia para 4 sítios e 4 elétrons para: (a) λ/t = 0 e (b) λ/t = 0.2
.
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Figura 7. Parte imaginária de (χ
(1)
xx (ω)) para Ns = Ne = 4 com os seguintes valores dos parâmetros do modelo

de Hubbard extendido (Eq.(44)): (a) e (d) U = 0,λ = 0. Em (b) e (e), U/t = 1,λ/t = 0 e em (c) e (f) U/t =
1,λ/t = 0.2. Os painéis (e)-(f) corresponde a uma ampliação dos painéis (a)-(c), respectivamente para melhor
visualização dos picos.

percebe-se apenas um pico, o que mostra que apenas autoestados |i⟩ de Ĥ cuja diferença de energia
com respeito ao estado fundamental (Ei−E0) coincidem com a frequência do pico têm valores finitos
de momento de dipolo de transição ⟨i|µx|0⟩. Para U finito, a quebra de degenerescência dos níneis
de energia leva ao aparecimento de novos picos no espectro, como podemos ver na Fig.7(b). A
inclusão do termo de interação proporcional a λ também leva ao levantamento de degenerecências,
além de alterar a dependência em U dos níveis de energia. Portanto, λ tem dois efeitos no espectro
linear: deslocar os picos em frequência, e gerar o aparecimento de picos que não estavam presentes
no caso U/t = 1. Entretanto, o deslocamento dos picos é pequeno para U/t = 1 e os novos picos
tem intensidade baixa, como podemos ver nos painéis (d)-(f) da Fig.(7). Dessa forma, as diferenças
espectroscópicas entre os casos λ = 0 e λ ̸= 0 são muito sutis, o que dificulta a distinção entre esses
dois casos.

Agora, podemos nos perguntar se poderíamos ter uma melhor distinção entre os casos λ = 0 e λ ̸=
0 no tensor de mais alta ordem χ

(2)
abc(ω1,ω2) (Eq.(14)) que gera o espectro bidimensional do sistema.

Entretanto χ
(2)
abc é identicamente nulo para esse anel. Isso ocorre de maneira mais geral em anéis

com Ns par, independentemente do valor de Ne. Esse resultado, apesar de inesperado num primeiro
momento, pode ser explicado considerando a simetria de inversão dos anéis com Ns par. Inversão
espacial leva r →−r e transforma campo elético e polarização como E′(r, t) =−E(−r, t) e P′(r, t) =
−P(−r, t), onde o apóstrofo denota quantidades transformadas. Aplicando essas transformações à
Eq.(1), concluímos que χ

(2)
abc é se transforma da seguinte maneira: χ

′(2)
abc (ω1,ω2) = −χ

(2)
abc(ω1,ω2).

Porém, se inversão é simetria do sistema, devemos ter χ
′(2)
abc (ω1,ω2) = χ

(2)
abc(ω1,ω2), o que leva a

χ
(2)
abc(ω1,ω2) = 0. Ou seja, não existe resposta de segunda ordem óptica em meios com simetria de

inversão, chamados maios centrosimétricos.

A discussão é qualitativamente idêntica para o caso Ns = Ne = 6 (não mostrado) e concluímos que
para NS par é necessário ir a ordens mais altas e ímpares, para que assim o χ(n), com n > 1 não seja
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nulo. O primeiro tensor não linear de ordem ímpar não-nulo é, portanto, o de terceira ordem. Esse
cálculo, entretanto, está além do escopo desse trabalho.

Analisaremos agora o caso de Ns ímpar.

B. NS ímpar

Anéis com NS ímpar não possuem simetria de inversão espacial e tanto as respostas lineares quanto
o espectro bidimensional são não nulas. Nas próximas seções, estudaremos as respostas ópticas de
anéis de Ns = 3 e Ns = 5 sítios.

1. Anel de 3 sítios e 3 elétrons

Os espectros de energia para NS = Ne = 3 como função de U com λ = 0 e λ/t = 0.2 estão mos-
trados nas Fig.8(a) e Fig. 8(b), respectivamente. A resposta linear χ

(1)
xx (ω) desse sistema pode ser

encontrada na Fig.(9). Assim como em Ns = Ne = 4, pode-se notar a quebra esperada de degeneres-
cência das energias através do surgimento de novos picos ao compararmos os espectros com U = 0
(Fig.9(a)) e U/t = 1 (Fig.9(b)). A adição λ finito (Fig.9(c)) nos mostra o surgimento de um novo
pico próximo dos dois picos mais intensos do espectro, que são ligeiramente deslocados. A obser-
vação desse novo pico, entretanto, depende do valor do parâmetro Γ, que não pode ser facilmente
controlado em um experimento. As Figuras 9(d)-(f) mostram os espectros lineares para as mesmas
escolhas de parâmetros do modelo de Hubbard utilizados em Fig. 9(a)-(c), respectivamente, mas com
Γ cinco cevez maior. Comparando 9(e) e 9(f), vemos, novamente, assinaturas bem parecidas. Ou seja,
a distinção entre λ ̸= 0 e λ = 0 em resposta linear é sutil.

Agora, podemos analisar χ
(2)
xxx(ω1,ω2), mostrados na Fig.(10), para o mesmo conjunto de escolha

dos parâmetros do modelo de Hubbard adotadas na Fig.(9). Todas as informações do espectro linear,
como esperado, estão presentes na diagonal do espectro não-linear, onde ω1 = ω2. Quando U/t = 1,
observamos o aparecomento de novos picos não só na diagonal, mas também fora dela. Os picos
fora da diagonal envolvem sobreposições entre autoestados de Ĥ que são impossíveis de aparecer

Figura 8. Espectro de energia para 3 sítios e 3 elétrons para: (a) λ/t = 0 e (b) λ/t = 0.2
.
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Figura 9. Parte imaginária de (χ
(1)
xx (ω)) para Ns = Ne = 3 com os seguintes valores dos parâmetros do modelo

de Hubbard extendido (Eq.(44)): (a) e (d) U = 0,λ = 0. Em (b) e (e), U/t = 1,λ/t = 0 e em (c) e (f) U/t =
1,λ/t = 0.2. Nos painéis (a)-(c) utilizamos Γ = 0.01, enquanto que em (e)-(f) utilizamos Γ = 0.05.

na resposta linear. Mais especificamente, comparando os caminhos quânticos das Figuras (3) e (4),
podemos ver que elementos de matriz do tipo ⟨i|µb|0⟩⟨l|µb|i⟩⟨0|µb|l⟩ que geram picos com ω1 ̸= ω2

não estão presentes em χ
(1)
xx (ω). Com U/t = 1 e λ/t = 0.2 (Fig. 10(c)), novos picos surgem em

posições distintas daqueles em (Fig. 10(b)) e que podem ser observados mesmo para valores maiores
de Γ. A Figura 11 corresponde a uma ampliação do espectro bidimensional para melhor visualização
dos detalhes na região de frequênciias destacada pelo quadrado vermelho nos painéis (b) e (c) da Fig
(10).

Figura 10. Parte imaginária de χ
(2)
xxx(ω1,ω2) para Ns = Ne = 3 com as seguintes escolhas de parâmetros: (a)

U = 0,λ = 0, (b) U/t = 1,λ/t = 0 e (c) U/t = 1,λ/t = 0.2. Em todos os painéis, usamos Γ = 0.01. Os
quadrados vermelhos delimitam regiões no espectro que serão ampliadas para uma visualização mais detalhada
dos picos (vide Fig.11).
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Figura 11. Região destacada da parte imaginária de χ
(2)
xxx(ω1,ω2) para Ns = Ne = 3 com as seguintes escolhas

de parâmetros: (a) U/t = 1,λ/t = 0 e (b) U/t = 1,λ/t = 0.2. Em todos os painéis, usamos Γ = 0.01.

2. Anel de 5 sítios e 5 elétrons

Consideraremos, agora, o caso em que NS = Ne = 5. Os espectros de energia como função de U/t
com λ/t = 0 e λ/t = 0.2 estão mostrados nas Figuras 12(a) e 12(b), respectivamente.

O espectro de energia é muito mais denso do que no caso Ns = Ne = 3, já que a dimensão do
espeço de Fock é consideravelmente maior no caso Ns = Ne = 5. Ainda assim, os cálculos exatos
das respostas lineares e espectros bodimensionais podem ser feitos. A resposta linear χ

(1)
xx (ω) desse

sistema pode ser encontrada na Fig.(13). Assim como na Seção anterior, os termos de interação
proporcionais e U e λ promovem a quebra de degenerescência dos níveis de energia obtidos com
U = 0, o que leva ao surgimento de novos picos no espectro linear. As assinaturas obtidas com
λ = 0 (13(b)) e λ/t ̸= 0 (13(c)), entretanto, são muito parecidas, especialmente quando consideramos
valores maiores de Γ, como mostrado nas Figuras 13(d)-(f). Essa dificuldade de identificar os efeitos
de U e λ no espectro é muito evidente na 13(f), na qual os picos próximos a ω = 3.5 se sobrepõe e se
assemelham muito aos picos observados em Fig.13(e).

Agora, podemos analisar a resposta não-linear do sistema. Fazendo os cálculos necessários, a
Fig.(14) é obtida, e informações importantes podem ser tiradas dela. Como no caso anterior, todas as

Figura 12. Espectro de energia para 5 sítios e 5 elétrons para: (a) λ = 0 e (b) λ = 0.2
.
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Figura 13. Parte imaginária de (χ
(1)
xx (ω)) para Ns = Ne = 5 com mas mesmas escolhas de parâmetros usados

na Figura 9.

informações do espectro linear, como esperado, estão presentes no espectro não-linear pela diagonal
onde ω1 = ω2. Quando U = 1, a degenerescência se quebra e, além disso, surgem picos fora da
diagonal, que são transições impossíveis de aparecerem na resposta linear. Com λ = 0.2, novos picos
surgem, que podem ser observados de melhor forma na Fig.(15) ao focar na região destacada na
Fig(14).

No espectro bidimensional, assim como no caso Ns = Ne = 3, observamos a presença de picos
intensos e únicos ao caso λ ̸= 0, como aqueles destacados na Fig.(15).

Figura 14. Parte imaginária de χ
(2)
xxx(ω1,ω2) para Ns = Ne = 5 com as mesmas escolhas de parâmetros da

Fig(10). Os quadrados vermelhos delimitam regiões no espectro que serão ampliadas para uma visualização
mais detalhada dos picos (vide Fig.15).
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Figura 15. Região destacada da parte imaginária de χ
(2)
xxx(ω1,ω2) para Ns = Ne = 5 com as mesmas escolhas de

parâmetros da Fig.(11).

IV. CONCLUSÕES

Nesse trabalho, calculamos as respostas lineares e bidimensionais de anéis de Hubbard de 3 ≤
Ns ≤ 6 sítios e Ne = Ns, que podemos considerar modelos simplificados para moléculas aromáticas.
Modelamos esses anéis através de uma extensão do modelo de Hubbard que inclui, além do termo de
repulsão Coulombiana intra-sítio, proporcional à U , um termo de interação atrativa entre os elétrons
do anel, proporcional à λ proposta nas Referências [9, 10]. A idéia era verificar se os espectros
lineares e bidimensionais poderiam distinguir entre os casos (i) U = λ = 0, (ii) U = 0,λ ̸= 0 e (iii) U ̸=
0,λ ̸= 0 fornecendo, assim, assinaturas espectroscópicas únicas desses diferentes tipos de interação.
Através da diagonalização exata desses sistemas, calculamos os espectros e verificamos que apesar
dos espectros de energia terem vários valores de energia para determinados U e λ , apenas alguns dos
picos esperados estão presentes nas respostas.

Os termos de interação levantam a degenerescência dos autovalores de energia levando ao apare-
cimento de diversos picos no espectro linear. Entretanto, os picos que observamos nas escolhas de
parâmetros (ii) e (iii) mencionadas no parágrafo anterior são muito parecidos. Assim, concluimos
que a resposta linear não distingue convincentemente os casos (ii) e (iii) e, portanto não oferece as-
sinaturas únicas do termo λ . A situação é diferente do caso do espectro bidimensional. O espectro
bidimensional é finito apenas nos anéis com número ímpar de sítios devido à simetria de inversão.
Tanto para Ns = 3 quanto Ns = 5 observamos o aparecimento de picos no espectro bidimensional
quando λ ̸= 0 muito distintos daqueles quando λ = 0 e concluímos que o espectro bidimensional nos
dá assinaturas únicas dos diferentes tipos de interação do modelo. Em anéis onde NS é par, não há
resposta bidimensional, o que requer ir à respostas ímpares de ordens maiores, o que está além do
escopo desse trabalho.
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