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RESUMO

ALMEIDA, F. S. Heuristicas para o problema de programacéo no-wait flowshop. 2018.
22 f. Monografia (Trabalho de Conclusdo de Curso) — Escola de Engenharia de Séo Carlos,
Universidade de S&o Paulo, Séo Carlos, 2018.

Este trabalho aborda o problema de programacéo no-wait flowshop. Dois objetivos séo
considerados: (1) minimizar o makespan sujeito a restricdo de que o tempo médio de fluxo é
menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo sujeito a restricdo de
gue o makespan é menor ou igual a um dado valor. Dado que esses problemas sdo
considerados intrataveis (NP-Hard), diversos métodos heuristicos tém sido propostos. Para
cada um dos dois objetivos, é proposta uma adaptacdo da meta-heuristica de Ruiz e Stiitzle
(2007), Iterated Greedy with Local Search (GL), com cinco versdes L (1, 5, 10, 15 e 20). As
cinco versGes de GL adaptadas para o objetivo 1 sdo comparadas com a heuristica HH1,
proposta por Aydilek e Allahverdi (2012). E as cinco versdes de GL adaptadas para o objetivo
2 sdo comparadas com a heuristica PA20, proposta por Allanhverdi e Aydilek (2013). As
heuristicas sdo avaliadas em problemas gerados aleatoriamente, com diferentes numeros de
tarefas e maquinas, e nas mesmas condicdes iniciais. Todos os resultados sdo verificados
estatisticamente. Os experimentos computacionais relativos ao objetivo 1 mostram que o erro
relativo medio geral de G20 é menor do que o de HH1, enquanto o tempo de CPU de G20 é
significativamente menor que o de HH1. Portanto, o algoritmo G20 é superior a heuristica
HH1. Da mesma forma, os experimentos computacionais relacionados ao objetivo 2 mostram
que os erros relativos médios gerais de G10, G15 e G20 sd&o menores do que o de PA20.
Portanto, os algoritmos G10, G15 e G20 superam a performance da heuristica PA20.

Palavras-chave: No-wait flowshop. Makespan. Tempo médio de fluxo. Tempo total de fluxo.






ABSTRACT

ALMEIDA, F. S. Heuristics for the no-wait flowshop scheduling problem. 2018. 22f.
Monografia (Trabalho de Conclusédo de Curso) — Escola de Engenharia de S&o Carlos,
Universidade de S&o Paulo, Séo Carlos, 2018.

This work addresses the no-wait flowshop scheduling problem. Two objectives are
considered: (1) minimizing makespan subject to the constraint that mean completion time is
less than or equal to a given value; and (2) minimizing the total completion time subject to the
constraint that the makespan is less than or equal to a given value. Since these problems are
considered intractable (NP-Hard), several heuristic methods have been proposed. For each of
the two objectives, it is proposed an adaptation of Ruiz and Stutzle’ metaheuristic (2007),
Iterated Greedy with Local Search (GL), with five versions L (1, 5, 10, 15 and 20). The five
versions of GL adapted for objective 1 are compared with the HH1 heuristic proposed by
Aydilek and Allahverdi (2012). And the five versions of GL adapted for objective 2 are
compared with the PA20 heuristic proposed by Allanhverdi and Aydilek (2013). The
heuristics are evaluated on randomly generated problems, with different numbers of jobs and
machines, and under the same initial conditions. All results are statistically verified.
Computational experiments related to objective 1 show that the overall average relative error
of G20 is smaller than that of HH1, while the CPU time of G20 is significantly smaller than
that of HH1. Therefore, the G20 algorithm is superior to the HH1 heuristic. In the same way,
computational experiments related to objective 2 show that the overall average relative errors
of G10, G15 and G20 are smaller than that of PA20. Therefore, the G10, G15 and G20
heuristics outperform the PA20 heuristic.

Keywords: No-wait flowshop. Makespan. Mean completion time. Total completion time.
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1 INTRODUCAO

O problema de programacao flowshop tem sido objeto de estudado desde a década de
50 (GUPTA; STAFFORD, 2005; JOHNSON, 1954), sendo conhecido por sua complexidade
(GAREY; JOHNSON; SETHI, 1976) e extensa é&rea de aplicagdo (HALL;
SRISKANDARAJAH, 1996). O problema flowshop regular consiste em n tarefas a serem
processadas em m maquinas. Cada tarefa requer m operacOes e cada operacdo requer uma
diferente maquina. Todos as tarefas sdo processadas na mesma ordem de maquinas
(AYDILEK; ALLAHVERDI, 2012). Em um problema flowshop regular, um buffer infinito é
assumido e as tarefas podem aguardar entre as maquinas (NAGANO; MIYATA, 2016a).

No entanto, existem outras situacdes em que filas e o processamento descontinuo nao
sdo permitidos, como o problema de programacdo no-wait flowshop. De acordo com
Allahverdi e Aydilek (2013), “Um problema no-wait flowshop ocorre quando as operacdes de
um tarefa devem ser processadas continuamente do inicio ao fim, sem interrupcdes, tanto no
inicio como entre as maquinas”. Minimizar o tempo total de fluxo e o makespan sdo dois
objetivos comuns nesse problema de programacdo. Minimizar o makespan é importante em
situacdes nas quais € necessario a conclusdo de um lote completo de produtos o mais rapido
possivel. Minimizar o tempo total de fluxo é importante em situagdes nas quais é necessario a
entrega de cada produto assim que for concluido (ALLAHVERDI; AYDILEK, 2013;
AYDILEK; ALLAHVERDI, 2012). Como o problema no-wait flowshop € considerado
intratdvel (NP-hard), os métodos propostas ndo garantem solucdo 6tima (NAGANO;
MIYATA, 2016a). Portanto, o desenvolvimento de heuristicas para obtengdo de boas solugdes
a um custo computacional razoavel representa um importante tema de estudo.

Neste trabalho, é abordado o problema de programacdo no-wait flowshop
considerando duas situacdes: (1) minimizar o makespan sujeito a restricdo de que o tempo
médio de fluxo € menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo
sujeito a restricdo de que o makespan é menor ou igual a um dado valor. O objetivo é propor
heuristicas para os dois casos e avaliar seu desempenho frente a outras heuristicas
equivalentes na literatura. O restante deste trabalho é organizado da como se segue. O
Capitulo 2 é dedicado a revisdo da literatura. No Capitulo 3, é apresentada a defini¢cdo do
problema nos dois casos de otimizacdo. No Capitulo 4, é apresentado dois algoritmos para
obtengdo das restrigdes e solucgdes iniciais. No Capitulo 5, é feita a descri¢do das heuristicas
avaliadas. O Capitulo 6 é dedicado aos resultados do experimento computacional. Por fim, as

conclusoes sao apresentadas no Capitulo 7.
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2 REVISAO BIBLIOGRAFICA

Diferente do problema de programacdo flowshop regular, no qual é assumido um
buffer infinito, o problema no-wait flowshop caracteriza-se por ter suas tarefas processadas
sem interrupgdo entre maquinas consecutivas. Para esse tipo de problema, sdo encontradas
diversas formas de aplicacBes praticas. As industrias de metal, plastico, produtos quimicos e
de alimentos sdo alguns exemplos. Nessas industrias, existem alguns parametros do material
em processo, como por exemplo temperatura e viscosidade, que exigem que cada operacéo
siga a anterior imediatamente (HALL; SRISKANDARAJAH, 1996). O no-wait flowshop
também é amplamente aplicado na manufatura de semicondutores (CHIEN et al., 2008;
RITZO et al., 2011) e na manufatura de placas de circuito impresso (CHE; CHU, 2007). Além
disso, ambientes modernos como sistemas flexiveis de manufatura, just-in-time e manufatura
agil também podem ser modelados como um problema de programagcdo no-wait
(BERTOLISSI, 2000).

Minimizar o tempo total de fluxo (ou o equivalente tempo medio de fluxo) e o
makespan s@o dois objetivos amplamente estudados pelos pesquisadores. Minimizar o tempo
total de fluxo de todas as tarefas é importante em situacdes nas quais cada produto concluido
é necessario assim que for processado. Esse objetivo tambeém traz beneficios quando se busca
reduzir inventario ou conter custos. Reduzir o makespan é um objetivo importante em
situagBes nas quais o recebimento de um lote completo de produtos é requerido assim que
possivel. Além disso, minimizar o makespan tende a aumentar a utilizacdo de maquinas e
recursos (ALLAHVERDI; AYDILEK, 2013). Ambos os objetivos tém sido amplamente
abordados para diferentes ambientes de programacéo.

O primeiro registro de estudo sobre o problema no-wait flowshop com o objetivo de
minimizar o makespan vem da década de 70, por Van Deman e Baker (1974). Desde entdo,
muitas heuristicas ja foram propostas para o problema, como por exemplo as de Bonney e
Gundry (1976), King e Spachis (1980), Gangadharan e Rajendran (1993), Rajendran (1994) e
Aldowaisan e Allahverdi (2003). Grabowski e Pempera (2005) comparou varias de suas
heuristicas com duas heuristicas de busca local propostas por Schuster e Framinan (2003), nas
quais as heuristicas de busca local foram comparadas com a heuristica proposto por Rajendran
(1994). Framinan e Nagano (2008) propuseram uma heuristica baseada no problema no-wait
flowshop e o problema Traveling Salesman. Tseng e Lin (2010) apresentaram um algoritmo
genético hibrido e Zhu et al. (2009) apresentaram um algoritmo de busca local. Qian et al.

(2009) propuseram para o problema um algoritmo do tipo evolucdo diferencial hibrido. Ja
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Nagano e Miyata (2016b) propuseram uma heuristica construtiva a partir de sequéncias
parciais das tarefas.

Na literatura, também sdo encontrados diversos trabalhos sobre o problema no-wait
flowshop voltados ao objetivo de minimizar o tempo total de fluxo. Rajendran e Chaudihuri
(1990), por exemplo, propuseram duas heuristicas que se provaram superiores as suas
predecessoras. Chen et al. (1996) posteriormente desenvolveu um algoritmo genético (GA) e
0 comparou com os algoritmos de Rajendran e Chaudihuri (1990). Fink e VoB (2003)
examinou a aplicacdo de diferentes métodos heuristicos. Aldowaisan e Allahverdi (2004)
propuseram Varias outras heuristicas que se provaram superiores as de Rajendran e
Chaudihuri (1990) e as de Chen et al. (1996). Shyu et al. (2004) propuseram uma heuristica de
otimizacdo de coldnia de formigas e a compararam com as heuristicas anteriores. Pan et al.
(2008) apresentaram um algoritmo de otimizacéo particle swarm para o problema. Framinan
et al. (2010) propuseram uma nova heuristica para o problema e mostraram que ela possuia
melhor performance do que as heuristicas pré-existentes. Nagano et al. (2012) abordou o
mesmo problema, mas considerou os tempos de setup de trabalho separado dos tempos de
processamento. Nagano et al. (2012) propuseram uma combinacdo de GA e pesquisa de
cluster que se mostrou superior as heuristicas anteriores.

Além dos trabalhos mencionados até entdo, que consideram a minimizacao de somente
uma medida de performance, existem outros estudos que abordaram o problema considerando
mais de um parametro. Allahverdi e Aldowaisan (2002) consideraram o problema de
otimizacdo com makespan e o tempo total de fluxo, reduzindo o problema por meio da
conversdo dos dois parametros para uma medida, em uma soma ponderada das duas. No caso
do estudo de Framinan e Leisten (2006), foi considerado um flowshop regular (sem no-wait)
como o objetivo de minimizar 0 makespan sujeito a restricdo de que 0 maximo atraso devesse
ser menor ou igual a um dado valor. Aydilek e Allahverdi (2012) abordaram o problema no
qual o objetivo era minimizar o makespan sujeito a restricdo de que o tempo médio de fluxo
ndo fosse maior ou igual a um dado valor. Logo em seguida, Allahverdi e Aydilek (2013)
abordaram o problema com o objetivo de minimizar o tempo total de fluxo sujeito a restricdo
de que o makespan ndo fosse maior ou igual a um dado valor. Mais recentemente, Allahverdi
et al. (2018) propuseram um algoritmo para minimizar o atraso total sujeito a restricdo de que
0 makespan ndo fosse maior do que um dado valor.

Revisdes abrangentes sobre o estado da arte nesta area de programacdo Sao
apresentadas por Hall e Sriskandarajah (1996), Nagano e Miyata (2016a) e Allahverdi (2016).
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3 DEFINICAO DO PROBLEMA

Neste Capitulo, é apresentada a descricdo do problema de programacdo no-wait
flowshop e os dois objetivos de otimizacdo. Deve ser notado que o tempo médio de fluxo e o
tempo total de fluxo sdo medidas de performance equivalentes. Os problemas s6 foram
abordados dessa forma para facilitar a comparacdo com as heuristicas da literatura

selecionadas para avaliacéo.
3.1 O PROBLEMA DE PROGRAMA(}AO NO-WAIT FLOWSHOP

Seja {J1, Jz, ..., Jn} um conjunto de n tarefas e {M1, M2, ..., Mm} um conjunto de m
maquinas. Sejam Oi; e tij respectivamente a operacao e o tempo de processamento da tarefa Jj
na maquina Mi. O problema de programac&o flowshop regular ocorre quando cada uma das n
tarefas sdo processadas em todas as m maquinas com a mesma sequéncia de processamento
ou ordem de méaquinas. Quando o flowshop apresenta o fenbmeno no-wait, as tarefas nédo
podem esperar entre duas maquinas sucessivas. Isso implica que, se necessario, 0 inicio de
uma tarefa deve ser atrasado na primeira maquina, para garantir que o fim de uma operacéao
coincida com o inicio da operacdo seguinte na maquina subsequente (NAGANO; MIYATA,
2016a). Um gréafico de Gantt ilustrando uma programacao genérica do no-wait flowshop é

apresentado na Figura 1.

Figura 1 — Grafico de Gantt do problema de programacao no-wait flowshop
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Fonte: Adaptado de (NAGANO; MIYATA, 2016a).

Para a abordagem do no-wait flowshop, sdo assumidas as seguintes condicdes:
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(1) As méaquinas estdo a disposicdo em 100% do tempo (nunca se quebram);
(2) Cada maquina pode processar no maximo um trabalho por vez;
(3) Qualquer tarefa pode ser processada em no maximo uma maquina por vez;
(4) Todos as tarefas estdo disponiveis desde o inicio do horizonte de planejamento;
(5) Uma vez iniciada a operacdo, ela é processada até ser concluida;
(6) Os tempos de setup s@o ignorados ou assumidos inclusos nos tempos de processamento;
(7) Os tempos de processamento sdo determinados e conhecidos antecipadamente.
Seja di-1,i 0 atraso minimo na primeira maquina entre o final da tarefa Ji e o inicio da
tarefa Ji+1. E seja {ay};_, uma sequéncia cujo dominio é dado por {k e N|x <k < y}.

Nessas condigdes, di-1,i pode ser definido como:

VieN|2<i<n,

k k-1 m (1)
di—l,i = max <{Z ' ti—l,j — Z ti ,p} , 0)
j=2 p=1 2

k=

Seja Ci 0 tempo de conclusdo de todas as operacOes da tarefa Ji. Assim temos:

i i m
2
k=2 p=1 j=2

O makespan (Cmax) € definido como o tempo necessario para o processamento de todas
as tarefas do sistema, ou seja, o intervalo de tempo entre 0 momento de inicio do
processamento da operacdo O11 e 0 momento de conclusdo do processamento da operacao
On,m. Desta forma, Cmax (equivalente a Cn) pode ser calculado como:

n n m
Crnax = Z dk—l,k + z tpr t Z tn,j (3)
k=2 p=1 j=2
3.2 M|N|M|ZACAO DE MAKESPAN SUJEITO AO TEMPO MEDIO DE FLUXO

O tempo médio de fluxo (TMF) é definido como a média aritmética das somas dos
tempos de conclusao de todas as tarefas do sistema, ou seja
1 n
TMF =— C;. (4)

i=1
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Seja M o limite superior para 0 MTC. Além disso, deixe que Cmax(z) € TMF(x)
representem o makespan e o tempo médio de fluxo de uma determinada sequéncia z. Nessas

condicdes, o problema pode ser definido como:

Minimizar Cmax () (5)

Subjeito ao TMF(mt) <M
Em outras palavras, o problema consiste em encontrar uma sequéncia de
processamento z que minimize o0 Cmax tal que o TMF seja menor ou igual ao valor M. Em um
problema real, esse valor M dever ser dado pelo programador. No caso em que o valor M néo

é dado, ele pode ser obtido por um algoritmo, como o apresentado no Capitulo 4.
3.3 MINIMIZAQAO DO TEMPO TOTAL DE FLUXO SUJEITO AO MAKESPAN

O tempo total de fluxo (TTF) € definido como a soma dos tempos de concluséo de

todas as tarefas do sistema, ou seja

n
TTF = E C;. (6)
i=1

Seja K o limite superior para o TTF. Além disso, deixe que Cmax(r) € TTF(x)
representem o makespan e o tempo total de fluxo de uma determinada sequéncia z. Nessas
condigdes, o problema pode ser definido como:

Minimizar TTF (1) @)
Subjeito ao Cmax(w) < K

Em outras palavras, o problema consiste em encontrar uma sequéncia de

processamento 7 que minimize o TTF tal que 0 Cmax Seja menor ou igual ao valor K. Em um

problema real, esse valor K dever ser dado pelo programador. No caso em que o valor K nédo é

dado, ele pode ser obtido por um algoritmo, como o apresentado no Capitulo 4.
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4 ALGORITMOS PARA OBTENCAO DAS SOLUCOES INICIAIS E RESTRICOES

Neste capitulo, € apresentado o Algoritmo-M, proposto por Aydilek e Allahverdi
(2012), para a obtengdo de um limite superior para TMF (valor M) e o Algoritmo-K, proposto
por Allahverdi e Aydilek (2013), para obtencdo de um limite superior para 0 Cmax (valor K),
usados na obtencdo das solugdes iniciais e restricbes das heuristicas para o0 experimento

computacional.

4.1 ALGORITMO-M

Passo 1: Definap=1,h=1

Passo 2: Selecione uma sequéncia aleatoriamente, chamada de sequéncia m,. Assuma M, =
MTC(mp);

Passo 3: Permute as duas tarefas nas posicdes h e h+1 da sequéncia 7tp, € se 0 MTC da sequéncia
depois da troca for menor do que M,, entdo atualize a sequéncia mr depois da troca e
defina M, = TMF(rtp);

Passo 4: Defina h = h+1, se h = n, siga para o passo 5, caso contrdrio, volte ao passo 3;

Passo 5: Defina p = p+1, se p = n, siga para o passo 6, caso contrario, volte ao passo 2;

Passo 6: Set M =min(My, ...., M,);

Passo 7: Assuma it como sendo a sequéncia onde M é obtida.

Segundo Aydilek e Allahverdi (2012), o algoritmo acima pode ser resumido como:

n sequéncias sdo aleatoriamente selecionadas. Para cada sequéncia
aleatdria selecionada, defina um valor M, para 0 Cnax, €ntdo busque
(pelo método da troca de pares) para encontrar um melhor valor M,
onde M, é atualizado cada vez que um melhor valor M é obtido. Ao
final, n de M valores (M, ..., My). O menor de My, ..., M, é definido
como o valor M.

4.2 ALGORITMO-K

Passo 1: Definap=1,h=1

Passo 2: Selecione aleatoriamente uma sequéncia, chamada de sequéncia nip. Defina Kp = Crax(TT5);

Passo 3: Permute as duas tarefas nas posi¢cdes h e h + 1 da sequéncia mp, e se 0 Cnax da sequéncia
depois da troca for menor que K, entdo atualize a sequéncia 1, e defina K, = Crnax(T1p);

Passo 4: Defina h=h+ 1.Se h =n, siga para o Passo 5; caso contrario, volte para o Passo 3;

Passo 5: Definap=p+ 1.Se p = n, siga para o Passo 6; caso contrario, volte para o Passo 2;

Passo 6: Defina K=min(Kj, ..., Ky);

Passo 7: Defina r como a sequéncia onde K é obtida.
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Segundo Allahverdi e Aydilek (2013), o algoritmo acima pode ser resumido como:

n sequéncias sdo selecionadas aleatoriamente. Para cada sequéncia
selecionada, defina o0 Ky para 0 Cnax, entéo procure (pelo método da
troca de pares) o melhor valor K, onde K, é atualizado cada vez que
um melhor valor K é encontrado. Ao final, havera n valores K (Kj, ...,
Ky). O menor de Kj, ..., Ky é escolhido como o valor K.
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5 HURISTICAS

Neste capitulo, sdo apresentadas as heuristicas avaliadas na experimentacao

computacional.

5.1 HURISTICA HH1

A heuristica HH1, proposta por Aydilek e Allahverdi (2012) para minimizar 0 Cmax
sujeito ao TMF, é composta pela combinagdo de duas outras heuristicas: modified Simulated
Annealing (mSA) e HA. Mais especificamente, a partir de uma sequéncia inicial, a heuristica

mMSA gera uma nova solucdo que é usada como sequéncia inicial na heuristica HA.

5.2.1 modified Simulated Annealing (mSA)

Existem duas grandes mudancas em relacdo ao Simulated Annealing tradicional. A
primeira é 0 acréscimo de um teste para verificar se uma nova sequéncia st é factivel, ou seja,
se obedece a condicdo TMF(st) <M. A segunda € que, ao invés de permutar duas posicdes
selecionadas aleatoriamente no Passo 4, um trabalho escolhido aleatoriamente € inserido em

uma posicdo também aleatdria. Os passos de mSA sdo descritos a seguir:

Passo 1: Defina a temperatura inicial T;, a temperatura final T, fator de resfriamento cf, o nimero
de repeticdes R,, e a sequéncia inicial s; (Algoritmo-M);

Passo 2: Defina a temperatura T=T;, e a sequéncia s = s;;

Passo 3: Definaj=1,;

Passo 4: Escolha dois nimeros aleatdrios k e  entre 1 e n. Insira a tarefa da sequéncia s da posicao k
para a posicao /, e chame esta nova sequéncia de s;;

Passo 5: Calcule L = F(s) e Lt = F(s¢) no qual F é a func¢do objetivo a ser minimizada;

Passo 6: Se TMF(s;) < M, siga para o Passo 7. Caso contrario, va para o passo 8;

Passo7: Se L; < L, atualize s com s;, ou seja, s = s. Caso contrdrio, atualize s com s; com
probabilidade exp(-d/T), em que d = (Lt = L)/L;

Passo 8: Definaj=j+ 1.Sej=R,+ 1, siga para o Passo 9, caso contrdrio volte ao Passo 4;

Passo 9: DefinaT=T*cf.

Passo 10: Se T < Ty, siga para o Passo 11, caso contrario volte ao passo 3.

Passo 11: s é a sequéncia solugao adotada.

Os parametros da heuristica escolhidos para a analise computacional foram Ti = 0.10,
Tr = 0.0001, cf = 0.98 e Rn = 50, definidos como os de maxima performance por Aydilek e
Allahverdi (2012).
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5.2.2 Heuristica HA

Na heuristica HA, os 11 primeiros passos sdo repedidos L vezes, de forma que cada
iteracdo se inicia com a sequéncia obtida no Passo 11. Desta forma, L € um parametro de

entrada para a heuristica HA. Todos 0s passos sdo descritos a seguir:

Passo 1: Usando uma sequéncia inicial 77, defina um valor inteiro positivo para L, e defina d=1, 6:=m;

Passo 2: Definah=1;

Passo 3: Selecione a h-ésima tarefa da sequéncia B4 e a insira em todas as n posi¢Ges da sequéncia
B4 para obter n sequéncias. Chame essas sequéncias de 1y, My, ..., Ty;

Passo 4: Calcule Cnox(rty) parar=1,2, ..., n;

Passo 5: Definar=1,u=1;

Passo 6:  Se Cmax(mr) < Cmax(B4), € se TMF(rt;) £ M, entdo assuma B, =11, e definau=u+ 1;

Passo 7: Definar=r+1.Ser=n+1, siga para o Passo 8, caso contrario volte ao Passo 6;

Passo 8: Encontre uma sequéncia entre B.’s (calculado no passo 6) com o minimo Cnax, € chame
esta sequéncia de oy (se u = 1, entdo defina g, = 64);

Passo 9: Definah=h+1.Se h=n+ 1, siga para o Passo 10, caso contrario volte ao Passo 3;

Passo 10: Definad =d + 1;

Passo 11: Encontre a sequéncia entre on’s com 0 minimo Cmax, € chame esta sequéncia g;

Passo 12: Se d < L, siga para o passo 13, caso contrario volte ao Passo 2;

Passo 13: Encontre uma sequéncia entre os o,’s com 0 minimo Cpmax, € chame esta sequéncia 6;

Passo 14: Definaf=1;

Passo 15: Permute as duas tarefas nas posi¢des f e f + 1 da sequéncia 6, e chame a sequéncia depois
da troca de @. Se Chmax(®) < Cmax(8) € se TMF(p) £ M, entdo defina 8 = @;

Passo 16: Defina f=f+ 1. Se f = n, siga para o Passo 17, caso contrdrio volte ao passo 15;

Passo 17: A solucdo é a sequéncia 0.

O parametro de iteracdo da heuristica escolhido foi L = 20, definido como o de
maxima performance por Aydilek e Allahverdi (2012).

5.2 HEURISTICA PAL

O heuristica PAL, proposto por Allahverdi e Aydilek (2013), busca minimizar o TTF
sujeito ao Cmax a partir de uma sequéncia inicial. Nessa heuristica, os Passos de 3 a 11 sdo
repetidos L vezes, de forma que o procedimento sempre se reinicia com a solugéo obtida no
Passo 11. Assim, L é um parametro de entrada para o algoritmo PAL. Os passos de PAL sdo

descritos a seguir:

Passo 1: Usando uma sequéncia inicial 77, defina um valor para L, e definad=1e6;=n

Passo 2: Definah=1;

Passo 3: Selecione a h-ésima tarefa da sequéncia 84 e a insira em todas as n posi¢cdes da sequéncia
B4, obtendo n sequéncias, chamadas de sequéncias s, 1y, ..., s}

Passo 4: Calcule TTF(m,), parar=1, ..., n;

Passo 5: Definar=1,u=1;
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Passo 6: Se TTF(m,) < TTF(B4), € se Cmax(1t,) < K, entdo deixe By =1, e definau=u+1;

Passo 7: Definar=r+1.Ser=n+1, siga para o Passo 8; caso contrario, volte ao passo 6;

Passo 8: Encontre a sequéncia entre os By (calculada no Passo 6) com o menor TTF, e chame esta
sequéncia de oy (se u = 1, entdo defina g, = 84);

Passo 9: Definah=h+1.Se h=n+1, siga para o Passo 10; caso contrario, volte ao Passo 3;

Passo 10: Definad =d + 1;

Passo 11: Encontre a sequéncia entre os o, com o menor TTF, e chame esta sequéncia de 6;

Passo 12: Se d > L, siga para o Passo 13; caso contrario, volte para o Passo 2;

Passo 13: Encontre a sequéncia entre os 84 com o menor TTF, e chame esta sequéncia de 6;

Passo 14: Definaf=1;

Passo 15: Permute as duas tarefas das posi¢cdes f e f + 1 da sequéncia 6, e chame a sequéncia
resultante de @. Se TTF(¢) < TTF(B), e se Cmax(®) < K, entdo defina 6 = ;

Passo 16: Defina f=f+ 1. Se f = n, siga para o Passo 17; caso contrario, volte ao Passo 15;

Passo 17: A solugdo é a sequéncia 6;

O parametro de iteracdo da heuristica escolhido foi L = 20 (portanto PA20), definido

como o de maxima performance por Allahverdi e Aydilek (2013).

5.3 HEURISICA PROPOSTA - ITERATED GREEDY WITH LOCAL SEARCH (GL)

Em resumo, a heuristica Iterated Greedy with Local Search, proposta por Ruiz e
Stiitzle (2007), executa a partir de uma solugdo inicial uma sequéncia de iterages na busca de
um candidato a solucdo. O processo de obtencdo da solucdo ocorre em duas fases: destruicéo
e construcdo. Durante a destruicdo, um ndmero determinado de elementos aleatorios é
removido da solucdo anterior. Em seguida, na fase de construcdo, os elementos removidos séo
reinseridos para a construcdo de uma nova sequéncia. Também é adicionado um processo de
pesquisa local para melhorar a solugdo encontrada. Por fim, um critério de aceitacdo é
aplicado para verificar se o candidato a solugdo deve substituir a solugéo anterior. Todo 0
processo € repetido até que algum critério de parada seja satisfeito, como o tempo
computacional ou um determinado nimero de iteracdes (NAGANO et al., 2015).

Nesta adaptacdo proposta, s6 sdo aceitas as sequéncias geradas que respeitam a
restricdo pela qual estdo sujeitas (M ou K). A fase de destruicdo é aplicada removendo-se d
tarefas da solucdo inicial. A fase de construcdo é implementada por meio da heuristica
construtiva NEH de Nawaz et al. (1983). O procedimento de busca local € composta pela
combinacéo de dois processos (insercéo e intercambio), conforme proposto por Nagano et al.
(2015). O critério de aceitagdo € aplicando usando um pardmetro de temperatura T,
semelhante ao critério do Simulated Annealing (YANG, 2010, p. 182). E o critério de parada é
dado pelo nimero de iteracGes L.
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O algoritmo da adaptacdo completa da heuristica € ilustrado na Figura 2. A execugao
de cada etapa é descrita a seguir:

1. Solucdo inicial: Para minimizar o Cmax sujeito ao TMF, é usado o Algoritmo-M para obter
a sequéncia inicial 7o e o valor M. Para minimizar o TTF sujeito a0 Cmax, & usado 0
Algoritmo-K para obter a sequéncia inicial 7o e 0 valor K.

2. Destruicdo: Seja = a sequéncia em vigor no inicio da iteragdo. Das n tarefas de z, d tarefas
sdo removidas aleatoriamente na ordem em que forem escolhidas. Desse procedimento,
resulta a sequéncia zr de tamanho d, contendo as tarefas removidas, e a sequéncia zo de
tamanho n - d, contendo as tarefas ndo removidas.

3. Construcao: A primeira tarefa de zr € inserida em todas as n-d+1 posic6es de 7o, gerando
n-d+1 sequéncias. Feito isso, seleciona-se a melhor das sequéncias geradas e repete-se o
procedimento de insercéo até que zp obtenha o tamanho n.

4. Insercdo: Cada tarefa da sequéncia zpo é reinserida em todas as suas possiveis posi¢es
gerando (n - 1)? sequéncias. A solucdo ¢ obtida selecionando-se a melhor das sequéncias
geradas, chamada z’, tal que F(z") < F(zp), em que F(z’) e F(zp) representam as funcdes
objetivo (Cmax ou TTF) de suas respectivas sequencias.

5. Intercambio: Realiza uma permutacdo entre pares de tarefas da sequéncia z’, ndo
necessariamente adjacentes, em todas as combinagcbes possiveis gerando n(n - 1)/2
sequéncias. Da mesma forma, a solucéo € obtida selecionando a melhor das sequéncias
geradas, chamada = ”, tal que F(z”) < F(x’).

6. Teste de aceitacdo: A sequéncia candidata a solucdo 7~ é aceita com uma probabilidade
exp(— A/Temp), OU Seja, =~ é aceito se exp(— A/Temp) > 1, No qual r € um numero aleatorio

tal que 0 <r < 1. Os valores de A e Temp Sd0 dados por:

po FED-Fm ®)
F(m)
Toy = Liz1 Lj=1 tij. ©)

mxnx10 °

Conforme apresentado na descricdo, a heuristica GL proposta possui trés parametros
de entrada: d, T e L. Para os testes computacionais, 0s dois primeiros parametros foram
definidos como d =4 e T = 0,5. Esses valores sdo os melhores encontrados para o problema

de programacdo flowshop regular nos experimentos de Ruiz e Stltzle (2007). Ja para o
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parametro L, foram definidos cinco valores (1, 5, 10, 15 e 20) para gerar as cinco versoes de
GL (G1, G5, G10, G15 e G20).

Figura 2 — Algoritmo para a heuristica GL

procedimento GL
7 := mo do Algoritmo-M ou Algoritmo-K;
Th .= T,
fori:=1toL do
=7 # Fase de destruicdo
fori:= 1toddo
remova uma tarefa aleatoria de @’ € a insira em 7R;

endfor
fori:= 1toddo # Fase de construcéo
7’ := melhor sequéncia obtida inserindo a tarefa n’r(i) em todas as possiveis posi¢des de 7’r;
endfor
" ;= insercao(r"); # Busca local
z” ;= intercdmbio(z”); # Busca local
if F(z”) < F(z) then # Critério de aceitacao
="
if F(z”) < F(x) then # Teste se é nova melhor sequéncia
Th .= TT,
endif
elseif (exp(— A/Temp) > 1) then
T=n";
endif
endfor
return m

end

Fonte: Adaptado de (RUIZ; STUTZLE, 2007).
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6 EXPERIMENTO COMPUTACIONAL

Testes computacionais foram realizados para todas as heuristicas apresentas. A
heuristica GL, com suas cinco versdes L (1, 5, 10, 15, 20), foram adaptadas para os dois
objetivos de otimizagdo abordados.

A implementacdo foi efetuada em Python em um PC com CPU Intel Core i5-4200U
1.60 GHz com Impulso Turbo para 2.30 GHz, 6 GB de RAM e operando sob o sistema
operacional Windows 10.

Foi usado um banco de dados de tempos de processamento com variagdo no numero
de tarefas n e no nimero de maquinas m. Os valores para n foram 15, 20, 25 e 30, enquanto
para m foram 2, 3, 4, 5 e 6. Para cada combinacdo de m e n, foram gerados 25 problemas,
totalizando 500 problemas. Os tempos de processamento foram aleatoriamente gerados com
uma distribuigdo discreta uniforme U(1, 100), conforme a recomendacdo de Hall e Posner
(2001) de usar uma distribuicdo de dados ampla para implementacdo. A partir desse material,
foi criada para cada um dos dois objetivos outro banco de dados, desta vez com as solucgdes
iniciais e restri¢cbes de todos os problemas, por meio da implementacdo do Algoritmo-M e do
Algoritmo-K. Por fim, usando esses trés bancos, foi implementada todas as heuristicas.

As performances foram avaliadas pelas porcentagens de erro relativo (ER). Sejam
F(H) e F(H) as médias da funcio objetivo da heuristica avaliada e da melhor heuristica,

respectivamente. A porcentagem ER € definida como:

ER = 100 <F(H’) _ HH)).

7 (10)

Os resultados foram comparados usando o teste HSD de Tukey. A avaliagdo é

apresentada nos topicos a seguir.
6.1 ANALISE DAS HEURITICAS PARA MINIMIZACAO DE Cwvax SUJEITO AO TMF

A performance das heuristicas para a minimizacdo de Cmax Sujeito ao TMF (G1, G5,
G10, G15, G20 e HH1) sdo avaliadas nesta secdo. Os resultados para o erro relativo sao
apresentados na Tabela 1, na qual cada valor representa a média de 25 problemas.
Considerando a Média Geral, pode-se verificar que G20 obteve desempenho superior as
demais heuristicas, seguido de HH1 e G15 que apresentaram valores muito proximos.
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Tabela 1 — Erro relativo médio das heuristicas GL (L =1, 5, 10, 15 e 20) e HH1

Tarefas  Maquinas HH1 Gl G5 G10 G15 G20
2 0,41 1,97 0,39 0,12 0,26 0,11

3 0,45 5,86 1,12 0,80 0,54 0,36

15 4 0,43 7,64 1,53 1,00 0,44 0,64
5 0,64 8,03 1,73 0,75 0,67 0,45

6 0,34 9,37 1,80 1,60 0,89 0,79

2 0,29 4,01 0,47 0,28 0,22 0,21

3 0,84 7,97 1,36 0,65 0,60 0,29

20 4 0,90 8,45 1,53 1,05 0,96 0,38
5 0,95 10,84 1,96 1,10 0,91 0,49

6 0,74 10,42 2,59 1,32 1,08 0,79

2 0,49 4,81 0,37 0,21 0,14 0,13

3 0,98 10,00 1,65 0,82 0,42 0,34

25 4 0,99 11,94 2,71 1,10 0,89 0,48
5 0,61 12,84 2,63 1,04 0,99 0,90

6 0,56 14,54 2,58 1,19 1,14 0,62

2 0,44 5,49 0,66 0,26 0,15 0,14

3 0,95 11,45 1,94 1,07 0,59 0,32

30 4 0,82 13,97 3,06 0,98 0,61 0,52
5 0,87 15,67 3,23 1,42 0,78 0,46

6 0,71 14,70 2,82 1,23 1,21 0,97

Média Geral 0,67 9,50 1,80 0,90 0,68 0,47

Fonte: O Autor (2018).

Uma comparacdo mais precisa pode ser feita analisando as Figuras 3 e 4, que
apresentam os valores do erro relativo projetados contra 0 nimero de tarefas e o niamero de
maquinas, respectivamente. Na Figura 3, cada ponto representa a média de 125 pontos (25
problemas para 5 diferentes quantidades de maquinas). Na Figura 4, cada ponto representa a
média de 100 pontos (25 problemas para 4 diferentes quantidades de maquinas).

A partir das Figuras 3 e 4, pode-se notar que as heuristicas propostas G10, G15 e G20
sdo equiparaveis a heuristica HH1. No entanto, HH1 apresenta um tempo de computacional
muito maior, conforme ilustrado nas Figuras 5 e 6. De modo geral, a medida que o numero de
maquinas aumenta, o erro médio de todas as heuristicas também aumenta. Esse fendmeno é
caracteristico da otimizagdo de Cmax, que tende a maximizar a eficiéncia dos recursos. Quanto
menor o numero de maquinas, melhor ¢ a distribuicdo dos recursos. O acréscimo de maquinas
conturba o sistema até um ponto de estabilidade, o que explica o perfil das curvas. J& em
relacdo ao numero de tarefas, pode-se verificar uma estabilidade em torno da média do desvio

relativo, principalmente entre as versoes a partir de G10. G15, G20 e HH1.



Figura 3 — Erro relativo médio das heuristicas GL (L =1, 5, 10, 15e 20) e

HH1 em relagdo ao numero de tarefas
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Figura 4 — Erro relativo médio das heuristicas GL (L =1, 5, 10, 15e 20) e

Erro Relativo (%)

HH1 em relacdo ao numero de maquinas
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Figura 5 — Tempo computacional das heuristicas GL (L = 1, 5, 10, 15 e 20) Figura 6 — Tempo computacional das heuristicas GL (L = 1, 5, 10, 15 e 20)
e HH1 em relacdo ao numero de tarefas e HH1 em relacdo ao nimero de maquinas
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A Tabela 2 apresenta os resultados do teste de hipotese de Tukey, comparando 0s

desvios relativos médios gerais das heuristicas com um nivel de significancia de 5% (0,05).

Tabela 2 — Resultados do teste Tukey das heuristicas GL (L =1, 5, 10, 15 e 20) e HH1

Intervalo de Confianca 95%

(1) Heuristica  (J) Heuristica Diferenca média (1-J) Erro Padrdo  Significancia
Limite inferior ~ Limite superior
Gl -8,82837" 0,13890 0,000 -9,2245 -8,4323
G10 -0,23077 0,13890 0,558 -0,6269 0,1653
HH1 G15 -0,00637 0,13890 10,000 -0,4024 0,3897
G20 0,20110 0,13890 0,698 -0,1950 0,5972
G5 -1,13781" 0,13890 0,000 -1,5339 -0,7417
HH1 8,82837" 0,13890 0,000 8,4323 9,2245
G10 8,59760" 0,13890 0,000 8,2015 8,9937
Gl G15 8,82201" 0,13890 0,000 8,4259 9,2181
G20 9,02947" 0,13890 0,000 8,6334 9,4256
G5 7,69057" 0,13890 0,000 7,2945 8,0866
HH1 1,13781" 0,13890 0,000 0,7417 1,5339
Gl -7,69057" 0,13890 0,000 -8,0866 -7,2945
G5 G10 0,90704" 0,13890 0,000 0,5110 1,3031
G15 1,13144" 0,13890 0,000 0,7354 1,5275
G20 1,33891" 0,13890 0,000 0,9428 1,7350
HH1 0,23077 0,13890 0,558 -0,1653 0,6269
Gl -8,59760" 0,13890 0,000 -8,9937 -8,2015
G10 G15 0,22441 0,13890 0,588 -0,1717 0,6205
G20 0,43187" 0,13890 0,023 0,0358 0,8280
G5 -,90704" 0,13890 0,000 -1,3031 -,5110
HH1 0,00637 0,13890 10,000 -0,3897 0,4024
Gl -8,82201" 0,13890 0,000 -9,2181 -8,4259
G15 G10 -0,22441 0,13890 0,588 -0,6205 0,1717
G20 0,20746 0,13890 0,668 -0,1886 0,6035
G5 -1,13144" 0,13890 0,000 -1,5275 -0,7354
HH1 -0,20110 0,13890 0,698 -0,5972 0,1950
Gl -9,02947* 0,13890 0,000 -9,4256 -8,6334
G20 G10 -0,43187" 0,13890 0,023 -0,8280 -0,0358
G15 -0,20746 0,13890 0,668 -0,6035 0,1886
G5 -1,33891" 0,13890 0,000 -1,7350 -0,9428

* A diferenca média € significativa no nivel 0,05.

Fonte: O Autor (2018).
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A primeira e a segunda colunas indicam as heuristicas comparadas. A terceira coluna
mostra a diferenca média, ou seja, a diferenca entre o erro relativo da heuristica na primeira
coluna menos o da heuristica na segunda coluna. A quarta coluna mostra o erro padréo e a
coluna seguinte, a significancia. O simbolo * nos valores da quinta coluna indica se a
diferenga foi significativa.

O teste de Tukey, ao nivel de 95% de confianca, apresentou 4 subconjuntos de médias,
conforme pode-se verificar na Tabela 3. Esses grupos retinem as heuristicas com médias sem
diferenca estatistica significativa. Nota-se que a heuristica HH1, se equipara com as

heuristicas G15 e G20 no subconjunto 1, e com as heuristicas G15 e G10 no subconjunto 2.

Tabela 3 — Identificacdo de subconjuntos homogéneos ao nivel de 95% de confianca, de acordo com

teste de Tukey

Subconjunto para alfa = 0,05

Heuristica N
1 2 3 4

G20 500 0,4686
HH1 500 0,6697 0,6697

G15 500 0,6761 0,6761

G10 500 0,9005

G5 500 1,8075

Gl 500 9,4981

Significancia 0,668 0,558 1,000 1,000

Séo exibidas as médias para os grupos em subconjuntos homogéneos.

Fonte: O Autor (2018).

A Figura 7 ilustra o desvio relativo médio geral e a variabilidade das heuristicas
avaliadas. Alem de apresentar a menor media, G20 possui uma variancia menor dos desvios
em comparagdo as outras heuristicas. A Figura também ilustra se as médias apresentam ou
ndo diferenca estatistica significativa, como o caso no qual se sobreponham as médias de G15
e HH1.

Como era esperado, fica evidente o ganho de performance da heuristica GL em funcgéo
do aumento do nimero de iteragbes L. No entanto, o ganho diminui a cada acréscimo. 1sso
significa que a melhora da heuristica custara cada vez mais tempo computacional e havera um
momento no qual ndo serd mais possivel obter ganho somente aumentando o valor desse

parametro.
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Figura 7 — Gréafico de médias, ao nivel de 95% de confianca, do desvio relativo médio geral
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Fonte: O Autor (2018)

6.2 ANALISE DAS HEURITICAS PARA MINIMIZACAO DE TTF SUJEITO AO Cwuax

A performance das heuristicas para a minimizagdo de TTF sujeito a0 Cmax (G1, G5,
G10, G15, G20 e PA20) séo avaliadas nesta secdo. Os resultados para o erro relativo sdo
apresentados na Tabela 4, na qual cada valor também representa a média de 25 problemas.
Pode-se verificar que a heuristica GL proposta supera a heuristica PA20 a partir da versao
G10 em todas as combinag6es de m e n testadas.

As Figura 8 e 9 apresentam os valores do erro relativo projetados contra 0 numero de
tarefas e 0 nUmero de maquinas, respectivamente. Assim como na secao anterior, cada ponto
na Figura 8 representa a média de 125 pontos (25 problemas para 5 diferentes quantidades de
maquinas). E na Figura 9, cada ponto representa a média de 100 pontos (25 problemas para 4
diferentes quantidades de maquinas). Pode se verificar que, em relacdo a qualidade da

solucdo, a heuristica G5 alcanca resultados equiparaveis a PA20.
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Tabela 4 — Erro relativo médio das heuristicas GL (L =1, 5, 10, 15 e 20) e PA20

Tarefas  Maquinas PA20 Gl G5 G10 G15 G20
2 2,30 10,52 0,99 0,57 0,37 0,06

3 1,94 10,56 1,05 0,82 0,74 0,13

15 4 2,64 10,05 1,45 0,61 0,44 0,33
5 1,38 8,62 0,82 0,49 0,47 0,35

6 1,83 7,97 1,15 0,71 0,31 0,22

2 2,43 16,25 1,59 0,37 0,63 0,20

3 2,87 13,51 2,43 0,84 0,35 0,87

20 4 3,00 11,81 1,68 1,28 0,76 0,74
5 2,22 13,09 2,05 1,07 0,92 0,17

6 2,12 12,87 2,45 0,91 0,62 0,45

2 3,13 19,04 2,73 0,67 0,28 0,22

3 3,92 19,44 2,67 1,24 0,59 0,30

25 4 2,95 15,33 3,12 1,28 1,15 0,28
5 2,68 15,20 2,65 1,28 1,10 0,77

6 2,15 16,21 2,85 1,43 0,85 0,37

2 3,66 24,01 3,51 0,84 0,63 0,24

3 3,51 18,39 3,88 1,08 0,96 0,43

30 4 2,75 16,93 3,24 0,71 0,69 0,62
5 2,62 18,56 3,91 1,69 0,81 0,69

6 2,71 17,58 3,91 1,55 0,88 0,74

Média Geral 2,64 14,80 2,41 0,97 0,68 0,41

Fonte: O Autor (2018).

De modo geral, o erro médio das heuristicas diminui a medida que o nimero de
maquinas aumenta. Esse fenbmeno é caracteristico da minimizacdo do TTF, que tende a
otimizar a resposta do sistema para entrega e reduzir o inventéario de tarefas. No entanto,
quanto menor o nimero de maquinas, mais instavel € o sistema. O acréscimo de maquinas
ajuda a estabilizar o fluxo de tarefas, conforme o perfil das curvas. Por outro lado, assim
como na otimizagdo de Cmax, mantem-se a tendéncia de aumento do erro relativo médio a
medida que o nimero de tarefas aumenta, principalmente em relacéo as heuristicas propostas.

A Tabela 5 apresenta os resultados do teste de hipdtese de Tukey, comparando as
médias entre as heuristicas com um nivel de significancia de 5% (0,05). A partir dos dados,
pode-se identificar que ha diferenga significativa das heuristicas G10, G15 e G20 em
comparacdo com PA20. Além disso, embora PA20 apresente um tempo de computacional
inferior a G20, seu tempo € equipardvel a G15 e superior a G10, conforme ilustrado nas
Figuras 10 e 11. Essas analises, somadas a avaliacdo do grafico de médias da Figura 12,

indicam que as 3 versdes GL propostas superam a heuristica PA20.
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Figura 9 — Erro relativo médio das heuristicas GL (L =1, 5, 10, 15e 20) e

Erro Relativo (%)

PA20 em relagdo ao nimero de maquinas

17.5 4

15.0 4

12.5 A

10.0 ~

7.5 4

5.0

Heuristcs
—&— PA20
-m- Gl
=¥ G5
—¢~- G10
—— GI15
-&- G20

Numero de Maquinas

Fonte: O Autor (2018).



38

Figura 10 — Tempo computacional das heuristicas GL (L =1, 5, 10, 15 e

Tempo Computacional (sequndos)
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Figura 11 — Tempo computacional das heuristicas GL (L =1, 5, 10, 15 e

Tempo Computacional (segundos)

20) e PA20 em relacdo ao nimero de maquinas
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Tabela 5 — Resultados do teste Tukey das heuristicas GL (L =1, 5, 10, 15 e 20) e PA20

Intervalo de Confianca 95%

(1) Heuristicas (J) Heuristicas Diferenca média (I-J) Erro Padrdo Significancia  Limite inferior ~ Limite superior
G10 13,82415" 0,18792 0,000 13,2883 14,3600
G15 14,11958" 0,18792 0,000 13,5837 14,6554
Gl G20 14,38768" 0,18792 0,000 13,8518 14,9235
G5 12,38966" 0,18792 0,000 11,8538 12,9255
PA20 12,15543" 0,18792 0,000 11,6196 12,6913
Gl -12,38966" 0,18792 0,000 -12,9255 -11,8538
G10 1,43449" 0,18792 0,000 0,8986 1,9704
G5 G15 1,72992" 0,18792 0,000 1,1941 2,2658
G20 1,99802" 0,18792 0,000 1,4622 2,5339
PA20 -0,23423 0,18792 0,814 -0,7701 0,3016
Gl -13,82415" 0,18792 0,000 -14,3600 -13,2883
G15 0,29543 0,18792 0,617 -0,2404 0,8313
G10 G20 0,56353" 0,18792 0,033 0,0277 1,0994
G5 -1,43449" 0,18792 0,000 -1,9704 -0,8986
PA20 -1,66872" 0,18792 0,000 -2,2046 -1,1329
Gl -14,11958" 0,18792 0,000 -14,6554 -13,5837
G10 -0,29543 0,18792 0,617 -0,8313 0,2404
G15 G20 0,26810 0,18792 0,711 -0,2678 0,8040
G5 -1,72992* 0,18792 0,000 -2,2658 -1,1941
PA20 -1,96415" 0,18792 0,000 -2,5000 -1,4283
Gl -14,38768" 0,18792 0,000 -14,9235 -13,8518
G10 -0,56353" 0,18792 0,033 -1,0994 -0,0277
G20 G15 -0,26810 0,18792 0,711 -0,8040 0,2678
G5 -1,99802" 0,18792 0,000 -2,5339 -1,4622
PA20 -2,23225" 0,18792 0,000 -2,7681 -1,6964
Gl -12,15543" 0,18792 0,000 -12,6913 -11,6196
G10 1,66872" 0,18792 0,000 1,1329 2,2046
PA20 G15 1,96415" 0,18792 0,000 1,4283 2,5000
G20 2,23225" 0,18792 0,000 1,6964 2,7681
G5 0,23423 0,18792 0,814 -0,3016 0,7701

* A diferenca média é significativa no nivel 0,05.

Fonte: O Autor (2018).

Na Tabela 6, podemos identificar que o teste de hipotese de Tukey, ao nivel de 95% de

confianca, encontrou 4 subconjuntos de médias. A heuristica PA20, de acordo com os dados,

se equipara com a versdo G5. Ja G15 encontra-se entre 0s subconjuntos 1 e 2, onde estdo

contidos G20 e G10, respectivamente.
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Tabela 6 — Identificacdo de subconjuntos homogéneos ao nivel de 95% de confianca, de acordo com

teste de Tukey.

Subconjunto para alfa = 0,05

Heuristicas N
1 2 3 4
G20 500 0,4087
G15 500 0,6768 0,6768
G10 500 0,9722
G5 500 2,4067
PA20 500 2,6409
Gl 500 14,7963
Significancia 0,711 0,617 0,814 1,000

S0 exibidas as médias para 0s grupos em subconjuntos homogéneos.

Fonte: O Autor (2018).]

Figura 12 — Gréfico de médias, ao nivel de 95% de confianca, do desvio relativo médio geral das

heuristicas avaliadas
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A Figura 12 ilustra o desvio relativo médio geral e a variabilidade das heuristicas.
Nota-se que G20 possui a menor media e menor variancia dos desvios. Além disso, a
diferenca das heuristicas G20, G15 e G10 em relacdo a PA20 fica evidente. Verifica-se
também a proximidade de PA20 e G5. O comportamento da performance de GL em relacédo

ao numero de iteracdes é semelhante ao experimento anterior.
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4 CONCLUSAO

Neste trabalho, foi abordado o problema de programacdo no-wait flowshop com dois
objetivos: (1) minimizar o makespan sujeito a restricdo de que o tempo médio de fluxo é
menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo sujeito a restricdo de
que o makespan € menor ou igual a um dado valor. Foi apresentado o Algoritmo-M e o
Algoritmo-K, usados na obtencdo das solucdes iniciais e restricdes das heuristicas para 0s
experimentos computacionais.

Para o objetivo (1), foi avaliada a heuristica HH1 e cinco versGes da heuristica
proposta GL (G1, G5, G10, G15 e G20). Os erros relativos médios gerais, sobre o nimero de
tarefas e maquinas, de HH1, G5, G10, G15 e G20 foram 0,67; 9,50; 1,80; 0,90; 0;68; e 0,47;
respectivamente. Embora os erros de HH1, G10, G15 e G20 sejam equiparaveis, 0 tempo
computacional de HH1 foi significativamente maior. Isso evidencia a superioridade da
heuristica GL. Para o objetivo (2), foi avaliada a heuristica PA20 (PAL com parametro L =
20) e novamente cinco versdes da heuristica proposta GL (G1, G5, G10, G15 e G20). Os erros
relativos médios gerais de PA20, G5, G10, G15 e G20 foram 2,64; 14,80; 2,41; 0,97; 0,68; e
0,41; respectivamente. Esses dados evidenciam a superioridade de G10, G15 e G20. E embora
o0 erro de PA20 e G5 sejam equiparaveis, o tempo computacional de PA20 foi
significativamente maior. Isso evidencia a superioridade de GL também para o objetivo (2).

E importante destacar que dos trés pardmetros de entrada da heuristica GL (d, T e L),
somente variagdes de L foram testadas. Mesmo tendo definido para os outros dois parametros
os melhores valores para um problema de programacdo flowshop regular (RUIZ; STUTZLE,
2007), é possivel que esses valores ndo sejam os melhores para o caso no-wait. Portanto, em
uma abordagem futura, poder-se-ia explorar variagdes desses pardmetros com o objetivo de
verificar se ainda existe a possibilidade de ganho de performance.

Implementar as heuristicas com diferentes variagdes no numero de tarefas e maquinas
também é outra possibilidade a ser explorada. Nos experimentos computacionais apresentados
aqui, foram testados valores baixos para o numero de tarefas e maquinas. Mesmo que
aumentar esses valores signifique lidar com um custo computacional elevado, isso seria
validado para verificar se as heuristicas apresentariam mudanga de comportamento.

Outra extensdo sugerida é considerar os tempos de setup e manutencdo. Neste
trabalho, esses tempos foram ignorados ou assumidos como inclusos nos tempos de
processamento. No entanto, essa abordagem pode néo ser adequada para alguns ambientes de

processamento, sendo necessario tratar esses dados de forma separada.
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