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RESUMO
ARRUDA, V. C. Desenvolvimento de software para a verificagcéo de pilares
de concreto armado com secao transversal retangular. 2023. Monografia
(Trabalho de Conclusdo de Curso) — Escola de Engenharia de Séo Carlos,

Universidade de Sao Paulo, Sao Carlos, 2023.

Diante da busca pela eficiéncia e produtividade dos calculos que norteiam a
confeccdo de estruturas de concreto armado na area da engenharia civil, €
indispensavel o uso de recursos computacionais para garantir a precisdo dos
resultados e permitir a interpretacdo de forma mais incisiva do comportamento
dos elementos estruturais diante dos esfor¢cos aos quais estédo sujeitos. Assim,
o presente trabalho discorre a respeito do desenvolvimento de um software em
linguagem de programacao Python para a verificacdo de pilares de concreto
armado com secdo transversal retangular abrangendo diferentes métodos,
incluindo o método do pilar padréo por rigidez e curvatura aproximada, bem
como o método geral, o qual considera de forma mais minuciosa os efeitos de
segunda ordem promovidos pela ndo linearidade fisica e geométrica desses
elementos. O programa ainda permite uma andlise da resisténcia da secao
quando submetida a flexo-compressao obliqua ao promover o tracado de sua
envoltoria resistente real. Para esclarecer a compreensédo dos resultados e
facilitar a inser¢cdo de dados, ele conta com recursos graficos e de interface
grafica disponibilizados por bibliotecas da linguagem utilizada. Apos sua
implementacéo, ele foi testado e comparado com calculos realizados de forma
algébrica e com dados obtidos de outro programa ja existente, apresentando
resultados consistentes e coerentes. Em suma, o software desenvolvido
apresenta-se como uma ferramenta abrangente e eficiente para a verificacédo de

pilares, proporcionando praticidade aos engenheiros civis na analise estrutural.

Palavras-chave: software; interface gréfica; verificacdo; método do pilar padréo;

meétodo geral; envoltoria resistente real; nao linearidade.
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ABSTRACT
ARRUDA, V. C. Development of software for the verification of reinforced
concrete columns with rectangular cross-section. 2023. Monografia
(Trabalho de Conclusdo de Curso) — Escola de Engenharia de Séo Carlos,

Universidade de Sao Paulo, Sao Carlos, 2023.

In the quest for efficiency and productivity in the calculations guiding the design
of reinforced concrete structures in civil engineering, the use of computational
resources is indispensable to ensure the accuracy of results and enable a more
insightful interpretation of the behavior of structural elements under the applied
forces. Thus, the present work discusses the development of software in the
Python programming language for the verification of reinforced concrete columns
with a rectangular cross-section, covering different methods, including the
standard pillar method with approximate curvature and stiffness, as well as the
general method, which more meticulously considers the second-order effects
induced by the physical and geometric non-linearity of these elements. The
program also allows an analysis of section resistance when subjected to oblique
flexure-compression by plotting its real resistance envelope. To enhance result
comprehension and facilitate data input, it features graphical and user interface
resources provided by libraries in the language used. After implementation, it was
tested and compared with algebraic calculations and data from another existing
program, yielding consistent and coherent results. In summary, the developed
software emerges as a comprehensive and efficient tool for column verification,

providing practicality for civil engineers in structural analysis.

Keywords: software; graphic interface; verification; standard pillar method,;

general method; real resistance envelope; non-linearity.
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1 INTRODUCAO

Os pilares desempenham um papel fundamental na estrutura de uma
construcdo, sendo pecas lineares, geralmente posicionadas verticalmente, que
sofrem principalmente forcas de compresséo. Esses elementos possuem grande
importancia no arranjo estrutural, uma vez que sao responsaveis por receber e
transmitir as fundacdes toda a carga acumulada dos pavimentos. Além disso,
desempenham um papel crucial no suporte e na estabilidade de toda a
edificacao.

Tanto o dimensionamento quanto a verificacdo dos pilares sdo uma tarefa
complexa. Na compressao, essas estruturas enfrentam efeitos que resultam em
um equilibrio instavel ao longo da sua extensdo, como a flambagem e
deslocamentos que geram excentricidades. Essas mudancas na distribuicdo das
cargas criam novas solicitacdes e alteram as condicdes de estabilidade,
conhecidas como efeitos de segunda ordem. Esses efeitos geram
excentricidades adicionais, que, somadas as excentricidades iniciais das pecas,
induzem momentos que levam o pilar a suportar também forcas de flexao. Isso
resulta em flexdes compostas, que podem ocorrer tanto na dire¢cdo normal
quanto na obliqua.

De acordo com Pinheiro (2007), a localizacdo do pilar em planta afeta a
forma como as cargas verticais sdo transferidas para ele, levando em
consideracdo as excentricidades e os diferentes tipos de solicitacdo a que ele
estara sujeito, como compressao simples, flexdo composta normal ou flexédo
composta obliqua. Em pilares onde se encontram vigas continuas, as rotacdes
transmitidas nas extremidades da secao tém efeitos negativos um sobre o outro,
resultando em uma forga resultante geralmente insignificante. No entanto, em
pilares localizados na extremidade de uma viga (pilares de extremidade) ou de
duas (pilares de canto), ocorrem momentos significativos que nado podem ser
negligenciados.

Os pilares também podem ser classificados quanto a sua esbeltez, ainda
segundo Pinheiro (2007). Um pilar é curto quando seu indice de esbeltez (A) é
menor que um indice de esbeltez limite (A1) estabelecido pela NBR 6118:2014,

podendo-se, nesse caso, dispensar a excentricidade de 22 ordem. Ja pilares
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medianamente esbeltos possuem A1 < A < 90, sendo o célculo dos efeitos de 22
ordem feito de duas formas principais, estabelecidas pela mesma norma, em que
a primeira consiste no método do pilar padrdo com rigidez k aproximada e a
segunda no método do pilar padrdo com curvatura aproximada. Por fim, os
pilares podem ser esbeltos, com 90 < A < 140, e muito esbeltos, com 140 <A <
200, em ambos 0s casos, € necessario considerar ndo so6 os efeitos de 22 ordem,
mas também as ndo linearidades (fisica e geométrica) de uma forma mais
condizente com o comportamento real do elemento, o que ndo leva em conta os
meétodos aproximados, mas sim, o método geral.

No ambito profissional, a praticidade e a rapidez para se respeitar prazos
exigiram ao longo do tempo a utilizacdo de softwares para se realizar os calculos
estruturais na area da Engenharia Civil. A necessidade de se utilizar ferramentas
computacionais vem acoplada a uma maior precisdo na obtencao dos resultados
de interesse, sendo exemplo disso a consideracao da néo linearidade dos pilares
pelo método geral e o comportamento dos mesmos quando solicitados por uma
flexo-compresséo obliqua. Devido a complexidade exigida, os softwares surgem
como alternativa, dispensando a utilizacdo de simplificacbes, e, portanto,
alcancando valores mais condizentes com a realidade.

Dessa forma, a area de célculo estrutural na Engenharia Civil conta com
uma ampla variedade de softwares especializados que auxiliam os engenheiros
no projeto e na analise de estruturas. Esses softwares desempenham um papel
fundamental de fornecer recursos diversos e avancados, facilitando a
modelagem, o dimensionamento e a verificacdo estrutural. Alguns exemplos de
softwares bastante difundidos entre os profissionais sdéo o FTOOL, SCIA
ENGINEER, REVIT, AUTOCAD, TQS, entre outros. Todas essas ferramentas
computacionais apresentam fungbes das mais diversas, englobando varios
ramos na area de estruturas, e possuem em comum a constante atualizacéo e
evolucdo, garantindo a precisdo e a conformidade com as Ultimas préticas e
regulamentacfes. De maneira analoga, o presente trabalho, por meio de um
recurso computacional, se propde a oferecer praticidade e precisdo na

verificacdo de pilares em concreto armado com sec¢ao retangular.
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Ja no contexto educacional, programas relacionados ao célculo estrutural
podem ser utilizados como ferramentas de verificacdo de atividades e exercicios
propostos pelos docentes ou como ferramentas de auxilio no ensino sobre o
dimensionamento e verificacdo de pilares. Na primeira situacédo, essa pratica é
uma forma de garantir a absor¢cdo do conteudo pelos estudantes, além de
possibilitar a comparacdo entre os resultados obtidos de forma algébrica
(manual) e os resultados corretos determinados pelo software, identificando
possiveis erros ou equivocos. Na segunda ocasido, 0S recursos computacionais
oferecem uma melhora no que diz respeito a ilustracdo de conceitos tedricos ao
realizar simulacdes e resolver exercicios.

Com isso, o presente trabalho surge também com uma importancia
significativa no aprimoramento do processo ensino-aprendizado relacionado a
verificacdo de pilares ao potencializar a forma como estudantes assimilam o

conhecimento, reforgando o viés educacional das ferramentas digitais.
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2 OBJETIVO

Neste trabalho pretende-se realizar o desenvolvimento de um software
cujo objetivo é efetuar a verificacdo de pilares de concreto armado com secao
transversal retangular através de dois métodos, o método do pilar padréo e o
meétodo geral. Para isso, sera utilizado recursos computacionais voltados para a
area de programacdo, mais especificamente envolvendo a linguagem de

programacao Python.
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3 ESCOPO DO PROJETO

O escopo do projeto diz respeito a elaboracdo de um software voltado
para a verificacdo de pilares cuja secéo transversal € retangular e que estdo
sujeitos a diferentes solicitacbes normais, incluindo compressao axial, flexo-
compressédo normal e flexo-compressao obliqua.

Optou-se pelo seu desenvolvimento devido a indispensavel utilizacéo de
softwares no ambito profissional com o intuito de se otimizar cada vez mais 0s
resultados, além de facilitar e dinamizar a entrega de projetos estruturais. Dessa
forma, este trabalho aborda apenas uma area especifica da parte de calculo
estrutural, cujo tema € a verificacao de pilares, mas que contempla uma parcela
importante dos softwares ja existentes no mercado, 0s quais possuem diversos
recursos que englobam varias etapas de um projeto estrutural. Por fim, visto que
0S mesmos estdo em constante evolucdo e atualizacdo, este trabalho de
conclusdo de curso se justifica como um projeto de desenvolvedor na area da
Engenharia Civil.

Ademais, para fins didaticos, este projeto surge em razdo da dificuldade
de confeccéo de gréaficos relacionados ao tema apresentado durante trabalhos
da disciplina “Concreto Armado II”, presente no curso de Engenharia Civil da
Escola de Engenharia de S&o Carlos da Universidade de S&o Paulo.

A segquir, estruturou-se um fluxograma com as atividades que serao

desenvolvidas ao longo do projeto, indicado na Figura 3.1.
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Figura 3.1 - Fluxograma da metodologia do projeto
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Fonte: Autoria prépria

A primeira etapa compreende a revisao bibliografica de toda a teoria que
sera abordada no projeto e implementada no codigo, a qual sera mais detalhada
no topico 4.

Na segunda etapa, os requisitos do software sdo levantados e definidos.
Isso envolve entender as necessidades dos usuérios, identificar funcionalidades
e definir os objetivos do software.

Na terceira etapa, o codigo comeca a ser escrito na linguagem de
programacdo determinada (Python). S&o elaboradas funcdes responsaveis
pelos calculos de interesse, iniciando-se do menor nivel de complexidade para
0 maior, ou seja, inicia-se pelas contas envolvendo os métodos do pilar padréo,
por rigidez k aproximada e por curvatura aproximada, em seguida, sdo
elaboradas as contas envolvendo o método geral e, por fim, os calculos
responsaveis para se obter os momentos resistentes considerando a flexo-
compressdo obliqua. Portanto, este estagio do projeto envolve toda a
programacao do “back-end”, isto €, aquilo que ndo estd em contato com o
usuario, mas que compde a estrutura do programa.

Ja na quarta etapa ocorre a implementagdo do “front-end”, ou seja, 0

design do software é elaborado da melhor forma para que o usuario consiga
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inserir os dados e visualizar os resultados de forma clara, garantindo uma boa
experiéncia apos a interacao. Isso inclui a definicdo da arquitetura, a criagdo de
graficos, para representacdo das envoltorias, e de desenhos representativos, a
definicdo da interface grafica (GUI) e o planejamento das estruturas de dados.

Apos o “back-end” e o “front-end” prontos, inicia-se a fase de testes (quinta
etapa), a qual consiste na aplicagcdo do software em pilares de uma estrutura
submetidos a esfor¢os solicitantes reais ou em exemplos da literatura. Durante
os testes, erros podem ser identificados. Com isso, ha sexta etapa, 0s problemas
sdo diagnosticados, corrigidos e testados novamente para garantir que o
software funcione corretamente.

Por fim, realizado todo o processo mencionado, ocorre a entrega final do

software, revisado e pronto para uso (sétima etapa).
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4 REVISAO BIBLIOGRAFICA

A teoria para a verificagdo de pilares em concreto armado de secgao
transversal retangular, sujeitos a solicitacdes normais (momentos fletores e
forcas normais), aqui presente, foi baseada majoritariamente em Fusco (1981),

Borges (1999) e em simplificacOes estabelecidas pela NBR 6118:2014.

4.1 Definicbes

Em seu livro, Fusco (1981) define alguns conceitos basicos essenciais
para o entendimento do comportamento de estruturas de concreto armado
sujeitas a solicitagdes normais, 0s quais serdo abordados neste topico.

Diante disso, € importante ressaltar que, por definicdo, os pilares estédo
sujeitos majoritariamente por solicitacdes normais, logo, é primordial defini-las.
Assim, elas séao esforcos solicitantes que produzem tensdes normais nas secoes
transversais das pecas estruturais.

Outro conceito importante é o de estado limite Gltimo, em que a verificacédo
da seguranca é feita admitindo-se que o esgotamento da capacidade resistente
tanto possa ocorrer pela ruptura do concreto comprimido, quanto pela
deformagéo excessiva da armadura tracionada. Contudo, tendo em vista as
dificuldades de caracterizacdo do esgotamento da capacidade resistente das
pecas submetidas as solicitacdes normais, considerou-se um estado limite ultimo
convencional, designado por estado limite Gltimo de ruptura ou de deformacéao
plastica excessiva.

Este estado limite ultimo é alcan¢cado quando a fibra mais comprimida de
concreto, cujo valor depende do tipo de solicitagdo, € igual a um valor altimo
convencional (ecu), que varia de acordo com a classe do concreto, ou ainda
guando a barra de aco mais deformada na armadura mais tracionada possui um

alongamento igual ao valor altimo convencional (gsu) de 10 %o.

4.2 Hipoteses Basicas
Com relacao ao estado limite ultimo, séo estabelecidas algumas hipoteses

gerais, segundo Fusco (1981):
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Manutencédo da secao plana: considera-se que nas pecas de concreto
submetidas a solicitagbes normais, é admitida a validade da hipotese de
manutencdo da forma plana da secado transversal até o estado limite
altimo. Assim, a distribuicdo plana de deformacdes € considerada plana;
Permanéncia da forma da secao transversal: hipdtese que considera,
mesmo apos sofrer deformacdes, a forma da secao transversal inalterada;
Solidariedade dos materiais: admite-se o comportamento solidario entre
0S materiais que compdem o concreto armado, o qual é promovido
através da aderéncia entre as barras de aco e o concreto. Como
consequéncia dessa hipotese, a deformacdo em cada barra da armadura
€ igual a do concreto que Ihe é adjacente;

Encurtamentos ultimos do concreto: quando apresenta resisténcia menor
que 50 MPa, o encurtamento de ruptura do concreto para secoes
totalmente comprimidas é 2 %o, situado na fibra cuja distancia é de 3/7 da
altura da secdo em relacéo a borda mais comprimida, e, para secdes nao
inteiramente comprimidas, é de 3,5 %o na fibra mais comprimida. J4 em
concretos das classes C55 a C90, a deformacgdo ultima é dada pela

seguinte expressao:

90 — foe1”*
Ecu = 2,6%0 + 35,0%p0 - T({Ck] (4.1)

Em que fck é a resisténcia a compressao do concreto;

Alongamentos ultimos das armaduras: o alongamento especifico altimo
da armadura tracionada é tomado com o valor convencional de 10 %eo.
Este valor também se justifica experimentalmente pelo fato de provocar
grande fissuracdo no elemento, prejudicando o comportamento da
estrutura quando atingido;

Diagrama de tensdes parabola-retangulo: admite-se que as tensfes de
compressdo na secao transversal das pecas submetidas a solicitagcoes
normais tenham uma distribuicdo de acordo com o diagrama parabola-

retangulo (Figura 4.1).
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Figura 4.1 - Diagrama parabola-retangulo para concretos com fck <50 MPa

Deformagoes
Tragéo

Tensdes

, Compresséo

1
3,5 %o

Es'

0,85 f.q

Es

2]

Parabola do
2° grau

Fonte: Fusco (1981)

e Diagrama retangular de tensdes: pode-se admitir uma simplificacdo da

hipotese anterior para as tensées de compressdao em uma distribuicao

retangular, como mostra a Figura 4.2.

Figura 4.2 - Diagrama retangular

Deformacdes

Tragéo \ Compressao

Eccu

Tensobes

0,85 T, 0,80 g

k3
m..
o

Largura  constante
ou crescente para a
borda comprimida

Largura decrescente para
a borda comprimida

Fonte: Fusco (1981)

4.3 Casos de solicitacéo

Para a determinacdo da resisténcia de calculo de uma dada secéo

transversal, é primordial considerar em qual dos dominios definidos pela NBR

6118:2014 (Figura 4.3) esta situado o diagrama de deformacdes especificas de

calculo da secéo analisada. Sendo h a altura da secédo, d a altura util e x a

distancia da linha neutra do banzo mais comprimido.
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Figura 4.3 - Dominios de estado-limite Gltimo de uma secéao transversal

Alongamento Encurtamento

T TZ/"""""""""'"""/" """"""" T

% \ 2

Fonte: Giongo (2017)

A seguir, foram obtidos os casos de solicitacdo, mencionados por Fusco
(1981), supondo que o concreto em questao esteja entre as classes C20 e C50,
apenas como exemplificacdo. A mesma légica € valida para concretos de outras
classes, sendo necessario apenas se atentar quanto ao valor da deformacao
altima convencional do concreto aplicado.

Em consideracdo a isso, no dominio 1, o estado limite ultimo é
caracterizado pela deformacado esd = 10 %o. A linha neutra ndo se encontra na
secdo transversal, a qual esta inteiramente tracionada. Estdo incluidos neste
dominio os casos de tracdo axial e de tracdo excéntrica com pequena
excentricidade. Dessa forma, a secdo resistente é composta pelas duas
armaduras de aco, ndo havendo participacéo resistente do concreto, o qual €
admitido como inteiramente fissurado. Abaixo, a Figura 4.4 ilustra com mais

clareza o que foi mencionado.
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Figura 4.4 - Diagramas de deformacao correspondente aos extremos do dominio 1

1

Fu

As 10 %o

L

As'

As 10 %o Eoq

Fonte: Fusco (1981)

No dominio 2, o estado limite Gltimo é caracterizado pela deformacao €sd
=10 %o, assim como no dominio 1, porém, nesse caso, a linha neutra se encontra
na secao transversal, havendo na peca um banzo tracionado e outro banzo
comprimido. Apesar de haver um banzo tracionado, o concreto da zona
comprimida ndo atinge a ruptura, uma vez que isso ocorrera na posicao limite do
fim do dominio 2, quando €cid = 3,5 %o. Estéo incluidos neste dominio os casos
de tracdo excéntrica com grande excentricidade, de flexdo pura e de compressao
excéntrica com grande excentricidade.

Abaixo, a Figura 4.5 ilustra o diagrama de deformacéo do dominio 2.

Figura 4.5 - Diagrama de deformacé&o correspondente ao extremo do dominio 2

¢ Fu

| Ecﬂd 3,5 %o

x>0

As'

As 10 %o ESd

Fonte: Fusco (1981)
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Por semelhanca de triangulos obtém-se a seguinte equacdo de
compatibilidade:

3,5 %o _ 10 %o

x d—x (42)

E importante salientar que o dominio 2 pode ser subdividido em dois
outros, 0 2a e o 2b. A separacédo entre eles é dada pela condicdo €cid = 2 %o, a

qual corresponde a condicao:

29 109
A)oz )00 (4.3)
b d—x

Desse modo, somente no subdominio 2b deverdo ser levadas em
consideracdo armaduras de compresséo. No subdominio 2a, tais armaduras n&o
sdo necessarias, uma vez que a deformacao das mesmas € infima.

O dominio 3 é caracterizado pela deformacéo €c1d = 3,5 %o, €stando a linha
neutra contida na secéo transversal e havendo um banzo comprimido e outro
tracionado. Na situacdo Ultima, a deformacédo da armadura tracionada € pelo
menos igual a deformacdo de inicio de escoamento, ocorrendo a ruptura do
concreto simultaneamente com o escoamento da armadura, dessa maneira, 0s
dois materiais séo aproveitados inteiramente e n&o ha risco de ruina ndo-avisada
(pecas subarmadas). Neste dominio estdo incluidos os casos de tracdo
excéntrica com grande excentricidade, de flexdo pura e de compressao
excéntrica com grande excentricidade.

Abaixo, a Figura 4.6 ilustra o diagrama de deformacdo do dominio 3.

29



’W _
P s
EESC - USP

Figura 4.6 -Diagrama de deformacao correspondente ao extremo do dominio 3

x>0

As €sd

Fonte: Fusco (1981)

Por semelhanca de triangulos obtém-se a seguinte equacdo de

compatibilidade:

3,5 %o _ €y (4.4)
X d—x

No dominio 4, o estado limite Gltimo é caracterizado pela deformacgéo €cid
= 3,5 %o € a linha neutra se encontra na secao transversal, havendo um banzo
comprimido e outro tracionado. A deformacdo da armadura é inferior a
deformacédo de inicio de escoamento, logo, a ruptura da peca ocorre de forma
fragil, pois o concreto se rompe sem que a armadura tracionada possa provocar
fissuracdo (pecas superarmadas). Este dominio inclui casos de compresséo
excéntrica com grande excentricidade.

Este dominio é limitado pela seguinte condigéo:

x—l() 4.5
d_’ ()

Bx =

Assim como no estado limite Ultimo do dominio 4 é limitado pela
deformacéo €cid = 3,5 %o, 0 dominio 4a também €&, porém, com relacéo a linha
neutra, ela cruza a secao transversal na regido de cobrimento da armadura

menos comprimida. Dessa forma, ambas as armaduras estdo comprimidas,
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embora sejam usualmente despreziveis as tensdes na armadura menos
comprimida.
O dominio 4a é um dominio de transicdo, estando limitado por uma

posicdo da linha neutra tangente a fibra extrema da secao:
x h
=—=- 4.6

Abaixo, a Figura 4.7 ilustra o diagrama de deformacao dos dominios 4 e
4a.

Figura 4.7 - Diagrama de deformacg&o correspondente ao extremo dos dominios 4 e 4a

€otd 359,

Dominio 4a

Fonte: Fusco (1981)

Por fim, no dominio 5 a linha neutra ndo est4 presente na sec¢ao
transversal, a qual esta inteiramente comprimida. E neste dominio que a
deformacédo ultima do concreto é variavel, sendo igual a 2 %0 na compressao
uniforme e 3,5 %o na flexo-compressé@o com linha neutra tangente a sec¢ao.

Abaixo, a Figura 4.8 ilustra o diagrama de deformacdo do dominio 5.
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Figura 4.8 - Diagrama de deformacao correspondente ao extremo do dominio 5
€c1d 5 %
A;‘
o e ] — F”
As
£c2d
77777 T 2 %o
¥ x=+4c

Fonte: Fusco (1981)

4.4 Comportamento dos materiais — Ago e Concreto

A priori, com relacdo ao concreto, seu diagrama tensao-deformacéao real
nao é linear e € variavel para as varias classes de resisténcia, de acordo com
Borges (1999). Trata-se, portanto, de um material elasto-plastico, mas que
apresenta um comportamento aproximadamente elastico-linear para tensdes até
30% da sua tensdo maxima de compressao. Com isso, a NBR 6118:2014 admite,
no estado limite dltimo, uma simplificacdo para o diagrama parabola-retangulo
(Figura 4.1), o qual é representado por uma parabola do 2° grau, para concreto
de classe C20 a C50 e uma curva para concretos classe C60 a C90, cuja origem
€ na intersecgao dos eixos das ordenadas e das abscissas e fim no ponto (&c2,
0,85 fcd), €, UM segmento de reta paralelo ao eixo das deformacgdes, com origem

neste ponto e fim na deformagéao de ecu (GIONGO, 2017).

Figura 4.9 - Diagrama tenséo-deformac&o idealizado do concreto

o4

fck

0,85fcd

( Eo Ew E

Para fy = 50 MPa: n=2

0.=0,85 fd[l = (1 —E_c)n] Para fy > 50 MPa:
ol e, | 1n=14+234100- 100"

Fonte: Giongo (2017)
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A Tabela 4.1 abaixo expressa os valores de deformacéo convencionais

para cada classe de resisténcia do concreto de acordo com a NBR 6118:2014:

Tabela 4.1 - Valores de &2 e &.u para 0s concretos indicados

Cﬁsffd? Cc20 C25 Cc30 C35 C40 C45 C50 C55 Cc60 Cc70 Cc80 Cc90
resisténcia
€c2 (%0) 2,000 2,199 2288 2416 2516 2,600
€.y (%o0) 3,500 3,125 2884 2656 2604 2600

Fonte: Giongo (2017)

Em relacdo ao aco, na construcao civil sdo usados os acos Classe A, 0s
quais séo laminados a quente e resfriados ao ar livre.

De acordo com Venturini e Rodrigues (1987), o diagrama tenséao-
deformacédo idealizado indica um material elasto-plastico perfeito, em que a
tensdo varia linearmente até o limite de escoamento e é constante para valores
de deformacao superior a esse ponto. Tanto para tracdo como para compressao,
0 inicio do escoamento é dado pelos mesmos valores absolutos da tenséo e da
deformacédo, havendo simetria no diagrama. Porém, devido a solidariedade
admitida perfeita entre os materiais, os valores de deformacdo ndo podem
ultrapassar o limite estabelecido para o concreto (ecu). Abaixo se encontra o
diagrama simplificado para o aco estabelecido pela NBR 6118:2014 (Figura

4.10).

Figura 4.10 - Diagrama tenséo-deformacéo idealizado do ago

o= 4

o 1

-Ecu

Hfyod

Fonte: Venturini e Rodrigues (1987)
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4.5 Nao linearidades

Em sua dissertacao, Borges (1999) aborda ainda a respeito do conceito
de ndo linearidade, o qual sera exposto no presente topico.

Desse modo, ha dois tipos de néo linearidades que podem ser observadas
nos pilares de concreto armado, a geométrica, que esta envolvida com os
deslocamentos adicionais produzidos pela deformacdo do elemento, e a fisica,
cuja relacdo é com as propriedades do material.

A respeito da nao linearidade geométrica, mais especificamente, ela &
resultante da influéncia dos deslocamentos no momento total, sendo conhecida
como efeito de 22 ordem.

Arigor, a posicéo deformada da estrutura deveria sempre ser considerada
para calcular os esfor¢os solicitantes, uma vez que garante uma maior precisao
e aproximacao do comportamento real do elemento estrutural. No entanto, sob
um olhar pratico, a discrepancia entre os resultados obtidos ao considerar
apenas os efeitos de 12 ordem e aqueles que incluem também os efeitos de 22
ordem pode ser tao insignificante que néo justifica a realizacao de célculos mais
elaborados. Mas existem casos em que a nao consideracdo desses efeitos pode

causar discrepancias consideraveis nos calculos, como mostrado na Figura 4.11.

Figura 4.11 - Barras sob carregamento axial
lF
4] _,’4 //

/ 12

\ (12

Fonte: Borges (1999)
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Garantindo-se que a barra tenha um comportamento elastico-linear até
atingir a tensdo de escoamento, para valores baixos de uma forga aplicada (F),
a barra ndo apresenta flechas, mas, fazendo com que F cresca até atingir uma
forca critica de flambagem (Fcr), a barra passa a apresentar uma determinada
flecha e o equilibrio estavel s6 pode ser mantido dessa forma. Com essa nova
posicao, 0 acréscimo pequeno de carga causa um maior crescimento de tenséo.

Portanto, a ndo linearidade geométrica prova que mesmo o material
sendo elastico-linear, ou seja, ndo ha deformacéo residual quando o elemento é
descarregado e ha proporcionalidade entre tensdo e deformacdo, pode nao
existir proporcionalidade entre causa e efeito.

Tratando-se agora da nao linearidade fisica, o proprio material ndo é
linear, sendo uma propriedade intrinseca do material, e acarreta na néo
proporcionalidade entre causa e efeito mesmo na teoria da primeira ordem, que
€ 0 caso do concreto armado. Abaixo a Figura 4.12 ilustra a diferenca entre um

material linear e nao-linear.

Figura 4.12 - Diagramas tenséo x deformacéo para materiais de comportamento linear e

nao-linear

» € » E

MATERIAL LINEAR MATERIAL NAO-LINEAR

Fonte: Borges (1999)

Por fim, a ndo linearidade, tanto fisica como geométrica, interfere no
comportamento das estruturas. Tal interferéncia pode ser verificada através da
relacdo entre momento e curvatura, além da configuracdo da estrutura quando

solicitada por esfor¢bes normais.
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4.6 Linha elastica

Neste item, baseou-se em Borges (1999) e em Fusco (1981) para a
introducdo do conceito de linha elastica.

Denomina-se linha elastica como a configuracdo deformada de equilibrio
de uma barra, e é representada pela equacéo y = f(x), em que x € o comprimento
do elemento.

Admitindo que o material obedece a Lei de Hooke, a curvatura numa

secdo genérica € dada pela expressao:

1 M
= 4.7
r El (4.7)

Em que, 1/r € a curvatura do eixo da barra na configuracdo deformada. Ja
que 0 momento varia ao longo da barra, a linha elastica terd uma curvatura
variavel.

A partir de deducdes do valor da curvatura em funcéo dos deslocamentos,

chega-se na seguinte equacao completa da linha elastica:

d2
1 o M
;_ dy 23/2__5 (4'8)
[1+(a) ]

De forma simplificada pode-se considerar a seguinte relagéo, levando em
consideracao a linha elastica:
d?y M

1
o _ _ 4.9
r  dx? El (4.9)

Uma outra forma de se obter a curvatura é por meio das deformacdes.
Para isso, considera-se um elemento de barra dx e que a barra esteja em

equilibrio ap6s a deformacgéo, como mostra a Figura 4.13.
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Figura 4.13 - Elemento de barra de comprimento dx

Fonte: Borges (1999)

Assim, obtém-se a seguinte expressao:

1 &8 (4.10)
r d

Sendo ¢c a deformagédo no concreto comprimido, €s a deformacdo na
amadura de tracdo e d a altura util da secdo. Esta equacdo € valida ndo so6
guando a linha neutra (LN) se encontra dentro da secdo, mas também quando
esta fora, exigindo para isso apenas a hipOtese basica de que as secdes
permanecem planas apoés a flexao.

A relacéo entre 0 momento e a curvatura esta ligada ao conceito de nao
linearidade. No caso da relacdo entre 0 momento interno e a curvatura, o
conceito mais importante € a nao linearidade fisica e, no caso da relacdo entre
0 momento externo e a curvatura, é a ndo linearidade geométrica.

Para materiais de comportamento ndo-linear, ndo ha proporcionalidade
entre tensdo e deformacgédo, dessa forma, a néo linearidade fisica acarreta na
nao linearidade entre momento interno e curvatura. Abaixo, a Figura 4.14 mostra

essa relacao.
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Figura 4.14 - Diagramas momento interno x curvatura

Min Mint

1r 1ir
REGIME LINEAR REGIME NAQ-LINEAR

Fonte: Borges (1999)

Quando se trata da relacdo entre 0 momento externo e a curvatura, tanto
na compressao axial quanto na flexo-compresséao, o uso da equacéao diferencial
da linha elastica afeta 0 momento externo. Desse modo, as expressdes abaixo
mostram essa relacao para os dois casos:

Para a compresséo axial, tem-se:
Mexe =F -y (4.11)
Para flexo-compressao:
Mext = F - (e; +) (4.12)

Em que, y representa o valor do deslocamento em um ponto qualquer ao

longo da altura da barra e ei é a excentricidade inicial.

4.7 Pilares submetidos a Flexo-Compressao normal

Este topico, por sua vez, esta fundamentado em Giongo (2017), ja que ele
apresenta uma analise de sec¢fes transversais solicitadas por flexo-compressao
normal.

Dito isso, ao levar em consideragcdo uma barra solicitada por forgca normal
(Nsd), de compresséao no caso dos pilares, e por momento fletor (Msd), analisa-se
aresisténcia da secéo transversal retangular com relacéo ao estado limite ultimo.
Em face das intensidades da forca normal e do momento fletor, pode-se ter as

seguintes situacoes:
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e Uma armadura tracionada e outra comprimida, caso de grande
excentricidade;
e Duas armaduras comprimidas, caso de pequena excentricidade.
Na Figura 4.15, Asc2 (ou Ast2) é a area das barras comprimidas por agédo
exclusiva de Msd, € Ast1 (OU Asc1) € a area das barras tracionadas por agéo

exclusiva de Msd.

Figura 4.15 - Sec&o retangular de barra solicitada por forca normal e momento fletor
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Fonte: Giongo (2017)

No caso de uma armadura tracionada e outra comprimida, nota-se que as
tens6es causadas pelo momento fletor séo preponderantes face as que ocorrem
em virtude da forca normal. Nesse caso, a linha neutra pode variar como indicado
na inequacao:

d<x<d (4.13)

Escrevendo-se em funcgéo da posicao relativa da linha neutra tem-se:

!

T <Bi<1 (4.14)

A ruina convencional pode ocorrer com deformacgfes relativas aos
dominios 2b (x > d), 3 e 4.
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As equacOes de equilibrio sdo obtidas em funcao das forcas resultantes
das tensfes internas que se equilibram e dos momentos resistentes calculados
em relacdo ao centro geométrico (CG) da secéo.

A seguir, nas expressdes abaixo, tém-se a resultante das tensdes de
compressdo no concreto, Rcc, a forca resultante das tensdes nas barras da
armadura comprimida, Rsc, de area Asc e a forca resultante das tensbes nas
barras da armadura tracionada (Rst) de area Ast. Ademais, tem-se que hx e hy
sao, respectivamente, a base e a altura da sec¢éao transversal, d é a altura util, x
a profundidade da linha neutra, a partir da borda mais comprimida, y é a altura
do diagrama retangular de tensbes de compressao e d’ é a distancia dos centros
das barras das armaduras até a borda mais proxima.

Logo, tem-se o seguinte equilibrio de forcas axiais:
Nsg = Rec + Rsc — Ryt (4.15)
Desenvolvendo as resultantes tem-se a seguinte equagao:
Nsg = hy-d -1 By ac- fea + Asc* Osc + Ase * Ot (4.16)

Em que ac e A sdo expressos na Tabela 4.2 para os concretos indicados
na NBR 6118:2014.

Tabela 4.2 - Valores de ac e A

Classe de
resisténcia

A 0,800 0,788 0,755 0,750 0,725 0,700
[L* 0,850 0,829 0,808 0,765 0,723 0,680

C20 C25 C30 C35 C40 C45 C50 C55 C60 c70 Cc80 C90

Fonte: Giongo (2017)

Considerando o equilibrio de momentos das for¢as resultantes internas

em relacdo ao centro geomeétrico (CG) da secéo, tem-se:

h vy h ,
Mgq = Rec - [E - E] + [Rsc + Rst] : [E - d] (4.17)
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Desenvolvendo a Equacao 4.17 obtém-se:

h h
M;q zhx'dZ'A'ﬁx'ac'fcd' ﬁ—O,S'ﬂ.'ﬂx + [Agc - 05c +Ast'0-5t]'[5_d’] (418)

Pode-se ser escrita ainda a seguinte equagéo de compatibilidade:

ECC ESC ESt

x x—d d—x (4.19)

Ja no caso de duas armaduras comprimidas, as tensdes relativas a forca
normal séo preponderantes em relacéo as causadas pelo momento fletor. Nesse

caso a medida de profundidade da linha neutra pode variar de acordo com a
seguinte inequacao:

d<x<- +oo (4.20)
Ao escrever em fungéo da posicéao relativa da linha neutra tem-se:

1< B, <> 4 (4.21)

A ruina convencional (ELU) pode ocorrer com deformacdes relativas aos
dominios 4a, 5 e reta b.

As equacgoes de equilibrio sé&o escritas de acordo com duas possibilidades

de medidas da profundidade da linha neutra, indicadas nas equacbes 4.22 e
4.23:

y<h,->21-x<h,->x<125-h, (4.22)
y=h,->A-x=h,>x>125h, (4.23)

Assim, a seguir foram escritas as equacdes de equilibrio considerando os

dominios de deformagdes relativos a este caso de duas armaduras comprimidas.
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a) Dominios 4a e 5a (x < 1,25.hy):

Nsq = hx d-A- .Bx T 'fcd + Agc1 " Ose1 + Agez " Osc (4-24)

Maa = b e foa [ = A B Mt 0t~ A 0] [ -] (4.25)

b) Dominios 5b (x > 1,25.hy) e reta b:

Ngg = hy " h-ac - feq + Asct * Ose1 + Agez " Osc2 (4.26)
h !
Mgy = [Ascl " Osc1 — Agea O-SCZ] ) [E - d] (4-27)

Em que Asc1 € Osci correspondem, respectivamente, a area e tensao na
armadura menos comprimida e Asc2 € Osc2 & armadura mais comprimida.

As equacdes de compatibilidade de deformacdes podem ser escritas das
seguintes formas:

a) Dominio 4a

€cc _ €sc2 _ €sc1

x x—d x-d (4.28)
b) Dominio 5a

Ecc Esc2 Esc1

—ce = 4.2

x x—-d x-—d (4.29)
c) Retab

€cc = Esc1 = Ese2 (4.30)

Além disso, na reta b, uma vez que a linha neutra tende ao infinito, as
tensdes nas barras de aco séo iguais a tensao de projeto do aco em questao.

Portanto, € importante salientar que as equacfes de equilibrio aqui
presentes sdo essenciais para a obtencdo do dimensionamento sugerido e até
mesmo da envoltdria resistente real, mesmo quando a secao esta sujeita a flexo-

compressao obliqua, a qual sera detalhada a seguir.
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4.8 Pilares submetidos a Flexo-Compresséao obliqua

Fusco (1981) e Giongo (2017) discorrem a respeito da flexo-compressao
obligua. Sendo assim, 0 conteddo aqui presente possui esse embasamento
literario.

No caso dos elementos estruturais em concreto armado, as secdes
transversais podem estar sujeitas a flexdo composta obliqua quando os planos
dos momentos fletores ndo estéo alinhados com os planos centrais de inércia.

A flexdo composta obligua também pode ocorrer quando o plano do
momento fletor contém um dos eixos principais de inércia, mas o arranjo das
barras de armadura longitudinal ndo é simétrico, ou quando a secéo transversal
nao possui plano de simetria. O que néo é o caso do presente trabalho, uma vez
gue serdo analisados pilares de secdes retangulares.

No caso de flexdo normal composta, a incognita era a profundidade da linha
neutra (x), desde que as medidas dos lados da secao transversal retangular
fossem conhecidas. Contudo, quando a secao transversal esta sujeita a flexao
obliqua composta, as incognitas sdo a medida da profundidade da linha neutra

(x) e seu angulo de inclinagao (0), tornando a solugdo mais complexa.

Figura 4.16 - Flexdo composta obliqgua em uma sec¢ao qualquer

Fonte: Fusco (1981)
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Ao analisar a secdo transversal de um elemento estrutural linear em
concreto armado (Figura 4.16), sujeito a uma forca normal de compresséo (Nsd)
e momentos fletores (Msxd) € (Msyd), € possivel estabelecer as seguintes

equacodes de equilibrio:

n
NSd < NRd = jj Ocq * dx - dy + ZAsi * Osid (431)
Acc =1
n
Mgyq < Nsg " €x = Mpyxq = f.f Ocq "X dx-dy+ Asi " Ogiq " X (4-32)
Acc i=1
n
MSyd < Ngq ° €y = MRyd = ff Ocq Y dx-dy+ Agi * Osig " Ysi (4.33)
Acc i=1

Sendo que, Acc € a parte da area da secédo transversal comprimida, n € o
namero de barras em uma camada; Asi € a area da secao transversal de uma
barra de aco de ordem i, cid € a tensdo na barra de aco de ordem i, x € a abscissa
do elemento infinitesimal de area dx.dy, y € a ordenada do elemento infinitesimal
de area dx.dy, xsi € a abscissa da barra de aco de ordem i, ysi € a ordenada da
barra de aco de ordem i.

A vista disso, dada a secéo transversal de um pilar em concreto armado,
incluindo sua forma geométrica e dimensoes, a area e distribuicdo das barras de
armadura, a resisténcia de calculo do concreto, e o diagrama tenséo -
deformacéo das barras de aco da armadura, é possivel fixar arbitrariamente a
posi¢ao da linha neutra (x) por sua inclinagdo (6), uma vez que ambas séo
incégnitas do problema. Com essa posi¢cdo determinada, € possivel desenhar o
diagrama de deformacdes para toda a secéo, levando em consideracdo as
deformagdes &cc, €sc € €st de acordo com os dominios de deformagdes analisados.

Com as deformacdes conhecidas, pode-se calcular as tensdes nas barras
de armadura e, por meio de equacdes de equilibrio (4.31, 4.32 e 4.33),

determinar as solicitacdes resistentes ultimas, como Nrsd, Mrdx € Mrdy, que
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representam as forcas e momentos que as barras de armadura devem suportar
para garantir a estabilidade e seguranga da estrutura.

E importante salientar que, sdo montadas as equacdes de equilibrio de
forma discretizada, isto é, transformando as integrais em somatorios, e, caso as
condicBes de equilibrio ndo sejam satisfeitas, novos valores sao adotados para
a profundidade e o angulo da linha neutra de forma iterativa, sucessivamente,
até que o equilibrio seja alcancado.

A Figura 4.17 apresenta a superficie de interacdo dos valores ultimos dos

esforcos resistentes Nu, Mxu, Myu.

Figura 4.17 - Superficie de interacéo

N
‘ U, compressdao

_ DIAGRAMA DE INTERACAO (N , M, )
~ u
(Myy 0 FLEXAO NORMAL COMPOSTA

DIAGRAMA DE

INTERAGAQ
(W M)
M,‘ 0
DIAGRAMA DE INTERACAQ
L const #0, M M )
" x4 yu
ELEMENTO ':AJNDAME'NT;‘-;_ P/
AS APLICACOES)
My
—
DIAGRAMA DE INTERAGA
// ‘,“V.T_;‘T,}_t INTERAGAQ
) ¢
W+ Ny *0 FLEXAO OBLIQUA SIMPLES)

SUPERFICIE _DE INTERAGAO
(NJ,MN'M“-‘

Fonte: Fusco (1981)

Quando se trata da instabilidade na flexo-compresséao obliqua, o eixo da
barra sofre deformacdes que, no caso de barras esbeltas, provocam o
surgimento de excentricidades significativas pelo efeito de 22 ordem. Em virtude

disso, tem-se o plano de flexao variavel a cada secéo da barra.
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Figura 4.18 -curvaturas em uma secao transversal retangular

Fonte: Fusco (1981)

Em uma barra de secao retangular, como mostra a Figura 4.18, tendo-se

a direcdo da linha neutra e o valor da curvatura na direcao perpendicular a ela,

chega-se aos valores de curvatura nas direcfes x e y, isto é:

1
— =—"sin(a) (4.34)
rx ra
1 1
— = —-cos(a) (4.35)
Ty

Essas expressoes sao fruto da relagéo existente entre as dimensdes da

secao, nas direces x e y, e a dimenséo na direcao perpendicular a linha neutra,

como mostra a Equacéo 4.36.

hg = hy - cos(a) + hy, - sin(a) (4.36)
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Por fim, a partir de um valor para a inclinacdo da linha neutra (a), adota-
se um valor para a curvatura 1l/ra e para a deformacdo ao nivel do centro
geométrico (CG) perpendicular a direcdo da linha neutra, através dos quais se
torna possivel encontrar o valor da resultante de compresséo no concreto e da

resultante de tracdo no aco.

4.9 Método do pilar padréo

O método estabelecido pela NBR 6118:2014 engloba os pilares com A <
90, secdo constante e armadura simétrica ao longo do seu comprimento
longitudinal. As n&o linearidades sdo levadas em consideragdo de forma
aproximada, sendo que a nao linearidade geométrica é considerada supondo-se
que a deformacdo seja senoidal (Equacdo 4.37) e a néao linearidade fisica é
contemplada por uma expressao aproximada da curvatura na secao critica ou

através de uma expressao aproximada da rigidez.

y = a-sin (%) X (4.37)

A primeira etapa consiste no calculo do comprimento equivalente do pilar

(fe), o qual consiste no menor valor entre as duas expressoes:

2, <

(foth (4.38)

¢
Onde o {0 é a distancia da face da viga até o piso e o h é a dimensé&o do

pilar na dire¢cdo avaliada, ja o { trata-se da distancia de eixo a eixo das vigas,

como mostra a Figura 4.19.
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Figura 4.19 - Comprimento equivalente do pilar

Filar

{
{

Fonte: Autoria prépria

No caso da expressdo 4.38 é considerado um pilar biapoiado, isto €,
rotulado nas duas extremidades, o qual € mais usual em edificios, mas a
proporcao do valor de { a ser considerada na expresséo depende das condi¢gbes
de vinculacéo.

A determinacdo do comprimento de flambagem ocorre quando o0 mesmo
esta submetido ao carregamento mais desfavoravel, ele corresponde a distancia
entre pontos de inflexdo da deformada, os quais variam de acordo com o grau
de engastamento. A Figura 4.20 mostra os diferentes valores de fe que podem

ser considerados.

Figura 4.20 - Comprimentos de flambagem

le=t12 le=0,7¢ o=t

Fonte: Borges (1999)
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Em seguida, obtém-se o indice de esbeltez A, a partir da seguinte
expressao:
e

A= N (4.39)

Em que i é o raio de giragdo e depende do momento de inércia e da area

da se¢&o, como mostra a sequir:

i = \/; (4.40)

A proxima etapa consiste em calcular um momento minimo de 12 ordem,
uma vez que, mesmo que ndo haja momentos atuantes na estrutura, deve-se
considerar esse momento nas duas direcbes (x e y) quando efetuados os

calculos. A seguir é apresentada a expressao:
Misa,min = Nsa - (0,015 + 0,03 - h) (4.41)

Sendo Nsd a forca normal de projeto e h a dimensao do pilar, expressa em
metros, correspondente a direcdo contraria do momento analisada, por
convencao da NBR 6118:2014.

Visto que foram definidos os momentos minimos em ambas as dire¢des
de interesse, a NBR 6118:2014 define ainda no item 15.8.2 um indice de esbeltez
limite A1, o qual depende, principalmente, da excentricidade de 12 ordem e1 / h
na extremidade do pilar onde ocorre o0 momento de 12 ordem de maior valor
absoluto. Ademais, depende da vinculacdo dos extremos da coluna isolada e da
forma do diagrama de momentos de 12 ordem.

O valor de A1 pode ser obtido pela expressao:

e
25+12,5- %
\=— —h (4.42)
ap

Onde: 35 < A, < 90.

49



Ve s

Desde 195 EESC - USP

Com relacdo ao an, esse parametro corresponde a porcentagem do
momento maximo entre as extremidades que é equivalente ao momento de 12
ordem somado ao de 22 ordem global, caso ele exista, na secdo de momento
final maximo.

O pilar esta inicialmente sujeito a uma distribuicdo de momentos de 12
ordem (M1), posteriormente, quando se analisa a estabilidade global, e a
estrutura for de nés méveis, calcula-se uma distribuicdo de momentos de 22
ordem global (M2c). Como neste método, a deformacdo do pilar € admitida
senoidal, obtém-se também um diagrama de momentos de 22 ordem local.
Dessa forma, somando-se os diagramas, hd um diagrama de momentos final no
pilar (Figura 4.21) e, por conta do comportamento senoidal, nao

necessariamente o0 momento maximo estara na extremidade do pilar.

Figura 4.21 - Diagramas de momentos em pilares

Fonte: Autoria prépria

Como a vinculacdo altera o comprimento de flambagem do pilar e,
consequentemente, o diagrama de momento, as formas de se obter ap também
variam, como mostrado a seguir:

e Para pilares biapoiados sem forcas transversais:

M,
@, = 0,60 + 0,40 = > 0,40 (4.43)
B

Sendo Ma e Mg 0s momentos de 12 ordem nos extremos do pilar, no caso

de estruturas de nos fixos e 0s momentos totais (considerando o momento

50



P G

Desde 195 EESC - USP

de 22 ordem global) no caso de estruturas de nés moveis. Para Ma deve
ser adotado o maior valor absoluto ao longo do pilar biapoiado.
e Para pilares biapoiados com forgas transversais significativas ao longo da
altura:
a, =1,0

e Para pilares em balanco:

M
0,85 < a;, = 0,80 + 0,20 VC < 1,00 (4.44)
A

Sendo Ma é o momento de 12 ordem no engaste e Mc € o momento de 12
ordem no meio do pilar em balanco.
e Para pilares biapoiados ou em balangco com momentos menores que 0
momento minimo:
a, =10

Calculados os indices de esheltez em ambas as direcdes e seus
respectivos indices de esbeltez limite, quando o primeiro é superior ao segundo
deve-se considerar os efeitos de segunda ordem. Ha duas formas principais
recomendadas pela norma NBR 6118:2014, a primeira consiste no método do

pilar padréo por curvatura aproximada, cuja formula é:

2 1
Msq tor = Qp * Misqa + N ﬁ = = Misq,4 (4.45)

Cujos parametros ja foram especificados anteriormente. Na expressao
4.45, a curvatura € aproximada pela expresséo 4.46, porém, ela deve respeitar
uma curvatura limite, que esta de acordo com o critério normativo. Como 0s
pilares geralmente se encontram nos dominios 5 e 4, a norma estima que a

curvatura limite, considerando a Equacéo 4.10, seja a soma das deformacdes
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limite para o concreto e de escoamento para o ago, as quais sao respectivamente
3,5 %0 € 2,07 %o (adotando aco CA-50).

1 0,005 < 0,005 (4.46)
r h-(v+05 " h '
Onde a for¢ca normal adimensional é:
Nsa
v = 4.47
Ac* fea ( )

Ainda a respeito da curvatura, quando o pilar esta sujeito a uma flexao
obliqua, existe curvatura em ambas as dire¢cdes (Figura 4.19). A curvatura y é
aquela em que o raio de curvatura esta na direcdo y, mas € causada por um
vetor momento na dire¢do x. A curvatura em x € dada de maneira analoga a
curvaturaemy.

O outro método consiste no método do pilar padrdo com rigidez
aproximada (k), em que na expressao 4.7, é considerada uma aproximacao de
El determinada pela norma, igual a Equacao 4.48, de modo a simplificar a ndo

linearidade do concreto vista na Figura 4.14.

Ma,tot
k= 2-(1 —) .
3 +5 ) (4.48)

Sabendo-se que k = 1/r e substituindo essa igualdade na Equagé&o 4.45,

obtém-se a partir de manipulacdes algébricas a seguinte equacgéo de 22 grau:

aMéitor + b Msgror+c=0 (4.49)
Sendo:
a=5-h
b= - Nog =5 by Mg
320 ’
c=—h*Ngq-ap Misqa
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Por fim, a partir de ambos os métodos pode-se determinar as envoltorias
minimas considerando apenas os efeitos de 12 ordem e considerando o de 13 e
22 ordem. Logo, a verificagdo do momento minimo pode ser considerada
atendida quando, no dimensionamento adotado, obtém-se uma envoltéria
resistente que englobe ambas.

As consideracdes destas envoltérias minimas podem ser realizadas
através de duas analises a flexdo composta normal, calculadas de forma isolada
e com momentos fletores minimos de 12 ordem atuantes nos extremos do pilar,

nas suas direcdes principais, como mostra a Figura 4.22.

Figura 4.22 - Envoltéria minima com 22 ordem

My, M
y S (Flexéo composta nomal em tomo de y) Ay M, minsy Mg s
M. \“\‘\
o, idmin .
" o \" Md Jtot,min,yy M\:‘lol min,yy My tot,min xx
. M L Mt min xx
(Secéo transversal) 1d,min,yy

'Mw‘min.xx 4 Mw‘min.xx

'Md,tol,min‘xx Md,lot‘min‘xx g

»

b - MX

b “~_(Flex&o composta normal em tomo de x)

_M1d.min‘yy

2 2
(Mri‘m!.mm;r) +( Mg totminy ) =1
My tat mincx My totmin,yy

(Envoltéria minima com 2 ordem)

_Md totmin,yy

Sendo:

[ —-1 as componentes em flex&o composta normal e

M

'd ot min,yy

dtot minx © [ ,as componentes em flexdo composta obliqua

Fonte: NBR 6118:2014

Nas situacdes de flexdo obliqua, simples ou composta, a horma ainda

estabelece uma aproximacéo dada pela expresséo de interagéo:

M @ M «
( Rd"‘) + <—Rd'y> =1 (4.50)
Mpg xx Mga,yy

Sendo Mrdx € MRrdy as correspondentes do momento resistente de célculo

segundo os dois eixos principais de inércia x e y, da secéo bruta, com um esforco

normal Nrd igual & normal solicitante Nsg.
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Ja Mrdxx € MRrdyy SA0 0S momentos resistentes de calculo segundo cada
um dos referidos eixos em flexdo composta normal, com o0 mesmo valor de Nrd
(séo calculados a partir do arranjo e da quantidade de armadura em estudo.

Por fim, a corresponde a um expoente cujo valor depende de varios fatores,
entre eles o valor da forca normal, a forma da sec¢éo, o arranjo da armadura e de
suas porcentagens. Em geral, pode ser adotado a =1, a favor da seguranca. No
caso de secdes retangulares, pode-se adotar a = 1,2.

4.10 Método geral

Segundo a NBR 6118:2014, o método geral consiste na andlise da 22
ordem efetuada com discretizacdo adequada da barra, consideracéo da relacdo
momento curvatura real em cada se¢do e construcdo da nédo linearidade
geométrica de maneira ndo aproximada. Ele é obrigatério para pilares com indice
de esbeltez (A\) maior que 140, mas no presente trabalho sera aplicado a partir
de pilares com A > 90.

Dito isso, a consideracdo da relacdo momento-curvatura real esta
relacionada a consideracdo da nao linearidade fisica, ja a nao linearidade
geométrica de maneira ndo aproximada significa calcular a curvatura a partir dos
deslocamentos reais da estrutura.

Assim como afirma Borges (1999), o método consiste em estudar o
comportamento das estruturas de concreto armado a medida que se aumenta o
carregamento ou a sua excentricidade, permitindo calcular a curvatura em cada
secao do pilar a partir dos deslocamentos reais nessas sec¢oes

O principio do processo é procurar, para um determinado elemento
submetido a uma situacao particular de carregamento, uma posi¢cao deformada
estavel, ou seja, um estado em que haja equilibrio entre esforgos e solicitagdes.

Ha duas concessdes que distanciam o método do comportamento real da
estrutura. A primeira admite a curvatura como sendo igual a segunda derivada
da linha elastica, como mostra a Equacao 4.9. Ja4 a segunda atribui que a
precisdo do meétodo é dependente do nimero de subdivisdes realizadas na peca,

ja que necessita ser executado por processos NUMEricos.
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Sua execucdo, a principio, consiste na aplicacdo da carga critica por
etapas. Através de incrementos progressivos do carregamento, é calculado o
deslocamento correspondente a uma determinada secdo, sendo, portanto,
caracterizado como efeito de 22 ordem. O carregamento critico € determinado
obtido quando a curva carga Xx deslocamento (Figura 4.23) tender

assintoticamente.

Figura 4.23 - Método geral aplicado através do carregamento progressivo

A

Fcl

[ SO

Fn-1

Fi}--

Fonte: Borges (1999)

Outra forma de aplicacdo do método geral se da através de acréscimos de
excentricidade. Neste método, o procedimento é o mesmo que o anterior, porém,
tem-se cargas constantes e a variagao ocorre incremento de excentricidades de
12 ordem. Portanto, o valor da excentricidade critica € alcan¢cado quando o
diagrama excentricidade x deslocamento for assintético (Figura 4.24).

Figura 4.24 - Método geral aplicado através de excentricidades progressivas

" (Mi1=F .e)

Fonte: Borges (1999)
A relacdo entre a forca aplicada e a obtencdo do deslocamento da

estrutura se da através da analogia de Mohr, explicitada por Morilla (2014), a
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qual se baseia no fato que a equacdo da linha elastica e a equacdo do
relacionamento entre a carga aplicada, a for¢ca cortante e o0 momento fletor
possuem a mesma forma.

Para tal analogia vale a Equacéo 4.9, porém a ultima igualdade néo é
valida nesse caso, uma vez que o método considera a nédo linearidade do
concreto. Além disso, utiliza-se a equacdo a seguir que relaciona a carga
aplicada, a forca cortante e o momento fletor:

d°M _dv

- = _ 451
dx? dx 1 ( )

Onde g é a carga distribuida em um trecho de uma viga analoga, segundo
a analogia de Mohr.

No presente trabalho pela analise ser feita em um pilar cujas solicitaces
normais atuantes ja sdo apresentadas (Nsd € Msdx), a barra apresenta um
diagrama de momento fletor de 12 ordem, geralmente retilineo em pilares de
edificios. A partir da discretizacdo do elemento obtém-se a curvatura referente a
cada uma dessas subdivisbes através da relacdo momento x curvatura (Figura
4.12) para uma determinada forca normal. Pela analogia de Mohr aplica-se os
valores de curvatura como cargas (-q) e, assim, chega-se em um diagrama de
momento fletor (M(ki)), o qual é equivalente ao deslocamento da estrutura (yi).
Ao somar o momento gerado por esse deslocamento ao momento de 12 ordem,
obtém-se o0 momento fletor real atuante no elemento. Caso a se¢do ndo esteja
em equilibrio repete-se 0 mesmo processo com 0 NOvo momento até que toda a
estrutura esteja em uma posicao deformada estavel.

No caso da flexo-compressao obliqua, como uma forma aproximada da
realidade, pretende-se realizar o procedimento descrito acima isoladamente,
para os momentos nas direcées x e y.

O grafico momento x curvatura citado anteriormente é obtido através do
diagrama (M, N, 1/r) quando fixado um valor para a for¢ca normal. A I6gica desse

diagrama é a seguinte: a curvatura esta relacionada com as deformagdes, estas
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ligam-se as tensdes através das equacgdes constitutivas e, com todos esses
parametros, torna-se possivel o célculo do esfor¢co normal e do momento fletor.

Dessa forma, a ndo linearidade fisica € atingida com a consideracdo da
relacdo momento x curvatura de um material ndo-linear e a nado linearidade
geomeétrica é alcancada ao obter a estrutura deformada para a realizacdo dos

calculos.
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5 CODIGO COMPUTACIONAL: FUNDAMENTACAO DE PROGRAMACAO

Neste topico serd abordado a estruturacdo do codigo, a estratégia de
programacao e os motivos pelos quais escolheu-se a linguagem que sera

utilizada no seu desenvolvimento.

5.1 Linguagem Python

Python (https://www.python.org/) € uma linguagem de programacao de

alto nivel, interpretada e apresenta capacidade de suportar e combinar diferentes
paradigmas de programacéo. Sendo a programacao funcional e a programacéo
procedural os paradigmas mais utilizados para a definicdo do “back-end” e a
programacao orientada a objetos voltada para o “front-end”.

Atualmente, é uma das linguagens de programacdo mais amplamente
utilizadas e sua elevada variedade de bibliotecas disponiveis a torna ainda mais
conveniente para o desenvolvimento de cédigos para diversos fins. Um dos
aspectos mais importantes € que Python € uma linguagem livre e néo
proprietaria, com interpretadores, ambientes de desenvolvimento e outras
ferramentas disponiveis gratuitamente para elaboracdo de solucbes
computacionais. Essas caracteristicas fazem dela uma excelente opcao para o
desenvolvimento e manutencdo de cédigos, tornando-se, por esses motivos, a
linguagem de programacdo selecionada para o desenvolvimento do presente

trabalho.

5.2 Bibliotecas utilizadas

Neste topico, da mesma forma que no topico anterior, foram consultadas
as proprias documentacdes das bibliotecas, as quais estdo presentes nos links
entre parénteses, para encontrar informac6es de interesse que contribuiram na
escolha das mesmas.

Dito isso, para este trabalho, utilizou-se bibliotecas para operacdes

matematicas, mais especificamente a biblioteca NumPy (https://numpy.ora/), que

possui algumas vantagens devido a sua eficiente estrutura de arrays
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multidimensionais, permitindo armazenar dados de forma compacta na memoria
do computador.

Além disso, o NumPy oferece uma ampla gama de operacdes otimizadas
e funcbes matematicas que podem ser aplicadas a conjuntos de dados. Elas séo
executadas de forma eficiente, sem a necessidade de lacos ou iteracdes
explicitas, o que resulta em um processamento mais rapido de célculos
complexos, além de apresentarem uma sintaxe clara. Isso é especialmente (til
ao lidar com grandes volumes de dados ou ao realizar calculos intensivos.

Serdo utilizadas também bibliotecas para desenvolvimento de interfaces
graficas (GUI). Para isso, h& vérias alternativas disponiveis, como a biblioteca
PySide (https://doc.qt.io/gtforpython/), tkinter  (https://docs.python.org/pt-
br/3/library/tk.html) ou KivyMD (https://kivymd.readthedocs.io/en/1.1.1/).

Dentre as trés bibliotecas mencionadas, a biblioteca tkinter torna-se

interessante uma vez que, além de atender as necessidades do cdodigo
computacional a ser implementado por meio de suas diversas ferramentas
gréficas, como botbes, menus, caixas de texto, etc., chamadas de “widgets”,
essa biblioteca estad contida na instalacdo do pacote basico de Python para
Windows. Entdo, qualquer computador que tenha o interpretador de Python
instalado, ja permite criar interfaces graficas em tkinter. Porém, apesar dessa
facilidade, ela é limitada quanto as variedades de ferramentas e possui uma
dificil comunicacdo com outras bibliotecas, abrindo espaco para a incorporacéo
da biblioteca KivyMD.

A biblioteca KivyMD € uma extensdo do framework Kivy que fornece
componentes de interface do usuario (Ul) prontos para uso, tornando-a uma
opcéo para o desenvolvimento de aplicativos méveis e de desktop em Python.

Ela oferece uma variedade de componentes de interface pré-projetados,
altamente personalizaveis, permitindo, assim, atender as necessidades
especificas do projeto e estimulando uma certa liberdade de criagdo. Outra
vantagem é a sua compatibilidade com diferentes plataformas, o que torna a
biblioteca adequada para o desenvolvimento multiplataforma, permitindo a

criacdo de programas consistentes para diferentes sistemas operacionais e a
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conexdo com outras bibliotecas de forma simplificada. Portanto, tornou-se a
biblioteca utilizada para a interface grafica (GUI) do software desenvolvido.
Por fim, a criacdo de gréficos que compde a teoria revisada no presente

trabalho foi de responsabilidade da biblioteca matplotlib

(https://matplotlib.org/stable/index.html). Ela é amplamente utilizada para a
visualizagéo de dados em Python.

Uma das principais vantagens do matplotlib é sua simplicidade e
facilidade de uso, a qual fornece uma interface intuitiva para a criacdo de
graficos. Com poucas linhas de codigo, € possivel gerar graficos de alta
qualidade com uma variedade de estilos e opcdes de personalizagdo. Ademais,
ela é altamente flexivel e pode ser integrado com outras bibliotecas de analise
de dados, como NumPy. Pode ainda suportar uma ampla variedade de formatos
de saida, incluindo imagens rasterizadas (PNG, JPEG) e vetoriais (PDF, SVG),
permitindo a incorporagéo dos gréaficos em diferentes tipos de documentos.

Por fim, a biblioteca também oferece recursos avancados, como a
capacidade de criar graficos em varias janelas ou subplots, adicionar anotacdes
e textos explicativos aos graficos e aplicar estilos predefinidos ou personalizados

para tornar a visualizacdo mais atraente e informativa.

5.3 Estratégia de desenvolvimento

A base para o inicio da programacéo foi a ado¢ao de uma estratégia para
que o tempo disponivel para o desenvolvimento do presente trabalho se tornasse
melhor aproveitado.

Ela consistiu na divisdo de tudo o que seria desenvolvido em cinco blocos,
envolvendo tanto a parcela iterativa com o usuario, quanto a parte légica
relacionada com conceitos da area de estruturas. Ademais, foram separadas
buscando um desenvolvimento simultadneo entre “back-end” e “front-end”.

Esses 5 blocos séo:

1) Desenvolvimento do método do pilar padrao;
2) Desenvolvimento do método de dimensionamento e calculo do momento
resistente;

3) Desenvolvimento do método geral;
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4) Desenvolvimento da envoltéria resistente real;
5) Desenvolvimento da interface gréfica.

Com o intuito de organizar e facilitar a programacdo do coédigo
computacional, dividiu-se eles entre 3 arquivos diferentes. Com isso, conforme
o numero de linhas implementadas aumentasse, 0 codigo ndo se tornaria tdo
extenso a ponto de sua navegacéo dificultar a apuracao dos erros.

Durante a etapa de implementacdo definiu-se uma ordem hierarquica
baseada no nivel de dificuldade entre os quatro blocos iniciais. Entdo, iniciou-se
pelo desenvolvimento do método do pilar padréo através da aplicacéo de todas
as contas e conceitos envolvendo o mesmo e, em paralelo, criou-se as
envoltérias utilizando-se de recursos graficos para facilitar a visualizacdo e
verificar se 0 codigo esta retornando valores coerentes.

Em seguida, no mesmo arquivo, ocorreu a aplicacdo das contas
envolvendo o dimensionamento e 0 momento resistente. Por ser uma etapa
numeérica, em que nao é necessario a elaboracdo de nenhum aspecto visual para
seu compreendimento, nesse caso nao houve um paralelismo com o “front-end”.

Para aproveitar ainda os dados que funcBes dos métodos anteriores
retornam, foi desenvolvido ainda o método geral, com a criacdo de aspectos
visuais para facilitar o entendimento.

Quando se trata da parcela do avanco do software relacionada a conceitos
da Engenharia Civil, o bloco 4 foi alocado em ultimo e em outro arquivo, ja que
Nao possui carater trivial, assim como outros blocos, mas que também envolve
conceitos e légicas ja implementados no bloco 2, sendo possivel o
reaproveitamento de estratégias e formas de iteragcbes ja apresentadas
previamente, mas agora aplicadas de forma mais abrangente.

Nota-se uma importante divisdo entre as varias frentes que compdem a
criacdo de um programa. Além disso, o terceiro arquivo foi preenchido com o
cédigo da interface, o qual foi produzido em paralelo a todos os outros, pois foi
um processo demorado até o alcance de um resultado que acreditasse ser

satisfatorio, objetivo e intuitivo para o usudrio.
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Por fim, foi necessario a juncéo entre todas as etapas para compor um
anico produto com varias ferramentas para a verificacdo de pilares de concreto
armado e sec¢ao transversal retangular.

Todos as contas, iteracdes, logicas e estratégias foram pensadas
considerando apenas um exemplo geral para seus desenvolvimentos. Para a
definicdo de fato e encerramento do produto final, € primordial a fase de testes
para que mais casos sejam englobados, havendo, dessa forma, a correcéo de
possiveis falhas e refinamento do cédigo computacional.

A Figura 5.1 mostra de forma geral o relacionamento do usuario com o

presente programa elaborado e como as diferentes etapas se comunicam.

Figura 5.1 - Conexdao entre “back-end” e “front-end”

Usuario

Front-end: Exibicdo dos Front-end: Insercio de

resultados de forma dados

concisa

Back-end: Processos
iterativos para atingir
os resultados de
interesse

Fonte: Autoria prépria

5.4 Principais func¢des definidas

A estruturacdo dos produtos a serem entregues no presente trabalho e a
sequéncia logica de implementacédo do “back-end” & de fundamental importancia
para que se atinja o resultado esperado. Dito isso, neste topico sera abordado a
respeito das principais funcdes ja implementadas e que seréo ainda elaboradas
em Python para se efetuar os calculos de interesse.

Primeiramente, criou-se fun¢des relacionadas as propriedades do pilar:

e Area da secdo: responsavel pela determinacdo da area de concreto a

partir das coordenadas dos pontos da secao inseridos;
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e Momento de inércia: obtém o momento de inércia da secdo nas dire¢cdes
principais, X e y no caso de sec¢fes retangulares, por meio das distancias
entre 0s pontos que compdem os lados da secao;

e Raio de giracdo: calcula os raios de giracdo nas direcbes principais
considerando os momentos de inércia em ambos 0s eixos e a area de
concreto, obtidos nas funcdes anteriores;

e Indice de esbeltez: realiza os célculos necessarios para a esbeltez nas
duas direcbes serem atingidas. Ela considera o comprimento equivalente
do pilar inserido (em x e y) e os raios de giragao calculados anteriormente;

¢ Momento minimo de 12 ordem: calcula esses momentos nas direcdes
principais conforme visto no fundamento tedrico descrito anteriormente
(Equacao 4.41). Para tal, as variadveis de entrada sé@o os lados da secao
transversal.

Em seguida, foram implementadas as fun¢des relativas a pilares com A <
90, em que nessas foram aplicadas o método do pilar padréo:

e indice de esbeltez limite: obtém os indices de esbeltez limite, por meio da
Equacédo 4.42, em x e y. Considera-se para isso 0s momentos, minimos
de primeira ordem ou os atuantes no pilar (fornecido como um dado), e a
forca normal solicitante, inserida no software, para o célculo da
excentricidade de 12 ordem, além das dimensdes da sec¢ao;

e Método da curvatura aproximada: responsavel pela consideracao dos
efeitos de 22 ordem por meio da Equacdo 4.45, possuindo como
parametros de entrada as varidveis dessa mesma equacao. Ela retorna
0S momentos totais em x e em y.

e Meétodo da rigidez aproximada: retorna 0s mesmos que a funcao anterior,
porém, os efeitos de 22 ordem séo levados em conta com base na
Equacéo 4.49. Vale ressaltar que a mesma opgéao de entrada descrita na
funcado anterior € valida nesse caso também.

Com relacdo ao dimensionamento sugerido e ao momento resistente,
tem-se:

¢ Dimensionamento: com as equacdes de conformidade e de equilibrio de

forcas axiais e de momentos fletores, para valores arbitrarios de
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profundidade da linha neutra, a funcédo sugere uma armadura quando a
secdo possuir um angulo de 0° e 90°, considerando 0 momento mais
critico. Assim, em seguida, ela verifica qual de ambas as armaduras
atende as duas situacdes. Por fim, ela retorna tal valor. Ou seja, mesmo
gue o usuario insira a secao ja dimensionada, o programa ira sugerir uma
armadura com base nos esforgos solicitantes e na dimensao da sec¢éo de
concreto.

e Momento resistente: com a area de armadura inserida pelo usuério, a
fungéo calcula todas as forgas normais relativas aos limites de cada um
dos dominios e verifica em qual dominio a secéo inserida se encontra por
meio da forca normal atuante nela. A partir disso, encontra-se a posicao
da linha neutra, as reacfes nas armaduras e, por fim, o momento
resistente através do equilibrio de momentos. A fungéo é aplicada com
um angulo de giro de 0° e 90°.

Com relacéo as funcdes para pilares cujo indice de esbeltez é superior a
90, tem-se:

e Momento x curvatura: responsavel pela criacdo de duas listas, as quais
mostram a variacdo do momento de acordo com a curvatura. Com
incrementos de curvatura e suposicdo da linha neutra para cada
incremento, ela obtém as deformacdes pelas equacdes de
compatibilidade, em seguida, utiliza-se da equacéao de equilibrio axial para
equilibrar a forca normal solicitante e, caso 0 mesmo seja satisfeito,
obtém-se o0 momento resistente por meio do equilibrio de momentos na
secao;

e Diagrama de momentos de 12 ordem: realiza a discretiza¢ao da barra em
elementos menores, retornando uma lista com os valores dos momentos
em cada um deles, sendo o primeiro item 0 momento da base e o ultimo,
0 do topo. Para isso, € levado em consideragdo que o diagrama de
momento fletor em pilares de edificios é retilineo. Pode possuir como
entrada os valores de momentos minimos de 12 ordem ou 0S momentos

solicitantes, quando houver, nas duas direcoes;
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e Método geral: essa funcéo € responséavel por realizar o ciclo principal para
se obter os momentos totais. Como objeto, ela possui o que ambas as
funcdes anteriores retornam. Analisando elemento por elemento, ela
verifica 0 momento atuante no mesmo e busca, no diagrama momento x
curvatura, a curvatura correspondente. De acordo com a analogia de
Mobhr, ela aplica o valor da curvatura como uma carga e obtém o diagrama
de momento fletor que é equivalente ao deslocamento da estrutura em
cada elemento. Somando-se o0 momento gerado por esse deslocamento
com o de entrada da fungdo, um momento fletor total é alcancado. Se
esse ele atender ao critério de equilibrio da secao, a funcao o retorna uma
lista com esses valores, caso contrario o ciclo € retomado com esse

mesmo valor.
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6 CODIGO COMPUTACIONAL: APLICACAO DOS CONCEITOS DE
ESTRUTURAS

No presente topico sdo abordados mais detalhadamente a légica das
funcdes definidas em linguagem Python, porém, abordando de forma mais

incisiva conceitos ja citados na revisao bibliografica.

6.1 Escopo das fungdes - Método do pilar padréo

Diversas funcdes foram elaboradas para contemplar as varias etapas para
se atingir os esforgos adicionais gerados na estrutura, chamados de segunda
ordem.

Deu-se inicio ao método em questdo apO6s a aplicacdo das diversas
funcdes que retornam as propriedades da sec¢do transversal, como sua area, 0s
momentos de inércia, 0s comprimentos equivalentes (Equacéo 4.38), os indices
de esbeltez (Equacéo 4.39) e os raios de giracdo (Equacéo 4.40), todos nas
direcBes principais (x e y).

De acordo com a NBR 6118, os pilares devem resistir pelo menos a um
momento minimo de primeira ordem, mesmo que ndo esteja sujeito a nenhum
tipo de momento solicitante, como é o caso de pilares centrais. Desse modo,
utilizou-se uma funcao especifica com esta finalidade, em que ela recebe como
parametro a for¢ca normal caracteristica e as dimensfes da secéo e faz uso da
Equacao 4.41 para retornar uma lista com os momentos de primeira ordem nas
duas direcgdes.

Para a verificacdo se os efeitos de segunda ordem s&o realmente
relevantes, elaborou-se a fungéo responséavel pelo célculo do indice de esbeltez
limite por meio da Equacédo 4.42. Entdo, ela recebe como parametro a forga
normal caracteristica, as dimensdes da secdo transversal e a lista com o0s
momentos minimos de primeira ordem que foi definida anteriormente no cédigo.
Com isso, os indices de esbeltez em ambas as dire¢cdes sdo apresentados no
interior de uma lista.

Em seguida pode-se aplicar duas outras fun¢des para a consideracéo dos
efeitos de segunda ordem, a que realiza o procedimento utilizando o método da
curvatura aproximada (Equacédo 4.45) ou a do método da rigidez aproximada
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(Equacédo 4.49). Ambas recebem como objetos os indices de esbeltez do
elemento, os indices de esbeltez limites, a forga caracteristica, 0s comprimentos
equivalentes, as dimensdes da secao transversal e, nesse caso, com o intuito de
se obter ainda quais 0s momentos minimos que um pilar deve resistir, a funcéo
recebe os momentos minimos de primeira ordem. Nesse caso, 0 parametro b
considerado € igual a 1 pelo fato do momento sobre o qual esta sendo acrescido
os efeitos de segunda ordem ser justamente o momento minimo. Outro ponto
importante € que essas funcfes verificam a relevancia de se realizar tal
consideracdo ao comparar o indice de esbeltez limite com o do elemento.

Através de uma analise do posicionamento do pilar na estrutura, é
possivel definir qual sua classificacdo (de canto, extremidade ou centro) e,
consequentemente, se ha de fato a consideracdo de momento solicitante
atuando na estrutura. Caso houver, outras trés funcdes sdo acionadas, mas
agora calculando o indice de esbeltez limite e os efeitos de segunda ordem
relativo a esses esforgos.

O indice de esbeltez limite para este caso leva em consideracdo a
Equacéo 4.43 para o calculo do pardmetro ab caso Msd > Mmin 1, Sendo necessaria
a verificagdo se o mesmo é superior a 0,40, caso contrario, é assumido esse
valor. Em seguida é aplicada a Equacéo 4.42, mas agora utilizando os momentos
solicitantes, para os célculos dos indices limites, os quais séo retornando no
interior de uma lista. A funcdo apresenta também como resultado final o
posicionamento do momento maximo no pilar (ab).

Feito isso, com o0 uso das equacdes ja mencionadas, podem ser aplicadas
outras duas funcdes para a consideracao dos efeitos de segunda ordem sobre
0S momentos solicitantes, caso seja conveniente (se um dos indices de esbeltez
for superior ao seu limite correspondente). Elas recebem os mesmos parametros
das funcdes utilizadas para a consideracdo dos efeitos adicionais sobre os
momentos minimos de primeira ordem, porém com o ap obtido na ultima funcéo
supracitada. Assim, ambas retornam uma Unica lista com 0os momentos totais
nas duas diregcbes em um ponto critico ao longo do comprimento do pilar.

Por fim, a Figura 6.1 exibe as envoltorias necessarias para a verificacao.

Sao apresentas as envoltérias minimas considerando os efeitos de primeira
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ordem e levando em conta também os efeitos de segunda ordem, as quais foram
tracadas pelo método do pilar padrdo (rigidez aproximada e curvatura
aproximada). Além disso, foram tracadas as retas representantes dos momentos
de primeira ordem atuantes na estrutura em sua base, no topo e em uma secao
critica. Foi adicionado ainda um exemplo da envoltéria resistente calculada pela
indicacao da NBR 6118 (a = 1,2), a qual deve englobar tudo o que foi calculado

para assegurar a seguranca da estrutura.

Figura 6.1 - Envoltérias para o processo de verificagéo

Envoltdrias minimas
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Fonte: Autoria prépria

6.2 Escopo das fungdes - Dimensionamento e momento resistente

Foi implementada uma fungéo relacionada ao dimensionamento da se¢éo
transversal a partir dos esfor¢os solicitantes atuantes e de suas dimensoes.
Apesar do software possuir um enfoque principal na verificagdo dessas
estruturas, é realizado uma sugestao de area de aco para que 0 mesmo resista
no Estado Limite Ultimo (ELU). Essa funcédo é aplicavel para todos os pilares
inseridos no programa, ndo havendo uma distincdo de acordo com o indice de

esbeltez.
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Ela utiliza-se do método da bisseccéo para a convergéncia dos valores,
algoritmo esse que busca uma solugéo aproximada para equacdes néo lineares,
além das equacfes de equilibrio de for¢as horizontais e de momentos na secéo
para o dimensionamento de fato, uma vez que a utilizacdo dos abacos
apresentados por Venturini e Rodrigues (1987) se tornam inviaveis no ambito
virtual do presente trabalho. Como incégnitas do problema, tem-se a area de
aco, a posicao da linha neutra e, consequentemente, as deformacdes das barras
e do concreto. Ja as variaveis conhecidas para se realizar o equilibrio da secao
sdo basicamente os esforcos solicitantes, forca normal de projeto (Nsd) €
momento solicitante de projeto, Msdx ou Msdy, dependendo da diregdo a ser
analisada, além das dimens0@es, base e altura, da se¢éo de concreto.

Tomou-se como premissa para se iniciar o processo iterativo as areas de
aco iguais por face. Dessa forma, inicialmente, era necessario para que se
aplicasse o método indicado, a presenca de limites para a posterior identificacdo
de qual intervalo a secao transversal analisada se encontraria. Entéo, foi criada
uma lista com linhas neutras adotadas, variando de -co a +oo0, buscando englobar
todas as possiveis regides de dominio. No cédigo colocou-se valores numericos
grandes para representar simbolicamente esse intervalo de fato.

Para cada linha neutra da lista, calculou-se a forga normal correspondente
por meio das trés regides de deformacéo indicadas por Venturini E Rodrigues
(1987), sendo a regiao 1 correspondente aos dominios 1 e 2, a regido 2, 0s
dominios 3, 4 e 4a, e, por fim a regido 3, englobado apenas o dominio 5, como

mostrado na Figura 6.2.
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Figura 6.2 - Regides de deformacéao

COMPRESSAD TRAGAD

0,01 74_}

Fonte: Venturini e Rodrigues (1987)

Assumindo a hipétese da conservacdo da secao plana, e considerando
gque a deformacéo limite de cada regido seja imposta, a deformagé&o nos demais
pontos de interesse € de facil obtencdo quando aplicada as respectivas
equacBes de compatibilidade. Nota-se que as deformacdes Ultimas sdo de
concretos de classes inferiores a C50, mas a mesma légica se aplica para
concretos de classes superiores.

Na primeira regido o valor ultimo da deformacéo do aco que compdbe a
armadura tracionada é de 0,01, como mostrado na Figura 6.3.

Figura 6.3 - Deformac®fes da regido 1

a
4| e « *
{
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. .
. h/2
d_l_ ) -

Fonte: Venturini e Rodrigues (1987)
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Pode-se obter a deformagéo € em um ponto genérico distante y do centro

geométrico da peca através da seguinte expressao:

& Esu

Y=Y h—d —x 6.1

No caso da fungdo em questdo, uma vez que foi feita a premissa
mencionada, 0s outros pontos de interesse sdo quando y = - h/2 + d’ para que a
deformacé&o na armadura comprimida, ou menos tracionada, seja atingida, além
do ponto y = -h/2, obtendo, com isso, a deformacdo no concreto. Em todos os
pontos foi convencionado compressao como sendo uma deformacao negativa e
tracao, positiva.

Nessa regido de deformacéo, £c2 tem um limite de 3,5%o, isto é ¢, >
—3,5%0. Assim, impondo esse limite na Equacéo 6.2, tem-se a seguinte variacdo

da linha neutra para a regiao:

3,5%0 - (h—d")
x <
10%o0 + 3,5%0

(6.2)

Na segunda regido impde-se o limite de -3,5% fixo na fibra mais

comprimida de concreto da pega, conforme é expresso na Figura 6.4.

Figura 6.4 - Deformac®fes da regido 2

Ecups 0.0035

.IEC!
Fonte: Venturini e Rodrigues (1987)
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Neste caso a deformacgdo de um ponto genérico € através da seguinte
Equacéo:
e _ 0,0035
Y=Y 05-h—y

(6.3)

Tendo como pontos de interesse y = h/2 — d’ para 0 se obter €s1 e y =-h/2
+ d’ para a deformacgéo do ago comprimido. Sendo aqui a convencgao de sinais
igual & adotada para a regido 1.

Aqui o intervalo em que a linha neutra deve estar para que as

deformacgfes da sec¢do transversal sejam correspondentes a regido 2 é:

3,5%0 - (h — d")
< 6.4
10%0 F 3506 <=1 (6.4)

Por fim, na terceira regiao os valores de deformacéao ficam em funcéo do
valor fixado para o ponto situado a 3/7h da borda mais comprimida, o qual

apresenta deformacéo de 2%o, de acordo com a Figura 6.5.

Figura 6.5 - Deformacéo daregiéo 3

3
| . L] [ ]
. . h/2 %"‘_
- 0,002
_ Ap I
B T
y
. . h/2
yO
L] L ] [ ]
lff
a’ R

Fonte: Venturini e Rodrigues (1987)

A Equacao de compatibilidade para um ponto genérico nesse caso é:
e 0,002
V=Y _x—3/7-h

(6.5)
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Aqui os pontos de interesse sdo os mesmos de ambas as regides,
retornando deformagdes negativas, uma vez que foi convencionado dessa forma
para compressao.

Como apenas o dominio 5 é contido nesta regido, o intervalo de valores
que a linha neutra pode assumir é:

x>h (6.6)

Portanto, para cada linha neutra presente na lista foi verificada sua
respectiva regido de deformacdo e, consequentemente, as deformacgdes na
armadura e no concreto. O préximo passo consistiu em isolar a area de aco na
Equacao do equilibrio de momentos em torno do CG, obtendo a &rea de ago por

face como mostrado a sequir:

[ M50~ Ree- (3557

[((051 — g, - (% _ dl))l (6.7)

Alguns aspectos importantes sobre a Equacéo 6.7 € a referenciacéo das

As =

armaduras, em que S1 corresponde a armadura mais préxima da face inferior e
S2 corresponde a armadura mais proxima da face superior. Outro aspecto muito
importante € a questdo dos sinais na férmula. A resultante comprimida do
concreto (Rec) possui um valor positivo intrinsicamente, diferentemente das
tensdes, as quais propagam o sinal proveniente das equacbes de
compatibilidade, ou seja, positivo quando tracao e negativo para compresséo. E,
finalmente, o momento adotado como positivo foi convencionado como sendo o
gue provoca tracdo em S1 e compressado em S2.
Pelo equilibrio de forcas horizontais, o qual pode ser visto na Equacao
6.8, cada uma das linhas neutras adotadas possui uma respectiva forga normal
solicitante.
Ngg = Ree — Ag - 051 — As " 052 (6.8)
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Ela difere das equacdes expressas na revisao bibliografica do presente
trabalho, justamente por ser genérica, englobando as trés regides, e propagar o
sinal convencionado nas deformacdes.

A partir da forca normal solicitante real atuante no pilar analisado,
verificou-se o intervalo em que ela se encontra, baseando-se na lista de normais
com suas respectivas linhas neutras. Com um limite inferior e superior, aplicou-
se 0 método da bisseccdo. A Figura 6.6 mostra um fluxograma de como esse

processo € executado.

Figura 6.6 - Processo executado pelo método da bissecc¢éo

Limites de normal e linha
neutra definidos

Caso nao seja, esse novo
par de linha neutra e
normal substitui o limite
mais préximo

A partir da normal real, por
interpolagdo, encontra-se
uma nova linha neutra

Verifica-se se a nova forga
normal é igual a real ou se
estd préxima, dentro de
uma tolerancia
estabelecida

Utilizando as regides de
deformacdo e as equagdes
de equilibrio, obtém-se
uma forga normal

Fonte: Autoria prépria

Durante esse processo, o efeito obtido € uma aproximacao dos limites até
uma tolerancia determinada de 1%. Quando a diferenca entre a forca normal
solicitante e a for¢ca normal obtida atinge uma diferenca inferior ao estabelecido,
a convergéncia é realizada e os produtos principais sdo a linha neutra da segéo
para essa armadura e a area de aco necessario, efetuando-se, desse modo, o
dimensionamento do elemento.

Realizado o dimensionamento sugerido, iniciou-se 0 processo de

determinacdo do momento resistente, porém, a partir de uma armadura inserida
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pelo usuario do programa, compondo assim a etapa de verificacdo através da
envoltéria resistente aproximada pela Equacédo 4.50 indicada pela NBR 6118.

Para este caso, o processo foi semelhante ao da funcdo descrita
anteriormente, pois utilizou-se também do método da bisseccdo. Entretanto, o
processo para aplica-lo diferiu.

Conhecida a area de aco, foi possivel alcancar os valores referentes a
forca normal de cada um dos limites dos dominios, isto é, da reta a, entre os
dominiosl1e?2,2e 3,3 e4,4e4a,4aeb5 e daretab, por meio do equilibrio de
forcas horizontais.

Conhecida a forga normal solicitante no elemento, identificou-se em qual
intervalo ela se encontra e, por conseguinte, o dominio em que a secao
transversal se encontra. Com dois limites estabelecidos de linha neutra e forca
normal, aplica-se novamente o método da bisseccdo até a convergéncia dos
resultados.

Conhecidos os parametros area de aco, deformacdes e tensbes nos
pontos de interesse e posicdo da linha neutra, realizou-se o equilibrio de
momentos em torno do CG da secdo e obteve-se o0 momento resistente, como

mostra a equacao abaixo.

h A-x

Mo = R (3=

) + Agy " 01 (g - d’) —Agy 052 (g - d') (6.9)

Vale ressaltar que, para a Equacéo 6.9, a convencéo de sinais adotada é
a mesma da funcdo descrita anteriormente para as deformacdes calculadas nos
dominios.

Em ambas as fung¢bes, tanto no dimensionamento, quanto na verificacéo,
quando a linha neutra respeita a inequacéo x > h/A, a resultante comprimida do
concreto é fixada em um valor referente a sec¢éo toda sendo comprimida e sua
posicao é exatamente no CG, alterando-se a equac¢ao do equilibrio de momentos

Nesses Casos.
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6.3 Escopo das funcdes - Método geral

Dentre as funcbes especificas para pilares cujo indice de esbeltez é
superior a 90, pode-se citar a funcdo responsavel pela criacdo do grafico
Momento x Curvatura.

Para que a nao linearidade fisica seja garantida, foi primordial o
desenvolvimento dessa funcéo e, para isso, 0 processo envolveu a utilizagao do
momento resistente obtido pela fungdo mencionada no tépico anterior. Para esse
mesmo valor de momento, foi calculada uma curvatura (1/r) por meio das
deformacfes nas barras de aco tracionadas e na fibra mais comprimida de
concreto quando o mesmo é aplicado na secéo transversal. Definida a curvatura
maéaxima, houve uma divisdo desse valor em diversas curvaturas inferiores até o
valor nulo, de modo que se obtivesse outros valores de momento fletor.

Entretanto, o procedimento ndo € de carater trivial. A principio, para cada
valor de curvatura foi realizado o método da bisseccao para se encontrar a
posicdo da linha neutra, isto €, criou-se um intervalo de valores para englobar
todos os dominios e definir limites para a forca normal solicitante atuante.
Quando encontrado esse intervalo, aplicou-se o método da bisseccédo de fato
para refinar a linha neutra até que a diferenca entre as forgas normais calculada
e real seja inferior a uma tolerancia (1%). No momento em que essa condi¢ao é
satisfeita, utilizou-se do equilibrio de momentos, com base nas deformacdes
calculadas pela Equacéo 6.10, para se encontrar 0 momento fletor referente a

essa determinada curvatura especifica.

e X (6.10)

Apés diversas iteracdes, encontrou-se um valor de momento fletor para

cada curvatura e atingiu-se o grafico presente na Figura 6.7.
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Figura 6.7 - Grafico Momento x Curvatura com consideracao do diagrama retangular para

atensao do concreto comprimido
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15000 4
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Fonte: Autoria prépria

Nota-se que quando a curvatura atinge o valor zero, ha um valor de
momento agregado a este ponto. Isso se deve a consideracdo da simplificacao
do diagrama parabola-retangulo relativo as tensdes no concreto comprimido por
um retangulo com intensidade constante e igual a uma parcela da tensao
resistente do concreto (fca) que ndo envolve toda a profundidade da linha neutra.

Desse modo, com a intencdo de envolver todos 0s possiveis momentos
solicitantes atuantes ao longo do pilar, foi priorizado nesse caso o célculo da
resultante do concreto comprimido através do diagrama parabola-retangulo.
Com esse intuito, a se¢ao transversal foi segmentada ao longo de sua altura em
pequenas areas e, para cada uma delas, foi descoberta a deformacdo em seu
CG a partir da curvatura analisada. Com as deformacdes, utilizou-se o diagrama
tensdo-deformacédo idealizado, presente na NBR 6118:2014 e expresso ha
Figura 4.9, para a obtencdo da tensdo em cada area. Assim, em regibes em que
a deformacgao é superior a de pico (gc2), a tensédo corresponde a 0,85fcq, caso

contrario, é calculada pela seguinte férmula:

0. =085 fou-[1 = (1-22)] (6.11)

Ec2
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Para f,, <50 MPa:n = 2
Para f, > 50 MPa:n = 1,4 + +23,4 - [(90 — f.,,)/100]*

Com a tensao obtida para cada uma das parcelas, pode-se obter cada
resultante ao multiplica-las pela area. Por fim, a resultante comprimida do
concreto € a soma dessas forcas e 0 momento que ela gera em relacdo ao CG
da secao transversal é calculada através do somatério dos momentos que a
resultante de cada area gera em relacdo ao mesmo ponto.

A Figura 6.8 expressa o novo grafico Momento x Curvatura com a
consideracdo do diagrama parabola-retangulo para as tensdes na regido
comprimida da secao transversal, o qual foi utilizado para o prosseguimento dos

calculos envolvendo o método geral.

Figura 6.8 - Grafico Momento x Curvatura com consideragcéo do diagrama parébola-

retdngulo para a tensdo do concreto comprimido.
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Fonte: Autoria propria

Abaixo, na Figura 6.9 é apresentado um fluxograma para facilitar o

entendimento da l6gica de toda a funcdo implementada.
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Figura 6.9 - Fluxograma referente a funcéo para se obter o grafico Momento Curvatura

Para cada curvatura:

e Discretizacdo das curvaturas S Definir valores de linha

Curvatura ultima a partir do
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neutra para compor todos os
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limites envolvendo linha S
Pelo equilibrio de momentos,

obtém-se o momento para
uma determinada curvatura

neutra e forga normal para a
obtengdo da linha neutra
exata referente a uma
curvatura

Fonte: Autoria prépria

O proximo passo consistiu em discretizar o elemento, cujo comprimento é
igual ao comprimento equivalente (Le) na direcédo analisada, em trechos menores
e iguais.

A respeito do momento solicitante de primeira ordem, € comum seu
diagrama ser linear em pilares de edificios biapoiados, podendo o momento na
base igual ao do topo dependendo da simetria da estrutura (Figura 6.10). Com

isso, cada ponto da divisdo realizada remete a um valor especifico dele.

Figura 6.10 - Momento solicitante de primeira ordem atuante em pilar biapoiado
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Fonte: Autoria propria
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Aplicando o método da bisseccao novamente, mas agora se referindo ao
conjunto curvatura e momento ao invés de linha neutra e momento, foi possivel
encontrar uma curvatura para cada valor de momento fletor de primeira ordem
por meio do diagrama recém citado, Momento x Curvatura. Pela analogia de
Mohr, pode-se obter a deformacdo da estrutura em cada um dos pontos pela
relacdo mostrada na Equacédo 6.12 expressa abaixo.

d’y 1
dx? r
l ! (6.12)
M
dxz 1

Assim, ao aplicar os valores de curvatura obtidos como carregamento em
cada ponto na diregdo mostrada na Figura 6.11, tem-se um diagrama de

momento fletor, o qual é equivalente a estrutura deformada.

Figura 6.11 - Sentido de aplicacdo das curvaturas como carregamento
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Fonte: Autoria prépria
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Nota-se que, a aplicacdo da curvatura como carregamento recebe um
sentido de modo a gerar um diagrama de momento fletor na mesma regiéo dos
momentos de primeira ordem. E importante ressaltar ainda que, entre dois
pontos considerou-se um carregamento distribuido linearmente com o intuito de
simplificar o processo, mas que garante um resultado consistente devido a
discretizagéo realizada. Na Figura 6.11, o carregamento distribuido apresenta
um decrescimento constante até o ponto intermediario do pilar, entretanto, isso
possui apenas carater ilustrativo. O processo desenvolvido no cdédigo
computacional envolve a nao linearidade até mesmo dessas cargas,
principalmente quando a estrutura estd proxima da posicdo deformada de
equilibrio, isto é, o momento total, de primeira e segunda ordem somados, possui
intensidade proxima da resistente.

Com o carregamento aplicado, utilizou-se dos conceitos de isostatica para
se encontrar as rea¢des nos apoios, nomeados de A e B. Em seguida, é evidente
que na maioria dos trechos ha uma resultante proveniente de um carregamento
distribuido retangular somado a uma resultante devido a um carregamento
distribuido triangular. Dessa forma, o momento em cada ponto foi calculado
através das resultantes em todos os trechos anteriores a esse ponto e da reacao
no apoio A, todas multiplicadas por suas respectivas distancias desse mesmo
ponto de interesse.

A Figura 6.12 exemplifica o célculo do momento interno no ponto indicado

pelo numero 2.
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Figura 6.12 - Obtencéo dos esforcos internos
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Fonte: Autoria prépria

Determinado o diagrama de momentos, 0 qual pode apresentar uma
configuracdo préxima da Figura 6.13, os valores encontrados correspondem ao
deslocamento da estrutura que, ao ser multiplicado pela normal solicitante real,

calcula-se os momentos fletores de segunda ordem em cada ponto.

Figura 6.13 - Momento solicitante de segunda ordem atuante em pilar biapoiado
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Fonte: Autoria propria
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A seguir (Figura 6.14), sdo apresentados resultados obtidos por meio de

recursos computacionais promovidos pela linguagem Python.

Figura 6.14 - Momentos solicitantes (a) de primeira ordem e (b) de segunda ordem

Corte y-y Corte y-y
Mx (kN.cm)
Mx (kN.cm)
—5000 -2500 O 2500 5000 —100  -50 0 50 100

Eixo do pilar

.
460.0 1 Eixo do pilar 460.0

414.0 414.0 1

368.0 - 368.0

322.0 - 322.0 7

276.0 276.0 7

230.0 4 230.0 4

184.0

Altura do pilar (cm
Altura do pilar (cm)

184.0

138.0 4 138.0

92.0 4 92.0 4

46.0 4 46.0

0.0

0.0 T

o o o
L o o o o
5 ® » s
Altura da secao (cm) Altura da secdo (cm)
(a) (b)

Fonte: Autoria prépria

No exemplo supracitado, em que ha um momento solicitante com vetor na
direcéo x, verifica-se uma ordem de grandeza muito superior do momento de
primeira ordem em relacdo ao de segunda ordem, acarretando em uma diferenca
quase que imperceptivel do momento total em relagédo ao de primeira ordem.
Isso depende do elemento analisado, uma vez que seu comprimento, sua
armadura e a dimensdo da secdo na direcdo em questdo interferem no
deslocamento e, consequentemente, nos efeitos de segunda ordem.

Por fim, somando-se 0 momento gerado por esse deslocamento com o
momento de primeira ordem, atinge-se um novo diagrama de momento total.
Esse processo ocorre com diversas iteracfes até que a estrutura deformada
atinja o equilibrio, ou seja, quando a diferenca nos deslocamentos se torne cada

vez menores até uma certa tolerancia adotada.

83



g s
EESL - USP

6.4 Escopo das fungbes — Envoltéria resistente real

Ao contrério da simplificacdo dada pela norma com a Equacao 4.50, no
presente trabalho buscou-se determinar a envoltoria resistente real, obtida ao
considerar as posic0es das barras de aco na secao transversal de concreto, além
de sua rotacdo em varios angulos quando submetida aos mesmos esforcos
solicitantes.

A primeira etapa para esse processo € a coleta dos pontos inseridos no
software, cuja insercdo tem como base uma origem arbitrada pelo préprio
usuario. Em seguida, é calculado Centro Geométrico (CG), o qual, por se tratar
de uma secao retangular, se encontra no encontro dos dois eixos de simetria.
Obtida essa propriedade geométrica, definiu-se uma funcdo que permitisse a
entrada de um angulo e de uma lista com as coordenadas dos pontos de
interesse, podendo ser os vértices da secao transversal ou as coordenadas do
CG de cada uma das barras de a¢o dentro da secao transversal. Nesta funcéo
do codigo, foram implementadas as seguintes equacfes (6.13a e 6.13b), as
quais resultam em novas coordenadas rotacionadas com o angulo informado,

gue tem como origem o proprio CG.
Xiror. = (X — X¢g) - cos(0) — (y; — yee) - sen(6) (6.13a)
Yiror. = (xi — x¢g) - sen(0) + (y; — y¢e) * cos(6) (6.13b)

Outra funcdo importante para esse processo, possui a finalidade de
calcular as propriedades da secdo comprimida, quando houver, isto é, as
coordenadas do CG da regidao comprimida, as coordenadas de seus vértices,
sua area e a resultante do concreto comprimido.

Para isso, os parametros de entrada sdo, um angulo de interesse, a
posicao da linha neutra em relacéo a borda mais comprimida, o vértice da secéo
localizado na maior coordenada y, bem como o localizado na menor coordenada,
as caracteristicas do concreto utilizado e as dimensdes da sec¢ao transversal.

O escopo da funcao verifica primeiro se a linha neutra € positiva e se a

simplificagdo do diagrama pardbola-retangulo em um diagrama retangular se
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encontra dentro da seg¢ao de concreto (A.x < h), excluindo desta condicao apenas
o dominio 5b. Caso positivo, sdo obtidos os vértices que a linha neutra intersecta
com as arestas da secéo, obtendo assim, todos 0s pontos que compdem a regiao
comprimida.

A éarea dessa regido comprimida foi calculada a partir das coordenadas
dos vértices, em que eles foram alinhados no sentido horério ou anti-horario (a
depender de como o usuario insere os pontos no campo destinado), com a
repeticdo do primeiro ponto no final (poligono fechado), e, assim, foi aplicado o
calculo da dupla area pelo método de Gauss. Esse método consiste em
multiplicar a coordenada x de cada ponto pela coordenada y do ponto anterior e,
em seguida, multiplicar a coordenada y pela x do ponto anterior. A seguir, é

aplicada para o calculo da dupla area (2A) a formula 6.14.

n—1
24 = |z . O " Yier — Vi " Xiv1) (6.14)
i=

Ja4 as coordenadas do CG da regido foram calculadas a partir das

seguintes equacdes (6.15a e 6.15b).

1 n-1
Xe6 = e g Z O+ X1 - (6 Yiger = Xiwr " Vi) (6.15a)
i=0

1 n-—1
Ve = 6-4 Z o Vi + Vi) (0 Yier — Xip1 " Y0 (6.15b)
=

A resultante de concreto comprimido é obtida ao multiplicar a area obtida
pela tensdo equivalente do diagrama retangular.

Caso a linha neutra esteja no dominio 5b, ou seja, a simplificacdo do
diagrama parabola-retangulo em um diagrama retangular se encontra fora da
secao de concreto (A.x > h), a area comprimida corresponde a se¢ao completa,
os vertices e 0 CG da regido sao coincidentes com os da se¢éo de concreto, e a

resultante é calculada considerando todo o concreto sendo comprimido.
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Por fim, se a linha neutra for negativa, significa que toda a secéo esta
sendo tracionada e, portanto, todos os parametros mencionados anteriormente
sdo zerados jA que a contribuicdo do concreto na resisténcia a tracdo é
desprezada.

Definida uma das principais funcbes para o calculo da envoltéria
resistente real, o processo deu sequéncia ao calcular o momento resistente nas
duas direcbes para varios angulos de rotacdo da secao transversal.

Entdo, primeiramente, foi estabelecida uma lista com angulos variando de
0° a 360° com incrementos de 1°, englobando todas as possiveis rotacfes da
secédo. Para cada angulo, foi utilizada a fungcédo, mencionada anteriormente, que
rotaciona os pontos de interesse, deixando-os com origem no CG. Em seguida,
com as novas coordenadas, foram calculadas as forcas normais referentes a
cada um dos limites dos dominios a partir da area de aco informada pelo usuario,
tornando-se possivel encontrar o dominio em que a secdo transversal
rotacionada se encontra. Por meio das caracteristicas de deformacéo e linha
neutra do dominio em questdo, em conjunto com a posicao exata de cada barra
de aco em relacdo ao CG, obtém-se todas as deformacdes de interesse e
necessarias para se realizar o equilibrio de for¢as horizontais (Figura 6.15 e
6.16). Quando realizado o equilibrio, é obtida uma forca normal solicitante, a qual
€ comparada com a atuante de fato no elemento, caso ambas estejam préximas
dentro de uma tolerancia arbitrada de 1%, o processo de convergéncia chamado

de bisseccéo é interrompido, e os resultados séo considerados satisfatorios.
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Figura 6.15 — Deformacdes e resultantes em uma secdo transversal de concreto armado

sem rotacéo.

Fonte: Autoria prépria

Figura 6.16 - Deformacdes e resultantes em uma secéo transversal de concreto armado
rotacionada em um angulo 6.
I

|

Fonte: Autoria propria

Pode-se notar nas figuras 6.15 e 6.16 que ao se realizar a rotagcdo do
elemento, a altura util passa a ser a distancia entre o vértice de concreto mais

comprimido, ou seja, com a maior coordenada y, e a armadura mais tracionada,
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com a menor coordenada y. Ademais, deve-se considerar as diversas
resultantes, geradas pelas diferentes linhas de deformacdo das barras.
Finalmente, outra consideragéo importante € que a &rea de concreto comprimida
considerada nos calculos é a gerada pela simplificacdo do diagrama parabola-
retangulo em um retangular, o qual esta destacado em azul.

Com as resultantes provenientes das barras de aco e do concreto
comprimido, é realizado o calculo do momento resistente nas duas dire¢des
provenientes da rotacdo dos eixos x e y, chamadas aqui de u e v. Nos angulos
em que a sec¢ao de concreto nao é simétrica, ha momentos nas duas direcoes,
caso contrario, pela simetria, em uma das direcfes as resultantes se anulam
quando realizado o equilibrio de momentos. A Figura 6.17 busca esclarecer

esses conceitos.

Figura 6.17 -Obtengcédo dos momentos resistentes nas dire¢gfes de interesse.
\ \

Fonte: Autoria propria

Na figura acima, forcas indicadas em vermelho correspondem as
resultantes das barras de aco e suas respectivas direcfes, ja em azul esta

representada a resultante do concreto comprimido e sua direcdo, a qual se
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encontra no centroide da regido comprimida (destacada em azul) considerando
a simplificagcéo do diagrama de tensoes.

Essas forgas geram momentos nas dire¢des u e v, como ja mencionado
anteriormente, porém, para tracar de fato a envoltéria resistente real, €
necessario decompor ambos nas direcGes x e y, as quais foram rotacionadas
previamente.

Portanto, quando séo considerados varios angulos de rotacéo da sec¢éo
transversal, tém-se o0 comportamento da mesma apos ser submetida a flexo-
compressado obliqua em cada um desses casos, 0S quais sdo correspondentes
a um determinado ponto da envoltéria. Sendo assim, a juncdo dessas diversas

situacdes resulta na envoltoria resistente real.
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7 CODIGO COMPUTACIONAL: INTERFACE GRAFICA DE USUARIO (GUI)

Para o desenvolvimento da interface grafica, utilizou-se a biblioteca
KivyMD, como ja mencionado. Para isso, o processo envolveu a divisdo do “front-
end” em duas partes, uma delas envolve a criagdo de um Unico arquivo com
extensdo “.py”, o qual recebeu primeiramente as bibliotecas importadas, em
sequéncia criou-se uma classe principal para o aplicativo que provém de
“MDApp”. Esta classe foi responsavel por iniciar o software e carregar todas as
outras classes, sendo cada uma delas correspondentes a uma respectiva tela do
programa, todas herdadas de “Screen”, em que € possivel gerenciar as
transicdes entre elas.

A outra parcela envolveu a confecgao de arquivos com extensao “.kv”, os
quais estdo relacionados com a estrutura da interface do usuario e como seus
elementos devem ser organizados.

Para que haja a comunicagédo entre esses arquivos, cada arquivo “.kv”
recebe o nome da classe que esta se referindo, havendo a necessidade ainda
do mesmo ser carregado no arquivo “.py”.

A seguir, ap6s se realizar um extenso arquivo “.kv”, foi desenvolvida a

interface da Figura 7.1.
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Figura 7.1 - Interface Grafica do Usuario (GUI)
O v - X
Esforgos Solicitantes
kN
kKN.m
kKN.m

Propriedades

Sec¢ao transversal

o

Fonte: Autoria prépria

Durante sua elaboracdo, foram considerados campos para especificar
alguns parametros de entrada como os esfor¢os solicitantes, o tipo de concreto
e de aco utilizados, as dimensdes da sec¢éo transversal e posicao das barras de
aco, os comprimentos equivalentes do pilar e a area de armadura efetiva. A
Figura 7.2 mostra com mais detalhes todas as funcionalidades disponiveis nesta

tela inicial.
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Figura 7.2 — Funcionalidades da Interface Gréafica do Usuario (GUI) desenvolvida

inseridas, além de botdes para adicionar e excluir linhas.

o vp — %
— Campo para a —
Esforgos Solicitantes insercéo dos esforcos Propriedades do
- ago
kN solicitantes
{sti E: 210000 MPa
" . | caracteristicos. Exibigao das —
(N.m :
propriedades fyd: 434.78 MPa
kN.m Campo para a do concreto e - eyd: 0.00207
. = insergao dos tipos de do ago B Propriedades do
Propriedades - concreto
aco e concreto. Além utilizados.
CA-50 __ | de botdes para exibir _ Ecs: 26838.4 MPa
Bl suas propriedades fed: 21.43 MPa
C30 ) ecu: 0.0035
- - consideradas nos [ £c2:0.002
Segdo transversal calculos.
Espaco para a Comandos principais para analise
insercdo das dos dados inseridos.
S—
coordenadas x e y dos
vértices da segédo de —
concreto.
— Inserir
cm Campo para insergéo
dos comprimentos Resultados E]
Le cm
equivalentes do pilar
+ — nas duas direcoes. Verificagdo @
7 Espacos para a inser¢do das coordenadas do CG de cada
& barra e armadura efetiva total. Ha um indicador de barras e

cm?

Fonte: Autoria prépria

Na interface desenvolvida, tornou-se evidente as unidades em que cada
dado deve ser inserido no programa. Ademais, o0 separador decimal
convencionado foi o “ponto”, uma vez que o mesmo ja é convencionado na
préopria linguagem Python para a identificacdo de nimeros decimais.

Houve ainda um tratamento de possiveis erros que 0 usuario poderia
cometer na parcela passivel de interagdo dentro do programa. A alternativa
adotada para isso foi a abertura de janelas de diadlogo indicando o que esta
incorreto e qual a forma correta de insercdo dos dados. Na Figura 7.3 ha um
exemplo, em que se inseriu um conjunto de pontos para a secéo transversal nao

correspondentes a um retangulo.
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Figura 7.3 - Tratamento de erros

S e - x

Fonte: Autoria propria

Além do erro representado acima, outros foram previstos com o intuito de
garantir a eficacia do software diante de tudo o que ele foi proposto a solucionar.
Dentre os tratamentos de erros desenvolvidos estao:

e Insercdo de valores ndo numéricos, ou ainda, nimeros decimais com
separador diferente de “ponto”, em qualquer campo, néo sao validos;

e Quando selecionadas as caixas de selecdo ao lado do tipo concreto e do
tipo de aco nas propriedades, deve-se antes escolhe-los para depois
visualizar suas propriedades;

e Nos campos que recebem as coordenadas dos vértices da secdo
transversal de concreto, ndo pode haver células sem valor atribuido ou
valores que ndo remetem a um retangulo;

e Na regido de insercdo das coordenadas do CG de cada barra de aco,

valores cuja posicao da barra ndo se encontra nos dominios da secao de
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concreto, ndo séo validos, bem como campos vazios e posicdes repetidas

de barras.

Em todos os casos supracitados, uma janela de dialogo se abre de acordo
com os moldes apresentados na Figura 7.3, impedindo a execucao de certas
funcionalidades até a correcédo do que foi indicado pelo software.

Preenchidos todos o0s campos necessarios para a exibicdo dos
resultados, o botao “inserir’ deve ser pressionado para a visualizacéo da secéo
(Figura 7.4). A secdo pode ser desenhada de forma total, ao preencher as
coordenadas de todos os pontos de interesse, antes de pressionar o referido
botdo, ou, de forma parcial, em que as barras de aco surgem em partes, a
medida que a sec¢do € redesenhada quando o mesmo botdo é pressionado

diversas vezes pelo usuario.

Figura 7.4 - Secéo transversal exemplo inserida no programa

O vp _ %
Esforgos Solicitantes
2460 I Msd,y
40 KN.n A
( N I
[ ] L ]
Propriedades
A-50
C30
Segdo transversal
=
0o | 90 5
0o | o ol |® =
o
40 | 90 (=
il L Inserir
452
Y Resultados
421 A
r - Verificacdo @
3 | 45 | ° .
6 1 . S
Q| 37 | 45 | } |
40.0 cm

Fonte: Autoria prépria

A imagem foi gerada pelo software através da biblioteca matplotlib do

Python, mais especificamente, pela ferramenta FigureCanvasKivyAgg importada
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da biblioteca Kivy, a qual faz a ligacdo com os recursos oferecidos pelo matplotlib
e o transforma em imagem dentro da propria interface.

Verifica-se na imagem a origem do plano cartesiano arbitrado pelo préprio
usuario, as cotas da base e altura da secéo de concreto, pontos que representam
as coordenadas das barras de aco, além dos vetores dos momentos em ambas
as dire¢cbes casa hajam.

Feito isso, é habilitado o botdo “Resultados” (enquanto a seg¢do nao é
inserida esse recurso ndo é habilitado). Ele direciona o usuario para uma
segunda interface, a qual apresenta ao lado esquerdo todos os parametros
necessarios para a verificacdo do pilar ja calculados, como as propriedades da
secdo, os resultados obtidos através do dimensionamento, bem como
parametros envolvendo o método do pilar padrdo e o método geral.

A Figura 7.5 expressa um primeiro contato com esta nova GUI.

Figura 7.5 — Interface Gréfica do Usuério (GUI) de Resultados

©vp = X

Propriedades da segao I
Area (Ac): 1500.0 cm? Tensdo / Deformagdo Dominios Esforgos solicitantes o

Ix:450000.0 cm4
ly:78125.0 cm4
ix:17.32cm/ iy:7.22 cm
AX:26.56 / Ay: 59.86
Método Pilar Padrdo
M1Sd,minx: 69.3 kN.m
M15d,miny: 47.25 kN.m [—
A1x:35.0/A1y:35.0
A1x,5:35.0 / A1y,s:35.0

MSd,minx: 69.3 kN.m
MSd,miny: 115.21 kN.m f—
MSd,totx: 72.11 kN.m
MSd,toty: 87.96 kN.m

MSd,minx: 69.3 kN.m
MSd,miny: 93.37 kN.m —
MSd totx: 47.32 kN.m
MSd,toty: 52.77 kN.m

Método Geral

yx).x: -
Yy - geral e caixa de selegdo que apresenta os graficos Momento x Curvatura

Propriedades geométricas do elemento: area de concreto,
momentos de inércia. raios de airacdo e indices de esbeltez

Momentos minimos de primeira ordem, indices de esbeltez
limites calculados para os momentos minimos e solicitantes
(caso houverem)

Momentos totais considerando os efeitos de segunda ordem pelo
método do pilar padréo por curvatura aproximada a partir dos
momentos minimos e dos momentos solicitantes (caso houverem)

Momentos totais considerando os efeitos de segunda ordem pelo
método do pilar padréo por rigidez aproximada a partir dos
momentos minimos e dos momentos solicitantes (caso houverem)

Flechas méximas quando ha o equilibrio da estrutura deformada pelo método

| W |

Dimensionamento
As,min: 2.25 cm?

As,nec: 35.32 cm? —
Mrd,x: 313.48 kN.m
Mrd,y: 114.31 kN.m

Armadura minima, armadura necessaria dimensionada a

partir dos esforgos solicitantes e da area de concreto, além

dos momentos resistentes que essa armadura proporciona

Fonte: Autoria prépria
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Nessa nova interface, ha também formas de visualizacao dos resultados
para facilitar o entendimento, as quais sdo habilitadas pelos trés botbes

indicados na Figura 7.6.

Figura 7.6 — Principais bot8es na GUI de Resultados

Tenséo / Deformac&o Dominios Esforgos solicitantes
|

Habilita a visualizagdo de qual dominio

cada orientacéo da secéo se encontra Retorna para a
tela inicial

Habilita a visualizagdo da orientacédo da sec¢do transversal juntamente

com seu respectivo diagrama de deformacéo e forcas resultantes

Aciona o método geral, mostrando as flechas maximas da segéo e o diagrama
de momentos nas duas dire¢cdes considerando os efeitos de segunda ordem

Fonte: Autoria prépria

Em todos os comandos, o software oferece a opc¢éo de visualizagdo dos
resultados por meio da armadura inserida pelo proprio usuario ou por meio da
armadura sugerida, obtida através do dimensionamento que o proprio programa
realiza. Para isso, basta selecionar um dos trés botdes principais que surge em
forma de lista as opcdes disponiveis.

A Figura 7.7 apresenta a visualizagédo das tensdes e forgas resultantes
nas barras de aco e no concreto comprimido para duas orientacdes da secao
transversal (0° e 90°). No caso foi selecionada a visualizacdo dos resultados da

sec¢ao com a armadura sugerida.
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Figura 7.7 — Tensédo e deformacé&o na secao transversal rotacionada em 0° e 90° com a

armadura sugerida

O ve — %

Propriedades da segéo
Area (Ac): 1500.0 cm? Tensdo / Deformagéo Dominios Esforcos solicitantes [« ]

Ix: 450000.0 cm4

ly: 78125.0 cmd

ix:17.32cm /iy:7.22 cm - s ;___r_:_“
Ax:26.56 / Ay: 59.86 8. 2%

Método Pilar Padréo
M15d,minx: £9.3 kN.m 1850.6 kN >
M1Sd,miny: 47.25 kN.m
A1%:35.0 / A1y:35.0 =
Ax,5:35.0/ A1y,5:35.0
MSd,minx: 69.3 kN.m Vi 32.8 kN
MSd,miny: 115.21 kN.m 1%

MSd, totx: 72.11 kN.m
MSd,toty: 87.96 kN.m

MSd,minx: 69.3 kN.m
MSd,miny: 93.37 kN.m
MSd, totx: 47.32 kN.m
MSd, toty: 52.77 kN.m
Método Geral

y(0.x:- D %

y(x)y:-
Dimensionamento
As,min: 2.25 cm?
As,nec: 35.32 cm? 1%o0
Mrd,x: 313.48 kN.m

Mrd,y: 114.31 kN.m . . = .
- Campo que deixa em evidéncia a opcéo de armadura selecionada
Armadura Sugerida

Fonte: Autoria propria

A seguir, a Figura 7.8 apresenta a visualizacdo das tensdes e forcas
resultantes nas barras de ago e no concreto comprimido para duas orientagdes
da secdo transversal (0° e 90°), porém, agora com uso da armadura inserida
pelo usuario, configuracédo essa que pode ser visualizada na Figura 7.4.

Além disso, a figura deixa em evidéncia como é realizada a forma de troca

de armadura da secao transversal.
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Figura 7.8 — Tensdo/deformacao na secéo transversal rotacionada em 0° e 90° com a
armadura inserida

O vp — X

Propriedades da segao — o

Area (Ac): 1500.0 cm? m Sugerida 5 Esforcos solicitantes (« ]
Ix: 450000.0 cmd
Iy: 78125.0 cm4 Armadura Inserida Opgdes de mudanca de armadura
p17.32cm/ iy: 7.22 cm
Ax:26.56 / hy: 59.86

Método Pilar Padrao /
M1Sd,minx: 69.3 kN.m 1778.2 kN |
M15d,miny: 47.25 kN.m
A1x:35.0/ A1y:35.0 - / 1.3%
A1x,8:35.0 / ATy,: 35.0 ]

MSd,minx: 69.3 kN.m y S
MSd,miny: 115.21 kN.m 0.8
MSdtotx: 72.11 kN.m
MSd toty: 87.96 kN.m

MSd,minx: 69.3 kN.m
MSd,miny: 93.37 kN.m _ 18.2
Msd totx: 47.32 kN.m / >77°  _337.0 kgl
MSd,toty: 52.77 kN.m / -
Método Geral y ;p-
y(x).x:- /
y(y:- - /
Dimensionamento 4 L]
As,min: 2.25 cm? V4 -
As,nec: 35.32 cm® 49%. =
Mrd,x: 313.48 kN.m

Mrd,y: 114.31 kN.m
Armadura Inserida

224 “r”—.

Fonte: Autoria prépria

Pode-se perceber a diferenca entre as armaduras, quando comparadas
as figuras 7.7 e 7.8, justamente pelo nimero de barras, uma vez que para o
dimensionamento foram idealizadas barras nos cantos da secao transversal. Ja
na armadura inserida, foi alocada barras no eixo de simetria, resultando em uma
configuracéo diferente das préprias forgas resultantes.

Outro aspecto visual € a indicacdo de qual dominio a se¢éo transversal
rotacionada a 0° e 90° esta contida quando sujeita aos esfor¢os solicitantes
inseridos. Com isso, implementou-se os dominios de estado-limite ultimo
apresentados pela NBR 6118:2014 (Figura 7.9), em que serdo indicadas as
deformacgbes dos pontos de interesse da secao, compondo, assim, o diagrama
de deformacdes. Isso facilita o entendimento de como a secédo se comporta

diante dos esfor¢os aos quais esta sendo submetida, bem como a maneira com

98



\&

Ge= EESC + USP

que deve ser interpretado cada um dos dominios, sendo muitas vezes alvo de

davidas no meio didatico.

Figura 7.9 - Dominios de estado-limite Gltimo exibidos no software

O ve — x

Propriedades da segdo
Area (Ac): 1500.0 cm2 Tensdo / Deformagdo m Esforgos solicitantes °
1x:450000.0 cm4 Alongamento Encurtamento
ly: 78125.0 cm4 2.0%o 3.5%o
ix:17.32cm/iy:7.22 cm B
AX:26.56 / Ay: 59.86 /

Método Pilar Padrao

M15d,minx: 69.3 kN.m
M15d,miny: 47.25 kN.m
Alx:35.0 /A1y:35.0
A1x,5:35.0/ A1y,s:35.0 2 5

b

MSd,minx: 69.3 kN.m
MSd,miny: 115.21 kN.m Aa
MSd,totx: 72.11 kN.m e e e e e e =T e e — -
MSd,toty: 87.96 kN.m

Alongamento Encurtamento

MSd,minx: 69.3 kN.m 2.0%0 3.5%0
MSd,miny: 93.37 kN.m B
MSd,totx: 47.32 kN.m
MSd,toty: 52.77 kN.m
Método Geral
yix)x:-
y(x)y:-
Dimensionamento 2 5
As,min: 2.25 cm? 4 b
As,nec: 35.32 cm?
Mrd,x: 313.48 kN.m Na
Mrd,y: 114.31 kN.m B e
Armadura Inserida

25.71 cm

57.0 cm
=
60.0 cm

10.71 cm

22.0cm
[
w
25.0 cm

Fonte: Autoria prépria

Na Figura 7.9, além de exibir o dominio que a secao transversal se
encontra nas duas orientagdes, ha algumas cotas que auxiliam o usuario como
a altura, a altura util e a distancia que corresponde a deformacdo de pico do
concreto, ideal para identificagdo do dominio 5.

Por fim, o ultimo recurso disponivel na interface de resultados é a questao
da exibicdo de diagramas dos esforgos solicitantes considerando os efeitos de
segunda ordem, mas, agora pelo método geral. Entdo, diante dos momentos de
primeira ordem para pilares biapoiados, sdo acrescidos os efeitos de segunda

ordem devido as néo linearidades fisicas e geométricas da estrutura atraves do
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efeito da excentricidade da forca normal quando ocorre um deslocamento na
direcdo analisada.

A Figura 7.10 mostra os diagramas de momento fletor em um pilar de
canto esbelto, submetido a esforcos solicitantes nas duas direcdes, além da
indicacdo das flechas maximas em x e y quando a estrutura atinge o equilibrio

deformado.

Figura 7.10 — Diagramas de momento fletor do pilar nas duas dire¢cbes considerando os
efeitos de segunda ordem pelo método geral.

o v - X

Propriedades da segédo
Area (Ac): 1500.0 cm? Tensdo / Deformagdo Dominios («]
Ix: 450000.0 cmd '
ly: 78125.0 cm4-
ix:17.32cm/ iy:7.22 cm

M 5196/ Ay:124.71
Método Pilar Padrao
M1Sd,minx: 85.47 kN.m
M15d,miny: 58.28 kN.m
A1x:35.0 /A1y 35.0
A1x,5:35.0/ A1y,5:35.0

Curvatura aproximada

MSd,minx: 219.36 KN.m
MSd,miny: 379.6 kN.m
MSd totx: 173.89 kN.m
MSd,toty: 351.33 kKN.m

MSd,minx: 159.62 kN.m
MSd,miny: 469.33 kN.m
MSd,totx: 88.39 kKN.m
MSd,toty: 433.93 kN.m
Método Geral

y(x),x: 1.0 mm P
=

Deslocamentos maximos atingidos nas duas diregdes
Corte y-y Corte x-x

Diagramas de momento fletor
com indicagdo dos momentos
maximos e minimos, além de

suas posi¢des na estrutura

y(x),y:7.13 mm
Dimensionamento
As,min: 2.25 cm?

As,nec:131.88 cm*
Mrd,x: 1403.4 kN.m

Mrd,y: 467.42 kN.m
Armadura Inserida

Fonte: Autoria propria

Ja a Figura 7.11 deixa em evidéncia quais os graficos Momento x
Curvatura utilizados para atingir tais resultados, 0s quais surgem no momento
em que a caixa de selecdo ao lado € acionada.
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Figura 7.11 — Exibicao dos graficos Momento x Curvatura utilizados no método geral em
ambas as direcdes.

O v — x

Propriedades da se¢do
Area (Ac):1500.0 cm® Tenséo / Deformagéo Dominios Esforgos solicitantes («]

Ix:450000.0 cm4
ly:78125.0 cmé4 e y-y Momento(kN.m} x n:ur\a'atura{cmélég-:-"I{;(5
ix:17.32cm/ iy:7.22 cm T
M 51.96 / hy:124.71
Método Pilar Padrédo .
M15d,minx: 85.47 kN.m
M1Sd,miny: 58.28 kN.m 150
A1x:35.0 /A1y:35.0
Axs:35.0/ \y,s:35.0 may
Curvatura aproximada
MSd,minx: 219.36 kN.m
MSd,miny: 379.6 kN.m
MSd,totx: 173.89 kN.m Caixa de selecéo para a
MSd,toty: 351.33 kN.m exibigéo dos gréficos 0
Rigidez aproximada
MSd,minx: 159.62 kN.m
MSd,miny: 469.33 kN.m
MSd,totx: 88.39 kN.m 100
MSd,toty: 433.93 kN.m
Método Geral 80 1
y(x),x: 1.0 mm
¥(x),y:7.13 mm 60 7
Dimensionamento
As,min: 2.25 cm?
As,nec:131.88 cm?
Mrd,x: 1403.4 kN.m
Mrd,y: 467.42 kN.m . 04
Armadura Inserida - 000000 000005 000010 000015

200 4

50 o

T T T T
Momento x Curvatura do 0 2 4 6

05

" N x1
pllar nas duas dlregoes Momento{kM.m) x curvaturafcm-1) - My
1.55e-04

Fonte: Autoria prépria

z

Em sequéncia, o botdo “Verificagcdo” € habilitado (ele permanece
bloqueado até que ocorra a navegacao pelos resultados previamente). Quando
pressionado o software direciona o0 usuario para uma terceira interface, a qual
tem o objetivo de realizar de forma gréfica a verificagdo do elemento estrutural.

Logo quando surge, a hova GUI apresenta em seu grafico a envoltéria
resistente real. A partir disso, pode-se selecionar diversas configuracdes para se
analisar a eficiéncia da secdo transversal inserida por meio das caixas de
selecdo acima, ja que promovem a insercdo de seus respectivos graficos.
Configuracdes essas que correspondem a envoltdria minima de primeira ordem,
a envoltdéria minima de segunda ordem, bem como os esforgos solicitantes, para

o método do pilar padréo por curvatura aproximada e por rigidez aproximada,
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aos esforcos solicitantes pelo método geral e a envoltdria resistente de acordo
com os critérios normativos da NBR 6118:2014.

Abaixo se encontram dois exemplos de quais configuracbes o grafico
pode assumir:

e Configuracdo 1 (Figura 7.12): o gréfico esta composto pela envoltéria
resistente real (preto), envoltéria resistente normativa (Amarelo),
envoltéria minima de primeira ordem (azul) e esforcos solicitantes pelo
método geral (rosa);

e Configuracdo 2 (Figura 7.13): o grafico esta composto pela envoltéria
resistente real (preto), envoltéria resistente normativa (Amarelo),
envoltoria minima de primeira ordem (azul), envoltéria minima de segunda
ordem (vermelho) e esforcos solicitantes (ciano), sendo os dois ultimos

obtidos pelo método do pilar padrao por curvatura aproximada.

Figura 7.12 — Grafico para verificacdo de um pilar com a configuracéo 1
o

O vp —
Momentos 2° Momentos 2° . Momento
B s oo T gl e o
Pt Cur\ra_tum ngldgz Método Geral Simplificagdo
Aproximada Aproximada norma
Envoltéria resistente real
20000
10000 4
E
he]
=
= 0
>
E.
=
—10000 4
—20000 4

T T T T
—20000 —10000 0 10000 20000
Mrd, x (kN.cm)

Fonte: Autoria prépria

102



Ve

EESC + USP

Figura 7.13 - Gréfico para verificagdo de um pilar com a configuracéo 2

o v — X
Momentos 2° Momentos 2° Momento
Meomento Mementos 2° "
minimo ordem e ordem E.mtffme . Abrir o
1* ordern Curva_tum ngldgz Método Geral impliicagao
Aproximada Aproximada nerma

Envoltdria resistente real

20000 -

15000 A

10000 A

5000 4

Mrd, y (kN.cm)
o

—5000 A

—10000 4

—15000 A

—20000 +

T T T T
—20000 —10000 1] 10000 20000
Mrd, x (kN.cm)

Fonte: Autoria prépria

Ao selecionar o botao “Abrir” no canto superior direito, uma nova janela
se abre com a configuracdo do grafico escolhida. Essa nova janela permite uma
maior interacdo do usuario com o grafico e uma melhor visualizacdo dos
resultados obtidos.

Nesse contexto, a envoltoria resistente real possui alguns pontos
destacados que correspondem a alguns angulos de interesse de rotacdo da
secao transversal. Quando pressionados, sao apresentadas no canto superior
direito da janela algumas propriedades relacionadas a secdo de concreto
armado com uma determinada rota¢ao, correspondente ao seu respectivo ponto

na envoltdria, como apresentado na Figura 7.14.
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Figura 7.14 — Modo de visualizacdo detalhada dos graficos essenciais para a verificacao
do elemento estrutural

Envaltéria resistente real

10000

5000

Area de cancreto comprimido: 1156 9cme

Mrd, y (ki.cm)
°

Ponto selecionado
apresenta preenchimento
em vermelho

~10000

~20000 -10000 [
Mrd, x [kN.cm)

n€> Q= 3 =6 206403

A +Q =B

Opgdes de visualizagio do gréfico e de

salvamento do grafico em formato de imagem
(-png)

Profundidade da linha neutra: 33.2 cm

. o Mrd,x: 13598.1 kN.cm Mrd,y: -7803.6 kN.cm
Propriedades especificas do ponto Dominio da secao: Dominio 4

selecionado Area de concreto comprimido: 1156.9cm?

Fonte: Autoria prépria

Dentre as propriedades disponiveis para visualizacdo na envoltéria
resistente real, especificas para cada ponto, encontram-se a profundidade da
linha neutra, os momentos resistentes nas duas dire¢des, o dominio da secéo, a
area de concreto comprimido, considerando o diagrama simplificado retangular
para as tensfes, além de uma representacdo ilustrativa da sec¢éo transversal
com indicacdo das barras de aco, do angulo de rotacdo e da regido comprimida.

De modo geral, todas as interfaces graficas buscaram ser as mais
intuitivas e objetivas possivel, permitindo de varias formas a interacdo do usuario
com o software para que os resultados de interesse fossem interpretados de
maneira clara. Além disso, o proprio programa induz a quem a utiliza qual a forma

correta de inser¢éo dos dados iniciais através da indicagéo de suas unidades e
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por meio dos diversos tratamentos de erros implementados, havendo até mesmo
uma ordem especifica de navegacéao (Insercédo da secao — Resultados — Gréficos
de verificacdo) de forma a garantir certa fluidez e uma menor propensdo do

software a erros desconhecidos.
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8 EXEMPLO DE APLICACAO

Para concretizar a validade do software aqui desenvolvido, neste topico
foram resolvidos exemplos de verificacdo de pilares submetidos & esforgos

solicitantes em uma estrutura nas quais 0s elementos se encontram biapoiados.

8.1 Verificacao de pilar com indice de esbeltez menor que 90

A priori, foi resolvido um exemplo de pilar de canto, ja que dentre os tipos
de pilares (pilar intermediario, de extremidade e de canto) € o mais completo,
que engloba as duas outras situagbes. Dessa forma, foram realizados o
dimensionamento e a verificacdo do elemento de forma algébrica e com uso de
abacos, e, em seguida, foi comparado com os resultados provenientes da
ferramenta criada.

Supondo um pilar biapoiado de um edificio cujas dimensbGes dos
elementos estéo expostas na Figura 8.1 e com distancia de piso a piso de 4,6 m,
submetido a uma forgca normal caracteristica (Nsk) de 1850 kN e diagramas de
momentos fletores nas duas direcbes conforme mostrado na Figura 8.2.

Pretende-se utilizar concreto C30, aco CA-50 e cobrimento de 2,5 cm.

Figura 8.1 — Dimensdes dos elementos estruturais (unidades em centimetros).

O

460

V4 V1

Fonte: Autoria prépria
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Figura 8.2 - Diagrama de momento fletor caracteristico nas diregdes x e y.
Y

4250 kN.cm
3500 kM.cm
2
o
0 ~
~
i 25
uwy (=]
k4 it
= Meup=3500kN .cm Mgy, =4250kN.cm
N\ Viga V1 Viga V4
o M s=3500kN.cm Min=4250kN.cm
= 3
lﬁ_
o a
™
3500 kN.cm
4250 kN.cm
EIXO X EIXO Y

Fonte: Autoria prépria

A primeira etapa para o célculo dos efeitos de segunda ordem consiste
em calcular o comprimento equivalente do pilar (le), cujo valor € o menor entre a
distancia da face da viga até o piso, somado a dimensado do pilar na direcéo
avaliada e a distancia de eixo a eixo das vigas. Assim, tem-se a partir da Equacéo
4.38:
e Eixo X:

lox + hy (460 — 62) + 25 = 423 cm
le"s{ L = lex < { 460 cm

lo, =423 cm

loy + hy (460 — 52) + 60 = 468 cm
Ley S{ = ley = 460 cm

lo, =460 cm
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Em seguida, calcula-se o indice de esbeltez do pilar para classifica-lo e
verificar se as contribuicdes dos efeitos de segunda ordem sao relevantes.
Desse modo, a partir das equacdes 4.39 e 4.40, tem-se:

e Raios de giracao:

L 251'—2603 /450000

e = \/A:C =\60-25 1500 _ 1732¢cm
o /601'2253 /78125
by = \/A:C =J60-25 1500 _ ¥2m

e indices de esbeltez:

ley 460
= —= = 2
* T, 17,32 6,56
l, 423
=% - _"" —5859
Y i, 7,22

E importante mencionar que, o indice de esbeltez em x esta relacionado
ao momento cujo vetor se encontra no mesmo eixo, logo, envolve a flexao no
plano y, e, por esse motivo, a formula recebe o comprimento equivalente emvy.
A mesma analogia vale para o indice de esbeltez em y.

A proxima etapa envolve as envoltérias minimas, a comecar pelo calculo

dos momentos minimos de primeira ordem pela Equacéo 4.41:
Ngq = 1850+ 1,4 = 2590 kN

Misgminx = Neg - (0,015 + 0,03 - hy,) = 2590 - (0,015 + 0,03 - 0,6)
MlSd,minx = 85,47 kN.m

Misqminy = Nsq - (0,015 + 0,03 - hy) = 2590 - (0,015 + 0,03 - 0,25)
Misqminy = 58,28 kN.m
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Entdo, a NBR 6118:2014 especifica que, mesmo caso nao houvesse
momento atuando na estrutura, ela deve resistir no minimo a esses momentos
nas diregdes dos vetores convencionadas.

Uma vez definidos os momentos minimos, € essencial avaliar os indices

de esbeltez limite através da Equacéo 4.42:

25+ 12,5 ehﬁ 25+ 12,5- 85,47/2590
Ao = Y — 0,6
1x ab 1
/11x = 25,69
e
25+125- 32 254125 2828/2590
Aly — X — )
ap 1

A1y = 26,13

Por se tratar da avaliacdo dos indices limites referentes aos momentos
minimos, ap é igual a 1. Ademais, a NBR6118:2014 estabelece que tais indices
devem possuir valores entre 35 e 90, e como os valores calculados sao inferiores
ao minimo, adota-se 35 para ambos.

Ao comparar os indices de esbeltez da estrutura com os limites nas duas
direcbes, tem-se:

Ay = 26,56 < A4, = 35
Ay, =5859 > 1, =35

No caso do indice de esbeltez em x, como ele é inferior ao limite, pode-se
concluir que néo € necessario considerar os efeitos de segunda ordem local
nessa direcdo. Ja no caso do indice de esbeltez em y, por ser superior ao limite,
os efeitos ndo podem ser desprezados.

Consequentemente, pode-se utilizar o método do pilar padrdo com
curvatura aproximada para o calculo dos momentos minimos de segunda ordem
(equacdes 4.45, 4.46 e 4.47):
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Ngq 2590

v = 0,806

3

Ac'fcd 25'60'14

<1) _ 0005 0,005
r)y hy-(v+0,5) 25-(0,806+0,5)

1 0,005 0,005
(—) =153-10"*cm 1 < =
r/y hy 25

=153-10"*cm™?

=2-10"* > Ok!

Oor (1
Mde,tot =ap- MlSd,miny + Nsa E <;)
x

2

42
Msgy,tor = 1-5828 + 2590 - 10

Mde,tOt = 129,26 kN.m

-1,53-107*

Por se tratar do momento cujo vetor se encontra na direcéo y, a curvatura
considerada é na direcéo x, bem como o comprimento equivalente, obtendo-se
desse modo, pela simplificagéo da curvatura, 0 momento total, considerando os
efeitos de primeira e segunda ordem.

O método a ser utilizado é a critério do projetista, podendo também ser

utilizado o método do pilar padrao por rigidez aproximada (Equacéo 4.49):

a=5"h,=5-025=125

b=h2-N _M_5.h.a.M .
X Sd 320 X b 1Sd,miny
4,232 .2590
b =0,25%-2590 - ————5-0,25-1-58,28 = —55,80
320
c= _hazc *Nggq " ap - MlSd,miny

¢ =—0,25%-2590 - 1- 58,28 = —9434,08

ar M_Sgdy,tot +b- Mde,tot +c=0
1,25 - M_Sgdy,tot — 55,80 - Mde,tot —9434,08=0
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A=b?*—4-a-c=(-5580)% —4-1,25-(—9434,08) = 50284,04

—b++VA 55,80+ +/50284,04
Msay.coe = — 75— = 2-1,25

= 112,02 kN.m

Por se tratar de um pilar de canto, com momentos solicitantes em ambas
as direcoes, deve-se verificar os efeitos de segunda ordem para esses esfor¢os.
Portanto, primeiramente realiza-se a majoragdo dos esfor¢cos, adequando-o0s
para o projeto, e, em sequéncia, sdo calculados os indices de esbeltez limites

referentes a eles.

Mg, = 3500 kN.cm — Mgy, = 1,4+ 3500 = 4900 kN.cm
Mgy, = 49 kN.m

Mg, = 4250 kN.cm = Myq, = 1,4 - 4250 = 5950 kN.cm
Mg, = 59,5 kN.m

Para pilares biapoiados ou em balanco com momentos menores que 0

momento minimo ab, assume-se o valor de 1 de acordo com a NBR 6118:2014.

Desse modo:
25412595 254 1,5.222/2390
Ay = Y = : 0,6
Alx = 25,4‘8
e
25+125 52 2541255222590
Aly — X — )
ab 1
Ay = 25,95

Como ambos séo inferiores a 35, adota-se esse mesmo valor para ambos.
Ao comparar os indices de esbeltez da estrutura com os limites nas duas
direcbes, tem-se:
Ay = 26,56 < 11, = 35
Ay, =58,59 > 1, =35
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No caso do indice de esbeltez em x, ndo é necessario considerar 0s
efeitos de segunda ordem local nessa direcdo. Ja no caso do indice de esbeltez
emy, os efeitos ndo podem ser desprezados. Porém, por se tratar de uma flexo-
compressdo obliqgua do pilar, no caso em que um dos eixos é necessario
considerar os efeitos de segunda ordem, calcula-se também os efeitos de
segunda ordem para o segundo eixo. Isso ocorre por se tratar de um momento
fletor em uma direcao qualquer que € decomposto em ambas as dire¢des para
facilitar as andlises, logo, para manter a coeréncia dos resultados, verifica-se 0os
efeitos de segunda ordem em x e em y. No caso de pilares de extremidade, os
quais estdo sujeitos a flexo-compressao simples, ndo é necessario considerar
essa duplicidade das andlises, sendo a verificacdo essencial apenas quando o
indice é superior ao seu respectivo limite.

Dessa forma, calcula-se primeiro esses efeitos na dire¢do x pelo método

da curvatura aproximada:

= = =6,38-105 cm™
h,-(v+05)  60-(0,806+0,5) cn

(1) 0,005 0,005
7y

0,005 0,005
< =

1
(—) =6,38-10">cm™ 1 <

= 8,33-1075 > Ok!
r), h, 60 ~

22, (1
Msgy tor = @p * Msqx + Nggq 10 (;)y
02

46 i
Msas ror = 1+5950 + 2590 - -6,38- 10

Mgy tor = 94,47 kN.m

Ja para a direcéo y:

=153-10"*cm™?

(1) 0,005 0,005
X

r). h,-(v+0,5)  25-(0,806+ 0,5)
1 0,005 0,005
(—) =153-10"*cm1 < =

=2-10"* - Ok!
v I, 25 -
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22, /1
Msay tor = Qp * Msg,y + Nsg ETR (;)
X
2

-1,53-107*

42
Msgy tor = 14900 + 2590 - 10

Mde,tOt = 119,90 kN.m

Assim, pode-se formar um grafico com as envoltorias de valores minimos
e maximos, em conjunto com os esforcos solicitantes, em que séo inseridos trés
pontos, compondo o par de momentos atuante na base do pilar, no topo e em

uma se¢ado denominada “critica”, em que esses esforcos sdo maximos.

Figura 8.3 - Envoltdrias minimas e esforgos solicitantes calculados pelo método do pilar

padrdo por curvatura aproximada

12926 kg
L

/ \ 19{1558 kN.m)
100

©

58.27/kN.m %

| S582RkNmMm |
z 50 (5951 9.0 kNJm
z /
=
> /
§
S a7k 5.47 k.
g B5 A7 KN.m B5.47TKN.
“T-D /
€
uE_, /
o
= 50 O kit PR TR ——— -58.2 kN.m

T2 LS LA By

\ Momento solicitante
—100

~— (método da curvatura aproximada) -
\ —— Momento minimo de 1° ordem
Momento minimo de 2° ordem
—fz—gmﬁ_/ T (método da curvatura aproximada)
| [ |
-75 -50 -25 0 25 5‘0 7‘5 lCI!O
Momento fletor em x (kN.m)

Fonte: Autoria propria

Com o intuito de se obter resultados provenientes de outro método (rigidez
aproximada) com o intuito de se comparar com o software, tem-se para a dire¢éo
X:

a=5-h,=5060=3

lgy “Ngq

= h2. -
b = hj - Ngg 320

—5-h, - Msgy
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, 4,602 - 2590
b = 0,604 -2590 — T —5-060-1-59,5 =582,64
c=—h} Ngg-apMgqy

¢ =—0,60%-2590-1-59,50 = —55477,8

ar Msgdx,tot + b Mggyror +¢c=0
3 Muxtor + 582,64 Mgy tor — 55477,8 = 0
A=b?—4-a-c=(582,64)2 —4-3-(=55477,8) = 1005202,97

—b+VA _ —582,64 ++/1005202,97

Msaxtor = — = 53 = 69,99 kN.m

Jé para a direcéo y:
a=5"h,=5-025=1,25

b=h%-N —M—S'h can M
4,232 - 2590
b=0,25%-2500 —-—— = 5-0,25-1-49 = —44,20
320
c= _h;vzc *Ngg " ap " Mgq

¢ =-0,25%-2590-1-49 = —7931,88

a: Msgdy,tot +b- Mde,tot +c=0
1,25 - M4y ror — 44,20 - Mggy cor — 7931,88 = 0
A=b%?—4-a-c=(—44,20)2 —4-1,25-(—7931,88) = 41613,02

—b++VA 4420 +41613,02
Msaytor = —5 7= 2-1,25

= 99,28 kN.m

Com isso, é possivel formar um grafico com as envoltorias de valores
minimos e maximos, em conjunto com os esfor¢cos solicitantes, mas agora,

obtidos através do método do pilar padréo por rigidez aproximada.
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Figura 8.4 - Envoltérias minimas e esfor¢os solicitantes calculados pelo método do pilar

padrao por rigidez aproximada

12.01 kN.m
| —
100 69.99 kN.m:99{27 kN.m)
/ e 7{
__.——-——‘IJ(——-—.__
) / 59,57
85.47 kN.m 85.47 kN.
80 47 kN.m 8547 kN.

Momento fletor em y (kN.m)
o

(
\

-50 SIS RN, 39 ORI ————] -58.2

Momento solicitante
(método da rigidez aproximada)
—— Momento minimo de 1° ordem

—100 Momento minimo de 2° ordem |

— 501 kN.m (método da rigidez aproximada)
| |
t t
=75 —=50 —=25 0 25 50 75
Momente fletor em x (kN.m)

/

Fonte: Autoria prépria

Uma vez definido as envoltorias minimas e os esforcos solicitante, inicia-
se a etapa de dimensionamento por meio dos abacos de Venturini e Rodrigues

(1987). Para isso, calcula-se alguns valores adimensionais:

vaN_S; - 20 5~ = 0,806
c Jcd 25'60'1'4
= Mg, _ 12926 _ 0161
h-Ac:- fea 25-25-60-1?4 ’

Em que, para o momento adimensional, foi utilizado o momento de maior
valor para se iniciar a avaliacdo de qual a quantidade de armadura € necessaria
para envolver todos os esforc¢os.

Feito isso, calcula-se arelagdo de d’/h para a sele¢cao do abaco adequado.
Foi admitido, além dos 2,5 cm de cobrimento, 5 mm de didmetro para os estribos
e barras longitudinais de 20 mm. Dessa maneira, para 0 momento cujo vetor se

encontra na direcdo y, tem-se:
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d _25+05+20/2 015
h 25 T

A patrtir disso, 0 abaco selecionado esta exposto na Figura 8.5.

Figura 8.5 — Abaco para o dimensionamento de pecas retangulares de concreto armado
v

CA-50A T, = 1,15 d'/h = 0,15
2 e e
22 - :’i:&«m sﬁ* : ZA?S/ s _:Il_
& RN I 1T ] 3 +
B V\W ] =y s
i .\ \\\j\\\i?éﬁ?‘{; i | =
- 4\\\}4\ N \% - %E

SO Ak G A S mm———

AR - ]
RS o e
' X |
A b N N N -
s SIS
TR / 8 7 | yil
| 7% 2
4 9 i : 7 s 6 / o, H
S eSS e e

Fonte: Venturini e Rodrigues (1987)

Pelo encontro das retas em vermelho na figura acima, nota-se uma taxa

de armadura (w) igual a 0,47. Sendo possivel o calculo da armadura necessaria:

A 'fyd
w=—-—
Ac 'fcd
50
AS —_
047 = —1’153
25-60- 14
As = 34,73 cm?

Com essa area de aco, pode-se adotar uma armadura de 620mm por
face, 0 que retorna uma area de aco igual a 37,70 cm2,
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Efetuando-se o0 processo inverso:

50
37,70 m
w=—————————F

3
25-60-m

w = 0,51

Ao prolongar a reta horizontal vermelha no mesmo 4baco da Figura 8.5
até a taxa de armadura correspondente a 0,51, obtém-se um momento

adimensional de 0,18 (Figura 8.6).

Figura 8.6 - Abaco para o momento resistente de pecas retangulares de concreto armado

na direcdo y

7
0.2 + o - | LA

Fonte: Venturini e Rodrigues (1987)

Feito isso, aplica-se a férmula da taxa de armadura novamente para o

calculo do momento resistente na diregédo y:

Mgy = 14464,29 kN.cm = 144,64 kN.m
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Ja4 para momento cujo vetor esta na direcdo x, utiliza-se a relacéo

expressa abaixo para fazer uso do abaco adequado.

d _25+05+20/2 005
h 60 o

Prolongando a reta horizontal correspondente a normal adimensional até
a mesma taxa de armadura (0,51), € atingido um novo momento adimensional

igual a 0,15, conforme é mostrado na Figura 8.7.

Figura 8.7 - Abaco para o momento resistente de pecas retangulares de concreto armado

na diregao x

S— | -

7 ;anuiliuo 0;7 - II-(L}
S -

I
|

[
i

| | coMPRESSA

1

I

|

1

7T

Fonte: Venturini e Rodrigues (1987)

A partir do y alcangado, calcula-se 0 momento resistente em x da se¢ao
transversal:

M
0’15 — Rd,x 2
60-25-60 - 14

Mpgax = 28928,57 kN.cm = 289,29 kN.m

118



Desde 1955

P

\&

EESC - USP

Com os momentos resistentes em ambas as direcbes determinados, a

NBR 6118:2014 estabelece uma envoltéria tragcada de acordo com a Equacao

4.50, desse modo, a seguinte expressao foi utilizada:

28

( MRd,x ) + ( MRd,y )
9,29 144,64

1,2 1,2

Nas figuras 8.8 e 8.9 estd presente a envoltoria resistente calculada

englobando os esforcos solicitantes com os efeitos de segunda ordem sendo

considerados pelos dois métodos disponibilizados pela norma para um pilar com

indice de esbeltez inferior a 90 (pilar padréo).

Figura 8.8 - Envoltérias minimas e esfor¢os solicitantes calculados pelo método do pilar

Momento fletor em y (kN.m)

150

100

50

=50

—100

-150

padrdo por curvatura aproximada e envoltéria resistente

,_.
M
\?
L
)
F=y
3

;119.98 kN.m)

/

\

N

-85.47

£

=
o
=]
j
0
X1
wn =

7}

2
=

147 kN.m \89.2

~

t=

T~

85 4T kKN.m 85.4T kN.

144 64

—— Momento minimo de 1° ordem

—— Momento resistente dado pela norma |

=
]
Memento solicitante
(método da curvatura aproximada)

Momento minimo de 2° ordem
(método da curvatura aproximada)

—300 —200

—-100 ']
Momento fletor em x (kN.m)

Fonte: Autoria propria
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200 300
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Figura 8.9 - Envoltérias minimas e esfor¢os solicitantes calculados pelo método do pilar

padrao por rigidez aproximada e envoltéria resistente

150 /144.54
100 // /-—é ) NI\

£ P - ™.

= 50 594 KN

=

-

§

— 0289. 29 §9.2p

2 8547 KN.

o

=

: \ M

=

£

—=50 = e —

% ~ 59 TSI //

Momento solicitante
100 (método da rigidez aproximada) i
T~ \( Momento minimo de 1° ordem
Momento minimo de 2° ordem
(método da rigidez aproximada)
_150 41 Momento resistente dadoe pela norma |
| | |
} } }
—300 —-200 —100 0 100 200 300

Momento fletor em x (kN.m)

Fonte: Autoria prépria

Quando tracada a envoltdria resistente, nota-se que a mesma nao envolve
os esforcos solicitantes na secao critica, calculados por meio da curvatura
aproximada. Entdo, mesmo que o dimensionamento tenha sido realizado
considerando o maior momento fletor dentre o método do pilar padrdo por
curvatura aproximada e por rigidez aproximada, sendo este igual a 129,26 kN.m,
ndo ha garantia que essa armadura resista a flexo-compressao obliqua em uma
determinada direcdo, sendo necessario, nesse caso, aumentar a area de aco até
a envoltéria resistente envolver todos os esforcos solicitantes representados
graficamente.

No caso do grafico da Figura 8.9, ndo ha necessidade de aumentar a
armadura, pois 0 momento maximo pelo método da rigidez aproximada é igual a
112,02 kKN.m e no dimensionamento foi utilizado 129,06 kN.m. Portanto, foi
realizado um acréscimo de area de aco por meio do momento a ser resistido.
Caso o projetista considerasse esse metodo para a obtencdo dos efeitos de
segunda ordem, e fosse realizado o dimensionamento considerando 0 momento
maximo desse caso, talvez houvesse a necessidade de aumentar a quantidade

de armadura.
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Apos a realizacdo do exemplo de forma algébrica, foi utilizado o software

desenvolvido para comparar os resultados atingidos. A priori, houve a insercao

dos dados iniciais e da seg¢éo transversal, considerando a configuragdo das 12

barras de aco de 20 mm da Figura 8.10, cujas coordenadas se encontram

especificadas na Tabela 8.1.

Tabela 8.1 — Coordenadas das barras de aco inseridas no software

Coordenadas das barras de aco

ID X Y

P1 4,00 4,00
P2 21,00 4,00
P3 4,00 14,40
P4 4,00 24,80
P5 21,00 14,40
P& 21,00 24,80
P7 4,00 35,20
P8 21,00 35,20
PS 4,00 45,60
P10 21,00 45,60
P11 4,00 56,00
P12 21,00 56,00

Fonte: Autoria prépria

Figura 8.10 — Exemplo de pilar aplicado no software desenvolvido — Inser¢cédo da secdo

‘o

Esforgos Solicitantes

-1'."‘ ’."J m
Propriedades

CA-50

C30

Segao transversal

0 0
0 | 60
25 | 60
2% | 0
423 cm
460 cm
+ —
L4 | s
1
D 2| se

transversal
L
[ ] L ]
[ ] L ]
E [ ] L )
(&)
<
(=]
© . .
[ ] L ]
Y
A
[ ] L ]
4 I Il
25.0cm

Fonte: Autoria prépria

— 'S
Propriedades do
ago
E: 210000 MPa
fyd: 434.78 MPa

eyd: 0.00207

Propriedades do
concreto
Ecs: 26838.4 MPa
fed: 21.43 MPa
ecu: 0.0035
ec2: 0.002

Inserir
Resultados E‘

Verificagao

O 6000
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Em seguida, foram analisados os resultados obtidos quanto ao método do
pilar padréo a partir da secdo em questdo, como mostra a Figura 8.11. E, com
Isso, foi gerada uma tabela comparativa entre os resultados obtidos de forma

algébrica e os gerados pelo programa (Tabela 8.2).

Figura 8.11 - Exemplo de pilar aplicado no software desenvolvido— Resultados obtidos
relacionados ao método do pilar padréo

O v - x
Propriedades da segéo
Area (Ac): 1500.0 cm?
Ix:450000.0 cm4
ly: 78125.0 cmd
ix:17.32cm/ iy:7.22 cm |———————— Raio de giracéo nas duas direcoes
Ax: 26.56 / Ay: 58.61 ———— indice de esbeltez nas duas direcdes
Método Pilar Padrdao
M1Sd,minx: 85.47 kN.m
M15d,miny: 58.28 kN.m
A1x:35.0/ A1y:35.0 ————————— indice de esheltez limite nara os momentos minimaos
(A1x,5:35.0/ A1y,5:35.0 indice de esbeltez limite para os momentos solicitantes
Curvatura aproximada
MSd,minx: 85.47 kN.m
MSd,miny: 129.26 kN.m
MSd,totx: 94.48 kN.m
MSd, toty: 119.98 kN.m
Rigidez aproximada
MSd,minx: 85.47 kKN.m
MSd,miny: 112.01 kN.m
MSd,totx: 69.99 kN.m
MSd,toty: 99.27 kN.m
Metodo Geral

}r()t),)t:— D

y(x)y:-
Dimensionamento
As,min: 2.25 cm?
|As,nec: 31.4 cm? [——— Armadura dimensionada considerando efeitos de segunda

Mrd,x: 352.97 kN.m ordem
Mrd,y: 129.89 kN.m

Tensdo / Deformagéio Dominios Esforgos solicitantes («]

Momentos minimos de primeira ordem

Momentos minimos de segunda ordem

Momentos solicitantes totais, considerando segunda ordem

Momentos minimos de segunda ordem

Momentos solicitantes totais, considerando segunda ordem

Fonte: Autoria propria
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Tabela 8.2 - Comparacéo dos resultados obtidos de forma algébrica e através do

software desenvolvido

Propriedades da segdo Algébrica Software desenvolvido
Raio de giracéo x (i) 17,32 cm 17,32 cm
Raio de giracéo y (iy) 7,22 cm 7,22 cm
indice de esbeltez x (Ay) 26,56 26,56
indice de esbeltez y (Ay) 58,59 58,61
Método Pilar Padréo
Momento minimo de primeira ordem x (M sg minx) 85,47 kN.m 85,47 kN.m
Momento minimo de primeira ordem y (Mg miny) 58,28 kN.m 58,28 kN.m
indice de esbeltez limite x (A1 x) - Momento min. 35,00 35,00
indice de esbeltez limite y (A4 y) - Momento min. 35,00 35,00
indice de esbeltez limite x (Ms ) - Esf. solicitantes 35,00 35,00
indice de esbeltez limite y (Msy) - Esf. Solicitantes 35,00 35,00
Curvatura Aproximada
Momento minimo de segunda ordem X (Msg min) 85,47 kN.m 85,47 kN.m
Momento minimo de segunda ordem ¥ (Msg miny) 12926 KN.m 129,26 KN.m
Momento solicitante total X (Msg tote) 94 47 KN.m 94 48 kN.m
Momento solicitante total y (Msg toty) 119,90 KN.m 119,98 KN.m
Rigidez Aproximada
Momento minimo de segunda ordem x (Mzg min) 85,47 kN.m 85,47 kN.m
Momento minimo de segunda ordem y (Mzg miny) 112,02 kN.m 112,02 kKN.m
Momento solicitante total x (Msg ton) 69,99 kN.m 659,99 kN.m
Momento solicitante total y (Msg tory) 99,28 kN.m 99,27 kN.m
Dimensionamento
Armadura necessaria (Aq nec) 3473 cm? 31,4 cm?

Fonte: Autoria prépria

Nota-se grande semelhanca entre os resultados no geral, havendo
pequenas divergéncias devido ao arredondamento dos valores quando obtidos
manualmente. Com relagcdo ao dimensionamento, houve uma maior distancia
entre os valores, uma vez que foi realizado inicialmente através dos abacos,
calculando os parametros adimensionais e os alocando de forma aproximada
nos graficos, ndo promovendo grande precisdo. Ja no software, ele é feito por
meio do equilibrio da secé&o transversal com os esforcos solicitantes, havendo,
portanto, certa diferenca com o método tradicional, mas que, ainda assim, &
coerente.

Os demais parametros retornados pelo programa aqui elaborado foram
comparados com o software SECTRANS ja existente e desenvolvido no
Departamento de Engenharia de Estruturas da EESC/USP devido a

complexidade dos célculos.
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Figura 8.12 - Exemplo de pilar aplicado no SECTRANS - Insercédo da secéo transversal

Secio Transversal

601" = e ‘A Tt T
PO O T ® |
SO, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
aslo ° ® | | i ]
T R [— N e P [
E 1 DU U U SR . . _____ I Segio ITransvers‘aI - o X
fé"\ Pontos da Segéo Secéo Bruta
&5, Hipoocpesosacposomageoeses  jooses X Area (cm?): 1500
" 5 5 5 X(cm)| Y (cm)
: : : 0 0 0 Xcg (cm): 12,5
-k SEELRLLELE el @ @
H 8 8 . . ¥ 25 0 Yeg (cm): 30
204 R [ AU e 60 25 80 Momento de Inércia em X (cm?): 450000

Momento de Inércia em Y (cm“): 78125

0 60
® ® | Inserir __ Produto de Inércia (cm?): 0

Remover Inclinacéo do Eixo P. Inércia (°): 0

Inclinacdo da LN (°): 0

Obs: Os pontos devem ser

@ ® | inseridos no sentido anti-horariol!! Calcular Segao ‘

-1 10 -5 0 5 10 15 20 25 30 35 40
X (cm)

Fonte: software SECTRANS
Apos a modelagem da secdo no SECTRANS, foram analisados os
graficos Momento x Curvatura para uma forca normal de 2590 kN e com a se¢ao

rotacionada de 0° e 90°, como mostra a Figura 8.13 e 8.14.
Figura 8.13 - Exemplo de pilar aplicado no SECTRANS — Gréafico Momento x Curvatura

para uma forca normal de 2590 kN e secdo rotacionada de 0°

Exportar

Diagrama Momento x Curvatura 60
300 &Y
= - a =y
= 250 g
) ¢ e z
. £
5 200 . o E
z -
B 150 . .
=1
=
“ 100 - a
g
0
2 50 ¢ o
-18-16-14-12-10 -8 -6 -4 -2 0
0 Tensdo (MPa)

04

Curvatura (1/km)
Forga Normal Curvatura Varidvel:
Passiva Ativa - 4
2590 »» 0,73281999%¢>> | Mx g
e — S —— &
-

M (kNm): 314,58 Angulo LN (°): 0 b || i) | Bk (e) | ) =

P1 £5,99999¢|0,6 39,84 i
[ER(me i i Lep(ErankC P2 55.99999¢ 0,6 39,84
[y g & (i P3 45,69999¢ 0,16 10,44
Xgee (em): 12,5 Ygee (cm): 40,13 P4 35,19999¢ -0,92 -60.72
Xget (cm): 0 Ygct (cm): 12,24 - T B -
Rec (kM) 1758.96 Ret (kN): 0 35-325-2-15-1-050 05
£cc (%e): -3,5 HLN (cm): 47,76 © Plano de flexdo fixo no eixo x ) Linha neutra fixa no eixo x Deformagio (%)

Fonte: software SECTRANS
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Figura 8.14 - Exemplo de pilar aplicado no SECTRANS — Gréafico Momento x Curvatura

Exportar

para uma forca normal de 2590 kN e secéo rotacionada de 90°

Diagrama Momento x Curvatura

Forca Normal Curvatura

2590 > 171141 >> | Mx
M (kNm): 145,01 Aﬂguln LM (®): 0
Mx (kim): 145,01 ke (1/km): 0

My (kim): 0 ky (17/km): 1,71
Xgce (cm): 30 Ygcc (cm): -8,51
Xgct (cm): 0 Ygct (cm): -20,45
Ree (kN): 1807.65 Ret (kN): 0

gcc (%) -3,5 HLN (cm): 20.45

Curvatura (1/km)

Variavel:

— Linha Neutra

Passiva Ativa

Nome d(cm) | Def (%e) | Rst (kM)

P1 4 -2,82 -136,59
P2 21 0,09 6.2
P3 4 2,82 -136,59

P4 4 2,82 -136,59

O Plano de flexdo fixo no eixo x O Linha neutra fixa no eixo x

Fonte: software SECTRANS

254¢
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044---

=
G

Altara (cm)
=1
2

"

v

2

G

i

35 3-25-2-15-1-050 05

-18-16-14-12-10 -8 -6 -4 -2 0
Tensao (MPa)

Deformacio (%)

Os resultados atingidos foram comparados com o programa desenvolvido.

A Figura 8.15 apresenta as deformacBes em cada uma das barras, além das

forcas resultantes atuante no concreto comprimido e nas armaduras, em que ha

parte de visualizacdo, as forcas ali presentes, relacionadas as barras de aco,

possuem um valor numérico correspondente ao somatoério das forcas cuja

distancia do CG na direcéo analisada € a mesma.
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Figura 8.15 - Exemplo de pilar aplicado no software desenvolvido — Deformagdes e

forgas resultantes obtidas para duas orientacfes da secéo (0° e 90°)

o v - X

Propriedades da segdo
Area (Ac): 1500.0 cm? Dominios Esforcos solicitantes ()
Ix:450000.0 cmd
ly:78125.0 cm4

ix:17.32cm/iy:7.22 cm
M 26.56 7 hy: 58.61
Método Pilar Padréo
M15d,minx: 85.47 kN.m
M15d,miny: 58.28 kN.m
A1%:35.0 / A1y:35.0 <
A1x,5:35.0/ A1y,s:35.0

Curvatura aproximada

MSd,minx: 85.47 kN.m
MSd,miny: 129.26 kN.m
MSd,totx: 94.48 kN.m
MSd toty: 119.98 kN.m

MSd,minx: 85.47 kN.m
MSd,miny: 112.01 kN.m
MSd totx: 69.99 KN.m

MSd,toty: 99.27 kN.m
Método Geral

yx)x: -

yy:- . =
Dimensionamento

As,min: 2.25 cm?

Asnec:31.4cm*

Mrd,x: 352.97 kKN.m

Mrd,y: 129.89 kN.m
Armadura Inserida

pa

.2 M
s

,pa

! ‘;8.5 kN
D.1%0

Fonte: Autoria propria

Ja na Figura 8.16, ha a alocagéo do diagrama de deformacdes no quadro

de dominios indicado pela NBR 6118:2014, possibilitando a classificacdo da

secao transversal quanto a esse critério.
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Figura 8.16 - Exemplo de pilar aplicado no software desenvolvido — Classificac&o do

dominio para duas orientacdes da secéo (0° e 90°)

O v = X
Propriedades da segao

Area (Ac): 1500.0 cm? Tensdo / Deformagao m Esforgos solicitantes °

Ix:450000.0 cm4 Alongamento Encurtamento

Iy: 78125.0 cmé e 2.0%0 3.5%e

ix:17.32cm / iy: 7.22 cm B| ¢

Ax: 26.56 / hy: 58.61 / e
Método Pilar Padréo :

M1Sd,minx: 85.47 kN.m . a o

M1Sd,miny: 58.28 kN.m S « 3

A1x:35.0/A1y:35.0 ] 1 3 pd

A1x,5:35.0 / A1y,5:35.0 2 5 “

4 b

MSd,minx: 85.47 kN.m

MSd,miny: 129.26 kN.m 5 Aa

MSd,totx: 94.48 kN.m (10.0%0 __ _ _ _ _ _ 21% _ _ _ __

MSd,toty: 119.98 kN.m

Alongamento Encurtamento
2.0%0 3.5%e

MSd,minx: 85.47 kN.m

MSd,miny: 112.01 kN.m B £
MSd,totx: 69.99 kN.m / =
MSd,toty: 99.27 kN.m a E
Método Geral £ - |

y(x)x: - D ; 1 B
y(0y:- = 3 a

Dimensionamento P 5 o
As,min: 2.25 cm? a4 b
As,nec: 31.4 cm?
Mrd,x: 352.97 kN.m p Aa

10.0%0 2.1%0

Mrd,y: 129.89 kN.m B e (T ——
Armadura Inserida

Fonte: Autoria propria

A partir dos resultados alcangcados através de ambos os softwares, as
Tabelas 8.3 e 8.4 foram elaboradas com a finalidade de facilitar a comparacéo

entre as deformacdes e as forgas resultantes nas barras de aco.
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Tabela 8.3 — Comparacédo de deformacdes e forcas resultantes para a secéo rotacionada

de 0° entre o software desenvolvido e 0 SECTRANS

Secgdo transversal rotacionada a 0°
SECTRANS Software desenvolvido

ID d{cm)

Def. (%q) Rst(kN) Def. (%o) Rst (kN)
P1 56,00 06 3984 0,60 38,25
P2 56,00 06 39,84 0,60 38,25
P3 4560 0,16 -10,44 -0,20 11,75
P4 3520 0,92 60,72 -0,90 61,70
P5 4560 0,16 -10,44 -0,20 11,75
P6 3520 0,92 60,72 -0,90 61,70
P7T 2480 -1,68 -111,01 1,70 -111,70
P8 2480 -1,68 -111,01 -1,70 111,70
P9 14,40 244 -136,59 -2,50 -136,60
P10 14,40 244 -136,59 -2,50 -136,60
P11 4,00 -3,21 -136,59 -3,20 -136,60
P12 4,00 -3,21 -136,59 -3,20 -136,60

Fonte: Autoria prépria

Tabela 8.4 - Comparacédo de deformacgdes e forgas resultantes para a se¢cdo rotacionada
de 0° entre o software desenvolvido e o SECTRANS

Secgao transversal rotacionada a 90°

SECTRANS Software desenvolvido

D dicm) Def. (%0) Rst(kN) Def. (%) Rst (kN)
P1 4,00 -2,82 -136 59 -2,80 -136,60
P2 21,00 0,09 6,2 0,10 475
P3 400 -2,82 -136,59 -2,80 -136,60
P4 400 -2,82 -136,59 -2,80 -136,60
P5 21,00 0,09 6,2 0,10 475
P& 21,00 0,09 6,2 0,10 475
P7 4,00 -2,82 -136,59 -2,80 -136,60
P3 21,00 0,09 6,2 0,10 475
P9 400 -2,82 -136,59 -2,80 -136,60
P10 21,00 0,09 6,2 0,10 475
P11 400 -2,82 -136,59 -2,80 -136,60
P12 21,00 0,09 6,2 0,10 475

Fonte: Autoria prépria

Nota-se pelas tabelas acima a consisténcia dos resultados obtidos,
havendo uma pequena divergéncia nas forcas referentes as armaduras cuja
deformacéo é inferior a deformacéo de escoamento. Isso acontece pelo fato do
equilibrio de forcas horizontais e de momentos, em relacdo ao CG da secéo,

envolver a forca resultante do concreto comprimido calculada a partir do
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diagrama parabola-retangulo no SECTRANS e por meio da simplificacdo
retangular das tensdes no programa aqui elaborado.

Outros parametros comparados foram os graficos Momento x Curvatura,
possibilitando a comparacdo do momento resistente e da curvatura maxima,
além do dominio que o pilar se encontra em diferentes orientacdes. A Figura 8.17

apresenta quais os graficos atingidos de Momento x Curvatura.

Figura 8.17 - Exemplo de pilar aplicado no software desenvolvido — Graficos Momento x

Curvatura para duas orientacGes da secéo (0° e 90°)

O v _ -
Propriedades da segéo
Area (Ac): 1500.0 cm? Tensdo / Deformagéo Dominios Esforgos solicitantes °
Ix: 450000.0 cmd
ly:78125.0 cm4 C Momento(kMN.m) x curvatura(cm-1) - Mx
orte y-y 729205

ix:17.32cm/ iy:7.22 cm
Ax:26.56 / hy: 58.61
Método Pilar Padrdo
M1Sd,minx: 85.47 kN.m
M15d,miny: 58.28 kN.m y 200
A1x:35.0 / A1y:35.0 |
A1x,5:35.0/ A1y,s:35.0

MSd,minx: 85.47 kKN.m
MSd,miny: 129.26 kN.m
MSd totx: 94.48 kN.m

300 +

#o e 250 4

150
100

50 4

MSd,toty: 119.98 kN.m 04
0 2 s 6
MSd,minx: 85.47 kN.m =%10-5
MSd,miny: 112.01 kN.m Momento{kN.m) x n:ur\tal:ura{-:rl;--ILT]CI-:-{';‘,:l
MSd, totx: 69.99 kN.m 140 —
MSd,toty: 99.27 kN.m 120 A
Método Geral

y(x),x:0.27 mm ” 100 1
y(x),y:1.24 mm & 80 1

Dimensionamento 50
As,min: 2.25 cm?
As,nec: 31.4 cm? 01
Mrd,x: 352.97 kN.m 20
Mrd,y: 129.89 kN.m d 0

. - 2 KNI r T T T T
Armadura Inserida 0.00000  0.00005  0.00010 0.00015

Fonte: Autoria propria

Os graficos da Figura 8.17 foram obtidos com um numero de iteragdes
adequado para que o programa nao apresentasse um tempo de processamento
muito elevado, mas que, concomitantemente, ndo houvesse um

comprometimento dos resultados alcangados.
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A partir das figuras 8.13, 8.14 e 8.17 pode-se extrair os seguintes dados
expressos na Tabela 8.5, podendo ser acrescido ainda os momentos resistentes
calculados de forma algébrica.

Tabela 8.5 — Comparacdo dos momentos resistentes e curvaturas maximos nos graficos

Momento x Curvatura

Algébrica SECTRANS Software desenvolvido

Momento resistente x (M4 ) 289,29 kN.m 314,58 kN.m 323,80 kN.m
Momento resistente y (M) 144,64 kN.m 145,01 kN.m 148,89 kN.m
Curvatura (1/r) - Mg, - 7,33E-05 cm™ 7,29E-05 cm™
Curvatura (1/r) - Mgy - 1,71E-04 cm’™ 1,70E-04 cm™

Fonte: Autoria prépria

E importante salientar que os momentos resistentes obtidos através do
codigo implementado na Tabela 8.5 podem ser visualizados com mais detalhes
na etapa de verificagdo por meio da envoltéria resistente real, mas que foram
aqui transcritos previamente a titulo de comparacéo.

As diferentes curvaturas maximas e momentos resistentes maximos nos
graficos Momento x Curvatura de ambos os softwares se deve a adoc¢édo da
simplificagéo do diagrama de tensdes no concreto comprimido por um retangulo
no programa implementado, enquanto no software ja existente, o célculo da
resultante envolve o diagrama idealizado pela NBR 6118:2014, tratando-se de
um parabola-retangulo. Essa diferenca se propaga para o célculo do equilibrio
de momentos, interferindo no momento e curvatura finais. Ja o formato do grafico
e, consequentemente, seus valores intermediarios, se assemelham devido a
consideracdo também do diagrama idealizado no corpo da fungéo desenvolvida.

Essa escolha de formas diferentes para a obtengcédo do ponto final e dos
pontos intermediarios se baseou no tempo de processamento do codigo, uma
vez que decidiu-se restringir o calculo da resultante real do concreto comprimido
somente quando sua simplificagdo ndo apresentava resultados proximos dos
esperados. Nesse contexto, o grafico Momento x Curvatura se encontrava

deslocado no eixo y quando calculado de forma simplificada, tornando inviavel
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sua aplicacdo e inevitdvel o uso de processos com um numero maior de
iteracOes (diagrama parabola-retangulo).

Ja a divergéncia dos momentos resistentes calculados com o uso do
programa e de forma manual ocorre pela ado¢do dos dbacos com armadura
distribuida de forma distinta ao considerado no programa. Dessa forma, o
equilibrio de momentos em torno do CG da sec¢éo ocorre de forma mais precisa,
levando em conta a posicéo especifica de cada uma das barras, quando utiliza-
Se 0S recursos computacionais.

Analisados os graficos Momento x Curvatura, pode-se comparar agora a
aplicacdo do método geral com os valores de deslocamento da estrutura,
utilizando-se do SECTRANS.

Figura 8.18 - Exemplo de pilar aplicado no SECTRANS — Configuragdo deformada da

estrutura
35 35
-~ ~
& g
g 95 £ 55
s 25 B 25
v Y
£ g
g ¢ s ?
£ ]
=] -]
U 15 Q L5
ik 1
0.5 0.5
121 08 06 04 02 0 02 04 06 0R 1 17 07002 015 01 -005 0 005 01 M5 02 028
oX Ov Deslocamento X (mm) Incremento: | 1 M) oy Deslocamento Y (mm) Incremento: | 1 v

Fonte: software SECTRANS
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Figura 8.19 - Exemplo de pilar aplicado no software desenvolvido — Resultados
relacionados ao método geral

O vp - %

Propriedades da segédo
Area (AC): 1500.0 cm? Tensdo / Deformagéo Dominios Esforcos solicitantes ([« ]

Ix: 450000.0 cm4
ly:78125.0 cm4
ix:17.32cm/ iy: 7.22 cm

AX:26.56 / hy: 58.61
Método Pilar Padrao

M1Sd,minx: 85.47 kN.m T sl T b
M15d,miny: 58.28 kN.m |
A1x:35.0 / A1y:35.0 |
A1x,5:35.0 / A1y,5:35.0
-
MSd,minx: 85.47 kN.m
MSd,miny: 129.26 kN.m J
MSd,totx: 94.48 KN.m
MSd,toty: 119.98 kN.m
'
MSd,minx: 85.47 kN.m
MSd,miny: 112.01 kN.m
MSd,totx: 59.99 kN.m
MSd, toty: 99.27 kN.m
Método Geral

y(x)x:0.27 mm
y(x)y:1.24 mm

Dimensionamento
As,min: 2.25 cm*
As,nec: 31.4 cm?
Mrd,x: 352.97 kN.m
Mrd,y: 129.89 kN.m . )

Armadura Inserida

Corte y-y Corte x-x

Fonte: Autoria prépria

Os diagramas de momento fletor nas duas direcdes do pilar, indicados na
Figura 8.19, representam 0s momentos de primeira ordem acrescidos dos
momentos de segunda ordem, os quais surgem da n&o linearidade fisica e
geométrica da estrutura. Ha ainda a indicagdo dos momentos maximos e
minimos atuantes e suas respectivas posi¢des na estrutura. Por se tratar de um
pilar medianamente esbelto, com indice de esbeltez menor que 90, os efeitos de
segunda ordem n&o sdo relevantes a ponto de acarretar em momentos
solicitantes totais superiores aos de primeira ordem. Portanto, o0s momentos
mMAaximos se encontram na base e no topo do elemento estrutural.

Os momentos de segunda ordem s&o obtidos ao multiplicar a forca normal
solicitante pela excentricidade gerada com o deslocamento da estrutura. Com

isso, é possivel validar o método geral através dos deslocamentos atingidos por
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intermédio de ambos os programas quando a estrutura atingi seu equilibrio

deformado. A Tabela 8.6 possibilita essa comparagéo.

Tabela 8.6 - Comparacado dos deslocamentos quando a estrutura deformada atinge o

equilibrio

SECTRANS Software desenvolvido
Deslocamento - Corte X-X 1,24 mm 1,24 mm

Deslocamento - Corte Y-Y 0,27 mm 0,27 mm

Fonte: Autoria prépria

N&o ha diferenca entre os valores, o que indica a realizacdo de um nimero
de iteracdes necessarias para a convergéncia dos resultados.

Por fim, pode-se analisar a semelhanca dos resultados atingidos de forma
grafica. No SECTRANS, a envoltéria resistente real se encontra na cor azul, a
envoltoria resistente que respeita os critérios normativos em verde escuro, a
envoltoria minima de primeira ordem em verde claro, a envoltéria minima de
segunda ordem em rosa, os esfor¢os solicitantes pelo método do pilar padrao na
cor ciano e, por fim, os esforcos solicitantes pelo método geral na cor vermelha.
Ja no cbdigo aqui elaborado, as cores padrbes foram mencionadas no item 7.

A principio, as figuras 8.20 e 8.21 correspondem aos gréaficos de
verificacdo com todas as envoltérias e curvas descritas acima, sendo os efeitos
de segunda ordem, referentes ao método do pilar padréo, calculados utilizando-
se uma aproximacdo da rigidez e uma aproximagdo da curvatura

respectivamente, ambos para o software desenvolvido no departamento.
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Figura 8.20 - Exemplo de pilar aplicado no SECTRANS — Gréficos de verificacdo com

aplicacdo do método do pilar padrédo por rigidez aproximada

Diagrama de interacao Mx x My

1401
1204
100

Momento Fletor em Y (kNm)

-100+
-1204
-1404

300 250 200 150 100 50 O  -50 -100 -150 -200 -250 -300
Momento Fletor em X (kKNm)

Fonte: software SECTRANS

Figura 8.21 - Exemplo de pilar aplicado no SECTRANS — Graficos de verificacdo com

aplicacdo do método do pilar padrdo por curvatura aproximada

Diagrama de interacio Mx x My

1401
1204
100

Momento Fletor em Y (kNm)
T

-1001
-1201
-1401

300 250 200 150 100 50 O  -50 -100 -150 -200 -250 -300
Momento Fletor em X (KINm)

Fonte: software SECTRANS
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O mesmo foi obtido para o codigo implementado, como mostra as figuras

8.22 e 8.23.
Figura 8.22 - Exemplo de pilar aplicado no software desenvolvido — Gréficos de

verificagdo com aplicacdo do método do pilar padréo por rigidez aproximada

S vr _ %
Momentos 2° Momentos 2° Momento
Momento Momentos 2* L
P ordem ordem resistente s
:'g:;:n I:urva_tum nglde_\z ‘J‘;&o aerel Simplificagéo Abrir °
Aproximada Aproximada norma
Envoltdria resistente real
20000 4
10000 4 P
E
S
2
= 04
>
E
=
—10000 |
~20000 A

—30|000 —2(;000 —IOIOOO 0 lO(I)OO 20600 30(500
Mrd, x (kN.cm)
Fonte: Autoria prépria
Figura 8.23 - Exemplo de pilar aplicado no software desenvolvido — Graficos de

verificagcdo com aplicacdo do método do pilar padréo por curvatura aproximada

S ve _ %
Momentos 2° Momentos 2* Meomento
Momento Momentos 2°
R i R ordem ordem | W resistente :
& miomo L Fmi e o EGIRC (<)
Aproximada Aproximada norma
Envoltdria resistente real
20000 -
10000
\
E
S
2
= 04
-
B
=
—10000 1
—20000 1
i T T T T T T
-30000  -20000  —10000 0 10000 20000 30000

Mrd, x (kN.cm)

Fonte: Autoria prépria
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Nas figuras acima, a diferenca na posicdo dos momentos solicitantes
considerando os efeitos de segunda, em ambos os métodos, ocorre devido a
convencao de sinais adotada pelos diferentes programas, mas que nao interfere
na verificacao dos pilares e nas analises dos graficos.

A consideracao desses efeitos de segunda ordem, quando realizados pelo
método do pilar padrdo por rigidez aproximada, apresentam valores menores
guando comparados com o método do pilar padréo por curvatura aproximada.
Desse modo, o primeiro método apresenta resultados satisfatorios com relagéo
a armadura adotada, porém, pelo segundo método, 0s momentos solicitantes em
uma secao intermediaria ultrapassam a envoltéria resistente recomendada pela
norma, sendo o aumento da area de aco uma alternativa a favor da seguranca
da estrutura. Ao considerar a envoltoria resistente real, a qual € tracada levando
em conta a posi¢cao exata de cada uma das barras de aco e a rotacao da secao
de fato, nota-se que, ainda assim, com esforgos solicitantes maiores, a armadura
adotada confere seguranca a estrutura.

Quando comparados os diferentes métodos, geral e do pilar padréo, €
possivel perceber a grande diferenca dos efeitos de segunda ordem atingidos.
Isso acontece pelo fato do método do pilar padrédo considerar aproximacdes
considerando situacdes mais criticas, isto €, a favor da seguranca, mas que
guando comparadas com o método geral, pode-se afirmar que tais efeitos séo
particulares da estrutura analisada, sendo mais intensos quanto maior o0 seu
comprimento e menor sua area de aco. Portanto, por se tratar de um pilar
medianamente esbelto e dimensionado para resistir a esforgcos maiores que 0s
momentos de primeira ordem, os deslocamentos da estrutura sdo minimos, o
que reduz os efeitos de segunda ordem pelo método geral.

As figuras 8.24 e 8.25 abaixo apresentam ainda propriedades da sec¢ao
transversal, em duas orientagdes principais, retiradas do recurso computacional

disponivel quando a envoltéria resistente é aberta.
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Figura 8.24 - Exemplo de pilar aplicado no software desenvolvido — Grafico de
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verificacdo com propriedades da secéo rotacionada em 0°

Envoltéria resistente real
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Area de concrete comprimido: 960.8cm?
Fonte: Autoria propria
Figura 8.25 - Exemplo de pilar aplicado no software desenvolvido — Grafico de
- ~ . . . o
verificagdo com propriedades da sec¢do rotacionada em 90
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: Autoria propria

10000

Profundidade da linha neutra: 20.6 cm
Mrd,x: 0.0 kN.cm Mrd,y: -14888.8 kN.cm

Dominio da secao: Dominio 4

Area de concreto comprimido: 987.7cm?
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A partir das figuras acima, nota-se que 0s momentos resistentes estéo
proximos dos obtidos pelo SECTRANS e de forma manual.

Com relagdo ao dominio e profundidade da linha neutra indicados nas
duas orientacOes, percebe-se pelo SECTRANS (figuras 8.13 e 8.14) a
aproximacéo da linha neutra ao CG das armaduras inferiores quando a secéo se
encontra rotacionada de 90°, ou seja, praticamente no limite entre os dominios
4 e 4a, 0 que esta condizente com os resultados aqui atingidos. Ja para a secao
sem rotacdo, o dominio € o 4 em ambos os softwares.

Por fim, a area de concreto indicada em vermelho é correspondente ao
diagrama retangular das tensdes no concreto comprimido, uma simplificacdo do
diagrama parabola-retangulo, sendo sua altura igual a profundidade da linha
neutra multiplicada pelo fator A, o qual é igual a 0,8 nesse caso, mas varia de
acordo com a classe do concreto utilizado.

De modo geral, é notavel a similaridade dos resultados atingidos quando
comparado até mesmo com outro programa ja existente, apresentando, assim,

resultados coerentes e satisfatorios.

8.2 Verificacao de pilar com indice de esbeltez maior que 90

Para contemplar o recurso disponivel relacionado ao método geral de
forma mais visivel, considerou-se o mesmo exemplo do item anterior, porém com
um comprimento equivalente igual a 800 cm em ambas as dire¢des, tornando-o
um pilar esbelto em uma das dire¢bes. Desse modo, 0s novos indices de

esbeltez do elemento se encontram abaixo:

ley, 800
=—= = 46,19
* i, 17,32
lex 800
=—= = 110,80
Yooi, 7,22

A NBR 6118:2014 indica que o método do pilar padrdo pode ser
empregado apenas no calculo de pilares com A < 90, com secéo retangular

constante e armadura simétrica e constante ao longo de seu eixo. Como o
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elemento analisado ndo atende ao critério do indice de esbeltez, pois em uma
das direcdes ele € superior a 90, o método geral passa a ser ideal nessa
situacao.

Abaixo, nas figuras 8.26 e 8.27, pode-se comparar os valores de

deslocamento maximo atingidos.

Figura 8.26 - Exemplo de pilar esbelto aplicado no SECTRANS - Configuragdo deformada
da estrutura
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Fonte: software SECTRANS
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Figura 8.27 - Exemplo de pilar esbelto aplicado no software desenvolvido — Resultados

relacionados ao método geral

O vr — X

Propriedades da segédo
Area (Ac):1500.0 cm? Tenséo / Deformagéo Dominios ()
Ix: 450000.0 cm4
ly: 78125.0 cm4

ix:17.32cm/ iy: 7.22 cm
Ax:46.19/ Ay:110.85
Método Pilar Padrao
M1Sd,minx: 85.47 kN.m
M1Sd,miny: 58.28 kN.m 52.0 cr
A1x:35.0/ A1y:35.0
Mxs5:35.0/A1y,5:35.0

Curvatura aproximada

MSd,minx: 191.26 kN.m
MSd,miny: 312.16 kN.m
MSd,totx: 165.29 kN.m
MSd,toty: 302.89 kN.m

MSd,minx: 138.77 kN.m
MSd,miny: 363.91 kN.m
MSd,totx: 102.24 kN.m
MSd,toty: 351.93 kN.m
Método Geral
y(x),%:0.92 mm
y(x),y: 5.36 mm
Dimensionamento
As,min: 2.25 cm?

As,nec: 102.01 cm* i i

Mrd,x: 1083.28 kN.m f 4977 kN.m 1

Mrd,y: 363.27 kN.m
Armadura Inserida

Corte y-y Corte x-x

O

Fonte: Autoria propria

A partir dos dados atingidos, foi extraida a seguinte tabela comparativa

dos valores de deslocamentos maximos:

Tabela 8.7 - Comparacé&o dos deslocamentos quando a estrutura esbelta deformada

atinge o equilibrio

SECTRANS Software desenvolvido
Deslocamento - Corte X-X 5,35 mm 5,36 mm

Deslocamento - Corte Y-Y 0,93 mm 0,92 mm

Fonte: Autoria propria

Nota-se novamente a similaridade dos deslocamentos em ambas as

direcbes e, consequentemente, dos efeitos de segunda ordem.
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Com os momentos totais nas duas direcdes, € possivel tracar a curva

referente aos esforgos solicitantes pelo método geral no grafico de verificagao.
Figura 8.28 - Exemplo de pilar esbelto aplicado no SECTRANS — Gréficos de verificagao

com aplicagdo do método geral

Diagrama de interacio Mx x My
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300 250 200 150 100 50 O  -50 -100 -150 -200 -250 -300
Momento Fletor em X (KNm)

Momento Fletor em Y (KNm)
(=)

Fonte: software SECTRANS
Figura 8.29 - Exemplo de pilar esbelto aplicado no software desenvolvido — Gréaficos de

verificacdo com aplicagdo do método geral

O vp = X
Momentos 2° Momentos 2° . Momento
e orer O [kl Y . R
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1* ordem 5 3 Método Geral
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Envoltdria resistente real
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10000 +
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T T T T T T
—30000 —20000 —10000 0 10000 20000 30000
Mrd, x (kN.cm}

Fonte: Autoria prépria
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No caso de um pilar esbelto, € possivel visualizar graficamente a
influéncia dos efeitos decorrentes da estrutura deslocada. Diferentemente do
exemplo anterior, em que visualmente os momentos calculados eram projetados
no grafico de forma quase retilinea, nesse exemplo o comportamento curvo ja
esta mais presente, indicando efeitos de segunda ordem mais acentuados. E, a
medida que a armadura e as dimensdes da se¢do sdo reduzidas, e o
comprimento da estrutura € aumentado, de modo que o pilar seja mais esbelto,
tal comportamento é mais evidente com curvaturas mais acentuadas.

Novamente, mas agora para um exemplo diferente, os resultados
alcancados séo satisfatorios e coerentes com os atingidos pelo SECTRANS.
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9 CONCLUSOES

Em estruturas de concreto armado, os pilares recebem a importante
funcdo de transmitir os esforcos solicitantes provenientes das acoes
permanentes e variaveis para as fundacdes. Eles podem, até mesmo, estar
sujeitos a flexo-compressao obliqua, um comportamento de complexa analise
que se intensifica devido a ndo linearidade do elemento. Como alternativa,
surgem formas mais simplificadas de lidar com essas estruturas, indicadas pela
NBR 6118:2014, as quais contemplam uma maneira mais rapida de solucao,
demandando menos tempo de processamento dos softwares ja existentes de
verificacdo e dimensionamento, e a favor da seguranca.

No presente trabalho foi desenvolvido com éxito um programa em
linguagem de programacao Python, utilizando os recursos graficos e de interface
gréfica de usuério (GUI) por ela disponiveis. O programa apresenta ndo apenas
recursos relacionados a verificacdo de pilares, como foi inicialmente proposto,
mas também ferramentas que remetem ao dimensionamento da estrutura,
ampliando as possibilidades de uso.

Dentre os recursos disponiveis associados a verificacdo, encontra-se o
método do pilar padrdo por rigidez aproximada, em que a nédo linearidade
geomeétrica é considerada de forma aproximada supondo-se uma deformacéo da
barra de caréater senoidal, e a nédo linearidade fisica € considerada através de
uma expressao aproximada da rigidez. Outro recurso € método do pilar padrdo
por curvatura aproximada, o qual lida com a nao linearidade geométrica de forma
aproximada supondo-se também uma deformacao senoidal, e a ndo linearidade
fisica, através de uma expressdo aproximada da curvatura na sec¢ao critica.

Pbde-se implementar processos de célculo que levam em conta o
comportamento real da estrutura. Assim, ainda com relacédo a verificacao, o
programa conta com um recurso que considera os efeitos de segunda ordem de
forma mais precisa, ndo se limitando apenas para pilares com indice de esbeltez
menor que 90. Trata-se do método geral, em que a nao linearidade fisica é
atendida com a utilizacdo do grafico Momento x Curvatura e a néo linearidade

geomeétrica € considerada com a identificacdo da estrutura deslocada.

143



g s
EESL - USP

Ademais, ha uma forma de tracar a envoltoria resistente respeitando
critérios normativos, a favor da seguranca. Entretanto, o programa representa
graficamente a envoltoria resistente real, obtida variando o &ngulo de rotacdo da
secdo e, para cada situacao, calculando-se a area comprimida de concreto, as
deformacfes nos pontos de interesse e as resultantes nas barras e no concreto.
Em seguida, de acordo com as equacdes de equilibrio, foi atingido o momento
fletor resistente para a orientagdo da sec¢do, compondo, assim, um Unico ponto
da envoltéria.

Portanto, o programa aqui elaborado se difere de outros existentes ao
contemplar diversos métodos (aproximados e mais precisos) para lidar com
pilares diversos, com diferentes indices de esbeltez. Ele foi testado para
abranger as possiveis secfes transversais retangulares que eventualmente um
usuario pode inserir. Contudo, pelo tempo disponivel de desenvolvimento (1
ano), ainda se classifica como um prototipo, possivelmente havendo se¢des que
ndo se enquadram na forma de programacdo elaborada, sendo necessario
constantemente uma intensa fase de testes com apuracao de erros.

Quando testado, o software apresentou resultados consistentes ao
compara-lo com o SECTRANS, desenvolvido no Departamento de Engenharia
de Estruturas da EESC/USP para fins didaticos. Ou seja, ambos apresentam
valores bem semelhantes, divergem em alguns pontos devido algumas
consideracdes feitas pelos programadores, mas ambas respeitando indicacdes
apresentadas na NBR 6118:2014. Dessa forma, os resultados séo coerentes e
atendem o objetivo do presente trabalho.

Na parte de desenvolvimento do cddigo, pelo fato dos processos
envolvendo os métodos demandarem um grande namero de itera¢cdes, foi ainda
necessario realizar uma melhora no tempo de processamento com a reducéo de
ciclos desnecessarios, priorizando a eficiéncia do codigo.

Ainda durante a etapa de desenvolvimento, 0s recursos visuais sao de
grande importancia para induzir o usuario a inser¢ao dos dados iniciais de forma
adequada, bem como ajuda-lo a interpretar os resultados de forma correta para

sua analise.
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Para isso, foi primordial a conexdo do “back-end” com o “front-end” de
modo que todos os dados necessarios fossem coletados da prépria interface
quando inseridos pelo usuério. Assim, hd um fluxo de utilizacdo em que séo
determinadas as propriedades da secdo, os resultados sao calculados e,
finalmente, verifica-se graficamente a secdo transversal inserida. Tudo é
realizado a medida que os botdes certos sdo pressionados, 0s quais executam
novas fungbes e expressam as informag¢des importantes de forma visual e
textual. Dessa forma, a GUI foi implementada da forma mais compreensivel
possivel para o usuario, com comandos basicos, autoexplicativos e objetivos.

A maior parte dos recursos oferecidos pelo programa estdo disponiveis
tanto para a armadura inserida pelo préprio usuario no campo adequado, quanto
para uma armadura sugerida, dimensionada a partir das dimensfes da secéo de
concreto e dos esforcos solicitantes também inseridos pelo usuario. Com isso,
h& uma adaptacdo do software com relagéo as pessoas interessadas em utiliza-
lo com a finalidade de dimensionar um elemento e com a intencédo apenas de
verifica-lo diante da forca e momentos solicitantes, conferindo grande
versatilidade.

Enfim, por se tratar do desenvolvimento de um software, torna-se
indispensavel algumas indicac6es de melhoria para possiveis versdes futuras do
programa. Para ser ainda mais completo e abordar mais tipos de pilares, além
da constante fase de testes, é necessario implementar alguns incrementos.
Dessa forma, ha na tela inicial apenas campos para a inser¢cdo dos momentos
presentes no topo do pilar e, no método geral, € considerado um momento de
mesma intensidade e sentido contrario para sua execucao, o que € um limitador,
pois, mesmo em pilares biapoiados, podem haver momentos diferentes a
depender da estrutura, tornando-se ideal o desenvolvimento de campos de texto
e da logica para a consideracdo dos momentos na base. Outro ponto € a uma
guestao grafica, uma vez que na tela de resultados sdo apresentados apenas 0s
deslocamentos maximos, todavia, seria interessante a exibicdo da estrutura
deslocada como um todo. Pode haver também a consideracdo de outros tipos
de vinculos para as barras e outros tipos de formato de secéo transversal, nédo

restringindo apenas a pilares retangulares biapoiados. Portanto, como qualquer
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outro programa ja existente, ha sempre oportunidades de melhoria, de modo a
deixa-lo mais completo para atualiza¢des futuras.

Em suma, o objetivo foi atingido com a apresentacdo de um programa
com potencial finalidade tanto profissional quanto educacional, pois fornece
parametros consistentes que auxiliam em projetos e sao exibidos de forma clara

e didatica.
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