
São Carlos

2018

UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

FERNANDO SIQUEIRA DE ALMEDA

Heurísticas para o problema de programação no-wait flowshop

São Carlos

2018

FERNANDO SIQUEIRA DE ALMEIDA

Heurísticas para o problema de programação no-wait flowshop

Monografia apresentada ao Curso de

Engenharia de Produção, da Escola de

Engenharia de São Carlos da Universidade de

São Paulo, como parte dos requisitos para

obtenção do título de Engenheiro de

Produção.

Orientador: Prof. Dr. Marcelo Seido Nagano

Área de concentração: Pesquisa Operacional

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE PRODUTO, POR
QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE
ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Eduardo Graziosi Silva - CRB - 8/8907

Siqueira de Almeida, Fernando

S363c Heurísticas para o problema de programação no-wait

flowshop / Fernando Siqueira de Almeida; orientador

Marcelo Seido Nagano. São Carlos, 2018.

Monografia (Graduação em Engenharia de Produção) --

Escola de Engenharia de São Carlos da Universidade de

São Paulo, 2018.

1. no-wait flowshop. 2. makespan. 3. tempo médio de

fluxo. 4. tempo total de fluxo. I. Título.

A minha família e amigos pelo

apoio e carinho.

AGRADECIMENTOS

Ao Prof. Dr. Marcelo Seido Nagano pelo incentivo, pelas orientações e pela grande

oportunidade de aprendizado que me proporcionou durante o trabalho.

Ao meu amigo e colega de laboratório Hugo Hissashi Miyata, pelo apoio técnico,

sugestões e esclarecimento de dúvidas.

Ao meu amigo e colega de quarto Vinicius Ribeiro da Silva por todo o auxílio e

paciência.

Aos docentes e aos funcionários do Departamento de Engenharia de Produção da

EESC – USP.

Muito obrigado a todos!

“Intelligence is not a privilege, it's a gift, to be used for the good of mankind”.

(SPIDER-MAN 2, 2004)

RESUMO

ALMEIDA, F. S. Heurísticas para o problema de programação no-wait flowshop. 2018.

22 f. Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de São Carlos,

Universidade de São Paulo, São Carlos, 2018.

Este trabalho aborda o problema de programação no-wait flowshop. Dois objetivos são

considerados: (1) minimizar o makespan sujeito à restrição de que o tempo médio de fluxo é

menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo sujeito à restrição de

que o makespan é menor ou igual a um dado valor. Dado que esses problemas são

considerados intratáveis (NP-Hard), diversos métodos heurísticos têm sido propostos. Para

cada um dos dois objetivos, é proposta uma adaptação da meta-heurística de Ruiz e Stützle

(2007), Iterated Greedy with Local Search (GL), com cinco versões L (1, 5, 10, 15 e 20). As

cinco versões de GL adaptadas para o objetivo 1 são comparadas com a heurística HH1,

proposta por Aydilek e Allahverdi (2012). E as cinco versões de GL adaptadas para o objetivo

2 são comparadas com a heurística PA20, proposta por Allanhverdi e Aydilek (2013). As

heurísticas são avaliadas em problemas gerados aleatoriamente, com diferentes números de

tarefas e máquinas, e nas mesmas condições iniciais. Todos os resultados são verificados

estatisticamente. Os experimentos computacionais relativos ao objetivo 1 mostram que o erro

relativo médio geral de G20 é menor do que o de HH1, enquanto o tempo de CPU de G20 é

significativamente menor que o de HH1. Portanto, o algoritmo G20 é superior a heurística

HH1. Da mesma forma, os experimentos computacionais relacionados ao objetivo 2 mostram

que os erros relativos médios gerais de G10, G15 e G20 são menores do que o de PA20.

Portanto, os algoritmos G10, G15 e G20 superam a performance da heurística PA20.

Palavras-chave: No-wait flowshop. Makespan. Tempo médio de fluxo. Tempo total de fluxo.

ABSTRACT

ALMEIDA, F. S. Heuristics for the no-wait flowshop scheduling problem. 2018. 22 f.

Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de São Carlos,

Universidade de São Paulo, São Carlos, 2018.

This work addresses the no-wait flowshop scheduling problem. Two objectives are

considered: (1) minimizing makespan subject to the constraint that mean completion time is

less than or equal to a given value; and (2) minimizing the total completion time subject to the

constraint that the makespan is less than or equal to a given value. Since these problems are

considered intractable (NP-Hard), several heuristic methods have been proposed. For each of

the two objectives, it is proposed an adaptation of Ruiz and Stützle’ metaheuristic (2007),

Iterated Greedy with Local Search (GL), with five versions L (1, 5, 10, 15 and 20). The five

versions of GL adapted for objective 1 are compared with the HH1 heuristic proposed by

Aydilek and Allahverdi (2012). And the five versions of GL adapted for objective 2 are

compared with the PA20 heuristic proposed by Allanhverdi and Aydilek (2013). The

heuristics are evaluated on randomly generated problems, with different numbers of jobs and

machines, and under the same initial conditions. All results are statistically verified.

Computational experiments related to objective 1 show that the overall average relative error

of G20 is smaller than that of HH1, while the CPU time of G20 is significantly smaller than

that of HH1. Therefore, the G20 algorithm is superior to the HH1 heuristic. In the same way,

computational experiments related to objective 2 show that the overall average relative errors

of G10, G15 and G20 are smaller than that of PA20. Therefore, the G10, G15 and G20

heuristics outperform the PA20 heuristic.

Keywords: No-wait flowshop. Makespan. Mean completion time. Total completion time.

SUMÁRIO

1 INTRODUÇÃO... 16

2 REVISÃO BIBLIOGRÁFICA .. 17

3 DEFINIÇÃO DO PROBLEMA .. 19

3.1 O PROBLEMA DE PROGRAMAÇÃO NO-WAIT FLOWSHOP .. 19

3.2 MINIMIZAÇÃO DE MAKESPAN SUJEITO AO TEMPO MÉDIO DE FLUXO 20

3.3 MINIMIZAÇÃO DO TEMPO TOTAL DE FLUXO SUJEITO AO MAKESPAN 21

4 ALGORITMOS PARA OBTENÇÃO DAS SOLUÇÕES INICIAIS E RESTRIÇÕES 22

4.1 ALGORITMO-M .. 22

4.2 ALGORITMO-K ... 22

5 HURÍSTICAS ... 24

5.1 HURÍSTICA HH1 ... 24

5.2.1 modified Simulated Annealing (mSA) ... 24

5.2.2 Heurística HA ... 25

5.2 HEURÍSTICA PAL ... 25

5.3 HEURÍSICA PROPOSTA - ITERATED GREEDY WITH LOCAL SEARCH (GL) 26

6 EXPERIMENTO COMPUTACIONAL ... 29

6.1 ANÁLISE DAS HEURÍTICAS PARA MINIMIZAÇÃO DE CMAX SUJEITO AO TMF 29

6.2 ANÁLISE DAS HEURÍTICAS PARA MINIMIZAÇÃO DE TTF SUJEITO AO CMAX 35

4 CONCLUSÃO ... 42

REFERÊNCIAS .. 43

16

1 INTRODUÇÃO

O problema de programação flowshop tem sido objeto de estudado desde a década de

50 (GUPTA; STAFFORD, 2005; JOHNSON, 1954), sendo conhecido por sua complexidade

(GAREY; JOHNSON; SETHI, 1976) e extensa área de aplicação (HALL;

SRISKANDARAJAH, 1996). O problema flowshop regular consiste em n tarefas a serem

processadas em m máquinas. Cada tarefa requer m operações e cada operação requer uma

diferente máquina. Todos as tarefas são processadas na mesma ordem de máquinas

(AYDILEK; ALLAHVERDI, 2012). Em um problema flowshop regular, um buffer infinito é

assumido e as tarefas podem aguardar entre as máquinas (NAGANO; MIYATA, 2016a).

No entanto, existem outras situações em que filas e o processamento descontínuo não

são permitidos, como o problema de programação no-wait flowshop. De acordo com

Allahverdi e Aydilek (2013), “Um problema no-wait flowshop ocorre quando as operações de

um tarefa devem ser processadas continuamente do início ao fim, sem interrupções, tanto no

início como entre as máquinas”. Minimizar o tempo total de fluxo e o makespan são dois

objetivos comuns nesse problema de programação. Minimizar o makespan é importante em

situações nas quais é necessário a conclusão de um lote completo de produtos o mais rápido

possível. Minimizar o tempo total de fluxo é importante em situações nas quais é necessário a

entrega de cada produto assim que for concluído (ALLAHVERDI; AYDILEK, 2013;

AYDILEK; ALLAHVERDI, 2012). Como o problema no-wait flowshop é considerado

intratável (NP-hard), os métodos propostas não garantem solução ótima (NAGANO;

MIYATA, 2016a). Portanto, o desenvolvimento de heurísticas para obtenção de boas soluções

a um custo computacional razoável representa um importante tema de estudo.

Neste trabalho, é abordado o problema de programação no-wait flowshop

considerando duas situações: (1) minimizar o makespan sujeito à restrição de que o tempo

médio de fluxo é menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo

sujeito à restrição de que o makespan é menor ou igual a um dado valor. O objetivo é propor

heurísticas para os dois casos e avaliar seu desempenho frente a outras heurísticas

equivalentes na literatura. O restante deste trabalho é organizado da como se segue. O

Capítulo 2 é dedicado a revisão da literatura. No Capítulo 3, é apresentada a definição do

problema nos dois casos de otimização. No Capítulo 4, é apresentado dois algoritmos para

obtenção das restrições e soluções iniciais. No Capítulo 5, é feita a descrição das heurísticas

avaliadas. O Capítulo 6 é dedicado aos resultados do experimento computacional. Por fim, as

conclusões são apresentadas no Capítulo 7.

17

2 REVISÃO BIBLIOGRÁFICA

Diferente do problema de programação flowshop regular, no qual é assumido um

buffer infinito, o problema no-wait flowshop caracteriza-se por ter suas tarefas processadas

sem interrupção entre máquinas consecutivas. Para esse tipo de problema, são encontradas

diversas formas de aplicações práticas. As indústrias de metal, plástico, produtos químicos e

de alimentos são alguns exemplos. Nessas indústrias, existem alguns parâmetros do material

em processo, como por exemplo temperatura e viscosidade, que exigem que cada operação

siga a anterior imediatamente (HALL; SRISKANDARAJAH, 1996). O no-wait flowshop

também é amplamente aplicado na manufatura de semicondutores (CHIEN et al., 2008;

RITZO et al., 2011) e na manufatura de placas de circuito impresso (CHE; CHU, 2007). Além

disso, ambientes modernos como sistemas flexíveis de manufatura, just-in-time e manufatura

ágil também podem ser modelados como um problema de programação no-wait

(BERTOLISSI, 2000).

Minimizar o tempo total de fluxo (ou o equivalente tempo médio de fluxo) e o

makespan são dois objetivos amplamente estudados pelos pesquisadores. Minimizar o tempo

total de fluxo de todas as tarefas é importante em situações nas quais cada produto concluído

é necessário assim que for processado. Esse objetivo também traz benefícios quando se busca

reduzir inventário ou conter custos. Reduzir o makespan é um objetivo importante em

situações nas quais o recebimento de um lote completo de produtos é requerido assim que

possível. Além disso, minimizar o makespan tende a aumentar a utilização de máquinas e

recursos (ALLAHVERDI; AYDILEK, 2013). Ambos os objetivos têm sido amplamente

abordados para diferentes ambientes de programação.

 O primeiro registro de estudo sobre o problema no-wait flowshop com o objetivo de

minimizar o makespan vem da década de 70, por Van Deman e Baker (1974). Desde então,

muitas heurísticas já foram propostas para o problema, como por exemplo as de Bonney e

Gundry (1976), King e Spachis (1980), Gangadharan e Rajendran (1993), Rajendran (1994) e

Aldowaisan e Allahverdi (2003). Grabowski e Pempera (2005) comparou várias de suas

heurísticas com duas heurísticas de busca local propostas por Schuster e Framinan (2003), nas

quais as heurísticas de busca local foram comparadas com a heurística proposto por Rajendran

(1994). Framinan e Nagano (2008) propuseram uma heurística baseada no problema no-wait

flowshop e o problema Traveling Salesman. Tseng e Lin (2010) apresentaram um algoritmo

genético híbrido e Zhu et al. (2009) apresentaram um algoritmo de busca local. Qian et al.

(2009) propuseram para o problema um algoritmo do tipo evolução diferencial híbrido. Já

18

Nagano e Miyata (2016b) propuseram uma heurística construtiva a partir de sequências

parciais das tarefas.

Na literatura, também são encontrados diversos trabalhos sobre o problema no-wait

flowshop voltados ao objetivo de minimizar o tempo total de fluxo. Rajendran e Chaudihuri

(1990), por exemplo, propuseram duas heurísticas que se provaram superiores às suas

predecessoras. Chen et al. (1996) posteriormente desenvolveu um algoritmo genético (GA) e

o comparou com os algoritmos de Rajendran e Chaudihuri (1990). Fink e VoB (2003)

examinou a aplicação de diferentes métodos heurísticos. Aldowaisan e Allahverdi (2004)

propuseram várias outras heurísticas que se provaram superiores as de Rajendran e

Chaudihuri (1990) e as de Chen et al. (1996). Shyu et al. (2004) propuseram uma heurística de

otimização de colônia de formigas e a compararam com as heurísticas anteriores. Pan et al.

(2008) apresentaram um algoritmo de otimização particle swarm para o problema. Framinan

et al. (2010) propuseram uma nova heurística para o problema e mostraram que ela possuía

melhor performance do que as heurísticas pré-existentes. Nagano et al. (2012) abordou o

mesmo problema, mas considerou os tempos de setup de trabalho separado dos tempos de

processamento. Nagano et al. (2012) propuseram uma combinação de GA e pesquisa de

cluster que se mostrou superior às heurísticas anteriores.

Além dos trabalhos mencionados até então, que consideram a minimização de somente

uma medida de performance, existem outros estudos que abordaram o problema considerando

mais de um parâmetro. Allahverdi e Aldowaisan (2002) consideraram o problema de

otimização com makespan e o tempo total de fluxo, reduzindo o problema por meio da

conversão dos dois parâmetros para uma medida, em uma soma ponderada das duas. No caso

do estudo de Framinan e Leisten (2006), foi considerado um flowshop regular (sem no-wait)

como o objetivo de minimizar o makespan sujeito a restrição de que o máximo atraso devesse

ser menor ou igual a um dado valor. Aydilek e Allahverdi (2012) abordaram o problema no

qual o objetivo era minimizar o makespan sujeito à restrição de que o tempo médio de fluxo

não fosse maior ou igual a um dado valor. Logo em seguida, Allahverdi e Aydilek (2013)

abordaram o problema com o objetivo de minimizar o tempo total de fluxo sujeito à restrição

de que o makespan não fosse maior ou igual a um dado valor. Mais recentemente, Allahverdi

et al. (2018) propuseram um algoritmo para minimizar o atraso total sujeito à restrição de que

o makespan não fosse maior do que um dado valor.

Revisões abrangentes sobre o estado da arte nesta área de programação são

apresentadas por Hall e Sriskandarajah (1996), Nagano e Miyata (2016a) e Allahverdi (2016).

19

3 DEFINIÇÃO DO PROBLEMA

Neste Capítulo, é apresentada a descrição do problema de programação no-wait

flowshop e os dois objetivos de otimização. Deve ser notado que o tempo médio de fluxo e o

tempo total de fluxo são medidas de performance equivalentes. Os problemas só foram

abordados dessa forma para facilitar a comparação com as heurísticas da literatura

selecionadas para avaliação.

3.1 O PROBLEMA DE PROGRAMAÇÃO NO-WAIT FLOWSHOP

Seja {J1, J2, ..., Jn} um conjunto de n tarefas e {M1, M2, ..., Mm} um conjunto de m

máquinas. Sejam Oi,j e ti,j respectivamente a operação e o tempo de processamento da tarefa Jj

na máquina Mi. O problema de programação flowshop regular ocorre quando cada uma das n

tarefas são processadas em todas as m máquinas com a mesma sequência de processamento

ou ordem de máquinas. Quando o flowshop apresenta o fenômeno no-wait, as tarefas não

podem esperar entre duas máquinas sucessivas. Isso implica que, se necessário, o início de

uma tarefa deve ser atrasado na primeira máquina, para garantir que o fim de uma operação

coincida com o início da operação seguinte na máquina subsequente (NAGANO; MIYATA,

2016a). Um gráfico de Gantt ilustrando uma programação genérica do no-wait flowshop é

apresentado na Figura 1.

Figura 1 – Gráfico de Gantt do problema de programação no-wait flowshop

Fonte: Adaptado de (NAGANO; MIYATA, 2016a).

Para a abordagem do no-wait flowshop, são assumidas as seguintes condições:

20

(1) As máquinas estão à disposição em 100% do tempo (nunca se quebram);

(2) Cada máquina pode processar no máximo um trabalho por vez;

(3) Qualquer tarefa pode ser processada em no máximo uma máquina por vez;

(4) Todos as tarefas estão disponíveis desde o início do horizonte de planejamento;

(5) Uma vez iniciada a operação, ela é processada até ser concluída;

(6) Os tempos de setup são ignorados ou assumidos inclusos nos tempos de processamento;

(7) Os tempos de processamento são determinados e conhecidos antecipadamente.

Seja di-1,i o atraso mínimo na primeira máquina entre o final da tarefa Ji e o início da

tarefa Ji+1. E seja {𝑎𝑘}𝑘=𝑥
𝑦

 uma sequência cujo domínio é dado por {𝑘 ∈ ℕ | 𝑥 ≤ 𝑘 ≤ 𝑦}.

Nessas condições, di-1,i pode ser definido como:

 ∀ 𝑖 ∈ ℕ | 2 ≤ 𝑖 ≤ 𝑛,

𝑑𝑖−1,𝑖 = 𝑚𝑎𝑥 ({∑ 𝑡𝑖−1,𝑗

𝑘

𝑗=2
− ∑ 𝑡𝑖 ,𝑝

𝑘−1

𝑝=1
}

𝑘=2

𝑚

 , 0)
(1)

Seja Ci o tempo de conclusão de todas as operações da tarefa Ji. Assim temos:

𝐶𝑖 = ∑ 𝑑𝑘−1,𝑘

𝑖

𝑘=2
+ ∑ 𝑡𝑝,1

𝑖

𝑝=1
+ ∑ 𝑡𝑖,𝑗

𝑚

𝑗=2

(2)

O makespan (Cmax) é definido como o tempo necessário para o processamento de todas

as tarefas do sistema, ou seja, o intervalo de tempo entre o momento de início do

processamento da operação O1,1 e o momento de conclusão do processamento da operação

On,m. Desta forma, Cmax (equivalente a Cn) pode ser calculado como:

 𝐶𝑚𝑎𝑥 = ∑ 𝑑𝑘−1,𝑘

𝑛

𝑘=2
 + ∑ 𝑡𝑝,1

𝑛

𝑝=1
+ ∑ 𝑡𝑛,𝑗

𝑚

𝑗=2
 (3)

3.2 MINIMIZAÇÃO DE MAKESPAN SUJEITO AO TEMPO MÉDIO DE FLUXO

O tempo médio de fluxo (TMF) é definido como a média aritmética das somas dos

tempos de conclusão de todas as tarefas do sistema, ou seja

𝑇𝑀𝐹 =

1

𝑛
 ∑ 𝐶𝑖

𝑛

𝑖=1
. (4)

21

Seja M o limite superior para o MTC. Além disso, deixe que Cmax(π) e TMF(π)

representem o makespan e o tempo médio de fluxo de uma determinada sequência π. Nessas

condições, o problema pode ser definido como:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑟 𝐶𝑚𝑎𝑥(𝜋)
𝑆𝑢𝑏𝑗𝑒𝑖𝑡𝑜 𝑎𝑜 𝑇𝑀𝐹(𝜋) ≤ 𝑀

(5)

Em outras palavras, o problema consiste em encontrar uma sequência de

processamento π que minimize o Cmax tal que o TMF seja menor ou igual ao valor M. Em um

problema real, esse valor M dever ser dado pelo programador. No caso em que o valor M não

é dado, ele pode ser obtido por um algoritmo, como o apresentado no Capítulo 4.

3.3 MINIMIZAÇÃO DO TEMPO TOTAL DE FLUXO SUJEITO AO MAKESPAN

O tempo total de fluxo (TTF) é definido como a soma dos tempos de conclusão de

todas as tarefas do sistema, ou seja

𝑇𝑇𝐹 = ∑ 𝐶𝑖

𝑛

𝑖=1
. (6)

Seja K o limite superior para o TTF. Além disso, deixe que Cmax(π) e TTF(π)

representem o makespan e o tempo total de fluxo de uma determinada sequência π. Nessas

condições, o problema pode ser definido como:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑟 𝑇𝑇𝐹(𝜋)
𝑆𝑢𝑏𝑗𝑒𝑖𝑡𝑜 𝑎𝑜 𝐶𝑚𝑎𝑥(𝜋) ≤ 𝐾

(7)

Em outras palavras, o problema consiste em encontrar uma sequência de

processamento π que minimize o TTF tal que o Cmax seja menor ou igual ao valor K. Em um

problema real, esse valor K dever ser dado pelo programador. No caso em que o valor K não é

dado, ele pode ser obtido por um algoritmo, como o apresentado no Capítulo 4.

22

4 ALGORITMOS PARA OBTENÇÃO DAS SOLUÇÕES INICIAIS E RESTRIÇÕES

Neste capítulo, é apresentado o Algoritmo-M, proposto por Aydilek e Allahverdi

(2012), para a obtenção de um limite superior para TMF (valor M) e o Algoritmo-K, proposto

por Allahverdi e Aydilek (2013), para obtenção de um limite superior para o Cmax (valor K),

usados na obtenção das soluções iniciais e restrições das heurísticas para o experimento

computacional.

4.1 ALGORITMO-M

Passo 1: Defina p = 1, h = 1

Passo 2: Selecione uma sequência aleatoriamente, chamada de sequência πp. Assuma Mp =

MTC(πP);

Passo 3: Permute as duas tarefas nas posições h e h+1 da sequência πP, e se o MTC da sequência

depois da troca for menor do que Mp, então atualize a sequência πP depois da troca e

defina Mp = TMF(πP);

Passo 4: Defina h = h+1, se h = n, siga para o passo 5, caso contrário, volte ao passo 3;

Passo 5: Defina p = p+1, se p = n, siga para o passo 6, caso contrário, volte ao passo 2;

Passo 6: Set M = mín(M1,, Mn);

Passo 7: Assuma π como sendo a sequência onde M é obtida.

Segundo Aydilek e Allahverdi (2012), o algoritmo acima pode ser resumido como:

n sequências são aleatoriamente selecionadas. Para cada sequência

aleatória selecionada, defina um valor Mp para o Cmax, então busque

(pelo método da troca de pares) para encontrar um melhor valor M,

onde Mp é atualizado cada vez que um melhor valor M é obtido. Ao

final, n de M valores (M1, ..., Mn). O menor de M1, ..., Mn é definido

como o valor M.

4.2 ALGORITMO-K

Passo 1: Defina p = 1, h =1

Passo 2: Selecione aleatoriamente uma sequência, chamada de sequência πp. Defina Kp = Cmax(πp);

Passo 3: Permute as duas tarefas nas posições h e h + 1 da sequência πp, e se o Cmax da sequência

depois da troca for menor que Kp, então atualize a sequência πp e defina Kp = Cmax(πp);

Passo 4: Defina h = h + 1. Se h = n, siga para o Passo 5; caso contrário, volte para o Passo 3;

Passo 5: Defina p = p + 1. Se p = n, siga para o Passo 6; caso contrário, volte para o Passo 2;

Passo 6: Defina K = mín(K1, ..., Kn);

Passo 7: Defina π como a sequência onde K é obtida.

23

Segundo Allahverdi e Aydilek (2013), o algoritmo acima pode ser resumido como:

n sequências são selecionadas aleatoriamente. Para cada sequência

selecionada, defina o Kp para o Cmax, então procure (pelo método da

troca de pares) o melhor valor K, onde Kp é atualizado cada vez que

um melhor valor K é encontrado. Ao final, haverá n valores K (K1, ...,

Kn). O menor de K1, ..., Kn é escolhido como o valor K.

24

5 HURÍSTICAS

Neste capítulo, são apresentadas as heurísticas avaliadas na experimentação

computacional.

5.1 HURÍSTICA HH1

A heurística HH1, proposta por Aydilek e Allahverdi (2012) para minimizar o Cmax

sujeito ao TMF, é composta pela combinação de duas outras heurísticas: modified Simulated

Annealing (mSA) e HA. Mais especificamente, a partir de uma sequência inicial, a heurística

mSA gera uma nova solução que é usada como sequência inicial na heurística HA.

5.2.1 modified Simulated Annealing (mSA)

Existem duas grandes mudanças em relação ao Simulated Annealing tradicional. A

primeira é o acréscimo de um teste para verificar se uma nova sequência st é factível, ou seja,

se obedece a condição TMF(st) ≤ M. A segunda é que, ao invés de permutar duas posições

selecionadas aleatoriamente no Passo 4, um trabalho escolhido aleatoriamente é inserido em

uma posição também aleatória. Os passos de mSA são descritos a seguir:

Passo 1: Defina a temperatura inicial Ti, a temperatura final Tf, fator de resfriamento cf, o número
de repetições Rn, e a sequência inicial si (Algoritmo-M);

Passo 2: Defina a temperatura T = Ti, e a sequência s = si ;
Passo 3: Defina j = 1;
Passo 4: Escolha dois números aleatórios k e l entre 1 e n. Insira a tarefa da sequência s da posição k

para a posição l, e chame esta nova sequência de st ;
Passo 5: Calcule L = F(s) e Lt = F(st) no qual F é a função objetivo a ser minimizada;
Passo 6: Se TMF(st) ≤ M, siga para o Passo 7. Caso contrário, vá para o passo 8;
Passo 7: Se Lt < L, atualize s com st, ou seja, s = st. Caso contrário, atualize s com st com

probabilidade exp(-d/T), em que d = (Lt = L)/L;
Passo 8: Defina j = j + 1. Se j = Rn + 1, siga para o Passo 9, caso contrário volte ao Passo 4;
Passo 9: Defina T = T * cf.
Passo 10: Se T < Tf, siga para o Passo 11, caso contrário volte ao passo 3.
Passo 11: s é a sequência solução adotada.

Os parâmetros da heurística escolhidos para a análise computacional foram Ti = 0.10,

Tf = 0.0001, cf = 0.98 e Rn = 50, definidos como os de máxima performance por Aydilek e

Allahverdi (2012).

25

5.2.2 Heurística HA

Na heurística HA, os 11 primeiros passos são repedidos L vezes, de forma que cada

iteração se inicia com a sequência obtida no Passo 11. Desta forma, L é um parâmetro de

entrada para a heurística HA. Todos os passos são descritos a seguir:

Passo 1: Usando uma sequência inicial π, defina um valor inteiro positivo para L, e defina d=1, θ1=π;
Passo 2: Defina h = 1;
Passo 3: Selecione a h-ésima tarefa da sequência θd e a insira em todas as n posições da sequência

θd para obter n sequências. Chame essas sequências de π1, π2, ..., πn;
Passo 4: Calcule Cmax(πr) para r = 1, 2, ..., n;
Passo 5: Defina r = 1, u = 1;
Passo 6: Se Cmax(πr) < Cmax(θd), e se TMF(πr) ≤ M, então assuma βu = πr, e defina u = u + 1;
Passo 7: Defina r = r + 1. Se r = n + 1, siga para o Passo 8, caso contrário volte ao Passo 6;
Passo 8: Encontre uma sequência entre βu’s (calculado no passo 6) com o mínimo Cmax, e chame

esta sequência de σh (se u = 1, então defina σh = θd);
Passo 9: Defina h = h + 1. Se h = n + 1, siga para o Passo 10, caso contrário volte ao Passo 3;
Passo 10: Defina d = d + 1;
Passo 11: Encontre a sequência entre σh’s com o mínimo Cmax, e chame esta sequência θd;
Passo 12: Se d < L, siga para o passo 13, caso contrário volte ao Passo 2;
Passo 13: Encontre uma sequência entre os σh’s com o mínimo Cmax, e chame esta sequência θ;
Passo 14: Defina f = 1;
Passo 15: Permute as duas tarefas nas posições f e f + 1 da sequência θ, e chame a sequência depois

da troca de ϕ. Se Cmax(ϕ) < Cmax(θ) e se TMF(ϕ) ≤ M, então defina θ = ϕ;
Passo 16: Defina f = f + 1. Se f = n, siga para o Passo 17, caso contrário volte ao passo 15;
Passo 17: A solução é a sequência θ.

O parâmetro de iteração da heurística escolhido foi L = 20, definido como o de

máxima performance por Aydilek e Allahverdi (2012).

5.2 HEURÍSTICA PAL

O heurística PAL, proposto por Allahverdi e Aydilek (2013), busca minimizar o TTF

sujeito ao Cmax a partir de uma sequência inicial. Nessa heurística, os Passos de 3 a 11 são

repetidos L vezes, de forma que o procedimento sempre se reinicia com a solução obtida no

Passo 11. Assim, L é um parâmetro de entrada para o algoritmo PAL. Os passos de PAL são

descritos a seguir:

Passo 1: Usando uma sequência inicial π, defina um valor para L, e defina d = 1 e θ1 = π
Passo 2: Defina h = 1;
Passo 3: Selecione a h-ésima tarefa da sequência θd e a insira em todas as n posições da sequência

θd, obtendo n sequências, chamadas de sequências π1, π2, ..., πn;
Passo 4: Calcule TTF(πr), para r = 1, ..., n;
Passo 5: Defina r = 1, u = 1;

26

Passo 6: Se TTF(πr) < TTF(θd), e se Cmax(πr) ≤ K, então deixe βu = πr, e defina u = u + 1;
Passo 7: Defina r = r + 1. Se r = n + 1, siga para o Passo 8; caso contrário, volte ao passo 6;
Passo 8: Encontre a sequência entre os βu (calculada no Passo 6) com o menor TTF, e chame esta

sequência de σh (se u = 1, então defina σh = θd);
Passo 9: Defina h = h + 1. Se h = n + 1, siga para o Passo 10; caso contrário, volte ao Passo 3;
Passo 10: Defina d = d + 1;
Passo 11: Encontre a sequência entre os σn com o menor TTF, e chame está sequência de θ;
Passo 12: Se d > L, siga para o Passo 13; caso contrário, volte para o Passo 2;
Passo 13: Encontre a sequência entre os θd com o menor TTF, e chame esta sequência de θ;
Passo 14: Defina f = 1;
Passo 15: Permute as duas tarefas das posições f e f + 1 da sequência θ, e chame a sequência

resultante de ϕ. Se TTF(ϕ) < TTF(θ), e se Cmax(ϕ) ≤ K, então defina θ = ϕ;
Passo 16: Defina f = f + 1. Se f = n, siga para o Passo 17; caso contrário, volte ao Passo 15;
Passo 17: A solução é a sequência θ;

O parâmetro de iteração da heurística escolhido foi L = 20 (portanto PA20), definido

como o de máxima performance por Allahverdi e Aydilek (2013).

5.3 HEURÍSICA PROPOSTA - ITERATED GREEDY WITH LOCAL SEARCH (GL)

Em resumo, a heurística Iterated Greedy with Local Search, proposta por Ruiz e

Stützle (2007), executa a partir de uma solução inicial uma sequência de iterações na busca de

um candidato a solução. O processo de obtenção da solução ocorre em duas fases: destruição

e construção. Durante a destruição, um número determinado de elementos aleatórios é

removido da solução anterior. Em seguida, na fase de construção, os elementos removidos são

reinseridos para a construção de uma nova sequência. Também é adicionado um processo de

pesquisa local para melhorar a solução encontrada. Por fim, um critério de aceitação é

aplicado para verificar se o candidato a solução deve substituir a solução anterior. Todo o

processo é repetido até que algum critério de parada seja satisfeito, como o tempo

computacional ou um determinado número de iterações (NAGANO et al., 2015).

Nesta adaptação proposta, só são aceitas as sequências geradas que respeitam a

restrição pela qual estão sujeitas (M ou K). A fase de destruição é aplicada removendo-se d

tarefas da solução inicial. A fase de construção é implementada por meio da heurística

construtiva NEH de Nawaz et al. (1983). O procedimento de busca local é composta pela

combinação de dois processos (inserção e intercâmbio), conforme proposto por Nagano et al.

(2015). O critério de aceitação é aplicando usando um parâmetro de temperatura T,

semelhante ao critério do Simulated Annealing (YANG, 2010, p. 182). E o critério de parada é

dado pelo número de iterações L.

27

O algoritmo da adaptação completa da heurística é ilustrado na Figura 2. A execução

de cada etapa é descrita a seguir:

1. Solução inicial: Para minimizar o Cmax sujeito ao TMF, é usado o Algoritmo-M para obter

a sequência inicial π0 e o valor M. Para minimizar o TTF sujeito ao Cmax, é usado o

Algoritmo-K para obter a sequência inicial π0 e o valor K.

2. Destruição: Seja π a sequência em vigor no início da iteração. Das n tarefas de π, d tarefas

são removidas aleatoriamente na ordem em que forem escolhidas. Desse procedimento,

resulta a sequência πR de tamanho d, contendo as tarefas removidas, e a sequência πD de

tamanho n - d, contendo as tarefas não removidas.

3. Construção: A primeira tarefa de πR é inserida em todas as n-d+1 posições de πD, gerando

n-d+1 sequências. Feito isso, seleciona-se a melhor das sequências geradas e repete-se o

procedimento de inserção até que πD obtenha o tamanho n.

4. Inserção: Cada tarefa da sequência πD é reinserida em todas as suas possíveis posições

gerando (n - 1)2 sequências. A solução é obtida selecionando-se a melhor das sequências

geradas, chamada π’, tal que F(π’) ≤ F(πD), em que F(π’) e F(πD) representam as funções

objetivo (Cmax ou TTF) de suas respectivas sequencias.

5. Intercâmbio: Realiza uma permutação entre pares de tarefas da sequência π’, não

necessariamente adjacentes, em todas as combinações possíveis gerando n(n - 1)/2

sequências. Da mesma forma, a solução é obtida selecionando a melhor das sequências

geradas, chamada π”, tal que F(π”) ≤ F(π’).

6. Teste de aceitação: A sequência candidata a solução π” é aceita com uma probabilidade

exp(– Δ/Temp), ou seja, π” é aceito se exp(– Δ/Temp) ≥ r, no qual r é um número aleatório

tal que 0 ≤ r ≤ 1. Os valores de Δ e Temp são dados por:

∆ = −

𝐹(𝜋′′) − 𝐹(𝜋)

𝐹(𝜋)
 , (8)

𝑇𝑒𝑚𝑝 = 𝑇

∑ ∑ 𝑡𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

𝑚 × 𝑛 × 10
 . (9)

Conforme apresentado na descrição, a heurística GL proposta possui três parâmetros

de entrada: d, T e L. Para os testes computacionais, os dois primeiros parâmetros foram

definidos como d = 4 e T = 0,5. Esses valores são os melhores encontrados para o problema

de programação flowshop regular nos experimentos de Ruiz e Stützle (2007). Já para o

28

parâmetro L, foram definidos cinco valores (1, 5, 10, 15 e 20) para gerar as cinco versões de

GL (G1, G5, G10, G15 e G20).

Figura 2 – Algoritmo para a heurística GL

procedimento GL

π := π0 do Algoritmo-M ou Algoritmo-K;

πb := π;

for i := 1 to L do

π’ := π; # Fase de destruição

for i := 1 to d do

remova uma tarefa aleatória de π’ e a insira em π’R;

endfor

for i := 1 to d do # Fase de construção

π’ := melhor sequência obtida inserindo a tarefa π’R(i) em todas as possíveis posições de π’R;

endfor

π” := inserção(π’); # Busca local

π” := intercâmbio(π”); # Busca local

if F(π”) < F(π) then # Critério de aceitação

π := π”;

if F(π”) < F(π) then # Teste se é nova melhor sequência

πb := π;

endif

elseif (exp(– Δ/Temp) ≥ r) then

π := π”;

endif

endfor

return πb

end

Fonte: Adaptado de (RUIZ; STÜTZLE, 2007).

29

6 EXPERIMENTO COMPUTACIONAL

Testes computacionais foram realizados para todas as heurísticas apresentas. A

heurística GL, com suas cinco versões L (1, 5, 10, 15, 20), foram adaptadas para os dois

objetivos de otimização abordados.

A implementação foi efetuada em Python em um PC com CPU Intel Core i5-4200U

1.60 GHz com Impulso Turbo para 2.30 GHz, 6 GB de RAM e operando sob o sistema

operacional Windows 10.

Foi usado um banco de dados de tempos de processamento com variação no número

de tarefas n e no número de máquinas m. Os valores para n foram 15, 20, 25 e 30, enquanto

para m foram 2, 3, 4, 5 e 6. Para cada combinação de m e n, foram gerados 25 problemas,

totalizando 500 problemas. Os tempos de processamento foram aleatoriamente gerados com

uma distribuição discreta uniforme U(1, 100), conforme a recomendação de Hall e Posner

(2001) de usar uma distribuição de dados ampla para implementação. A partir desse material,

foi criada para cada um dos dois objetivos outro banco de dados, desta vez com as soluções

iniciais e restrições de todos os problemas, por meio da implementação do Algoritmo-M e do

Algoritmo-K. Por fim, usando esses três bancos, foi implementada todas as heurísticas.

As performances foram avaliadas pelas porcentagens de erro relativo (ER). Sejam

𝐹̅(H’) e 𝐹̅(H) as médias da função objetivo da heurística avaliada e da melhor heurística,

respectivamente. A porcentagem ER é definida como:

𝐸𝑅 = 100 (

𝐹̅(𝐻′) − 𝐹̅(𝐻)

𝐹̅(𝐻)
) . (10)

Os resultados foram comparados usando o teste HSD de Tukey. A avaliação é

apresentada nos tópicos a seguir.

6.1 ANÁLISE DAS HEURÍTICAS PARA MINIMIZAÇÃO DE CMAX SUJEITO AO TMF

A performance das heurísticas para a minimização de Cmax sujeito ao TMF (G1, G5,

G10, G15, G20 e HH1) são avaliadas nesta seção. Os resultados para o erro relativo são

apresentados na Tabela 1, na qual cada valor representa a média de 25 problemas.

Considerando a Média Geral, pode-se verificar que G20 obteve desempenho superior às

demais heurísticas, seguido de HH1 e G15 que apresentaram valores muito próximos.

30

Tabela 1 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e HH1

Tarefas Máquinas HH1 G1 G5 G10 G15 G20
 2 0,41 1,97 0,39 0,12 0,26 0,11
 3 0,45 5,86 1,12 0,80 0,54 0,36

15 4 0,43 7,64 1,53 1,00 0,44 0,64
 5 0,64 8,03 1,73 0,75 0,67 0,45
 6 0,34 9,37 1,80 1,60 0,89 0,79
 2 0,29 4,01 0,47 0,28 0,22 0,21
 3 0,84 7,97 1,36 0,65 0,60 0,29

20 4 0,90 8,45 1,53 1,05 0,96 0,38
 5 0,95 10,84 1,96 1,10 0,91 0,49
 6 0,74 10,42 2,59 1,32 1,08 0,79
 2 0,49 4,81 0,37 0,21 0,14 0,13
 3 0,98 10,00 1,65 0,82 0,42 0,34

25 4 0,99 11,94 2,71 1,10 0,89 0,48
 5 0,61 12,84 2,63 1,04 0,99 0,90
 6 0,56 14,54 2,58 1,19 1,14 0,62
 2 0,44 5,49 0,66 0,26 0,15 0,14
 3 0,95 11,45 1,94 1,07 0,59 0,32

30 4 0,82 13,97 3,06 0,98 0,61 0,52
 5 0,87 15,67 3,23 1,42 0,78 0,46
 6 0,71 14,70 2,82 1,23 1,21 0,97

Média Geral 0,67 9,50 1,80 0,90 0,68 0,47

Fonte: O Autor (2018).

Uma comparação mais precisa pode ser feita analisando as Figuras 3 e 4, que

apresentam os valores do erro relativo projetados contra o número de tarefas e o número de

máquinas, respectivamente. Na Figura 3, cada ponto representa a média de 125 pontos (25

problemas para 5 diferentes quantidades de máquinas). Na Figura 4, cada ponto representa a

média de 100 pontos (25 problemas para 4 diferentes quantidades de máquinas).

A partir das Figuras 3 e 4, pode-se notar que as heurísticas propostas G10, G15 e G20

são equiparáveis a heurística HH1. No entanto, HH1 apresenta um tempo de computacional

muito maior, conforme ilustrado nas Figuras 5 e 6. De modo geral, à medida que o número de

máquinas aumenta, o erro médio de todas as heurísticas também aumenta. Esse fenômeno é

característico da otimização de Cmax, que tende a maximizar a eficiência dos recursos. Quanto

menor o número de máquinas, melhor é a distribuição dos recursos. O acréscimo de máquinas

conturba o sistema até um ponto de estabilidade, o que explica o perfil das curvas. Já em

relação ao número de tarefas, pode-se verificar uma estabilidade em torno da média do desvio

relativo, principalmente entre as versões a partir de G10. G15, G20 e HH1.

31

Figura 3 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e

HH1 em relação ao número de tarefas

Fonte: O Autor (2018).

Figura 4 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e

HH1 em relação ao número de máquinas

Fonte: O Autor (2018).

32

Figura 5 – Tempo computacional das heurísticas GL (L = 1, 5, 10, 15 e 20)

e HH1 em relação ao número de tarefas

Fonte: O Autor (2018).

Figura 6 – Tempo computacional das heurísticas GL (L = 1, 5, 10, 15 e 20)

e HH1 em relação ao número de máquinas

Fonte: O Autor (2018).

33

A Tabela 2 apresenta os resultados do teste de hipótese de Tukey, comparando os

desvios relativos médios gerais das heurísticas com um nível de significância de 5% (0,05).

Tabela 2 – Resultados do teste Tukey das heurísticas GL (L = 1, 5, 10, 15 e 20) e HH1

(I) Heurística (J) Heurística Diferença média (I-J) Erro Padrão Significância
Intervalo de Confiança 95%

Limite inferior Limite superior

HH1

G1 -8,82837* 0,13890 0,000 -9,2245 -8,4323

G10 -0,23077 0,13890 0,558 -0,6269 0,1653

G15 -0,00637 0,13890 10,000 -0,4024 0,3897

G20 0,20110 0,13890 0,698 -0,1950 0,5972

G5 -1,13781* 0,13890 0,000 -1,5339 -0,7417

G1

HH1 8,82837* 0,13890 0,000 8,4323 9,2245

G10 8,59760* 0,13890 0,000 8,2015 8,9937

G15 8,82201* 0,13890 0,000 8,4259 9,2181

G20 9,02947* 0,13890 0,000 8,6334 9,4256

G5 7,69057* 0,13890 0,000 7,2945 8,0866

 HH1 1,13781* 0,13890 0,000 0,7417 1,5339

 G1 -7,69057* 0,13890 0,000 -8,0866 -7,2945

 G5 G10 0,90704* 0,13890 0,000 0,5110 1,3031

 G15 1,13144* 0,13890 0,000 0,7354 1,5275

 G20 1,33891* 0,13890 0,000 0,9428 1,7350

G10

HH1 0,23077 0,13890 0,558 -0,1653 0,6269

G1 -8,59760* 0,13890 0,000 -8,9937 -8,2015

G15 0,22441 0,13890 0,588 -0,1717 0,6205

G20 0,43187* 0,13890 0,023 0,0358 0,8280

G5 -,90704* 0,13890 0,000 -1,3031 -,5110

G15

HH1 0,00637 0,13890 10,000 -0,3897 0,4024

G1 -8,82201* 0,13890 0,000 -9,2181 -8,4259

G10 -0,22441 0,13890 0,588 -0,6205 0,1717

G20 0,20746 0,13890 0,668 -0,1886 0,6035

G5 -1,13144* 0,13890 0,000 -1,5275 -0,7354

G20

HH1 -0,20110 0,13890 0,698 -0,5972 0,1950

G1 -9,02947* 0,13890 0,000 -9,4256 -8,6334

G10 -0,43187* 0,13890 0,023 -0,8280 -0,0358

G15 -0,20746 0,13890 0,668 -0,6035 0,1886

G5 -1,33891* 0,13890 0,000 -1,7350 -0,9428

* A diferença média é significativa no nível 0,05.

Fonte: O Autor (2018).

34

A primeira e a segunda colunas indicam as heurísticas comparadas. A terceira coluna

mostra a diferença média, ou seja, a diferença entre o erro relativo da heurística na primeira

coluna menos o da heurística na segunda coluna. A quarta coluna mostra o erro padrão e a

coluna seguinte, a significância. O símbolo * nos valores da quinta coluna indica se a

diferença foi significativa.

O teste de Tukey, ao nível de 95% de confiança, apresentou 4 subconjuntos de médias,

conforme pode-se verificar na Tabela 3. Esses grupos reúnem as heurísticas com médias sem

diferença estatística significativa. Nota-se que a heurística HH1, se equipara com as

heurísticas G15 e G20 no subconjunto 1, e com as heurísticas G15 e G10 no subconjunto 2.

Tabela 3 – Identificação de subconjuntos homogêneos ao nível de 95% de confiança, de acordo com

teste de Tukey

Heurística N
Subconjunto para alfa = 0,05

1 2 3 4

G20 500 0,4686

HH1 500 0,6697 0,6697

G15 500 0,6761 0,6761

G10 500 0,9005

G5 500 1,8075

G1 500 9,4981

Significância 0,668 0,558 1,000 1,000

São exibidas as médias para os grupos em subconjuntos homogêneos.

Fonte: O Autor (2018).

A Figura 7 ilustra o desvio relativo médio geral e a variabilidade das heurísticas

avaliadas. Além de apresentar a menor média, G20 possui uma variância menor dos desvios

em comparação às outras heurísticas. A Figura também ilustra se as médias apresentam ou

não diferença estatística significativa, como o caso no qual se sobreponham as médias de G15

e HH1.

Como era esperado, fica evidente o ganho de performance da heurística GL em função

do aumento do número de iterações L. No entanto, o ganho diminui a cada acréscimo. Isso

significa que a melhora da heurística custará cada vez mais tempo computacional e haverá um

momento no qual não será mais possível obter ganho somente aumentando o valor desse

parâmetro.

35

Figura 7 – Gráfico de médias, ao nível de 95% de confiança, do desvio relativo médio geral

Fonte: O Autor (2018)

6.2 ANÁLISE DAS HEURÍTICAS PARA MINIMIZAÇÃO DE TTF SUJEITO AO CMAX

A performance das heurísticas para a minimização de TTF sujeito ao Cmax (G1, G5,

G10, G15, G20 e PA20) são avaliadas nesta seção. Os resultados para o erro relativo são

apresentados na Tabela 4, na qual cada valor também representa a média de 25 problemas.

Pode-se verificar que a heurística GL proposta supera a heurística PA20 a partir da versão

G10 em todas as combinações de m e n testadas.

As Figura 8 e 9 apresentam os valores do erro relativo projetados contra o número de

tarefas e o número de máquinas, respectivamente. Assim como na seção anterior, cada ponto

na Figura 8 representa a média de 125 pontos (25 problemas para 5 diferentes quantidades de

máquinas). E na Figura 9, cada ponto representa a média de 100 pontos (25 problemas para 4

diferentes quantidades de máquinas). Pode se verificar que, em relação a qualidade da

solução, a heurística G5 alcança resultados equiparáveis a PA20.

36

Tabela 4 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e PA20

Tarefas Máquinas PA20 G1 G5 G10 G15 G20
 2 2,30 10,52 0,99 0,57 0,37 0,06
 3 1,94 10,56 1,05 0,82 0,74 0,13

15 4 2,64 10,05 1,45 0,61 0,44 0,33
 5 1,38 8,62 0,82 0,49 0,47 0,35
 6 1,83 7,97 1,15 0,71 0,31 0,22
 2 2,43 16,25 1,59 0,37 0,63 0,20
 3 2,87 13,51 2,43 0,84 0,35 0,87

20 4 3,00 11,81 1,68 1,28 0,76 0,74
 5 2,22 13,09 2,05 1,07 0,92 0,17
 6 2,12 12,87 2,45 0,91 0,62 0,45
 2 3,13 19,04 2,73 0,67 0,28 0,22
 3 3,92 19,44 2,67 1,24 0,59 0,30

25 4 2,95 15,33 3,12 1,28 1,15 0,28
 5 2,68 15,20 2,65 1,28 1,10 0,77
 6 2,15 16,21 2,85 1,43 0,85 0,37
 2 3,66 24,01 3,51 0,84 0,63 0,24
 3 3,51 18,39 3,88 1,08 0,96 0,43

30 4 2,75 16,93 3,24 0,71 0,69 0,62
 5 2,62 18,56 3,91 1,69 0,81 0,69
 6 2,71 17,58 3,91 1,55 0,88 0,74

Média Geral 2,64 14,80 2,41 0,97 0,68 0,41

Fonte: O Autor (2018).

De modo geral, o erro médio das heurísticas diminui à medida que o número de

máquinas aumenta. Esse fenômeno é característico da minimização do TTF, que tende a

otimizar a resposta do sistema para entrega e reduzir o inventário de tarefas. No entanto,

quanto menor o número de máquinas, mais instável é o sistema. O acréscimo de máquinas

ajuda a estabilizar o fluxo de tarefas, conforme o perfil das curvas. Por outro lado, assim

como na otimização de Cmax, mantem-se a tendência de aumento do erro relativo médio à

medida que o número de tarefas aumenta, principalmente em relação às heurísticas propostas.

A Tabela 5 apresenta os resultados do teste de hipótese de Tukey, comparando as

médias entre as heurísticas com um nível de significância de 5% (0,05). A partir dos dados,

pode-se identificar que há diferença significativa das heurísticas G10, G15 e G20 em

comparação com PA20. Além disso, embora PA20 apresente um tempo de computacional

inferior a G20, seu tempo é equiparável a G15 e superior a G10, conforme ilustrado nas

Figuras 10 e 11. Essas análises, somadas a avaliação do gráfico de médias da Figura 12,

indicam que as 3 versões GL propostas superam a heurística PA20.

37

Figura 8 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e

PA20 em relação ao número de tarefas

Fonte: O Autor (2018).

Figura 9 – Erro relativo médio das heurísticas GL (L = 1, 5, 10, 15 e 20) e

PA20 em relação ao número de máquinas

Fonte: O Autor (2018).

38

Figura 10 – Tempo computacional das heurísticas GL (L = 1, 5, 10, 15 e

20) e PA20 em relação ao número de tarefas

Fonte: O Autor (2018).

Figura 11 – Tempo computacional das heurísticas GL (L = 1, 5, 10, 15 e

20) e PA20 em relação ao número de máquinas

Fonte: O Autor (2018).

39

Tabela 5 – Resultados do teste Tukey das heurísticas GL (L = 1, 5, 10, 15 e 20) e PA20

(I) Heurísticas (J) Heurísticas Diferença média (I-J) Erro Padrão Significância

Intervalo de Confiança 95%

Limite inferior Limite superior

G1

G10 13,82415* 0,18792 0,000 13,2883 14,3600

G15 14,11958* 0,18792 0,000 13,5837 14,6554

G20 14,38768* 0,18792 0,000 13,8518 14,9235

G5 12,38966* 0,18792 0,000 11,8538 12,9255

PA20 12,15543* 0,18792 0,000 11,6196 12,6913

G5

G1 -12,38966* 0,18792 0,000 -12,9255 -11,8538

G10 1,43449* 0,18792 0,000 0,8986 1,9704

G15 1,72992* 0,18792 0,000 1,1941 2,2658

G20 1,99802* 0,18792 0,000 1,4622 2,5339

PA20 -0,23423 0,18792 0,814 -0,7701 0,3016

G10

G1 -13,82415* 0,18792 0,000 -14,3600 -13,2883

G15 0,29543 0,18792 0,617 -0,2404 0,8313

G20 0,56353* 0,18792 0,033 0,0277 1,0994

G5 -1,43449* 0,18792 0,000 -1,9704 -0,8986

PA20 -1,66872* 0,18792 0,000 -2,2046 -1,1329

G15

G1 -14,11958* 0,18792 0,000 -14,6554 -13,5837

G10 -0,29543 0,18792 0,617 -0,8313 0,2404

G20 0,26810 0,18792 0,711 -0,2678 0,8040

G5 -1,72992* 0,18792 0,000 -2,2658 -1,1941

PA20 -1,96415* 0,18792 0,000 -2,5000 -1,4283

G20

G1 -14,38768* 0,18792 0,000 -14,9235 -13,8518

G10 -0,56353* 0,18792 0,033 -1,0994 -0,0277

G15 -0,26810 0,18792 0,711 -0,8040 0,2678

G5 -1,99802* 0,18792 0,000 -2,5339 -1,4622

PA20 -2,23225* 0,18792 0,000 -2,7681 -1,6964

PA20

G1 -12,15543* 0,18792 0,000 -12,6913 -11,6196

G10 1,66872* 0,18792 0,000 1,1329 2,2046

G15 1,96415* 0,18792 0,000 1,4283 2,5000

G20 2,23225* 0,18792 0,000 1,6964 2,7681

G5 0,23423 0,18792 0,814 -0,3016 0,7701

* A diferença média é significativa no nível 0,05.

Fonte: O Autor (2018).

Na Tabela 6, podemos identificar que o teste de hipótese de Tukey, ao nível de 95% de

confiança, encontrou 4 subconjuntos de médias. A heurística PA20, de acordo com os dados,

se equipara com a versão G5. Já G15 encontra-se entre os subconjuntos 1 e 2, onde estão

contidos G20 e G10, respectivamente.

40

Tabela 6 – Identificação de subconjuntos homogêneos ao nível de 95% de confiança, de acordo com

teste de Tukey.

Heurísticas N
Subconjunto para alfa = 0,05

1 2 3 4

G20 500 0,4087

G15 500 0,6768 0,6768

G10 500 0,9722

G5 500 2,4067

PA20 500 2,6409

G1 500 14,7963

Significância 0,711 0,617 0,814 1,000

São exibidas as médias para os grupos em subconjuntos homogêneos.

Fonte: O Autor (2018).]

Figura 12 – Gráfico de médias, ao nível de 95% de confiança, do desvio relativo médio geral das

heurísticas avaliadas

Fonte: O Autor (2018).

41

A Figura 12 ilustra o desvio relativo médio geral e a variabilidade das heurísticas.

Nota-se que G20 possui a menor média e menor variância dos desvios. Além disso, a

diferença das heurísticas G20, G15 e G10 em relação a PA20 fica evidente. Verifica-se

também a proximidade de PA20 e G5. O comportamento da performance de GL em relação

ao número de iterações é semelhante ao experimento anterior.

42

4 CONCLUSÃO

Neste trabalho, foi abordado o problema de programação no-wait flowshop com dois

objetivos: (1) minimizar o makespan sujeito à restrição de que o tempo médio de fluxo é

menor ou igual a um dado valor; e (2) minimizar o tempo total de fluxo sujeito à restrição de

que o makespan é menor ou igual a um dado valor. Foi apresentado o Algoritmo-M e o

Algoritmo-K, usados na obtenção das soluções iniciais e restrições das heurísticas para os

experimentos computacionais.

Para o objetivo (1), foi avaliada a heurística HH1 e cinco versões da heurística

proposta GL (G1, G5, G10, G15 e G20). Os erros relativos médios gerais, sobre o número de

tarefas e máquinas, de HH1, G5, G10, G15 e G20 foram 0,67; 9,50; 1,80; 0,90; 0;68; e 0,47;

respectivamente. Embora os erros de HH1, G10, G15 e G20 sejam equiparáveis, o tempo

computacional de HH1 foi significativamente maior. Isso evidencia a superioridade da

heurística GL. Para o objetivo (2), foi avaliada a heurística PA20 (PAL com parâmetro L =

20) e novamente cinco versões da heurística proposta GL (G1, G5, G10, G15 e G20). Os erros

relativos médios gerais de PA20, G5, G10, G15 e G20 foram 2,64; 14,80; 2,41; 0,97; 0,68; e

0,41; respectivamente. Esses dados evidenciam a superioridade de G10, G15 e G20. E embora

o erro de PA20 e G5 sejam equiparáveis, o tempo computacional de PA20 foi

significativamente maior. Isso evidencia a superioridade de GL também para o objetivo (2).

É importante destacar que dos três parâmetros de entrada da heurística GL (d, T e L),

somente variações de L foram testadas. Mesmo tendo definido para os outros dois parâmetros

os melhores valores para um problema de programação flowshop regular (RUIZ; STÜTZLE,

2007), é possível que esses valores não sejam os melhores para o caso no-wait. Portanto, em

uma abordagem futura, poder-se-ia explorar variações desses parâmetros com o objetivo de

verificar se ainda existe a possibilidade de ganho de performance.

Implementar as heurísticas com diferentes variações no número de tarefas e máquinas

também é outra possibilidade a ser explorada. Nos experimentos computacionais apresentados

aqui, foram testados valores baixos para o número de tarefas e máquinas. Mesmo que

aumentar esses valores signifique lidar com um custo computacional elevado, isso seria

validado para verificar se as heurísticas apresentariam mudança de comportamento.

Outra extensão sugerida é considerar os tempos de setup e manutenção. Neste

trabalho, esses tempos foram ignorados ou assumidos como inclusos nos tempos de

processamento. No entanto, essa abordagem pode não ser adequada para alguns ambientes de

processamento, sendo necessário tratar esses dados de forma separada.

43

REFERÊNCIAS

ALDOWAISAN, T.; ALLAHVERDI, A. New heuristics for no-wait flowshops to minimize makespan.

Computers and Operations Research, v. 30, n. 8, p. 1219–1231, 2003.

ALDOWAISAN, T.; ALLAHVERDI, A. New heuristics for m-machine no-wait flowshop to minimize total

completion time. Omega, v. 32, n. 5, p. 345–352, 2004.

ALLAHVERDI, A. A survey of scheduling problems with no-wait in processEuropean Journal of

Operational Research, 2016.

ALLAHVERDI, A.; ALDOWAISAN, T. No-wait flowshops with bicriteria of makespan and total completion

time. Journal of the Operational Research Society, v. 53, n. 9, p. 1004–1015, 21 set. 2002.

ALLAHVERDI, A.; AYDILEK, H. Algorithms for no-wait flowshops with total completion time subject to

makespan. The International Journal of Advanced Manufacturing Technology, v. 68, n. 9–12, p. 2237–

2251, 24 out. 2013.

ALLAHVERDI, A.; AYDILEK, H.; AYDILEK, A. No-wait flowshop scheduling problem with two criteria;

total tardiness and makespan. European Journal of Operational Research, v. 269, n. 2, p. 590–601, set. 2018.

AYDILEK, H.; ALLAHVERDI, A. Heuristics for no-wait flowshops with makespan subject to mean completion

time. Applied Mathematics and Computation, v. 219, n. 1, p. 351–359, 2012.

BERTOLISSI, E. Heuristic algorithm for scheduling in the no-wait flow-shop. Journal of Materials Processing

Technology, v. 107, n. 1–3, p. 459–465, nov. 2000.

BONNEY, M. C.; GUNDRY, S. W. Solutions to the Constrained Flowshop Sequencing Problem. Operational

Research Quarterly (1970-1977), v. 27, n. 4, p. 869, 1976.

CHE, A.; CHU, C. Cyclic hoist scheduling in large real-life electroplating lines. OR Spectrum, v. 29, n. 3, p.

445–470, 2007.

CHEN, C. L.; NEPPALLI, R. V.; ALJABER, N. Genetic algorithms applied to the continuous flow shop

problem. Computers and Industrial Engineering, v. 30, n. 4, p. 919–929, 1996.

CHIEN, C. F. et al. Modeling and analysis of semiconductor manufacturing in a shrinking world:

Challenges and successes. Proceedings - Winter Simulation Conference. Anais...2008

FINK, A.; VOSS, S. Solving the continuous flow-shop scheduling problem by metaheuristics. European

Journal of Operational Research, v. 151, n. 2, p. 400–414, 2003.

FRAMINAN, J. M.; LEISTEN, R. A heuristic for scheduling a permutation flowshop with makespan objective

subject to maximum tardiness. Production, v. 99, p. 28–40, 2006.

FRAMINAN, J. M.; NAGANO, M. S. Evaluating the performance for makespan minimisation in no-wait

flowshop sequencing. Journal of Materials Processing Technology, v. 197, n. 1–3, p. 1–9, 2008.

FRAMINAN, J. M.; NAGANO, M. S.; MOCCELLIN, J. V. An efficient heuristic for total flowtime

minimisation in no-wait flowshops. International Journal of Advanced Manufacturing Technology, v. 46, n.

9–12, p. 1049–1057, 2010.

GANGADHARAN, R.; RAJENDRAN, C. Heuristic algorithms for scheduling in the no-wait flowshop.

International Journal of Production Economics, v. 32, n. 3, p. 285–290, 1993.

GAREY, M. R.; JOHNSON, D. S.; SETHI, R. The Complexity of Flowshop and Jobshop Scheduling.

Mathematics of Operations Research, 1976.

GRABOWSKI, J.; PEMPERA, J. Some local search algorithms for no-wait flow-shop problem with makespan

criterion. Computers and Operations Research, v. 32, n. 8, p. 2197–2212, 2005.

GUPTA, J. N. D.; STAFFORD, E. F. Flowshop scheduling research after five decades. 2005.

44

HALL, N. G.; SRISKANDARAJAH, C. A survey of machine scheduling problems with blocking and no-wait in

process. Operations Research, v. 44(3), p. 510(16), 1996.

JOHNSON, S. M. Optimal two- and three-stage production schedule with setup times included. Nav Res Logist,

v. 1, p. 61–68, 1954.

KING, J. R.; SPACHIS, A. S. Heuristics for flow-shop scheduling. International Journal of Production

Research, v. 18, n. 3, p. 345–357, 25 maio 1980.

NAGANO, M. S.; LORENA, L. A. N.; SILVA, A. A. A new evolutionary clustering search for a no-wait flow

shop problem with set-up times. Engineering Applications of Artificial Intelligence, v. 25, n. 6, p. 1114–1120,

2012.

NAGANO, M. S.; MIYATA, H. H. Review and classification of constructive heuristics mechanisms for no-wait

flow shop problem. International Journal of Advanced Manufacturing Technology, v. 86, n. 5–8, p. 2161–

2174, 2016a.

NAGANO, M. S.; MIYATA, H. H. A High Quality Solution Constructive Heuristic for No-Wait Flow Shop

Scheduling Problem. Industrial Engineering & Management Systems, v. 15, n. 3, p. 206–214, 2016b.

NAGANO, M. S.; MIYATA, H. H.; ARAÚJO, D. C. A constructive heuristic for total flowtime minimization in

a no-wait flowshop with sequence-dependent setup times. Journal of Manufacturing Systems, v. 36, p. 224–

230, 1 jul. 2015.

NAWAZ, M.; ENSCORE, E. E.; HAM, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing

problem. Omega, v. 11, n. 1, p. 91–95, 1 jan. 1983.

POSNER, N. G. H. ; M. E. Generating experimental data for.pdfOperations Research, 2001.

QIAN, B. et al. A DE-based approach to no-wait flow-shop scheduling. Computers & Industrial Engineering,

v. 57, n. 3, p. 787–805, 2009.

RAJENDRAN, C. A no-wait flowshop scheduling heuristic to minimize makespan. Journal of the Operational

Research Society, v. 45, n. 4, p. 472–478, 20 abr. 1994.

RAJENDRAN, C.; CHAUDHURI, D. Heuristic algorithms for continuous flow‐shop problem. Naval Research

Logistics (NRL), v. 37, n. 5, p. 695–705, out. 1990.

RITZO, C. H. C. et al. Experiences in implementing simulation-based support for operational decision making in

semiconductor manufacturing. European J. of Industrial Engineering, v. 5, n. 3, p. 272, 2011.

RUIZ, R.; STÜTZLE, T. A simple and effective iterated greedy algorithm for the permutation flowshop

scheduling problem. European Journal of Operational Research, v. 177, n. 3, p. 2033–2049, 16 mar. 2007.

SCHUSTER, C. J.; FRAMINAN, J. M. Approximative procedures for no-wait job shop scheduling. Operations

Research Letters, v. 31, n. 4, p. 308–318, 2003.

SHYU, S. J.; LIN, B. M. T.; YIN, P. Y. Application of ant colony optimization for no-wait flowshop scheduling

problem to minimize the total completion time. Computers and Industrial Engineering, v. 47, n. 2–3, p. 181–

193, 2004.

TSENG, L. Y.; LIN, Y. T. A Hybrid Genetic Algorithm for Flowshop Scheduling. International Journal of

Production Economics, v. 128, p. 144–152, 2010.

VAN DEMAN, J. M.; BAKER, K. R. Minimizing Mean Flowtime in the Flow Shop with No Intermediate

Queues. A I I E Transactions, v. 6, n. 1, p. 28–34, mar. 1974.

YANG, X.-S. Engineering optimization : An introduction with metaheuristic applications. [s.l.] John Wiley

& Sons, 2010.

ZHU, J.; LI, X.; WANG, Q. Complete local search with limited memory algorithm for no-wait job shops to

minimize makespan. European Journal of Operational Research, v. 198, n. 2, p. 378–386, 2009.

