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RESUMO

A interacdo entre luz e matéria € uma ferramenta poderosa para investigar propriedades dos materi-
ais e obter informacdes sobre seus niveis de energia, estrutura e graus de liberdade. A espectroscopia
multidimensional tem recebido grande destaque na literatura pois, nessa técnica, investiga-se o sinal
emitido pelo sistema de interesse ao ser irradiado com varios pulsos eletromagnéticos emitidos em
tempos distintos. Ela é, em geral, capaz de fornecer mais informagdes sobre o sistema do que técnicas
unidimensionais.Nesse trabalho, investigamos espectros lineares e multidimensionais dos chamados
anéis de Hubbard. Eles podem ser interpretados como modelos simplificados para moléculas aro-
maticas. Sdo necessdrios, também, desenvolvimentos tedricos sobre sistemas de particulas idénticas,
neste caso férmions, e do formalismo de segunda quantizacdo, pois estudamos sistemas de muitos
corpos. Observa-se que a resposta ndo-linear contém as informacgdes da resposta linear e também so-
bre transi¢cdes que ndo aparecem no caso anterior. Além disso, notamos que, nesse estudo, a resposta

2D ndo esté presente para casos de Ng par, sendo necessdrio ir a ordens maiores.
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I. INTRODUCAO

A espectroscopia € um conjunto de técnicas que nos permite revelar informagdes microscépicas de
um sistema através da sua interacio com a luz [ 1, 2]. Ao analisar o sinal emitido por um sistema apods a
interacao com um campo eletromagnético incidente, é possivel obter informagdes sobre seus niveis de
energia, estrutura interna, graus de liberdade e interagdes. O sinal emitido pode depender linearmente
com a amplitude do campo incidente, o que corresponde a resposta (ou espectro) linear do sistema ou,
para campos intensos o suficiente, exibir uma dependéncia em poténcias mais elevadas do mesmo,
caracterizando respostas nao lineares do sistema. Dentre os diversos tipos de respostas nao lineares,
na espectroscopia multidimensional, discutida em mais detalhes na Secdo I A, investiga-se o sinal
emitido pelo sistema de interesse ao ser irradiado com um trem de pulsos eletromagnéticos espacados
temporalmente. Essa técnica, em geral, é capaz de fornecer mais informacdes sobre o sistema do
que técnicas espectroscopicas envolvendo a interacdo com um Unico pulso eletromagnético, e tem

recebido grande destaque em fisica e em quimica [1].

Nesse trabalho, investigamos, de maneira tedrica, os espectros lineares e multidimensionais dos
chamados anéis de Hubbard. Estes consistem em elétrons em uma rede unidimensional de N, sitios
e N, elétrons com condi¢des periddicas de contorno, como esquematizados na Fig.(1). Os elétrons
nos anéis sao modelados pelo modelo de Hubbard, ou extensdes desse modelo (vide Secdo II). Eles
podem ser interpretados como modelos simplificados para moléculas aromaticas. Nosso objetivo prin-
cipal € calcular o espectro linear e multidimensional desses sistemas e identificar, nessas respostas,

assinaturas Unicas de interagdes intereletronicas.

Esse trabalho estd organizado da seguinte forma: nas Secdes 1A e IB, apresentamos uma des-
cricdo do que é espectroscopia multidimensional e como calcular as respostas Opticas associadas a
ela. Na Secdo II apresentamos a modelagem tedrica utilizada nesse trabalho. Apresentamos nossos
resultados na Secdo III. Veremos que a espectroscopia multidimensional aplicada a esses anéis pro-
porciona assinaturas Unicas de diferentes tipos de interacao intereletronicas consideradas no modelo,

ao passo que evidéncias espectroscopicas dessas interagdes sao muito mais sutis em resposta linear.
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Figura 1. Tlustracdo de anéis de Hubbard de (a) Ny = 3, (b) Ny =4, (¢c) Ny =5 e (d) Ny = 6 sitios. Em (a), R; é
o0 vetor posi¢ao de um sitio i, e 6; € o angulo que ele forma com o eixo x.



Na Secdo IV resumimos as nossas conclusdes e em V listamos as referéncias bibliogréficas.

A. Espectroscopia Multidimensional

A espectroscopia multidimensional surge como uma extensdo da espectroscopia convencional,
permitindo explorar interagdes de ordem superior entre luz e matéria. A sua caracteristica principal €
a utilizacao de pulsos emitidos em tempos distintos que interagem sequencialmente com o sistema de
interesse. O caso mais simples estd ilustrado na Fig.(2), onde dois pulsos interagem com o sistema nos
instantes t =0 et =11, e o sinal emitido pelo sistema é medido em um instante posterior t =t +1,. O
sinal emitido pelo sistema depende do campo elétrico dos dois pulsos. Portanto, o sistema responde
aos pulsos incidentes de forma nao linear. Essa resposta ndo linear depende dos intervalos de tempo
11 e tp, que sdo independentes e, ao realizar sua transformada de Fourier, encontramos uma funcao de
duas frequéncias m; e @, associadas aos tempos #; e fp. Essa resposta defini o espectro bidimensional
do sistema e serd um dos focos desse trabalho. E possivel identificar no espectro bidimensional picos
localizados em (w;, @,), que estdo relacionados as diferengas de energias entre estados eletronicos
cujas transi¢des sao induzidas pelo luz incidente. Justamente porque temos agora dois valores de
frequéncia para cada pico, essa abordagem permite correlacionar diretamente diferentes caracteristi-
cas espectrais, permitindo a identificacdo, por exemplo, de acoplamentos entre estados quanticos que

muitas vezes ndo podem ser identificadas em técnicas espetroscopicas unidimensionais [1].

B. Caminhos Quanticos

Quando um feixe de radiacdo eletromagnética incide em um material, ele perturba o sistema,
gerando uma polarizacdo dependente do tempo que, pode ser expandida em séries de poténcia do

campo elétrico incidente [3]

P(1) Z/wa(”(S)E(f—S)dH/Omdm /Owdszx(z)(SuSz)E(t—sl)E(;—sz)+-~- . (1)
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Figura 2. (a) Dois pulsos emitidos em tempos distindos #; e t,.(b) Representacdo visual dos dois pulsos
interagindo com a amostra, com uma emissao posterior S .Figura(b) retirada da Ref. 1



O primeiro termo da Eq(1). corresponde a uma polarizacdo que oscila com a mesma frequéncia da

radiacdo incidente e ‘
%4y (0) = 5. 0(1) (0l fta(t). 25(0)] 0) @)

¢ a susceptibilidade elétrica linear do sistema. Nessa equacéo |0) é o estado fundamental do sistema,
N ¢é o niimero de sitios no caso de um sistema cristalino, 6(¢) é a func¢do degrau de Heaviside e [,
¢ a componente a (a = x,y,z) do operador de momento dipolar de transicio [4]. Seu elemento de
matrix (m|{l|n) nos dd o momento de dipolo elétrico associado a transi¢do de um estado |m) para
um estado |n) do sistema. Além disso, f1,(t) = e fi,e= . O termo (0|[{1,(t), 1,(0)]|0) pode ser

reescrito como:

(O[[fa(1), 05(0)]|0) = Tr(ua(t) uppo) — Tr(Upita(t)po) » 3)

onde py = |0)(0| é a matriz densidade do sistema e Tr(A) = Y ;(i|A|i) é o trago do operador A. Rear-

ranjando os termos, temos entdo que :

25 (1) = O (P 1)+ Pa(1) @

onde
Py (t) = Tr(pae ™ uppoe™), (5)
Py(t) = Tr(pae ™™ popye™). (6)

Podemos interpretar Py (1) e P»(f) como uma sequencia de perturbacdes a matriz densidade inicial de-
vido as interacdes com os pulsos seguidas de evolucdes temporais. Eles recebem o nome de caminhos
quanticos e podem ser representados esquematicamente de acordo com a Figura (3). Esses diagramas

sdo chamados de diagramas de Feynman [2].

Utilizando a relagdo de completeza nas equagdes (5) e (6), Y,|n)(n| = |, onde |n) sdo os autoes-
tados do sistema na auséncia da luz, encontramos

Pi(t) = Y (n|5]0) (O] ta|nye " Fr=F0), )

n

Py(t) = = Y (Ol ptp|n) (n| |0}~ Fo =) (®)

n

Tomando a transformada de Fourier da Eq.(2), temos o espectro linear do sistema:

i [t i [t i
Xéé)(w)zﬁ ot e (Pl(l)‘i'Pz(f))G(f):N A dt e (Pl(f)‘i'Pz(f)):N[Pl(w)'i'Pz(w)] :
)
No célculo dessa integral, encontramos termos do tipo
/ dtela)l‘ —IAEt ll‘gl}) A dte’wt lAEtefl—‘t — gr‘((l):‘:AE) , (10)



onde )
i

LAE) =
gr(@+AE) = r

(1)

Na Eq.(10), o termo e~ é usado para garantir a convergéncia da integral. I é um pardmetro real que
d4 uma largura finita aos picos da resposta linear [1]. Encontramos, entao

Pi(o) =Y (ilup]0)(0|ua i) gr(® — AE), (12)

1

Py(0) = Y (0|1 ]i) (il a|0)gr (@ + AE). (13)

1

No segundo termo da Eq.(1)
-2
Hiph(a1,12) = 0(01)8(2) (O] [[a 1 +12), (1) £(0)]10) (14)

€ o tensor susceptibilidade elétrica que nos da o espectro bidimensional. Seguindo passos semelhantes

ao da resposta linear discutida anteriormente, encontramos

12 (o1, 0) = _zlv (P (@1, @) + Pa(01, ) + P (@1, 02) + Py(01, @) (15)
onde
Py(or, an) = ;(i\uc!@(l\uﬂi) (Oluall)gr(@r — AEi)gr(w, — AEy), (16)
Py, 0) = —_Xl:<i|ﬂc!0> (O] |1) (| ptali}gr (01 — AEjo ) gr (2 — AEy), (17
Py(o, ) = —Z;,(O|Hc|i><1|Hb|0><i|ﬂa|l>gr(w1 +AEj)gr(@, + AEp), (18)
Py(r, @) =Y (0| eli) (il |1) (1| 1al0) gr (1 + AEio)gr (@2 + AEyp), (19)

il
sdo os caminhos quénticos para o espectro bidimensional, cujos diagramas de Feynman estdo exibios
na Fig.(4).

o) {0 _ 12
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Figura 3. Caminhos quinticos P| e Py, respectivamente, para x(!). Em resposta linear, hi duas interacdes com
o campo, representadas pelos circulos pretos, que ddo origem aos elementos de matriz do tipo (i|u,|0) (0| 1,|i)
na Py. Entre dois degraus consecutivos, temos a evolucdo temporal, que leva uma fase de e~ “1(Ei—Eo na P, Um
nimero impar de circulos a direita d4 um sinal —1 global ao caminho quantico.
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Figura 4. Caminhos quanticos para P, P>, Pz e P4, respectivamente, para x(z)‘ A leitura dos diagramas é
andloga a Fig.(3)

Os termos representados com - - - na Eq.(1) s@o termos envolvendo poténcias mais altas nos campos

elétricos e vao além do escopo desse trabalho.

II. MODELAGEM TEORICA

Nesse trabalho, estudamos respostas Opticas de anéis de Hubbard, os quais correspondem a elé-
trons em uma rede unidimensional de Ny sitios com condi¢des periddicas de contorno descritos pelo
modelo de Hubbard. Nosso foco serda em anéis com 3 < Ng < 6 sitios. O modelo de Hubbard é o
modelo mais simples para descrever a fisica de um sistema de elétrons interagentes no potencial pe-
riddico de uma rede cristalina. Nessa secdo apresentamos uma breve introdugdo a esse modelo (vide
Sec.II C). Apresentamos também os principais conceitos de mecanica quantica necessdrios para tratar

um sistema de mais de uma particula (Sec. Il A)).

A. Sistema de Particulas Idénticas

Em mecanica quantica, particulas idénticas sdo indistinguiveis umas das outras. Isso significa
que se uma particula A estd na posicao r,, e outra particula idéntica B estd na posicap rp, caso elas
troquem de posi¢ao, ndo ha nenhum experiment que possa detectar isso [4, 5]. Consequentemente,
para um sistema de duas particulas idénticas, a func¢do de onda deve satisfazer algumas propriedades
de simetria. Para o caso de férmions, como € o caso de elétrons, que estamos interessados nesse
trabalho, a fun¢do de onda no espago de Hilbert deve ser totalmente anti-simétrica por permutagcdo
das duas particulas. Para bosons, ela deve ser totalmente simétrica por permutagdo de duas particulas.

Vamos considerar dois férmions de spin 1/2, cada um ocupando um orbital atbmico centrado em
uma posi¢do r do espago e com projecdo do spin no eixo Z ¢ € {1,]}. Seja y,(r) a componente
orbital das fungdes de onda de um unico elétron elétrons no orbital a e Y (s), as componentes do seu

spinor, o estado de particula tinica para o elétron 1 é dada por

Oa,a(r1,51) = Walr1) Xa(s1). (20)
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Analogamente, para o elétron 2 no orbital b, temos
Oy, p(r2,52) = Wip(r2) xp(s2)- 1)

Agora, a funcio de onda que caracteriza o sistema de dois férmions é:

1
W(ri,s1572,82) = —=|aalr1,s1) Opp(r2,52) — ¢a,a(r2,sz)¢b,ﬁ(r1,sl)]- (22)

5

Esse estado satisfaz ¥(rp,s2; r1,51) = —¥(r1,51; r2,52), O que corresponde ao principio da exclusdo
de Pauli [6].Como a antissimetriza¢do deve ser obedecida pela funcio de onda total ¢ (r;,s;), caso o
sistema seja antissimétrico sob troca de s; e s> (estado singleto), entdo a parte espacial da funcdo de
onda y(ry,ry) deve ser simétrica sob a troca de r; e r,. Da mesma forma, caso a parte spinorial da
funcdo de onda seja simétrica sob troca de 51 € s (estado tripleto), entdo devera ser antissimétrica sob
troca dery e rp [5]. Para um sistema de N, férmions, e sendo x; coordenadas que englobam spin e

posicao, a fungdo de onda totalmente anti-simétrica é dada pelo determinante de Slater:

¢1(x1)  @a(x1) - O, (x1)

1 [ 91(x2) ¢2(x2) - ¢n,(x2)
Y(x1,x2,...,XN,) = ' . ' . ) (23)

¢1(xn,) 92(xn,) - On, (XN, )

B. Formalismo da segunda quantizacio

Quando se trabalha com sistemas de poucas particulas idénticas, como descrito na Secao I A, nao
¢ dificil construir explicitamente fungdes de ondas simétricas ou antissimétricas. Para sistemas muito
numerosos, como, por exemplo, elétrons em metais, esse procedimento pode ser bem trabalhoso.
O formalismo de segunda quantizacdo leva em conta a simetria das fungdes de onda do sistema de
maneira mais compacta e oferece, portanto, ferramentas poderosas para tratar de tais sistemas [4—6].
Como o objeto de estudo deste trabalho envolve sistemas de férmions idénticos, sdo esses sistemas
que focaremos nesta parte.

O formalismo da segunda quantizacdo € construido em termos de operadores que removem ou adi-
cionam particulas ao sistema. Considere um nivel de energia caracterizado por um niimero quantico
a = 0 que pode ser ocupado por férmions. Pelo principio da exclusao de Pauli, esse nivel pode conter
nenhuma particula (estado |0)) ou conter, no maximo, um férmion (estado |1)). Os operadores de

criacdo e destrui¢ao a(T) e ap sdo tais que

aol0) =0, aoll) =0), (24)



adloy=11),  af|1) =0, (25)

e obedecem relagdes de anti-comutagdo {ao, ag} = aoag + agao =1.[5]:

Até agora, entretanto, falamos de um sistema de um nivel. Em um sistema de muitos niveis, o
estado N, férmions pode ser representado pelo ket |ng,ny,ny,---), onde n; representa o niimero de
férmions no estado k. O nimero quantico k pode representar graus de liberdade orbitais e de spin e,
pelo principio da exclusdo de Pauli, n; sé pode assumir valores ny =0 oung=1,¢e Y ngy =N,. O

k

estado |ng,ny,ny,...) é construido criando-se férmions sobre o vicuo de particulas |0,0,0,---) = |0)

pelos operadores de cria¢do e destruigdo:
[, ma, ) = -+ (a5)"™ (a})™ (ag)"|0). (26)

Na representagdo de posi¢do, (riry---ry,|ng,ny,ny---) nos dé a fungdo de onda de N, férmions
completamente anti-simetrizada em que ng férmions ocupam o nivel 0, n; ocupam o nivel 1, e assim

por diante. Os operadores de criacdo e aniquilagdo obedecem as seguintes relacdes de anticomutacao:
{aid} =8,  {aiaj}={al,a;} =0 (27)
onde J;; € o delta de Kronecker. O nimero de férmions num estado i é¢ dado por [5]:

i = al a;, (28)

Também podemos definir os operador de campo de criagdo e de destruicao [5, 6],

N

Pi(r) =Y ¢i(r)cl, (29)
j=1
N

Vs(r) =) ¢j(r)cjs (30)
j=1

que denotaam, respectivamente, os operadores que criam e destroem um elétron com spin ¢ na posi-
¢do r. Na Eq.(29), ¢;(r) é uma fungdo do problema de um elétron. No contexto de elétrons em uma
rede, que € o foco desse trabaho, ¢ j(r) € uma funcao de onda centrada no sitio j, ou seja, que decai

rapidamente como funcio de ]r —R; ‘ Além disso, N corresponde ao nimero de sitios da rede.

Temos, também, um procedimento para escrever operadores que atuam em um sistema de muitas

particulas em termos dos operadores de criacio e destrui¢cdo. Um operador de um corpo atua somente
Ne

sobre uma particula por vez, O1 = Y, O(r;), e apresenta a forma geral, em segunda quantizacio, dada
i=1

por

O1= Y, [driimom o). 31
=T



Um exemplo € a energia cinética de um sistema de particulas (vide Se¢@o.II C). Um operador de dois
N,
corpos atua sobre duas particulas por vez Vo, = Y v(r;,r;), e em segunda quantizagdo, é escrito
i,j=1

| BTN N o N
V=3 X [dr [ dr Gow oV ) vy v () (2)

como

C. O modelo de Hubbard

Nessa se¢do, apresentaremos o modelo de Hubbard, o modelo mais simples para descrever elé-
trons interagentes em uma rede cristalina. Em primeira quantizacdo, o Hamiltoniano de N, elétrons

interagentes em uma rede cristalina é dado por

Ne .2 Ne 2
Hy=Y" (P_l+vc(ri)) +% Y S (33)

i—1 2m ji=1 ’I‘i—l'j’

onde P; denota 0 momento do elétron i e rj seu vetor posi¢do, e é a carga elementar e V,(r;) é o po-
tencial periddico com a simetria da rede cristalina, gerado pelos fons do cristal e pelos elétrons mais
fortemente ligados a ele. O primeiro termo do lado direito de Hy é o termo cinético do Hamiltoniano
e o segundo € o termo de repulsdo Coulombiana. O termo cinético € um operador de um corpo, en-

quanto que o termo de interagdo é um operador de dois corpos, de forma que em segunda quantizagdo

temos
Y [arownowe()+ Z/w/wm, Ol )y (1)), (34
o= N
onde
p’ "
h(r) = - +Ve(r) = —%V + Vi (r), (35)
(r,r) e (36)
ulrr)=——.
X — ]
Agora, substituindo as equagdes (29) e (30) na equacdo (34), encontramos
. N 1 N
Hy = Z Z tij chCJG +3 7. Z Z Ul]kl C,gcjc/cko’clda 37
l"]ZIG:Ti lv]a 7l IGG_TJ/
onde
1y = Glhl)) = [ dr g (£)h(r) ¢ (x) (39)

¢ o parametro de hopping e estd associado a probabilidade de um elétron tunelar do i-€simo sitio da
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rede para o j-€simo sitio, e

Uijit = (ij|u|lk) = /dr/dr' @} (r)@; (r)u(r,r’) o (r') gy (r) (39)

¢é o elemento de matriz da repulsdo Coulombiana [7].

O Hamiltoniana na equagdo (37) € geral. A seguir, faremos duas aproximagdes importantes para
derivar um Hamiltoniano mais simplificado que corresponde ao modelo de Hubbard [8]. Como as
fungdes de onda ¢;(r) sdo espacialmente localizadas em torno do sitio j, conforme discutido na
Secdo I A, o termo de hopping na equagdo (38) cai rapidamente a medida que nos afastamos do
sitio. Fisicamente, isso significa que um elétron num sitio j possui uma amplitude de probabilidade
negligivel de "pular"para um sitio i distante, o que nos permite considerar que apenas os termos de

hopping entre primeiros vizinhos:
lij = <i‘h|i+ 1>5j,i+1 + <i‘h|i— 1>5j’,’_1 = —l‘(5j7i+1 + 51'7,'_1). (40)

Na equagdo acima, considera-se um termo de hopping uniforme, ou seja, (i|hli+ 1) = (i|hli— 1) = —
independente do sitio [8]. Além desta aproximac¢do, no modelo de Hubbard aproximamos a repulsdao
Coulombiana por uma interacao local, que s6 atua entre elétrons ocupando o mesmo sitio da rede,
ouseja Ujjy =U 0;i6;0;; e independente do sitio. Essa aproximacao pode ser feita pois os elementos
de matriz na equacdo (39) sdo maiores quando considerarmos (ii|u|ii). Utilizando as aproximagdes
mencionadas acima e as relacdes de anticomutacao dos operadores de criacao e destruicdo eletronicos
definidos na equagdo (27), chegamos ao Hamiltoniano do modelo de Hubbard

H :—tZZ<cJGc]+1o+hc>—|—UZn i, (41)
j=1o0 J=

onde “h.c” denota 0 Hermitiano Conjugado e 71 js € 0 operador niimero de elétrons no sitio j com spin

o (vide Eq. (28)). Os termos de hopping e repulsado local estdo representados na Fig.(5).

Também podemos escrever operador de momento dipolar de transi¢cao introduzido na Segﬁo IB

no formalismo da seguinda quantizacdo. Ele é um operador de um corpo dado por [4] © = —e ): Ij.
Portanto,
=Y (ilrli)eiscio- (42)
i,j,0

Novamente usando que @;(r) é uma fungio localizada ao redor do sitio , podemos utilizar a aproxi-
magdo (i|r| j) ~ R;0;;, onde R; =R (cosG,,smO) ¢ a posicdo do sitio i e R = 57 no anel. Alinhando
a posi¢do do sitio 1 com o eixo x, 6; = 2n*~ L (vide Fig.1). Portanto,

fi=———Y (cos6;,sin6;) (n?T ‘H’Q\L) ) @

11
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Figura 5. (a) Ilustracdo dos termo de hopping e repulsdo coulombiana intra-sitio do modelo de Hubbard definido
na Eq.(41). Tlustragdes dos termos proporcionais a A que aparecem na extensdo do modelo de Hubbard na
Eq.(44) sao apresentados nos painéis (b) e (c). (b) mostra o "termo de bolha"e (c) o termo extendido. (b) e (c)
foram retirados da Ref. 11.

D. Extensiao do modelo de Hubbard

Também existem extensdes do modelo de Hubbard, onde podemos considerar também termos de
hopping entre segundos vizinhos e repulsdo Coulombiana entre elétrons em sitios vizinhos. Nesse
trabalho, consideraremos uma estensdo do modelo de Hubbard que foi proposta como um modelo
minimo para descrever propriedades de moléculas aromadticas [9, 10]. Além dos termos de hopping e
interacao intra-sitio do modelo de Hubbard usual, adiciona-se um termo de interacao atrativa entre os

elétrons,

N N
= IZZ<C;GCJ+170' + h.C.) + UZﬁJ'TﬁjJ,
o j=1

j=1

'Y

j=lo,o’

Tt
[ Cjo J+1 o Cjo'Cjtlo + he) + (Cjocj—l,afcj—lc’cj—lﬁ + h"")}‘

(44)

Esse Hamiltoniano descreve os elétrons que ocupam o anel aromético da molécula, e o termo atrativo
proporcional a A (U /t)? vém da interagdo desses elétrons com os elétrons de ligagio mais fortemente
ligados aos ions que formam o anel, dando origem a uma atracdo efetiva entre os elétrons no anel [9].
Essa interacdo extra tem dois termos, o primeiro € um termo do tipo "bolha", conforme ilustrado
na Fig.5(b). O segundo termo favorece o movimento dos elétrons ao longo do anel, como ilustrado
na Fig.5(c). Um dos objetivos desse trabalho € buscar por assinaturas desse termo de interacdo em

respostas opticas, algo que ainda ndo foi explorado na literatura.
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III. RESULTADOS

Analisamos agora as respostas lineares e os espectros bidimensionais dos anéis de 3 < N; < 6
sitios e N, elétrons modelados pelo Hamiltoniano da Eq.(44). Focamos no regime de semipreen-
chimento, onde N, = Ny, e procuramos assinaturas espectroscopicas das interacdes intereletrOnicas,
tanto da repulsdo intra-sitio (proporcional a U) quanto da interacdo atrativa efetiva entre os elétrons
(proporcional a A). Para tal, compararemos, em cada caso, os espectros calculados tomando-se (i)
U=A1=0,G()U/t=1eA=0e(ii)U/t=1eA/t =0.2.

Para o célculo dos espectros, obtivemos os autovalores e autoestados do Hamiltoniano A dado pela
Eq. (44) utilizando diagonalizacdo exata. Construimos uma rotina em Python que calcula os elemen-
tos de matriz de H no espago de Fock da forma \ny4,n1y,m04,02,...) € calcula os seus autovetores
e autovalores para cada escolha de U e A. Sabendo os autovalores e autoestados, calculamos os es-
pectros lineares e bidimensionais usando a Eq.(1), os quais serdo discutidos a seguir. Nesse trabalho,
( )(a)) e xxx de x(z)

1 e o
focamos nas componentes xx de x,,, (01, @2). Dividimos nossa andlise em Ny par e

N, impar.

A. Ngpar

Comecaremos discutindo o caso Ny = N, = 4. O espectro de energia como fun¢do de U estd
mostrado na Fig.(6) com (a) A =0e (b) A/t =0.2 . Quando U = A = 0, temos cinco niveis de
energia distintos, correspondentes as diferentes maneiras de distribuir quatro elétrons em quatro niveis
de energia de um corpo obedecendo ao principio da exclusdo de Pauli. Todos esses estados sdao
degenerados. Ao considerarmos valores finitos de U, algumas degenerescéncias sdo levantadas, como
podemos ver em Fig.6(a). Além disso, ao tomarmos, além de U # 0, A # 0, o espectro de energia
sofre modificacdes e levantamentos adicionais de degenerescéncia, como mostrado na Fig.6(b). Como
veremos a seguir, as evidencias das modificagdes nos estados eletronicos causadas por A sdo sutis em
resposta linear, porém batante evidentes no espectro bidimensional.

Os espectros lineares x)g) (w) do sistema estdao mostrados na Fig.(7) para para U = A = 0 nos
painéis (a) e (d), U/t =1eA =0em (b)e(e)e U/t =1e A/t =0.2 em (c) e (f). Na Figura 7(a),

20

(a)
10

E/t

-10

00 25 50 75
U/t

Figura 6. Espectro de energia para 4 sitios e 4 elétrons para: (a) A/t =0e (b) A/t =0.2
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Figura 7. Parte imagindria de ( ;& (w)) para Ny = N, = 4 com os seguintes valores dos pardmetros do modelo

de Hubbard extendido (Eq.(44)): (a)e (d) U =0,A =0. Em(b)e (e), U/t =1,A/t=0eem (c)e (D U/t =
1,A/t =0.2. Os painéis (e)-(f) corresponde a uma ampliagéo dos painéis (a)-(c), respectivamente para melhor
visualizacdo dos picos.

percebe-se apenas um pico, o que mostra que apenas autoestados |i) de H cuja diferenca de energia
com respeito ao estado fundamental (E; — Ey) coincidem com a frequéncia do pico tém valores finitos
de momento de dipolo de transi¢do (i|tL,|0). Para U finito, a quebra de degenerescéncia dos nineis
de energia leva ao aparecimento de novos picos no espectro, como podemos ver na Fig.7(b). A
inclusdo do termo de interagdo proporcional a A também leva ao levantamento de degenerecéncias,
além de alterar a dependéncia em U dos niveis de energia. Portanto, A tem dois efeitos no espectro
linear: deslocar os picos em frequéncia, e gerar o aparecimento de picos que ndo estavam presentes
no caso U/t = 1. Entretanto, o deslocamento dos picos é pequeno para U/t = 1 e 0s novos picos
tem intensidade baixa, como podemos ver nos painéis (d)-(f) da Fig.(7). Dessa forma, as diferencas
espectroscopicas entre os casos A = 0 e A # 0 sdo muito sutis, o que dificulta a distin¢do entre esses
dois casos.

Agora, podemos nos perguntar se poderiamos ter uma melhor distingéo entre os casos A =0e A #

)

0 no tensor de mais alta ordem %a;z,c(wl , ) (Eq.(14)) que gera o espectro bidimensional do sistema.

Entretanto xﬁz

¢ identicamente nulo para esse anel. Isso ocorre de maneira mais geral em anéis
com Nj par, independentemente do valor de N,. Esse resultado, apesar de inesperado num primeiro

momento, pode ser explicado considerando a simetria de inversdo dos anéis com N, par. Inversdao

espacial leva r — —r e transforma campo elético e polarizagdo como E'(r,t) = —E(—r,t) e P'(r,t) =
—P(—r,t), onde o apéstrofo denota quantidades transformadas. Aplicando essas transformagdes 2
Eq.(1), concluimos que ) ¢ se transforma da seguinte maneira: /(2)((0 )= — (2)((0 )

q.(L), q xabc g : Xabc 1,02) = xabc 1,02).

. . ~ s . . . "2 2
Porém, se inversdo é simetria do sistema, devemos ter x agy C)(a)l,a)z) = ngbz,(a)l,a)z), o que leva a

2 - . . ) ) )
xébZ(wl, @) = 0. Ou seja, ndo existe resposta de segunda ordem dptica em meios com simetria de
inversao, chamados maios centrosimétricos.

A discussdo € qualitativamente idéntica para o caso Ny = N, = 6 (ndo mostrado) e concluimos que

para Ng par € necessdrio ir a ordens mais altas e impares, para que assim o ("), com n > 1 ndo seja
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nulo. O primeiro tensor ndo linear de ordem impar ndo-nulo &, portanto, o de terceira ordem. Esse
célculo, entretanto, estd além do escopo desse trabalho.

Analisaremos agora o caso de Ny impar.

B. Ngimpar

Anéis com Ng impar ndo possuem simetria de inversao espacial e tanto as respostas lineares quanto
o espectro bidimensional sdo nao nulas. Nas proximas secoes, estudaremos as respostas opticas de

anéis de Ny, = 3 e Ny = 5 sitios.

1. Anel de 3 sitios e 3 elétrons

Os espectros de energia para Ng = N, = 3 como fung¢@o de U com A =0 e A/f = 0.2 estdo mos-
trados nas Fig.8(a) e Fig. 8(b), respectivamente. A resposta linear xg)(a)) desse sistema pode ser
encontrada na Fig.(9). Assim como em Ny = N, = 4, pode-se notar a quebra esperada de degeneres-
céncia das energias através do surgimento de novos picos a0 compararmos os espectros com U = 0
(Fig.9(a)) e U/t = 1 (Fig.9(b)). A adi¢do A finito (Fig.9(c)) nos mostra o surgimento de um novo
pico préximo dos dois picos mais intensos do espectro, que sao ligeiramente deslocados. A obser-
vacdo desse novo pico, entretanto, depende do valor do pardmetro I', que ndo pode ser facilmente
controlado em um experimento. As Figuras 9(d)-(f) mostram os espectros lineares para as mesmas
escolhas de parametros do modelo de Hubbard utilizados em Fig. 9(a)-(c), respectivamente, mas com
I cinco cevez maior. Comparando 9(e) e 9(f), vemos, novamente, assinaturas bem parecidas. Ou seja,
a distingdo entre A # 0 e A = 0 em resposta linear € sutil.

Agora, podemos analisar x)@(a)l , ), mostrados na Fig.(10), para o mesmo conjunto de escolha
dos parametros do modelo de Hubbard adotadas na Fig.(9). Todas as informacdes do espectro linear,
como esperado, estdo presentes na diagonal do espectro ndo-linear, onde @; = @,. Quando U/t = 1,
observamos o aparecomento de novos picos nio sé na diagonal, mas também fora dela. Os picos

fora da diagonal envolvem sobreposicdes entre autoestados de H que sdao impossiveis de aparecer

20
(a) (b)
10//

w0
——

-10
00 25 50 75 10000 25 50 7.5 10.0
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Figura 8. Espectro de energia para 3 sitios e 3 elétrons para: (a) A/t =0e (b) A/t =0.2
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Figura 9. Parte imagindria de ( xg) (w)) para Ny = N, = 3 com os seguintes valores dos parimetros do modelo
de Hubbard extendido (Eq.(44)): (a)e (d) U =0,A =0. Em(b)e (e), U/t =1,A/t=0eem (c)e (H U/t =

1,4/t = 0.2. Nos painéis (a)-(c) utilizamos I' = 0.01, enquanto que em (e)-(f) utilizamos I" = 0.05.

na resposta linear. Mais especificamente, comparando os caminhos quénticos das Figuras (3) e (4),
podemos ver que elementos de matriz do tipo (|, |0) (/| p|i) (0| tp|I) que geram picos com ®; # @,
ndo estdo presentes em xg)(a)) Com U/t =1e A/t =0.2 (Fig. 10(c)), novos picos surgem em
posi¢des distintas daqueles em (Fig. 10(b)) e que podem ser observados mesmo para valores maiores
de I'. A Figura 11 corresponde a uma ampliagao do espectro bidimensional para melhor visualizacao
dos detalhes na regido de frequénciias destacada pelo quadrado vermelho nos painéis (b) e (c) da Fig

(10).

: 0.5
5| (a) (b) (c)
3N O -+ + ++ ﬂ# = = O
: 1 il | ._
: -0.5
-5 0 5 -5 0 5 -5 0 5
“y “y “y

Figura 10. Parte imagindria de xﬁi(wl,@) para Ny = N, = 3 com as seguintes escolhas de pardmetros: (a)
U=0A=0,0b)U/t=1,A/t=0e(c) U/t =1,A/t =0.2. Em todos os painéis, usamos I = 0.01. Os
quadrados vermelhos delimitam regides no espectro que serdo ampliadas para uma visualiza¢do mais detalhada
dos picos (vide Fig.11).
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Figura 11. Regifo destacada da parte imagindria de xgg(a)l , @) para Ny = N, = 3 com as seguintes escolhas

de pardmetros: (a) U/t =1,A/t =0e (b) U/t = 1,A/t = 0.2. Em todos os painéis, usamos I = 0.01.

2. Anelde 5 sitios e 5 elétrons

Consideraremos, agora, o caso em que Ng = N, = 5. Os espectros de energia como fungio de U /¢

com A/t =0e A/t = 0.2 estdo mostrados nas Figuras 12(a) e 12(b), respectivamente.

O espectro de energia é muito mais denso do que no caso Ny = N, = 3, ja que a dimensdo do
especo de Fock € consideravelmente maior no caso Ny = N, = 5. Ainda assim, os célculos exatos
das respostas lineares e espectros bodimensionais podem ser feitos. A resposta linear xg)((o) desse
sistema pode ser encontrada na Fig.(13). Assim como na Sec¢do anterior, os termos de interacdao
proporcionais e U e A promovem a quebra de degenerescéncia dos niveis de energia obtidos com
U = 0, o que leva ao surgimento de novos picos no espectro linear. As assinaturas obtidas com
A =0(13(b)) e A/t # 0 (13(c)), entretanto, sdo muito parecidas, especialmente quando consideramos
valores maiores de I', como mostrado nas Figuras 13(d)-(f). Essa dificuldade de identificar os efeitos
de U e A no espectro é muito evidente na 13(f), na qual os picos pr6ximos a @ = 3.5 se sobrepde e se

assemelham muito aos picos observados em Fig.13(e).

Agora, podemos analisar a resposta ndo-linear do sistema. Fazendo os cdlculos necessdrios, a
Fig.(14) € obtida, e informagdes importantes podem ser tiradas dela. Como no caso anterior, todas as

Figura 12. Espectro de energia para 5 sitios e 5 elétrons para: (a) A =0e (b) A =0.2
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Figura 13. Parte imagindria de (x)g)(a))) para Ny = N, = 5 com mas mesmas escolhas de parametros usados
na Figura 9.

informacodes do espectro linear, como esperado, estdo presentes no espectro nao-linear pela diagonal
onde ®w; = @». Quando U = 1, a degenerescéncia se quebra e, além disso, surgem picos fora da
diagonal, que sdo transi¢des impossiveis de aparecerem na resposta linear. Com A = 0.2, novos picos

surgem, que podem ser observados de melhor forma na Fig.(15) ao focar na regido destacada na
Fig(14).

No espectro bidimensional, assim como no caso Ny = N, = 3, observamos a presenca de picos
intensos e nicos ao caso A # 0, como aqueles destacados na Fig.(15).

@ ) L ©

Figura 14. Parte imagindria de x)gg(wl,a)z) para Ny = N, = 5 com as mesmas escolhas de parametros da
Fig(10). Os quadrados vermelhos delimitam regides no espectro que serdo ampliadas para uma visualizacio
mais detalhada dos picos (vide Fig.15).
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(a) (b)

Figura 15. Regido destacada da parte imagindria de )()g)%(a)l , ) para Ny = N, = 5 com as mesmas escolhas de

parametros da Fig.(11).

IV. CONCLUSOES

Nesse trabalho, calculamos as respostas lineares e bidimensionais de anéis de Hubbard de 3 <
N, < 6 sitios e N, = Ny, que podemos considerar modelos simplificados para moléculas aromaticas.
Modelamos esses anéis através de uma extensao do modelo de Hubbard que inclui, além do termo de
repulsdo Coulombiana intra-sitio, proporcional a U, um termo de interacdo atrativa entre os elétrons
do anel, proporcional 2 A proposta nas Referéncias [9, 10]. A idéia era verificar se os espectros
lineares e bidimensionais poderiam distinguir entre os casos (i) U = A =0, (ii)) U = 0,4 # 0 e (iii)) U #
0,A # 0 fornecendo, assim, assinaturas espectroscOpicas unicas desses diferentes tipos de interag@o.
Através da diagonalizacio exata desses sistemas, calculamos os espectros e verificamos que apesar
dos espectros de energia terem varios valores de energia para determinados U e A, apenas alguns dos

picos esperados estdo presentes nas respostas.

Os termos de interagdo levantam a degenerescéncia dos autovalores de energia levando ao apare-
cimento de diversos picos no espectro linear. Entretanto, os picos que observamos nas escolhas de
parametros (ii) e (iii) mencionadas no paragrafo anterior sdo muito parecidos. Assim, concluimos
que a resposta linear ndo distingue convincentemente os casos (ii) e (iii) e, portanto ndo oferece as-
sinaturas tnicas do termo A. A situacgdo é diferente do caso do espectro bidimensional. O espectro
bidimensional € finito apenas nos anéis com nimero impar de sitios devido a simetria de inversdo.
Tanto para Ny = 3 quanto Ny = 5 observamos o aparecimento de picos no espectro bidimensional
quando A # 0 muito distintos daqueles quando A = 0 e concluimos que o espectro bidimensional nos
d4 assinaturas Unicas dos diferentes tipos de interacdo do modelo. Em anéis onde Ng € par, nao ha
resposta bidimensional, o que requer ir a respostas impares de ordens maiores, o que estd além do

escopo desse trabalho.
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