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Resumo

CASSIMIRO, L. J. G. (2013). “Identificacao de Falhas em Maquinas Elétricas Rotati-
vas Usando Sistemas Inteligentes”. Trabalho de Conclusao de Curso - Escola de Engenharia
de Sao Carlos, Universidade de Sao Paulo, 2013.

Atualmente, a maioria das industrias utilizam motores em seus processos de fabricacdo de
produtos. Sendo assim, é plausivel que sejam feitas manutengoes continuas nestes motores a
fim de evitar uma possivel quebra, interrompendo toda a linha de producdo e gerando grandes
prejuizos. Dessa forma, busca-se em pesquisas uma melhor forma de tentar prever que um
motor estd com uma falha, antes que este possa ficar seriamente danificado. A literatura aponta
muitas maneiras de se encontrar possiveis problemas, e uma delas, que vem ganhando bastante
destaque, é a utilizacao de sistemas inteligentes para a classificacao destas falhas. Sendo assim,
este trabalho tem como objetivo implementar um classificador de falhas de motores de inducao

trifasicos utilizando sistemas inteligentes, mais especificamente redes neurais artificiais.

Palavras-chave: Motor de Inducao Trifasico, Sistemas Inteligentes, Redes Neu-
rais Artificiais, Classificador de Falhas, Transformada Discreta Wavelet, Variaveis

Estatisticas.
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Abstract

CASSIMIRO, L. J. G. (2013). “Identifying Faults in Rotating Electrical Machines
Using Intelligent Systems”. Trabalho de Conclusdo de Curso - Escola de Engenharia de Sao
Carlos, Universida de Sao Paulo, 2013.

Nowadays, most industries uses motors in their manufacturing processes of products. Thus, it
is desirable that maintenance on these motors are made to prevent a possible breakage, stopping
all the production lines and generating large losses. Therefore, research is made in order to find
a better way to predict (forecast) if a motor is in malfunction (is not working well) before it can
be seriously damaged. The literature shows many ways to find potential problems, and one of
them, which is receiving lot of attention is the use of intelligent systems for the classification of
these failures. Thus, this study aims to implement a fault classifier for three phase induction

motors using intelligent systems, more specifically artificial neural networks.

Keywords: Three Phase Induction Motor, Intelligent Systems, Neural Networks,
Fault Classifier, Discrete Wavelet Transform, Statistical Variables.
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Capitulo 1

Introducao

1.1 Motivacao e Relevancia do Trabalho

Atualmente, as maquinas elétricas sdo utilizadas para importantes trabalhos tanto na gera-
¢ao de energia quanto nas industrias. Maquinas trifasicas se dividem em duas grandes classes:
Maéquinas Sincronas e Maquinas Assincronas. As Méquinas Sincronas sdo mais utilizados para
a geracao de energia elétrica, a tensao gerada est4 em sincronia com o campo, 60 Hz no caso do
Brasil. J& os Maquinas Assincronas, ou os Motores de Indugao Trifasicos, sdo utilizados para os
mais diversos fins na induastria brasileira. Em 2005, a Empresa de Pesquisa Energética (EPE)
levantou que 47% da energia produzida no Brasil é destinada a classe industrial, sendo deste
montante 50% destinado aos motores, o que os tornam bastantes importantes para as industrias
[I]. Com isso, estes motores recebem atencao especial das industrias, pois uma falha em um

motor de grande porte pode parar uma linha de producao inteira, gerando muitos prejuizos.

Entre os tipos de motores de indugao, o Motor de Indugdo com Rotor em Gaiola de Esquilo
merece um destaque maior, pois apresenta alta robustez, longa vida 1til e quase nao precisa
de manutengoes [1, 2]. Neste trabalho motores deste tipo serdo estudados, ja que estdo mais

presentes nas industrias.

Como dito anteriormente, quando acontece uma falha de um motor que nao estava prevista,
linhas de producgdo inteiras cessam e trazem enormes prejuizos para as empresas. F com este
intuito que estudos sdo desenvolvidos a fim de analisar o motor e avisar se uma possivel falha,

para que este possa sofrer uma manutencao antes de causar problemas mais severos.

Conforme visto em [3], as falhas de MIT’s mais comuns podem ser classificadas conforme
mostra a Figura [I.1]

Neste trabalho focou-se nas falhas geradas por barras quebradas do rotor. Estas falhas
ocorrem quando h& um aumento na oscilagao da carga, extrema vibracao ou pobre dindmica de
partida [3].

Sendo assim, este trabalho tem como objetivo criar um classificador de falhas para que seja

possivel verificar se o motor estd ou ndo em bom funcionamento, evitando paradas bruscas.
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Falhas
Mecénicas
Falhas no
Rolamento

Figura 1.1: Classificacao das Falhas em Motores de Indugao Trifasicos

1.2 Objetivos e Justificativas

O objetivo deste trabalho é verificar a validade da utilizacao de sistemas inteligentes para

classificar falhas nos rotores de motores de inducao trifésicos.

e Desenvolver um sistema computacional que seja responsavel por analisar falhas em motores

de inducao trifasicos através das informacdes de suas correntes trifasicas;

e Investigar a Transformada Discreta Wavelet e mostrar que esta consegue exercer a etapa

de pré-processamento do sinal das correntes elétricas;
e Utilizar varidveis estatisticas para extrair as caracteristicas de cada sinal de corrente;

e Identificar a melhor topologia para a identificacdo de falhas utilizando uma rede neural

artificial;

e Verificar se a metodologia proposta para a identificacao de falhas é valida e pode ser usada.

1.3 Organizacao do Trabalho

Este Trabalho de Conclusdo estd organizado em cinco capitulos que demostram os passos
para a obtencao dos resultados finais.

O Capitulo 1 apresentou a relevincia e a dificuldade de se analisar as falhas em motores
de inducao trifasicos (MIT). Mostrou também as principais falhas que ocorrem nestes tipos de
motores, bem como a relevincia e as justificativas para este trabalho.

No Capitulo 2 serdo apresentadas e detalhadas as metodologias empregadas para montar um
classificador de falhas de um MIT. Estas metodologias sao: a Transformada Discreta Wavelet e
as Varidveis Estatisticas, ambas para extrair as caracteristicas dos sinais de corrente do MIT,
e, por fim, as Redes Neurais Artificiais, mais precisamente a Perceptron MultiCamadas, que foi

utilizada para classificar as falhas.
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No Capitulo 3 serdo apresentados os passos do classificador de falhas, desde a medigdo das
correntes trifasicas do motor até a classificacdo final. Aqui serd mostrado com detalhes como as
metodologias foram utilizadas para extrair as caracteristicas dos sinais de corrente possibilitando
a classificacao da falha.

No Capitulo 4 apresenta os resultados obtidos no treinamento e validagdo da Rede Neural,
tanto para motores acionados diretamente da rede como motores acionados por um inversor
trifasico.

E, por fim, o Capitulo 5 apresenta as conclusoes gerais deste trabalho.
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Capitulo 2

Metodologias Empregadas

2.1 Introducao

Para a montagem de um sistema classificador de problemas em um MIT é necessario utilizar
algumas metodologias para extrair as informagoes dos sinais de corrente do MIT e, posterior-
mente, classificar a situacao do motor em cima destas caracteristicas.

As trés metodologias utilizadas neste trabalho foram: A Transformada Discreta Wavelet,
as Variaveis Estatisticas e o Perceptron Multicamadas. Cada uma destas metodologias seré

explicada mais detalhadamente nas segoes seguintes.

2.2 Transformada Discreta Wavelet

Muitas vezes faz-se necessario a troca do dominio de um sinal/amostra para que a anélise
destes dados seja feita de forma satisfatéria. E o que acontece com a Transformada de Fourier
(TF), que utiliza funcoes bases como seno e cosseno para transformar um sinal do dominio do
tempo para o dominio da frequéncia, permitindo, de forma mais clara, visualizar as frequéncias
presentes naquele sinal. A TF necessita de um intervalo do sinal que se repete ao logo do
tempo para que esta seja capaz de retirar as frequéncias presentes neste sinal, isto é, um sinal
estacionario, o que, em alguns casos, pode ser uma caracteristica ruim.

Como pode ser visto em [4], 5], a TF consegue extrair as caracteristicas de um sinal, sendo
possivel classificar o problema que o MIT apresenta, porém, em todos estes casos, o sinal era
estacionario. Em sistemas online, em que a corrente do estator ¢ dindmica e varia com o passar
do tempo, a TF ja nao é a melhor opgao [6].

O sinal de corrente dos MIT’s podem apresentar pequenas mudancas com o passar do tempo,
causado por ruidos externo ou possiveis falhas, sendo assim, é provavel que ndo seja possivel
escolher um intervalo de tempo que se repete. E possivel escolher uma parte do sinal que o tente
representar como um todo, e com isso a TF ird dar bous resultados, mas pode ser que alguma
frequéncia seja perdida neste processo.

E com este intuito que neste trabalho optou-se por estudar e aplicar a Transformada Wavelet
(TW). A TW néo possui um tnico conjunto de funcoes bases (seno e cosseno no caso da TF),
mas sim um conjunto infinito de funcoes bases, todas derivadas da wavelet mae 1(t), quando esta
é dilatada ou transladada. Isto permite que a funcdo wavelet translade um sinal no dominio do

tempo nao retirando apenas as caracteristicas de frequéncia dele (como acontece com a FT'), mas
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também as caracteristicas do tempo [7], isto é, a wavelet é capaz de verificar se as frequéncias do
sinal alteraram com o passar do tempo (dominio tempo-frequéncia). Transladar aqui significa a
movimentacao da janela através do sinal.

Ambas as transformadas, TDF e TDW, apresentam grandes semelhangas do ponto de vista
funcional. S3o invertiveis, as matrizes da transformada inversa s2o as transpostas das originais
e ambas as transformadas sao convolugoes [§].

As operagoes de dilatac@o e translacao da wavelet mae permite decompor o sinal em diferen-
tes frequéncias em suas escalas correspondentes permitindo estudar cada componente separada-

mente. Estas operacoes podem ser representadas por:

a

" (x_b> ,(a,b) € R*aR (2.1)

em que a =27 eb=Fk-277 sendo k e j inteiros [9].

Sendo assim, os pardmetros a e b sdo alterados a fim de selecionar todas as faixas do dominio
frequéncia-tempo que sejam importantes para um estudo especifico.

A Transformada Discreta Wavelet (TDW) difere um pouco da continua, utilizando bancos
de filtros na analise de multiresolu¢do. O banco de filtros é responsavel por separar o sinal
em bandas de frequéncias, isto é, frequéncias acima de um limiar e frequéncias abaixo de um
limiar. O sinal pode passar por diversos filtros passa-alta para a analise das altas frequéncias, e
por diversos filtros passa-baixa para anélise das baixas frequéncias. A Figura [2.1] apresenta um

diagrama para o célculo da TDW.

x(k)
|

H(z) L(z)

yh(k) yi(k)

Figura 2.1: Banco de filtros da wavelet

Note pela Figura que o sinal x(k) passa por 2 filtros, um H(z) representando um filtro
passa-alta e um L(z) representando o filto passa baixa. Apos a filtragem do sinal ha outro
operador, o downsamplig. Este operador é til para diminuir as amostras que os sinais filtrados
apresentam, ja que estes sinais estao com amostras a mais do que o necessario para sua correta
representacao.

A TDW pode ser aplicada diversas vezes nos sinais resultantes, conforme o nivel de detalha-

mento necessario da aplicagdo em que esta é utilizada. A Figura apresenta a TDW sendo
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aplicada a mais de um nivel.

x(k)
|
H(z) L(z)
yn(k)
yi(k)
H(z) L(z)
yhn(k) yhi(k)

Figura 2.2: Banco de filtros de 2 aplicagtes da wavelet

Neste trabalho, serd utilizada a TDW de Haar, em que [I0] mostra como seu uso é simples,
trazendo bons resultados para o trabalho.

Por meio da Wavelet de Haar, é possivel decompor um sinal z(k) em um nivel j, em coefici-
entes que representam as baixas frequéncias (¢, (k)) e as altas frequéncias do sinal (d,,(k)). Esta
decomposigao acontece através da convolucao de z(k) com a transformada wavelet de Haar (W;),

podendo ser feita através de uma simples equacao matricial, juntamente com o downsamplig.

c;i(k
[ dj((k; ] = WT * Ysignal (22)
sendo que
| z(@) z(3) z(5 z(n—1)
Ysignal = [ (2 ZE(4 3;‘(6) :U(n) ] (23)
1 1
Wr = [ V2 oV2 ] (2.4)
V2R

O downsampling ocorre quando se ajusta o sinal conforme mostra (2.3). Este ajuste, junta-
mente com a multiplicagdo matricial por Wr resulta na TW do sinal. A TW pode ser aplicada

diversas vezes em sinal, conforme o nivel de detalhamento necessario.
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Os coeficientes representados por d; sao conhecidos como coeficientes de detalhe, e apresen-
tam as informacoes das altas frequéncias do sinal. J4 os coeficientes ¢; sao conhecidos como
coeficientes de aproximacdo e trazem informacoes sobre as baixas frequéncias que o sinal apre-
senta.

A Figura[2.3] apresenta um sinal senoidal de 60 Hz somado a outro sinal senoidal de aproxi-
madamente 8 Hz. J4 a figura apresenta o mesmo sinal senoidal de 60 Hz, porém somado a

um sinal de, aproximadamente, 2 Hz.

Amplitude

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 BOO 700 8OO <00 1000
Armostras

Figura 2.3: Sinal de 60 Hz somado a outro sinal de frequéncia 8 Hz

Amplitude

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500  BOO FOO 8OO <00 1000
Armostras

Figura 2.4: Sinal de 60 Hz somado a outro sinal de frequéncia 2 Hz

A TDW seré aplicada uma vez em ambos os sinais a fim de verificar sua funcionalidade. A

Figura [2.5] apresenta os coeficientes de aproximacao da TWD e a Figura [2.6] os coeficientes de
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detalhe.
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Figura 2.5: Coeficientes de Aproximacao de ambos os sinais (Filtro Passa-baixa)
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Figura 2.6: Coeficientes de Detalhe de ambos os sinais (Filtro Passa-alta)

Note que na Figura 2.5 os sinais da TDW séo diferentes para as amostras que contém 2 Hz
e 8 Hz, isto porque o filtro passa-baixa diferencia estas frequéncias. Na Figura [2.6] praticamente
nao ha diferenciagdo dos sinais, j4 que os sinais ndo apresentam alta frequéncia. O contrario

pode ser observado somando-se altas frequéncias no sinal e analisando novamente os coeficientes.

Como o intuito é encontrar as baixas frequéncias que dominam o sinal através do tempo, fato
causado por haver problemas no MIT, os coeficientes de aproximacao serao utilizados daqui em

diante, e o coeficiente de detalhe serd descartado.
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2.3 Variaveis Estatisticas

Conforme visto na secao anterior, ap6s a TW ser aplicada nos sinais trifasicos de corrente,
tem-se como resultado sinais ao longo do tempo. Sendo assim, é inviavel ter este sinal como
entrada para um PMC, ji que se necessitariam de muitas entradas e a rede ficaria complexa
demais. Para que a rede counsiga obter éxito no seu treinamento e teste para a localizacao de
falhas em um motor, é necessério que as caracteristicas dos sinais analisados sejam extraidos da
melhor forma possivel, tornando tnico cada sinal analisado.

Ja que este fator apresenta uma importancia elevada para o correto treinamento da rede,
e, consequentemente, o correto diagnostico, buscou-se varidveis estatisticas que apresentam uma
metodologia bastante eficiente, sendo capazes de generalizar as informagoes contidas em um dado
sinal. As varidveis estatisticas, em geral, sdo utilizadas para generalizar um modelo em cima de
uma amostra de dados, o que é exatamente o intuito aqui.

Dentre as diversas varidveis estatisticas existentes, foram escolhidas cinco para extrairem as

caracteristicas das correntes trifasicas do motor. Estas cinco varidveis estdo disposta abaixo:

e Média: é uma variavel que apresenta um tnico valor que melhor representa o conjunto de

dados como um todo. Esta varidvel pode ser calculada como:

i_lNi 2.5
M*NZ%' (2.5)

J=1

l:

em que IV ¢ o nimero total de amostras e

é a j-ésima amostra do conjunto 7.

e Mediana: varidvel que apresenta um tnico valor capaz de separar a parte inferior das
amostras da parte superior. Assim, metade dos elementos do conjunto serao inferiores ou
iguais a mediana, e a outra metade serdo iguais ou superiores a mediana. Ela indica o valor

central do conjunto de dados.

Para amostras de tamanho n impar, a mediana é:

1
mediana = x <n —2’— ) (2.6)

Ja para amostras de tamanho n par tem-se:

1 n n
diana = 5 [2(5) +2 (5 +1)] 2T
mediana 5 x2+w 2+ (2.7)
e Root Mean Square: também conhecido como valor quadratico médio ou valor eficaz,

a rms apresenta uma medida de magnitude da variavel. Pode ser calculada utilizando a

seguinte funcao:
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o Skewness: varidvel que representa a forma da distribui¢do. Pode ser calculada como:

SK = (N—11)33 2 (333 —ut)? (2.9)
em que s é o desvio padrao do conjunto de amostras.
e Kurtosis: outra variavel que representa a forma da distribuicao.
1 al i in4
KT:(NfHIQE:(j_“) (2.10)

Em [I1], os coeficientes de skewness e kurtosis sao chamados de terceiro e quarto momento
do conjunto, relacionando a poténcia em que os dados sao elevados, sendo skewness a terceira
poténcia e kurtosis a quarta poténcia, como pode ser observado em e .

O Coeficiente de Skewness (SK) [12], ou em portugués, obliquidade, indica o quao simétrico
os valores do conjunto analisado estdo em torno de sua média. Este pode ser separado em trés

situagoes:

e SK < 0: informa que existem mais amostras acima do valor da média no conjunto obser-

vado;
e SK > 0: informa que existem mais amostras abaixo do valor da média;

e SK = 0: Os dados do conjunto estao distribuidos simetricamente em torno da média.

As Figuras[2.7(a)|e[2.7(b)| apresentam casos em que o SK é maior e menor que zero, respecti-
vamente. Note que nas figuras ha um trago que separa os dados que tem valores acima da média

e os dados com valores abaixo da meédia. Na Figura [2.7(a)| h4 mais dados acima da média, o
que resultou em um SK abaixo de zero (SK = -0,5634). Ja na h& mais valores abaixo da

meédia, resultando em um SK acima de zero (SK = 3,2738).
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Figura 2.7: Exemplos do coeficiente de skewness
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O Coeficiente de Kurtosis é utilizado para verificar se a maioria dos dados se encontra no
pico da média. Para uma distribuicao normal, por exemplo, o valor de KT é aproximadamente
3, e para uma distribuigdo exponencial, o KT vale 9.

Skewness e Kurtosis, que medem a variabilidade e a forma da distribuicao, s8o comumente
utilizados juntos para verificar o quao préxima o conjunto analisado é de uma distribuicdo normal.
Em conjunto com a média, mediana e rms, é possivel caracterizar o sinal de corrente das maquinas

de uma forma tnica, como citado em [12]. Desta forma o conjunto de dados torna-se seguro.

2.4 Redes Neurais Artificiais

As RNAs (Redes Neurais Artificiais) sdo modelos computacionais que tentam simular a forma
com que o cérebro humano processa informacdes e resolve problemas, isto é, entre erros e acer-
tos. Os neurdnios sao representados por unidades de processamento associados a alguns pesos,
chamados de pesos sindpticos, e a conexoes que as ligam em outras unidades, chamadas de co-
nexoes sindpticas. O treinamento da rede se da ajustando os pesos sinapticos de cada neurdnio,
repetidamente, até que esta forneca resultados em sua saida que sejam compativeis com os dados
de entrada [13].

2.4.1 Principais Caracteristicas

Muitas vezes, modelos mateméticos que regem os sistemas nao lineares e variantes no tempo
sao complexos ou quase impossiveis de serem determinados. Uma grande caracteristica das RNA
é, justamente, a habilidade de mapear estes tipos de sistemas com facilidade, alterando os pesos
sinapticos dependendo do algoritmo de treinamento utilizado. Ela também é capaz de trabalhar
com um enorme nimero de variaveis e conjunto de dados sem perder sua eficiéncia. Abaixo se

encontram as principais caracteristicas das RNAs [13]:

e Capacidade de aprendizagem: utilizando um conjunto de dados do processo para o
treinamento da RNA, esta consegue ajustar seus pesos sindpticos de forma a se adaptar ao

processo;

e Capacidade de se adaptar: sistemas variantes no tempo mudam constantemente. As
RNAs s@o capazes de seguir estas alteracoes sem que haja nenhuma alteracdo estrutural
interna (como numero de neur6nios), bastando apenas a apresentacdo de um novo conjunto

de dados;

e Capacidade de generalizacao: utilizando o conjunto de amostras entregues para o
treinamento da RNA| esta é capaz de efetuar um mapeamento e generalizar casos desco-

nhecidos, isto é, dados de entrada que néo foram utilizados para o treinamento da rede;

e Agrupar ou organizar dados e informacgoes: sdo capazes de extrair informacoes im-
portantes dos dados de entrada, reorganizando sua estrutura, a fim de organiza-los em

classe separadas, isto é, formar padrées;

e Tolerancia a falhas: mesmo com parte de sua estrutura comprometida (perda de um
neurdnio, por exemplo), a RNA ainda é capaz de operar informagoes, ji que o processo
de treinamento foi distribuido para iniimeros neurdnios artificiais. Isto mostra o quanto as
RNASs sdo robustas.
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e Facilidade de prototipagem: apds o treinamento da rede, sua utilizagdo acontece por
simples operac¢des matematicas elementares. Portanto, esta pode ser facilmente embarcada

em um hardware dedicado.

2.4.2 Potenciais Aplicacoes das RNAs

Atualmente, muitas areas estao utilizando RNAs para realizar processos. A seguir esté listado

algumas destas areas de atuacao das RNAs [13]:

e Aproximador de Fungoes: utilizando um conjunto de dados que apresenta o relaciona-
mento de variaveis de entrada e saida, as RNAs sdo treinadas com o intuito de mapear estes
relacionamentos e generalizar suas repostas. F comumente utilizado para mapear processos

que apresentam modelos analiticos complexos, desconhecidos ou de dificil obtencao;

e Controle de Processo: basicamente consistem em identificar a¢Ges de controle que per-
mitam o alcance dos requisitos de qualidade, de eficiéncia e de seguranga de certo processo.
Sao comumente utilizados em controles empregados em robdtica, aeronaves, elevadores,

eletrodomeésticos, satélites, etc;

e Classificacao de Padroes: esta aplicacdo consiste em associar cada amostra de entrada
da rede & uma classe previamente predefinida. E geralmente utilizado em reconhecimento

de imagens, voz, escrita, entre outros;

e Agrupamento de Dados/ Clustering: O intuito ¢ identificar e detectar similaridades e
particularidades entre as diversas amostras de entrada do processo, objetivando-se o agru-
pamento das mesmas. Sao aplicados em identificacao automatica de classes, compressao e

garimpagem de dados (data mining);

e Sistemas de Previsao: a rede consegue estimar dados futuros levando em consideragao
diversas medidas anteriormente observadas em seu dominio. Estes tipos de redes sao uti-
lizadas para prever mercados financeiros, demanda de energia, previsdes climaticas, entre

outros;

e Otimizagao: consiste em minimizar ou maximizar uma fun¢do objetivo, também conhe-
cida como funcao custo, obedecendo restricoes do problema. Sao utilizadas em problemas
de otimizacdo restrita, otimizagdo combinatorial, programacao din&mica, problemas de

sequenciamento de producao, etc;

e Memorias Associativas: consegue recuperar padrbes corretos mesmo que este esteja
incompleto ou distorcido. Sao utilizadas em processamento de imagens, transmissao de

sinais, etc.

2.4.3 O Neurdnio Artificial

Proposto em 1943 no trabalho de Warren McCulloch, psiquiatra e neuroanatomista, em
conjunto com Walter Pitts, matemadtico, o primeiro modelo artificial de um neurénio nasceu
[14]. Neste trabalho foi apresentado o modelo de neurénio como sendo uma unidade basica de

processamento que recebe varios estimulos de entrada (dados) e, somando-os ponderadamente,

35



resulta em uma resposta na saida. A Figura , retirada de [14], apresenta o neur6nio artificial
proposto no trabalho de McCulloch e Pitts.

-©

x1 wl
X2 w2
x3 O w3

wn
Xn

Figura 2.8: Neurénio Artificial

Na figura é possivel observar as seguintes variaveis:

Sinais de entrada {zi,z9, 3, ...,z };

e Pesos sinapticos {wy,wa, ws, ..., wy};

Combinador linear {>_};

e Limiar de ativagao {6};

Potencial de ativacao {u};

Funcao de ativacao {f(.)};

Sinal de saida {y}.

Os sinais {x1,x9,23,...,xx} sdo os estimulos que o neurdnio recebe do meio externo, tais
como medidas de sensores ou dados de comprimento. Ja as variaveis {w1, we, w3, ..., wy } sS40 08
pesos sinapticos, isto é, sao os valores que representam as conexoes sinipticas, e sao utilizados
para ponderar os dados de entradas, dando maior importancia para algum dado em especial. O
simbolo » representa a juncao dos sinais de entrada ponderados, isto é, este faz uma combinagao
linear dos sinais ponderados. A variavel 6 representa o limiar de ativacdo para que o resultado
do combinador linear possa disparar um estimulo para outro neurdnio. O simbolo u é o valor
da juncao do combinador linear com o limiar de ativagao, representando o potencial de ativacao.
Por fim, tem-se uma fungdo f(.), conhecida como fungao de ativacdo, que tem como objetivo
limitar o valor de saida dento de um determinado intervalo ou efetuar o mapeamento linear [13].

Sendo assim, tem-se:

N
u:Zw'azi—O (2.11)
i=1
A saida do neurdnio é calculada conforme abaixo:
y = f(u) (2.12)
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2.4.4 Funcoes de Ativagao Neural

Conforme [13], as principais fung¢oes de ativacdo sdo as do tipo linear, degraus ou sinais, e
sigmoidal. As fungoes degraus ou sinais sao descontinuas e retornam valores iguais a 0 ou -1
para potenciais de ativa¢ao negativos (u < 0) ou 1 para potenciais de ativagdo nulos ou positivos
(u > 0).

0 ou —1, se <k

(2.13)
1 se >k

fsindeg (u) = {

)

Ambas as fungdes apresentadas anteriormente ndo sdo diferenciaveis ao longo de todo o seu
dominio, e geralmente sao empregadas como classificador de padroes apos o processamento de
uma RNA.

A funcio linear produz valores equivalentes ao potencial de ativacio u, sendo definida por:

Jtinear (u) =u (214)

J& as fungoes sigmoides sao diferencidveis ao longo de todo o seu dominio e retornam valores
entre -1 e 1 no caso da funcao tangente hiperbélica, ou entre 0 e 1, no caso da funcao logistica.

Estas fungGes sao definidas como se segue:

1 —ePu
frann(uw) = 11 e Bu (2.15)
1
Jiogsig ) = 157w (2.16)

em que (8 é o pardmetro que indica a inclinacdo da funcao.

A Figura apresenta os formatos das fun¢oes de ativacao comentadas no texto acima.
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Figura 2.9: Funcoes de ativacao de um neurénio

2.4.5 Redes Perceptron Multicamadas

As redes Perceptron Multicamadas (PMC) sao constituidas de varios neurénios interconecta-
dos pelas conexoes sindpticas. A Figura ilustra uma rede PMC, mostrando que os neurénios
sao divididos em vérias camadas, chamadas de camadas neurais [13].

As camadas neurais sao divididas em trés tipos:

e Camada de Entrada: esta camada é responsavel por receber os sinais de entrada e
repassé-los para todos os neurénios da primeira camada oculta. Sendo assim, os neurénios
da camada de entrada nao operam sobre os dados recebidos do meio exterior, apenas os

repassamn;

e Camada Oculta ou Escondida: estas camadas sdo responséveis por processar os dados

de entrada extraindo suas caracteristicas.

e Camada de Saida: esta camada é também constitufida de neurénios, sendo responsével

por produzir/apresentar os resultados finais da rede.

Existem algumas técnicas utilizadas para encontrar a melhor quantidade de neurénios para
cada camada escondida existente, assim como o numero de camadas escondidas. Porém, estas
técnicas sao heuristicas, ndo permitindo a completa garantia de que a arquitetura escolhida é a

melhor possivel para o desempenho global.
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Figura 2.10: Estrutura da PMC

2.4.6 Processamento da PMC

Os sinais que chegam na primeira camada oculta sao processados utilizando os pesos sinap-
ticos associados a cada conexdo entre estes neurdnios e os neurdnios da préxima camada oculta.

Os sinais que chegam na camada de entrada sdo processados utilizando os pesos sinapticos
(I/V](Zl)) que ligam os neurdnios da camada de entrada até a primeira camada oculta, é feita
a combinacao linear e a funcao de ativagdo é aplicada. Com isso, estes sinais estao prontos
para passarem para a proxima camada oculta, seguindo o mesmo processo. Os sinais vao sendo
transportados de camada a camada até a camada de saida da rede. Esta camada processa as
informacoes obtidas da tltima camada oculta e fornece a resposta da rede referente aos estimulos
da camada de entrada. A Figura[2.1T|apresenta um PMC com variaveis definindo entradas, saidas
€ pesos sinapticos.

Observando a Figura temos que:

(1) ¢ o peso singptico do j-ési snio d da i tado a0 i-ési snio d
i P 1nap 1CO dO j—eSll’IlO neuronio da Camada ( conectado ao 1-€S11no neuroinlo da

camada (I - 1);

° Ij(.l) é o potencial de ativacao do j-ésimo neurénio da camada [;

e 01); é o limiar de ativagao do j-ésimo neur6nio da camada (1).

N

Ij(l) =Y Wj(j) LT — 9](.1) (2.17)
=1
N

Ij@) _ ZWJ'(? 'Yi(l) _ 9](2) (2.18)
=1
N

¥ = S wd.y® ¥ (2.19)
=1

P , o .
° Yj() ¢é a saida do j-ésimo neurdnio da camada [:
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Figura 2.11: Estrututa da PMC pronta para ser equacionada

yD = p(iV) (2.20)
v? = (1) (2:21)
v = 1) (2.22)

em que f(.) é uma func¢ao diferenciavel.

2.4.7 Treinamento da PMC

No processo de aprendizagem de uma rede PMC existem duas fases: a fase forward e a fase
backward. A primeira fase tem como objetivo levar as informacoes de entrada até a saida da
rede, e a segunda fase faz exatamente o oposto, o sentido do fluxo de dados passa a ser da saida
para a entrada.

Na primeira etapa, isto €, no passo forward, o intuito é propagar os dados de entrada através
dos neurdnios existentes na rede, cada um aplicando seus pesos. Ao final desta etapa, o algoritmo
compara os resultados finais com a resposta esperada e calcula um erro. Caso este erro esteja
fora dos limites impostos pelo treinamento, o algoritmo entra na segunda etapa, o backward.
Esta etapa tem como objetivo retropropagar o erro camada por camada afim de ajustar os pesos

sinépticos dos neuro6nios existentes nelas [13].

2.4.8 Projetando uma rede PMC

O projeto de uma rede PMC requer a manipulacdo de diversas varidveis. O numero de
camadas escondidas, o niimero de neurdnios por camada e as fungoes de ativagao de cada neurdnio
sao variaveis importantes, que, se ajustadas corretamente, faz com que a rede responda de forma

muito exata [15].
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Quando uma rede ja treinada, que apresenta erro baixo, recebe uma nova informacao de
treinamento que causa um alto erro, houve um problema de generalizagdo, conhecido como
overfitting. O overfitting acontece quando a rede, ao invés de generalizar as informacdes que
recebe, simplesmente decora as informagoes de entrada e as relacionam com a saida. Assim a rede
nao foi ajustada corretamente e ndo consegue generalizar a resposta para casos desconhecidos.
O numero de neurdnios estd diretamente ligado a isso. Caso muitos neuronios sejam usados

inadequadamente, ¢ bem provavel que um owverfitting venha a ocorrer [13].
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Capitulo 3

Sistema de Identificacao de Barras

Danificadas

3.1 Introducao

O objetivo deste trabalho é utilizar uma RNA para verificar quebra de barras do rotor de
um MIT. Para isso serdo utilizadas as correntes trifasicas do MIT, que apés processadas, serdo
passadas como parametros para a rede neural afim de esta classificar se ha barras quebradas (ou
quantas barras quebradas existem) no MIT. Sendo assim, as correntes serdao a fonte de dados do
sistema.

Foram utilizados dois tipos de partida para o MIT, acionamento pela rede elétrica e aciona-
mento por um inversor trifasico. Na partida direta, o MIT é alimentado com uma tensao de 220
V equilibrada com uma frequéncia de 60 Hz. Na partida utilizando um inversor trifasico, foram
aplicadas tensoes com formato de onda retangulares e moduladas por largura de pulso (PWM).
Neste caso foram utilizadas frequéncias de acionamento entre 40 Hz e 60 Hz.

A montagem da bancada de testes e os dados sdo provenientes da Tese de Doutorado apre-
sentada em [5]. As informacoes da montagem da bancada, bem como as ferramentas utilizadas
para colher os dados amostrais, podem ser encontrados neste trabalho de conclusdo de curso.

A Figura[3.1] apresenta as etapas que a corrente ira passar até chegar na entrada da MLP.

Em um primeiro momento, os sinais de corrente do MIT serao lidos. Estes sinais irdo passar
por um pré-processamento, que compreende a Transformada textitWavelet e as Variaveis esta-
tisticas. Apods estas etapas as amostras serdo normalizadas e, por fim, separadas para um grupo
de treinamento e um grupo de validagdo da RNA. Em seguida estes dados sdo entregues & MLP.
Cada passo sera exposto detalhadamente nas segoes seguintes.

Os sinais de correntes trifasicas eram medidos apos o MIT atingir seu regime permanente.
Isto é importante, ji que, no regime permanente, ha a presenca de frequéncias que aparecem por

conta das barras quebradas.

43



Motor de
Indugdo
Trifasico

Carga

Transformada Discreta
Wavelet de Haar

Delimitacdo das
Amostras

Aplicagdo das
Variaveis Estatisticas

Normalizacdo dos
Dados

Cojunto de

- Conjunto de Testes
Treinamento

Rede Neural Artificial
MLP

Figura 3.1: Etapas do Sistema de Classificacao de Falhas

3.2 Construcao da Base de Dados

A aquisicdo e a transformacao dos sinais de analdgico para digital foi realizada através da
placa NIDAQmx PCle-6259 e por um computador ao qual esta estava conectada. A frequéncia de
amostragem utilizada para a coleta de dados foi de 3840 Hz. Os dados coletados dizem respeito
a MIT’s saudaveis e MIT’s que apresentam barras danificadas.

E importante utilizar diversos tipos de motores sadios, a fim de deixar o classificador robusto

o suficiente para se adequar a situagoes reais. Os seguintes motores sadios foram utilizados:
e Motor Normal: Um motor com adaptagdo para rotores sadios ou com barras quebradas;
e Motor de Fabrica: Um motor novo que ndo apresenta nenhum tipo de alteragio.

e Motor de Alto Rendimento: Este motor utiliza materiais diferentes em sua construcgédo

comparado ao motor de fabrica;

O classificador tem como objetivo classificar se o motor estd sadio, ou se ele apresenta alguma

barra de seu rotor com defeito. Os tipos de classificacao serdo:
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1 barra danificada;

2 barras danificadas;

4 barras danificadas;

Motor em condicoes normais de funcionamento.

Para cada motor citado acima, juntamente com os possiveis problemas, foram aplicadas
diversas cargas em situacoes de acionamento diferentes.

Para o acionamento direto, isto é, pela rede elétrica, foram utilizadas cargas de 0,5 Nm, 1,0
Nm, 1,5 Nm, 2,0 Nm, 2,5 Nm, 3,0 Nm, 3,5 Nm e 4,0 Nm. Ja para os ensaios com o0s motores
sendo acionados pelo inversor, foram utilizadas as mesmas cargas, porém, os motores foram
alimentados com sinais que apresentavam frequéncia de 40 Hz, 50 Hz e 60 Hz.

E importante que o banco de dados seja diversificado, pois assim, a MLP tera informacoes
suficientes para generalizar os casos de falha no motor.

Para cada aquisicao feita, isto é, para cada tipo de carga ou frequéncia+carga no caso do

acionamento por inversor, tem-se um arquivo com as informagoes organizadas conforme a Tabela

BD).

Tabela 3.1: Dados adquiridos
Tempo | V, | W Ve 1, I 1.
tempo; | XX | XX | XX | XX | XX | XX
tempos | XX | XX | XX | XX | XX | XX

No caso deste trabalho, apenas as colunas referentes as correntes trifasicas serdo consideradas.

A Figura [3.2] apresenta as correntes trifasicas de um MIT sem falhas acionado através da
rede elétrica em 60 Hz. A literatura de maquinas elétricas diz que as correntes trifasicas de um
motor sao senoidais e equilibradas quando este é alimentado por tensoes senoidais equilibradas.
De fato, isso nao ocorre devido & distribuicao de fluxo magnético nao ser uniforme e entre outros
fatores.

A Figura [3.3] apresenta as correntes trifasicas de um MIT sem falhas acionado pelo inversor
trifasico. Note que estes sinais de corrente sdo mais distorcidos em relacao ao anterior.

Quando h4 algum problema no MIT, um curto-circuito ou uma barra do rotor danificada, as
correntes trifasicas irdo apresentar um comportamento ligeiramente diferente, aparecendo sinais
de baixa frequéncia que se mantém ao longo do tempo.

A Figura [3.4] apresenta as formas de onda das correntes trifasicas de um MIT acionado pela
rede elétrica que apresenta 1 barra danificada no rotor.

Note que os sinais da Figura que representam o motor com 1 barra quebrada sao muito
parecidos com os sinais da Figura [3.2] Isto acontece porque as frequéncias presentes no sinal
com o rotor danificado sdo muito baixas, quase imperceptiveis, mostrando a dificuldade de se
identificar os motores com barras quebradas apenas utilizando os sinais puros. Esse problema
serd resolvido utilizando a TW que permite ajustar o tamanho da janela de processamento por
varias componentes de frequéncia [10].

A Figura [3.5] apresenta as formas de onda da corrente para o motor com 1 barra danificada

acionado por um inversor trifasico. Novamente, o mesmo problema ocorre, porém, aqui ¢ mais
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Figura 3.2: Sinais das Correntes Trifasicas do MIT normal acionado pela rede elétrica
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Figura 3.3: Sinais das Correntes Trifasicas do MIT normal acionado pelo inversor trifasico

grave, ja que ha o aparecimento de ruidos no sinal quando o MIT é acionado por um inversor
[16].
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Figura 3.4: Sinais das Correntes Trifasicas do MIT acionado pela rede elétrica com 1 barra
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Figura 3.5: Sinais das Correntes Trifasicas do MIT acionado pelo inversor trifasico com 1 barra
danificada

3.3 Aplicacao da Transformada Wavelet

Como dito anteriormente, a utilizagdo da Transformada Discreta Wavelet deve-se ao fato de
que os sinais de MIT com e sem problemas sao bastante parecidos, e sem um processamento
do sinal, ndo é possivel captar as informagoes que a forma de onda pode nos oferecer. A TDW
realga os espectros do sinal que exibem as falhas do motor [I0]. Neste trabalho, utilizou-se a
Transformada Wavelet de Haar, ji que esta é bastante simples e confidvel, e ji foi utilizada em
diversas resolugbes de problemas [17].

Para os motores acionados através da rede elétrica, a TDW foi aplicada duas vezes nos seus
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sinais de corrente, isto é, apds a primeira aplicagdo da TW no sinal original, gerando coeficientes
de aproximagao e detalhe, uma segunda aplicacdo foi feita nos coeficientes de aproximacao. A
Figura mostra os coeficientes de aproximacgao da primeira aplicagdo da TW e a Figura [3.7
apresenta o mesmo coeficiente, porém com a segunda aplicacao da TW. Estes casos apresentados

sao referentes a um MIT com 1 barra danificada.

Arnplitude da relagio
BN fa]
N E———

_5 1 1 1 1 1 1 1 1
0 a0 100 150 200 250 300 340 400

Armostras

Figura 3.6: Coeficiente de aproximacao da primeira aplicacdo da TW
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Figura 3.7: Coeficiente de aproximacao da segunda aplicagdo da TW

Note que o namero de amostras diminuiu entre a Figura [3.6] e a Figura [3.7] sendo resultado
do downsampling.
O mesmo procedimento foi feito para as correntes de um MIT acionado pelo inversor. Os

resultados dos coeficientes de aproximagio podem ser visualizados nas Figuras [3.§ e B.9] sendo
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a primeira e a segunda aplicagdo da TW, respectivamente.
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Figura 3.8: Coeficiente de aproximacao da primeira aplicacao da TW
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Figura 3.9: Coeficiente de aproximacao da segunda aplicacao da TW

Note que no segundo caso, em que o MIT foi acionado pelo inversor, os sinais de corrente
trifasicos que antes apresentavam muitas deformagoes ficaram mais visiveis, devido a aplicagdo
da TDW. Isto mostra o quao importante ¢ a TDW, ja que esta proporciona a visualizacao de

pequenas caracteristicas do sinal.

Feitas as aplicacoes da TDW, o proximo passo foi dividir os sinais em varias amostras, que

serd explicitado na préxima secdo.
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3.4 Delimitacao das Amostras

Apos a aplicagdo da TW, para cada tipo de acionamento em conjunto com a carga aplicada,
obteve-se trés sinais que relacionam as correntes elétricas trifasicas com a mother function da
Transformada de Haar. Estes sinais apresentam 220 ciclos, e estes ciclos serdo divididos em
amostras.

Cada amostra contera 10 ciclos completos do sinal. E importante frisar que se deve selecio-
nar ciclos completos para reduzir o efeito de borda causando a menor perda possivel de dados
importantes. Como cada amostra contém 10 ciclos, tém-se, no total, 22 amostras para cada caso
de acionamento em conjunto com a carga.

A Figura [3.10] apresenta a delimitacdo de uma amostra.

Armnplitude da relagao
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Figura 3.10: Delimitacao das amostras

3.5 Aplicacao das Variaveis Estatisticas e Normalizagao dos Da-

dos

As varidveis estatisticas, responsaveis por retirarem informacoes importantes de cada sinal,
foram aplicadas em cima das amostras obtidas anteriormente. Foram aplicadas trés tipos de
conjuntos de variaveis estatisticas.

Para o acionamento utilizando a rede elétrica, foram aplicados dois conjuntos. No primeiro
deles foi utilizado a combinacao média, rms, skewness e kurtosis. Estas varidveis foram aplicadas
nos trés sinais de corrente, resultando em 12 varidveis que serdo entregues para as entradas
da MLP. No segundo conjunto foram utilizadas mediana, rms, skewness e kurtosis, resultando
novamente em 12 variveis.

Para o acionamento utilizando o inversor, o conjunto média, rms, skewness e kurtosis foi
utilizado.

O proximo passo foi normalizar os dados. Para isso foi utilizado uma técnica muito famosa,

conhecida como Teorema de Tales. Este utiliza o principio dos segmentos proporcionais, conforme
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mostra a Figura A Equacao (3.1) mostra como o célculo deve ser feito.

xmax 4 =41
O B —+ ¥novo
xmin 4 = -1

Figura 3.11: Principio dos segmentos proporcionais

Tnovo = 2. (l’—lEmm) -1 (31)

Tmazr — Tmin

Com isso os dados ficaram compreendidos entre o intervalo de [-1 1].

3.6 Separacao dos Conjuntos de Teste e Treinamento

Como dito anteriormente, tem-se 22 amostras para cada conjunto de tipo de motor e carga.
Destas 22 amostras, 6 foram retiradas para a validacao da rede e 16 serdo utilizadas para o seu
treinamento.

Para o MIT acionado pela rede elétrica sdo 52 casos possiveis, cada um contendo 22 amostras,
totalizando 1144 amostras. Dentre estas 936 serao utilizadas para o treinamento e 312 para os
testes, isto €, aproximadamente 27% do banco seré utilizado para a validagao da rede.

Ja para o MIT acionado pelo inversor trifasico tem-se 220 casos possiveis, cada um contendo
22 amostras, totalizando 480 amostras. 3520 serdo utilizadas para o treinamento da rede e 1320
para a validagao.

A rede neural escolhida para o classificador de falhas foi a Perceptron Multi-Camadas (PMC),
do inglés Multlayer Perceptron (MLP). As topologias escolhidas seguiram o critério do cross-
validation, em que se altera a quantidade de neurénios das camadas afim de encontrar a melhor
topologia possivel para o problema. Para o desenvolvimento da MLP foi utilizado o toolbox
do MATLAB disponivel na universidade. A funcdo de ativacdo para a camada de entrada
escolhida foi a tangente hiperbélica, e para a camada de saida foi a linear. Todas as redes
foram treinadas com o algoritmo backpropagation, utilizando Levenberg-Marquardt. As redes
apresentam 12 neurdnios de entrada, ja que todos os trés possiveis conjuntos de dados passam a
mesma quantidade de informacoes, e 4 neurénios na saida. A classificacdo do motor na saida da
rede se dard conforme a Tabela

Tabela 3.2: Padrao de Saidas Desejadas da MLP
Situacao do Motor | Saida Desejada
1 barra quebrada [1-1-1-1]

2 barras quebradas [-11-1-1]
4 barras quebradas [-1-11-1]
Motor Normal [-1-1-11]
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A Figura [3.12] apresenta uma MLP conforme os padrdes adotados anteriormente.

Camada
Oculta

Camada de Entrada Camada de Saida

entradal saidal

entrada2

saida?

entrada3

entradal2 saidad

Nimero de Camadas e
Neurdnios varidavel

Figura 3.12: Rede PMC utilizada

3.6.1 MIT acionado pela rede elétrica

A primeira rede neural treinada foi para os MITs alimentados diretamente pela rede elétrica.
Como dito anteriormente, para este caso ha dois conjuntos de dados, um que utiliza a média e
outro que utiliza a mediana. Em ambos os casos, a estrutura da rede apresenta: 12 neurénios
na camada de entrada, uma camada escondida variando de 17 a 23 neurdnios e uma camada de

safda com quatro neurdnios.

Conjunto de Dados 1

Neste primeiro conjunto, as informagoes de entrada sdo: meédia, rms, skewness e kurtosis.
Neste treinamento foi utilizada apenas 1 camada oculta com quantidade de neurdnios variando
entre 17 e 23. Isto foi feito para encontrar qual a melhor topologia que apresentaria o menor
erro médio quadratico. A Figura apresenta um grafico com estas informagoes. Neste caso
foi utilizado um critério de parada referente ao erro quadratico médio no valor de 10710,

Note que o valor do erro ficou préximo para todas as topologias testadas. O ponto realgado
no gréafico da Figura foi que apresentou o menor erro, e portanto, como topologia final foi

escolhida a que apresenta 19 neurdnios na camada escondida.

Conjunto de Dados 2

Neste segundo conjunto, as informacdes de entrada sdo: mediana, rms, skewness e kurtosis.
Novamente, todas as caracteristicas do primeiro treinamento foram repetidas para este. A Figura

3.14] apresenta um grafico com os erros para este conjunto de dados.
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Figura 3.14: Relagdo entre erro quadratico médio e nimero de neurénios da camada escondida

Neste caso, foi escolhida a topologia que apresenta 23 neurénios na camada escondida, con-

forme esta realgado no grafico da Figura|3.14

3.6.2 MIT acionado pelo inversor trifasico

No caso do MIT acionado pelo inversor trifdsico, foi considerado apenas um conjunto de
informacoes: média, rms, skewness e kurtosis. Aqui, a PMC/MLP apresenta suas camadas
escondidas. A primeira camada escondida teve seu ntimero de neurdnios variado entre 17 e 23
a fim de encontrar o menor erro possivel. J4 a segunda camada escondida teve seu nimero de
neuro6nios fixos em dez. A Figura[3.15] apresenta os erros para este caso de treinamento. No caso

do MIT acionado pelo inversor trifasico, foi considerado apenas um conjunto de informacdes:
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média, rms, skewness e kurtosis. Aqui, a PMC/MLP apresenta suas camadas escondidas. A
primeira camada escondida teve seu niimero de neurénios variado entre 17 e 23 afim de encontrar
o menor erro possivel. Ja a segunda camada escondida teve seu nimero de neurénios fixos em

dez. A Figura [3.15] apresenta os erros para este caso de treinamento.
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Figura 3.15: Relagao entre erro médio quadratico e nimero de neurdnios da primeira camada
escondida

Aqui, a melhor topologia possivel apresenta 22 neur6nios na primeira camada escondida,

como realcado na Figura|3.15]

3.6.3 Topologias Finais

A Tabela apresenta as topologias finais escolhidas para cada RNA treinada. Sao estas

topologias que serdao validadas no préximo capitulo.

Tabela 3.3: Topologias Finais para o Classificador de Falhas

Conjunto Nuamero de Menor Erro
de Dados Neurénios | Quadratico Médio
Acionamento Direto 1 [19,4] 3,4-10710
Acionamento Direto 2 [23,4] 1,7-1071
Acionamento pelo Inversor Trifasico [22,10,4] 0,01214
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Capitulo 4

Validacao das RNA’s

4.1 Introducao

Este capitulo tem como intuito validar as RNA’s treinadas nos capitulos anteriores, a fim de
verificar se estas sdo capazes de incorporar um sistema de classificacdo de falhas. As possiveis
classificacoes que as RNA’s fardo sdo: Rotor com 1 barra danificada, Rotor com 2 barras danifi-
cadas, Rotor com 4 barras danificadas ou Motor Normal. Os motores foram acionados de duas
formas diferentes, diretamente pela rede elétrica e por um inversor trifasico.

Todo o sistema foi, mais uma vez, implementado no MATLAB, disponivel na universidade,
ja que este se mostra um interpretador de alto nivel.

As secoes seguintes apresentam os resultados das validagoes.

4.2 Validacao para a Partida Direta

Esta secdo tem como objetivo apresentar a validagao da RNA PMC para os motores acionados
através da rede elétrica. Como comentado anteriormente, foram utilizados dois conjuntos de
dados, a fim de comparar quais varidveis estatisticas que melhor retiraram as caracteristicas de
cada sinal. O sistema aqui criado deve ser capaz de encontrar falhas nas maquinas mostrando
quantas barras estdo danificadas, ou se as maquinas estdo sadias.

A Figura mostra a validagdo da RNA com o primeiro conjunto de testes. Este conjunto
contém média, rms, skewness e kurtosis.

Note que todos os testes feitos obtiveram éxito, isto é, a MLP conseguiu classificar 100% dos
casos. A Tabela apresenta a situagao real do MIT e como a RNA o classificou.

Tabela 4.1: Matriz de validacao resultante para falhas no rotor acionado pela rede elétrica -
Conjunto de dados 1

Classificacao da PMC
Situacao Real 1 Barra 2 Barras 4 Barras Motor | Total

do Motor Danificada | Danificadas | Danificadas | Normal
1 Barra Danificada 30 0 0 0 30
2 Barras Danificadas 0 30 0 0 30
4 Barras Danificadas 0 0 48 0 48
Motor Sadio 0 0 0 204 204
Total 30 30 48 204 312
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Figura 4.1: Porcentagem de acertos para o primeiro conjunto de testes

0O 100% de acerto da RNA deve-se ao fato de que as varidveis estatisticas foram bem esco-

lhidas, isto é, este conjunto de informagbes consegue retirar as caracteristicas de cada sinal e

distingui-las extremamente bem.

A Figura mostra a validagdo da RNA com o primeiro conjunto de testes. Este conjunto

contém mediana, rms, skewness e kurtosis.
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Figura 4.2: Porcentagem de acertos para o segundo conjunto de dados
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Note que para este conjunto de informagoes, a RNA nao conseguiu 100% de acertos. A Tabela
mostra a porcentagem de acertos para cada caso, e a Tabela mostra a situagao real do
MIT e como a RNA o classificou.

Tabela 4.2: Tabela de Porcentagem de Acertos

1 Barra Danificada | 2 Barras Danificadas | 4 Barras Danificadas | Motor Normal

90,00% 90,00% 95,83% 98,04%

Tabela 4.3: Matriz de validacao resultante para falhas no rotor acionado pela rede elétrica -
Conjunto de dados 2

Classificacao da PMC
Situacao Real 1 Barra 2 Barras 4 Barras Motor | Total
do Motor Danificada | Danificadas | Danificadas | Normal

1 Barra Danificada 27 0 2 1 30
2 Barras Danificadas 3 27 0 0 30
4 Barras Danificadas 2 0 46 0 48
Motor Sadio 0 0 3 201 204
Total 32 27 51 202 312

Mesmo que o resultado néo tenha sido 100% de acerto, a RNA ainda conseguiu classificar

muito bem a situagao de cada motor, errando apenas 10% ou menos em cada caso.

Aqui hé algo interessante a se observar. No primeiro caso a rede acertou 100% dos testes, o
que nao aconteceu no segundo. Isto significa que o primeiro conjunto de varidveis estatisticas,
responséaveis por extrair as caracteristicas do sinal, esté trazendo caracteristicas que diferenciam
mais os sinais do que o segundo conjunto. Do primeiro para o segundo conjunto, trocou-se apenas

uma variavel, a média pela mediana, portanto foi feito um estudo sobre estas varidveis.

O grafico da Figura [4.3| apresenta a varidvel média aplicada em uma das correntes trifésicas
do motor. Note que esta tem intervalos bem definidos. A primeira parte, em azul, representa
motores com 1 barra quebrada. Note que os valores da média se mantém em uma mesma
posicao. Na segunda parte, em vermelho, 830 representados os motores com 2 barras danificadas.
Novamente os valores se mantém proéximos. Na terceira parte, em rosa, ha 2 intervalos bem
definidos representando 4 barras quebradas, e o ultimo intervalo, em verde, representa o motor
sem problemas. Note que todos os intervalos estdo bem definidos e diferentes um em relagao ao

outro. Isso mostra que a média foi uma 6tima varidvel para a extracdo de carateristicas.

Ja o grafico da Figura [4.4] apresenta a varidvel mediana aplicada, novamente, em uma das
correntes do motor. Note que aqui, ndo hé como diferenciar que intervalo pertence a qual tipo
de classificacdo, j4 que a mediana da corrente apresenta valores préximos para qualquer tipo de
falha. Sendo assim a classificacao utilizou as outras trés varidveis estatisticas para separar os

tipos de falhas. Isto mostra que a mediana ndo extrai bem as caracteristicas de um sinal.

Concluindo, o melhor conjunto para extrair as caracteristicas dos sinais que passaram pela

TW compreende: média, rms, skweness e kurtosis.

2cm
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Figura 4.4: Mediana da Corrente I, para todos os casos de testes

4.3 Validagao para a Partida Utilizando Inversor Trifasico

Esta secdo tem como objetivo apresentar a validagao da RNA PMC para os motores acionados
pelo inversor trifasico. Visto que, na se¢do anterior, a varidvel média se mostrou melhor para
extrair as caracteristicas do sinal em relagdao a mediana, apenas um conjunto de dados foi entao

utilizado aqui. O sistema agora criado deve ser capaz de encontrar falhas nas méquinas mostrando
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quantas barras estdo danificadas, ou se as méquinas estdo sadias. Dentre as diferentes cargas

possiveis de serem aplicadas, os sinais de tensfo tiveram sua frequéncia variada, a fim de deixar

o sistema de classificacdo mais robusto.

A Figura mostra a porcentagem de acertos para cada situacao.
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Note que, neste caso, a RNA nfo conseguiu classificar bastante parte dos dados, princi-

palmente quando o motor apresentava 1 barra quebrada. Nesta validacdo, a RNA chegou dar

resultados incompativeis com os quatro possiveis, isto é, ela classifica que um motor estd ao

mesmo tempo com 1 barra e 2 barras quebradas. O grande nimero de erros pode ter acon-

tecido porque os motores acionados por um inversor apresentam muitos ruidos em seus sinais

de corrente, dificultado a extracao de caracteristicas. Informacdes mais detalhadas podem ser
encontradas na Tabela 4] e na Tabela .31

Tabela 4.4: Tabela de Porcentagem de Acertos

1 Barra Danificada

2 Barras Danificadas

4 Barras Danificadas

Motor Normal

62,96%

66,67%

78,33%

90,73%

Tabela 4.5: Matriz de Validagdo Resultante para Falhas no Motor Acionado pelo Inversor Trifa-

sico
Classificagao da PMC
Situacao Real 1 Barra 2 Barras 4 Barras Motor | Total | Total
do Motor Danificada | Danificadas | Danificadas | Normal Real
1 Barra Danificada 42 0 8 11 61 54
2 Barras Danificadas 0 44 0 22 66 66
4 Barras Danificadas 10 0 190 48 248 240
Motor Sadio 10 17 62 871 960 60
Total 62 61 260 952 1335 1320
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Como visto, a PMC nfo apresentou um resultado muito satisfatorio para a classificagdo de
defeitos nas barras de motores acionados por um inversor trifasico. Isto pode ter sido causado
pelos altos graus de ruidos que um inversor adiciona no sinal de corrente do motor. Algumas

possiveis solugoes seriam:

e Investigar outras varidveis estatisticas que caracterizem melhor cada sinal;

Aumentar o namero de aplicacoes da TW no sinal de corrente;

Aumentar o nimero de camadas escondidas do RNA;

Separar redes neurais que classificam motores utilizados para certos valores de carga;

Alterar a PMC para alguma outra topologia, como, por exemplo a RBF;

Adicao de filtros de corrente nos sinais.

Mesmo assim, a RNA conseguiu classificar alguns casos, o que ja a torna vidvel para a
implementacao em industrias.

Dentre todas as opcoes, a investigagao por outras varidveis estatisticas talvez seja a mais
viavel. E importante analisar bem o conjunto de dados que esta sendo tratado, e com isso,
a escolha de certas variaveis estatisticas podem facilitar ou dificultar o trabalho da RNA na

classificacao das falhas.
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Capitulo 5

Conclusao

O objetivo deste Trabalho de Conclusdo de Curso foi implementar um classificador de falhas
para MIT’s que pudesse trazer informacoes de possiveis falhas antes de uma quebra permanente
do motor, causando prejuizos. O intuito era medir os valores das correntes trifasicas do motor e
com isso classificar uma possivel falha.

As correntes trifdsicas do motor precisam passar por um pré-processamento do sinal antes
de serem utilizadas, pois este pré-processamento separa informacdes importantes para a imple-
mentacao do sistema. Para isso foi estudado e utilizado a Transformada Discreta Wavelet, mais
precisamente a Transformada de Haar. Esta transformada separa, utilizando blocos de filtros,
as frequéncias altas e as frequéncias baixas do sinal para posterior utilizacdo. Motores que apre-
sentam barras quebradas tendem a apresentar frequéncias préximas & frequéncia fundamental do
sinal, e, portanto, a transformada foi utilizada para realcar estas frequéncias.

Apds o processamento da transformada, os sinais passaram por diversas varidveis estatisticas,
as quais foram capazes de extrair as informactes importantes dos sinais de corrente. Foram
utilizadas as varidveis: média, mediana, rms, skewness e kurtosis. FEstas variaveis foram divididas
em conjuntos, com o intuito de encontrar a melhor combinacdo de varidveis que extraissem as
informacoes do sinal.

Estas informacoes foram separadas em conjuntos de treino e validacao. O conjunto de treino
fez parte dos dados de entrada de uma RNA do tipo PMC/MLP para que fosse possivel encontrar
a melhor topologia para a rede. E por fim, o conjunto de validacao foi colocado na rede para
verificar as informacoes.

Foram utilizados dois tipos de acionamento dos motores. O acionamento direto e o aci-
onamento através de um inversor trifasico. Os resultados para o acionamento direto ficaram
extremamente bons, ressaltando que, com a utilizacdo da média como uma varidvel estatistica,
a rede acertou 100% dos casos testados. Ja para o caso do acionamento através do inversor
trifasico, a rede ndo obteve tanto éxito. Isso deve-se ao fato do inversor adicionar muitos ruidos
aos sinais de corrente da méquina, dificultando a extracao das caracteristicas. Mesmo assim, ela
ainda obteve um resultado satisfatério, podendo ser melhorado realizando pequenas mudancas
conforme explicitado anteriormente.

Todos estes resultados mostraram que, a Transformada Discreta Wavelet aliada as varidveis
estatisticas extraem informacoes importantes e suficientes para que a classificacdo das falhas
seja realizada com sucesso. Também foi possivel observar que a MLP é um 6timo algoritmo

classificador, mas que pode ser melhorado se o ntmero de neurdnios e o nimero de camadas
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escondidas for alterado.

Para um trabalho futuro, que visa o objetivo de melhorar a classificacao quando o motor for
acionado por inversores, pode-se aplicar mais vezes a TW e utilizar outras topologias de redes
neurais, aliando-se a algoritmos genéticos para encontrar o melhor nimero de neurénios possivel

em cada camada.
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