
LUIS FERNANDO SOARES SENA

DESENVOLVIMENTO DE UMA ARQUITETURA
PARA A OBSERVABILIDADE DE LOGS EM UM

SISTEMA ON-PREMISSES

São Paulo
2024

LUIS FERNANDO SOARES SENA

DESENVOLVIMENTO DE UMA ARQUITETURA
PARA A OBSERVABILIDADE DE LOGS EM UM

SISTEMA ON-PREMISSES

Dissertação apresentada à Escola Politéc-

nica da Universidade de São Paulo para

obtenção do Título de Especialista em

Engenharia de Software.

Área de Concentração:

Engenharia de Software

Orientador:

Prof. Dr. Jorge Luís Risco Becerra

Co-orientador:

Prof. Alípio Ferro

São Paulo
2024

Dedico este trabalho a todos e to-
das que, de alguma forma, cruza-
ram meu caminho e contribuíram
para o meu aprendizado e cresci-
mento.

AGRADECIMENTOS
Agradeço aos meus pais e meus avós que sempre me incentivaram pela busca do conheci-
mento.

Ao meu namorado, José Roberto, pela parceria e motivação para continuar meus estudos.

Ao Prof. Dr. Jorge Luís Risco Becerra e ao Prof. Alípio Ferro pela orientação e suporte
para a elaboração deste trabalho.

À Universidade de São Paulo — USP, à Escola Politécnica da Universidade de São Paulo
— EPUSP e ao PECE — Programa de Educação Continuada em Engenharia pela opor-
tunidade e pelo apoio durante meus estudos.

RESUMO
SENA, Luis Fernando S. Transformação arquitetural para a observabilidade de
logs de um sistema on-premisses. 2024. 44 páginas. Monografia (MBA em En-
genharia de Software). Programa de Educação Continuada em Engenharia da Escola
Politécnica da Universidade de São Paulo. São Paulo. 2024.

A transformação arquitetural para observabilidade de logs em sistemas on-premises aborda
a adaptação da arquitetura de um sistema ERP integrado a um middleware orientado a
mensagens, visando aprimorar o monitoramento e a análise de logs em tempo real. Utili-
zando a metodologia TOGAF e seu método de desenvolvimento de arquiteturas (ADM),
foram concebidos artefatos representativos das fases A a D, como diagramas de compo-
nentes, processos de negócio e interações tecnológicas. O trabalho também integra um
módulo de Machine Learning (LogAnomaly), conectado ao sistema Splunk para análise
de logs e detecção de anomalias, com suporte a retreinamento automático do modelo. A
arquitetura resultante é escalável e adaptável, alinhando objetivos técnicos e de negócios,
contribuindo para maior eficiência na gestão de sistemas complexos.

Palavras-Chave: Observabilidade, TOGAF, Machine Learning, Middleware, Logs, Ano-
malias.

ABSTRACT
SENA, Luis Fernando S. Transformação arquitetural para a observabilidade de
logs de um sistema on-premise. 2024. 44 páginas. Monografia (MBA em Engenharia
de Software). Programa de Educação Continuada em Engenharia da Escola Politécnica
da Universidade de São Paulo. São Paulo. 2024.

The architectural transformation for log observability in on-premises systems focuses on
adapting the architecture of an ERP system integrated with a message-oriented mid-
dleware to enhance real-time log monitoring and analysis. Using the TOGAF metho-
dology and its Architecture Development Method (ADM), representative artifacts from
phases A to D were developed, including component diagrams, business process models,
and technological interaction diagrams. The work also integrates a Machine Learning
module (LogAnomaly), connected to the Splunk system for log analysis and anomaly
detection, with support for automatic model retraining. The resulting architecture is sca-
lable and adaptable, aligning technical and business objectives, contributing to greater
efficiency in managing complex systems.

Keywords: Observability, TOGAF, Machine Learning, Middleware, Logs, Anomalies.

LISTA DE FIGURAS

1 Exemplo de alto nível do fluxo de um sistema de gerenciamento de logs . . 15

2 Transformação, da arquitetura base em direção à arquitetura alvo. 16

3 Middleware orientado a mensagem com fila de mensagens. 18

4 Estrutura de detecção de anomalias baseada em log. 20

5 Caminho para transição de arquitetura . 22

6 Diagrama de contexto arquitetura base. 23

7 Diagrama do ciclo de desenvolvimento de arquitetura TOGAF 24

8 Domínios de arquitetura e fases do ciclo ADM. 26

9 Diagrama de componentes. 29

10 Modelagem utilizando notação BPMN. 31

11 Modelagem do diagrama de interações utilizando UML. 32

12 Diagrama de Camadas. 36

13 Módulo de Machine Learning. 38

SUMÁRIO

1 Introdução 9

1.1 Motivação . 10

1.2 Objetivo . 10

1.3 Justificativas . 10

1.4 Método de Pesquisa . 11

1.5 Estrutura do Trabalho . 12

2 Fundamentos Teóricos 13

2.1 Considerações Inicias . 13

2.2 Gerenciamento de logs . 13

2.3 Transformação de Arquitetura . 15

2.4 Arquitetura middleware . 17

2.4.1 Middleware Orientado a Mensagem 18

2.5 Observabilidade de software . 19

2.6 Detecção de Anomalia . 20

2.7 Adaptação de arquitetura com TOGAF . 21

2.8 Contexto da Arquitetura Base . 22

2.9 Método ADM . 23

2.10 Considerações do Capítulo . 27

3 Arquitetura de Logs 29

3.1 Fase A . 29

3.2 Fase B . 30

3.3 Fase C . 32

3.4 Fase D . 33

3.5 Módulo de Machine Learning . 37

3.6 Análise e discussão dos resultados . 39

3.6.1 Resultado Ciclo ADM . 39

3.6.2 Arquitetura Machine Learning . 40

3.7 Considerações do Capítulo . 41

4 Considerações Finais 42

4.1 Conclusões . 42

4.2 Contribuições do Trabalho . 42

4.3 Trabalhos Futuros . 43

Referências 44

9

1 INTRODUÇÃO

Com o avanço das tecnologias se dando a passos largos, cada vez mais os sistemas de

informação assumem papel importante nas atividades humanas, desde como nos comu-

nicamos entre nós ou como fazemos negócios, até mesmo substituindo o ser humano em

determinados trabalhos. Tal uso intensivo de sistemas acarreta geração de montantes

crescentes de dados, na grandeza de petabytes inclusive, dados que não somente precisam

ser armazenados mas também tratados em seus diversos casos de uso.

Dos menores aos maiores sistemas em funcionamento atualmente pode-se destacar uma

característica em comum entre eles, são geralmente projetados para produzir, coletar e

processar registros de atividades realizadas no sistema, ou seja, realizar a gravação de

logs. O gerenciamento eficiente dos logs de um sistema é essencial para garantir que esse

esteja operando da melhor forma para qual foi projetado e com isso evitar ao máximo

períodos de downtime.

Em uma era onde cada vez mais dependemos dos sistemas de informação, a importância

de garantir a continuidade e segurança das operações é imperativo, refletindo também nos

esforços de pesquisas nos últimos anos em busca do aprimoramento do monitoramento

de logs. Onde vemos o emprego de tecnologias como o aprendizado de máquina e mais

recentemente o chamado Deep Learning (CHEN et al., 2022).

O registro de logs por um sistema é dos três pilares que compõe o conceito de observabili-

dade, sendo os outros dois pilares: métricas e rastreabilidade. Teoricamente, a combinação

desses três pilares deve prover a capacidade para um observador externo ao sistema de

observar o que está acontecendo internamente.

Contudo, esses três elementos são apenas o fundamento da observabilidade, assim sendo,

vai muito além de simplesmente registrar logs ou estabelecer algumas métricas, mas sim

criar as condições para ser possível a identificação de qualquer estado no qual o sistema

possa estar, independentemente do quão novo ele seja (CHARITY MAJORS; MIRANDA,

2022).

10

1.1 Motivação

Em uma era onde cada vez mais dependemos dos sistemas de informação, a importância

de garantir a continuidade e segurança das operações é imperativo, refletindo também nos

esforços de pesquisas nos últimos anos em busca do aprimoramento do monitoramento de

logs, sendo que em diversas ocasiões a busca pelo grau de observabilidade dos sistemas o

elemento norteador. Entretanto, observa-se uma atenção especial a aplicações com arqui-

tetura web distribuídas, embora ainda seja utilizado sistemas on-premisses na indústria

e por isso me motivei a aplicar os conceitos de observabilidade de software de sistemas

distribuídos através da adaptação da arquitetura de um sistema on-premisses.

1.2 Objetivo

O objetivo desse trabalho de monografia é realizar a adaptação da arquitetura de um

sistema on-premisses para utilização de um módulo de observabilidade baseado em logs

que utiliza Machine Learning. Para conduzir essa adaptação arquitetural será aplicado o

processo ADM (Architecture Development Method) do modelo TOGAF (The Open Group

Architechture Framework).

1.3 Justificativas

Como descrito por Charity Majors e Miranda (2022) Uma vez que as técnicas tradicionais

têm caráter reativo e são dependentes de engenheiros que acessam manualmente os logs do

sistema e conduzem uma avaliação empírica sobre a falha ou anomalia, técnica propensa

a ocorrência de erro. Os sistemas mais modernos exigem que novas metodologias sejam

empregadas não só na criação de métricas, mas também no monitoramento dos ambientes

desses sistemas.

Há pelo menos vinte anos, observa-se que um domínio de técnicas convencionais que

regem a relação entre hardware e as pessoas que o operam, a esse conjunto de ferramentas

convencionou-se chamar de “monitoramento de sistema”. Por muito tempo essa ideia

11

de monitoramento imperou entre os desenvolvedores, como sendo a melhor maneira de

interpretar o que ocorre no espaço virtual entre o código escrito por eles e o mundo

físico, mesmo sabendo que tal abordagem tem suas limitações que acarretam aumento da

dificuldade de troubleshooting do sistema.

Com o aumento da capacidade de desenvolvimento, os sistemas modernos aumentaram

não apenas em tamanho, mas também em complexidade, fazendo com que a tarefa de

prever, detectar e tratar anomalias em sistemas se torne muito mais difícil. Aqui que

a observabilidade se destaca, uma vez que ela faz com que os dados de telemetria do

sistema possam ser trabalhados de forma flexível, permitindo aos times realizar análises e

chegar mais rapidamente nas causas raízes dos problemas que ocorrem de maneira singular

(CHARITY MAJORS; MIRANDA, 2022).

Como mencionado, a observabilidade de um sistema exige a compreensão de diferen-

tes cenários e por vezes cenários inéditos. Portanto, com base na literatura disponível

supracitada, justifica-se transformar a arquitetura de um sistema para buscando a obser-

vabilidade em detrimento dos modelos tradicionais de monitoramento. Constatada sua

superioridade quando comparando a capacidade de adaptação a cenários de alta comple-

xidade dos sistemas modernos.

1.4 Método de Pesquisa

As possibilidades de tipificação de uma pesquisa são diversas e derivam de aspectos desde

sua natureza até os procedimentos técnicos empregados em seu desenvolvimento. Uma

pesquisa pode ser entendida como um agrupamento de técnicas, embasado em raciocínio

lógico e aplica metodologia científica para produzir conhecimento científico. Os tipos de

pesquisa variam conforme o problema que é objeto de estudo, contudo alguns modelos

se destacam, como a pesquisa bibliográfica, experimental, documental, qualitativa ou

quantitativa, cada uma com metodologias distintas (DE LUNETTA E RODRIGUES

GUERRA, 2023).

Para um maior entendimento e esclarecimento sobre o problema objeto de estudo dessa

monografia, foi conduzida uma pesquisa bibliográfica. Para a realização do levanta-

12

mento bibliográfico foram utilizadas as bases de dados “Google Scholar” e também “IEEE

Xplore”. Para refinar os resultados e direcionando-os ao objetivo desse trabalho foram apli-

cados filtros de busca utilizando palavras-chave (como Log Management, Deep Learning e

Software Observability) e os trabalhos publicados mais recentemente, preferindo-se artigos

com data de publicação nos últimos 3 anos.

1.5 Estrutura do Trabalho

O Capítulo 1 INTRODUÇÃO apresenta as motivações, o objetivo, as justificativas, mé-

todo de pesquisa e a estrutura do trabalho.

O Capítulo 2 REVISÃO BIBLIOGRÁFICA discorre sobre os temas principais para o

desenvolvimento deste trabalho, como:

O Capítulo 3 DESENVOLVIMENTO DA PESQUISA apresenta uma proposta de adap-

tação da arquitetura de um sistema de detecção de anomalias em logs de um sistema em

nuvem para implantação em contexto real de uma indústria, considerando um sistema

ERP on-premises com foco em observabilidade.

O Capítulo 4 ANÁLISE DE RESULTADOS apresenta uma análise crítica do capítulo

anterior.

O Capítulo 5 CONSIDERAÇÕES FINAIS descreve as conclusões e as contribuições do

trabalho e sugestões de trabalhos futuros que poderão ser desenvolvidos a partir deste

trabalho.

13

2 FUNDAMENTOS TEÓRICOS

Neste capítulo são apresentados os conceitos necessários para a adaptação de uma arqui-

tetura de monitoramento de anomalias em logs de sistema utilizando técnicas de gerenci-

amento de dados de log e deep learning, através de fundamentações teóricas necessárias

e relevantes considerando o objetivo desse trabalho.

2.1 Considerações Inicias

O capítulo aborda a utilização de técnicas de aprendizado de máquina no monitoramento

de anomalias em logs de sistema na atualidade e traz a descrição das técnicas mais pra-

ticadas, avaliando como essas técnicas podem contribuir para aumentar a eficiência do

monitoramento, bem como os desafios que podem acarretar.

A exposição dos conceitos será realizada em quatro dimensões, sendo elas: gerenciamento

de logs, deep machine learning, redes neurais e detecção de anomalias em ambientes de

produção de software.

2.2 Gerenciamento de logs

Antes de adentrar o conceito de gerenciamento é importante definir o que é um log de

sistema. O instituto estadunidense NIST (National Institute of Standards and Techno-

logy) define como log o registro da ocorrência de eventos nos sistemas e redes de uma

organização. São compostos por uma lista entradas, cada uma contendo informações re-

ferente a um evento específico que ocorreu no sistema ou rede em questão. Logs estão

geralmente relacionados a registros de segurança informática e podem advir de diversas

origens, incluindo softwares de segurança, como antivírus, firewalls e sistemas de detecção

e prevenção de invasão, bem como sistemas operacionais em servidores, equipamentos de

rede e aplicações em geral. (KENT; SOUPPAYA, 2006)

Em suma, os arquivos de logs gerados por um sistema são registros de quais eventos ocor-

14

reram e quando se deu a ocorrência. Atualmente existem inúmeros tipos de log que servem

a diferentes propósitos, portanto não há uma definição comum do que devem conter. Esses

arquivos podem conter informações variadas, podendo ser detalhes operacionais, registros

de autorizações e mensagens de depuração. As informações contidas em um log são fre-

quentemente definidas pelo sistema responsável pela criação do arquivo e também pelo

programador que projetou o sistema de registro dos logs, onde são registrados mensagens

e eventos gerados em um programa, podendo conter informações referentes a eventos,

erros e alerta de uma aplicação. (HARJUNPÄÄ; SIEKKINEN, 2023)

O gerenciamento de logs consiste no estabelecimento de uma metodologia e processos

que serão utilizados através do seu ciclo de vida: coleta, processamento, armazenagem e

por fim a análise dos arquivos gerados contendo os logs criados pelos diversos sistemas

e aplicações. A importância dos sistemas de gerenciamento para as organizações reside

não somente em garantir que os sistemas estão trabalhando sem falhas, mas também

auxiliando no tratamento de exceções, garantia da segurança da informação ou auditorias.

A arquitetura de um sistema de gerenciamento de logs pode ser concebida como vários

elementos que interagem entre si para: criar, coletar, armazenar e analisar os registros

nos arquivos de log. Sendo que todos esses elementos são imprescindíveis na arquitetura

desse sistema. (HARJUNPÄÄ; SIEKKINEN, 2023)

Comumente, sistemas dessa natureza podem ser separados em quatro componentes dis-

tintos:

• Criação: É o processo de gerar os arquivos de log. As principais questões que

devem ser respondidas nessa etapa estão relacionadas ao local onde fazer o log, o

que registrar e como fazer.

• Envio: O envio dos logs, é uma atividade executada por componentes de software

responsáveis por coletar os registros das diversas origens e enviá-los para o local de

armazenamento. Aqui podem ser aplicados processos de seleção e transformação,

dessa forma é possível estabelecer um formato preferido e realizar conversões sempre

que necessário antes de enviar os arquivos.

• Armazenamento: A armazenagem dos logs é um processo que ocorre após a etapa

15

Figura 1: Exemplo de alto nível do fluxo de um sistema de gerenciamento de logs

Fonte: Adaptado de Harjunpää e Siekkinen (2023).

de envio, nessa etapa os arquivos são enviados para um componente de software cuja

responsabilidade é centralizar todas as informações, de forma que possam ser recu-

peradas a qualquer momento no futuro. Podendo ser um banco de dados relacional,

NoSQL ou qualquer outro sistema de armazenamento de dados.

• Análise: É o processo de visualização e análise de dados com o intuito de gerar

informação de valor. Compreende a identificação de padrões, análise estatística e

interconexão entre os dados. O processo consiste essencialmente na interpretação

dos dados e extrair valor deles, podendo lançar mão de técnicas avançadas de análise

como modelos de aprendizado de máquina.

O processo de gerenciamento de logs ocorre como demonstrado na figura 1.

Como descrito por Harjunpää e Siekkinen (2023), os processos de coleta, transformação e

armazenagem num sistema dessa natureza é muito semelhante a um fluxo ETL (Extract,

Transform and Load), observando-se eventuais etapas que podem ser adicionadas.

2.3 Transformação de Arquitetura

Desfray e Raymond (2014) definem que o processo de transformação de uma arquitetura

pode ser descrito como a evolução de um modelo arquitetônico base, para outra modela-

gem alvo, como o exemplificado na figura 2. A parte mais importante desse processo é

definição de qual abordagem será adotada para conduzir essa evolução de arquitetura.

16

Figura 2: Transformação, da arquitetura base em direção à arquitetura alvo.

Fonte: Adaptado de Desfray e Raymond (2014).

De acordo com Desfray e Raymond (2014), é possível sumarizar o processo de escolha de

um framework a ser adotado na transformação de uma arquitetura nos quatro pontos a

seguir:

• Conhecimento do ponto de partida: Nem sempre o conhecimento da arquite-

tura base está estabelecido, dessa forma na maioria das vezes é necessário empregar

esforços em uma reavaliação da arquitetura existente. A importância dessa tarefa

reside no fato do roadmap da transformação ser definido pelo gap entre a arquitetura

no ponto de partida e a modelagem final almejada.

• Determinar um ponto de chegada: Representa a modelagem arquitetural que

se deseja produzir com a transformação. Os objetivos de negócio são o principal

fator a se considerar na hora de definir o alvo, contudo também deve-se examinar

fatores de ordem técnica, organizacionais e financeiros.

• Definir o melhor caminho até o objetivo: Escolher as soluções que serão uti-

lizadas para conduzir a transformação, bem como a definição de um cronograma.

Também é muito importante entender como será garantida a continuidade do ne-

gócio durante e após a transformação.

• Concluir a transformação com êxito: Executar a transformação de uma ar-

quitetura é um processo complexo e delicado e para ser executado com sucesso é

mandatório o entendimento absoluto de todas as restrições que se aplicam a essa

operação.

Adicionalmente, o escopo coberto na transformação também exerce influência nos cenários

que serão encontrados durante o processo. Uma vez que, geralmente, não se trara de uma

17

reconstrução total do sistema a partir do zero, mas apenas de uma parte específica, ligada a

um objetivo de negócio. Ou seja, não há um padrão para o caminho a ser seguido. Embora

adaptações ao contexto específico de cada processo de transformação seja necessário, a

adoção de um framework pode funcionar como o fio condutor da mudança e também

ajudar a conferir velocidade (DESFRAY; RAYMOND, 2014).

2.4 Arquitetura middleware

Na engenharia de software existe uma questão denominada de Rendez-vous problem, que

resumidamente descreve a situação onde dois sistemas distintos precisam trocar mensa-

gens entre si e, portanto, precisam estar sincronizados. Atualmente, as possibilidades de

conexão entre dois sistemas são diversas, uma delas é o modelo Cliente/Servidor, nessa

modalidade de comunicação o Rendez-vous problem é resolvido através da determina-

ção de uma dinâmica entre os dois sistemas envolvidos. Necessariamente, nesse modelo

a comunicação é estabelecida somente após a inicialização do servidor, o qual aguarda

indefinidamente o contato da outra parte, o cliente.

Etzkorn (2017) definiu servidor e cliente da seguinte forma:

• Servidor: É um programa que fica disponível na espera de chamadas e quando

recebe uma comunicação do sistema cliente, responde executando algum tipo de

serviço útil e envio o resultado ao sistema requisitante. AS funções do servidor

também incluem: autenticação, autorização e segurança dos dados, portanto servi-

dores necessitam geralmente de privilégios especiais no sistema.

• Cliente: A aplicação iniciadora da comunicação, nesse modelo a comunicação sem-

pre será direcionada ao servidor sempre que o cliente necessitar de algum serviço

fornecido pelo servidor. Diferentemente dos servidores, clientes comumente não

necessitam de privilégios especiais no sistema para operar.

Aos sistemas que habilitam a comunicação entre aplicações distintas, convencionou-se

chamar de middleware. Na arquitetura, o middleware se localiza em uma camada entre

o sistema operacional e as aplicações em ambos os lados de uma rede de computadores

18

distribuída. Geralmente, são utilizados para operacionalizar cenários complexos e sistemas

distribuídos (ETZKORN, 2017).

2.4.1 Middleware Orientado a Mensagem

O middleware orientado a mensagem (MOM) tem o propósito de atuar como intermedi-

ador entre o cliente e o servidor, sedo que dessa forma ambos não precisam se comunicar

diretamente. Usualmente, o intermediário gerencia as mensagens enviadas entre o produ-

tor e o consumidor em filas. E aqui tanto o cliente quanto o servidor podem desempenhar

o papel de produtor e consumidor de mensagens, conforme exemplificado na figura 3.

Figura 3: Middleware orientado a mensagem com fila de mensagens.

Fonte: Adaptado de Etzkorn (2017).

Nesse paradigma de middleware a comunicação é assíncrona, portanto as mensagens são

executadas de forma independente. Tomando como exemplo um cenário onde o cliente

é o produtor da mensagem e o servidor o consumidor. Nesse caso, a mensagem é criada

e enviada ao MOM, que provavelmente a colocaria na fila de mensagens que eventu-

almente serão recebidas pelo servidor. Esse processo de comunicação mediada por um

intermediário pode ocorrer de algumas formas, destacando-se: push model, pull model e

publisher/subscriber.

Adicionalmente, um MOM pode executar alguns tipos de processamentos no gerencia-

19

mento das mensagens, como, por exemplo, colocando mensagens de prioridade mais alta

na frente da fila. Podendo também lidar com diversas filas com níveis de prioridade

diferentes. Tais capacidades podem ajudar em ganho de desempenho do middleware

(ETZKORN, 2017).

2.5 Observabilidade de software

Observabilidade é um conceito que atraiu muito interesse nos últimos anos na indús-

tria de desenvolvimento de sistemas, figurando frequentemente nas listas de assuntos do

momento. Mesmo que sua adoção ainda seja um desafio. Tal conceito foi proposto pri-

meiramente por Rudolf E. Kálmán no ano de 1960, sendo entendido como a medida do

quão bem os estados internos de um determinado sistema podem ser deduzidos a partir

do conhecimento externo ao sistema, utilizando como base as saídas produzidas por esse

sistema.

Ainda que idealizada para utilização na engenharia mecânica e engenharia de processos, a

ideia de observabilidade também pode ser aplicado aos sistemas de informação modernos,

contudo quando para fazer isso algumas premissas específicas da engenharia de software

devem ser seguidas (ETZKORN, 2017).

Para uma aplicação ter observabilidade deve ser possível:

• Ter o entendimento do funcionamento interno da aplicação.

• Ter o poder de entender qualquer estado no qual o sistema eventualmente esteja.

• Constatar os pontos citados acima, utilizando exclusivamente ferramentas externas

ao sistema.

• Entender esse estado independentemente de sua severidade ou frequência.

Etzkorn (2017) define observabilidade como sendo a medida na qual é possível entender

e elucidar qualquer estado no qual o sistema possivelmente se encontre, sem ter em conta

o quanto inédito ele seja. Quando é possível entender esses estados sem a necessidade

20

de escrever código adicional, considera-se que a aplicação tem observabilidade. Etzkorn

(2017) também infere que a observabilidade em sistemas modernos vai além de apenas

tipificação de dados ou inputs, bem como não é sobre equações matemáticas. Em última

estância, observabilidade é sobre a relação de um sistema com as pessoas que são suas

usuárias, como elas interagem com ele e o interpretam.

2.6 Detecção de Anomalia

O framework de detecção de anomalias em sistemas partindo da análise de logs geralmente

é divido em quatro partes, sendo elas: coleta de logs, log parsing, extração de feature e

por fim detecção da anomalia. conforme pode ser visto na figura 4.

Figura 4: Estrutura de detecção de anomalias baseada em log.

Fonte: Adaptado de Chen et al. (2022)

A detecção das anomalias é feita a partir das features extraídas na fase anterior, ela

visa identificar instâncias anômalas nos logs como, por exemplo, os gerados por exceções.

Métodos tradicionais baseados em machine learning utilizam toda a sequência de logs para

realizar a previsão, utilizando para isso vetores de contagem de eventos. Já os métodos

baseados em deep learning aprendem padrões normais e avaliam a normalidade de cada

evento de log, dessa forma podendo localiza o evento exato que originou a anomalia,

melhorando a interpretabilidade dos resultados (CHEN et al., 2022).

Chen et al. (2022) apresentam o método denominado LogAnomaly, o qual é um modelo

não-supervisionado que utiliza redes neurais e que pode ser utilizados na detecção de

anomalias a partir da análise de logs. Com esse método é proposto considerar também a

21

informação semântica dos logs, através da representação dos registros por meio de uma

técnica chamada template2vec, onde as palavras dos templates de logs são representadas

distribuidamente, considerando os sinônimos e antônimos neles contidos. O vetor modelo

é então calculado como o peso médio dos vetores das palavras encontradas no template.

Aqui é adotada uma técnica baseada em forecasting, utilizando um modelo de Long Short-

-Term Memory.

2.7 Adaptação de arquitetura com TOGAF

Como descrito por Desfray e Raymond (2014) a transição entre uma arquitetura existente

e um estado futuro com incrementos, está fundamentado no TOGAF e deve fornecido no

formato de um caminho a ser seguido. Para que esse caminho seja efetivo, os princípios

mencionados a seguir precisam ser atendidos.

• Para ser exitoso, esse caminho precisa considerar todas as facetas da empresa, bem

como os efeitos que resultarão de todas as mudanças implementadas.

• O caminho também precisa descrever os estados intermediários da arquitetura, du-

rante o processo de transição.

• Os estados intermediários devem apresentar o valor que agregado a arquitetura.

• Uma análise das lacunas entre a arquitetura base e a arquitetura alvo é o elemento

determinante para a definição do caminho a ser seguido.

O caminho em direção à arquitetura alvo, como sugerido no TOGAF (figura 5), pode

compreender diversos tipos de projetos: desenvolvimento ou evolução de sistemas, migra-

ção de dados, treinamentos ou até mesmo a reorganização do negócio. Já o número de

estados intermediários dependerá de outros aspectos específicos de cada transição, como,

por exemplo, o domínio no qual a arquitetura está inserida, escopo das mudanças, hori-

zonte temporal e o nível de detalhes, bem como os obstáculos que podem ser encontrados

ao longo do caminho (DESFRAY; RAYMOND, 2014).

22

Figura 5: Caminho para transição de arquitetura

Fonte: Adaptado de Desfray e Raymond (2014)

Ainda que a transição com estados intermediários facilite na gestão da mudança, também

é possível, em alguns cenários onde o escopo da mudança é limitado, uma transição direta

para a arquitetura alvo. Conforme descrito por Desfray e Raymond (2014), a elaboração

de um caminho para a transição da arquitetura base para chegar ao estado desejado é

uma das maiores entregas do TOGAF.

2.8 Contexto da Arquitetura Base

Antes do início de ciclo de alteração da arquitetura está prevista uma etapa especial

chama de fase preliminar, nessa fase as atividades geralmente envolvem múltiplas áreas

e está ligada aos aspectos gerais da arquitetura. Uma das atividades preliminares mais

importantes é a definição do ponto de partida, ou seja, assegurar que todos tenham o

correto entendimento do contexto da arquitetura base, e para isso foi elabora um diagrama

de contexto (DESFRAY; RAYMOND, 2014).

O diagrama de contexto é uma das maneiras para descrever um processo em alto nível,

por conta disso os diagramas geralmente não apresentam muitos componentes. Nesse dia-

grama estão definidos a organização, representada pelo círculo e os processos executados,

bem como as interações com agentes externos.

No diagrama (figura 6) estão representados os principais elementos para a contextualização

da arquitetura base. O sistema ERP (Enterprise Resource Planning) sendo elemento

central conectando os módulos de Qualidade, Produção, Inventário, Vendas e Finanças,

também é o iniciador da comunicação com o sistema WMS através de um middleware, os

23

dois últimos também representados no diagrama como elementos externos.

Figura 6: Diagrama de contexto arquitetura base.

Fonte: Autor.

O contexto descrito no diagrama acima (figura 6) caracteriza o ponto de partida a ser

considerado durante a execução do TOGAF, que será descrita nas seções seguintes deste

capítulo.

2.9 Método ADM

No TOGAF a aplicação da metodologia está estruturada em um ciclo chamado “TOGAF

crop circle”, onde estão descritas as fases do ADM (Architecture Development Method). O

método em questão está divido em oito fases sequenciais, iniciando em uma fase preliminar

e passando por um ciclo que vai de “A” e indo até a fase “H” (DESFRAY; RAYMOND,

2014).

24

Conforme descrito por Desfray e Raymond (2014), o framework define em detalhe cada

uma das fases do ciclo em detalhes e as entregas de cada uma delas. Na etapa preliminar é

onde ocorre a preparação para o trabalho que será realizado na arquitetura, nesse momento

são definidos os princípios gerais da mudança, bem como os métodos e ferramentas que

serão utilizados no processo e por fim o início do ciclo ADM (figura 7).

Figura 7: Diagrama do ciclo de desenvolvimento de arquitetura TOGAF

Fonte: Reproduzido de Desfray e Raymond (2014)

Com a conclusão da fase preliminar, inicia-se a fase A, a qual é a primeira fase do ciclo.

Nessa fase temos dois objetivos distintos, o primeiro deles sendo o aprofundamento dos

conceitos que surgiram na fase preliminar, como, por exemplo, os princípios de arquitetura

e a organização do trabalho que será executado. Assim sendo que ao fim da fase A, espera-

-se que haja uma visão comum: dos stakeholders e seus papeis, dos objetivos e principais

requisitos, escopo da mudança, o plano para execução do ciclo ADM, bem como os recursos

necessários e por fim, uma visão geral da arquitetura base e da arquitetura alvo e os

maiores riscos associados ao processo de transição. Em suma, ao final dessa fase deve

25

estar claro o estado atual, o estado final e como será o caminho a ser seguido entre esses

dois estados.

As próximas três fases (B, C e D) irão concentrar a maioria dos esforços no detalhamento

da arquitetura base e alvo, identificando a lacuna que existe entre elas e analisando os

impactos de mudança nas diversas facetas da organização.

Partindo para a fase B, é nessa fase onde ocorre a formalização dos elementos por parte

do negócio como: requisitos, processos, entidades. Em termos de arquitetura, o foco nessa

fase se concentra nos seguintes elementos:

• Objetivos do negócio

• Unidades organizacionais

• Processos de negócio

• Papéis e atores do negócio

• Entidades do negócio

Já na fase C do ciclo ADM, essa fase pode ser entendida como a da arquitetura na visão

de sistemas de informação, sendo a ponte entre a visão de negócio e sua tradução física.

Nessa fase serão definidos os componentes de software que irão apoiar a execução das

atividades nas funções do negócio. A fase C compreende duas partes distintas, sendo elas:

arquitetura de dados e arquitetura de aplicação. Um dos resultados esperados ao final

dessa fase é a alocação de cada grupo de dados a um componente da aplicação.

A fase D, Technology Architecture é onde acontecerá a correspondência entre tecnologia e

mundo físico, baseado nos elementos desenvolvidos nas fases anteriores. Particularmente,

nessa fase são definidos as plataformas e ambientes nos quais as aplicações serão executa-

das. O resultado esperado ao fim dessa fase é a própria arquitetura na visão de tecnologia,

ou seja, um conjunto ordenado de componentes de sistemas, infraestruturas e plataformas

técnicas.

26

As duas fases que sucedem à fase D, fases E e F, são focadas no gerenciamento do cro-

nograma e organização da implementação da nova arquitetura, com ênfase na definição

de um plano de migração. Na fase E, as entregas das fases B, C e D são consolidados

(arquiteturas, requisitos e lacunas identificadas) e usados na definição da arquitetura de

transição. O plano de migração é então estabelecido na fase F.

A fase G, é a penúltima do ciclo ADM e nela será definida a versão definitiva dos contratos

para implementação e recomendações para o onboarding da arquitetura. Já na fase H

ocorre o gerenciamento da arquitetura implementada, como, por exemplo, a requisição de

novas mudanças, que pode acarretar um novo ciclo ADM.

Contudo, apesar da estrutura estabelecida em fases sequenciais, essa sequência pode ser

adaptada as necessidades de cada situação, principalmente na forma de iterações no ciclo

do ADM. Nesse sentido, a estrutura em fases pode ser entendida como uma referência,

muito mais do que uma receita imutável a ser seguida estritamente, sendo até mesmo

preferível que sejam aplicados ajustes ao contexto e requisitos específicos (DESFRAY;

RAYMOND, 2014).

O presente trabalho focará nas primeiras quatro fases do ciclo ADM, uma vez que as ativi-

dades relacionadas a definição arquitetural ocorre dentro dessas fases (figura 8), conforme

descrito por Desfray e Raymond (2014).

Figura 8: Domínios de arquitetura e fases do ciclo ADM.

Fonte: Reproduzido de Desfray e Raymond (2014)

Dessa maneira o TOGAF será aplicado nesse trabalho de monografia estruturado da

27

seguinte maneira, conforme descrito no quadro 3.1:

Quadro 2.1: Aterfatos por fase do ciclo ADM

Fase Artefatos Técnica utilizada
A Modelo de Alto Nível da Solução Diagrama de componentes
B Modelo de arquitetura de negócio Modelagem funcional utilizando BPMN
C Modelo arquitetura de aplicação Diagrama de Interação
D Modelo de estrutura tecnológica Diagrama de Camadas de Tecnologia

Fonte: Autor

Após a definição dos artefatos e das ferramentas que serão utilizadas no ciclo ADM é

possível iniciar a execução das fases, começando pela fase A.

2.10 Considerações do Capítulo

Neste capítulo foram abordados os conceitos e fundamentos de Gerenciamento de Logs,

Transformação de Arquitetura, Arquitetura de Middleware, Observabilidade de Software

e Detecção de Anomalias. A apresentação de tais assuntos fez-se necessária, uma vez que

este trabalho de monografia irá tratar da transformação arquitetural visando o atingi-

mento da observabilidade de um sistema middleware.

No decorrer do capítulo foram apresentados os conceitos de implementação de uma arqui-

tetura alvo a partir de uma arquitetura base, empregando as fases o ciclo ADM, iniciando

pela fase preliminar e contemplando as fases onde a arquitetura é produzida (principal-

mente as fases B, C e D).

Adicionalmente foram estabelecidos os conceitos de MOM e LogAnomaly. Sendo MOM um

acrograma para Message-Oriented Middleware, que descreve uma aplicação que atua como

intermediador na comunicação entre dois sistemas em uma relação Produtor/Consumidor.

Uma vez que o objeto de estudo desta monografia se caracteriza como um Middleware

orientado a mensagens. Já o LogAnomaly diz respeito a uma técnica de análise de logs

utilizando um modelo Deep Learning com ênfase em análise semântica.

O TOGAF foi utilizado neste trabalho como a base metodológica para estruturar a adap-

tação da arquitetura, alinhando-se ao objetivo principal da monografia. Sua aplicação

28

permitiu abordar a evolução arquitetural de forma sistemática e controlada, adaptando

as fases do ciclo ADM às especificidades do contexto proposto.

29

3 ARQUITETURA DE LOGS

Neste capítulo serão abordados temas relacionados a adaptação de uma arquitetura em-

pregando o TOGAF, para uma arquitetura que compreende um sistema ERP on-premis-

ses que está conectado a um middleware orientada a mensagens e serão apresentados os

artefatos gerados em cada fase do ciclo ADM conforme o quadro 3.1.

3.1 Fase A

A entrega dessa fase consiste na concepção de um modelo de alto nível da solução e

para isso será elaborado um diagrama de componentes do que será arquitetura alvo. No

diagrama de componentes (figura 9) o foco é a estrutura dos sistemas e suas intercone-

xões, incluindo o ERP, WMS (Warehouse Management System), o middleware, a solução

Splunk, bem como o módulo de Machine Learning responsável pela análise de anomalias.

Figura 9: Diagrama de componentes.

Fonte: Autor

Os componentes e conexões do diagrama apresentado na figura 8 devem ser interpretados

da seguinte maneira:

• Sistema ERP: Representa o sistema interno da empresa que faz o gerenciamento

30

de inventário e pedidos. Esse sistema possui interfaces para enviar e receber dados

de estoque e pedidos.

• Sistema WMS: O componente WMS representa o sistema de gerenciamento de

armazém do parceiro logístico externo. Também possuí interfaces para envio e

recebimento de dados de estoque e pedidos.

• Middleware: Esse componente representa o sistema que faz o intermédio da comu-

nicação entre o sistema ERP da empresa e o WMS do parceiro logístico. Implementa

uma arquitetura de middleware orientada a mensagem, garantindo que ambos sis-

temas não tenham comunicação direta entre si. Além disso, possui uma interface

com a solução Splunk para o monitoramento de logs das interfaces.

• Splunk: É uma solução WEB para monitoramento e análise de logs, esse compo-

nente processa os logs coletados do middleware. E possui uma interface que permite

gerar visualizações de status dos logs.

• LogAnomaly: Esse componente representa o modelo de Machine Learning que

realiza análise dos logs com anomalias. Conecta-se ao Splunk para consumir logs e

realizar análises em tempo real.

3.2 Fase B

Como descrito por Desfray e Raymond (2014) nessa fase é definida a arquitetura pela visão

do negócio, o que será feito através da elaboração de um diagrama funcional utilizando

BPMN (Business Process Model and Notation).

A BPMN é uma forma de notação utilizada na modelagem de processos de negócio. De

acordo com ABPMP (2013), essa metodologia para notação é amplamente empregada

para descrever processos de negócio visualmente, visando facilitar o entendimento entre

profissionais técnicos e de negócios. No guia de conhecimento em gerenciamento de pro-

cessos de negócio, publicado pela ABPMP (Association of Business Process Management

Professionals Brasil em sua terceira versão, a BPMN é exaltada por prover uma notação

de fácil compreensão por diferentes stakeholders.

31

A estrutura da BPMN utiliza elementos visuais que representam: as ativadas, os even-

tos, gateways de decisão e de fluxo de sequência, dessa forma permitindo a elaboração de

modelagens que ilustrem a relação entre tarefas e decisões ao longo de um processo. Por-

tanto, a BPMN pode ser entendida como uma linguagem essencial para a documentação

e melhoria contínua dos processos de negócio, destacando-se pela clareza e facilidade de

interpretação (ABPMP, 2013).

Figura 10: Modelagem utilizando notação BPMN.

Fonte: Autor.

Na figura 10 pode ser verificada a modelagem BPMN da arquitetura alvo na visão do

negócio, retratando os principais elementos do fluxo e oferendo uma visão abrangente dos

principais componentes.

32

3.3 Fase C

A fase C, chamada de fase da arquitetura do sistema de informação, pretende a elabora-

ção de um modelo onde esteja determinada de qual maneira o sistema será utilizado na

empresa. Nessa fase o objetivo principal não é o desenho de aplicações, mas sim elaborar

uma visão lógica das etapas do processo (DESFRAY; RAYMOND, 2014).

Figura 11: Modelagem do diagrama de interações utilizando UML.

Fonte: Autor.

33

Segundo Desfray e Raymond (2014), o artefato central da fase C é um diagrama que

representa a arquitetura e posicionamento dos componentes da aplicação e a definição

de suas interfaces e interconexões. Para gerar esse artefato será empregada a técnica

de diagrama de interações, comumente referido como diagrama de sequência (figura 11),

onde é possível visualizar as mensagens trocadas entre as ocorrências dos componentes da

aplicação.

O diagrama de interações foi elaborando utilizando UML (Unified Modeling Language),

que serve como forma de notação padronizada amplamente utilizada no desenvolvimento

de sistemas, se tornando a língua franca dessa área (WATSON, 2008).

3.4 Fase D

A fase D do ciclo ADM é conhecida como a fase de desenvolvimento da arquitetura tecno-

lógica. Neste estágio, ocorre a determinação a arquitetura do ponto de vista de tecnologia.

Esta fase é crucial para garantir a interoperabilidade e a integração de tecnologias com o

restante da arquitetura corporativa (DESFRAY; RAYMOND, 2014).

Como artefato dessa fase foi elaborado o diagrama de camadas, utilizando a linguagem

UML. O diagrama foi divido em três camadas, a primeira camada é a de interfaces,

nessa camada estão representadas as interfaces do usuário com sistema. Na segunda

camada estão contemplados os componentes e módulos funcionais. Já na terceira temos

a representação dos elementos de dados.

Na camada de interfaces existem três elementos que representam as interfaces dos sistemas

ERP, WMS e o Monitor de Logs, pelas quais os respectivos usuários interagem com eles:

• Interface do Sistema ERP: Os operadores e gerentes utilizam a interface do

ERP para gerenciar dados de pedidos, estoque e outras operações comerciais. O

sistema em questão apresenta informações processadas e atualizadas com base nas

transações registradas e armazenadas em seu banco de dados enas interações com

o sistema WMS por meio do middleware.

34

• Interface do Sistema WMS: Os operadores do armazém externo utilizam a in-

terface do sistema WMS para gerenciar a logística, incluindo a entrada e saída de

produtos. O WMS atualiza os dados em tempo real com base nas informações re-

levantes enviadas pelo ERP através do middleware, refletindo o status do estoque e

dos pedidos.

• Interface Monitor de Logs: Analistas e operadores de TI (Tecnologia da Infor-

mação) utilizam a interface do Splunk para visualizar e monitorar, em tempo real,

os logs gerados pelo middleware. Permitindo análises detalhadas e fornece visão do

desempenho e possíveis anomalias, com alerta gerado pelo componente LogAnomaly

de Machine Learning.

Na segunda camada, denominada camada de serviço, temos representados os seguintes

componentes:

• Processamento de Pedidos e inventário: Responsável pelo processamento das

informações de negócios e comunicação de dados relevantes ao processo ao sistema

WMS via o middleware, transacionando dados de pedidos e inventário, utilizadas

pelo WMS na atualização de suas operações logísticas, sincronizando os registros

nas interfaces do ERP e do WMS.

• Gerenciamento de Inventário: Processa os dados de movimentações de estoque

e pedidos do ERP por meio do middleware e disponibiliza essas informações na in-

terface para os usuários de logística, dependendo da consistência dos dados enviados

pelo ERP para uma visão atualizada das operações logísticas.

• Middleware: Um sistema de intermediação da comunicação orientado a mensa-

gens, agindo como agente intermediário entre os sistemas ERP e WMS, transmitindo

mensagens de forma assíncrona, registrando logs de transações e comunicações, os

quais são enviados ao Splunk. Este middleware é vital para a integração indireta e

segura dos sistemas, gerando logs para monitoramento e segurança.

• Módulo de Coleta de Logs: Através da aplicação Splunk, os logs gerados pelo

middleware são coletados e passam pelo processo de parsing, gerando percepções

sobre o tráfego de mensagens, desempenho e possíveis problemas. Esses logs são

35

compartilhados com o LogAnomaly para a identificação de possíveis anomalias em

tempo real, contribuindo com os times responsáveis pelo monitoramento a detectar

falhas ou atividades incomuns.

• Módulo de Machine Learning: Aplica o modelo de Machine Learning conhecido

como LogAnomaly para analisar logs e identificar padrões incomuns que podem

indicar problemas, alertando através da interface com o Splunk.

Na terceira camada estão representados os elementos arquiteturais relacionados a persis-

tência dos dados utilizados. Sendo eles:

• Banco de dados do ERP: Persiste dados de pedidos, estoque e transações relaci-

onadas ao ERP, enquanto os usuários interagem com o sistema ocorre a atualização

dos dados.

• Banco de dados do Middleware: O banco de dados de um MOM armazena e

registra logs de todas as transações e comunicações entre os sistemas integrados.

Permitindo consultas históricas, análise de desempenho e monitoramento em tempo

real. Esses dados são essenciais para identificar anomalias e garantir a segurança.

Essencial também para a operação fluida e segura dos sistemas conectados.

• Banco de dados do Splunk: Registra todos os logs das transações intermediadas

pelo middleware entre ERP e WMS, mantendo históricos que possibilitam consultas

e análises de desempenho. Esses logs são essenciais para o Splunk e o LogAnomaly,

usado para análises de anomalias.

• Banco de dados de Machine Learning:Armazena dados históricos de logs para

o treinamento e atualização do método de Machine Learning LogAnomaly. Esse

banco é crucial para manter o LogAnomaly atualizado, possibilitando assim que ele

aprenda com dados históricos e melhore a detecção de anomalias em tempo real.

Essas relações interligadas garantem que a operacionalização e monitoramento dos siste-

mas ocorram com fluidez, com uma camada dedicada para cada função-chave: interface

de usuário, serviço e dados.

36

Figura 12: Diagrama de Camadas.

Fonte: Autor.

O diagrama de camadas (figura 12) proporciona uma visão detalhada das interações entre

os diversos componentes e sistemas, possibilitando o entendimento das dependências. A

utilização dessa técnica holística garante que as estratégias de TI estejam alinhadas aos

objetivos de negócio, assegurando uma infraestrutura tecnológica robusta e eficiente.

Assim, a fase D, através do diagrama de camadas, não apenas documenta a arquite-

tura tecnológica como também pode ser utilizada em futuras evoluções e adaptações,

fomentando um gerenciamento integrado e eficaz dos recursos empresariais (DESFRAY;

RAYMOND, 2014).

37

3.5 Módulo de Machine Learning

Como mencionado anteriormente, nesse trabalho está sendo considerado a inclusão de um

módulo de Machine Learning na arquitetura de um processo de logística empresarial e

o método escolhido foi o LogAnomaly. A implementação desse módulo foi projetada em

conjunto com a solução de monitoramento de logs de sistemas homônimo, desenvolvida

pela empresa Splunk. Nessa seção serão será apresentado com mais detalhes como o

módulo de Machine Learning está integrado na arquitetura.

O módulo em si pode ser compreendido em duas partes principais, uma dedicada ao

treinamento do modelo e outra responsável pela detecção de anomalias nos logs em tempo

real. A origem dos dados para o modelo será o monitor Splunk que fará a coleta dos logs

gerados pelo middleware, a ferramenta de monitoramento por sua vez está conectada ao

módulo de Machine Learning por meio de uma API (Application Process Interface) e dessa

maneira receberá os arquivos de logs após a atividade de log parsing que será executada

ainda pela solução Splunk. Em seguida se dará análise de anomalia dos logs, o resultado

da análise dos logs e então enviado para a ferramenta de monitoramento que disponibiliza

o resultado da análise via uma interface gráfica.

Como mencionado, além da detecção de anomalias em tempo real, o modelo também

possui um módulo de treinamento e re-treinamento. Nesse caso os dados brutos de logs

são enviados para um repositório de arquivos HDFS (Hadoop Distributed File System),

de forma que eles podem ser utilizados tanto em treinamentos como para a avaliação do

modelo. No caso da função de retreinamento, um limite deve ser informado para dizer

qual nível de degradação de desempenho deve disparar uma necessidade de retreinamento

do modelo (CHEN et al., 2022).

Para modelar a arquitetura do modelo de Machine Learning foi empregada a notação

de arquitetura AWS (Amazon Web Services), foram modelados os fluxos de detecção

de anomalias em tempo real e o fluxo de treinamento e re-treinamento do modelo. No

primeiro, foi representado a conexão entre o middleware, o Splunk, o módulo de Machine

Learning e o dashboard que disponibiliza os resultados. Já o fluxo de treinamento ilustra

o processo de armazenamento dos dados brutos de logs no HDFS, o treinamento inicial e

38

o disparo para o re-treinamento do modelo com base no estabelecido para a degradação

do desempenho.

Figura 13: Módulo de Machine Learning.

Fonte: Autor.

Na elaboração do diagrama ilustrado na figura 13 foram utilizados os seguintes compo-

nentes de arquitetura AWS:

• AWS Lambda:Para a execução da análise em tempo real dos logs (como inferência

do modelo de detecção de anomalia). E para engatilhar o retreinamento quando o

limite mínimo de desempenho estabelecido for atingido.

• Amazon S3: Para armazenamento temporário de arquivos de log entre Splunk e

o HDFS.

• Amazon EMR: Para gerenciar o armazenamento em HDFS, além de facilitar o

processamento de dados em lote.

• AWS SageMaker: Para treinamento e re-treinamento do modelo LogAnomaly.

39

• Amazon CloudWatch: Para monitorar o desempenho do modelo e disparar alar-

mes quando for necessário um re-treinamento.

A notação na arquitetura AWS foi escolhida pela facilidade no entendimento e ser profu-

samente utilizada na indústria e na academia para ilustrar arquiteturas.

3.6 Análise e discussão dos resultados

Nesta seção serão discutidos os resultados durante a execução da metodologia TOGAF

por meio do Architecture Development Method.

3.6.1 Resultado Ciclo ADM

Conforme exposto no capítulo anterior, foram selecionadas no escopo desse trabalho de

monografia as quatro primeiras fases do ciclo de desenvolvimento de arquitetura ADM. Na

primeira fase, identificada como fase A, como artefato dessa fase foi obtido um diagrama de

componentes e suas conexões, fornecendo uma visão alto nível do que seria a arquitetura

alvo, a qual se almejava conceber ao final das fases do ciclo.

Após a conclusão do diagrama de componentes, se encerra a fase A e assim iniciando a

fase B, caraterizada por ser a etapa onde a arquitetura é apresentada na visão negócio,

por esse motivo foi elaborado um diagrama de processos utilizando a notação Business

Process Modeling Notation, dessa forma foi possível gerar o artefato definido para essa

fase, a arquitetura no ponto de vista do negócio. A principal preocupação nessa etapa é

garantir que todos envolvidos no possam ter um entendimento adequado do diagrama e

consequentemente uma interpretação correta da arquitetura.

Seguidamente a conclusão da fase B vem a fase da arquitetura na visão de sistema da

informação, identificada como fase C, aqui o artefato produzido foi um diagrama de

interações modelado em UML. O diagrama de interações facilita o entendimento e a deixa

clara as diferentes interações entre os componentes de um sistema, auxiliando na detecção

de possíveis problemas de comunicação e integração. Na elaboração de um diagrama desse

40

tipo é necessário em primeiro lugar ter o entendimento da interação entre os diferentes

componentes, além de assegurar que o diagrama não deixe margem para ambiguidades de

interpretação, o que levaria ao entendimento incorreto do comportamento do sistema.

A última fase do ciclo ADM, que foi executada e exposta no capítulo anterior, é a fase

D, o domínio arquitetural abordado nessa etapa é o da tecnologia e consequentemente

o artefato gerado nela também está ligado a esse domínio. O diagrama traz uma visão

compreensível e sistematizada da arquitetura tecnológica, contribuindo para o planeja-

mento estratégico e a gestão de mudanças durante o ciclo de vida do sistema, além de ter

adicionalmente o potencial de melhorar a comunicação entre os times de desenvolvimento

e operações.

3.6.2 Arquitetura Machine Learning

A arquitetura elaborada no capítulo anterior mostra como poderia ser feita a integração

bem-sucedida de um módulo de Machine Learning à arquitetura de monitoramento de

logs da empresa, empregando a ferramenta Splunk para a coleta dos logs e parsing. Tal

integração sustenta a detecção e análise de anomalias me logs de sistema em tempo real.

A dependência de componentes externos e distribuídos, como, por exemplo, o Amazon

EMR para realizar o armazenamento no HDFS e o Amazon SageMaker para o treinamento

do modelo, agregam complexidade para a gestão de infraestrutura e sincronização dos

dados.

Finalmente, a demanda por retreinamento automático acarreta necessidade de que estra-

tégias de detecção eficazes sejam implementadas para identificar variações no desempenho

do modelo sem gerar falsos positivos, garantindo que o retreinamento seja acionado sem-

pre que necessário. Nesse ponto destaca-se a importância de uma arquitetura flexível

e escalável, bem como de um rastreamento ininterrupto das métricas e desempenho do

modelo.

41

3.7 Considerações do Capítulo

O capítulo destaca a importância do efeito estruturante da metodologia TOGAF, aplicada

por meio das fases do ciclo ADM, para a evolução de uma arquitetura. As fases A, B, C

e D oferecem um framework robusto que garante o desenvolvimento gradual e controlado

da arquitetura, possibilitando iterações entre as fases para gerar incrementos sucessivos.

Durante essas etapas, foram produzidos artefatos essenciais, como diagramas de processos

de negócios, interações de sistemas e infraestrutura tecnológica, assegurando clareza e

coerência na proposta arquitetural.

A integração de serviços como Amazon EMR e SageMaker ao módulo de Machine Learning

trouxe valor significativo ao viabilizar o treinamento e re-treinamento automatizado e

escalável dos modelos. No entanto, esses componentes introduziram desafios adicionais,

como o gerenciamento de infraestrutura e a sincronização de dados. A necessidade de um

processo de re-treinamento automático enfatizou a importância de estratégias robustas de

monitoramento do desempenho dos modelos, a fim de prevenir alarmes falsos e garantir

a eficácia do sistema.

A análise realizada confirma que a arquitetura concebida é funcional, flexível e modular,

permitindo ajustes conforme os requisitos evoluam. A aplicação da metodologia TOGAF

e das fases do ciclo ADM foi crucial para a criação de uma arquitetura escalável e capaz

de evoluir continuamente ao longo do tempo. A definição de um ponto de partida co-

mum, representada pela arquitetura base, e a adaptação do ciclo ADM às necessidades

do trabalho foram passos fundamentais nesse processo.

O capítulo também abordou a localização e integração do módulo de Machine Learning

na arquitetura, evidenciando como ele se conecta com os demais componentes. A apre-

sentação das fases iniciais do ciclo ADM, dos artefatos gerados e dos métodos empregados

reforça o caráter adaptável e estruturado da metodologia TOGAF.

42

4 CONSIDERAÇÕES FINAIS

Este capítulo apresenta as conclusões gerais do trabalho, suas principais contribuições e

sugestões para trabalhos futuros.

4.1 Conclusões

A utilização da metodologia TOGAF, trilhando as fases descritas no método de desenvol-

vimento de arquiteturas, possibilitou o desenvolvimento de uma arquitetura integrada e

escalável, que apoia o monitoramento e a análise de logs em tempo real via um módulo de

Machine Learning. A implementação das fases do ciclo, iniciando na fase A até a arqui-

tetura tecnológica na fase D, proporcionou uma estrutura coerente e bem documentada,

facilitando a conformidade entre os objetivos de TI e as metas de negócios.

Empregando o modelo LogAnomaly, aliado ao monitoramento de logs com Splunk, de-

monstrou-se que uma solução que combina dois processos essenciais, a detecção de anoma-

lias em tempo real e retreinamento automatizado do modelo quando necessário, é viável.

Garantindo uma arquitetura que proporciona alto desempenho e agilidade ao sistema.

4.2 Contribuições do Trabalho

Este trabalho de monografia oferece contribuições importantes para a prática e pesquisa

em arquitetura corporativa e integração de Machine Learning. Em primeiro lugar, expõe

a eficácia do TOGAF como um direcionador para o trabalho de construir uma arquitetura

modularizada e adaptável em ambientes complexos.

Adicionalmente, a integração do método LogAnomaly com serviços como Amazon EMR

e SageMaker adiciona uma camada de inteligência ao sistema de monitoramento, ampli-

ficando as capacidades de detecção de anomalias e possibilitando retreinamento contínuo

com base no desempenho.

43

4.3 Trabalhos Futuros

Para pesquisas futuras, recomenda-se explorar a extensão desta arquitetura para incluir

análises preditivas mais avançadas, aumentando a capacidade de reconhecer falhas e apri-

morar processos logísticos. Outra área de desenvolvimento poderia ser a implementação

de uma camada de orquestração seria utilizada na automatização do gerenciamento da

infraestrutura e o ciclo de retreinamento com mais precisão.

44

REFERÊNCIAS

ABPMP, Brasil. BPM CBOK V3.0. Association of Business Process Management

Professionals, 2013.

CHARITY MAJORS, Liz Fong-Jones; MIRANDA, George. Observability

Engineering: Achieving Production Excellence. Edição: Kate Galloway.

O’REILLY, 2022.

CHEN, Zhuangbin et al. Experience Report: Deep Learning-based System Log

Analysisfor Anomaly Detection. Association for Computing Machinery, 2022.

DOI: <.org/10.1016/j.jss.2022.111537>.

DE LUNETTA E RODRIGUES GUERRA, Avaetê. METODOLOGIA DA PESQUISA

CIENTÍFICA E ACADÊMICA. Revista OWL, Zenodo, 2023. DOI:

<10.5281/ZENODO.8240361>.

DESFRAY, Philippe; RAYMOND, Gilbert. Modeling Enterprise Architecture

with TOGAF. Edição: Andrea Dierna. Elsevier, 2014.

ETZKORN, Letha Hughes. Introduction to middleware.pdf. Taylor & Francis

Group, 2017.

HARJUNPÄÄ, Niklas; SIEKKINEN, Matti. Master’s Programme in Computer,

Communication and Information Sciences. 2023. Diss. (Mestrado) – Aalto

University School of Science.

KENT, Karen; SOUPPAYA, Murugiah. Guide to Computer Security Log Management.

Special Publication 800-92, 2006.

WATSON, Andrew. Visual Modelling: past, present and future, 2008.

