LUIS FERNANDO SOARES SENA

DESENVOLVIMENTO DE UMA ARQUITETURA
PARA A OBSERVABILIDADE DE LOGS EM UM
SISTEMA ON-PREMISSES

Sio Paulo
2024

LUIS FERNANDO SOARES SENA

DESENVOLVIMENTO DE UMA ARQUITETURA
PARA A OBSERVABILIDADE DE LOGS EM UM
SISTEMA ON-PREMISSES

Dissertagao apresentada a Escola Politéc-
nica da Universidade de Sao Paulo para
obtencao do Titulo de Especialista em

Engenharia de Software.

Area de Concentracio:

Engenharia de Software

Orientador:

Prof. Dr. Jorge Luis Risco Becerra

Co-orientador:

Prof. Alipio Ferro

Sio Paulo
2024

Dedico este trabalho a todos e to-
das que, de alguma forma, cruza-
ram meu caminho e contribuiram
para o meu aprendizado e cresci-
mento.

AGRADECIMENTOS

Agradeco aos meus pais e meus avos que sempre me incentivaram pela busca do conheci-
mento.

Ao meu namorado, José Roberto, pela parceria e motivagao para continuar meus estudos.

Ao Prof. Dr. Jorge Luis Risco Becerra e ao Prof. Alipio Ferro pela orientacao e suporte
para a elaboracgao deste trabalho.

A Universidade de Sao Paulo — USP, & Escola Politécnica da Universidade de Sao Paulo
— EPUSP e ao PECE — Programa de Educacao Continuada em Engenharia pela opor-
tunidade e pelo apoio durante meus estudos.

RESUMO

SENA, Luis Fernando S. Transformacao arquitetural para a observabilidade de
logs de um sistema on-premisses. 2024. 44 péaginas. Monografia (MBA em En-
genharia de Software). Programa de Educac¢ido Continuada em Engenharia da Escola
Politécnica da Universidade de Sao Paulo. Sao Paulo. 2024.

A transformagao arquitetural para observabilidade de logs em sistemas on-premises aborda
a adaptacao da arquitetura de um sistema ERP integrado a um middleware orientado a
mensagens, visando aprimorar o monitoramento e a anélise de logs em tempo real. Utili-
zando a metodologia TOGAF e seu método de desenvolvimento de arquiteturas (ADM),
foram concebidos artefatos representativos das fases A a D, como diagramas de compo-
nentes, processos de negécio e interagoes tecnologicas. O trabalho também integra um
mo6dulo de Machine Learning (LogAnomaly), conectado ao sistema Splunk para andlise
de logs e deteccao de anomalias, com suporte a retreinamento automatico do modelo. A
arquitetura resultante é escalavel e adaptavel, alinhando objetivos técnicos e de negocios,
contribuindo para maior eficiéncia na gestao de sistemas complexos.

Palavras-Chave: Observabilidade, TOGAF, Machine Learning, Middleware, Logs, Ano-
malias.

ABSTRACT

SENA, Luis Fernando S. Transformacao arquitetural para a observabilidade de
logs de um sistema on-premise. 2024. 44 pdginas. Monografia (MBA em Engenharia
de Software). Programa de Educagdo Continuada em Engenharia da Escola Politécnica
da Universidade de Sao Paulo. Sao Paulo. 2024.

The architectural transformation for log observability in on-premises systems focuses on
adapting the architecture of an ERP system integrated with a message-oriented mid-
dleware to enhance real-time log monitoring and analysis. Using the TOGAF metho-
dology and its Architecture Development Method (ADM), representative artifacts from
phases A to D were developed, including component diagrams, business process models,
and technological interaction diagrams. The work also integrates a Machine Learning
module (LogAnomaly), connected to the Splunk system for log analysis and anomaly
detection, with support for automatic model retraining. The resulting architecture is sca-
lable and adaptable, aligning technical and business objectives, contributing to greater
efficiency in managing complex systems.

Keywords: Observability, TOGAF, Machine Learning, Middleware, Logs, Anomalies.

10

11

12

13

LISTA DE FIGURAS

Exemplo de alto nivel do fluxo de um sistema de gerenciamento de logs . .
Transformacao, da arquitetura base em dire¢ao a arquitetura alvo.
Middleware orientado a mensagem com fila de mensagens.
Estrutura de detec¢ao de anomalias baseada em log.
Caminho para transicdo de arquitetura
Diagrama de contexto arquitetura base.
Diagrama do ciclo de desenvolvimento de arquitetura TOGAF
Dominios de arquitetura e fases do ciclo ADM.
Diagrama de componentes.
Modelagem utilizando notacaio BPMN.
Modelagem do diagrama de interagoes utilizando UML.
Diagrama de Camadas.

Moédulo de Machine Learning.

31

SUMARIO

1 Introducao 9
1.1 Motivagao L e 10

1.2 Objetivo 10

1.3 Justificativas 10
1.4 Método de Pesquisa 11

1.5 Estrutura do Trabalho 0. 12

2 Fundamentos Tedricos 13
2.1 Consideragoes Inicias oo 13
2.2 Gerenciamento de logs L 13
2.3 Transformacao de Arquitetura 15
2.4 Arquitetura middleware 17
2.4.1 Middleware Orientado a Mensagem 18

2.5 Observabilidade de software 19
2.6 Deteccdo de Anomaliao 20
2.7 Adaptacao de arquitetura com TOGAF 21
2.8 Contexto da Arquitetura Base 22
2.9 Método ADM 23

2.10 Consideragoes do Capituloo 27

3 Arquitetura de Logs

3.1 Fase A
3.2 Fase B o
3.3 Fase C o
3.4 FaseD
3.5 Mobdulo de Machine Learning
3.6 Analise e discussao dos resultados

3.6.1 Resultado Ciclo ADM

3.6.2 Arquitetura Machine Learning
3.7 Consideracoes do Capitulo

4 Consideracgoes Finais

4.1 Conclusdes
4.2 Contribuigdes do Trabalho00
4.3 Trabalhos Futuros

Referéncias

29

29

30

32

33

37

39

39

40

41

42

42

42

43

44

1 INTRODUCAO

Com o avanco das tecnologias se dando a passos largos, cada vez mais os sistemas de
informagao assumem papel importante nas atividades humanas, desde como nos comu-
nicamos entre nos ou como fazemos negécios, até mesmo substituindo o ser humano em
determinados trabalhos. Tal uso intensivo de sistemas acarreta geragao de montantes
crescentes de dados, na grandeza de petabytes inclusive, dados que nao somente precisam

ser armazenados mas também tratados em seus diversos casos de uso.

Dos menores aos maiores sistemas em funcionamento atualmente pode-se destacar uma
caracteristica em comum entre eles, sao geralmente projetados para produzir, coletar e
processar registros de atividades realizadas no sistema, ou seja, realizar a gravagao de
logs. O gerenciamento eficiente dos logs de um sistema é essencial para garantir que esse
esteja operando da melhor forma para qual foi projetado e com isso evitar ao maximo

periodos de downtime.

Em uma era onde cada vez mais dependemos dos sistemas de informagao, a importancia
de garantir a continuidade e seguranca das operagoes é imperativo, refletindo também nos
esforcos de pesquisas nos tultimos anos em busca do aprimoramento do monitoramento
de logs. Onde vemos o emprego de tecnologias como o aprendizado de maquina e mais

recentemente o chamado Deep Learning (CHEN et al., 2022).

O registro de logs por um sistema ¢ dos trés pilares que compoe o conceito de observabili-
dade, sendo os outros dois pilares: métricas e rastreabilidade. Teoricamente, a combinacao
desses trés pilares deve prover a capacidade para um observador externo ao sistema de

observar o que esta acontecendo internamente.

Contudo, esses trés elementos sao apenas o fundamento da observabilidade, assim sendo,
vai muito além de simplesmente registrar logs ou estabelecer algumas métricas, mas sim
criar as condi¢oes para ser possivel a identificacdo de qualquer estado no qual o sistema
possa estar, independentemente do quao novo ele seja (CHARITY MAJORS; MIRANDA,
2022).

10

1.1 Motivacao

Em uma era onde cada vez mais dependemos dos sistemas de informagao, a importancia
de garantir a continuidade e seguranca das operagoes é imperativo, refletindo também nos
esforgos de pesquisas nos tltimos anos em busca do aprimoramento do monitoramento de
logs, sendo que em diversas ocasides a busca pelo grau de observabilidade dos sistemas o
elemento norteador. Entretanto, observa-se uma atencao especial a aplicagoes com arqui-
tetura web distribuidas, embora ainda seja utilizado sistemas on-premisses na industria
e por isso me motivei a aplicar os conceitos de observabilidade de software de sistemas

distribuidos através da adaptacao da arquitetura de um sistema on-premisses.

1.2 Objetivo

O objetivo desse trabalho de monografia é realizar a adaptacao da arquitetura de um
sistema on-premisses para utilizacao de um moédulo de observabilidade baseado em logs
que utiliza Machine Learning. Para conduzir essa adaptacao arquitetural sera aplicado o
processo ADM (Architecture Development Method) do modelo TOGAF (The Open Group

Architechture Framework).

1.3 Justificativas

Como descrito por Charity Majors e Miranda (2022) Uma vez que as técnicas tradicionais
tém carater reativo e sdo dependentes de engenheiros que acessam manualmente os logs do
sistema e conduzem uma avaliacdo empirica sobre a falha ou anomalia, técnica propensa
a ocorréncia de erro. Os sistemas mais modernos exigem que novas metodologias sejam
empregadas nao so na criagao de métricas, mas também no monitoramento dos ambientes

desses sistemas.

H&a pelo menos vinte anos, observa-se que um dominio de técnicas convencionais que
regem a relacao entre hardware e as pessoas que o operam, a esse conjunto de ferramentas

convencionou-se chamar de “monitoramento de sistema” Por muito tempo essa ideia

11

de monitoramento imperou entre os desenvolvedores, como sendo a melhor maneira de
interpretar o que ocorre no espago virtual entre o cédigo escrito por eles e o mundo
fisico, mesmo sabendo que tal abordagem tem suas limitagoes que acarretam aumento da

dificuldade de troubleshooting do sistema.

Com o aumento da capacidade de desenvolvimento, os sistemas modernos aumentaram
nao apenas em tamanho, mas também em complexidade, fazendo com que a tarefa de
prever, detectar e tratar anomalias em sistemas se torne muito mais dificil. Aqui que
a observabilidade se destaca, uma vez que ela faz com que os dados de telemetria do
sistema possam ser trabalhados de forma flexivel, permitindo aos times realizar anélises e

chegar mais rapidamente nas causas raizes dos problemas que ocorrem de maneira singular

(CHARITY MAJORS; MIRANDA, 2022).

Como mencionado, a observabilidade de um sistema exige a compreensao de diferen-
tes cenarios e por vezes cenarios inéditos. Portanto, com base na literatura disponivel
supracitada, justifica-se transformar a arquitetura de um sistema para buscando a obser-
vabilidade em detrimento dos modelos tradicionais de monitoramento. Constatada sua
superioridade quando comparando a capacidade de adaptacao a cenarios de alta comple-

xidade dos sistemas modernos.

1.4 Meétodo de Pesquisa

As possibilidades de tipificagao de uma pesquisa sao diversas e derivam de aspectos desde
sua natureza até os procedimentos técnicos empregados em seu desenvolvimento. Uma
pesquisa pode ser entendida como um agrupamento de técnicas, embasado em raciocinio
l6gico e aplica metodologia cientifica para produzir conhecimento cientifico. Os tipos de
pesquisa variam conforme o problema que é objeto de estudo, contudo alguns modelos
se destacam, como a pesquisa bibliografica, experimental, documental, qualitativa ou
quantitativa, cada uma com metodologias distintas (DE LUNETTA E RODRIGUES
GUERRA, 2023).

Para um maior entendimento e esclarecimento sobre o problema objeto de estudo dessa

monografia, foi conduzida uma pesquisa bibliografica. Para a realizacdo do levanta-

12

mento bibliografico foram utilizadas as bases de dados “Google Scholar” e também “IEEE
Xplore”. Para refinar os resultados e direcionando-os ao objetivo desse trabalho foram apli-
cados filtros de busca utilizando palavras-chave (como Log Management, Deep Learning e
Software Observability) e os trabalhos publicados mais recentemente, preferindo-se artigos

com data de publicagao nos ultimos 3 anos.

1.5 Estrutura do Trabalho

O Capitulo 1 INTRODUCAO apresenta as motivacdes, o objetivo, as justificativas, mé-

todo de pesquisa e a estrutura do trabalho.

O Capitulo 2 REVISAO BIBLIOGRAFICA discorre sobre os temas principais para o

desenvolvimento deste trabalho, como:

O Capitulo 3 DESENVOLVIMENTO DA PESQUISA apresenta uma proposta de adap-
tagao da arquitetura de um sistema de deteccao de anomalias em logs de um sistema em
nuvem para implantagdo em contexto real de uma industria, considerando um sistema

ERP on-premises com foco em observabilidade.

O Capitulo 4 ANALISE DE RESULTADOS apresenta uma andlise critica do capitulo

anterior.

O Capitulo 5 CONSIDERACOES FINAIS descreve as conclusoes e as contribuicdes do
trabalho e sugestoes de trabalhos futuros que poderao ser desenvolvidos a partir deste

trabalho.

13

2 FUNDAMENTOS TEORICOS

Neste capitulo sao apresentados os conceitos necessarios para a adaptacao de uma arqui-
tetura de monitoramento de anomalias em logs de sistema utilizando técnicas de gerenci-
amento de dados de log e deep learning, através de fundamentacoes tedricas necessarias

e relevantes considerando o objetivo desse trabalho.

2.1 Consideracoes Inicias

O capitulo aborda a utilizacao de técnicas de aprendizado de maquina no monitoramento
de anomalias em logs de sistema na atualidade e traz a descricao das técnicas mais pra-
ticadas, avaliando como essas técnicas podem contribuir para aumentar a eficiéncia do

monitoramento, bem como os desafios que podem acarretar.

A exposicao dos conceitos sera realizada em quatro dimensoes, sendo elas: gerenciamento
de logs, deep machine learning, redes neurais e deteccao de anomalias em ambientes de

producao de software.

2.2 Gerenciamento de logs

Antes de adentrar o conceito de gerenciamento é importante definir o que é um log de
sistema. O instituto estadunidense NIST (National Institute of Standards and Techno-
logy) define como log o registro da ocorréncia de eventos nos sistemas e redes de uma
organizagao. Sao compostos por uma lista entradas, cada uma contendo informagdoes re-
ferente a um evento especifico que ocorreu no sistema ou rede em questdao. Logs estao
geralmente relacionados a registros de seguranca informéatica e podem advir de diversas
origens, incluindo softwares de seguranga, como antivirus, firewalls e sistemas de detecgao
e prevencao de invasao, bem como sistemas operacionais em servidores, equipamentos de

rede e aplicagoes em geral. (KENT; SOUPPAYA, 2006)

Em suma, os arquivos de logs gerados por um sistema sao registros de quais eventos ocor-

14

reram e quando se deu a ocorréncia. Atualmente existem intimeros tipos de log que servem
a diferentes propoésitos, portanto nao ha uma definicdo comum do que devem conter. Esses
arquivos podem conter informagoes variadas, podendo ser detalhes operacionais, registros
de autorizagoes e mensagens de depuracao. As informagoes contidas em um log sao fre-
quentemente definidas pelo sistema responsavel pela criagdo do arquivo e também pelo
programador que projetou o sistema de registro dos logs, onde sao registrados mensagens
e eventos gerados em um programa, podendo conter informagoes referentes a eventos,

erros e alerta de uma aplicacio. (HARJUNPAA; SIEKKINEN, 2023)

O gerenciamento de logs consiste no estabelecimento de uma metodologia e processos
que serao utilizados através do seu ciclo de vida: coleta, processamento, armazenagem e
por fim a analise dos arquivos gerados contendo os logs criados pelos diversos sistemas
e aplicagoes. A importancia dos sistemas de gerenciamento para as organizacoes reside
nao somente em garantir que os sistemas estao trabalhando sem falhas, mas também

auxiliando no tratamento de excecoes, garantia da seguranca da informacao ou auditorias.

A arquitetura de um sistema de gerenciamento de logs pode ser concebida como varios
elementos que interagem entre si para: criar, coletar, armazenar e analisar os registros

nos arquivos de log. Sendo que todos esses elementos sao imprescindiveis na arquitetura

desse sistema. (HARJUNPAA; SIEKKINEN, 2023)

Comumente, sistemas dessa natureza podem ser separados em quatro componentes dis-

tintos:

e Criacao: E o processo de gerar os arquivos de log. As principais questoes que
devem ser respondidas nessa etapa estao relacionadas ao local onde fazer o log, o

que registrar e como fazer.

e Envio: O envio dos logs, ¢ uma atividade executada por componentes de software
responsaveis por coletar os registros das diversas origens e envia-los para o local de
armazenamento. Aqui podem ser aplicados processos de selecao e transformacao,
dessa forma é possivel estabelecer um formato preferido e realizar conversoes sempre

que necessario antes de enviar os arquivos.

« Armazenamento: A armazenagem dos logs é um processo que ocorre apos a etapa

15

Figura 1: Exemplo de alto nivel do fluxo de um sistema de gerenciamento de logs

Criagao Envio Armazenagem Analise
Ler —
Visualizar

e ’

-

/ﬁ |/ Filtrar /ﬁ
o I g Wy
=

Reduzir

—
M & ¥
—_— Relatdrio
: M
MNormalizar % 4

Fonte: Adaptado de Harjunpééd e Siekkinen (2023).

de envio, nessa etapa os arquivos sao enviados para um componente de software cuja
responsabilidade é centralizar todas as informacoes, de forma que possam ser recu-
peradas a qualquer momento no futuro. Podendo ser um banco de dados relacional,

NoSQL ou qualquer outro sistema de armazenamento de dados.

« Analise: E o processo de visualizacdo e analise de dados com o intuito de gerar
informacgao de valor. Compreende a identificacdo de padroes, andalise estatistica e
interconexao entre os dados. O processo consiste essencialmente na interpretacao
dos dados e extrair valor deles, podendo lancar mao de técnicas avancadas de analise

como modelos de aprendizado de maquina.

O processo de gerenciamento de logs ocorre como demonstrado na figura 1.

Como descrito por Harjunpéé e Siekkinen (2023), os processos de coleta, transformagao e
armazenagem num sistema dessa natureza é muito semelhante a um fluxo ETL (Extract,

Transform and Load), observando-se eventuais etapas que podem ser adicionadas.

2.3 Transformacao de Arquitetura

Desfray e Raymond (2014) definem que o processo de transformacao de uma arquitetura
pode ser descrito como a evolucao de um modelo arquitetonico base, para outra modela-
gem alvo, como o exemplificado na figura 2. A parte mais importante desse processo é

definicao de qual abordagem serd adotada para conduzir essa evolucao de arquitetura.

16

Figura 2: Transformagao, da arquitetura base em dire¢do a arquitetura alvo.

Transformacao

=54

Fonte: Adaptado de Desfray e Raymond (2014).

De acordo com Desfray e Raymond (2014), é possivel sumarizar o processo de escolha de
um framework a ser adotado na transformacao de uma arquitetura nos quatro pontos a

seguir:

e« Conhecimento do ponto de partida: Nem sempre o conhecimento da arquite-
tura base esta estabelecido, dessa forma na maioria das vezes é necessario empregar
esfor¢cos em uma reavaliagdo da arquitetura existente. A importancia dessa tarefa
reside no fato do roadmap da transformacao ser definido pelo gap entre a arquitetura

no ponto de partida e a modelagem final almejada.

e Determinar um ponto de chegada: Representa a modelagem arquitetural que
se deseja produzir com a transformacao. Os objetivos de negdcio sdo o principal
fator a se considerar na hora de definir o alvo, contudo também deve-se examinar

fatores de ordem técnica, organizacionais e financeiros.

e Definir o melhor caminho até o objetivo: Escolher as solucoes que serao uti-
lizadas para conduzir a transformacao, bem como a definicdo de um cronograma.
Também ¢ muito importante entender como sera garantida a continuidade do ne-

gbcio durante e apds a transformacao.

e Concluir a transformagao com éxito: Executar a transformagdo de uma ar-
quitetura é um processo complexo e delicado e para ser executado com sucesso é
mandatério o entendimento absoluto de todas as restricoes que se aplicam a essa

operagao.

Adicionalmente, o escopo coberto na transformagao também exerce influéncia nos cenéarios

que serao encontrados durante o processo. Uma vez que, geralmente, nao se trara de uma

17

reconstrucao total do sistema a partir do zero, mas apenas de uma parte especifica, ligada a
um objetivo de negécio. Ou seja, nao ha um padrao para o caminho a ser seguido. Embora
adaptagoes ao contexto especifico de cada processo de transformacao seja necessario, a

adocao de um framework pode funcionar como o fio condutor da mudanca e também

ajudar a conferir velocidade (DESFRAY; RAYMOND, 2014).

2.4 Arquitetura middleware

Na engenharia de software existe uma questao denominada de Rendez-vous problem, que
resumidamente descreve a situacao onde dois sistemas distintos precisam trocar mensa-
gens entre si e, portanto, precisam estar sincronizados. Atualmente, as possibilidades de
conexao entre dois sistemas sdo diversas, uma delas é o modelo Cliente/Servidor, nessa
modalidade de comunicacao o Rendez-vous problem é resolvido através da determina-
¢ao de uma dinamica entre os dois sistemas envolvidos. Necessariamente, nesse modelo
a comunicagao é estabelecida somente apds a inicializacao do servidor, o qual aguarda

indefinidamente o contato da outra parte, o cliente.

Etzkorn (2017) definiu servidor e cliente da seguinte forma:

« Servidor: E um programa que fica disponivel na espera de chamadas e quando
recebe uma comunicagao do sistema cliente, responde executando algum tipo de
servico util e envio o resultado ao sistema requisitante. AS funcoes do servidor
também incluem: autenticagao, autorizagdo e seguranca dos dados, portanto servi-

dores necessitam geralmente de privilégios especiais no sistema.

e Cliente: A aplicacao iniciadora da comunicacao, nesse modelo a comunicacio sem-
pre sera direcionada ao servidor sempre que o cliente necessitar de algum servigo
fornecido pelo servidor. Diferentemente dos servidores, clientes comumente nao

necessitam de privilégios especiais no sistema para operar.

Aos sistemas que habilitam a comunicacao entre aplicagoes distintas, convencionou-se
chamar de middleware. Na arquitetura, o middleware se localiza em uma camada entre

o sistema operacional e as aplicagoes em ambos os lados de uma rede de computadores

18

distribuida. Geralmente, sao utilizados para operacionalizar cenarios complexos e sistemas

distribuidos (ETZKORN, 2017).

2.4.1 Middleware Orientado a Mensagem

O middleware orientado a mensagem (MOM) tem o propésito de atuar como intermedi-
ador entre o cliente e o servidor, sedo que dessa forma ambos nao precisam se comunicar
diretamente. Usualmente, o intermediario gerencia as mensagens enviadas entre o produ-
tor e o consumidor em filas. E aqui tanto o cliente quanto o servidor podem desempenhar

o papel de produtor e consumidor de mensagens, conforme exemplificado na figura 3.

Figura 3: Middleware orientado a mensagem com fila de mensagens.

\

Fonte: Adaptado de Etzkorn (2017).

Nesse paradigma de middleware a comunicagao é assincrona, portanto as mensagens sao
executadas de forma independente. Tomando como exemplo um cenario onde o cliente
é o produtor da mensagem e o servidor o consumidor. Nesse caso, a mensagem ¢é criada
e enviada ao MOM, que provavelmente a colocaria na fila de mensagens que eventu-
almente serao recebidas pelo servidor. Esse processo de comunicacao mediada por um
intermediario pode ocorrer de algumas formas, destacando-se: push model, pull model e

publisher/subscriber.

Adicionalmente, um MOM pode executar alguns tipos de processamentos no gerencia-

19

mento das mensagens, como, por exemplo, colocando mensagens de prioridade mais alta
na frente da fila. Podendo também lidar com diversas filas com niveis de prioridade

diferentes. Tais capacidades podem ajudar em ganho de desempenho do middleware

(ETZKORN, 2017).

2.5 Observabilidade de software

Observabilidade é um conceito que atraiu muito interesse nos ultimos anos na indus-
tria de desenvolvimento de sistemas, figurando frequentemente nas listas de assuntos do
momento. Mesmo que sua adoc¢ao ainda seja um desafio. Tal conceito foi proposto pri-
meiramente por Rudolf E. Kalméan no ano de 1960, sendo entendido como a medida do
quao bem os estados internos de um determinado sistema podem ser deduzidos a partir
do conhecimento externo ao sistema, utilizando como base as saidas produzidas por esse

sistema.

Ainda que idealizada para utilizacao na engenharia mecanica e engenharia de processos, a
ideia de observabilidade também pode ser aplicado aos sistemas de informacao modernos,

contudo quando para fazer isso algumas premissas especificas da engenharia de software

devem ser seguidas (ETZKORN, 2017).

Para uma aplicagao ter observabilidade deve ser possivel:

e Ter o entendimento do funcionamento interno da aplicacao.
o Ter o poder de entender qualquer estado no qual o sistema eventualmente esteja.

« Constatar os pontos citados acima, utilizando exclusivamente ferramentas externas

ao sistema.

o Entender esse estado independentemente de sua severidade ou frequéncia.

Etzkorn (2017) define observabilidade como sendo a medida na qual é possivel entender
e elucidar qualquer estado no qual o sistema possivelmente se encontre, sem ter em conta

o quanto inédito ele seja. Quando é possivel entender esses estados sem a necessidade

20

de escrever codigo adicional, considera-se que a aplicacao tem observabilidade. Etzkorn
(2017) também infere que a observabilidade em sistemas modernos vai além de apenas
tipificacao de dados ou inputs, bem como nao é sobre equagdoes matematicas. Em ultima
estancia, observabilidade é sobre a relacdo de um sistema com as pessoas que Sao suas

usuarias, como elas interagem com ele e o interpretam.

2.6 Deteccao de Anomalia

O framework de deteccao de anomalias em sistemas partindo da andlise de logs geralmente
é divido em quatro partes, sendo elas: coleta de logs, log parsing, extracao de feature e

por fim deteccao da anomalia. conforme pode ser visto na figura 4.

Figura 4: Estrutura de deteccdo de anomalias baseada em log.

Fixed partitioning

Log mossages

g 1 2000-17-00 21100718 PRcesPaspors 1 for
e]

Log & 2000-11-00 20788 07 Pacest Fusponder 0 for
RHoCk D_i68

.> ‘:“n: ::?:1-1:!"‘:‘ :l‘nl:m 4204 AR
4 Log parser
4

Log avents

Log sequences B SLLTRT

T)
packel rsapondes for ook

termimating

vucaspndd ok of sies Woim

Log words 1 A ,,,,l__.L ket ks ‘

Log wrent - Packetfecponie <" fof DGk <>
Y A [| teminatng
é LG w1 Mecehed bikock <" of sz <" from <>
Aaw loga
1. Coleta de logs 2. Log Parsing 3. Extracio de Feature 4. Deteccao da Anomalia

Fonte: Adaptado de Chen et al. (2022)

A deteccao das anomalias é feita a partir das features extraidas na fase anterior, ela
visa identificar instancias anémalas nos logs como, por exemplo, os gerados por excegoes.
Métodos tradicionais baseados em machine learning utilizam toda a sequéncia de logs para
realizar a previsao, utilizando para isso vetores de contagem de eventos. Ja os métodos
baseados em deep learning aprendem padroes normais e avaliam a normalidade de cada
evento de log, dessa forma podendo localiza o evento exato que originou a anomalia,

melhorando a interpretabilidade dos resultados (CHEN et al., 2022).

Chen et al. (2022) apresentam o método denominado LogAnomaly, o qual é um modelo
nao-supervisionado que utiliza redes neurais e que pode ser utilizados na deteccao de

anomalias a partir da analise de logs. Com esse método é proposto considerar também a

21

informagao semantica dos logs, através da representacao dos registros por meio de uma
técnica chamada template2vec, onde as palavras dos templates de logs sao representadas
distribuidamente, considerando os sinénimos e anténimos neles contidos. O vetor modelo
é entao calculado como o peso médio dos vetores das palavras encontradas no template.
Aqui é adotada uma técnica baseada em forecasting, utilizando um modelo de Long Short-

-Term Memory.

2.7 Adaptacao de arquitetura com TOGAF

Como descrito por Desfray e Raymond (2014) a transi¢do entre uma arquitetura existente
e um estado futuro com incrementos, esta fundamentado no TOGAF e deve fornecido no
formato de um caminho a ser seguido. Para que esse caminho seja efetivo, os principios

mencionados a seguir precisam ser atendidos.

e Para ser exitoso, esse caminho precisa considerar todas as facetas da empresa, bem

como os efeitos que resultardo de todas as mudancgas implementadas.

e O caminho também precisa descrever os estados intermediarios da arquitetura, du-

rante o processo de transi¢ao.
o Os estados intermediarios devem apresentar o valor que agregado a arquitetura.

o Uma andlise das lacunas entre a arquitetura base e a arquitetura alvo é o elemento

determinante para a definicdo do caminho a ser seguido.

O caminho em diregdo & arquitetura alvo, como sugerido no TOGAF (figura 5), pode
compreender diversos tipos de projetos: desenvolvimento ou evolugao de sistemas, migra-
¢ao de dados, treinamentos ou até mesmo a reorganizacao do negocio. Ja o ntmero de
estados intermediarios dependera de outros aspectos especificos de cada transicao, como,
por exemplo, o dominio no qual a arquitetura esta inserida, escopo das mudancas, hori-
zonte temporal e o nivel de detalhes, bem como os obstaculos que podem ser encontrados

ao longo do caminho (DESFRAY; RAYMOND, 2014).

22

Figura 5: Caminho para transicao de arquitetura

Arquitetura
Base

Intermediario Arquitetura
2 Alvo

Fonte: Adaptado de Desfray e Raymond (2014)

Ainda que a transi¢ao com estados intermediarios facilite na gestao da mudanca, também
é possivel, em alguns cenarios onde o escopo da mudancga é limitado, uma transicao direta
para a arquitetura alvo. Conforme descrito por Desfray e Raymond (2014), a elaboragao
de um caminho para a transicao da arquitetura base para chegar ao estado desejado é

uma das maiores entregas do TOGAF.

2.8 Contexto da Arquitetura Base

Antes do inicio de ciclo de alteracao da arquitetura estd prevista uma etapa especial
chama de fase preliminar, nessa fase as atividades geralmente envolvem multiplas areas
e esta ligada aos aspectos gerais da arquitetura. Uma das atividades preliminares mais
importantes é a definicio do ponto de partida, ou seja, assegurar que todos tenham o
correto entendimento do contexto da arquitetura base, e para isso foi elabora um diagrama

de contexto (DESFRAY; RAYMOND, 2014).

O diagrama de contexto é uma das maneiras para descrever um processo em alto nivel,
por conta disso os diagramas geralmente nao apresentam muitos componentes. Nesse dia-
grama estao definidos a organizacao, representada pelo circulo e os processos executados,

bem como as interagoes com agentes externos.

No diagrama (figura 6) estao representados os principais elementos para a contextualizagao
da arquitetura base. O sistema ERP (Enterprise Resource Planning) sendo elemento
central conectando os médulos de Qualidade, Produgao, Inventario, Vendas e Financas,

também é o iniciador da comunicagao com o sistema WMS através de um middleware, os

23

dois tltimos também representados no diagrama como elementos externos.

Figura 6: Diagrama de contexto arquitetura base.

Sisterna WMS

Médulo de
Maodulo de Producio

Execugio das

Interfaces
de comunicagio

Mﬂ'ﬂub Clle Enterprise ’ Médulo de
inventario Resource B Compras

Planning

Atualizagio
Livro contabil

de comunicagio’

Fonte: Autor.

O contexto descrito no diagrama acima (figura 6) caracteriza o ponto de partida a ser
considerado durante a execuc¢ao do TOGAF, que sera descrita nas secoes seguintes deste

capitulo.

2.9 Método ADM

No TOGAF a aplicacao da metodologia esta estruturada em um ciclo chamado “TOGAF
crop circle”; onde estao descritas as fases do ADM (Architecture Development Method). O
método em questao esta divido em oito fases sequenciais, iniciando em uma fase preliminar
e passando por um ciclo que vai de “A” e indo até a fase “H” (DESFRAY; RAYMOND,
2014).

24

Conforme descrito por Desfray e Raymond (2014), o framework define em detalhe cada
uma das fases do ciclo em detalhes e as entregas de cada uma delas. Na etapa preliminar é
onde ocorre a preparagao para o trabalho que sera realizado na arquitetura, nesse momento
sao definidos os principios gerais da mudanca, bem como os métodos e ferramentas que

serdo utilizados no processo e por fim o inicio do ciclo ADM (figura 7).

Figura 7: Diagrama do ciclo de desenvolvimento de arquitetura TOGAF

A.
Architecture
Vision

H. B.
Architecture Business
Change Architecture
Management

G. C. :
Implementation Requirements Information
Systems

Governance Management

Archileclures

i D.
Migration Technology
Planning Architecture

E.
Opportunities
and
Solutions

Fonte: Reproduzido de Desfray e Raymond (2014)

Com a conclusao da fase preliminar, inicia-se a fase A, a qual é a primeira fase do ciclo.
Nessa fase temos dois objetivos distintos, o primeiro deles sendo o aprofundamento dos
conceitos que surgiram na fase preliminar, como, por exemplo, os principios de arquitetura
e a organizacao do trabalho que serd executado. Assim sendo que ao fim da fase A, espera-
-se que haja uma visao comum: dos stakeholders e seus papeis, dos objetivos e principais
requisitos, escopo da mudanca, o plano para execucao do ciclo ADM, bem como os recursos
necessarios e por fim, uma visao geral da arquitetura base e da arquitetura alvo e os

maiores riscos associados ao processo de transicdo. Em suma, ao final dessa fase deve

25

estar claro o estado atual, o estado final e como serd o caminho a ser seguido entre esses

dois estados.

As proximas trés fases (B, C e D) irdo concentrar a maioria dos esfor¢os no detalhamento
da arquitetura base e alvo, identificando a lacuna que existe entre elas e analisando os

impactos de mudanca nas diversas facetas da organizacao.

Partindo para a fase B, é nessa fase onde ocorre a formalizacao dos elementos por parte
do negdcio como: requisitos, processos, entidades. Em termos de arquitetura, o foco nessa

fase se concentra nos seguintes elementos:

e Objetivos do negbcio

» Unidades organizacionais
e Processos de negocio

o Papéis e atores do negocio

» Entidades do negocio

Ja na fase C do ciclo ADM, essa fase pode ser entendida como a da arquitetura na visao
de sistemas de informacao, sendo a ponte entre a visao de negdcio e sua traducao fisica.
Nessa fase serao definidos os componentes de software que irdo apoiar a execucao das
atividades nas fung¢oes do negdcio. A fase C compreende duas partes distintas, sendo elas:
arquitetura de dados e arquitetura de aplicacdo. Um dos resultados esperados ao final

dessa fase é a alocacao de cada grupo de dados a um componente da aplicagao.

A fase D, Technology Architecture é onde acontecera a correspondéncia entre tecnologia e
mundo fisico, baseado nos elementos desenvolvidos nas fases anteriores. Particularmente,
nessa fase sao definidos as plataformas e ambientes nos quais as aplicagoes serao executa-
das. O resultado esperado ao fim dessa fase é a prépria arquitetura na visao de tecnologia,
ou seja, um conjunto ordenado de componentes de sistemas, infraestruturas e plataformas

técnicas.

26

As duas fases que sucedem a fase D, fases E e F, sao focadas no gerenciamento do cro-
nograma e organizacao da implementacao da nova arquitetura, com énfase na definigao
de um plano de migracao. Na fase E, as entregas das fases B, C e D sao consolidados
(arquiteturas, requisitos e lacunas identificadas) e usados na defini¢do da arquitetura de

transicao. O plano de migracao é entao estabelecido na fase F.

A fase G, é a pentltima do ciclo ADM e nela seré definida a versao definitiva dos contratos
para implementacao e recomendagoes para o onboarding da arquitetura. Ja na fase H
ocorre o gerenciamento da arquitetura implementada, como, por exemplo, a requisicao de

novas mudancas, que pode acarretar um novo ciclo ADM.

Contudo, apesar da estrutura estabelecida em fases sequenciais, essa sequéncia pode ser
adaptada as necessidades de cada situacao, principalmente na forma de iteragdes no ciclo
do ADM. Nesse sentido, a estrutura em fases pode ser entendida como uma referéncia,
muito mais do que uma receita imutavel a ser seguida estritamente, sendo até mesmo

preferivel que sejam aplicados ajustes ao contexto e requisitos especificos (DESFRAY;

RAYMOND, 2014).

O presente trabalho focara nas primeiras quatro fases do ciclo ADM, uma vez que as ativi-
dades relacionadas a defini¢do arquitetural ocorre dentro dessas fases (figura 8), conforme

descrito por Desfray e Raymond (2014).

Figura 8: Dominios de arquitetura e fases do ciclo ADM.

Architecture Domains ADM Phases
Business Business
Architecture Architecture Phase B
IS Architecture
Data Architecture Data
Architecture
Phase C
Application Application
Architecture Architecture
Technical Technical Phase D
Architecture Architecture

Fonte: Reproduzido de Desfray e Raymond (2014)

Dessa maneira o TOGAF sera aplicado nesse trabalho de monografia estruturado da

27

seguinte maneira, conforme descrito no quadro 3.1:

Quadro 2.1: Aterfatos por fase do ciclo ADM

Fase Artefatos Técnica utilizada
A Modelo de Alto Nivel da Solugao Diagrama de componentes
B Modelo de arquitetura de negécio Modelagem funcional utilizando BPMN
C Modelo arquitetura de aplicacao Diagrama de Interacao
D Modelo de estrutura tecnolégica Diagrama de Camadas de Tecnologia

Fonte: Autor

Apébs a definicao dos artefatos e das ferramentas que serdo utilizadas no ciclo ADM é

possivel iniciar a execucao das fases, comecando pela fase A.

2.10 Consideracoes do Capitulo

Neste capitulo foram abordados os conceitos e fundamentos de Gerenciamento de Logs,
Transformagao de Arquitetura, Arquitetura de Middleware, Observabilidade de Software
e Detecgdo de Anomalias. A apresentagao de tais assuntos fez-se necessaria, uma vez que
este trabalho de monografia ira tratar da transformacgao arquitetural visando o atingi-

mento da observabilidade de um sistema middleware.

No decorrer do capitulo foram apresentados os conceitos de implementagao de uma arqui-
tetura alvo a partir de uma arquitetura base, empregando as fases o ciclo ADM, iniciando
pela fase preliminar e contemplando as fases onde a arquitetura é produzida (principal-

mente as fases B, C e D).

Adicionalmente foram estabelecidos os conceitos de MOM e LogAnomaly. Sendo MOM um
acrograma para Message-Oriented Middleware, que descreve uma aplicagao que atua como
intermediador na comunicagao entre dois sistemas em uma relagao Produtor/Consumidor.
Uma vez que o objeto de estudo desta monografia se caracteriza como um Middleware
orientado a mensagens. Ja o LogAnomaly diz respeito a uma técnica de andlise de logs

utilizando um modelo Deep Learning com énfase em andlise semantica.

O TOGATF foi utilizado neste trabalho como a base metodologica para estruturar a adap-

tagdo da arquitetura, alinhando-se ao objetivo principal da monografia. Sua aplicagao

28

permitiu abordar a evolucao arquitetural de forma sistematica e controlada, adaptando

as fases do ciclo ADM as especificidades do contexto proposto.

29

3 ARQUITETURA DE LOGS

Neste capitulo serao abordados temas relacionados a adaptacao de uma arquitetura em-
pregando o TOGAF, para uma arquitetura que compreende um sistema ERP on-premis-
ses que esta conectado a um middleware orientada a mensagens e serao apresentados os

artefatos gerados em cada fase do ciclo ADM conforme o quadro 3.1.

3.1 Fase A

A entrega dessa fase consiste na concepcao de um modelo de alto nivel da solugao e
para isso sera elaborado um diagrama de componentes do que serd arquitetura alvo. No
diagrama de componentes (figura 9) o foco é a estrutura dos sistemas e suas intercone-
xo0es, incluindo o ERP, WMS (Warehouse Management System), o middleware, a solu¢ao

Splunk, bem como o moédulo de Machine Learning responsavel pela analise de anomalias.

Figura 9: Diagrama de componentes.

= ERP

Interface:
Gerencimamento de
Estoque e Pedidos

- Middleware Splunk - LogAnomaly (DL)
Interface: Log de > Interface: Painel de ”| Andlise de anomalias
Operagoes monitoramento

Y
WMS (externo)

Interface: Gerenciamento
de estoque e Pedidos

Fonte: Autor

Os componentes e conexoes do diagrama apresentado na figura 8 devem ser interpretados

da seguinte maneira:

o Sistema ERP: Representa o sistema interno da empresa que faz o gerenciamento

30

de inventario e pedidos. Esse sistema possui interfaces para enviar e receber dados

de estoque e pedidos.

o Sistema WMS: O componente WMS representa o sistema de gerenciamento de
armazém do parceiro logistico externo. Também possui interfaces para envio e

recebimento de dados de estoque e pedidos.

« Middleware: Esse componente representa o sistema que faz o intermédio da comu-
nicagao entre o sistema ERP da empresa e o WMS do parceiro logistico. Implementa
uma arquitetura de middleware orientada a mensagem, garantindo que ambos sis-
temas nao tenham comunicac¢ao direta entre si. Além disso, possui uma interface

com a solucao Splunk para o monitoramento de logs das interfaces.

« Splunk: E uma solugao WEB para monitoramento e analise de logs, esse compo-
nente processa os logs coletados do middleware. E possui uma interface que permite

gerar visualizagoes de status dos logs.

e LogAnomaly: Esse componente representa o modelo de Machine Learning que
realiza analise dos logs com anomalias. Conecta-se ao Splunk para consumir logs e

realizar analises em tempo real.

3.2 Fase B

Como descrito por Desfray e Raymond (2014) nessa fase é definida a arquitetura pela visao
do negodcio, o que sera feito através da elaboragdo de um diagrama funcional utilizando

BPMN (Business Process Model and Notation).

A BPMN é uma forma de notacgao utilizada na modelagem de processos de negocio. De
acordo com ABPMP (2013), essa metodologia para notagao é amplamente empregada
para descrever processos de negbcio visualmente, visando facilitar o entendimento entre
profissionais técnicos e de negdcios. No guia de conhecimento em gerenciamento de pro-
cessos de negécio, publicado pela ABPMP (Association of Business Process Management
Professionals Brasil em sua terceira versao, a BPMN é exaltada por prover uma notacao

de facil compreensao por diferentes stakeholders.

31

A estrutura da BPMN utiliza elementos visuais que representam: as ativadas, os even-
tos, gateways de decisao e de fluxo de sequéncia, dessa forma permitindo a elaboragao de
modelagens que ilustrem a relagao entre tarefas e decisdes ao longo de um processo. Por-
tanto, a BPMN pode ser entendida como uma linguagem essencial para a documentagao
e melhoria continua dos processos de negocio, destacando-se pela clareza e facilidade de

interpretacdo (ABPMP, 2013).

Figura 10: Modelagem utilizando notagdo BPMN.

E
2]
= (3 —_—
5s B—' 2 4@
Q |v
£ Coleta de Visualizagio
© Logs
Q
2 =
c|s
O |E
E o
£ Bl ol Bl
g‘ Treinamento Anailise dos Deteccéo de
- offline Logs anomalias
i
i
i
|
e — !
i
@
-
©
E v
L0 eeeme———— o=
3 2
! [
! |
! |
| i
] ! i
.2 | ! I ’()
»] ! s
= _ 3 i N30 Fim do processo
3) (Eriar i i 2 Analisar) sem sucesso & Corrigir & Iniciar o
] dmr:vvlmen.tc.i i ! regra de _ sim com base reprocessam
o -: e mve:_1:r|u ! i negécio yd na regra de ento da
9 b Saida ou ou pedido i 3 quebrada Possivel negdcio movimentag
.: = entradade | ! corracio? J
g\ é mercadoria 3 :
! i
2 i —
: i |
a v : ndo
H ETransmitir @ § — A &7 Realizar
4 interface N Movi i N ; = A
[+] interface do - —— sim movimentacd
- parao iddl valida? ERP
o o middleware micdiewars ~ one
E Fim do processo
com sucesso

Fonte: Autor.

Na figura 10 pode ser verificada a modelagem BPMN da arquitetura alvo na visdo do
negocio, retratando os principais elementos do fluxo e oferendo uma visao abrangente dos

principais componentes.

3.3 Fase C

32

A fase C, chamada de fase da arquitetura do sistema de informacao, pretende a elabora-

¢ao de um modelo onde esteja determinada de qual maneira o sistema sera utilizado na

empresa. Nessa fase o objetivo principal nao é o desenho de aplicagoes, mas sim elaborar

uma visao logica das etapas do processo (DESFRAY; RAYMOND, 2014).

Figura 11: Modelagem do diagrama de interagoes utilizando UML.

‘ERP

‘Middleware

Enviar interface

Acknowledgement

Acknowledgement

WMS

:Splunk

‘LogAnomaly

TelaDeMonitoramento

Validar formato

Gerar log

Solicitar Logs

Enviar Logs

Enviar interface

Acknowledgement

Enviar interface

Enviar interface

Acknowledgement

Validar formato

Gerar log

Solicitar Logs

Enviar Logs

Resultado da deteccio

Disponibi

Log
Parsing

Deteccdo de
Anomalia

ilizar resultado

Enviar Logs

Acknowledgement

Validar regras de negdcio

Registrar movimentacio

Fonte: Autor.

Enviar Logs

Resultado da deteccio

Disponibill

Log
Parsing

Deteccdo de
Anomalia

izar resultado

33

Segundo Desfray e Raymond (2014), o artefato central da fase C é um diagrama que
representa a arquitetura e posicionamento dos componentes da aplicacao e a defini¢ao
de suas interfaces e interconexdes. Para gerar esse artefato sera empregada a técnica
de diagrama de interagoes, comumente referido como diagrama de sequéncia (figura 11),
onde é possivel visualizar as mensagens trocadas entre as ocorréncias dos componentes da

aplicacgao.

O diagrama de interagoes foi elaborando utilizando UML (Unified Modeling Language),
que serve como forma de notagao padronizada amplamente utilizada no desenvolvimento

de sistemas, se tornando a lingua franca dessa area (WATSON, 2008).

3.4 Fase D

A fase D do ciclo ADM ¢é conhecida como a fase de desenvolvimento da arquitetura tecno-
logica. Neste estagio, ocorre a determinacao a arquitetura do ponto de vista de tecnologia.
Esta fase ¢ crucial para garantir a interoperabilidade e a integracao de tecnologias com o

restante da arquitetura corporativa (DESFRAY; RAYMOND, 2014).

Como artefato dessa fase foi elaborado o diagrama de camadas, utilizando a linguagem
UML. O diagrama foi divido em trés camadas, a primeira camada é a de interfaces,
nessa camada estdo representadas as interfaces do usudrio com sistema. Na segunda
camada estao contemplados os componentes e modulos funcionais. Ja na terceira temos

a representacao dos elementos de dados.

Na camada de interfaces existem trés elementos que representam as interfaces dos sistemas

ERP, WMS e o Monitor de Logs, pelas quais os respectivos usuarios interagem com eles:

o Interface do Sistema ERP: Os operadores e gerentes utilizam a interface do
ERP para gerenciar dados de pedidos, estoque e outras operagoes comerciais. O
sistema em questao apresenta informacoes processadas e atualizadas com base nas
transagoes registradas e armazenadas em seu banco de dados enas interagoes com

o sistema WMS por meio do middleware.

34

o Interface do Sistema WMS: Os operadores do armazém externo utilizam a in-
terface do sistema WMS para gerenciar a logistica, incluindo a entrada e saida de
produtos. O WMS atualiza os dados em tempo real com base nas informagoes re-
levantes enviadas pelo ERP através do middleware, refletindo o status do estoque e

dos pedidos.

o Interface Monitor de Logs: Analistas e operadores de TI (Tecnologia da Infor-
magao) utilizam a interface do Splunk para visualizar e monitorar, em tempo real,
os logs gerados pelo middleware. Permitindo analises detalhadas e fornece visao do
desempenho e possiveis anomalias, com alerta gerado pelo componente LogAnomaly

de Machine Learning.

Na segunda camada, denominada camada de servico, temos representados os seguintes

componentes:

e Processamento de Pedidos e inventario: Responsavel pelo processamento das
informacgoes de negdcios e comunicagao de dados relevantes ao processo ao sistema
WMS via o middleware, transacionando dados de pedidos e inventario, utilizadas

pelo WMS na atualizacao de suas operacoes logisticas, sincronizando os registros

nas interfaces do ERP e do WMS.

e Gerenciamento de Inventario: Processa os dados de movimentacoes de estoque
e pedidos do ERP por meio do middleware e disponibiliza essas informagoes na in-
terface para os usudrios de logistica, dependendo da consisténcia dos dados enviados

pelo ERP para uma visao atualizada das operacoes logisticas.

o Middleware: Um sistema de intermediacdo da comunicagdo orientado a mensa-
gens, agindo como agente intermedidario entre os sistemas ERP e WMS, transmitindo
mensagens de forma assincrona, registrando logs de transacoes e comunicagoes, os
quais sao enviados ao Splunk. Este middleware é vital para a integracao indireta e

segura dos sistemas, gerando logs para monitoramento e seguranca.

e Moédulo de Coleta de Logs: Através da aplicagao Splunk, os logs gerados pelo
middleware sdo coletados e passam pelo processo de parsing, gerando percepcoes

sobre o trafego de mensagens, desempenho e possiveis problemas. Esses logs sao

35

compartilhados com o LogAnomaly para a identificacdo de possiveis anomalias em
tempo real, contribuindo com os times responsaveis pelo monitoramento a detectar

falhas ou atividades incomuns.

e Moébdulo de Machine Learning: Aplica o modelo de Machine Learning conhecido
como LogAnomaly para analisar logs e identificar padroes incomuns que podem

indicar problemas, alertando através da interface com o Splunk.

Na terceira camada estao representados os elementos arquiteturais relacionados a persis-

téncia dos dados utilizados. Sendo eles:

« Banco de dados do ERP: Persiste dados de pedidos, estoque e transacoes relaci-
onadas ao ERP, enquanto os usudarios interagem com o sistema ocorre a atualizacao

dos dados.

« Banco de dados do Middleware: O banco de dados de um MOM armazena e
registra logs de todas as transagoes e comunicacoes entre os sistemas integrados.
Permitindo consultas histéricas, analise de desempenho e monitoramento em tempo
real. Esses dados sao essenciais para identificar anomalias e garantir a seguranca.

Essencial também para a operacao fluida e segura dos sistemas conectados.

« Banco de dados do Splunk: Registra todos os logs das transagoes intermediadas
pelo middleware entre ERP e WMS, mantendo histéricos que possibilitam consultas
e analises de desempenho. Esses logs sdo essenciais para o Splunk e o LogAnomaly,

usado para analises de anomalias.

« Banco de dados de Machine Learning:Armazena dados histéricos de logs para
o treinamento e atualizacdo do método de Machine Learning LogAnomaly. Esse
banco é crucial para manter o LogAnomaly atualizado, possibilitando assim que ele

aprenda com dados histéricos e melhore a deteccao de anomalias em tempo real.

Essas relacoes interligadas garantem que a operacionalizagdo e monitoramento dos siste-
mas ocorram com fluidez, com uma camada dedicada para cada funcao-chave: interface

de usuario, servico e dados.

Figura 12: Diagrama de Camadas.

36

@
(=] 2
£ Interface do Interface do InterLaec:ﬁomcsnmtor
S Sistema ERP Sistema WMS 9
E (Splunk)
h 4 Y
Processamento de Gerenciamento de Modulo de Coleta
Pedidos e Inventario Inventario de Logs
do ERP
«Comunigdo con] «Comunig&o corf] Médulo de Machine
Middleware» Middleware» Learning
Component Component
o
O
=
&
7]
k.
LogAnomal
Middleware «Co%nponeni»
«Comunigao 2 <<Comunicag;éo$]
ERP e WMS» Splunk»
Component Component
w
-]
3 R o BD Machine
(=] ERP Middleware SPLUNK
Learning

Fonte: Autor.

O diagrama de camadas (figura 12) proporciona uma visao detalhada das interagoes entre
os diversos componentes e sistemas, possibilitando o entendimento das dependéncias. A
utilizagao dessa técnica holistica garante que as estratégias de TI estejam alinhadas aos

objetivos de negdcio, assegurando uma infraestrutura tecnolégica robusta e eficiente.

Assim, a fase D, através do diagrama de camadas, nao apenas documenta a arquite-
tura tecnoldgica como também pode ser utilizada em futuras evoluc¢oes e adaptagoes,

fomentando um gerenciamento integrado e eficaz dos recursos empresariais (DESFRAY;

RAYMOND, 2014).

37

3.5 Modbdulo de Machine Learning

Como mencionado anteriormente, nesse trabalho esta sendo considerado a inclusao de um
modulo de Machine Learning na arquitetura de um processo de logistica empresarial e
o método escolhido foi o LogAnomaly. A implementacao desse modulo foi projetada em
conjunto com a solucao de monitoramento de logs de sistemas homonimo, desenvolvida
pela empresa Splunk. Nessa secao serao sera apresentado com mais detalhes como o

moédulo de Machine Learning estéa integrado na arquitetura.

O médulo em si pode ser compreendido em duas partes principais, uma dedicada ao
treinamento do modelo e outra responsavel pela detec¢ao de anomalias nos logs em tempo
real. A origem dos dados para o modelo serda o monitor Splunk que fara a coleta dos logs
gerados pelo middleware, a ferramenta de monitoramento por sua vez esta conectada ao
mo6dulo de Machine Learning por meio de uma API (Application Process Interface) e dessa
maneira recebera os arquivos de logs apds a atividade de log parsing que seré executada
ainda pela solugao Splunk. Em seguida se dard andlise de anomalia dos logs, o resultado
da analise dos logs e entao enviado para a ferramenta de monitoramento que disponibiliza

o resultado da analise via uma interface grafica.

Como mencionado, além da deteccao de anomalias em tempo real, o modelo também
possui um modulo de treinamento e re-treinamento. Nesse caso os dados brutos de logs
sdo enviados para um repositério de arquivos HDFS (Hadoop Distributed File System),
de forma que eles podem ser utilizados tanto em treinamentos como para a avaliacao do
modelo. No caso da fun¢do de retreinamento, um limite deve ser informado para dizer
qual nivel de degradacao de desempenho deve disparar uma necessidade de retreinamento

do modelo (CHEN et al., 2022).

Para modelar a arquitetura do modelo de Machine Learning foi empregada a notacao
de arquitetura AWS (Amazon Web Services), foram modelados os fluxos de detecgao
de anomalias em tempo real e o fluxo de treinamento e re-treinamento do modelo. No
primeiro, foi representado a conexao entre o middleware, o Splunk, o médulo de Machine
Learning e o dashboard que disponibiliza os resultados. Ja o fluxo de treinamento ilustra

o processo de armazenamento dos dados brutos de logs no HDFS, o treinamento inicial e

38

o disparo para o re-treinamento do modelo com base no estabelecido para a degradacao

do desempenho.

Figura 13: Moédulo de Machine Learning.

@

Middleware

.

Splunk Index

splunk >

B AWS Cloud

Fonte: Autor.

HDFS

Amazon AP
Gateway

o fa

Leg Anomaly

Amazon
CloudWatch

read

SageMaker Training

Trigger
re-rdining

LLLLLLS

Trrrrey

e |||

L
———
Monitor

Na elaboracao do diagrama ilustrado na figura 13 foram utilizados os seguintes compo-

nentes de arquitetura AWS:

o AWS Lambda:Para a execugio da anélise em tempo real dos logs (como inferéncia

do modelo de detec¢ao de anomalia). E para engatilhar o retreinamento quando o

limite minimo de desempenho estabelecido for atingido.

e Amazon S3: Para armazenamento temporario de arquivos de log entre Splunk e

o HDFS.

e Amazon EMR: Para gerenciar o armazenamento em HDFS, além de facilitar o

processamento de dados em lote.

« AWS SageMaker: Para treinamento e re-treinamento do modelo LogAnomaly.

39

e Amazon CloudWatch: Para monitorar o desempenho do modelo e disparar alar-

mes quando for necessario um re-treinamento.

A notacgao na arquitetura AWS foi escolhida pela facilidade no entendimento e ser profu-

samente utilizada na industria e na academia para ilustrar arquiteturas.

3.6 Analise e discussao dos resultados

Nesta secao serao discutidos os resultados durante a execugao da metodologia TOGAF

por meio do Architecture Development Method.

3.6.1 Resultado Ciclo ADM

Conforme exposto no capitulo anterior, foram selecionadas no escopo desse trabalho de
monografia as quatro primeiras fases do ciclo de desenvolvimento de arquitetura ADM. Na
primeira fase, identificada como fase A, como artefato dessa fase foi obtido um diagrama de
componentes e suas conexoes, fornecendo uma visao alto nivel do que seria a arquitetura

alvo, a qual se almejava conceber ao final das fases do ciclo.

Apos a conclusao do diagrama de componentes, se encerra a fase A e assim iniciando a
fase B, caraterizada por ser a etapa onde a arquitetura é apresentada na visao negbcio,
por esse motivo foi elaborado um diagrama de processos utilizando a notacao Business
Process Modeling Notation, dessa forma foi possivel gerar o artefato definido para essa
fase, a arquitetura no ponto de vista do negbcio. A principal preocupacao nessa etapa é
garantir que todos envolvidos no possam ter um entendimento adequado do diagrama e

consequentemente uma interpretacao correta da arquitetura.

Seguidamente a conclusao da fase B vem a fase da arquitetura na visdo de sistema da
informacao, identificada como fase C, aqui o artefato produzido foi um diagrama de
interagoes modelado em UML. O diagrama de interacoes facilita o entendimento e a deixa
clara as diferentes interagoes entre os componentes de um sistema, auxiliando na detecgao

de possiveis problemas de comunicagao e integragao. Na elaboracao de um diagrama desse

40

tipo é necessario em primeiro lugar ter o entendimento da interacdo entre os diferentes
componentes, além de assegurar que o diagrama nao deixe margem para ambiguidades de

interpretacao, o que levaria ao entendimento incorreto do comportamento do sistema.

A dltima fase do ciclo ADM, que foi executada e exposta no capitulo anterior, é a fase
D, o dominio arquitetural abordado nessa etapa ¢ o da tecnologia e consequentemente
o artefato gerado nela também esta ligado a esse dominio. O diagrama traz uma visao
compreensivel e sistematizada da arquitetura tecnoldgica, contribuindo para o planeja-
mento estratégico e a gestao de mudancgas durante o ciclo de vida do sistema, além de ter
adicionalmente o potencial de melhorar a comunicacao entre os times de desenvolvimento

e operacoes.

3.6.2 Arquitetura Machine Learning

A arquitetura elaborada no capitulo anterior mostra como poderia ser feita a integracao
bem-sucedida de um moédulo de Machine Learning a arquitetura de monitoramento de
logs da empresa, empregando a ferramenta Splunk para a coleta dos logs e parsing. Tal

integracao sustenta a deteccao e andlise de anomalias me logs de sistema em tempo real.

A dependéncia de componentes externos e distribuidos, como, por exemplo, o Amazon
EMR para realizar o armazenamento no HDFS e o Amazon SageMaker para o treinamento

do modelo, agregam complexidade para a gestao de infraestrutura e sincronizagio dos

dados.

Finalmente, a demanda por retreinamento automatico acarreta necessidade de que estra-
tégias de deteccgao eficazes sejam implementadas para identificar variagdoes no desempenho
do modelo sem gerar falsos positivos, garantindo que o retreinamento seja acionado sem-
pre que necessario. Nesse ponto destaca-se a importancia de uma arquitetura flexivel
e escalavel, bem como de um rastreamento ininterrupto das métricas e desempenho do

modelo.

41

3.7 Consideracoes do Capitulo

O capitulo destaca a importancia do efeito estruturante da metodologia TOGAF, aplicada
por meio das fases do ciclo ADM, para a evolugao de uma arquitetura. As fases A, B, C
e D oferecem um framework robusto que garante o desenvolvimento gradual e controlado
da arquitetura, possibilitando iteracoes entre as fases para gerar incrementos sucessivos.
Durante essas etapas, foram produzidos artefatos essenciais, como diagramas de processos
de negdcios, interagoes de sistemas e infraestrutura tecnoldgica, assegurando clareza e

coeréncia na proposta arquitetural.

A integracao de servigos como Amazon EMR e SageMaker ao médulo de Machine Learning
trouxe valor significativo ao viabilizar o treinamento e re-treinamento automatizado e
escalavel dos modelos. No entanto, esses componentes introduziram desafios adicionais,
como o gerenciamento de infraestrutura e a sincronizacao de dados. A necessidade de um
processo de re-treinamento automatico enfatizou a importancia de estratégias robustas de
monitoramento do desempenho dos modelos, a fim de prevenir alarmes falsos e garantir

a eficicia do sistema.

A analise realizada confirma que a arquitetura concebida é funcional, flexivel e modular,
permitindo ajustes conforme os requisitos evoluam. A aplicagdo da metodologia TOGAF
e das fases do ciclo ADM foi crucial para a criacao de uma arquitetura escalavel e capaz
de evoluir continuamente ao longo do tempo. A definicdo de um ponto de partida co-
mum, representada pela arquitetura base, e a adaptagao do ciclo ADM as necessidades

do trabalho foram passos fundamentais nesse processo.

O capitulo também abordou a localizacao e integragao do modulo de Machine Learning
na arquitetura, evidenciando como ele se conecta com os demais componentes. A apre-
sentacao das fases iniciais do ciclo ADM, dos artefatos gerados e dos métodos empregados

reforga o carater adaptavel e estruturado da metodologia TOGAF.

42

4 CONSIDERACOES FINAIS

Este capitulo apresenta as conclusoes gerais do trabalho, suas principais contribuicoes e

sugestoes para trabalhos futuros.

4.1 Conclusoes

A utilizacao da metodologia TOGAF, trilhando as fases descritas no método de desenvol-
vimento de arquiteturas, possibilitou o desenvolvimento de uma arquitetura integrada e
escalavel, que apoia o monitoramento e a anélise de logs em tempo real via um médulo de
Machine Learning. A implementacao das fases do ciclo, iniciando na fase A até a arqui-
tetura tecnologica na fase D, proporcionou uma estrutura coerente e bem documentada,

facilitando a conformidade entre os objetivos de T1I e as metas de negdcios.

Empregando o modelo LogAnomaly, aliado ao monitoramento de logs com Splunk, de-
monstrou-se que uma solugao que combina dois processos essenciais, a deteccao de anoma-
lias em tempo real e retreinamento automatizado do modelo quando necessario, é viavel.

Garantindo uma arquitetura que proporciona alto desempenho e agilidade ao sistema.

4.2 Contribuicoes do Trabalho

Este trabalho de monografia oferece contribuigoes importantes para a pratica e pesquisa
em arquitetura corporativa e integracao de Machine Learning. Em primeiro lugar, expoe
a eficdcia do TOGAF como um direcionador para o trabalho de construir uma arquitetura

modularizada e adaptavel em ambientes complexos.

Adicionalmente, a integracao do método LogAnomaly com servigos como Amazon EMR
e SageMaker adiciona uma camada de inteligéncia ao sistema de monitoramento, ampli-
ficando as capacidades de deteccao de anomalias e possibilitando retreinamento continuo

com base no desempenho.

43

4.3 Trabalhos Futuros

Para pesquisas futuras, recomenda-se explorar a extensao desta arquitetura para incluir
analises preditivas mais avancadas, aumentando a capacidade de reconhecer falhas e apri-
morar processos logisticos. Outra area de desenvolvimento poderia ser a implementagao
de uma camada de orquestracao seria utilizada na automatizagdo do gerenciamento da

infraestrutura e o ciclo de retreinamento com mais precisao.

44

REFERENCIAS

ABPMP, Brasil. BPM CBOK V3.0. Association of Business Process Management
Professionals, 2013.

CHARITY MAJORS, Liz Fong-Jones; MIRANDA, George. Observability
Engineering: Achieving Production Excellence. Edicao: Kate Galloway.

O'REILLY, 2022.

CHEN, Zhuangbin et al. Experience Report: Deep Learning-based System Log
Analysisfor Anomaly Detection. Association for Computing Machinery, 2022.
DOLI: <.org/10.1016/j.jss.2022.111537>.

DE LUNETTA E RODRIGUES GUERRA, Avaeté. METODOLOGIA DA PESQUISA
CIENTIFICA E ACADEMICA. Revista OWL, Zenodo, 2023. DOT:
<10.5281/ZENODO.8240361>.

DESFRAY, Philippe; RAYMOND, Gilbert. Modeling Enterprise Architecture
with TOGAF. Edicao: Andrea Dierna. Elsevier, 2014.

ETZKORN, Letha Hughes. Introduction to middleware.pdf. Taylor & Francis
Group, 2017.

HARJUNPAA, Niklas; SIEKKINEN, Matti. Master’s Programme in Computer,
Communication and Information Sciences. 2023. Diss. (Mestrado) — Aalto

University School of Science.

KENT, Karen; SOUPPAYA, Murugiah. Guide to Computer Security Log Management.
Special Publication 800-92, 2006.

WATSON, Andrew. Visual Modelling: past, present and future, 2008.

