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RESUMO 

ALMEIDA, F. S.  Heurísticas para o problema de programação no-wait flowshop.   2018.  

22 f.  Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de São Carlos, 

Universidade de São Paulo, São Carlos, 2018. 

 

Este trabalho aborda o problema de programação no-wait flowshop. Dois objetivos são 

considerados: (1) minimizar o makespan sujeito à restrição de que o tempo médio de fluxo é 

menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo sujeito à restrição de 

que o makespan é menor ou igual a um dado valor. Dado que esses problemas são 

considerados intratáveis (NP-Hard), diversos métodos heurísticos têm sido propostos. Para 

cada um dos dois objetivos, é proposta uma adaptação da meta-heurística de Ruiz e Stützle 

(2007), Iterated Greedy with Local Search (GL), com cinco versões L (1, 5, 10, 15 e 20). As 

cinco versões de GL adaptadas para o objetivo 1 são comparadas com a heurística HH1, 

proposta por Aydilek e Allahverdi (2012). E as cinco versões de GL adaptadas para o objetivo 

2 são comparadas com a heurística PA20, proposta por Allanhverdi e Aydilek (2013). As 

heurísticas são avaliadas em problemas gerados aleatoriamente, com diferentes números de 

tarefas e máquinas, e nas mesmas condições iniciais. Todos os resultados são verificados 

estatisticamente. Os experimentos computacionais relativos ao objetivo 1 mostram que o erro 

relativo médio geral de G20 é menor do que o de HH1, enquanto o tempo de CPU de G20 é 

significativamente menor que o de HH1. Portanto, o algoritmo G20 é superior a heurística 

HH1. Da mesma forma, os experimentos computacionais relacionados ao objetivo 2 mostram 

que os erros relativos médios gerais de G10, G15 e G20 são menores do que o de PA20. 

Portanto, os algoritmos G10, G15 e G20 superam a performance da heurística PA20. 

 

Palavras-chave: No-wait flowshop. Makespan. Tempo médio de fluxo. Tempo total de fluxo. 

  



  



 

 

ABSTRACT 

ALMEIDA, F. S.  Heuristics for the no-wait flowshop scheduling problem.   2018.   22 f.  

Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de São Carlos, 

Universidade de São Paulo, São Carlos, 2018. 

 

This work addresses the no-wait flowshop scheduling problem. Two objectives are 

considered: (1) minimizing makespan subject to the constraint that mean completion time is 

less than or equal to a given value; and (2) minimizing the total completion time subject to the 

constraint that the makespan is less than or equal to a given value. Since these problems are 

considered intractable (NP-Hard), several heuristic methods have been proposed. For each of 

the two objectives, it is proposed an adaptation of Ruiz and Stützle’ metaheuristic (2007), 

Iterated Greedy with Local Search (GL), with five versions L (1, 5, 10, 15 and 20). The five 

versions of GL adapted for objective 1 are compared with the HH1 heuristic proposed by 

Aydilek and Allahverdi (2012). And the five versions of GL adapted for objective 2 are 

compared with the PA20 heuristic proposed by Allanhverdi and Aydilek (2013). The 

heuristics are evaluated on randomly generated problems, with different numbers of jobs and 

machines, and under the same initial conditions. All results are statistically verified. 

Computational experiments related to objective 1 show that the overall average relative error 

of G20 is smaller than that of HH1, while the CPU time of G20 is significantly smaller than 

that of HH1. Therefore, the G20 algorithm is superior to the HH1 heuristic. In the same way, 

computational experiments related to objective 2 show that the overall average relative errors 

of G10, G15 and G20 are smaller than that of PA20. Therefore, the G10, G15 and G20 

heuristics outperform the PA20 heuristic. 

 

Keywords: No-wait flowshop. Makespan. Mean completion time. Total completion time. 
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1 INTRODUÇÃO 

 

O problema de programação flowshop tem sido objeto de estudado desde a década de 

50 (GUPTA; STAFFORD, 2005; JOHNSON, 1954), sendo conhecido por sua complexidade 

(GAREY; JOHNSON; SETHI, 1976) e extensa área de aplicação (HALL; 

SRISKANDARAJAH, 1996). O problema flowshop regular consiste em n tarefas a serem 

processadas em m máquinas. Cada tarefa requer m operações e cada operação requer uma 

diferente máquina. Todos as tarefas são processadas na mesma ordem de máquinas 

(AYDILEK; ALLAHVERDI, 2012). Em um problema flowshop regular, um buffer infinito é 

assumido e as tarefas podem aguardar entre as máquinas (NAGANO; MIYATA, 2016a). 

No entanto, existem outras situações em que filas e o processamento descontínuo não 

são permitidos, como o problema de programação no-wait flowshop. De acordo com 

Allahverdi e Aydilek (2013), “Um problema  no-wait flowshop ocorre quando as operações de 

um tarefa devem ser processadas continuamente do início ao fim, sem interrupções, tanto no 

início como entre as máquinas”. Minimizar o tempo total de fluxo e o makespan são dois 

objetivos comuns nesse problema de programação. Minimizar o makespan é importante em 

situações nas quais é necessário a conclusão de um lote completo de produtos o mais rápido 

possível. Minimizar o tempo total de fluxo é importante em situações nas quais é necessário a 

entrega de cada produto assim que for concluído (ALLAHVERDI; AYDILEK, 2013; 

AYDILEK; ALLAHVERDI, 2012). Como o problema no-wait flowshop é considerado 

intratável (NP-hard), os métodos propostas não garantem solução ótima (NAGANO; 

MIYATA, 2016a). Portanto, o desenvolvimento de heurísticas para obtenção de boas soluções 

a um custo computacional razoável representa um importante tema de estudo. 

Neste trabalho, é abordado o problema de programação no-wait flowshop 

considerando duas situações: (1) minimizar o makespan sujeito à restrição de que o tempo 

médio de fluxo é menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo 

sujeito à restrição de que o makespan é menor ou igual a um dado valor. O objetivo é propor 

heurísticas para os dois casos e avaliar seu desempenho frente a outras heurísticas 

equivalentes na literatura. O restante deste trabalho é organizado da como se segue. O 

Capítulo 2 é dedicado a revisão da literatura. No Capítulo 3, é apresentada a definição do 

problema nos dois casos de otimização. No Capítulo 4, é apresentado dois algoritmos para 

obtenção das restrições e soluções iniciais. No Capítulo 5, é feita a descrição das heurísticas 

avaliadas. O Capítulo 6 é dedicado aos resultados do experimento computacional. Por fim, as 

conclusões são apresentadas no Capítulo 7.  
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2 REVISÃO BIBLIOGRÁFICA 

 

Diferente do problema de programação flowshop regular, no qual é assumido um 

buffer infinito, o problema no-wait flowshop caracteriza-se por ter suas tarefas processadas 

sem interrupção entre máquinas consecutivas. Para esse tipo de problema, são encontradas 

diversas formas de aplicações práticas. As indústrias de metal, plástico, produtos químicos e 

de alimentos são alguns exemplos. Nessas indústrias, existem alguns parâmetros do material 

em processo, como por exemplo temperatura e viscosidade, que exigem que cada operação 

siga a anterior imediatamente (HALL; SRISKANDARAJAH, 1996). O no-wait flowshop 

também é amplamente aplicado na manufatura de semicondutores (CHIEN et al., 2008; 

RITZO et al., 2011) e na manufatura de placas de circuito impresso (CHE; CHU, 2007). Além 

disso, ambientes modernos como sistemas flexíveis de manufatura, just-in-time e manufatura 

ágil também podem ser modelados como um problema de programação no-wait 

(BERTOLISSI, 2000).  

Minimizar o tempo total de fluxo (ou o equivalente tempo médio de fluxo) e o 

makespan são dois objetivos amplamente estudados pelos pesquisadores. Minimizar o tempo 

total de fluxo de todas as tarefas é importante em situações nas quais cada produto concluído 

é necessário assim que for processado. Esse objetivo também traz benefícios quando se busca 

reduzir inventário ou conter custos. Reduzir o makespan é um objetivo importante em 

situações nas quais o recebimento de um lote completo de produtos é requerido assim que 

possível. Além disso, minimizar o makespan tende a aumentar a utilização de máquinas e 

recursos (ALLAHVERDI; AYDILEK, 2013). Ambos os objetivos têm sido amplamente 

abordados para diferentes ambientes de programação. 

 O primeiro registro de estudo sobre o problema  no-wait flowshop com o objetivo de 

minimizar o makespan vem da década de 70, por Van Deman e Baker (1974). Desde então, 

muitas heurísticas já foram propostas para o problema, como por exemplo as de Bonney e 

Gundry (1976), King e Spachis (1980), Gangadharan e Rajendran (1993), Rajendran (1994) e 

Aldowaisan e Allahverdi (2003). Grabowski e Pempera (2005) comparou várias de suas 

heurísticas com duas heurísticas de busca local propostas por Schuster e Framinan (2003), nas 

quais as heurísticas de busca local foram comparadas com a heurística proposto por Rajendran 

(1994). Framinan e Nagano (2008) propuseram uma heurística baseada no problema  no-wait 

flowshop e o problema Traveling Salesman. Tseng e Lin (2010) apresentaram um algoritmo 

genético híbrido e Zhu et al. (2009) apresentaram um algoritmo de busca local. Qian et al. 

(2009) propuseram para o problema um algoritmo do tipo evolução diferencial híbrido. Já 
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Nagano e Miyata (2016b) propuseram uma heurística construtiva a partir de sequências 

parciais das tarefas. 

Na literatura, também são encontrados diversos trabalhos sobre o problema no-wait 

flowshop voltados ao objetivo de minimizar o tempo total de fluxo. Rajendran e Chaudihuri 

(1990), por exemplo, propuseram duas heurísticas que se provaram superiores às suas 

predecessoras. Chen et al. (1996) posteriormente desenvolveu um algoritmo genético (GA) e 

o comparou com os algoritmos de Rajendran e Chaudihuri (1990). Fink e VoB (2003) 

examinou a aplicação de diferentes métodos heurísticos. Aldowaisan e Allahverdi (2004) 

propuseram várias outras heurísticas que se provaram superiores as de Rajendran e 

Chaudihuri (1990) e as de Chen et al. (1996). Shyu et al. (2004) propuseram uma heurística de 

otimização de colônia de formigas e a compararam com as heurísticas anteriores. Pan et al. 

(2008) apresentaram um algoritmo de otimização particle swarm para o problema. Framinan 

et al. (2010) propuseram uma nova heurística para o problema e mostraram que ela possuía 

melhor performance do que as heurísticas pré-existentes. Nagano et al. (2012) abordou o 

mesmo problema, mas considerou os tempos de setup de trabalho separado dos tempos de 

processamento. Nagano et al. (2012) propuseram uma combinação de GA e pesquisa de 

cluster que se mostrou superior às heurísticas anteriores. 

Além dos trabalhos mencionados até então, que consideram a minimização de somente 

uma medida de performance, existem outros estudos que abordaram o problema considerando 

mais de um parâmetro. Allahverdi e Aldowaisan (2002) consideraram o problema de 

otimização com makespan e o tempo total de fluxo, reduzindo o problema por meio da 

conversão dos dois parâmetros para uma medida, em uma soma ponderada das duas. No caso 

do estudo de Framinan e Leisten (2006), foi considerado um flowshop regular (sem no-wait) 

como o objetivo de minimizar o makespan sujeito a restrição de que o máximo atraso devesse 

ser menor ou igual a um dado valor. Aydilek e Allahverdi (2012) abordaram o problema no 

qual o objetivo era minimizar o makespan sujeito à restrição de que o tempo médio de fluxo 

não fosse maior ou igual a um dado valor. Logo em seguida, Allahverdi e Aydilek (2013) 

abordaram o problema com o objetivo de minimizar o tempo total de fluxo sujeito à restrição 

de que o makespan não fosse maior ou igual a um dado valor. Mais recentemente, Allahverdi 

et al. (2018) propuseram um algoritmo para minimizar o atraso total sujeito à restrição de que 

o makespan não fosse maior do que um dado valor. 

Revisões abrangentes sobre o estado da arte nesta área de programação são 

apresentadas por Hall e Sriskandarajah (1996), Nagano e Miyata (2016a) e Allahverdi (2016).  
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3 DEFINIÇÃO DO PROBLEMA 

 

Neste Capítulo, é apresentada a descrição do problema de programação no-wait 

flowshop e os dois objetivos de otimização. Deve ser notado que o tempo médio de fluxo e o 

tempo total de fluxo são medidas de performance equivalentes. Os problemas só foram 

abordados dessa forma para facilitar a comparação com as heurísticas da literatura 

selecionadas para avaliação. 

 

3.1 O PROBLEMA DE PROGRAMAÇÃO NO-WAIT FLOWSHOP 

 

Seja {J1, J2, ..., Jn} um conjunto de n tarefas e {M1, M2, ..., Mm} um conjunto de m 

máquinas. Sejam Oi,j e ti,j respectivamente a operação e o tempo de processamento da tarefa Jj 

na máquina Mi. O problema de programação flowshop regular ocorre quando cada uma das n 

tarefas são processadas em todas as m máquinas com a mesma sequência de processamento 

ou ordem de máquinas. Quando o flowshop apresenta o fenômeno no-wait, as tarefas não 

podem esperar entre duas máquinas sucessivas. Isso implica que, se necessário, o início de 

uma tarefa deve ser atrasado na primeira máquina, para garantir que o fim de uma operação 

coincida com o início da operação seguinte na máquina subsequente (NAGANO; MIYATA, 

2016a). Um gráfico de Gantt ilustrando uma programação genérica do no-wait flowshop é 

apresentado na Figura 1. 

Figura 1 – Gráfico de Gantt do problema de programação no-wait flowshop 

 

Fonte: Adaptado de (NAGANO; MIYATA, 2016a). 

Para a abordagem do no-wait flowshop, são assumidas as seguintes condições: 
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(1) As máquinas estão à disposição em 100% do tempo (nunca se quebram); 

(2) Cada máquina pode processar no máximo um trabalho por vez; 

(3) Qualquer tarefa pode ser processada em no máximo uma máquina por vez; 

(4) Todos as tarefas estão disponíveis desde o início do horizonte de planejamento; 

(5) Uma vez iniciada a operação, ela é processada até ser concluída; 

(6) Os tempos de setup são ignorados ou assumidos inclusos nos tempos de processamento; 

(7) Os tempos de processamento são determinados e conhecidos antecipadamente. 

Seja di-1,i o atraso mínimo na primeira máquina entre o final da tarefa Ji e o início da 

tarefa Ji+1. E seja {𝑎𝑘}𝑘=𝑥
𝑦

 uma sequência cujo domínio é dado por {𝑘 ∈ ℕ | 𝑥 ≤ 𝑘 ≤ 𝑦}. 

Nessas condições, di-1,i pode ser definido como: 

 ∀ 𝑖 ∈ ℕ | 2 ≤ 𝑖 ≤ 𝑛, 

𝑑𝑖−1,𝑖 = 𝑚𝑎𝑥 ({∑ 𝑡𝑖−1,𝑗

𝑘

𝑗=2
−  ∑ 𝑡𝑖 ,𝑝

𝑘−1

𝑝=1
}

𝑘=2

𝑚

 ,   0) 
(1) 

Seja Ci o tempo de conclusão de todas as operações da tarefa Ji. Assim temos: 

 
𝐶𝑖 =  ∑ 𝑑𝑘−1,𝑘

𝑖

𝑘=2
+ ∑ 𝑡𝑝,1

𝑖

𝑝=1
+ ∑ 𝑡𝑖,𝑗

𝑚

𝑗=2
 

(2) 

O makespan (Cmax) é definido como o tempo necessário para o processamento de todas 

as tarefas do sistema, ou seja, o intervalo de tempo entre o momento de início do 

processamento da operação O1,1 e o momento de conclusão do processamento da operação 

On,m. Desta forma, Cmax (equivalente a Cn) pode ser calculado como: 

 𝐶𝑚𝑎𝑥 =  ∑ 𝑑𝑘−1,𝑘

𝑛

𝑘=2
 +  ∑ 𝑡𝑝,1

𝑛

𝑝=1
+  ∑ 𝑡𝑛,𝑗

𝑚

𝑗=2
 (3) 

 

3.2 MINIMIZAÇÃO DE MAKESPAN SUJEITO AO TEMPO MÉDIO DE FLUXO 

 

O tempo médio de fluxo (TMF) é definido como a média aritmética das somas dos 

tempos de conclusão de todas as tarefas do sistema, ou seja 

 
𝑇𝑀𝐹 =

1

𝑛
 ∑ 𝐶𝑖

𝑛

𝑖=1
. (4) 
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Seja M o limite superior para o MTC. Além disso, deixe que Cmax(π) e TMF(π) 

representem o makespan e o tempo médio de fluxo de uma determinada sequência π. Nessas 

condições, o problema pode ser definido como: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑟 𝐶𝑚𝑎𝑥(𝜋) 
𝑆𝑢𝑏𝑗𝑒𝑖𝑡𝑜 𝑎𝑜 𝑇𝑀𝐹(𝜋)  ≤ 𝑀 

(5) 

Em outras palavras, o problema consiste em encontrar uma sequência de 

processamento π que minimize o Cmax tal que o TMF seja menor ou igual ao valor M. Em um 

problema real, esse valor M dever ser dado pelo programador. No caso em que o valor M não 

é dado, ele pode ser obtido por um algoritmo, como o apresentado no Capítulo 4. 

 

3.3 MINIMIZAÇÃO DO TEMPO TOTAL DE FLUXO SUJEITO AO MAKESPAN 

 

O tempo total de fluxo (TTF) é definido como a soma dos tempos de conclusão de 

todas as tarefas do sistema, ou seja 

 
𝑇𝑇𝐹 = ∑ 𝐶𝑖

𝑛

𝑖=1
. (6) 

Seja K o limite superior para o TTF. Além disso, deixe que Cmax(π) e TTF(π) 

representem o makespan e o tempo total de fluxo de uma determinada sequência π. Nessas 

condições, o problema pode ser definido como: 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑟 𝑇𝑇𝐹(𝜋) 
𝑆𝑢𝑏𝑗𝑒𝑖𝑡𝑜 𝑎𝑜 𝐶𝑚𝑎𝑥(𝜋) ≤ 𝐾 

(7) 

Em outras palavras, o problema consiste em encontrar uma sequência de 

processamento π que minimize o TTF tal que o Cmax seja menor ou igual ao valor K. Em um 

problema real, esse valor K dever ser dado pelo programador. No caso em que o valor K não é 

dado, ele pode ser obtido por um algoritmo, como o apresentado no Capítulo 4. 
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4 ALGORITMOS PARA OBTENÇÃO DAS SOLUÇÕES INICIAIS E RESTRIÇÕES 

 

Neste capítulo, é apresentado o Algoritmo-M, proposto por Aydilek e Allahverdi 

(2012), para a obtenção de um limite superior para TMF (valor M) e o Algoritmo-K, proposto 

por Allahverdi e Aydilek (2013), para obtenção de um limite superior para o Cmax (valor K), 

usados na obtenção das soluções iniciais e restrições das heurísticas para o experimento 

computacional. 

 

4.1 ALGORITMO-M 

 

Passo 1: Defina p = 1, h = 1 

Passo 2: Selecione uma sequência aleatoriamente, chamada de sequência πp. Assuma Mp = 

MTC(πP); 

Passo 3: Permute as duas tarefas nas posições h e h+1 da sequência πP, e se o MTC da sequência 

depois da troca for menor do que Mp, então atualize a sequência πP depois da troca e 

defina Mp = TMF(πP); 

Passo 4: Defina h = h+1, se h = n, siga para o passo 5, caso contrário, volte ao passo 3; 

Passo 5: Defina p = p+1, se p = n, siga para o passo 6, caso contrário, volte ao passo 2; 

Passo 6: Set M = mín(M1, ...., Mn); 

Passo 7: Assuma π como sendo a sequência onde M é obtida. 

Segundo Aydilek e Allahverdi (2012), o algoritmo acima pode ser resumido como: 

n sequências são aleatoriamente selecionadas. Para cada sequência 

aleatória selecionada, defina um valor Mp para o Cmax, então busque 

(pelo método da troca de pares) para encontrar um melhor valor M, 

onde Mp é atualizado cada vez que um melhor valor M é obtido. Ao 

final, n de M valores (M1, ..., Mn). O menor de M1, ..., Mn é definido 

como o valor M. 

 

4.2 ALGORITMO-K 

 

Passo 1:  Defina p = 1, h =1 

Passo 2:  Selecione aleatoriamente uma sequência, chamada de sequência πp. Defina Kp = Cmax(πp); 

Passo 3: Permute as duas tarefas nas posições h e h + 1 da sequência πp, e se o Cmax da sequência 

depois da troca for menor que Kp, então atualize a sequência πp e defina Kp = Cmax(πp); 

Passo 4:  Defina h = h + 1. Se h = n, siga para o Passo 5; caso contrário, volte para o Passo 3; 

Passo 5:  Defina p = p + 1. Se p = n, siga para o Passo 6; caso contrário, volte para o Passo 2; 

Passo 6:  Defina K = mín(K1, ..., Kn); 

Passo 7:  Defina π como a sequência onde K é obtida. 
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Segundo Allahverdi e Aydilek (2013), o algoritmo acima pode ser resumido como: 

n sequências são selecionadas aleatoriamente. Para cada sequência 

selecionada, defina o Kp para o Cmax, então procure (pelo método da 

troca de pares) o melhor valor K, onde Kp é atualizado cada vez que 

um melhor valor K é encontrado. Ao final, haverá n valores K (K1, ..., 

Kn). O menor de K1, ..., Kn é escolhido como o valor K.  
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5 HURÍSTICAS 

 

Neste capítulo, são apresentadas as heurísticas avaliadas na experimentação 

computacional. 

 

5.1 HURÍSTICA HH1 

 

A heurística HH1, proposta por Aydilek e Allahverdi (2012) para minimizar o Cmax 

sujeito ao TMF, é composta pela combinação de duas outras heurísticas: modified Simulated 

Annealing (mSA) e HA. Mais especificamente, a partir de uma sequência inicial, a heurística 

mSA gera uma nova solução que é usada como sequência inicial na heurística HA. 

 

5.2.1 modified Simulated Annealing (mSA) 

 

Existem duas grandes mudanças em relação ao Simulated Annealing tradicional. A 

primeira é o acréscimo de um teste para verificar se uma nova sequência st é factível, ou seja, 

se obedece a condição TMF(st) ≤ M. A segunda é que, ao invés de permutar duas posições 

selecionadas aleatoriamente no Passo 4, um trabalho escolhido aleatoriamente é inserido em 

uma posição também aleatória. Os passos de mSA são descritos a seguir: 

Passo 1: Defina a temperatura inicial Ti, a temperatura final Tf, fator de resfriamento cf, o número 
de repetições Rn, e a sequência inicial si (Algoritmo-M); 

Passo 2: Defina a temperatura T = Ti, e a sequência s = si ; 
Passo 3: Defina j = 1; 
Passo 4: Escolha dois números aleatórios k e l entre 1 e n. Insira a tarefa da sequência s da posição k 

para a posição l, e chame esta nova sequência de st ; 
Passo 5: Calcule L = F(s) e Lt = F(st) no qual F é a função objetivo a ser minimizada; 
Passo 6: Se TMF(st) ≤ M, siga para o Passo 7. Caso contrário, vá para o passo 8; 
Passo 7: Se Lt < L, atualize s com st, ou seja, s = st. Caso contrário, atualize s com st com 

probabilidade exp(-d/T), em que d = (Lt = L)/L; 
Passo 8: Defina j = j + 1. Se j = Rn + 1, siga para o Passo 9, caso contrário volte ao Passo 4; 
Passo 9: Defina T = T * cf. 
Passo 10: Se T < Tf, siga para o Passo 11, caso contrário volte ao passo 3. 
Passo 11: s é a sequência solução adotada. 

Os parâmetros da heurística escolhidos para a análise computacional foram Ti = 0.10, 

Tf = 0.0001, cf = 0.98 e Rn = 50, definidos como os de máxima performance por Aydilek e 

Allahverdi (2012). 
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5.2.2 Heurística HA 

 

Na heurística HA, os 11 primeiros passos são repedidos L vezes, de forma que cada 

iteração se inicia com a sequência obtida no Passo 11. Desta forma, L é um parâmetro de 

entrada para a heurística HA. Todos os passos são descritos a seguir: 

Passo 1: Usando uma sequência inicial π, defina um valor inteiro positivo para L, e defina d=1, θ1=π; 
Passo 2: Defina h = 1; 
Passo 3: Selecione a h-ésima tarefa da sequência θd e a insira em todas as n posições da sequência 

θd para obter n sequências. Chame essas sequências de π1, π2, ..., πn; 
Passo 4: Calcule Cmax(πr) para r = 1, 2, ..., n; 
Passo 5: Defina r = 1, u = 1; 
Passo 6:  Se Cmax(πr) < Cmax(θd), e se TMF(πr) ≤ M, então assuma βu = πr, e defina u = u + 1; 
Passo 7: Defina r = r + 1. Se r = n + 1, siga para o Passo 8, caso contrário volte ao Passo 6; 
Passo 8: Encontre uma sequência entre βu’s (calculado no passo 6) com o mínimo Cmax, e chame 

esta sequência de σh (se u = 1, então defina σh = θd); 
Passo 9: Defina h = h + 1. Se h = n + 1, siga para o Passo 10, caso contrário volte ao Passo 3; 
Passo 10: Defina d = d + 1; 
Passo 11: Encontre a sequência entre σh’s com o mínimo Cmax, e chame esta sequência θd; 
Passo 12: Se d < L, siga para o passo 13, caso contrário volte ao Passo 2; 
Passo 13: Encontre uma sequência entre os σh’s com o mínimo Cmax, e chame esta sequência θ; 
Passo 14: Defina f = 1; 
Passo 15: Permute as duas tarefas nas posições f e f + 1 da sequência θ, e chame a sequência depois 

da troca de ϕ. Se Cmax(ϕ) < Cmax(θ) e se TMF(ϕ) ≤ M, então defina θ = ϕ; 
Passo 16: Defina f = f + 1. Se f = n, siga para o Passo 17, caso contrário volte ao passo 15; 
Passo 17: A solução é a sequência θ. 

O parâmetro de iteração da heurística escolhido foi L = 20, definido como o de 

máxima performance por Aydilek e Allahverdi (2012). 

 

5.2 HEURÍSTICA PAL 

 

O heurística PAL, proposto por Allahverdi e Aydilek (2013), busca minimizar o TTF 

sujeito ao Cmax a partir de uma sequência inicial. Nessa heurística, os Passos de 3 a 11 são 

repetidos L vezes, de forma que o procedimento sempre se reinicia com a solução obtida no 

Passo 11. Assim, L é um parâmetro de entrada para o algoritmo PAL. Os passos de PAL são 

descritos a seguir: 

Passo 1: Usando uma sequência inicial π, defina um valor para L, e defina d = 1 e θ1 = π 
Passo 2: Defina h = 1; 
Passo 3: Selecione a h-ésima tarefa da sequência θd e a insira em todas as n posições da sequência 

θd, obtendo n sequências, chamadas de sequências π1, π2, ..., πn; 
Passo 4: Calcule TTF(πr), para r = 1, ..., n; 
Passo 5: Defina r = 1, u = 1; 
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Passo 6: Se TTF(πr) < TTF(θd), e se Cmax(πr) ≤ K, então deixe βu = πr, e defina u = u + 1; 
Passo 7: Defina r = r + 1. Se r = n + 1, siga para o Passo 8; caso contrário, volte ao passo 6; 
Passo 8: Encontre a sequência entre os βu (calculada no Passo 6) com o menor TTF, e chame esta 

sequência de σh (se u = 1, então defina σh = θd); 
Passo 9: Defina h = h + 1. Se h = n + 1, siga para o Passo 10; caso contrário, volte ao Passo 3; 
Passo 10: Defina d = d + 1; 
Passo 11: Encontre a sequência entre os σn com o menor TTF, e chame está sequência de θ; 
Passo 12: Se d > L, siga para o Passo 13; caso contrário, volte para o Passo 2; 
Passo 13: Encontre a sequência entre os θd com o menor TTF, e chame esta sequência de θ; 
Passo 14: Defina f = 1; 
Passo 15: Permute as duas tarefas das posições f e f + 1 da sequência θ, e chame a sequência 

resultante de ϕ. Se TTF(ϕ) < TTF(θ), e se Cmax(ϕ) ≤ K, então defina θ = ϕ; 
Passo 16: Defina f = f + 1. Se f = n, siga para o Passo 17; caso contrário, volte ao Passo 15; 
Passo 17: A solução é a sequência θ; 

O parâmetro de iteração da heurística escolhido foi L = 20 (portanto PA20), definido 

como o de máxima performance por Allahverdi e Aydilek (2013). 

 

5.3 HEURÍSICA PROPOSTA - ITERATED GREEDY WITH LOCAL SEARCH (GL) 

 

Em resumo, a heurística Iterated Greedy with Local Search, proposta por Ruiz e 

Stützle (2007), executa a partir de uma solução inicial uma sequência de iterações na busca de 

um candidato a solução. O processo de obtenção da solução ocorre em duas fases: destruição 

e construção. Durante a destruição, um número determinado de elementos aleatórios é 

removido da solução anterior. Em seguida, na fase de construção, os elementos removidos são 

reinseridos para a construção de uma nova sequência. Também é adicionado um processo de 

pesquisa local para melhorar a solução encontrada. Por fim, um critério de aceitação é 

aplicado para verificar se o candidato a solução deve substituir a solução anterior. Todo o 

processo é repetido até que algum critério de parada seja satisfeito, como o tempo 

computacional ou um determinado número de iterações (NAGANO et al., 2015). 

Nesta adaptação proposta, só são aceitas as sequências geradas que respeitam a 

restrição pela qual estão sujeitas (M ou K). A fase de destruição é aplicada removendo-se d 

tarefas da solução inicial. A fase de construção é implementada por meio da heurística 

construtiva NEH de Nawaz et al. (1983). O procedimento de busca local é composta pela 

combinação de dois processos (inserção e intercâmbio), conforme proposto por Nagano et al. 

(2015). O critério de aceitação é aplicando usando um parâmetro de temperatura T, 

semelhante ao critério do Simulated Annealing (YANG, 2010, p. 182). E o critério de parada é 

dado pelo número de iterações L. 
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O algoritmo da adaptação completa da heurística é ilustrado na Figura 2. A execução 

de cada etapa é descrita a seguir: 

1. Solução inicial: Para minimizar o Cmax sujeito ao TMF, é usado o Algoritmo-M para obter 

a sequência inicial π0 e o valor M. Para minimizar o TTF sujeito ao Cmax, é usado o 

Algoritmo-K para obter a sequência inicial π0 e o valor K. 

2. Destruição: Seja π a sequência em vigor no início da iteração. Das n tarefas de π, d tarefas 

são removidas aleatoriamente na ordem em que forem escolhidas. Desse procedimento, 

resulta a sequência πR de tamanho d, contendo as tarefas removidas, e a sequência πD de 

tamanho n - d, contendo as tarefas não removidas. 

3. Construção: A primeira tarefa de πR é inserida em todas as n-d+1 posições de πD, gerando 

n-d+1 sequências. Feito isso, seleciona-se a melhor das sequências geradas e repete-se o 

procedimento de inserção até que πD obtenha o tamanho n. 

4. Inserção: Cada tarefa da sequência πD é reinserida em todas as suas possíveis posições 

gerando (n - 1)2 sequências. A solução é obtida selecionando-se a melhor das sequências 

geradas, chamada π’, tal que F(π’) ≤ F(πD), em que F(π’) e F(πD) representam as funções 

objetivo (Cmax ou TTF) de suas respectivas sequencias. 

5. Intercâmbio: Realiza uma permutação entre pares de tarefas da sequência π’, não 

necessariamente adjacentes, em todas as combinações possíveis gerando n(n - 1)/2 

sequências. Da mesma forma, a solução é obtida selecionando a melhor das sequências 

geradas, chamada π”, tal que F(π”) ≤ F(π’). 

6. Teste de aceitação: A sequência candidata a solução π” é aceita com uma probabilidade 

exp(– Δ/Temp), ou seja, π” é aceito se exp(– Δ/Temp) ≥ r, no qual r é um número aleatório 

tal que 0 ≤ r ≤ 1. Os valores de Δ e Temp são dados por: 

 
∆ =  −

𝐹(𝜋′′) − 𝐹(𝜋)

𝐹(𝜋)
 , (8) 

 

 
𝑇𝑒𝑚𝑝 =  𝑇

∑ ∑ 𝑡𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1  

𝑚 × 𝑛 × 10
 . (9) 

Conforme apresentado na descrição, a heurística GL proposta possui três parâmetros 

de entrada: d, T e L. Para os testes computacionais, os dois primeiros parâmetros foram 

definidos como d = 4 e T = 0,5. Esses valores são os melhores encontrados para o problema 

de programação  flowshop regular nos experimentos de Ruiz e Stützle (2007). Já para o 
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parâmetro L, foram definidos cinco valores (1, 5, 10, 15 e 20) para gerar as cinco versões de 

GL (G1, G5, G10, G15 e G20). 

Figura 2 – Algoritmo para a heurística GL 

procedimento GL 

π := π0 do Algoritmo-M ou Algoritmo-K; 

πb := π; 

for i := 1 to L do 

π’ := π;     # Fase de destruição 

for i :=  1 to d do 

remova uma tarefa aleatória de π’ e a insira em π’R; 

endfor 

for i :=  1 to d do   # Fase de construção 

π’ := melhor sequência obtida inserindo a tarefa π’R(i) em todas as possíveis posições de π’R; 

endfor 

π” := inserção(π’);   # Busca local 

π” := intercâmbio(π”);   # Busca local 

if F(π”) < F(π) then   # Critério de aceitação 

π := π”; 

if F(π”) < F(π) then   # Teste se é nova melhor sequência 

πb := π; 

endif 

elseif (exp(– Δ/Temp) ≥ r) then 

π := π”; 

endif 

endfor 

return πb 

end 

Fonte: Adaptado de (RUIZ; STÜTZLE, 2007). 
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6 EXPERIMENTO COMPUTACIONAL 

 

Testes computacionais foram realizados para todas as heurísticas apresentas. A 

heurística GL, com suas cinco versões L (1, 5, 10, 15, 20), foram adaptadas para os dois 

objetivos de otimização abordados. 

A implementação foi efetuada em Python em um PC com CPU Intel Core i5-4200U 

1.60 GHz com Impulso Turbo para 2.30 GHz, 6 GB de RAM e operando sob o sistema 

operacional Windows 10.  

Foi usado um banco de dados de tempos de processamento com variação no número 

de tarefas n e no número de máquinas m. Os valores para n foram 15, 20, 25 e 30, enquanto 

para m foram 2, 3, 4, 5 e 6. Para cada combinação de m e n, foram gerados 25 problemas, 

totalizando 500 problemas. Os tempos de processamento foram aleatoriamente gerados com 

uma distribuição discreta uniforme U(1, 100), conforme a recomendação de Hall e Posner 

(2001) de usar uma distribuição de dados ampla para implementação. A partir desse material, 

foi criada para cada um dos dois objetivos outro banco de dados, desta vez com as soluções 

iniciais e restrições de todos os problemas, por meio da implementação do Algoritmo-M e do 

Algoritmo-K. Por fim, usando esses três bancos, foi implementada todas as heurísticas. 

As performances foram avaliadas pelas porcentagens de erro relativo (ER). Sejam 

𝐹̅(H’) e 𝐹̅(H) as médias da função objetivo da heurística avaliada e da melhor heurística, 

respectivamente. A porcentagem ER é definida como: 

 
𝐸𝑅 = 100 (

𝐹̅(𝐻′)  − 𝐹̅(𝐻)

𝐹̅(𝐻)
) . (10) 

Os resultados foram comparados usando o teste HSD de Tukey. A avaliação é 

apresentada nos tópicos a seguir. 

 

6.1 ANÁLISE DAS HEURÍTICAS PARA MINIMIZAÇÃO DE CMAX SUJEITO AO TMF 

 

A performance das heurísticas para a minimização de Cmax sujeito ao TMF (G1, G5, 

G10, G15, G20 e HH1) são avaliadas nesta seção. Os resultados para o erro relativo são 

apresentados na Tabela 1, na qual cada valor representa a média de 25 problemas. 

Considerando a Média Geral, pode-se verificar que G20 obteve desempenho superior às 

demais heurísticas, seguido de HH1 e G15 que apresentaram valores muito próximos. 
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Tabela 1 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e HH1 

Tarefas Máquinas HH1 G1 G5 G10 G15 G20 
 2 0,41 1,97 0,39 0,12 0,26 0,11 
 3 0,45 5,86 1,12 0,80 0,54 0,36 

15 4 0,43 7,64 1,53 1,00 0,44 0,64 
 5 0,64 8,03 1,73 0,75 0,67 0,45 
 6 0,34 9,37 1,80 1,60 0,89 0,79 
 2 0,29 4,01 0,47 0,28 0,22 0,21 
 3 0,84 7,97 1,36 0,65 0,60 0,29 

20 4 0,90 8,45 1,53 1,05 0,96 0,38 
 5 0,95 10,84 1,96 1,10 0,91 0,49 
 6 0,74 10,42 2,59 1,32 1,08 0,79 
 2 0,49 4,81 0,37 0,21 0,14 0,13 
 3 0,98 10,00 1,65 0,82 0,42 0,34 

25 4 0,99 11,94 2,71 1,10 0,89 0,48 
 5 0,61 12,84 2,63 1,04 0,99 0,90 
 6 0,56 14,54 2,58 1,19 1,14 0,62 
 2 0,44 5,49 0,66 0,26 0,15 0,14 
 3 0,95 11,45 1,94 1,07 0,59 0,32 

30 4 0,82 13,97 3,06 0,98 0,61 0,52 
 5 0,87 15,67 3,23 1,42 0,78 0,46 
 6 0,71 14,70 2,82 1,23 1,21 0,97 

Média Geral 0,67 9,50 1,80 0,90 0,68 0,47 

 

Fonte: O Autor (2018). 

 

Uma comparação mais precisa pode ser feita analisando as Figuras 3 e 4, que 

apresentam os valores do erro relativo projetados contra o número de tarefas e o número de 

máquinas, respectivamente. Na Figura 3, cada ponto representa a média de 125 pontos (25 

problemas para 5 diferentes quantidades de máquinas). Na Figura 4, cada ponto representa a 

média de 100 pontos (25 problemas para 4 diferentes quantidades de máquinas). 

A partir das Figuras 3 e 4, pode-se notar que as heurísticas propostas G10, G15 e G20 

são equiparáveis a heurística HH1. No entanto, HH1 apresenta um tempo de computacional 

muito maior, conforme ilustrado nas Figuras 5 e 6. De modo geral, à medida que o número de 

máquinas aumenta, o erro médio de todas as heurísticas também aumenta. Esse fenômeno é 

característico da otimização de Cmax, que tende a maximizar a eficiência dos recursos. Quanto 

menor o número de máquinas, melhor é a distribuição dos recursos. O acréscimo de máquinas 

conturba o sistema até um ponto de estabilidade, o que explica o perfil das curvas. Já em 

relação ao número de tarefas, pode-se verificar uma estabilidade em torno da média do desvio 

relativo, principalmente entre as versões a partir de G10. G15, G20 e HH1. 
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Figura 3 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e 

HH1 em relação ao número de tarefas 

 

Fonte: O Autor (2018). 

Figura 4 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e 

HH1 em relação ao número de máquinas 

 

Fonte: O Autor (2018).
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Figura 5 – Tempo computacional das heurísticas GL (L = 1, 5, 10, 15 e 20) 

e HH1 em relação ao número de tarefas 

 

Fonte: O Autor (2018). 

Figura 6 – Tempo computacional das heurísticas GL (L = 1, 5, 10, 15 e 20) 

e HH1 em relação ao número de máquinas 

 

Fonte: O Autor (2018).
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A Tabela 2 apresenta os resultados do teste de hipótese de Tukey, comparando os 

desvios relativos médios gerais das heurísticas com um nível de significância de 5% (0,05). 

 

Tabela 2 – Resultados do teste Tukey das heurísticas GL (L = 1, 5, 10, 15 e 20) e HH1 

(I) Heurística (J) Heurística Diferença média (I-J) Erro Padrão Significância 
Intervalo de Confiança 95% 

Limite inferior Limite superior 

HH1 

G1 -8,82837* 0,13890 0,000 -9,2245 -8,4323 

G10 -0,23077 0,13890 0,558 -0,6269 0,1653 

G15 -0,00637 0,13890 10,000 -0,4024 0,3897 

G20 0,20110 0,13890 0,698 -0,1950 0,5972 

G5 -1,13781* 0,13890 0,000 -1,5339 -0,7417 

G1 

HH1 8,82837* 0,13890 0,000 8,4323 9,2245 

G10 8,59760* 0,13890 0,000 8,2015 8,9937 

G15 8,82201* 0,13890 0,000 8,4259 9,2181 

G20 9,02947* 0,13890 0,000 8,6334 9,4256 

G5 7,69057* 0,13890 0,000 7,2945 8,0866 

 HH1 1,13781* 0,13890 0,000 0,7417 1,5339 

 G1 -7,69057* 0,13890 0,000 -8,0866 -7,2945 

  G5 G10 0,90704* 0,13890 0,000 0,5110 1,3031 

 G15 1,13144* 0,13890 0,000 0,7354 1,5275 

 G20 1,33891* 0,13890 0,000 0,9428 1,7350 

G10 

HH1 0,23077 0,13890 0,558 -0,1653 0,6269 

G1 -8,59760* 0,13890 0,000 -8,9937 -8,2015 

G15 0,22441 0,13890 0,588 -0,1717 0,6205 

G20 0,43187* 0,13890 0,023 0,0358 0,8280 

G5 -,90704* 0,13890 0,000 -1,3031 -,5110 

G15 

HH1 0,00637 0,13890 10,000 -0,3897 0,4024 

G1 -8,82201* 0,13890 0,000 -9,2181 -8,4259 

G10 -0,22441 0,13890 0,588 -0,6205 0,1717 

G20 0,20746 0,13890 0,668 -0,1886 0,6035 

G5 -1,13144* 0,13890 0,000 -1,5275 -0,7354 

G20 

HH1 -0,20110 0,13890 0,698 -0,5972 0,1950 

G1 -9,02947* 0,13890 0,000 -9,4256 -8,6334 

G10 -0,43187* 0,13890 0,023 -0,8280 -0,0358 

G15 -0,20746 0,13890 0,668 -0,6035 0,1886 

G5 -1,33891* 0,13890 0,000 -1,7350 -0,9428 

* A diferença média é significativa no nível 0,05. 

Fonte: O Autor (2018). 
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A primeira e a segunda colunas indicam as heurísticas comparadas. A terceira coluna 

mostra a diferença média, ou seja, a diferença entre o erro relativo da heurística na primeira 

coluna menos o da heurística na segunda coluna. A quarta coluna mostra o erro padrão e a 

coluna seguinte, a significância. O símbolo * nos valores da quinta coluna indica se a 

diferença foi significativa. 

O teste de Tukey, ao nível de 95% de confiança, apresentou 4 subconjuntos de médias, 

conforme pode-se verificar na Tabela 3. Esses grupos reúnem as heurísticas com médias sem 

diferença estatística significativa. Nota-se que a heurística HH1, se equipara com as 

heurísticas G15 e G20 no subconjunto 1, e com as heurísticas G15 e G10 no subconjunto 2. 

 

Tabela 3 – Identificação de subconjuntos homogêneos ao nível de 95% de confiança, de acordo com 

teste de Tukey 

Heurística N 
Subconjunto para alfa = 0,05 

1 2 3 4 

G20 500 0,4686    

HH1 500 0,6697 0,6697   

G15 500 0,6761 0,6761   

G10 500  0,9005   

G5 500   1,8075  

G1 500    9,4981 

Significância  0,668 0,558 1,000 1,000 

São exibidas as médias para os grupos em subconjuntos homogêneos. 

Fonte: O Autor (2018). 

 

A Figura 7 ilustra o desvio relativo médio geral e a variabilidade das heurísticas 

avaliadas. Além de apresentar a menor média, G20 possui uma variância menor dos desvios 

em comparação às outras heurísticas. A Figura também ilustra se as médias apresentam ou 

não diferença estatística significativa, como o caso no qual se sobreponham as médias de G15 

e HH1. 

Como era esperado, fica evidente o ganho de performance da heurística GL em função 

do aumento do número de iterações L. No entanto, o ganho diminui a cada acréscimo. Isso 

significa que a melhora da heurística custará cada vez mais tempo computacional e haverá um 

momento no qual não será mais possível obter ganho somente aumentando o valor desse 

parâmetro. 
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Figura 7 – Gráfico de médias, ao nível de 95% de confiança, do desvio relativo médio geral  

 
Fonte: O Autor (2018) 

 

6.2 ANÁLISE DAS HEURÍTICAS PARA MINIMIZAÇÃO DE TTF SUJEITO AO CMAX 

 

A performance das heurísticas para a minimização de TTF sujeito ao Cmax (G1, G5, 

G10, G15, G20 e PA20) são avaliadas nesta seção. Os resultados para o erro relativo são 

apresentados na Tabela 4, na qual cada valor também representa a média de 25 problemas. 

Pode-se verificar que a heurística GL proposta supera a heurística PA20 a partir da versão 

G10 em todas as combinações de m e n testadas. 

As Figura 8 e 9 apresentam os valores do erro relativo projetados contra o número de 

tarefas e o número de máquinas, respectivamente. Assim como na seção anterior, cada ponto 

na Figura 8 representa a média de 125 pontos (25 problemas para 5 diferentes quantidades de 

máquinas). E na Figura 9, cada ponto representa a média de 100 pontos (25 problemas para 4 

diferentes quantidades de máquinas). Pode se verificar que, em relação a qualidade da 

solução, a heurística G5 alcança resultados equiparáveis a PA20. 
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Tabela 4 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e PA20 

Tarefas Máquinas PA20 G1 G5 G10 G15 G20 
 2 2,30 10,52 0,99 0,57 0,37 0,06 
 3 1,94 10,56 1,05 0,82 0,74 0,13 

15 4 2,64 10,05 1,45 0,61 0,44 0,33 
 5 1,38 8,62 0,82 0,49 0,47 0,35 
 6 1,83 7,97 1,15 0,71 0,31 0,22 
 2 2,43 16,25 1,59 0,37 0,63 0,20 
 3 2,87 13,51 2,43 0,84 0,35 0,87 

20 4 3,00 11,81 1,68 1,28 0,76 0,74 
 5 2,22 13,09 2,05 1,07 0,92 0,17 
 6 2,12 12,87 2,45 0,91 0,62 0,45 
 2 3,13 19,04 2,73 0,67 0,28 0,22 
 3 3,92 19,44 2,67 1,24 0,59 0,30 

25 4 2,95 15,33 3,12 1,28 1,15 0,28 
 5 2,68 15,20 2,65 1,28 1,10 0,77 
 6 2,15 16,21 2,85 1,43 0,85 0,37 
 2 3,66 24,01 3,51 0,84 0,63 0,24 
 3 3,51 18,39 3,88 1,08 0,96 0,43 

30 4 2,75 16,93 3,24 0,71 0,69 0,62 
 5 2,62 18,56 3,91 1,69 0,81 0,69 
 6 2,71 17,58 3,91 1,55 0,88 0,74 

Média Geral 2,64 14,80 2,41 0,97 0,68 0,41 

Fonte: O Autor (2018). 

De modo geral, o erro médio das heurísticas diminui à medida que o número de 

máquinas aumenta. Esse fenômeno é característico da minimização do TTF, que tende a 

otimizar a resposta do sistema para entrega e reduzir o inventário de tarefas. No entanto, 

quanto menor o número de máquinas, mais instável é o sistema. O acréscimo de máquinas 

ajuda a estabilizar o fluxo de tarefas, conforme o perfil das curvas. Por outro lado, assim 

como na otimização de Cmax, mantem-se a tendência de aumento do erro relativo médio à 

medida que o número de tarefas aumenta, principalmente em relação às heurísticas propostas. 

A Tabela 5 apresenta os resultados do teste de hipótese de Tukey, comparando as 

médias entre as heurísticas com um nível de significância de 5% (0,05). A partir dos dados, 

pode-se identificar que há diferença significativa das heurísticas G10, G15 e G20 em 

comparação com PA20. Além disso, embora PA20 apresente um tempo de computacional 

inferior a G20, seu tempo é equiparável a G15 e superior a G10, conforme ilustrado nas 

Figuras 10 e 11. Essas análises, somadas a avaliação do gráfico de médias da Figura 12, 

indicam que as 3 versões GL propostas superam a heurística PA20. 
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Figura 8 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e 

PA20 em relação ao número de tarefas 

 

Fonte: O Autor (2018). 

Figura 9 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e 

PA20 em relação ao número de máquinas 

  

Fonte: O Autor (2018).  
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Figura 10 – Tempo computacional das heurísticas GL (L = 1, 5, 10, 15 e 

20) e PA20 em relação ao número de tarefas 

 

Fonte: O Autor (2018). 

Figura 11 – Tempo computacional das heurísticas GL (L = 1, 5, 10, 15 e 

20) e PA20 em relação ao número de máquinas 

 

Fonte: O Autor (2018).
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Tabela 5 – Resultados do teste Tukey das heurísticas GL (L = 1, 5, 10, 15 e 20) e PA20 

(I) Heurísticas (J) Heurísticas Diferença média (I-J) Erro Padrão Significância 

Intervalo de Confiança 95% 

Limite inferior Limite superior 

G1 

G10 13,82415* 0,18792 0,000 13,2883 14,3600 

G15 14,11958* 0,18792 0,000 13,5837 14,6554 

G20 14,38768* 0,18792 0,000 13,8518 14,9235 

G5 12,38966* 0,18792 0,000 11,8538 12,9255 

PA20 12,15543* 0,18792 0,000 11,6196 12,6913 

G5 

G1 -12,38966* 0,18792 0,000 -12,9255 -11,8538 

G10 1,43449* 0,18792 0,000 0,8986 1,9704 

G15 1,72992* 0,18792 0,000 1,1941 2,2658 

G20 1,99802* 0,18792 0,000 1,4622 2,5339 

PA20 -0,23423 0,18792 0,814 -0,7701 0,3016 

G10 

G1 -13,82415* 0,18792 0,000 -14,3600 -13,2883 

G15 0,29543 0,18792 0,617 -0,2404 0,8313 

G20 0,56353* 0,18792 0,033 0,0277 1,0994 

G5 -1,43449* 0,18792 0,000 -1,9704 -0,8986 

PA20 -1,66872* 0,18792 0,000 -2,2046 -1,1329 

G15 

G1 -14,11958* 0,18792 0,000 -14,6554 -13,5837 

G10 -0,29543 0,18792 0,617 -0,8313 0,2404 

G20 0,26810 0,18792 0,711 -0,2678 0,8040 

G5 -1,72992* 0,18792 0,000 -2,2658 -1,1941 

PA20 -1,96415* 0,18792 0,000 -2,5000 -1,4283 

G20 

G1 -14,38768* 0,18792 0,000 -14,9235 -13,8518 

G10 -0,56353* 0,18792 0,033 -1,0994 -0,0277 

G15 -0,26810 0,18792 0,711 -0,8040 0,2678 

G5 -1,99802* 0,18792 0,000 -2,5339 -1,4622 

PA20 -2,23225* 0,18792 0,000 -2,7681 -1,6964 

PA20 

G1 -12,15543* 0,18792 0,000 -12,6913 -11,6196 

G10 1,66872* 0,18792 0,000 1,1329 2,2046 

G15 1,96415* 0,18792 0,000 1,4283 2,5000 

G20 2,23225* 0,18792 0,000 1,6964 2,7681 

G5 0,23423 0,18792 0,814 -0,3016 0,7701 

* A diferença média é significativa no nível 0,05. 

Fonte: O Autor (2018). 

Na Tabela 6, podemos identificar que o teste de hipótese de Tukey, ao nível de 95% de 

confiança, encontrou 4 subconjuntos de médias. A heurística PA20, de acordo com os dados, 

se equipara com a versão G5. Já G15 encontra-se entre os subconjuntos 1 e 2, onde estão 

contidos G20 e G10, respectivamente. 
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Tabela 6 – Identificação de subconjuntos homogêneos ao nível de 95% de confiança, de acordo com 

teste de Tukey. 

Heurísticas N 
Subconjunto para alfa = 0,05 

1 2 3 4 

G20 500 0,4087    

G15 500 0,6768 0,6768   

G10 500  0,9722   

G5 500   2,4067  

PA20 500   2,6409  

G1 500    14,7963 

Significância  0,711 0,617 0,814 1,000 

São exibidas as médias para os grupos em subconjuntos homogêneos. 

Fonte: O Autor (2018).] 

 

Figura 12 – Gráfico de médias, ao nível de 95% de confiança, do desvio relativo médio geral das 

heurísticas avaliadas 

 

Fonte: O Autor (2018). 
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A Figura 12 ilustra o desvio relativo médio geral e a variabilidade das heurísticas. 

Nota-se que G20 possui a menor média e menor variância dos desvios. Além disso, a 

diferença das heurísticas G20, G15 e G10 em relação a PA20 fica evidente. Verifica-se 

também a proximidade de PA20 e G5. O comportamento da performance de GL em relação 

ao número de iterações é semelhante ao experimento anterior. 
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4 CONCLUSÃO 

 

Neste trabalho, foi abordado o problema de programação  no-wait flowshop com dois 

objetivos: (1) minimizar o makespan sujeito à restrição de que o tempo médio de fluxo é 

menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo sujeito à restrição de 

que o makespan é menor ou igual a um dado valor. Foi apresentado o Algoritmo-M e o 

Algoritmo-K, usados na obtenção das soluções iniciais e restrições das heurísticas para os 

experimentos computacionais. 

Para o objetivo (1), foi avaliada a heurística HH1 e cinco versões da heurística 

proposta GL (G1, G5, G10, G15 e G20). Os erros relativos médios gerais, sobre o número de 

tarefas e máquinas, de HH1, G5, G10, G15 e G20 foram 0,67; 9,50; 1,80; 0,90; 0;68; e 0,47; 

respectivamente. Embora os erros de HH1, G10, G15 e G20 sejam equiparáveis, o tempo 

computacional de HH1 foi significativamente maior. Isso evidencia a superioridade da 

heurística GL. Para o objetivo (2), foi avaliada a heurística PA20 (PAL com parâmetro L = 

20) e novamente cinco versões da heurística proposta GL (G1, G5, G10, G15 e G20). Os erros 

relativos médios gerais de PA20, G5, G10, G15 e G20 foram 2,64; 14,80; 2,41; 0,97; 0,68; e 

0,41; respectivamente. Esses dados evidenciam a superioridade de G10, G15 e G20. E embora 

o erro de PA20 e G5 sejam equiparáveis, o tempo computacional de PA20 foi 

significativamente maior. Isso evidencia a superioridade de GL também para o objetivo (2). 

É importante destacar que dos três parâmetros de entrada da heurística GL (d, T e L), 

somente variações de L foram testadas. Mesmo tendo definido para os outros dois parâmetros 

os melhores valores para um problema de programação  flowshop regular (RUIZ; STÜTZLE, 

2007), é possível que esses valores não sejam os melhores para o caso no-wait. Portanto, em 

uma abordagem futura, poder-se-ia explorar variações desses parâmetros com o objetivo de 

verificar se ainda existe a possibilidade de ganho de performance.  

Implementar as heurísticas com diferentes variações no número de tarefas e máquinas 

também é outra possibilidade a ser explorada. Nos experimentos computacionais apresentados 

aqui, foram testados valores baixos para o número de tarefas e máquinas. Mesmo que 

aumentar esses valores signifique lidar com um custo computacional elevado, isso seria 

validado para verificar se as heurísticas apresentariam mudança de comportamento. 

Outra extensão sugerida é considerar os tempos de setup e manutenção. Neste 

trabalho, esses tempos foram ignorados ou assumidos como inclusos nos tempos de 

processamento. No entanto, essa abordagem pode não ser adequada para alguns ambientes de 

processamento, sendo necessário tratar esses dados de forma separada.  
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