UNIVERSIDADE DE SAO PAULO

ESCOLA DE ENGENHARIA DE SAO CARLOS

DEPARTAMENTO DE ENGENHARIA ELETRICA
E DE COMPUTACAO

Prototipo de uma central de controle para
automacao residencial compativel com o projeto

IoTivity e controlada por aplicativo Android

Autor: Thiago Ghidoni Mantovan

Orientador: Prof. Dr. Evandro Luis Linhari Rodrigues

Sao Carlos

2016

Thiago Ghidoni Mantovan

Prototipo de uma central de controle
para automacao residencial compativel
com o projeto IoTivity e controlada por

aplicativo Android

Trabalho de Conclusdo de Curso apresentado
a Escola de Engenharia de Sao Carlos, da

Universidade de Sao Paulo

Curso de Engenharia Elétrica - Enfase em Eletronica

ORIENTADOR: Prof. Dr. Evandro Luis Linhari Rodrigues

Sao Carlos

2016

AUTORIZO A REPRODUGAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

M293p

Mantovan, Thiago Ghidoni

Protdétipo de uma central de controle para automacédo
residencial compativel com o projeto IoTivity e
controlada por aplicativo Android / Thiago Ghidoni
Mantovan; orientador Evandro Luis Linhari Rodrigues.
S&o Carlos, 2016.

Monografia (Graduacdo em Engenharia Elétrica com
énfase em Eletrdnica) -- Escola de Engenharia de Sé&o
Carlos da Universidade de S&o Paulo, 2016.

1. Automagdo. 2. IoTivity. 3. Android. 4. Mobile.
5. Internet das Coisas. 6. Internet of things. I.
Titulo.

FOLHA DE APROVACAO

Nome: Thiago Ghidoni Mantovan

Titulo: “Protétipo de uma central de controle para automacgao
residencial compativel com o projeto loTivity e controlada por
aplicativo Android”

Trabalho de Concluséo de Curso defendido e aprovado
em=1 106 | 20 /6

e ; .
e V7 NN Ve s = ~
com NOTA /2 (€7 | ¢/a/c)), pela Comissédo Julgadora:

Prof. Associado Evandro Luis Linhari Rodrigues - (Orientador -
SEL/EESC/USP)

Prof. Dr. Dennis Brandao - (SEL/EESC/USP)

Prof. Dr. Maximiliam Luppe - (SEL/EESC/USP)

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Prof. Dr. José Carlos de Melo Vieira Junior

Dedicatoria

Aos meus pais, Mércio e Selma, ao meu irmdo, Matheus, ao meus avds, Marlene, Janitis
e Waldemar e ao meu tio e tias, Dorival, Carla e Marcia, por me apoiarem e incentivarem,

cada um a sua maneira.

Thiago Ghidoni Mantovan.

Agradecimentos

A Deus, por tudo que ja ocorreu em minha vida.

Aos meus pais, Méarcio e Selma, e a0 meu irmao, Matheus, por todo o apoio em minhas

decisoes.

e Aos meu outros familiares, que colaboraram na minha formacao tanto académica quanto

pessoal.

e Aos meus companheiros de classe, por compartilharem todas as alegrias e angustias.

Ao Prof. Dr. Evandro Luis Linhari Rodrigues, pela orientacdo e conselhos dados a

mim.
e A todos os professores que fizeram parte dos diferentes momentos de minha formacao.

e Ao CNPq, por ter me proporcionado a experiéncia de realizar um intercambio.

Thiago Ghidoni Mantovan.

"Se algo é importante o suficiente, vocé deve tentar.
Mesmo que o provavel resultado seja o fracaso."”

Elon Musk

Resumo

Considerando o grande crescimento tanto das discussdes quanto das aplicacdes envol-
vendo o tépico Internet das Coisas, esse projeto tem o objetivo de criar o prototipo de uma
central de controle para um sistema de automacao residencial controlado via comunicagdo
sem fio por meio de um aplicativo Android. O diferencial desse projeto € a utilizacdo do pro-
jeto IoTivity que € uma iniciativa criada pelo Open Internet Consortium e patrocinada pelas
maiores empresas do ramo de tecnologia e que visa criar uma estrutura que possa proporci-
onar uma féacil integracdo de diversas plataformas e sistemas operacionais com as diversas
tecnologias de comunicag@o sem fio. O projeto apresenta um protétipo que oferece rapida
resposta além de ser compativel com o projeto IoTivity e de fornecer a possibilidade do uso
de outros dispositivos e sensores que ainda ndo seguem os padrdes estabelecido pelo OIC.
Esse protétipo € o primeiro passo para uma nova onda de dispositivos que seguirdo os mes-
mos padrdes e criardo uma situacdo na qual todos os dispositivos se comunicardo criando
uma rede com controle descentralizado, aumentando a eficiéncia energética e promovendo

um ambiente coeso que possa ser controlado por meio de um tnico aplicativo.

Palavras-Chave: Automacgao, loTivity, Android, Mobile, Internet das Coisas

Abstract

Considering the huge growth in both discussions and applications involving the topic In-
ternet of Things, this project aims to create a prototype of a home automation control center
that is controlled wirelessly by an android app. The differential of this project is the inclusion
of the IoTivity project which is an initiative created by the Open Internet Consortium, OIC,
and sponsored by the major companies in the technology industry and aims to create a fra-
mework that provides an easy integration of different platforms and operational systems with
the various wireless technologies. The project features a prototype that offers quick response
in addition to being compatible with the IoTivity project and provide the possibility of using
other devices and sensors that do not even follow the standards established by the OIC. This
prototype is the first step to a new wave of devices that follow the same standards and create
a situation in which all devices communicate creating a network with decentralized control,
increasing energy efficiency and promoting a cohesive environment that can be controlled

through a single application.

Keywords: Automation, IoTivity, Android, Mobile, Internet of Things.

Lista de Figuras

1.1
1.2

2.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
43
4.4

Grifico Gartner Hype Cyclede 2011. 26
Grifico Gartner Hype Cyclede 2014. 27
Blocos Essenciais da estrutura proporcionada pelo IoTivity [27]. 39
Visdo geral das possiveis conexdes dosistema 41
Placa Intel Galileo. 43
Moédulo ESP8266 e NodeMCU DevKitv0.9.. 44
Fluxograma Servidor Galileo 49
Fluxograma ESP8266 50
Atrasodaconexao.l o 54
Atrasodamensagem e e 54
Atrasodaconexaol e 55
Atraso damensagemol e e e e 56

Lista de Tabelas

4.1 Atrasos do SIStEMA e e e e e e

Siglas

IoT
OIC
OCF
npm
RFID
1P
HTTP
HTML
CSS
MQTT
SOC
SOM
SBC
RISC
IEEE
IDE
API

Internet of Things - Internet das Coisas

Open Internet Consortium

Open Connectivity Foundation

Node Package Manager

Radio-Frequency ldentification - Identificagdo por Radio Frequéncia

Internet Protocol - Protocolo Internet

HyperText Transfer Protocol - Protocolo de Transferéncia de HiperTexto
HyperText Markup Language - Linguagem de Marcacao de HiperTexto

Cascade Style Sheets - Folhas de estilo cascateadas

MQ Telemetry Transport - Transporte de Telemetria MQ

System on chip - Sistema em chip

System on module - Sistema em médulo

Single-board computer - Computador em placa Gnica

Reduction Set Instruction Computer - Computador com conjunto reduzido de instrucdes
Instituto de Engenheiros Eletricistas e Eletronicos

Integrated Development Environment - Ambiente de Desenvolvimento Integrado

Application Programming Interface - Interface de Programcacao de Aplicativos

Sumario

1 Introducio

2

3

I.1 Motivac@o o o e e e
1.2 Objetivo o
1.3 Justificativao
1.4 Organizacdodo Trabalho

Embasamento Teorico

2.1
22

2.3

24

2.5

2.6

Sistemas Embarcados e

Protocolos de Comunicacdo

22.1

Conjunto de Protocolos de Internet

Yocto Project

Programacdo para Node.js (JavaScript)

Linux

25.1

Open Internet Consortium

2.6.1

Projeto Iotivity

Materiais e Métodos

3.1

Materiais e
3.1.1 ImtelGalileo
3.1.2 ESP8266
Métodos
3.2.1 Implementacdo Servidor Galileo
3.2.2 Implementagdo Médulo ESP8266
3.2.3 Implementacdo Android
3.2.4 Implementagdo IoTivity

23

25
28
28
28
28

31
31
32
32
34
35
36
37
37
38

24

4 Resultados e Discussoes

5 Conclusoes

5.1 Sequéncia do Trabalho . . .

A Cédigos criados para o projeto

A.1 Codigo Galileo
A2 Codigo ESP8266
A.3 Cédigo Android

I Cédigos utilizados

I.L1 Cédigo IoTivity
IL1.1 Cdédigo Placa

[.1.2 Cddigo Computador

53

57
59

65
65
66
68

25

Capitulo 1

Introducao

Muito se tem discutido, recentemente, acerca da Internet of Things ou em portugués a
Internet das Coisas no entanto, o conceito de dispositivos inteligentes conectados em uma
rede ja era aplicado muito antes do termo especifico ser cunhado. O primeiro registro de um
dispositivo conectado é do comego da década de 1980 onde membros do departamento de
Ciéncias da Computagao da Universidade Carnegie-Mellon nos Estados Unidos conectaram
uma méaquina de refrigerantes ao computador do departamento e a partir dessa conexao ti-
nham acesso a quantidade de garrafas de refrigerante contidas na maquina e se essas garrafas
estavam geladas ou nao [1].

Apesar da mdquina de refrigerante ter sido o primeiro dispositivo conectado a uma rede, o
aspecto internet ainda ndo estava presente uma vez que ainda nao havia surgido a World Wide
Web. Todavia, em 1990, John Romkey criou o primeiro dispositivo conectado a internet, uma
torradeira que podia ser ligada e desligada através da internet [1].

Finalmente, em 1999 o termo foi cunhado por Kevin Ashton, diretor executivo do Aito-1D
Center, ao realizar uma apresentacdo para a Procter e Gamble (P&G) na qual ele fazia uma
ligacdo entre a ideia de chips RFID na produ¢do da P&G e um dos assuntos que estava em
alta no momento, a Internet. Em paralelo, Neil Gershenfeld do MIT Media Lab estava des-
crevendo algo semelhante em seu livro "When Things Start to Think"onde ele cita: "Parece
que o rapido crescimento da World Wide Web pode ter sido a faisca que estd promovendo a
verdadeira explosdo, onde as coisas comec¢am a usar a Internet’ [1].

A discussdo e o desenvolvimento nesse topico foram muito grandes nos dltimos 15 anos,
ocorreram desde diversos relatérios, conferencias e publica¢des a diversas matérias em jor-
nais e revistas de grande circulagdo. Entre 2008 e 2009, a Internet das Coisas nasceu, uma

vez que existiam mais dispositivos do que pessoas conectadas a internet e em 2010 o nimero

26

de dispositivos ja era de 12,5 bilhdes enquanto a populacao mundial estava em 6,8 bilhdes,
ocorrendo pela primeira vez o fato de mais dispositivos do que pessoas estarem conectados a
internet.

O surgimento de novas plataformas, novas normas, novos hardware e software acelera-
ram o crescimento da Internet das Coisas pois promoveram uma maior acessibilidade para
pequenos desenvolvedores o que aumentou o interesse nesse topico. Um exemplo dessas ino-
vagdes que popularizaram o desenvolvimento foi o surgimento de placas de desenvolvimento
de hardware sendo as mais famosas o Arduino e a Raspberry Pi.

Outro componente que ndo possuia tanta relevincia a alguns anos atrds e que serd um
diferencial para manter o crescimento nesse topico € o IPv6, pois esse novo protocolo dis-

2128 enderecos, que

ponibilizard uma gama de enderecos quase infinita, para ser exato serao
serd capaz de absorver todas as inovagdes que envolverdo o acesso a internet, uma vez que o
antigo protocolo, IPv4, atingiu o seu mdximo nimero de enderecos e seria um gargalo para o
continuo desenvolvimento de novas aplicacdes.

Juntamente com as inovagdes, diversas conferencias, relatérios e a entrada de grandes
empresas no desenvolvimento e marketing desse topico fizeram com que ele fosse adicio-
nado em 2011 ao Gartner Hype Cycle, como poder ser observado na figura 1.1, na categoria
technology trigger, que representa tecnologias em seus estagios iniciais com poucos produtos

realmente prontos, com viabilidade comercial ndo comprovada porem com grande publici-

dade [2].

Internet TV

NFC Payment

Private Cloud Computing

Augmented Reality

Cloud Computing

Media Tablet

Virtual Assistants

& In-Memory Database Management Systems
) Gesture Recognition

.UMachme-lo-Machine Communication Services

expectations
Activity Streams
Wireless Power
Social Analyucs

3D Printing

Image Recognition

Context-Enriched Services

Speech-to-Speech Translation

| Internet of Things

Natural Language Question Answering

| Mobile Robots Location-Aware Applications

"Big Data" and Extreme Information {B»
Processing and Management

Mesh Networks: Sensor

g
\)& }f/‘t Speech Recognition
Social TV Predictive Analytics
,:f Cloud/Web
Video Analytics for Customer Service @ b’_Plallorms Mnblle Application Stores
Computer-| ‘Brain Interface, Hosted Vi rtual Biometric Authentication Methods
Quantum Computing, Desktops \dea Management
|
Human Augmentation Virtual w“'lds 85;2:':‘;,?;?;"
3D Bioprinting
E-Book Readers
As of July 2011
Technology ::;Takt:; Trough of Slope of Enlightenment Platasu of

Trigger Expectations Disillusionment Productivity

time ¥
Years to mainstream adoption: cbsolete

Clessthan2years ©O2toS5years @ 5to10years A morethan 10years @ before plateau

Figura 1.1: Gréfico Gartner Hype Cycle de 2011.

27

Em 2014, o tépico atingiu o ponto de peak of inflated expectations, como pode ser obser-
vado na figura 1.2, que representa o ponto de mais alta expectativa em relagdo ao assunto, o
surgimento da divulgacdo de alguns primeiros sucessos e de fracassos também e da tomada

de acdes por parte de algumas empresas interessadas no assunto [3].

expectations Internet of Things
A Natural-Language Question Answerng
P 1L !
Speechto-Speech Transiation — o 8T g
Autonomous Venicles
Cryplocurrencies
SmanAddsors ,. %\—Cnmple:-Ewan‘rncesslng
Data Science O ®Big Data
Prescriptive Anahtics & In-M ; Database yetems
Neurobusiness & Content Analytics
Biochips \
| \
Affactive Comnuhngl é?;;ﬁ-g;?.ﬂcomumg M(Ew-—— —
SmartRobots § @ Aug mle nted Realit “"“"-WI SpaschRacoaniion
3D Bioprinting Systems @ \ st o - Consumer Telematics
Volumetric and Holographic Displays i Communication /‘fq 30 Scanners
Software-Defined Anything \/ senices .(f
Quantum Computin -
Human —wnmer?ta“ o Quantified Self - Hibietisam ‘E Enlerprise 30 Printing
Brain-Computerlmedace_/:_ H'ﬁ Activity Streams
Connected Home —f ﬁ) e In-M ¢ Analy
| n ti Memory Analytics
(,-‘ Cloud c”'“p‘,;"lF"g T Gesture Control
Virtual Personal Assistants ‘— SmartWorkspace Virual Reality

Digital Security
Bioacoustic Sensing,
As of July 2014

: Peak of
Innovation Inflated Trough of Plateau of

Slope of Enlightenment

Trigger Expectations Disillusionment Productivity
time L
Plateau will be reached in: SRaS
Olessthan 2years ©2to5years @5to10years A morethan 10years @ before plateau

Figura 1.2: Gréfico Gartner Hype Cycle de 2014.

Com base nesse ciclo, a Internet das Coisas atingira o ultimo nivel, plateau of productivity,
que representa o comeg¢o da ado¢do por grande parte da populagdo, a viabilidade por parte
do fornecedor fica mais clara e a grande aplicabilidade e importancia da tecnologia oferecem
um retorno mais concreto, entre 5 e 10 anos [3].

Mas qual serd o proximo passo? Em um artigo publicado em 1999 na revista de neg6-
cios BusinessWeek que trazia ideias para o século XXI, uma delas era de que o planeta seria
envolvido por um tipo de pele eletronica. Sendo que essa pele seria constituida por milhdes
de dispositivos de medicdo: termostatos, detectores de poluicdo, cameras, microfones e di-
versos outros sensores. E esses dispositivos iriam testar € monitorar as cidades, os animais, a
atmosfera, as rodovias, a nossa comunicagdo e até nossos corpos [4].

Analisando o artigo e observando os avancos obtidos nessa drea nos tltimos anos podemos
ver que estamos seguindo o caminho citado e que a evolucdo disso € o fim da necessidade de
uma central que controle os dispositivos pois eles serdao capazes de trocar informacdes entre
eles e realizar acdes autdbnomas com base nas preferencias ja observadas dos usudrios.

E € baseado nessa visdo e no desenvolvimento que estd ocorrendo no momento, que esse

projeto tem o intuito de ser um passo inicial para esse novo cendrio que estd sendo imaginado

28

e construido.

1.1 Motivacao

A motivagdo deste trabalho se deu apds a realizacdo da disciplina SEL0373 - Projeto
de Sistemas Digitais na qual foi desenvolvido um sistema inicial de automacao residencial
utilizando a placa Intel Galileo e alguns sensores de modo a simular o funcionamento de
diversos dispositivos em uma residéncia.

Além da disciplina cursada, outro fator que influenciou nessa decisdo € a magnitude que
0 assunto internet das coisas tomou nos ultimos anos, a diversa gama de aplicagdes nas quais

ele pode ser usado e uma excelente perspectiva de crescimento desse setor nos proximos anos.

1.2 Objetivo

O objetivo desse trabalho € criar um protétipo de uma central de controle para automagao
residencial que esteja em conformidade com os padrdes definidos para a Internet das Coisas
pelo Open Internet Consortium, que esteja preparado para integrar dispositivos que utilizem
o projeto IoTivity, além de oferecer a possibilidade do uso de dispositivos independentes
produzidos especialmente para esse sistema.

Para mensurar se o objetivo foi alcancado, serd realizado um teste de laténcia do sistema
e um teste com exemplos fornecidos pelo projeto IoTivity para confirmar a integracdo das

funcionalidades oferecidas por essa iniciativa.

1.3 Justificativa

A justificativa deste trabalho € criar uma aplicagdo utilizando o que h4 de mais avangado
no tépico Internet of Things, que esteja dentro das especificacdes que estdo sendo criadas

pelo OIC e que gere conhecimento para trabalho futuros préprios ou de terceiros.

1.4 Organizacao do Trabalho

Este trabalho estd distribuido em sete capitulos, incluindo esta introdug¢do, dispostos con-
forme a descri¢do que segue:

Capitulo 2: Descreve os conceitos e ferramentas utilizados para a produgdo deste trabalho

29

Capitulo 3: Discorre sobre os materiais € métodos utilizados durante o desenvolvimento
deste projeto

Capitulo 4: Apresenta os resultados obtidos e discute o grau de satisfag@o atingido além
da relevancia do projeto

Capitulo 5: Conclui sobre o trabalho ponderando os avancgos alcangados e 0s obstaculos

encontrados além de apresentar possiveis modificagdes ou evolugdes para trabalhos futuros

30

31

Capitulo 2

Embasamento Teorico

O projeto se baseia em trés pilares: sistemas embarcados, protocolos de comunicagdo e o

projeto Iotivity. Uma visdo geral sobre esses topicos € providenciada a seguir.

2.1 Sistemas Embarcados

Um sistema embarcado € um sistema baseado em um microprocessador que € construido
para realizar uma ou diversas tarefas e que nio € projetado para que o usudrio final possa
programd-lo. Geralmente, o uso de sistemas embarcados tem como objetivo tanto de fornecer
dados quanto de realizar tarefas previamente programadas instantaneamente visto que foram
projetados para realizar tais tarefas mais eficientemente que outros sistemas de uso mais
generalizado [5].

Uma evolugdo dos sistemas embarcados mais convencionais sio os single-board compu-
ters, ou SBCs, que significam computadores de placa tnica, que possuem além do micropro-
cessador, a memoria, entradas e saidas e outras caracteristicas requeridas para um computa-
dor funcional, tudo em um unica placa. Alguns exemplos de SBC sdo a Raspberry Pi [6], a
BeagleBone Black [7], os Arduinos [8], a Intel Galileo [9].

Com a melhora na processo de fabricagdo de chips integrados que proporcionou aumentar
muita a densidade de componentes presentes em um chip, surgiram os systems on a module,
SOMs e os systems on chip, SOCs, que significam respectivamente sistemas em um moédulo e
sistema em um chip. Esses sistemas oferecem desde conexdes Wi-Fi e Bluetooth a até entrada
e saidas digitais e analdgicas. Exemplos desses sistemas sdo o Intel Edison [10], ESP8266
[11], as placas Colibri da Toradex [12].

Os sistema embarcados variam desde dispositivos portateis como reldgios digitais e toca-

32

dores de MP3, a até grandes instalacdes como semaforos, controladores de fabricas e outros
muito complexos como veiculos, aparelho de ressondncia magnética e outros. A comple-
xidade pode variar desde um tnico microcontrolador a até unidades que necessitem de de
vdrios microcontroladores.

A comunicacdo com o mundo fisico € feita por meio de periféricos como interfaces de
comunicacdo serial, como RS-232, interface de comunicagdo sincrona, como SPI e I12C, USB,

placas de rede, entradas e saida digitais ou analdgicas e outros.

2.2 Protocolos de Comunicacio

No ambito de telecomunicagdes, um protocolo de comunicagcdo € um conjunto de regras
que permite que dois ou mais dispositivos de um sistema de comunicagdo transmitam infor-
macao por meio de uma variagdo de uma quantidade fisica. Essas s@o as regras ou padroes
que definem a sintaxe, a semantica e a sincroniza¢do da comunicagdo além de possiveis méto-
dos de recuperacao de erros. Os protocolos podem ser implementados em hardware, software
ou ambos [13].

Sistemas de comunicacdo usam formatos(protocolos) bem definidos para a troca de men-
sagens. Esses protocolos devem ser acordados previamente pelas partes envolvidas. Para
alcancar esse acordo, os protocolos podem se tornar padrdes técnicos.

Os protocolos devem especificar as regras de uma transmissao de mensagens entre siste-
mas de comunicacao e por isso os seguintes topicos devem ser definidos: formato de dados,
formato de endereco, mapeamento de endereco, roteamento, detec¢do de erros, perda de in-

formacao, controle de sequéncia, direcao do fluxo de dados e fluxo de dados.

2.2.1 Conjunto de Protocolos de Internet

O conjunto de protocolos de internet € o0 modelo de conexdes e conjunto de protocolos
utilizados para a internet e redes semelhantes. Geralmente conhecido como TCP/IP, porque os
o protocolo de controle de transmissdo, TCP, e o protocolo de internet, IP, foram os primeiros
a serem definidos durante o desenvolvimento [14].

O TCP/IP proporciona comunica¢io ponta a ponta especificando como os dados devem
sem empacotados, enderecados, transmitidos, roteados e recebidos. Essa funcionalidade € or-
ganizada em quatro camadas abstratas que sao utilizadas para classificar os outros protocolos.

De baixo para cima, tem-se a camada de liga¢do, contendo os métodos de comunicagdo para

33

dados que se mantenham dentro de um segmento da rede, a camada de internet, conectando
as redes independentes, a camada de transporte, que gerencia a comunicagdo entre hosts € a

camada de aplicacao, que proporciona troca de dados entre processos para as aplicacdoes.

Protocolo de Transferéncia de Hipertexto - HTTP

O protocolo de transferéncia de hipertexto, ou HTTP, é um protocolo de aplicacdo para
sistemas de informacdo de hipermidia colaborativos e distribuidos [15]. O HTTP € a base da
comunicacao de dados da World Wide Web.

Hipertexto € um texto estruturado que usa ligacdes l6gicas (hyperlinks) entre nés contendo
textp. O HTTP € o protocolo que troca ou transfere hipertexto. Ele funciona como um
protocolo de pedido-resposta no modelo cliente-servidor de computacio. O cliente submete
uma mensagem de pedido HTTP para um servidor. O servidor que providencia os recursos,
como arquivos HTML e outros, retorna uma mensagem resposta para o cliente. A respostas
contém a informacao do estado do pedido e também pode retornar um contetido no corpo da
mensagem.

Em sua defini¢ao, € presumido o uso de um protocolo da camada de transporte confidvel e
o TCP € geralmente utilizado. Entretanto, o HTTP pode ser adaptado para o uso de protocolos

nao tao confidveis como o User Datagram Protocol, ou UDP.

Constrained Application Protocol - CoAP

O constrained application protocol, ou CoAP, é um protocolo de software criado para ser
utilizado em dispositivos eletronicos bem simples, permitindo a eles comunicagdo interativa
pela internet [16]. E direcionado a pequenos sensore de baixa poténcia, vilvulas e outros que
precisam ser controlados ou supervisionados remotamente.

O CoAP € um protocolo da camada de aplicacio direcionado a dispositivos com poucos
recursos. Foi desenhado para ser de fécil tradug¢do para o HTTP para uma simples integracao
com a web além de possuir recursos especializados como suporte a multicast, baixo gasto
com processamento em excesso € alta eficiéncia. E esses sdo fatores determinantes para
configur-lo de extrema importancia para a [oT e dispositivos com comunica¢do maquina a
maquina.

O CoAP usa dois tipos de mensagens, pedidos e respostas, usando um cabegalho simples
de formato bindrio. Ele é por padraoligado ao UDP mas pode alternativamente fazer uso

de outro protocolo para uma maior seguranca. Além disso, oferece suporte para diversas

34

linguagens como Java, Python, C, Ruby e vérias outras.

Message Queue Telemetry Transport - MQTT

O message queue telemetry transport, ou MQTT, é um protocolo de mensagens leves
para sensores € pequenos dispositivos méveis otimizado para redes TCP/IP ndo confidveis
e de alta laténcia, que necessitem de rastro de c6digo pequeno ou possuem banda limitada
[17]. O sistema de troca de mensagens € fundamentado no modelo publicador-subscritor e
requer um intermedidrio. Esse intermedidrio € o responsdvel por distribuir as mensagens aos
clientes interessados baseado no tépico da mensagem.

O MQTT define métodos para indicar a acdo desejada a ser realizada. Esses métodos
sdo: Connect, espera uma conexao ser estabelecida com o servidor, Disconnect, espera que o
cliente termine todo o trablaho e depois finaliza a sessdo, Subscribe, se cadastra para receber
atualizacdes dos valores dos topicos desejados e Publish, publica um valor para o tépico

especificado.

2.3 Yocto Project

O Yocto Project é um projeto colaborativo de cédigo aberto que providencia modelos,
ferramentas e métodos para auxiliar a criagdo de sistemas embarcados baseados em Linux ndo
importando a arquitetura do hardware. O projeto tem como objetivo facilitar o trabalho dos
desenvolvedores de sistemas customizados de Linux suportando as arquiteturas ARM, MIPS,
PowerPC e x86. Uma parte essencial disso € o sistema de construc¢ao, baseado na arquitetura
OpenEmbedded, que possibilita aos desenvolvedores criarem suas proprias distribui¢des de
Linux especificas para o seu ambiente de trabalho. Essa implementacdo da OpenEmbedded
¢ chamada de Poky [18].

Construir a correta distribuicdo de Linux para os dispositivos conectados pode ser de-
vagar e cara, além de que juntar todas as pecas necessdrias para cada dispositivo causa aos
desenvolvedores problemas de escalabilidade e incompatibilidade. O Yocto Project consegue
minimizar esses problemas pois oferece customizacao das caracteristicas de uma distribui¢ao
por meio do uso de uma arquitetura com camadas com pacotes pré-moldados, chamados de
receitas, que fornecem as instru¢des de construcdo para os pacotes de rede, graficos e muitos
outros. E por isso que o Yocto Project é considerado fundamental para o avango e crescimento

da Internet of Things.

35

Um dos diferenciais do Yocto Project € a grande rede de parceiros de hardware que for-
necem camadas atualizadas e bem gerenciadas oferecendo suporte as principais arquiteturas
e isso fornece uma base para dispositivos bem diferentes poderem ter acesso a0 mesmo soft-
ware e bibliotecas. Outro diferencial é a comunicagdo pois s@o necessarios diversos padroes
de comunicacdo e protocolos para que os dispositivos possam se comunicar € 0 Yocto Project
oferece camadas que sdo capazes de realizar a transferéncia de dados utilizando as diferentes

especificagdes de cada protocolo.

2.4 Programacao para Node.js (JavaScript)

JavaScript é uma linguagem de programacao interpretada de alto nivel que segue as espe-
cificacdes do padrao ECMAScript. Juntamente com HTML e CSS, é uma das trés tecnologias
fundamentais da produg¢ao de contetdo para internet € a maioria dos sites a emprega e é supor-
tada por todos os navegadores modernos sem a necessidade de uso de plug-ins [19]. Apesar
de compartilhar a nomenclatura, a sintaxe e algumas bibliotecas padrdo, as linguagens JavaS-
cript e Java ndo sdo relacionadas e possuem diferentes semanticas. A sintaxe da JavaScript é
derivada da linguagem C.

A linguagem JavaScript possui trés principais interpretadores sendo eles: SpiderMonkey,
Chakra e, o que vai ser apresentado a seguir, o V8. O V8 € o interpretador de c6digo aberto e
alta performance da Google. Ele compila e executa os cédigos fonte em JavaScript, gerencia
a alocacdo de memoria para objetos e coleta os objetos que ndo sdo mais necessarios.

JavaScript é comumente utilizado para a programacdo da parte do cliente em um nave-
gador, sendo utilizado para manipular os objetos DOM, sendo que esses sdo fornecidos pelo
navegador enquanto o V8 fornece as fung¢des, tipos de dados e operadores. E esse interpreta-
dor € a engrenagem por tras da ferramenta Node.js que € utilizada para o desenvolvimento da
parte do servidor de aplicacdoes Web.

O Node.js € um ambiente de execucdo multi-plataforma de cddigo aberto para o desenvol-
vimento dos servidores para aplicacdes na web. Apesar de ndo ser estruturado em JavaScript,
muitos dos pacotes bédsicos do Node.js sdo escritos em JavaScript além dos novos médulos
que podem ser criados utilizando essa linguagem. A sua arquitetura é baseada em eventos e
€ capaz de controlar entradas e saidas assincronas. Essas escolhas de construcao t€ém como
objetivo otimizar o fluxo de dados e a escalabilidade de aplicagdes Web que necessitam de

muitas operacoes de entrada e saida ou aplicagdes em tempo real [20].

36

O Node.js permite a criacdo de servidores Web e ferramentas de rede utilizando JavaScript
e os modulos que estdo a disposi¢ao para download e fornecem diversas novas funcionalida-
des, como o Socket.io que € explorado a seguir.

O Socket.io ¢ uma biblioteca de rede para JavaScript que disponibiliza comunicagdo bi-
direcional, instantdnea e baseada em eventos entre servidor e cliente. Ela utiliza o protocolo
WebSocket porém, oferece mais recursos como broadcast e multicast, armazenamento de
dados associados a cada cliente e entrada e saida assincronas. Essa biblioteca oferece a habi-
lidade de implementar analise de padroes em dados em tempo real, transmissao de imagens,
audio e video, mensagens instantaneas e colaboracdo em documentos. Servicos que utilizam
essa ferramenta sdo Microsoft Office, Yammer e Zendesk [21].

Outro pacote do Node.js que tem papel fundamental nesse projeto € a biblioteca MQTT
(MQ Telemetry Transport) que implementa o protocolo MQTT e com isso abre um canal de
comunicacdo com o Mosquitto que é um programa intermedidrio que traduz as mensagens
recebidas para o padrdo aceito pelo receptor. O MQTT € um protocolo de conectividade
madquina a maquina e foi desenvolvido como um assinante e publicador muito leve de men-
sagens. Ele € util para conexdes com locais remotos pois ndo necessita de muita banda para o
recebimento e transmissdo. Porém, ele necessita de um programa que distribui as mensagens

para os clientes dependendo do tépico especificado na mensagem [22].

2.5 Linux

O Linux é um sistema operacional criado a partir do modelo de distribui¢iao e desenvol-
vimento de cédigo aberto. O componente mais importante € o Linux kernel desenvolvido
em 1991 por Linus Torvald. O kernel é o programa que constitui o centro do sistema ope-
racional pois possui controle sobre tudo que acontece no sistema, por exemplo, € o primeiro
programa a ser inicializado ao se ligar o sistema, gerencia as saidas e entradas requisitadas
pelo software e gerencia memoria.

O sistema foi inicialmente desenvolvido como um sistema operacional gratuito para com-
putadores pessoais baseados na arquitetura x86 da Intel, porém ja foi portado para outras
plataformas mais do que qualquer outro sistema operacional. Em sua forma original, ele
também € o lider em uso em servidores e em supercomputadores. Além disso, ele também
roda em sistemas embarcados onde o sistema é colocado no firmware.

Normalmente, o Linux é oferecido em distribui¢cdes que englobam o kernel Linux, biblio-

37

tecas e ferramentas para diversas operagdes e um gerenciador de pacotes que tem a funcao de
automatizar o processo de instalacio, atualizacao e desinstalacdo dos programas para o sis-
tema operacional. As distribuicdes mais conhecidas sdo: Debian [23], Ubuntu [24], Fedora

[25], etc.

2.5.1 Android

O Android € um sistema operacional para mobiles desenvolvido pela Google, baseado
no kernel Linux e projetado primeiramente para dispositivos méveis com telas sensiveis ao
toque como smartphones e tablets. A interface é baseada em sua maior parte na manipulacdo
direta, usando gestos e toques que correspondem a a¢des do mundo real, como deslizar e
tocar para manipular os objetos na tela juntamente com um teclado virtual para a inser¢cdo de
texto.

Além dos dispositivos com telas sensiveis ao toque, a Google tem desenvolvido o sistema
para televisoes, carros, relogios e outras versdes do sistema também sdo utilizadas em note-
books, video games, cadmeras digitais e outros aparelhos eletronicos. Desde 2013, o Android
€ o sistema operacional mobile mais vendido além de possuir mais de 1,4 bilhdo de usuarios
mensais ativos.

Apesar do cédigo fonte ser liberado pela Google sujeitos as licencas de cédigo livre, o
sistema € distribuido juntamente com software proprietdrio para funcionamento das principais
funcdes oferecidas pela empresa. A natureza de codigo livre ajudou a criar uma grande
comunidade que tenta criar novas funcionalidades ou aprimorar a experiéncia oferecida pelo
sistema.

A empresa oferece um IDE, o Android Studio, para que desenvolvedores possam criar
seus proprios aplicativos e também proporciona uma plataforma, a Play Store, para que esses
desenvolvedores coloquem seus aplicativos a disposicdo dos usudrios e que também pode

gerar receita quando os aplicativos nio forem gratuitos.

2.6 Open Internet Consortium

O Open Internet Consortium foi fundado pelas empresas que lideram o setor de tecno-
logia, como Cisco, Intel, General Electric € Samsung, com o intuito de definir os requisitos
de conectividade e garantir a interoperabilidade dos bilhdes de dispositivos que constituirdo

a IoT. Isso estd sendo realizado por meio de certificagdes e especificagdes para oferecer uma

38

estrutura de conectividade que minimiza a complexidade do processo. Além disso, esse pa-

drdo serd uma especificacao aberta de modo que qualquer pessoa possa implementar e que

seja simples para desenvolvedores utilizarem.

2.6.1 Projeto Iotivity

Todas as caracteristicas citadas acima serdo oferecidas para diversas plataformas por meio

do projeto lotivity que € patrocinado pelo OIC e visa uma implementacdo referéncia com

codigo livre que criard uma arquitetura robusta e extensa que possa ser utilizada para os

diversos dispositivos inteligentes e assim facilitar a conectividade entre eles e com a internet

[26].

A arquitetura proporcionard uma espécie de mapa a ser seguido pelos fabricantes e pro-

vedores de servigo e incluira:

e Solucdo comum: definir solucdes de comunicacdo e interoperabilidade entre produtos

de multiplos mercados através de diversos sistemas operacionais e plataformas.

Protocolos Estabelecidos: criar novos protocolos em comum e utilizar os j& existentes

para a descoberta e conectividade através de diversos meios.

Abordagens universais: aplicar abordagens universais para a seguranca e identidade.

Semelhangas definidas: definir perfis comuns, modelos de objetos e interfaces de pro-

gramacdo de aplicagdes (APIs).

Interoperabilidade: promover interoperabilidade entre dispositivos e aplicacdes de di-

versos mercados e de diferentes cenarios de uso.

Oportunidades de inovacao: proporcionar oportunidades para inovagao e disponibilizar

diferenciacao.

Conectividade necessaria: conectar tudo desde o menor dispositivo vestivel ao maior

carro inteligente.

39

FRAMEWORK APIs
Common Object Model

PROFILES

COMNSUMER ENTERPRISE INDUSTRIAL AUTOMOTIVE EDUCATION HEALTH
FRAMEWORK:

Data Device Data

Discovery Transmission Management Management

Security, Identity & Permissions

TRANSPORTS:

0 Q o0 & M oy A @

LE DIRECT L ®

Figura 2.1: Blocos Essenciais da estrutura proporcionada pelo loTivity [27].

As APIs de estrutura do [oTivity proporcionam acesso a estrutura aos desenvolvedores e
estdo disponiveis em diversas linguagens de programacao e para multiplos sistemas operaci-
onais. A estrutura funciona como um intermediador entre os varios sistemas operacionais e

as diversas plataformas de conectividade e possui quatro blocos essenciais:

e Descoberta: Suporte a diversos mecanismos de descoberta para dispositivos e recursos

em proximidade e remotamente.

e Transmissdo de Dados: Suporte ao controle e a troca de informagdes baseado em um

modelo de mensagens e streaming.

e Gestdo de Dados: Suporte a coleta, armazenamento e andlise de dados de diversas

fontes.

e Gestdo de Dispositivos: Suporte a configuragdo, provisionamento e diagndstico de dis-

positivos.

40

41

Capitulo 3

Materiais e Métodos

Neste capitulo sdo listados os materiais e métodos utilizados nesse projeto para a criacao

do sistema proposto representado pela figura 3.1.

i | loTivity (CoAP) ‘\&\0/sx

-
(

Websockets(Socket.io) Websockets(Socket.io)

B
&
o
N "'7%
loTivity (CoAP)

s e

Figura 3.1: Visdo geral das possiveis conexdes do sistema

42

3.1 Materiais

Neste projeto foram utilizados os seguintes materiais:
e Computador com sistema operacional Ubuntu
e Intel Galileo

e NodeMCU Devkit v0.9

e Protoboard

e Conectores

e LEDs

e Cartdao micro SD

e Adaptador USB Wi-Fi TP-Link WN725N

e Cabo USB para Serial TTL

e Android Studio

A escolha pelo Ubuntu como sistema operacional se deve pelo fato de o projeto IoTivity
oferecer compatibilidade com esse sistema e por ele também oferecer todas as ferramentas
necessdrias para o controle das placas.

A escolha pela Intel Galileo se deu pelo fato de ser a placa que o aluno possuia no mo-
mento do desenvolvimento do projeto e que decidiu utilizi-la para testar seus limites frente
a aplicac@o deste trabalho uma vez que a Intel, fabricante da placa, ¢ uma das empresas
fundadoras do OIC e do projeto loTivity.

A escolha da placa NodeMCU DevKit se deu pelo fato de oferecer um ambiente mais
completo e integrado quando comparado ao médulo ESP8266, visto que ela possui uma porta
USB que serve como porta serial além de oferecer mais entradas e saidas.

O adaptador Wi-Fi foi escolhido para poder oferecer mobilidade e facilidade de instalagdo
da placa Galileo.

A escolha pelo Android Studio para o desenvolvimento do aplicativo foi realizada para
testar um novo IDE para a confeccdo de aplicativos Android uma vez que na disciplina de
Projeto de Sistemas Digitais cursada anteriormente foi utilizado o Intel XDK para essa ativi-

dade e os resultados nao foram satisfatorios.

43

3.1.1 Intel Galileo

A placa de desenvolvimento Intel Galileo € a primeira placa microcontrolada que possui
um processador Intel Quark e hardware e software com compatibilidade de pinos com os
shields produzidos para Arduino. Essa plataforma oferece suporte aos sistemas operacionais
mais utilizados no mundo além de oferecer compatibilidade ao ambiente de desenvolvimento
do Arduino. Na parte de hardware, a placa possui um processador Quark X1000 de 32 bits
com clock de 400 MHz, 256 MB de memoéria RAM e 8 MB de memoéria flash além de
oferecer diversos outros recursos, como por exemplo, 20 entradas e saidas digitais, 6 entradas
analdgicas, 6 saidas PWM, comunicacdo serial, porta Ethernet, adaptador para cartao SD,
JTAG para debug [9].

Na parte de software, além de oferecer compatibilidade com o ambiente de desenvolvi-
mento do Arduino, o recurso mais importante para este trabalho € a possibilidade de rodar um
sistema operacional baseado em Linux especialmente projetado para essa placa utilizando o
Yocto Project. Com isso, temos acesso a inimeras fungdes presentes no Linux, como SSH,
criacdo de servidores HTTP e também acesso a diversos avangos que estdo sendo feitos na

area de IoT e que ndo estdo disponiveis para outros sistemas operacionais.

Figura 3.2: Placa Intel Galileo.

3.1.2 ESP8266

O moédulo ESP8266 € um SoC, sistema em um chip, com Wi-Fi embutido que possui
diversas variantes nas quais cada uma oferece recursos diferentes como mais portas de entrada
e saida, entradas analdgicas entre outros. Esse modulo é capaz de hospedar uma aplicac¢io ou
se tornar responsavel por todas as funcdes de rede de outro processador, como por exemplo
substituir o shield ethernet para um Arduino [11].

O modulo possui um processador de 32 bits com arquitetura RISC produzido pela Tensi-

lica operando a 80 MHz, 64 KB de memdria ROM para o boot além de 64 KB de RAM para

44

instrugdes € 96 KB de RAM para dados. O médulo oferece suporte ao padrao IEEE 802.11
b/g/n de Wi-Fi e dependendo do modelo pode oferecer até 16 pinos de entrada e saida.

Ele também oferece uma grande possibilidade de desenvolvimento de aplicacdes na drea
de IoT uma vez que ele possui poder de processamento e espaco de armazenamento suficien-
tes e que pode ser facilmente integrado a diversos sensores.

Devido as funcionalidades oferecidas, foram criadas diversas placas de desenvolvimento
que utilizam o ESP8266 como seu processador central e adicionam outros recursos a ele.
No caso desse trabalho, sera utilizada uma placa de desenvolvimento chamada NodeMCU
DevKit v0.9 que acrescenta ao médulo em sua variante ESP-12, uma porta USB-TTL Serial
que permite a programac¢do do médulo utilizando somente um cabo USB, além de deixa-lo
compativel com o layout da protoboard.

Essa placa oferece diferentes métodos de programagao, sendo eles utilizando o NodeMCU

e a linguagem LUA, utilizando o Arduino IDE e a linguagem C ou via comandos AT.

Figura 3.3: Médulo ESP8266 e NodeMCU DevKit v0.9.

3.2 Métodos

O primeiro passo para realizar esse projeto foi a preparagdo do computador rodando o
Ubuntu para que ele pudesse ser capaz de compilar a imagem personalizada baseada no Linux
utilizando o Yocto Project. Utilizando o gerenciador de pacotes do Ubuntu, apt-get, instalou-
se os seguintes pacotes: debootstrap, build-essential, git, p7zip-full, chrpath, diffstat, gawk,
wget, git-core, diffstat, unzip, texinfo, gcc-multilib, socat, libsdl1.2-dev, xterm e parted. A

maioria desses pacotes somente foi utilizada para a compilagdo da imagem.

45

ApOs essas instalagdes, fez-se necessdrio obter a versao daisy do poky, que € a distribuicao
base do projeto Yocto, e também as diversas outras camadas que personalizardo a imagem
fazendo-a assim compativel com a placa Intel Galileo que foi utilizada. As seguintes camadas
foram necessarias para habilitar todas as funcionalidades da placa: meta-intel-quark, meta-
intel-iot-middleware, meta-intel-galileo, meta-openembedded e meta-intel-iot-devkit. A dltima
camada que foi adicionada ofereceu as funcionalidades do projeto loTivity e pdde ser encon-
trada pela identificacdo meta-oic. Todas essas camadas podem ser obtidas via comandos git a
partir do endereco git.yoctoproject.org [28].

Apo6s o download de todas as camadas fez-se necessdrio carregar o ambiente de traba-
lho utilizando o comando source seguido do argumento oe-init-build-env. Em seguida, foi
necessdrio editar o arquivo bblayers.conf contido na pasta conf e adicionar os caminhos para
as camadas que foram utilizadas. No mesmo diretério, foi preciso alterar a versao da distri-
bui¢do no campo DISTRO para ’iot-devkit-multilibc’, alterar a classes dos pacotes no campo
"PACKAGE-CLASSES’ para ’package-ipk’ e alterar a dispositivo alvo no campo "MACHINE"
para ‘quark’ no arquivo 'auto.conf’. Finalmente, para obter-se as funcionalidades proporcio-
nadas pelo projeto IoTivity, foi necessdrio adicionar as seguintes linhas no mesmo arquivo:

IMAGE-INSTALL-append += "iotivity-resource-samples iotivity-service-samples"

IMAGE-INSTALL-append = "iotivity-dev"

Apos terminar a edi¢cdo do arquivo auto.conf foi iniciada a compilagdo da imagem. Para
comecar, foi necessario executar o seguinte comando: bitbake iot-devkit-image. O processo
pode levar algumas horas para finalizar e € indispensdvel ter uma conexdo com a internet
visto que o processo requer o download de alguns arquivos.

Terminado o processo de compilagdo da imagem, foi utilizado um aplicativo, que acom-
panha a camada meta-intel-iot-devkit, que criou a imagem final que foi colocada no cartdao
micro SD e utilizada pela placa. O comando que foi utilizado € o seguinte:
"/meta-intel-iot-devkit/scripts/wic_monkey create -e iot-devkit-image
/meta-intel-iot-devkit/scripts/lib/image/canned-wks/iot-devkit.wks". Apds o termino do pro-
cesso, um caminho foi mostrado na tela e indicou o diretério onde a imagem a ser colocada
no cartdo SD se encontrava.

Vale ressaltar que alguns exemplos e todos os recursos do projeto loTivity ja estao embuti-
dos na imagem criada uma vez que a camada meta-oic foi adicionada ao processo de criagdo
da imagem e estdo disponiveis para uso e consulta nos seguintes caminhos: /opt/iotivity e

/usr/include/iotivity.

46

O préximo passo foi inserir o cartdo micro SD contendo a imagem na placa, conectar o
cabo serial e energizar a placa. Apoés 1sso, foi necessario o uso de algum programa que acesse
a placa via Serial, nesse caso foi utilizado o aplicativo PuTTy mas existem outras alternativas.
Antes de qualquer outro comando, deve-se alterar a data do sistema para que ndo haja pro-
blemas de compatibilidade, por isso usa-se o seguinte comando: ‘date mmddHHMMYYYY’.
De modo a ndo necessitar do uso de um cabo Ethernet para ter acesso a internet, deve-se
configurar o adaptador USB Wireless. Para isso, mudou-se o diretdrio para /usr/src/kernel
e utilizou-se o seguinte comando: 'make scripts’. Apds esse processo terminar, € necessa-
rio fazer o download do driver para o adaptador no computador utilizando o comando 'git
clone’ seguido desse endereco: ’https://github.com/lwfinger/rtl8188eu’. Depois do download,
foi preciso transferir os arquivos obtidos para a placa, mudar o diretério para a pasta criada
e executar os comandos em sequéncia: ‘'make all’ e ‘'make install’. Apds a finalizacdo desse
processo, bastou conectar o dongle na porta USB da placa, executar o comando ‘connmanctl’
para iniciar o ambiente de conexdo para a wifi. O primeiro passo foi executar o comando
'scan wifi’ e em seguida o comando ‘services’ para obter as redes disponiveis na drea e exe-
cutar ‘connect’ seguido do id da rede desejada. Se a conexao necessitar de uma senha, basta
executar o comando 'agent on’ antes do comando ‘connect’ [29].

Apds a conexao na rede, fez-se necessdrio a instalagao de alguns pacotes que foram uti-
lizados no codigo do servidor que € executado via Node.js além de fazer a instalacdo do
Mosquitto que é o programa intermedidrio que gerencia as mensagens no formato do padrao
MQTT. Para a instalag@o dos pacotes, primeiro deve-se atualizar o 'npm’ que € a ferramenta
de controle e instalagdo dos pacotes do Node.js com o comando 'npm update’, apds isso deve-
se executar o seguinte comando para a instalacdo dos pacotes: ‘'npm install -g mqtt socket.io’,
esse comando instala globalmente, ou seja, qualquer aplicagdao pode utiliza-los, os pacotes
MQTT e Socket.io que ja foram discutidos anteriormente.

A instalacdo do Mosquitto difere da instalagdo dos pacotes, primeiro deve-ser executar o
seguinte comando para fazer o download do arquivo compactado: 'wget http://mosquitto.org/
files/source/mosquitto_1.4.8.tar.gz’. Ap6s o download € necessario descompactar o arquivo
utilizando o seguinte comando: ’tar xzvf mosquitto_1.4.8.tar.gz’. Deve-se mudar o diretdrio
para a pasta contendo o resultado da descompactaciao usando o comando 'cd mosquitto_1.4.8’
e executar o comando ‘'make’ para realizar a instalacdo do Mosquitto [30]. Com isso a placa
estd preparada para executar o c6digo que serd descrito mais a frente.

O préximo passo foi preparar a placa de desenvolvimento contendo o ESP8266 para re-

47

ceber o codigo que controla sensores/atuadores. Para a configuragdo da placa foi neces-
sério a instalacdo do Arduino IDE, apds a instalagdo, deve-se entrar na op¢do preferén-
cias e adicionar a seguinte URL no campo de Additional Boards Manager e clicar OK:
‘http://arduino.esp8266.com/stable/package_esp8266com_index.json’. Apds isso, entrar no
menu Tools e no subitem boards selecionar o Boards Manager, onde aparecerd um pacote
contendo as configuracdes para a programacdo dos médulos ESP8266, deve-se instalar esse
pacote e novamente no menu 7ools e no subitem Boards agora deve-se selecionar a placa alvo
da programacao, nesse caso a NodeMCU 0.9. Com isso, concluiu-se a configuracdo do IDE
e o proximo passo foi inserir o cédigo e compild-lo para ser mandado para a placa.

E necessdrio também preparar o computador no qual serd executado os exemplos que fo-
ram criados ao se gerar a imagem contendo os arquivos do projeto IoTivity. Apds a geracao
da imagem, também ¢é possivel criar um SDK especifico para que possa ser realizado o de-
senvolvimento de novas aplicagdes para a placa, porém existe um modo mais pratico para
compilar os novos programas escritos para a placa e para os outros dispositivos que se inte-
grardo ao ambiente proporcionado pelo IoTivity. Basta baixar a dltima versao disponivel para
download no site 'iotivity.org’ e utilizar a ferramenta Scons para compilar os programas feitos
para o ambiente IoTivity tanto para os sistemas baseados em Linux quanto para Arduino,
Android e Tizen, que é um sistema operacional baseado no kernel do Linux e muito utilizado
em aplicacOes da Samsung [31].

O procedimento para a criacdo de novos programas nao € muito simples pois além de
criar um cédigo que esteja em conformidade com os padrdes estabelecidos para uma total
integracdo no projeto IoTivity, também se fez necessario editar um arquivo chamado SCons-
cript especificando o nome do novo programa, o seu arquivo fonte e adiciona-lo a uma lista
onde ele sera importado no ambiente de construcdo para ser compilado e especificar todos
os caminhos para as bibliotecas necessérias. Sendo uma ferramenta de compilacio cruzada,
o SCons € capaz de criar programas compativeis com diversos sistemas, como Linux, Ar-
duino e Android, além de oferecer opcdes para a escolha do transporte de informagdes, por
exemplo, via IP ou via Bluetooth, e também a possibilidade da compilacdo para diferentes
arquiteturas [26].

O ultimo passo antes da criacdo do codigos foi preparar o computador que recebeu o
software Android Studio no qual foi confeccionado o aplicativo para o controle do sistema.
O software pode ser encontrado no site para desenvolvedores Android e sua instalacdo é

muito simples visto que ao selecionar o SDK compativel com a dltima versdo do sistema

48

operacional, todas as funcionalidades das versdes anteriores estdao presentes. O software
oferece um editor de layout com o recurso de arrastar e soltar para facilitar a criacdo do
aplicativo. Para finalizar a preparagdo do software foi necessario editar o arquivo ‘build.gradle’
que estava na arvore de arquivos embaixo do item Gradle Scripts e adicionar a seguinte
linha no campo 'dependencies’: ‘compile ('io.socket:socket.io-client:0.7.0’)’. Com essa linha,
o aplicativo é capaz de usar as propriedades oferecidas pela biblioteca Socket.io que fornece
um meio mais simples e rapido de comunicacdo via sockets [21].

ApOs a preparacdo das plataformas, o proximo passo foi a confeccao e implantacao dos

cddigos para cada dispositivo que serdo discutidos a seguir.

3.2.1 Implementacio Servidor Galileo

O cadigo do servidor da galileo pode ser dividido em duas partes: a primeira € respon-
sével pela comunicagdo com o aplicativo e a segunda € responsdvel pela comunica¢do com
os outros dispositivos. A comunicacdo com o aplicativo é feita com o uso da biblioteca Soc-
ket.io e o modo como ¢é feita € pela criagao de um servidor http e adi¢do dos recursos dessa
biblioteca ao servidor. Apos isso, o servidor fica esperando uma conexao e ao receber essa
conexao, uma fun¢do € chamada para a recep¢do e emissdo de mensagens para o aplicativo.
Por exemplo, ao apertar o botdo do aplicativo, uma mensagem especifica serd enviada para o
servidor que estard aguardando essa mensagem para executar outra funcao.

A segunda parte realiza a conexao, utilizando a biblioteca MQTT, com o servidor Mos-
quitto rodando na placa e é responsdvel pela publicacdo e assinatura das mensagens no proto-
colo MQTT. Ou seja, essa parte € responsavel por enviar e receber as mensagens no formato
do protocolo para os outros dispositivos ligados ao sistema.

O fluxograma abaixo ilustra o funcionamento do servidor implementado.

49

Importa
bibliotecas

v

Cria
servidor

v

Conexdo
com
Mosquitto

Aguarda
conexdo
via socket

v

Conexdo
via socket?

Inscricdo nos

topicos MOTT
Aguarda
Ll .
mensagem
Mensagem:
Lampl ou
Lamp2?
Lampl: Lamp2:
acesa ou acesaou
apagada? apagada?
Publica 1 Publica O Publica1 Publica 1
no topico no topico no topico no topico
lampl lampl lampl lampl

Figura 3.4: Fluxograma Servidor Galileo

3.2.2 Implementacio Modulo ESP8266

O cddigo da placa de desenvolvimento que contém o modulo ESP8266 também € dividido
em duas partes: a configuracao da conexdo a rede local sem fio e a assinatura e transmissao
de mensagens no protocolo MQTT.

Para a primeira parte € utilizada uma biblioteca especificamente criada para o médulo
ESP8266, onde ¢ definido o nome da rede e a senha no cédigo e existe uma tentativa de
conexao. Todo esse processo pode ser observado por um monitorador serial pois foram pro-
gramadas mensagens a serem enviadas via serial para observar o andamento dessa atividade.

Para a segunda parte também € utilizada uma biblioteca especialmente criada para lidar

50

com as especificacdes do protocolo MQTT. E definido no c6digo o endereco do servidor Mos-
quitto, nesse caso o IP da placa Galileo, e uma conexdo € estabelecida e a seguir, o programa
fica esperando uma mensagem vinda da placa galileo para ativar ou desativar um atuador.
Ap6s realizar a acdo, uma mensagem € enviada para a placa galileo a fim de confirmar a

atividade realizada.

O fluxograma abaixo ilustra o funcionamento do médulo ESP8266.

Importa
bibliotecas

Conexdo
com rede
local

Inicializa
saidas
digitais

Conexso
servidor
Maosquitto

v

Inscricdo nos
tépicos MQTT

v

. Aguarda
> +
mensagem

4

Mensagem
recebida

Topico:
Lampl ou
Lamp2?

4,_/(4_\—\5

Lamp1: Lamp2:
acesaou acesa ou
apagada? apagada?

Seta valor Seta valor Seta valor Seta valor
légicoalto légico baixo légico alto légico baixo
nasaida nasaida nasaida na saida

Figura 3.5: Fluxograma ESP8266

3.2.3 Implementacao Android

O cédigo para o aplicativo android é o menos complexo pois somente € criada uma fungao
para a conexao com a placa Galileo, novamente utilizando a biblioteca Socket.i0, e apds isso,
sdo criadas fungdes de escuta, ou seja, elas ficam esperando a acdo do seu determinado botao

para enviarem uma mensagem para a placa. Outro detalhe, para cada acdo realizada no botdo,

51

um mensagem pop-up aparecerd indicando a agao.

A parte gréfica do aplicativo foi desenvolvida com ajuda da ferramenta arraste e solte do
Android Studio. O design escolhido € basico contando com uma tela de login que precede a
pagina principal onde os dispositivos a serem controlados sdo mostrados em forma de cartao

contendo seu nome e o botdo para realizar a acao.

3.2.4 Implementacao IoTivity

O cdédigo utilizado para implementar o projeto loTivity foi baseado nos exemplos que sdo
obtidos ao criar a imagem do Linux com a camada OIC. O primeiro par de c6digos tem como
funcdo encontrar o dispositivo conectado e informé-lo sobre as informacgdes da plataforma
a qual ele se conectou. No servidor, que estd rodando na placa Galileo, sdo informadas as
caracteristicas da plataforma, importadas as funcionalidades do IoTivity e o servidor emite a
informacao de que estd esperando uma conexao e ao receber uma conexao, as caracteristicas
sdo enviadas para o cliente. No cédigo do cliente, que foi implementado no dispositivo, uma
conexao foi tentada e ao realizd-la, as informacdes da plataforma foram recebidas.

O segundo par de codigos teve a implantacao invertida, ou seja, o servidor estd no dispo-
sitivo e o cliente estd na placa Galileo. Os dois codigos seguem o mesmo padriao de conexao
dos outros, onde um recurso disponibilizado pelo IoTivity permite que os dispositivos se
declarem disponiveis como ocorre ao se ligar o Bluetooth de um aparelho. O cédigo do ser-
vidor simula uma lampada que cuja poténcia subird em 10 unidades a cada vez que o cliente
se conectar para fazer uma observacdo do recurso. O cédigo do cliente, ao se conectar, busca
as informagdes do servidor e observa os recursos iniciados no servidor e assim receberd as

informacdes sobre a 1ampada.

52

53

Capitulo 4

Resultados e Discussoes

Os resultados atingiram totalmente o que foi projetado e era esperado. Todas as etapas
propostas foram concluidas e apresentaram os resultados esperados.

A confeccdo da imagem personalizada do Linux baseado do Yocto Project funcionou per-
feitamente apesar de terem sido necessdrias vdrias tentativas até que o processo fosse aper-
feicoado e que a imagem final contivesse todas as funcionalidades desejadas. O tnico ponto
que deixou espago para melhora foi o tamanho da imagem final, que teoricamente deveria ter
sido reduzido, porém com a adicdo do projeto loTivity e a ndo remog¢do de algumas funci-
onalidades que pudessem ser importantes no futuro, teve um aumento de aproximadamente
300 MB quando comparada com a imagem criada sem o projeto loTivity. Isso pode impactar
futuramente no funcionamento do sistema, porém pode ser facilmente contornado com o uso
de um cartdo de memoria de maior capacidade.

A criagdo do aplicativo para a plataforma Android oferecia uma grande dificuldade visto
que a experiéncia em programacao nas linguagens XML e Java, que sdo as necessdrias para
o desenvolvimento do aplicativo, era quase nula. No entanto, isso foi contornado com o
uso do editor de layout presente no Android Studio que minimizou a programagdo em XML
enquanto que para a parte com programagao em Java foi necessario um empenho maior para
o entendimento e aprendizagem da linguagem. Devido a esses fatos, o aplicativo ficou com
um design bésico, porém funcional.

Apesar da dificuldade encontrada para o desenvolvimento profundo do projeto IoTivity
devido a complexidade da documentacao e dos poucos exemplos que podem ser encontrados,
foi possivel observar as funcionalidades que essa implementacdo pode oferecer, como nao
precisar informar o IP de cada dispositivo e a conexao ser feita automaticamente, por meio

dos exemplos fornecidos porém, a complexidade do projeto precisa ser diminuida se o intuito

54

€ popularizar essa tecnologia entre os desenvolvedores.

A escolha pelo método de compilacdo pela ferramenta SCons, ao invés do uso do SDK
criado no processo de constru¢do da imagem personalizada, provou-se somente adequado
visto que uma das funcionalidades esperadas era a possibilidade de compila¢iao dos cédigos
direto na placa, porém devido a falta de meméria RAM e pouco poder de processamento esse
processo se mostrou impossivel de ser realizado. Outro fato que pesou contra o uso do SCons
foi a necessidade de alterar um arquivo que contém todos os codigos a serem compilados,
apesar de ser uma tarefa simples, até a descoberta de que esse processo, que ndo estava
especificado na documentacdo fornecida, era necessario foi gasto muito tempo que poderia
ter sido dedicado a outra atividade.

Foram realizados dois testes, um para obter o desempenho do sistema e outro, para confir-
mar a presenca das novas funcionalidades acrescentadas pelo projeto loTivity. Vale ressaltar
previamente que esses testes foram realizados em um ambiente que possuia boa cobertura de
sinal de WiFi além de todos os dispositivos estarem conectados a mesma rede local.

O primeiro teste realizado foi o de laténcia, que mediu a demora de comunicacio entre
os dispositivos. Foram realizadas as medidas dos atrasos da conex@o e do envio de uma
mensagem a partir do aplicativo Android para a placa Galileo utilizando um funcao no cédigo
que marcava o inicio da acao e ao final dela mostrava na tela quanto tempo havia se passado

desde a maracao inicial. Os resultados sdo apresentados na tabela 4.1 e nas figuras 4.1 e 4.2 .

Figura 4.2: Atraso da mensagem

Tipo de Atraso Tempo de atraso médio (ms)
Conexao 3
Mensagem Websocket 3
Total 6

Tabela 4.1: Atrasos do sistema

55

Observando esses valores podemos ver que o atraso acumulado é pequeno quando consi-
deramos que o minimo de atraso que o olho humano pode perceber, segundo diversos estudos,
€ de 14 ms. Por causa disso, tem-se a impressao de que a acao ocorre instantaneamente.

O outro teste realizado teve como objetivo comprovar que a placa Galileo possuia as
novas funcionalidades adicionadas pelo projeto loTivity. Para isso, foram inicializados os
codigos na Galileo e no computador com a distribui¢do Ubuntu do Linux e observado as
informagdes que apareciam na sessdo da placa Galileo. As figuras 4.3 e 4.4 servem como
evidéncia para comprovar que a placa Galileo estd preparada para executar exemplos que

utilizam os recursos do projeto loTivity.

Figura 4.3: Atraso da conexdo

56

Figura 4.4: Atraso da mensagem

57

Capitulo 5

Conclusoes

Considerando o objetivo definido no inicio do projeto, o trabalho realizado e os resultados
obtidos, pode-se concluir que esse projeto além de conseguir deixar um protétipo funcional e
preparado para novas funcionalidades também deixou uma sélida base para futuros trabalhos
utilizando essa tecnologia.

O ponto mais importante do trabalho foi o sucesso na integra¢do do projeto IoTivity a
placa de desenvolvimento escolhida e também o fato de conseguir produzir um protétipo que
além de oferecer compatibilidade com o IoTivity, também € capaz de gerenciar, de maneira
agil, diversos dispositivos e sensores que podem ser incorporados futuramente ao projeto.

Alguns pontos no qual o trabalho produziu o resultado projetado s@o a criacdo da ima-
gem personalizada que ja continha a estrutura, as funcionalidades e os padrdes definidos pelo
Open Internet Consortium, uma vez que ofereceu um recurso muito importante para futuros
projetos que seria maximizar a eficiéncia € minimizar o espago gasto ao se retirar funcio-
nalidades ndo desejadas, a integracdo de diferentes plataformas, variando desde o médulo
ESP8266 até o Android, e a criagdo de um sistema que oferece um tempo de resposta que
cria a impressdo de ser instantaneo para o usudrio.

Um dos pontos mais importante desse trabalho foi agregar novos conhecimento ao aluno
visto que apesar de possuir experiéncia prévia com as linguagens JavaScript e C e a placa Ga-
lileo, foi necessario desenvolver novas habilidade para a programacao do aplicativo Android
que foi realizada em XML e Java, duas linguagens onde o conhecimento prévio era quase
inexistente. Além do aprendizado de novas linguagens, o projeto também proporcionou a
oportunidade de explorar uma nova plataforma que possui uma grande gama de aplicagcdes
para a internet das coisas e que possui uma otina perspectiva de futuro quando considerado

0s avangos recentes na area de hardware.

58

Apesar de ndo ter sido possivel alcangar um nivel de desenvolvimento superior ao pro-
posto e projetado, a experiéncia com o projeto IoTivity foi de grande valia uma vez que os
exemplos fornecidos funcionaram perfeitamente além de que a industria deve seguir os re-
quisitos e padrdes estabelecidos pelo OIC criando assim dispositivos compativeis com os da
concorréncia para que se possa gerar em ambiente onde ndo seja preciso utilizar diversos
aplicativos ou adaptadores e tudo poderd ser controlado por um unico aplicativo. As causas
para o fato de ndo superar o que foi proposto foram a complexidade apresentada pelo projeto,
o pouco desenvolvimento tanto para a Galileo quanto para outros sistemas e a documentagao
imprecisa ou confusa. Um bom exemplo dessa situacio é que a cada atualizagdo do projeto
era necessdrio gerar novamente a imagem personalizada e realizar todo o processo de confi-
guracdo da placa Galileo novamente, além disso mesmo se a atualizacio ndo fosse realizada
para nao despender tempo com essa atividade, ainda havia o risco de que alguma ferramenta
tenha sido descontinuada ou uma nova seja adicionada deixando assim a placa defasada em
relacdo aos avancos.

Algumas dificuldades ja eram esperadas visto que € o inicio do projeto, poucas platafor-
mas sio suportadas, hd muitas especificacdes a serem seguidas e acima de tudo, o desenvol-
vimento estd sendo feito em conjunto com a comunidade, o que por um lado € extremamente
importante ja que as pessoas envolvidas diretamente com o uso dessa tecnologia podem su-
gerir mudancas, no entanto por outro lado, se ndo houver uma grande ado¢do por parte da
comunidade, o projeto pode se tornar obsoleto ou conter funcionalidades que ndo serdo utili-
zadas.

Todos esses problemas devem ser resolvidos quando houver um consenso de que esse
serd o novo padrdo a ser seguido pela industria e o primeiro passo para isso ja foi dado
com o antuncio da Open Connectivity Foundation, OCF, que integrou Microsoft, Qualcomm
e Electrolux ao integrantes do OIC. A OCF possui o0 mesmo objetivo do OIC que é definir
especificacdes e certificacdes com o intuito de oferecer interoperabilidade confidvel, ou seja,
uma plataforma de conectividade que reduz a complexidade porém, engloba mais parceiros
com grande representatividade tanto no mercado de dispositivos méveis quanto no cendrio

geral de tecnologia, o que pode ser um grande diferencial quando comparado ao OIC.

59

5.1 Sequéncia do Trabalho

Os préximos passos do projeto consistem em integrar novos dispositivos ao sistema, novas
funcionalidades, testar diferentes placas de desenvolvimento visto que a fabricante da Galileo
ndo estd mais tdo dedicada a seu desenvolvimento além de existirem alternativas melhores e
mais baratas e o que seria o cendrio considerado ideal para o futuro, a extin¢io da central
de comando, fazendo com que os dispositivos comunicassem entre si e diretamente com o
aplicativo criado para smartphones.

Além disso, a aplicagdo do projeto IoTivity em outras plataformas € um passo seguinte,
visto que o projeto oferece compatibilidade com outras plataformas como Arduino e Android
e oferece diversas funcionalidades que serdo de extrema importancia no desenvolvimento

futuro da Internet das Coisas.

60

61

Referéncias Bibliograficas

[1] History of the internet of things. http://http://postscapes.com/internet-of-

things-history, Acesso em: 09 de outubro de 2015.

[2] Gartner’s 2011 hype cycle special report evaluates the maturity of 1,900 technologies.
http://www.gartner.com/newsroom/1d/1763814, Acesso em: 13 de novembro de

2015.

[3] Gartner’s 2014 hype cycle for emerging technologies maps the journey to digital busi-
ness. http://www.gartner.com/newsroom/id/2819918, Acesso em: 14 de novem-

bro de 2015.

[4] Neil Gross. The earth will don an electronic skin. http://www.businessweek.com/

1999/99_35/b3644024.htm, Acesso em: 14 de novembro de 2015.
[5] S. Heath. Embedded systems design, 2002.
[6] Raspberry pi. https://www.raspberrypi.org/, Acesso em: 20 de maio de 2016.

[7] Beaglebone black. https://beagleboard.org/black, Acesso em: 20 de maio de
2016.

[8] Arduino. https://www.arduino.cc/, Acesso em: 20 de maio de 2016.

[9] Placa de desenvolvimento intel galileo. http://www.intel.com.br/content/www/
br/pt/do-it-yourself/galileo-maker-quark-board.html, Acesso em: 17 de
junho de 2015.

[10] Toradex colibri. https://www.toradex.com/pt_br/computer-on-modules/

colibri-arm-family, Acesso em: 20 de maio de 2016.

[11] Wifi module - esp8266. https://www.sparkfun.com/products/13678, Acesso em:
10 de setembro de 2015.

62

[12] Intel edison. https://software.intel.com/pt-br/iot/hardware/edison,
Acesso em: 20 de maio de 2016.

[13] L. J. Rodriguez-Aragén. Tema 4: Internet y teleinformdtica. http://www.uclm.
es/profesorado/licesio/Docencia/IB/IBTema4.pdf, Acesso em: 10 de abril de

2016.

[14] Tcp/ip. http://www.itprc.com/tcpipfaqg/, Acesso em: 20 de maio de 2016.

[15] Http. https://tools.ietf.org/html/rfc2616, Acesso em: 20 de maio de 2016.

[16] Coap. http://hinrg.cs.jhu.edu/joomla/images/stories/IPSN_2011_koliti.
pdf, Acesso em: 20 de maio de 2016.

[17] Mqtt. http://docs.oasis-open.org/mgtt/mgtt/v3.1.1/mgtt-v3.1.1.html,
Acesso em: 20 de maio de 2016.

[18] About | yocto project. https://www.yoctoproject.org/about, Acesso em: 17 de
junho de 2015.

[19] D. Flanagan. Javascript: The definitive guide, 2011.

[20] About|node.js. https://nodejs.org/en/about/, Acesso em: 22 de agosto de 2015.

[21] Socket.io. http://socket.io/, Acesso em: 20 de junho de 2015.

[22] Mqtt. http://mgtt.org/, Acesso em: 15 de dezembro de 2015.

[23] Debian. https://www.debian.org/index.pt.html, Acesso em: 20 de maio de
2016.

[24] Ubuntu. http://www.ubuntu.com/, Acesso em: 20 de maio de 2016.

[25] Fedora. https://getfedora.org/pt_BR/, Acesso em: 20 de maio de 2016.

[26] Documentation | iotivity. https://www.iotivity.org/documentation, Acesso em:

05 de julho de 2015.

[27] Architecture overview | iotivity. https://www.lotivity.org/documentation/

architecture-overview, Acesso em: 05 de julho de 2015.

63

[28] Iot- creating a yocto image for the intel galileo using split layers. https:
//software.intel.com/en-us/blogs/2015/03/04/creating-a-yocto-image-
for-the-intel-galileo-board-using-split-1layers, Acesso em: 28 de julho de

2015.

[29] Criar imagem yocto para galileo. http://cear.ufpb.br/~isaac/site/tutoriais/

intel-galileo/yocto-galileo, Acesso em: 04 de fevereiro de 2016.

[30] Building and running mosquitto on intel edison. https://software.intel.com/en-
us/blogs/2015/02/20/building-and-running-mosquitto-mgtt-on-intel-

edison, Acesso em: 10 de janeiro de 2016.

[31] About | tizen. https://www.tizen.org/about, Acesso em: 20 de maio de 2016.

64

65

Apéndice A
Codigos criados para o projeto

A.1 Cédigo Galileo

var http = require (’ http ’);

var server = http.createServer ();

var io = require(’socket.io ’).listen(server);

var mqtt = require ('’ mqtt’);

var clientMQTT = mqtt.connect(’ mqtt://localhost *);
io.on(’connection ’, function(socket){

var startl = new Date();

console.log(’user connected ’);

ClientMQTT .on(’ connect ’, function (){

clientMQTT . subscribe (’lampl *);

clientMQTT . subscribe (’lamp2 ");

1)
var endl = new Date() — startl;
console.info ("Tempo gasto na conexao: %dms", endl);

socket.on(’lampl’, function(state){

if (state==true){

clientMQTT . publish ("lampl’,"on");
console.log ("lampl on!");

var end2 = new Date() — start2;
console.info ("Tempo gasto na mensagem: %dms", end2);
} else {clientMQTT. publish (’lampl’," off");
console.log ("lampl off!");}});
socket.on(’lamp2’, function(state){

if (state==true){

clientMQTT . publish (’lamp2’,"on");

} else {clientMQTT. publish(’lamp2’," off");

66

console.log ("lamp2 off!");}
1)1
server. listen (3000);

console.log(’Server Online! ’);

A2 Cédigo ESP8266

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

/1 Update these with values suitable for your network.

const charx ssid = "TripMate—F32A";
const charx password = "thi301091";
const charx mqtt_server = "10.10.10.27";

WiFiClient espClient;
PubSubClient client(espClient);

char msg[50];

int value = 0;

void setup_wifi() {

delay (10);

// We start by connecting to a WiFi network
Serial . println ();

Serial . print (" Connecting to ");

Serial . println (ssid);

WiFi. begin (ssid, password);

while (WiFi.status () != WL_CONNECTED) {
delay (500);
Serial . print (".");

}

Serial . println ("");
Serial . println ("WiFi connected ");
Serial . println ("IP address: ");
Serial . println (WiFi.localIP ());

}

void callback (charx topic, bytex payload, unsigned int length) {
Serial . print (" Message arrived [");

Serial . print(topic);

charx topico = topic;

Serial . print ("] ");

for (int i = 0; i < length; i++) {

Serial . print ((char)payload[i]);

}

Serial . println ();

// Switch on the LED if an 1 was received as first character

if ((char)topic[4]=="1"){

if ((char)payload[0] == 1) {

Serial . print("lamp 1 acesa");

digitalWrite (12, HIGH); // Turn the LED on (Note that LOW is the voltage level
// but actually the LED is on; this is because

// it is acive low on the ESP-01)

} else {

Serial . print("lampl desligada");

digitalWrite (12, LOW); // Turn the LED off by making the voltage HIGH
}

} else if ((char)topic[4]=="2"){

if ((char)payload[0] == 1) {

Serial . print ("lamp2 acesa");

digitalWrite (13, HIGH); /! Turn the LED on (Note that LOW is the voltage level
// but actually the LED is on; this is because

// it is acive low on the ESP-01)

} else {

Serial . print("lamp 2 desligada");

digitalWrite (13, LOW); // Turn the LED off by making the voltage HIGH
}

}

}

void reconnect() {

// Loop until we’re reconnected

while (!client.connected()) {

Serial . print (" Attempting MQIT connection...");
// Attempt to connect

if (client.connect("ESP8266Client")) {

68

Serial . println ("connected ");

/! Once connected, publish an announcement...
// client.publish (" presence", "on");

/!l ... and resubscribe
client.subscribe ("lampl ");

client.subscribe ("lamp2");

} else {

Serial . print (" failed , rc=");

Serial . print(client.state ());
Serial . println (" try again in 5 seconds");
/!l Wait 5 seconds before retrying

delay (5000);

}

}

}

void setup () {

pinMode (12, OUTPUT);

pinMode (13, OUTPUT);// Initialize the BUILTIN_LED pin as an output
Serial .begin(115200);

setup_wifi ();

client.setServer (mqtt_server, 1883);

client.setCallback (callback);
}

void loop () {

if (!client.connected()) {

reconnect ();

}
client .loop ();

A.3 Cédigo Android

private Socket mSocket;

{try{

mSocket = I0.socket("http://192.168.0.101:3000");
} catch (URISyntaxException e){}}

protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);
setContentView (R. layout.activity_main_layout);

mSocket. connect ();

mSocket.on (" connected", onNewMessage);

Switch bl = (Switch) findViewBylId(R.id.switchl);

if (bl != null){

bl.setOnCheckedChangeListener (this);

}

Switch b2 = (Switch) findViewByld(R.id.switch2);

if (b2 != null){

b2.setOnCheckedChangeListener (this);

1

public void connection (){

Log.d("tag","executando a funcao");

// Toast.makeText(MainLayout. this ," Conectado", Toast .LENGTH_SHORT). show ();}
public void onClick (View button){

PopupMenu popup = new PopupMenu(this , button);

popup . getMenulnflater (). inflate (R.menu.pop_menu, popup.getMenu ());
popup.setOnMenultemClickListener (new PopupMenu.OnMenultemClickListener () {
public boolean onMenultemClick (Menultem item){
Toast.makeText(MainLayout. this ," Clicked popup menu item "+ item.getTitle (),
Toast .LENGTH_SHORT) . show () ;

return true;

IBDE

popup.show ();}

@Override

public void onCheckedChanged (CompoundButton buttonView , boolean isChecked){
Toast.makeText(this , "Lampada "
(isChecked ? " Ligada" : " Desligada"),
Toast .LENGTH_SHORT) . show () ;

+ buttonView.getText () +

mSocket.emit("testel ");}

private Emitter.Listener onNewMessage = new Emitter. Listener () {
@Override

public void call(Object... args){

Log.d("tag","entrou no listener");

// Toast.makeText(MainLayout. this ," Conectado", Toast . LENGTH_SHORT). show ();

connection ();}};}

69

70

Anexo I

Codigos utilizados

I.1 Cédigo IoTivity

L.1.1 Cédigo Placa

#include <functional >

#include <pthread.h>

#include <mutex>

#include <condition_variable >
#include "OCPlatform.h"

#include "OCApi.h"

using namespace OC;

using namespace std;

namespace PH = std:: placeholders;
int gObservation = 0;

void * ChangeLightRepresentation (void xparam);

void * handleSlowResponse (void xparam, std::shared_ptr <OCResourceRequest> pRequest);

/!l Specifies where to notify all observers or list of observers
/] false: notifies all observers

/] true: notifies list of observers

bool isListOfObservers = false;

// Specifies secure or non—secure

// false: non—secure resource

/] true: secure resource

bool isSecure = false;

/1] Specifies whether Entity handler is going to do slow response
bool isSlowResponse = false;

/! Forward declaring the entityHandler

//] This class represents a single resource named ’lightResource ’.

>

/// two simple properties named ’state’ and ‘power’
class LightResource {

public:

/1] Access this property from a TB client

std::string m_name;

or not

This

resource has

71

72

bool m_state;

int m_power;

std::string m_lightUri;

OCResourceHandle m_resourceHandle ;

OCRepresentation m_lightRep;

Observationlds m_interestedObservers;

public:

/11 Constructor

LightResource ()

:m_name (" Thiago’s light"), m_state(false), m_power(0), m_lightUri("/a/light"),
m_resourceHandle (nullptr) {

// Initialize representation

m_lightRep.setUri(m_lightUri);

m_lightRep.setValue (" state", m_state);

m_lightRep.setValue ("power", m_power);

m_lightRep.setValue ("name", m_name); }

/+* Note that this does not need to be a member function: for classes you do not have
access to, you can accomplish this with a free function: x/
/// This function internally calls registerResource API.
void createResource (){

//URI of the resource

std::string resourceURI = m_lightUri;

// resource type name. In this case, it is light

std::string resourceTypeName = "core.light";

// resource interface.

std::string resourcelnterface = DEFAULT_INTERFACE;

// OCResourceProperty is defined ocstack.h

uint8_t resourceProperty;

if (isSecure){

resourceProperty = OC_DISCOVERABLE | OC_OBSERVABLE | OC_SECURE;
}else {

resourceProperty = OC_DISCOVERABLE | OC_OBSERVABLE; }
EntityHandler cb = std::bind(&LightResource :: entityHandler , this ,PH::_1);
// This will internally create and register the resource.
OCStackResult result = OCPlatform:: registerResource (
m_resourceHandle , resourceURI, resourceTypeName,
resourcelnterface , cb, resourceProperty);

if (OC_STACK OK != result){

cout << "Resource creation was unsuccessful\n";}}
OCStackResult createResourcel ()

{// URI of the resource

std::string resourceURI = "/a/lightl";

// resource type name. In this case, it is light

std :: string resourceTypeName = "core.light";

// resource interface.

std::string resourcelnterface = DEFAULT_INTERFACE;

// OCResourceProperty is defined ocstack.h

uint8_t resourceProperty;

if (isSecure){

resourceProperty = OC_DISCOVERABLE | OC_OBSERVABLE | OC_SECURE;
telse {

resourceProperty = OC_DISCOVERABLE | OC_OBSERVABLE; }

EntityHandler cb = std::bind(&LightResource :: entityHandler , this ,PH::_

OCResourceHandle resHandle;
// This will internally create and register the resource.
OCStackResult result = OCPlatform:: registerResource (
resHandle , resourceURI, resourceTypeName,
resourcelnterface , cb, resourceProperty);

if (OC_STACK OK != result)

{cout << "Resource creation was unsuccessful\n";}

return result;}

OCResourceHandle getHandle ()}

return m_resourceHandle;}

// Puts representation.

/! Gets values from the representation and

// updates the internal state

void put(OCRepresentation& rep)

{try {

if (rep.getValue("state", m_state))

{cout << "\t\t\t\t" << "state: "

}else {

<< m_state << endl;

cout << "\t\t\t\t" << "state not found in the representation" << endl;

}if (rep.getValue ("power", m_power))
{cout << "\t\t\t\t" << "power: " << m_power << endl;
}else {

cout << "\t\t\t\t" << "power not found in the representation" << endl;

}}catch (exception& e)

{cout << e.what() << endl;}}

// Post representation.

// Post can create new resource or simply act like put.
/! Gets values from the representation and

// updates the internal state

OCRepresentation post(OCRepresentation& rep)

{static int first = 1;

// for the first time it tries to create a resource

if (first)

{first = 0;

if (OC_STACK_OK == createResourcel ())

{ OCRepresentation repl;

repl.setValue (" createduri", std::string ("/a/lightl "));
return repl;}}

// from second time onwards it just puts

put(rep); return get();}

/] gets the updated representation.

// Updates the representation with latest internal state before

// sending out.

73

74

OCRepresentation get(){

m_lightRep.setValue (" state", m_state);

m_lightRep.setValue ("power", m_power);

return m_lightRep;}

void addType(const std::string& type) const

{OCStackResult result = OCPlatform:: bindTypeToResource(m_resourceHandle, type);
if (OC_STACK OK != result){

cout << "Binding TypeName to Resource was unsuccessful\n";}}

void addInterface (const std::string& interface) const

{OCStackResult result = OCPlatform:: bindInterfaceToResource (m_resourceHandle, interface);
if (OC_STACK OK != result){

cout << "Binding TypeName to Resource was unsuccessful\n";}}

private:

// This is just a sample implementation of entity handler.

// Entity handler can be implemented in several ways by the manufacturer
OCEntityHandlerResult entityHandler (std:: shared_ptr <OCResourceRequest> request)
{cout << "\tIn Server CPP entity handler:\n";

OCEntityHandlerResult ehResult = OC_EH_ERROR;

if (request){

/!l Get the request type and request flag

std::string requestType = request —>getRequestType ();

int requestFlag = request—>getRequestHandlerFlag ();

if (requestFlag & RequestHandlerFlag :: RequestFlag)

{cout << "\t\trequestFlag : Request\n";

auto pResponse = std:: make_shared<OC:: OCResourceResponse >();

pResponse —>setRequestHandle (request —>getRequestHandle ());

pResponse —>setResourceHandle (request —>getResourceHandle ());

// Check for query params (if any)

QueryParamsMap queries = request —>getQueryParameters ();

if (!queries.empty())

{std::cout << "\nQuery processing upto entityHandler" << std::endl;

}for (auto it : queries){

n " n

std ::cout << "Query key: << it.first << value << it.second
<< std:: endl;}

// If the request type is GET

if (requestType == "GET")

{cout << "\t\t\trequestType : GET\n";

if (isSlowResponse) // Slow response case

{static int startedThread = O0;

if (!'startedThread){

std :: thread t(handleSlowResponse, (void x*)this, request);
startedThread = 1; t.detach();}

ehResult = OC_EH_SLOW; }

else // normal response case.{

pResponse —>setErrorCode (200);

pResponse —>setResponseResult (OC_EH_OK);

pResponse —>setResourceRepresentation(get ());

if (OC_STACK OK == OCPlatform :: sendResponse (pResponse))

{ehResult = OC_EH_OK;}}}
else if (requestType == "PUT"){
cout << "\t\t\trequestType : PUT\n";

OCRepresentation rep = request—>getResourceRepresentation ();

// Do related operations related to PUT request

// Update the lightResource

put(rep);

pResponse —>setErrorCode (200);
pResponse —>setResponseResult (OC_EH_OK);

pResponse —>setResourceRepresentation(get());

if (OC_STACK _OK == OCPlatform:: sendResponse (pResponse))

{ehResult = OC_EH_OK;}
else if (requestType == "POST"){
cout << "\t\t\trequestType : POST\n";

OCRepresentation rep = request—>getResourceRepresentation ();

// Do related operations related to POST request

OCRepresentation rep_post = post(rep);

pResponse —>setResourceRepresentation(rep_post);

pResponse —>setErrorCode (200);

if (rep_post.hasAttribute ("createduri")){

pResponse —>setResponseResult (OC_EH_RESOURCE_CREATED) ;

pResponse —>setNewResourceUri(rep_post.getValue<std :: string >("createduri "));}

else {
pResponse —>setResponseResult (OC_EH_OK) ;
}

if (OC_STACK_OK == OCPlatform::sendResponse (pResponse))

{ehResult = OC_EH_OK;}}
else if (requestType == "DELETE")

{cout << "Delete request received" << endl;}}

if (requestFlag & RequestHandlerFlag:: ObserverFlag)

{ObservationInfo observationInfo = request—>getObservationInfo ();

if (ObserveAction:: ObserveRegister == observationInfo.action)

{m_interestedObservers.push_back(observationInfo.obsld);}

else if (ObserveAction:: ObserveUnregister ==
{m_interestedObservers.erase (std :: remove(
m_interestedObservers.begin(),
m_interestedObservers.end (),
observationInfo.obsld),
m_interestedObservers.end ());}

pthread_t threadld;

cout << "\t\trequestFlag : Observer\n";
gObservation = 1;

static int startedThread = O;

// Observation happens on a different thread
// If we have not created the thread already

if (! startedThread)

observationInfo.action)

in ChangeLightRepresentation function.

, we will create one here.

{pthread_create (&threadld, NULL, ChangeLightRepresentation, (void x)this);

startedThread = 1;}ehResult = OC_EH_OK;}}

75

76

else{std::cout << "Request invalid" << std::endl;

}Jreturn ehResult;}};

// ChangeLightRepresentaion is an observation function,

// which notifies any changes to the resource to stack

/! via notifyObservers

void * ChangeLightRepresentation (void xparam)

{LightResourcex lightPtr = (LightResourcex) param;

// This function continuously monitors for the changes

while (1){sleep (3);

if (gObservation){

// 1If under observation if there are any changes to the light resource
// we call notifyObservors

// For demostration we are changing the power value and notifying.
lightPtr —>m_power += 10;

"

cout << "\nPower updated to << lightPtr —>m_power << endl;

cout << "Notifying observers with resource handle: "
OCStackResult result = OC_STACK OK;

if (isListOfObservers){

<< lightPtr —>getHandle () << endl;

std :: shared_ptr <OCResourceResponse> resourceResponse =

{std :: make_shared<OCResourceResponse >() };

resourceResponse —>setErrorCode (200);

resourceResponse —>setResourceRepresentation (lightPtr —>get (), DEFAULT_INTERFACE);
result = OCPlatform:: notifyListOfObservers(lightPtr —>getHandle (),
lightPtr —>m_interestedObservers ,

resourceResponse);}

else {

result = OCPlatform:: notifyAllObservers (lightPtr —>getHandle ());

}

if (OC_STACK_NO_OBSERVERS == result){

cout << "No More observers, stopping notifications" << endl;
gObservation = 0;}}}

return NULL;}

void * handleSlowResponse (void xparam, std::shared_ptr <OCResourceRequest> pRequest){
// This function handles slow response case

LightResourcex lightPtr = (LightResourcex) param;

// Induce a case for slow response by using sleep

std ::cout << "SLOW response" << std::endl;

sleep (10);

auto pResponse = std:: make_shared<OC:: OCResourceResponse >();
pResponse —>setRequestHandle (pRequest —>getRequestHandle ());
pResponse —>setResourceHandle (pRequest—>getResourceHandle ());
pResponse —>setResourceRepresentation (lightPtr —>get ());

pResponse —>setErrorCode (200);

pResponse —>setResponseResult (OC_EH_OK);

/1 Set the slow response flag back to false

isSlowResponse = false;

OCPlatform :: sendResponse (pResponse);

return NULL;}

void
{std:
std ::
std ::
std ::
std ::
std ::
std ::
}

PrintUsage ()

ccout << std::endl;

cout
cout
cout
cout
cout

cout

<<

<<

<<

<<

<<

<<

"Usage : simpleserver <value>\n";

Default — Non—secure resource and notify all observers\n";
! 1 — Non—secure resource and notify list of observers\n\n";
2 — Secure resource and notify all observers\n";

3 — Secure resource and notify list of observers\n\n";

4 — Non—secure resource , GET slow response, notify all observers\n";

static FILEx client_open(const charx /xpath=x/, const char xmode)

{return fopen ("./oic_svr_db_server.json", mode);}

int main(int argc, charx argv|[])

{PrintUsage ();

OCPersistentStorage ps {client_open, fread, fwrite, fclose, unlink };

if (arge == 1)
{isListOfObservers = false;
isSecure false;}

else if (argec == 2)

{int value = atoi(argv[1]);

switch (value)({

case 1:
isListOfObservers = true;
isSecure false;

break ;

case 2:

isListOfObservers = false;

isSecure

break ;

case

3:

true ;

isListOfObservers = true;

isSecure

break

case

>

4:

true ;

isSlowResponse = true;
break ;
default:

break;}}else {

return —1;}

/! Create PlatformConfig object

PlatformConfig cfg {

OC:: ServiceType :: InProc,
OC::ModeType :: Server ,

"0.0.0.0",

0,

// By setting to "0.0.0.0", it binds to all available interfaces

/!l Uses randomly available port

OC:: QualityOfService :: LowQos,

&ps };

OCPlatform :: Configure (cfg);

try {

77

78

/! Create the instance of the resource class

// (in this case instance of class ’LightResource ’).

LightResource myLight;

/! Invoke createResource function of class light.
myLight.createResource ();

std :: cout << "Created resource." << std::endl;
myLight.addType(std :: string ("core.brightlight "));

myLight. addInterface (std:: string (LINK_INTERFACE));

std ::cout << "Added Interface and Type" << std::endl;

// A condition variable will free the mutex it is given, then do a non—
// intensive block until ’notify ’ is called on it. In this case, since we
// don’t ever call cv.notify, this should be a non—processor intensive version
// of while(true);

std :: mutex blocker;

std :: condition_variable cv;

std ::unique_lock <std :: mutex> lock(blocker);

std ::cout <<"Waiting" << std ::endl;

cv.wait(lock, []{return false;});

}catch (OCException &e){

std :: cout << "OCException in main << e.what() << endl;
}// No explicit call to stop the platform.
// When OCPlatform:: destructor is invoked, internally we do platform cleanup

return 0;}
I.1.2 Cédigo Computador

#include <string>

#include <map>

#include <cstdlib >

#include <pthread.h>

#include <mutex>

#include <condition_variable >

#include "OCPlatform.h"

#include "OCApi.h"

using namespace OC;

typedef std::map<OCResourceldentifier, std::shared_ptr <OCResource>> DiscoveredResourceMap;
DiscoveredResourceMap discoveredResources;

std :: shared_ptr <OCResource> curResource;

static ObserveType OBSERVE_TYPE TO_USE = ObserveType :: Observe;
std :: mutex curResourceLock;

class Light

{public:

bool m_state;

int m_power;

std::string m_name;

Light() : m_state(false), m_power(0), m_name("")
{1}

Light mylight;

int observe_count ()

{static int oc = 0;

return ++oc;}

void onObserve(const HeaderOptions /+headerOptions=*/, const OCRepresentation& rep,
const int& eCode, const int& sequenceNumber)

{try{

if (eCode == OC_STACK OK && sequenceNumber != OC_OBSERVE_NO_OPTION)

{if (sequenceNumber == OC_OBSERVE_REGISTER)

{std::cout << "Observe registration action is successful" << std::endl;}
else if (sequenceNumber == OC_OBSERVE_DEREGISTER) {

std ::cout << "Observe De—registration action is successful" << std::endl;}
std :: cout << "OBSERVE RESULT:"<<std :: endl;

std ::cout << "\tSequenceNumber: "<< sequenceNumber << std::endl;
rep.getValue (" state", mylight. m_state);

rep.getValue ("power", mylight.m_power);

rep.getValue ("name", mylight.m_name);

std::cout << "\tstate: " << mylight.m_state << std::endl;

std :: cout << "\tpower: << mylight.m_power << std::endl;

std ::cout << "\tname: << mylight.m_name << std::endl;

if (observe_count() == 11)
{std :: cout<<"Cancelling Observe..."<<std::endl;
OCStackResult result = curResource —>cancelObserve ();

std :: cout << "Cancel result: "<< result <<std::endl;

sleep (10);

std :: cout << "DONE"<<std :: endl;

std::exit(0);}}

else {

if (sequenceNumber == OC_OBSERVE_NO_OPTION)

{std::cout << "Observe registration or de—registration action is failed" << std::endl;}
else {

std :: cout << "onObserve Response error: " << eCode << std::endl;

std::exit(—1);}}}

catch(std::exception& e)

" "

{std::cout << "Exception: << e.what() << in onObserve" << std::endl;}}
void onPost2(const HeaderOptions& /+headerOptions x/,

const OCRepresentation& rep, const int eCode)

{try{

if (eCode == OC_STACK OK || eCode == OC_STACK _RESOURCE_CREATED)

{

std ::cout << "POST request was successful" << std::endl;

if (rep.hasAttribute ("createduri")){

"

std :: cout << "\tUri of the created resource:
<< rep.getValue<std :: string >("createduri") << std::endl;
telse {

rep.getValue (" state", mylight. m_state);

rep.getValue ("power", mylight.m_power);

rep.getValue ("name", mylight.m_name);

std ::cout << "\tstate: << mylight.m_state << std::endl;

"

std ::cout << "\tpower: << mylight.m_power << std::endl;

80

std :: cout << "\tname:

}
if (OBSERVE_TYPE_TO_USE == ObserveType :: Observe)

<< mylight.m_name << std::endl;

std :: cout << std::endl << "Observe is used." << std::endl << std::endl;
else if (OBSERVE_TYPE TO_USE == ObserveType:: ObserveAll)

std ::cout << std::endl << "ObserveAll is used." << std::endl << std::endl;
curResource —>observe (OBSERVE_TYPE_TO_USE, QueryParamsMap (), &onObserve);}
else {

std :: cout << "onPost2 Response error: << eCode << std::endl;
std::exit(—1);}}

catch(std::exception& e)

{

std :: cout << "Exception:

1

void onPost(const HeaderOptions& /«headerOptions */,

n "

<< e.what() << in onPost2" << std::endl;

const OCRepresentation& rep, const int eCode)

{try{
if (eCode == OC_STACK OK || eCode == OC_STACK_RESOURCE_CREATED)
{std::cout << "POST request was successful" << std::endl;

if (rep.hasAttribute ("createduri "))

{std::cout << "\tUri of the created resource:
<< rep.getValue<std :: string >("createduri") << std::endl;
telse {

rep.getValue (" state", mylight. m_state);

rep.getValue ("power", mylight.m_power);

rep.getValue ("name", mylight.m_name);

std ::cout << "\tstate: << mylight.m_state << std::endl;

[

std ::cout << "\tpower: << mylight.m_power << std::endl;

std :: cout << "\tname:

}

OCRepresentation rep2;

<< mylight.m_name << std::endl;

std::cout << "Posting light representation..."<<std::endl;
mylight. m_state = true;

mylight . m_power = 55;

rep2.setValue (" state", mylight.m_state);

rep2.setValue ("power", mylight.m_power);

curResource —>post(rep2, QueryParamsMap (), &onPost2);

}else

std :: cout << "onPost Response error: " << eCode << std::endl;
std::exit(—1);}}

catch(std::exception& e){

" "

std :: cout << "Exception: in onPost" << std::endl;

1}

/! Local function to put a different state for this resource

<< e.what() <<

void postLightRepresentation(std::shared_ptr <OCResource> resource)
{if (resource){
OCRepresentation rep;

std ::cout << "Posting light representation..."<<std::endl;

81

mylight. m_state = false;

mylight.m_power = 105;

rep.setValue (" state", mylight. m_state);

rep.setValue ("power", mylight.m_power);

// Invoke resource’s post API with rep, query map and the callback parameter
resource —>post(rep, QueryParamsMap (), &onPost);}}

/! callback handler on PUT request

void onPut(const HeaderOptions& /+«headerOptions*/, const OCRepresentation& rep, const int eCode)
{try{

if (eCode == OC_STACK _OK)

{std::cout << "PUT request was successful" << std::endl;

rep.getValue ("state", mylight. m_state);

rep.getValue ("power", mylight.m_power);

rep.getValue ("name", mylight.m_name);

std::cout << "\tstate: " << mylight.m_state << std::endl;

std ::cout << "\tpower: << mylight.m_power << std::endl;

std :: cout << "\tname: << mylight.m_name << std::endl;
postLightRepresentation (curResource);}
else {

std :: cout << "onPut Response error:

std::exit(—1);}}

<< eCode << std::endl;

catch(std::exception& e){

"

std :: cout << "Exception:

1

// Local function to put a different state for this resource

<< e.what() << " in onPut" << std::endl;

void putLightRepresentation(std::shared_ptr <OCResource> resource)
{if(resource){

OCRepresentation rep;

std ::cout << "Putting light representation..."<<std::endl;

mylight. m_state = true;

mylight.m_power = 15;

rep.setValue ("state", mylight. m_state);

rep.setValue ("power", mylight.m_power);

/! Invoke resource’s put API with rep, query map and the callback parameter
resource —>put(rep, QueryParamsMap (), &onPut);}}

// Callback handler on GET request

void onGet(const HeaderOptions& /+headerOptions*/, const OCRepresentation& rep, const int eCode)
{try{

if (eCode == OC_STACK_OK)

{std::cout << "GET request was successful" << std::endl;

std ::cout << "Resource URI: " << rep.getUri() << std::endl;

rep.getValue (" state", mylight. m_state);

rep.getValue ("power", mylight.m_power);

rep.getValue ("name", mylight.m_name);

std::cout << "\tstate: << mylight. m_state << std::endl;

std ::cout << "\tpower: << mylight.m_power << std::endl;

"

std :: cout << "\tname: << mylight.m_name << std::endl;

putLightRepresentation(curResource);

82

}else {

std :: cout << "onGET Response error: << eCode << std::endl;

std::exit(—=1);})

catch(std::exception& e){

std ::cout << "Exception: " << e.what() << " in onGet" << std::endl;

1}

/!l Local function to get representation of light resource

void getLightRepresentation(std::shared_ptr <OCResource> resource)

{if (resource){

std ::cout << "Getting Light Representation..."<<std::endl;

/! Invoke resource’s get API with the callback parameter

QueryParamsMap test;

resource —>get(test , &onGet);}}

// Callback to found resources

void foundResource(std::shared_ptr <OCResource> resource)

{std::cout << "In foundResource\n";

std::string resourceURI;

std ::string hostAddress;

try {{

std ::lock_guard<std :: mutex> lock (curResourceLock);

if (discoveredResources. find (resource —>uniqueldentifier ()) == discoveredResources.end()){
std :: cout << "Found resource " << resource —>uniqueldentifier () <<

" for the first time on server with ID: "<< resource —>sid()<<std ::endl;
discoveredResources[resource —>uniqueldentifier ()] = resource;
}else

std :: cout<<"Found resource "<< resource —>uniqueldentifier () << again!"<<std ::endl;}
if (curResource){

std :: cout << "Found another resource, ignoring"<<std::endl;

return;}}

// Do some operations with resource object.

if (resource){

std :: cout <<"DISCOVERED Resource:"<<std :: endl;

/! Get the resource URI

resourceURI = resource —>uri ();

std :: cout << "\tURI of the resource: " << resourceURI << std::endl;

/! Get the resource host address

hostAddress = resource —>host ();

std ::cout << "\tHost address of the resource: " << hostAddress << std::endl;
// Get the resource types

"

std::cout << "\tList of resource types: << std::endl;

for(auto &resourceTypes : resource —>getResourceTypes ())
{std::cout << "\t\t" << resourceTypes << std::endl;}

// Get the resource interfaces

std ::cout << "\tList of resource interfaces: " << std::endl;
for(auto &resourcelnterfaces : resource —>getResourcelnterfaces ())
{std::cout << "\t\t" << resourcelnterfaces << std::endl;

}if (resourceURI == "/a/light"){

curResource = resource;

// Call a local function which will internally invoke get API on the resource pointer
getLightRepresentation(resource);}}

else {

// Resource is invalid

std :: cout << "Resource is invalid" << std::endl;}

}Jcatch(std::exception& e){

std::cerr << "Exception in foundResource: "<< e.what() << std::endl;

1}

void printUsage (){

std :: cout << std::endl;

std ::cout << " \n";
std :: cout << "Usage : simpleclient <ObserveType>" << std::endl;

std :: cout << " ObserveType : 1 — Observe" << std::endl;

std :: cout << " ObserveType : 2 — ObserveAll" << std::endl;

std :: cout << " \n\n";
}

void checkObserverValue(int value)

{if (value == 1){

OBSERVE_TYPE_TO_USE = ObserveType :: Observe;

std ::cout << "<===Setting ObserveType to Observe===>\n\n";
telse if (value == 2){

OBSERVE_TYPE_TO_USE = ObserveType :: ObserveAll;

std ::cout << "<===Setting ObserveType to ObserveAll===>\n\n";
telse {

std ::cout << "<===Invalid ObserveType selected."

"

<<" Setting ObserveType to Observe===>\n\n";}}

static FILEx client_open(const charx /xpath=x/, const char smode)
{return fopen ("./oic_svr_db_client.json", mode);}

int main(int argc, charx argv[]) {

std :: ostringstream requestURI;

OCPersistentStorage ps {client_open, fread, fwrite, fclose, unlink };
try {

printUsage ();

if (arge == 1)

{std :: cout << "<===Setting ObserveType to Observe and ConnectivityType to IP===>\n\n";
}else if (arge == 2){

checkObserverValue (std :: stoi(argv[1]));}

else {

std :: cout << "<===Invalid number of command line arguments===>\n\n";
return —1;}}

catch(std::exception&){

std ::cout << "<===Invalid input arguments===>\n\n";

return —1;}

// Create PlatformConfig object

PlatformConfig cfg {

OC:: ServiceType :: InProc,

OC:: ModeType :: Both,

"0.0.0.0",

83

84

0,

OC:: QualityOfService :: LowQos,
&ps

1

OCPlatform :: Configure (cfg);
try {

// makes it so that all boolean values are printed as ’true/false

>

in this stream
std::cout.setf(std::ios::boolalpha);

// Find all resources

requestURI << OC_RSRVD_WELL _KNOWN_URI;// << "?rt=core.light";

OCPlatform:: findResource ("", requestURI.str (),

CT_DEFAULT, &foundResource);

std ::cout<< "Finding Resource... " <<std::endl;

// Find resource is done twice so that we discover the original resources a second time.
// These resources will have the same uniqueidentifier (yet be different objects), so that
// we can verify/show the duplicate —checking code in foundResource (above);
OCPlatform :: findResource ("", requestURI.str (),

CT_DEFAULT, &foundResource);

std :: cout<< "Finding Resource for second time..." << std::endl;

// A condition variable will free the mutex it is given, then do a non—

// intensive block until ’notify ’ is called on it. In this case, since we

// don’t ever call cv.notify, this should be a non—processor intensive version

// of while(true);

std :: mutex blocker;

std :: condition_variable cv;

std ::unique_lock <std :: mutex> lock (blocker);

cv.wait(lock);

}catch (OCException& e){

oclog () << "Exception in main: "<<e.what();}

return 0;}

