
Universidade de São Paulo–USP
Escola de Engenharia de São Carlos

Departamento de Engenharia Elétrica e de Computação
Curso de Engenharia Elétrica - Ênfase em Sistemas de Energia e

Automação

Lucas Carlos Barboza

MODELO DE ARQUITETURA
BASEADO EM UM SISTEMA DE

INTERNET DAS COISAS APLICADA
A AUTOMAÇÃO RESIDENCIAL

São Carlos
2015

Lucas Carlos Barboza

MODELO DE ARQUITETURA
BASEADO EM UM SISTEMA DE

INTERNET DAS COISAS APLICADA
A AUTOMAÇÃO RESIDENCIAL

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São
Carlos, da Universidade de São Paulo.

Curso de Engenharia Elétrica com ênfase em Sistemas de Energia e Automação

Orientador: Prof. Dr. Marcelo Andrade da Costa Vieira

São Carlos
2015

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

BARBOZA, LUCAS CARLOS
 B238m MODELO DE ARQUITETURA BASEADO EM UM SISTEMA DE

INTERNET DAS COISAS APLICADA A AUTOMAÇÃO RESIDENCIAL /
LUCAS CARLOS BARBOZA; orientador Marcelo Andrade da
Costa Vieira . São Carlos, .

Monografia (Graduação em Engenharia Elétrica com
ênfase em Sistemas de Energia e Automação) -- Escola de
Engenharia de São Carlos da Universidade de São Paulo,
.

1. Internet das Coisas. 2. Automação Residencial.
3. Modelagem de Sistemas. I. Título.

Este trabalho é dedicado a toda minha família
por todo apoio e compreensão durante toda minha vida.

Agradecimentos

Agradeço primeiramente à minha família: a meu pai, Rinaldo, que sempre me incen-
tivou, apoiou e confiou em todas as minhas decisões; à minha mãe, Débora, pelo seu
exemplo de vida e superação que, por muitas vezes, foi onde busquei forças e inspiração
para continuar; às minhas irmãs, Carolina e Gabriela, pelo seu amor, carinho e compa-
nheirismo; às minhas avós, Neusa e Jeanete, por me acolher quando precisei.

À Marina Vidual, minha companheira, pelo apoio e compreensão nos momentos mais
difíceis, nos intermináveis finais de semana de estudo e trabalho.

Ao meu orientador Prof. Dr. Marcelo Andrade da Costa Vieira, pela confiança no
trabalho e pelos conselhos durante a execução.

Ao meu primo Felipe Luiz Tortella e ao amigo Murilo Frônio Bássora, pela imensa
ajuda nas áreas que mais tive dificuldade.

Por fim, a todos os que contribuíram, direta ou indiretamente, para a realização deste
trabalho.

“Obstacles are those frightful things you see
when you take your eyes off your goal.”

(Henry Ford)

Resumo

Barboza, Lucas MODELO DE ARQUITETURA BASEADO EM UM SIS-
TEMA DE INTERNET DAS COISAS APLICADA A AUTOMAÇÃO RE-
SIDENCIAL. 84 p. Trabalho de Conclusão de Curso – Escola de Engenharia de São
Carlos, Universidade de São Paulo, 2015.

O movimento onde objetos do dia a dia, antes inanimados, adquirem funcionalidades
e conectam-se a internet é conhecido como Internet das Coisas. Esse trabalho tem como
objetivo propor uma arquitetura de um sistema de internet das coisas aplicado à automa-
ção residencial. No futuro, casas inteligentes serão “conscientes” a respeito das coisas que
acontecem dentro das mesmas, impactando, principalmente, em alguns aspectos como
utilização inteligente de recursos, segurança e conforto. Através dessa arquitetura foi
possível desenvolver um sistema configurável, sem fio e de fácil instalação de dispositivos
distribuídos que adicionam funcionalidades de monitoramento e controle aos componentes
presentes em uma casa. Como ponto de partida, foram realizadas algumas modelagens
descritas pelo projeto IoT-A. A partir dessas modelagens foi possível chegar em um sis-
tema dividido em quatro componentes, referenciados durante o trabalho como Central
de Controle, Aplicação Web, Aplicação Móvel e Periféricos. Cada componente foi dis-
cutido individualmente, com a mentalidade nos requisitos propostos e também pensando
em escalabilidade, baixo custo e facilidade de desenvolvimento. O resultado desse tra-
balho foi uma arquitetura de um sistema de internet das coisas aplicada a automação
residencial, esses conceitos e o modelo foram validados através de um protótipo, instalado
em uma maquete, que demonstram e comprovam a viabilidade da arquitetura do sistema
desenvolvido.

Palavras-chave: Casa Inteligente. Automação Residencial. Internet das Coisas..

Abstract

Barboza, Lucas ARCHITECTURE MODEL BASED ON AN INTERNET
OF THINGS SYSTEM APPLIED TO HOME AUTOMATION. 84 p. Final
Paper – São Carlos School of Engineering, University of São Paulo, 2015.

The movement where objects of everyday life acquire functionality and connect to the
internet is known as the Internet of Things. This work aims to propose an architecture of
an internet of things system applied to home automation. In the future, smart homes will
be “aware” about things that happen within them, mainly affecting in some respects as
using intelligent features, security and comfort. Through this architecture was possible the
development of a configurable, wireless and easy to install system of distributed devices
that add monitoring and control functionality to the components present in a home. As
a starting point, there were some modeling described by the IoT-A project. From these
modeling was reached on a system divided into four components, referenced during this
work as Control Center, Web Application, Mobile Application and Peripherals. Each
component was discussed individually with the mentality on the proposed requirements
and also thinking about scalability, low cost and ease of development. The result of this
work was an architecture of an internet of things system applied to home automation,
these concepts and the model were validated through a prototype installed on a model,
which demonstrate and prove the feasibility of the developed system architecture.

Keywords: Smart Homes. Home Automation. Internet of Things.

Lista de ilustrações

Figura 1 Melhores Práticas - Colunas e Blocos 29
Figura 2 Modelo de Domínio . 30
Figura 3 Modelo de Informação . 32
Figura 4 Modelo MVC . 37
Figura 5 Ciclo de vida de uma Activity . 39

Figura 6 Arduino Uno . 46
Figura 7 Dragino Yún Shield . 47
Figura 8 Dragino Yún Shield Struct . 48
Figura 9 Módulo nRF24L01+ . 49
Figura 10 Modelo de Domínio do Sistema . 51
Figura 11 Modelo de Informação do Controlador 52
Figura 12 Modelo de Informação do Periférico . 53
Figura 13 Visão Geral . 54
Figura 14 Modelo do Banco de Dados . 56
Figura 15 Fluxograma da Central de Controle . 60
Figura 16 Fluxograma do Periférico Interruptor Inteligente 63
Figura 17 Tela de login da Aplicação Web . 66
Figura 18 Tela de cadastro da Aplicação Web . 67
Figura 19 Tela de Centrais de Controle da Aplicação Web 67
Figura 20 Tela da Central de Controle da Aplicação Web 68
Figura 21 Tela de Periféricos da Aplicação Web 68
Figura 22 Tela de Novo Periféricos Aplicação Web 69
Figura 23 Tela de login da Aplicação Móvel . 70
Figura 24 Tela de Centrais de Controle da Aplicação Móvel 70
Figura 25 Tela de Periféricos da Aplicação Móvel 71
Figura 26 Tela do Periférico da Aplicação Móvel 71
Figura 27 Maquete com o protótipo . 72

Figura 28 Tabela de usuários . 73
Figura 29 Tabela de Centrais de Controle . 73
Figura 30 Tabela de Periféricos . 74
Figura 31 Download dos dados da Central de Controle 74
Figura 32 Upload dos dados da Central de Controle 74
Figura 33 Requisição dos estados dos sensores da Aplicação Móvel 75
Figura 34 Controle de um Periférico pela Aplicação Móvel 75
Figura 35 Periférico Controlado pela Aplicação Móvel 76
Figura 36 Tela de um Periférico com leitura dos sensores 77
Figura 37 Tela de um Periférico com leitura dos sensores 77

Lista de tabelas

Tabela 1 Exemplo de Tabela de Dados . 60

Lista de siglas

API Application Programming Interface — Interface de Programação de Aplicação

ARM Architectural Reference Model

ARPA Advanced Research Projects Agency — Ponto de Acesso

CE Chip Enable

CoC Convention over Configuration

CRC Cyclic Redundancy Check

CS Chip Select

DRY Don’t Repeat Yourself

ESB Enhanced ShockBurst

GUI Graphic User Interface — Interface Gráfica de Usuário

GFSK Gaussian Frequency-Shift Keying — Terra

HTTP Hypertext Transfer Protocol — Protocolo de Transferência Hipertexto

ICSP In Crcuit Serial Programming

ID Identification

IDE Integrated Development Environment — Ambiente integrado de desenvolvimento

IoT Internet of Things — Internet das Coisas

ISM Industrial, Scientific and Medical — Industrial, Científica e Médica

IP Internet Protocol

JSON JavaScript Object Notation

LAN Local area network — Rede de área local

MVC Model-view-controller — Modelo-visão-controlador

MVP Minimum Viable Product — Produto Mínimo Viável

MISO Master In Slave Out

MOSI Master Out Slave In

PWM Pulse-Width Modulation — Modulação em Largura de Pulso

PaaS platform as a Service

RAM Random Access Memory

REST Representational State Transfer — Transferência de Estado Representacional

RF Radio Frequency — Computador com um conjunto reduzido de instruções

SCK Serial Clock

SDK Software Development Kit — Kit de Desenvolvimento de Software

SoC System-on-a-chip

SPI Serial Peripheral Interface — Linguagem de Consulta Estruturada

SS Slave Select

SSH Secure Shell

TCP Transmission Control Protocol — Lógica Transistor-Transistor

UI User Interface — Interface de Usuário

URI Uniform Resource Identifier — Identificador Uniforme de Recursos

URL Uniform Resource Locator

URN Uniform Resource Name

USB Universal Serial Bus

ULP Ultra Low Power

XML eXtensible Markup Language

Sumário

1 Introdução 23
1.1 Objetivos . 24
1.2 Justificativa . 24

2 Fundamentação Teórica 27
2.1 Projeto IoT-A . 27

2.1.1 Modelo de Arquitetura de Referência 28
2.2 Internet . 33

2.2.1 TCP/IP . 34
2.2.2 HTTP . 35

2.3 Comunicação sem fio . 36
2.4 MVC . 37
2.5 API . 38
2.6 Android . 38

3 Materiais e Métodos 41
3.1 Materiais . 41

3.1.1 Ruby . 41
3.1.2 Ruby-on-Rails . 42
3.1.3 Biblioteca SPI . 43
3.1.4 Biblioteca RF24 . 44
3.1.5 Biblioteca Bridge . 45
3.1.6 Hardware . 45

3.2 Métodos . 50
3.2.1 Modelagem do Sistema . 50
3.2.2 Componentes Do Sistema . 53
3.2.3 Aplicação Web . 55
3.2.4 Central de Controle . 59

3.2.5 Periféricos . 62
3.2.6 Aplicação Móvel . 64
3.2.7 Relacionamento dos componentes com o Modelo de Domínio . . . 66

4 Resultados 73

5 Discussões e Conclusão 79
5.1 Discussões . 79

5.1.1 Aplicação Web . 79
5.1.2 Central de Controle . 80
5.1.3 Periféricos . 81
5.1.4 Aplicação Móvel . 81

5.2 Conclusão . 81

Referências Bibliográficas 83

23

Capítulo 1
Introdução

A internet das Coisas é o movimento onde objetos do cotidiano passam a se conec-
tar e trocar informações através da internet. São objetos físicos, “coisas”, que passam a
alojar sistemas eletrônicos embarcados com componentes de software, sensores e, princi-
palmente, conectividade, que permite esses objetos trocarem informações através da rede.
Esses tecnologias permitem que os objetos possam ser controlados e monitorados remo-
tamente e possibilitam uma maior integração entre sistemas baseados em computadores,
que também estão na rede, e o mundo físico.

A automação residencial, também conhecida como domótica, é a integração entre
vários equipamentos motorizados e automatizados capazes de trocar informações entre
si. O setor, que cresce a cada dia, vem com a finalidade de facilitar a vida das pessoas,
satisfazendo as suas necessidades de comunicação, conforto e segurança. Computadores
de uso geral não são mais a maioria dos dispositivos que conectam-se à internet, isso pode
ser observado na rotina das pessoas, que estão cada vez mais acostumadas com objetos
conectados, e a interagirem com esses objetos através de dispositivos móveis e interfaces
web que permitem controlar o ambiente que os cercam, através de interfaces cada vez
mais amigáveis e interativas.

Essa tecnologia pode proporcionar aos seus consumidores um conforto antes não imagi-
nado e pode ser facilmente adaptada a qualquer utilidade doméstica. Além da comodidade
de poder controlar e monitorar remotamente vários serviços, é possível diminuir o tempo
gasto com tarefas rotineiras, otimizando o tempo do usuário, como, por exemplo, apagar
as luzes em horários pré-definidos, ligar sistemas de irrigação quando necessário, trancar
as portas, otimizar o controle de ar-condicionado, evitar desperdícios desligando sistemas
automaticamente quando não são necessários. Em suma, os sistemas embarcados possi-
bilitam transferir as decisões referentes a essas tarefas rotineiras aos microcontroladores,
que também serão responsáveis pela leitura, através de sensores, do ambiente e inter-
pretação desses dados para que possam, assim, atuar sobre o mesmo. As aplicações são
inumeráveis, cabe ao usuário definir suas necessidades.

24 Capítulo 1. Introdução

1.1 Objetivos

O objetivo do presente trabalho é a definição da arquitetura de um sistema de Internet
of Things (IoT) para uma aplicação em automação residencial. Os conceitos presentes no
âmbito da IoT de escalabilidade e modularidade foram aplicados ao sistema desenvolvido.
A arquitetura desenvolvida deve permitir colocar a disposição do usuário a decisão do
tamanho do projeto de automação que será instalado em sua residência, sendo necessário
escolher quais e quantos Periféricos deseja instalar, tarefa essa que será realizada pelo
próprio consumidor, também será possível acrescentar ou retirar Periféricos conforme
seja constatada uma necessidade maior ou menor do projeto inicial.

A partir do modelo produzido, outro objetivo foi a criação um protótipo, que foi
utilizado para validar os conceitos e a estrutura da arquitetura do sistema. Para atingir
esses objetivos, foram realizados estudos e modelagens do sistema como proposto pelo
projeto IoT-A, que visa estabelecer as bases arquitetônicas de uma futura Internet das
Coisas, e a partir destes modelos, escolhas de projeto adequadas foram tomadas para
desenvolvimento do protótipo que valida o modelo. Para o desenvolvimento do protótipo,
foram utilizadas plataformas de prototipagem open-source, tanto em hardware quanto em
software, reduzindo assim os custos de desenvolvimento, uma vez que acelera o processo
de implementação devido aos esforços da comunidade open-source em partilhar projetos
e conhecimento.

1.2 Justificativa

“A Internet das Coisas tem potencial para criar um impacto econômico de 2.7 trilhões
a 6.2 trilhões de dólares anualmente até 2025.” (MANYIKA et al., 2013).

A Internet das Coisas é a próxima revolução na computação. Enquanto
smartphones e a internet móvel viu o advento de aplicativos para o
consumidor, esperamos ver a integração generalizada de semicondutores,
comunicação móvel e Big Data impulsionando a Internet das Coisas na
economia em geral. (JUNGLING; WOOD, 2014)

“Ninguém assumiu o controle dessas áreas aqui no Brasil. Vale a pena considerar
essas novas tecnologias como forma de disruptar mercados e criar novas ideias para tirar
ineficiências e atender a carência de serviços de qualidade que o Brasil tem.”(RIVA, 2014).

É fato que esse mercado tem muito a ser explorado, esse projeto se justifica por
gerar conhecimento e experiência em uma área que ainda crescerá muito nos próximos
anos (BRADLEY; BARBIER; HANDLER, 2013) e também resultou em um protótipo de um
possível produto competitivo no mercado atual Brasileiro, na área de Internet das Coisas
e, mais especificamente, na área de automação residencial.

Um dos fatores que influenciam a decisão das pessoas a não aderirem a essas tecno-
logias, instalarem algum tipo de sistema automatizado em suas residências e explorarem

1.2. Justificativa 25

esse mundo totalmente novo, é a necessidade de instalações complexas, sendo por vezes
necessário quebrar paredes, novos cabeamentos e possíveis alterações na estrutura da casa.
Esse tipo de serviço resulta em alto custo de instalação e limita o acesso à essas tecnolo-
gias a entusiastas que tenham boas condições financeiras. Esse projeto então se justifica
por desenvolver um sistema de automação residencial de baixo custo e fácil instalação.

26 Capítulo 1. Introdução

27

Capítulo 2
Fundamentação Teórica

2.1 Projeto IoT-A

Essa seção propõe um estudo sobre o projeto IoT-A (BAUER et al., 2011), explicando
os principais objetivos desse projeto e, após a introdução dos objetivos, conceitos básicos
e como utilizar esse documento, são exploradas com maior nível de detalhamento duas
modelagens que utilizadas para desenvolver o modelo proposto nesse trabalho.

Hoje, o slogan “Internet das Coisas” é utilizado por muitos produtos. Essas soluções
oferecem pouca ou nenhuma capacidade de interagir com outros produtos, uma vez que
são desenvolvidos para solucionar somente um problema específico. Além disso, o cenário
da IoT cobre aplicações em campos completamente diferentes, sendo assim, as tecnologias
utilizadas variam muito de uma aplicação para a outra. Portanto, as soluções são verticais
e podem ser chamadas de “INTRAnet das Coisas” ao invés de “INTERnet das Coisas”, no
longo prazo esse modelo de desenvolvimento é insustentável. Assim como os protocolos
no campo das redes, onde surgiram vários diferentes no início, todos eles deram lugar
a um modelo comum, chamado de TCP/IP. O surgimento de um modelo de referência
para o cenário IoT e a identificação de arquiteturas de referência pode conduzir a um
desenvolvimento mais ágil e focado possibilitando assim um crescimento exponencial das
soluções relacionadas à IoT (BAUER et al., 2011). Levando em consideração apenas os
aspectos técnicos, as soluções IoT dos dias de hoje não abordam os requerimentos de
escalabilidade de uma futura IoT, tanto em questões de comunicação entre dispositivos
diferentes e capacidade de gerenciar os mesmos.

Essas considerações levaram à criação de, primeiramente, um Modelo de Referên-
cia para o domínio IoT com o objetivo de fornecer um entendimento comum sobre os
problemas relacionados à esse domínio. Em segundo lugar, fornecer para as empresas
que desejam criar suas próprias soluções IoT um suporte através de uma Arquitetura de
Referência que descreve os blocos essenciais que essa solução deve conter, assim como
guia as escolhas de design ideais para lidar com os requisitos, que conflitam entre si, de
desempenho, funcionalidades, implementação e segurança. (BAUER et al., 2011)

28 Capítulo 2. Fundamentação Teórica

Não é escopo desse trabalho de conclusão de curso seguir toda a metodologia proposta
pelo projeto IoT-A, mas sim um estudo inicial sobre a utilização do documento e, a partir
disso, a criação de dois modelos que compõe o início do processo, tratados nas seções
subsequentes.

2.1.1 Modelo de Arquitetura de Referência

Primeiramente, faz-se necessário uma análise da visão base do projeto IoT-A, mos-
trando como estes modelos são utilizados para que uma arquitetura seja definida. É
exibida também a Modelagem de Domínio, a qual não detalha, mas mostra todos os tó-
picos relevantes que devem ser analisados no desenvolvimento do projeto de um sistema
voltado à Internet das Coisas.

O IoT-A descreve blocos essenciais e escolhas de design para lidar com os requerimen-
tos, que conflitam entre si, de funcionalidades, desempenho, agilidade no desenvolvimento
e segurança. Uma Arquitetura de Referência pode ser vista como uma “Matriz” que, ide-
almente, é a base para todas as arquiteturas concretas. Para estabelecer tal Matriz, com
base numa análise forte e exaustiva do Estado da Arte, foi necessário analisar o conjunto
de todas as possíveis funcionalidades, mecanismos e protocolos que podem ser utilizados
para construir essas arquiteturas concretas. Através dessa base de conhecimento, junta-
mente com um conjunto de possíveis escolhas de design, baseado em uma caracterização
do sistema a ser desenvolvido, é possível aos arquitetos de sistemas escolherem entre os
protocolos, componentes funcionais e opções de arquitetura necessários para criar seus
sistemas voltados para a IoT.

A definição de uma arquitetura concreta de um sistema, de acordo com o IoT-A, é
realizada através de uma série de melhores práticas que guiam o arquiteto do sistema
através das modelagens. O objetivo principal é derivar uma arquitetura para um domínio
específico a partir do Architectural Reference Model (ARM). Essas melhores práticas
podem ser divididas em três grandes blocos (Figura 1), pilares principais. São eles:

o Manual: Constituída por sete blocos onde, os quatro primeiros, correspondem à
utilização dos modelos propostos pelo projeto IoT-A: (1) Modelo de Domínio. (2)
Modelo da Informação. (3) Modelo Funcional. (4) Modelo de Comunicação. Além
desses, existem os blocos referentes à perspectivas, desenvolvimento e segurança.

o Passo: Composto por três blocos, um sobre as escolhas de design que podem ser
utilizadas nas modelagens do item anterior, outro sobre os requerimentos de desen-
volvimento do sistema e uma análise dos riscos envolvendo o projeto.

o Ilustração: O terceiro, e último, pilar consiste de dois blocos, um que busca investi-
gar a generalidade do modelo IoT proposto e outro sobre Casos de Uso que analisa
as aplicações específicas do domínio proposto.

2.1. Projeto IoT-A 29

Figura 1: Melhores Práticas - Colunas e Blocos.
Fonte: Adaptado de MAGERKURTH, 2013.

Nas próximas seções serão explicados os dois modelos que foram usados para a criação
do projeto proposto nesse trabalho.

2.1.1.1 Modelo de Domínio

O Modelo de Domínio, representado pela Figura 2, proposto pelo projeto IoT-A, define
as descrições dos conceitos pertencentes a uma área de interesse em particular, também
é no mesmo modelo onde os atributos básicos desses conceitos como, por exemplo, nome
e identificador são definidos. Outro importante aspecto definido desse modelo são as
relações entre os conceitos definidos.

O Modelo de Domínio proposto é uma parte importante de qualquer modelo de referên-
cia, pois o mesmo inclui a definição de vários conceitos abstratos, suas responsabilidades
e suas relações. Ele não trata de particularidades das tecnologias que podem vir a ser
utilizadas, mas sim as relações entre as entidades físicas e suas representações virtuais,
que, através da troca de informações, disponibilizarão serviços e recursos aos usuários.

O principal objetivo de um modelo de domínio é gerar um entendimento comum do
sistema alvo em questão. Tal entendimento comum é importante, não apenas interna-
mente ao projeto, mas também para o discurso científico. Somente com um entendimento
comum dos conceitos principais, descritos no modelo de domínio, é possível avaliar e discu-
tir soluções arquitetônicas (BAUER et al., 2013). Esse modelo, então, representa de forma

30 Capítulo 2. Fundamentação Teórica

Figura 2: Modelo de Domínio.
Fonte: Adaptado de MAGERKURTH, 2013.

geral, como um cenário da IoT deve ser modelado para que todos os aspectos técnicos
sejam considerados para um domínio específico. Essa modelagem é o primeiro passo para
criar um Modelo de Referência.

Uma vez introduzido o modelo, é importante explicar os conceitos envolvidos na mo-
delagem do mesmo. Um cenário para a IoT pode ser descrito, de forma genérica, como
um usuário que interage com Entidades Físicas, “coisas” no mundo real. Pode-se definir o
usuário de um sistema IoT como um humano utilizando o sistema ou um Artefato Digital.
Quando o usuário é um ser humano, este acessará os serviços através de interfaces em
softwares disponíveis para o mesmo. Entidades Físicas podem ser qualquer “coisa” do
mundo real que precise ser representada no modelo.

Entidades Físicas são representadas no mundo virtual através de Entidades Virtuais.
Existem muitos tipos de representações digitais das entidades físicas, dentre elas é possível
listar:

o Modelos 3D.

o Avatares.

2.1. Projeto IoT-A 31

o Entradas em Banco de Dados.

o Objetos ou instâncias de uma classe em uma linguagem de programação orientada
a objetos.

As Entidades Virtuais possuem duas propriedades fundamentais:

o Artefatos Digitais: Entidades Virtuais representam apenas uma entidade física, mas
entidades físicas podem estar a elas associadas inúmeras entidades virtuais. Cada
entidade virtual possui uma Identification (ID). É possível visualizar as Entidades
Virtuais como artefatos digitais, que podem ser passivos, como, por exemplo, uma
entrada em um banco de dados ou ativos, componentes de software que acessam
outros serviços ou recursos do sistema.

o Idealmente, Entidades Virtuais são representações sincronizadas de uma série de
aspectos (ou propriedades) da Entidade Física, isso significa que parâmetros digitais
relevantes, que representam as características da entidade física, são atualizados na
medida que mudanças ocorrem.

Uma Entidade Aumentada é a composição de uma Entidade Virtual e uma Entidade
Física a qual ela está associada. Essa definição é feita para destacar o fato de que esses
conceitos estão intimamente relacionados, são essas entidades que permitem que objetos
do nosso dia-a-dia possam interagir no mundo virtual, sendo parte do processo, consti-
tuindo as “coisas” do IoT.

A relação entre Entidade Física e Entidade Virtual é conseguida, normalmente, em-
barcando um ou mais dispositivos com capacidade de processamento computacional em
objetos físicos comuns, permitindo assim controlá-los ou somente obter informações sobre
o mesmo. Surge então o termo Dispositivo, nome dado ao conjunto, aumentando a capa-
cidade de objetos comuns, permitindo que os mesmos realizem tarefas mais inteligentes e
interajam com o mundo virtual.

Do ponto de vista da IoT existem três tipos básicos de dispositivos, são eles:

o Sensores: coletam informações sobre as Entidades Físicas que monitoram.

o Tags: atribuem uma identificação única, perante ao sistema, as Entidades Físicas
às quais estão associadas.

o Atuadores: dispositivo capaz de alterar o estado da Entidade Física.

Recursos são componentes de software que providenciam informações ou são usados
na ativação de atuadores nas Entidades Físicas. Existem, basicamente, dois tipos de re-
cursos, são eles: (1) Recursos do Dispositivo, quando esses componentes de software estão
hospedados no próprio Dispositivo associado à Entidade Física. (2) Recursos de Rede,

32 Capítulo 2. Fundamentação Teórica

Figura 3: Modelo de Informação.
Fonte: adaptado de MAGERKURTH, 2013.

quando os recursos estão disponíveis através da rede, internet ou intranet, armazenados
em algum servidor web.

Os recursos são oferecidos através de serviços, que disponibilizam uma interface bem
definida e padronizada oferecendo todas as funcionalidades necessárias para a interação
com Entidades Físicas. A grosso modo, serviços são responsáveis por expor as funciona-
lidades, recursos, de um Dispositivo.

Esses conceitos serão utilizados no Capítulo 3, onde um Modelo de Domínio para o
sistema proposto é criado. Na próxima seção, outra modelagem do IoT-A será explicada,
o Modelo de Informação.

2.1.1.2 Modelo de Informação

Outro aspecto tratado pela modelagem proposta pelo projeto IoT-A é a da informa-
ção. O Modelo de Informação, exemplificado na Figura 3, define a estrutura em que
a informação é manipulada pelo sistema em um alto nível de abstração. A descrição
da representação da informação (como por exemplo, descrição de XMLs ou RDFs e sua
estrutura) não são parte deste modelo, mas sim um desdobramento importante.

O Modelo de Informação, proposto pelo IoT-A, detalha a modelagem de uma Entidade
Virtual. Esse modelo tem expressiva relação com o Modelo de Domínio. Toda Entidade

2.2. Internet 33

Virtual possui um tipo, nome e um ou mais valores aos quais meta-informações podem
estar associadas.

As Entidades Virtuais, Descrições dos Serviços e Associações são os principais com-
ponentes tratados por esse modelo. Como explicado na seção anterior, sobre o Modelo
de Domínio, as Entidades Virtuais estão associadas às Entidades Físicas e a Descrição de
um Serviço, como o nome indica, descreve um serviço que está associado àquela Entidade
Física. Associações servem para modelar a conexão entre um atributo de uma Entidade
Virtual e a Descrição de um Serviço.

Cada Entidade Virtual possui, perante ao sistema, um identificador único e um Tipo
de Entidade, que pode ser um ser humano, sensor, atuador e etc. O Tipo de Entidade
pode ter relação com conceitos que definem que tipo de atributo uma Entidade Virtual
deve ter. Cada Contêiner de Valor pode conter de 0 a n metadados associados.

Uma Descrição de Serviço descreve as características relevantes de um Serviço, in-
cluindo a sua interface. Descrição de Recursos descrevem um recurso, o qual possui suas
funcionalidades descritas por um serviço, a Descrição de Recurso pode conter informações
sobre o Dispositivo no qual o recurso está hospedado, caso o recurso seja On-Device.

2.2 Internet

Uma network, em português rede, é um grupo de dispositivos conectados e que são
capazes de conversar um com o outro. Uma internet são duas ou mais redes que conseguem
se comunicar entre si. A Internet, é a mais notável das internets, composta por centenas
de milhares de redes conectadas. Indivíduos particulares, organizações governamentais,
escolas, universidades, empresas privadas e públicas, bibliotecas em praticamente todos
os países utilizam a Internet. Milhões de pessoas são usuários, apesar de esse sistema ter
iniciado em 1969. (FOROUZAN, 2010)

Em meados de 1960, os computadores mainframes utilizados em pesquisas eram
dispositivos stand-alone, ou seja, que operavam sozinhos. Computadores de fabrican-
tes diferentes não eram capazes de comunicar entre si. A Advanced Research Projects
Agency (ARPA) do Departamento de Defesa dos EUA, tinha interesse em encontrar uma
forma de criar uma comunicação entre dois computadores para que as pesquisas pudessem
ser compartilhadas , a fim de evitar esforços em dobro dos pesquisadores e reduzir assim
os custos. Então, em 1967 a ARPA apresentou suas ideias para a ARPANET, uma pe-
quena rede de computadores conectados. Em 1969 a ARPANET era uma realidade, com
quatro pontos de acesso: a Universidade da Califórnia em Los Angeles, a Universidade
da Califórnia em Santa Bárbara, o Instituto de Pesquisas de Stanford e a Universidade
de Utah estavam conectados. (FOROUZAN, 2010)

A partir desse ponto, outras redes começaram a ser criadas e ficou cada vez mais evi-
dente a necessidade em criar padrões para que essas redes pudessem se comunicar umas

34 Capítulo 2. Fundamentação Teórica

com as outras. Em 1973 começaram então os primeiros esforços parar criar esse protocolo,
um artigo chamado Transmission Control Protocol (TCP) surgiu como estudos para resol-
ver os problemas de comunicação entre diferentes fabricantes. Em 1977 ficou demonstrado
o sucesso desse protocolo criando uma internet com três redes, ARPANET, PacketRadio
e PacketSatellite. O Protocolo TCP foi então dividido em dois, TCP e Internet Proto-
col (IP) e ficou conhecido como TCP/IP, que é explicado mais detalhadamente a seguir.

2.2.1 TCP/IP

O TCP/IP é um protocolo com cinco camadas, sendo quatro delas camadas de software
e uma de hardware, as camadas TCP/IP foram nomeadas similarmente ao Modelo OSI. A
diferença entre os dois reside no fato de que no TCP/IP as camadas seis e sete do Modelo
OSI foram incorporadas juntamente à camada 5, chamada de Aplicação (FOROUZAN,
2010).

A Camada Física do protocolo TCP/IP não define nenhum protocolo específico, mas
suporta todos os padrões e protocolos proprietários. Nesse ponto, a comunicação é pura-
mente entre dois nós consecutivos, que podem ser computadores ou roteadores. Aqui a
unidade da comunicação é um único bit, transportado através da conexão entre os dois
dispositivos, essa camada trata os bits individualmente.

A segunda camada, chamada de Enlace do protocolo TCP/IP também não define
nenhum protocolo específico, mas suporta todos os padrões e protocolos proprietários.
Nesse nível a comunicação ainda é entre dois nós específicos, consecutivos, a diferença
é que aqui, a unidade de comunicação é um Frame, um pacote que encapsula os bits
recebidos utilizando a camada física, em dados com um cabeçalho. O cabeçalho, além de
outras informações a respeito dos dados transmitidos, contém as informações de quem é
o destinatário e a fonte do Frame.

A Camada de Rede, a terceira do protocolo TCP/IP suporta, além de outros, o pro-
tocolo IP. Neste nível a comunicação não é mais entre dois nós consecutivos na rede,
mas sim entre dois pontos, nas duas primeiras camadas a comunicação é fim-a-fim e, na
camada de rede, a comunicação é ponto-a-ponto. A unidade de comunicação é um Da-
tagrama, que trata-se de uma entidade completa de dados, independente e que contém
informações suficientes para ser roteada da origem ao destino sem precisar de informações
adicionais.

A próxima camada, chamada Camada de Transporte é a quarta do protocolo TCP/IP.
Nessa camada é definido o protocolo TCP, um protocolo que realiza, além da multiple-
xação dos dados, uma série de funções para tornar a comunicação entre dois pontos mais
confiável. Até a camada anterior, os dados não eram ordenados e, os Datagramas por si só
não fazem sentido, a camada de transporte faz a ordenação dos pacotes recebidos, garante
que não houve perda de pacotes e os dados são íntegros. A grande diferença é que na

2.2. Internet 35

Camada de Rede, a comunicação é feita ponto-a-ponto, mas de um Datagrama, enquanto
na Camada de Transporte, a comunicação ponto-a-ponto é de mensagens inteiras.

Por último, a Camada de Aplicação, quinta do protocolo TCP/IP. Esta camada per-
mite ao usuário acessar os serviços da rede. São muitos os protocolos definidos na Camada
de Aplicação. Na próxima seção será detalhado um protocolo dessa camada de interesse
para o desenvolvimento desse projeto, o HTTP.

2.2.2 HTTP

O Hypertext Transfer Protocol (HTTP) é um protocolo de comunicação, presente na
Camada de Aplicação do Modelo OSI, com a leveza e velocidade necessária para siste-
mas de comunicação hipermídia distribuídos e colaborativos. É um protocolo genérico,
stateless e orientado a objetos que pode ser usado em inúmeras aplicações, como por
exemplo em servidores e sistemas de gerenciamento de objetos, através dos seus métodos
de requisições (comandos). Uma das características do protocolo HTTP é o tipo da repre-
sentação dos dados, que permite que sistemas sejam construídos independentemente dos
dados que estão sendo transferidos. Vem sendo usado na World-Wide Web desde 1990.
(BERNERS-LEE; FIELDING; FRYSTYK, 1996)

Na prática, sistemas de informação precisam de mais funcionalidades além das requisi-
ções simples, entre elas é possível citar pesquisas, atualização do front-end e comentários.
O HTTP oferece vários métodos que possuem a finalidade de indicar o propósito de uma
requisição, ele se baseia na referência da Uniform Resource Identifier (URI), como a loca-
lização Uniform Resource Locator (URL) ou o nome Uniform Resource Name (URN) para
indicar em qual recurso um método será aplicado. (BERNERS-LEE; FIELDING; FRYSTYK,
1996)

Abaixo segue os termos que são utilizados para se referir às funções desempenhados
pelos participantes ou objetos em uma comunicação HTTP:

o Connection: Uma representação virtual de uma conexão entre duas aplicações que
se comunicam.

o Message: Unidade básica em uma comunicação HTTP, consiste de uma sequência
de octetos estruturada que corresponde a uma sintaxe definida na documentação
RFC1945 (BERNERS-LEE, 1996).

o Request: Uma mensagem HTTP de requisição.

o Response: Uma mensagem HTTP de resposta.

o Resource: Um objeto da rede ou serviço que pode ser identificado por uma URI.

o Entity: Representação particular ou interpretação dos dados, resposta ou recurso de
um serviço, que pode ser encapsulado em uma mensagem de requisição ou resposta.

36 Capítulo 2. Fundamentação Teórica

Consiste da meta-informação na forma de cabeçalhos ou conteúdo na forma de um
corpo da mensagem.

o Client: Aplicação que estabelece uma conexão a fim de enviar requisições.

o User Agent: Um client que iniciou uma requisição.

o Server : Aplicação que aceita conexões a fim de responder as requisições HTTP.

o Proxy: Programa intermediário que age como um client e um server com o objetivo
de fazer requisições em nome de outro client. Os proxys precisam interpretar as
mensagens e, se necessário, reescrevê-las antes de passarem a diante. Normalmente
são utilizados do lado do client como network firewalls.

o Gateway: Um server que age como um client intermediário para outro server.

O protocolo HTTP é baseado em um sistema de requisição e respostas. O cliente
estabelece uma conexão com o servidor e envia uma solicitação na forma de um método
de requisição, URI, e a versão do HTTP utilizada, seguido de uma mensagem MIME-like,
extensões multi-função para mensagens de internet, contendo modificadores da requisição,
informações sobre o cliente e possivelmente um conteúdo no corpo da mensagem. O
servidor então responde com uma linha de status da requisição, incluindo a versão do
protocolo utilizada e se foi recebida com sucesso ou qual erro encontrado ao processar
a requisição, seguido de uma mensagem MIME-like contendo informações do servidor,
meta-informação da entidade e possivelmente um conteúdo no corpo da mensagem. A
grande maioria das comunicações HTTP são requisições de clientes para o servidor de
origem, que contém os recursos ou serviços que o cliente busca.(BERNERS-LEE; FIELDING;

FRYSTYK, 1996)

2.3 Comunicação sem fio

As comunicações wireless enviam sinais, pacotes de dados através do ar utilizando-se
das ondas eletromagnéticas, na frequência das ondas de rádio, que variam de 3kHz até
300GHz. No caso do módulo nRF24L01 utilizado na comunicação entre a Central de
Controle e os Periféricos, a frequência utilizada é a de 2.4GHz. A faixa de frequência
utilizada está dentro das regiões que são mantidas abertas para uso genérico, chamada de
banda Industrial, Scientific and Medical (ISM), é também a faixa de frequência utilizada
por roteadores comuns residenciais, telefones sem-fio, microondas e etc. (BUTLER et al.,
2013) Nesta seção serão apresentados alguns conceitos básicos sobre comunicação wireless.

Para que uma comunicação entre dispositivos wireless aconteça, é preciso que as in-
formações estejam na forma de sinais elétricos para serem transmitidos por ondas eletro-
magnéticas. Esses sinais com as informações a serem transmitidas modulam uma onda

2.4. MVC 37

de rádio portador. Os sinais elétricos são variações de tensão elétrica, que, no caso desse
projeto, são sinais digitais (MEDEIROS, 2007).

Uma comunicação sem fio precisa de dois adaptadores, um que transforma os dados
a serem enviados em sinais elétricos e, posteriormente, ondas eletromagnéticas para en-
tão transmiti-los através de uma antena, e outro, da mesma natureza, capaz de fazer o
caminho inverso.

2.4 MVC

MVC é o acrônimo de Model-view-controller, uma representação pode ser vista na
Figura 4. Modelo-visão-controlador é um modelo de arquitetura de software que separa
a representação da informação da interação do usuário ou aplicações com o sistema. A
arquitetura MVC foi criada entre 1978 e 1979 por Trygve Reenskaug como uma solução
para o problema geral de usuários controlando conjuntos de dados grandes e complexos,
primeiramente para ser utilizada na SmallTalk, uma linguagem de programação orientada
a objetos criada na Xerox, e depois evoluiu devido ao grande interesse pela estrutura
criada.

Figura 4: Modelo MVC.

O Modelo consiste de uma abstração da representação na forma de dados em um sis-
tema computacional. Os Modelos são representados nos computadores como uma coleção

38 Capítulo 2. Fundamentação Teórica

de dados junto aos métodos necessários para processar esses dados, cada Modelo está
associado a um ou mais Views, em português, Visão.

A Visão é uma estrutura capaz de mostrar uma ou mais representações do Modelo na
tela, ela pode mostrar uma ou mais características do Modelo que representa e/ou oculta
outras, que pode ser o front-ent do usuário ou as aplicações utilizando as Application
Programming Interface (API). A Visão também é capaz de realizar operações sobre os
Modelos as quais estão associadas.

O Controlador é a ligação entre o usuário e/ou a aplicação e o sistema, ele faz a
mediação da entrada, dos dados de entrada, convertendo-os em comandos para o Modelo
ou dados que serão exibidos na Visão. Os frameworks web MVC colocam o modelo, a
visão e o controlador totalmente no lado do servidor, os componentes front-end do sistema
recebem somente os dados, e não a lógica por trás. (REENSKAUG, 1979)

2.5 API

Uma API é o acrônimo para Application Programming Interface, em português, Inter-
face de Programação de Aplicativos e trata-se do conjunto de funções, rotinas e padrões
estabelecidos por um programador no desenvolvimento de um software para que a utiliza-
ção das suas funcionalidades e serviços por aplicativos externos, ou mesmo outros níveis da
mesma aplicação, seja de fácil implementação e que não precisem envolver-se em detalhes
da implementação do software, mas sim apenas utilizar os seus serviços e funcionalidades.
(FOLDOC, 1995)

No ambiente web, uma API faz referência a um conjunto definido de mensagens e res-
posta de requisições HTTP, as quais podem ser expressas utilizando os formatos eXtensible
Markup Language (XML) ou JavaScript Object Notation (JSON). Usualmente utilizando
uma técnica chamada Representational State Transfer (REST), que pode ser resumida,
nesse contexto, como uma sintaxe específica utilizada para construir as URI, cada recurso
disponível pela API é unicamente direcionado através da sua URI.

2.6 Android

O Android é um Sistema Operacional que possui seu núcleo baseado no kernel Linux,
esse sistema, desenvolvido pelo Google, tem seu foco em dispositivos móveis com telas
sensíveis ao toque, como é o caso de smartphones e tablets, apesar de possuir outras
distribuições específicas para televisões, carros, relógios e etc.

Uma das principais classes no desenvolvimento de um aplicativo Android são as Acti-
vitys. Uma activity é, basicamente, uma classe que trata do gerenciamento de uma User
Interface (UI). Todo aplicativo Android inicia-se através de uma activity, ou seja, quando
um aplicativo é iniciado, sua Activity principal é chamada. Um aplicativo pode contar

2.6. Android 39

Figura 5: Ciclo de vida de uma Activity.
Fonte: felipesilveira.com.br.

uma ou mais activitys e, uma vez que elas tratam da interface com o usuário, cada tela
do aplicativo possui uma activity associada a ela.

Portanto, para entender como um aplicativo funciona é essencial introduzir alguns
conceitos relacionados as activitys. O ciclo de vida de uma activity pode ser observado
na Figura 5.

Existem dois métodos principais que todas as activitys devem tratar, são eles:

o onCreate(Bundle): É por onde cada tela é iniciada, nesse momento deve ser in-

40 Capítulo 2. Fundamentação Teórica

formado qual o layout está associado à essa activity. Nas aplicações Android, um
layout é um arquivo XML que define todos os objetos gráficos contidos em uma tela.

o onPause(): Nesse método são tratadas as atividades necessárias para o usuário
sair dessa tela, as informações pertinentes devem ser salvas ou transferidas para a
próxima activity.

A classe activity é, portanto, uma parte importante do ciclo de vida total de um
aplicativo, ela determina a forma e o fluxo como as atividades são executadas e colocadas
juntas.

41

Capítulo 3
Materiais e Métodos

A partir dos conceitos discutidos na seção 2.1, foi criado um modelo de arquitetura
de um sistema e um protótipo, a fim de validar o modelo e testar o funcionamento do
sistema como um todo.

Nesse capítulo será discutido os detalhes de desenvolvimento do protótipo em cada
esfera do sistema.

3.1 Materiais

Nessa seção serão apresentados os materiais utilizados no desenvolvimento, como bi-
bliotecas de software e componentes de hardware.

3.1.1 Ruby

A linguagem de programação utilizada para criação da Aplicação Web, o Ruby, foi
desenvolvida no Japão por Yukihiro Matsumoto, conhecido como "Matz", em 1993. De-
vido ao seu grande interesse e por acreditar que as linguagens scripts seriam o futuro
da programação, como não existia nenhuma linguagem com as características que ele
buscava, decidiu desenvolver a própria linguagem. Matz se concentrou em desenvolver
uma linguagem de programação que tinha como foco as necessidades humanas ao in-
vés dos computadores, por isso é uma linguagem de leitura e compreensão muito fáceis.
(STEWART, 2001)

O Ruby é uma linguagem alto nível, ou seja, uma linguagem com grande nível de abs-
tração, mais próxima da linguagem humana do que da linguagem de máquina. Também é
uma linguagem de programação interpretada, não necessita, portanto, de um compilador,
ela é executada pelo interpretador, um programa instalado com essa finalidade e só depois
é executada pelo sistema operacional ou processador. Orientada a Objetos, significa que
ela permite aos usuários manipularem estruturas de dados, chamadas objetos, para criar
e executar programas, no Ruby todos os elementos são objetos. (CLINTON, 2009)

42 Capítulo 3. Materiais e Métodos

3.1.2 Ruby-on-Rails

Para o desenvolvimento web, foi utilizado um framework, conjunto de classes que cola-
boram para realizar uma responsabilidade para um domínio de um subsistema de aplicação
(FAYAD; SCHMIDT, 1997) no modelo Model-view-controller (MVC). O framework esco-
lhido foi o Ruby-on-Rails, criado por David Heinemeier Hansson, em 2004. Um projeto
open-source escrito na linguagem de programação Ruby e otimizado para produtividade,
facilidade e rapidez na implementação de aplicações web orientadas a banco de dados.

O modelo MVC é utilizado pelo Ruby-on-Rails para organizar a programação da apli-
cação. Em uma configuração padrão do Rails, um Model se refere a uma tabela no banco
de dados e um arquivo Ruby, por exemplo, um modelo de User, será definido em um
arquivo user.rb, na pasta específica dos modelos e estará relacionado com a tabela users
no banco de dados, existe a possibilidade de escolher outros nomes e fazer outros relacio-
namentos, como relacionar a tabela clientes ao modelo User, mas não é boa prática e nem
segue a filosofia de Convention over Configuration (CoC). Os models, views e controllers
do sistema desenvolvido serão listados e explicados posteriormente.

Entre as principais características do Ruby-on-Rails estão os conceitos de Don’t Re-
peat Yourself (DRY) e CoC. O primeiro, faz referência à ideia de reutilização de código,
que também é uma das principais vantagens e características da orientação a objetos,
o próprio framework Ruby-on-Rails nos incentiva a adoção de padrões de projeto mais
adequados com essa finalidade. O segundo conceito, CoC, traz o benefício de poder escre-
ver menos linhas de código para implementar determinada funcionalidade, essa facilidade
no desenvolvimento vem com o preço de o sistema precisar seguir alguns padrões como,
por exemplo, padrões específicos para nomear os arquivos, classes e métodos, e também
devem estar em pastas com nomes específicos, entre outras regras. (CAELUM, 2004)

O Rails é um meta-framework, ele foi desenvolvido a partir de outros frameworks,
portanto para funcionar algumas dependências precisam ser instaladas junto ao pacote
Ruby-on-Rails, são elas:

o ActionMailer : framework que permite enviar e receber emails a partir da aplicação
usando uma classe específica, ActionMailer, que é muito similar a um controller.

o ActionPack: é um framework que trata e responde as requisições web, também
prove mecanismos de roteamento, mapeando as requisições para os controllers que
implementam as ações e, com os dados fornecidos são responsáveis por renderizar
os views. Esse framework é o responsável pelo view e controller do modelo MVC.

o ActionView: é um framework para manipular os views, pesquisa de templates e
renderização, também oferece uma estrutura que ajuda a criar formulários HTML.
Os templates tem formato .ERB(embedded Ruby, usados como pequenos trechos de
Ruby dentro do HTML).

3.1. Materiais 43

o ActiveJob: é o framework utilizado para declarar os trabalhos e faze-los rodar em
várias filas backends. Esses trabalhos podem ser várias coisas, entre elas limpezas
regulares, emails, ou praticamente qualquer tarefa que possa dividida em pequenas
unidades de trabalho e rodar paralelamente.

o ActiveModel: fornece um conjunto de interfaces para ser utilizada nos modelos e
classes. Esse framework permite um objeto interagir com o ActionPack usando os
módulos de um modelo diferente do seu próprio.

o ActiveRecord: é um padrão de software encontrado em programas que utilizam
banco de dados relacionais, todo objeto deve incluir funções como inserir, editar e
apagar. Banco de dados relacionais modelam os objetos como tabelas, e definem
relações entre as tabelas. Esse módulo mapeia as tabelas nas classes Ruby.

o ActiveSupport: é uma coleção de classes úteis e extensões da biblioteca padrão
utilizada no desenvolvimento do Ruby-on-Rails.

o Bundler : fornece um ambiente consistente de projetos Ruby, ele rastreia e instala
as gems necessárias em suas versões especificadas para que o projeto possa ser
executado.

o RailTies: responsável por juntar todos os frameworks utilizados. Cuida do processo
de inicialização de uma aplicação Rails e gerencia a interface que disponibiliza uma
linha de comando Rails.

o sprockets-Rails: é uma biblioteca que compila e cuida dos web assets. Ele fornece
um gerenciador de dependências para JavaScript e CSS, e também um poderoso pré-
processamento que permite ao desenvolvedor escrever scripts em linguagens como
CoffeeScript, Sass, SCSS e LESS.

o ActiveResource: representam os recursos RESTful para manipular objetos Ruby.
Para mapear os recursos dos objetos que fazem referência, o Ruby só precisa que
o nome da classe seja correspondente ao nome do recurso, por exemplo a classe
Usuário estende seus recursos aos objetos usuários.

3.1.3 Biblioteca SPI

Serial Peripheral Interface (SPI) é um protocolo de comunicação serial síncrono, uti-
lizado pelos microcontroladores para se comunicarem com outros dispositivos periféricos,
a curta distância, de maneira rápida, também pode ser usado na comunicação entre dois
microcontroladores.

Em uma conexão SPI sempre existe um master, normalmente um microcontrolador,
e um slave que são os dispositivos periféricos a serem controlados, um master é capaz de

44 Capítulo 3. Materiais e Métodos

comunicar-se com vários slaves, normalmente três ligações são comuns entre o master e
todos os slaves, são elas:

o Master In Slave Out (MISO): o canal para o slave enviar dados ao master.

o Master Out Slave In (MOSI): o canal para o master enviar dados para o slave

o Serial Clock (SCK): os pulsos de clock que são utilizados para sincronizar a trans-
missão dos dados, são gerados pelo master.

Além dessas, existe uma ligação específica que o master utiliza para selecionar com
qual slave deseja se comunicar, essa ligação é única para cada slave e é chamada de Slave
Select (SS).

No sistema desse trabalho de conclusão de curso, essa biblioteca é utilizada tanto pela
Central de Controle quanto pelos Periféricos para que o microcontrolador ATmega328
consiga comunicar-se com os módulos wireless nRF24L01.

3.1.4 Biblioteca RF24

Essa biblioteca foi desenvolvida especificamente para utilizar o Arduino como um
driver, ou seja, o master na conexão com o módulo nRF24L01, o transceptor de 2.4GHz
utilizado no projeto. Foi criada com os objetos de maximizar a conformidade com as
operações pretendidas pela Nordic, criadora do chip nRF24L01+, facilitar a utilização por
usuários iniciantes e fornecer uma interface similar às bibliotecas padrões do Arduino.

Os principais métodos, necessários para operar o chip da Nordic são os seguintes:

o Begin: processo de inicialização do chip, deve ser chamada no setup.

o startListening: começa a “ouvir”, esperar por dados, nos canais abertos para leitura.

o stopListening: para de “ouvir” os canais de comunicação.

o write: envia uma mensagem no duto de comunicação aberto para escrita.

o available: verifica se existem dados disponíveis para serem lidos.

o read: lê o primeiro dado disponível no buffer.

o openWritingPipe: abre um duto de comunicação em um endereço específico para
envio de dados.

o openReadingPipe: abre um duto de comunicação em um endereço específico para
recebimento de dados.

3.1. Materiais 45

Essa biblioteca também possibilita configurações nos módulos nRF24L01, é possível
definir especificações como o tamanho, em bits, dos dados que serão enviados através dos
módulos nRF24L01, quantidade de tentativas de reenviar os pacotes de mensagens antes
de retornar uma mensagem de que o dado foi perdido, entre outros.

3.1.5 Biblioteca Bridge

Uma vez que a Central de Controle conta com um Arduino UNO conectado a um
Draginio Yún Shield, ela possui um microcontrolador, o ATmega328, que roda um sketch
Arduino e um System-on-a-chip (SoC) AR9331 (ATHEROS, 2010), que roda um SO com
kernel Linux, baseado no OpenWRT (https://openwrt.org). É possível chamar programas
ou scripts customizados do lado Linux através da sketch Arduino rodando no microcon-
trolador e, além disso, acessar vários serviços de internet.

A biblioteca Bridge.h é responsável por facilitar a comunicação entre o SoC AR9331
e o microcontrolador ATmega328. Ela herda de uma biblioteca chamada Stream.h, que
possui vários métodos de comunicação Serial.

Os comandos utilizados através da biblioteca Bridge.h são interpretados pelo Python
no AR9331. Sua função é executar programas no lado do GNU/Linux quando solicitado
pelo Arduino, também fornece um espaço para armazenamento compartilhado de dados
como leitura de sensores entre o Arduino e a Internet, também é responsável por receber
comandos da internet e passar diretamente para o lado Arduino. A biblioteca oferece uma
comunicação full-duplex. (ARDUINO, 2015)

A Bridge.h tem uma classe chamada HttpClient, essa classe é uma extensão da bibli-
oteca Process.h e atua como um wrapper para os comandos de cURL, criando um cliente
HTTP do lado Linux. Um objeto dessa classe é utilizado pelo lado do Arduino para fazer
requisições HTTP para o servidor.

3.1.6 Hardware

Nesta seção, serão apresentados, em maior nível de detalhamento, os componentes de
hardware utilizados até o momento.

3.1.6.1 Arduino UNO

Arduino é uma plataforma de prototipagem eletrônica de placa única e hardware livre,
possui uma linguagem de programação padrão, a qual tem origem em Wiring, e é essenci-
almente C/C++. O objetivo do projeto é criar ferramentas que são acessíveis, com baixo
custo, flexíveis e fáceis de usar. O projeto iniciou-se na Itália, em 2005, com o objetivo de
desenvolver uma plataforma de prototipagem barata para projetos escolares. (ARDUINO,
2014c)

46 Capítulo 3. Materiais e Métodos

Figura 6: Arduino Uno.
Fonte: arduino.cc.

Nesse projeto, para a construção do protótipo, será utilizada a placa Arduino Uno
R3, tanto para o protótipo da Central de Controle quanto para o protótipo dos Periféri-
cos. A escolha dessa placa de prototipagem foi baseada em pesquisas dos parâmetros e
funcionalidades que atendessem aos requisitos do sistema, como capacidade de processa-
mento e memória, também foi levado em consideração preço, disponibilidade e facilidade
de acesso, assim como a facilidade de embarcar o sistema.

O Arduino Uno R3 é uma placa microcontroladora de prototipagem que tem como base
o chip ATmega328 que possui 14 entradas/saídas digitais, das quais 6 podem ser utilizadas
como Pulse-Width Modulation (PWM), 6 entradas analógicas, um cristal oscilador de
16Mhz, conexão Universal Serial Bus (USB) através do ATmega16u2 programado como
conversor USB-Serial, entrada para fonte, soquetes para In Crcuit Serial Programming
(ICSP) e um botão de reset. (ARDUINO, 2014b)

“Uno” significa, um em italiano, foi nomeado dessa forma para marcar o lançamento
do Arduino 1.0, o Uno e a versão 1.0 serão as versões de referência do Arduíno, que
atualmente encontra-se na revisão 3, revisão essa que será utilizada no protótipo.

3.1.6.2 Dragino Yún Shield

Um dos fatores determinantes para a enorme versatilidade e popularidade da plata-
forma Arduino são os shields, que são placas desenvolvidas com um layout específico de
modo que possam ser plugadas no topo das placas Arduino, adicionando funcionalidades
e estendendo a capacidade das placas Arduino. (ARDUINO, 2014a)

3.1. Materiais 47

Para a central de controle, em conjunto com o Arduino Uno, será utilizado o shield
Dragino Yún Shield (Figura 7), um dos mais poderosos shields para placas Arduino, foi
desenvolvido para resolver os problemas de conectividade e armazenamento dos micro-
controladores utilizados nas placas Arduino (DRAGINO, 2014). O Yún Shield possui um
processador de 400Mhz AR9331, 16MBytes de memória flash e 64MBytes de Random
Access Memory (RAM), um conector RJ45, conexão WiFi 802.11 b/g/n com uma antena
externa via um conector I-Pex, um botão de reset independente da placa Arduino onde o
shield está sendo utilizado e um conector USB host.

Figura 7: Dragino Yún Shield.
Fonte: www.dragino.com.

O Dragino Yún Shield é um SoC que roda um sistema operacional baseado no kernel
Linux, o OpenWRT, largamente utilizado em sistemas embarcados para rotear tráfego
de rede, pode ser configurado utilizando uma interface de linha de comando ash shell ou
através de uma Graphic User Interface (GUI) chamada LuCI. A placa é compatível com
a IDE Arduino, onde é possível fazer o upload dos programas para a placa Arduino onde
o Yún Shield está conectado através da rede WiFi, o Yún Shield transfere o programa
recebido por WiFi para a placa Arduino através de uma comunicação SPI e pode ser
configurado através de uma Web GUI, Secure Shell (SSH), Local area network (LAN) ou
WiFi.

Outro fator importante é que a comunicação com a internet, seja através da rede WiFi
ou WAN através do conector RJ45, é feita no core do Dragino Yún Shield, este, por sua
vez, transfere os dados tratados para o microcontrolador, essa estrutura está representada
pela Figura 8.

48 Capítulo 3. Materiais e Métodos

Figura 8: Dragino Yún Shield Struct.
Fonte: www.dragino.com.

3.1.6.3 Módulo nRF24L01+

A comunicação entre a Central de Controle o os Periféricos é feita através de um
módulo wireless transceiver que tem como base o chip nRF24L01+, fabricado pela Nor-
dic. Esse módulo foi escolhido devido ao tamanho, baixo consumo de energia, preço e
facilidade de implementação com o Arduino, uma vez que existe uma biblioteca que dis-
ponibiliza opções de configurações e funcionalidades para estabelecer uma comunicação
entre módulos desse tipo.

O Nordic nRFL01+ é um transceptor de radiofrequência que opera em 2.4Ghz, é
altamente integrado e possui um consumo de energia muito baixo. Os picos de correntes
de transmissão e recepção são menores que 14mA, possui um gerenciamento avançado de
energia e a faixa de alimentação é de 1.9 a 3.6V, sendo então possível alimentar o módulo
através do pino que oferece 3.3V do Arduino, essa fonte integrada na placa Arduino pode
fornecer uma corrente de até 50mA (ARDUINO, 2014b). O módulo, da fabricante Nordic,
fornece uma solução Ultra Low Power (ULP) verdadeira, permitindo de meses a anos
de vida útil se alimentados com pilhas do tipo AA/AAA (SEMICONDUTOR, 2014). O
Nordic nRF24L01+ possui uma solução completa para transmissão e recepção de dados à
uma frequência de 2.4 Ghz, possui sintetizador Radio Frequency (RF) e lógica baseband,
incluindo o Enhanced ShockBurst e protocolo de hardware para uma interface SPI de
alta velocidade para o controlador da aplicação. Não é necessário nenhum loop filter,
ressonadores, diodos ou capacitores externos, apenas um cristal de baixo custo, circuitos

3.1. Materiais 49

Figura 9: Módulo nRF24L01+.
Fonte: www.filipeflop.com/.

de correspondência e uma antena. (SEMICONDUTOR, 2014)
Enhanced ShockBurst (ESB) é um protocolo básico que suporta duas vias de comuni-

cação através de pacotes de dados, possui algumas características como Packets Buffering,
capaz de enfileirar os pacotes a serem enviados, liberando o dispositivo controlador para
outras tarefas, também possui verificação dos pacotes, que é capaz de assegurar a in-
tegridade dos pacotes recebidos e retransmissão automáticas de pacotes perdidos, essa
funcionalidade é configurável para o desenvolvedor, é possível determinar um número
específico de tentativas de retransmissão automática.

O módulo escolhido (Figura 9), acompanha a antena, o cristal e os circuitos de cor-
respondência para uma transmissão na frequência de 2.4GHz, em uma velocidade de ope-
ração de até 2Mbps, modulação Gaussian Frequency-Shift Keying (GFSK), habilidade de
anti-interferência, verificação de erros por Cyclic Redundancy Check (CRC), comunicação
multi-ponto de 125 canais e controle de fluxo e regulador de tensão embutido.

A escolha desse módulo, ao invés dos tradicionais transmissores e receptores RF, foi
devido ao fato que, como a maioria dos Periféricos irão possuir algum tipo de feedback, e o
protocolo de comunicação, oferecido pela biblioteca RF24, utilizado por esse módulo é do
tipo handshaking, ou seja, o dispositivo que é o master toma a iniciativa da comunicação
com um slave, nesse projeto o master será sempre a Central de Controle, e então espera
por uma resposta em um canal de comunicação específico para confirmar que o dado
foi enviado, as leituras dos sensores instalados nos Periféricos, que são os slaves, serão
enviadas para a Central de Controle através dessa resposta, quando um pacote de dados
for recebido.

50 Capítulo 3. Materiais e Métodos

3.2 Métodos

Nessa seção são mostrados os modelos criados, que foram baseados no projeto IoT-A,
para o sistema em questão e todos os detalhes de implementação do protótipo desenvolvido
utilizado para validar o modelo proposto.

3.2.1 Modelagem do Sistema

Esse trabalho tratou do caso de uso mais simples do sistema proposto, que pode ser
estendido para sistemas maiores e mais complexos utilizando-se da mesma arquitetura.
Esse caso consiste de uma pessoa que deseja controlar uma lâmpada de sua residência,
remotamente, através do seu smartphone e verificar o estado da mesma, ou seja, se está
acesa ou apagada.

3.2.1.1 Modelo de Domínio

Segundo o projeto IoT-A e suas recomendações com relação à modelagem de sistemas,
o Modelo de Domínio é o ponto de partida para projetar um sistema com a mentalidade
de Internet das Coisas. A Figura 10 é o modelo desenvolvido, para esse projeto, que trata
o caso de uso apresentado.

Nesse modelo estão representados os serviços que o sistema deve oferecer. Essa re-
presentação oferece uma visão com alto nível de abstração, porém agrega aspectos mais
próximos a uma implementação. Fica explícito todas as relações entre os componentes do
sistema e quais são os elementos de hardware e software, mais detalhes sobre o significado
dessas relações foram apresentados na Seção 2.1.

3.2. Métodos 51

Figura 10: Modelo de Domínio do Sistema.

3.2.1.2 Modelo de Informação

O Modelo de Informação auxilia no design do sistema, evidenciando as entidades
de banco de dados, valores, atributos, metadados e suas interações com os serviços e
recursos oferecidos pelo sistema. Esse modelo aproxima os conceitos tratados no Modelo
de Domínio, Figura 10, à implementação propriamente dita. Dessa forma, as entidades
físicas, que agora estão representadas no mundo virtual através de entidades virtuais, são
destacadas como sendo o ponto principal de um sistema voltado à Internet das Coisas.

Os Modelos de Informação das Entidades Virtuais Central de Controle e Periférico
estão representados, respectivamente, pelas Figura 11 e Figura 12.

52 Capítulo 3. Materiais e Métodos

Figura 11: Modelo de Informação do Controlador.

Nessa seção foram apresentados os Modelos de Domínio e Informação do sistema
proposto por esse trabalho de conclusão de curso. A seguir cada componente do sistema,
que pode ser visualizado na modelagem de domínio, será tratado individualmente para,
posteriormente, desenvolver um protótipo do sistema proposto que valide o mesmo.

3.2. Métodos 53

Figura 12: Modelo de Informação do Periférico.

3.2.2 Componentes Do Sistema

A partir dos modelos apresentados na seção anterior, foi possível chegar em uma
arquitetura específica para o sistema desse trabalho de conclusão de curso. Na presente
seção os componentes do sistema, que compõe a arquitetura definida, serão explicados
detalhadamente, apresentando as características específicas de cada um, alguns conceitos
envolvidos e os requisitos mínimos de cada parte do projeto, assim como os detalhes de
implementação de um protótipo que visa validar o modelo proposto. Uma visão geral do
sistema pode ser vista na Figura 13.

O caso de uso tratado é de um usuário utilizando a Aplicação Web para cadastrar sua
Central de Controle e Periféricos, dispositivos os quais foram instalados fisicamente no

54 Capítulo 3. Materiais e Métodos

local onde deseja-se controle remoto. A partir deste momento, ele é capaz de controlar
remotamente seus Periféricos, através das interfaces disponíveis na própria Aplicação Web
ou através da Aplicação Móvel instalada em seu smartphone. A Central de Controle
é quem faz a ponte de comunicação entre os Periféricos e à Aplicação Web, quando
um comando é dado, por exemplo, através do aplicativo, este envia, primeiramente, o
comando para a Aplicação Web e ela é quem transmite o comando, através da internet,
para a Central de Controle que, por sua vez, encaminha por uma comunicação sem fio
para o Periférico responsável.

Figura 13: Visão Geral Do Projeto.

A seguir, cada componente do sistema é tratado individualmente e são apresentados
os detalhes de implementação do protótipo.

3.2. Métodos 55

3.2.3 Aplicação Web

A Aplicação Web tem três principais funções: (1) Oferecer um front-end para os
usuários cadastrarem suas centrais de controle e periféricos, com interfaces que permitem
que o mesmo gerencie seus dispositivos e controle-os. (2) Uma API para a Aplicação
Móvel, que disponibiliza as informações necessárias para que o aplicativo seja capaz de
mostrar para um usuário os dispositivos que controla e, de fato, controlá-los através de
seu smartphone. (3) Uma API para a Central de Controle, disponibilizando para a mesma
as informações sobre quais os periféricos estão cadastrados.

Um dos requisitos da Aplicação Web é que a mesma esteja hospedada em um servidor
que forneça uma infra estrutura suficientemente grande para que, caso haja necessidade,
possa contratar mais recursos. Uma vez que toda a comunicação entre o usuário e os
Periféricos passa pela Aplicação Web, quanto mais usuários utilizando o sistema, mais
Centrais de Controle instaladas, mais requisições simultâneas ao servidor, portanto, ele
deve ser capaz de tratar todas essas concorrências de requisições de forma a não impactar
negativamente na experiência do usuário. A decisão por não hospedar a Aplicação Web
na própria Central de Controle estão discutidas no capítulo 6.

Para o desenvolvimento da Aplicação Web, faz muito sentido que a mesma seja de-
senvolvida com uma arquitetura de software no modelo MVC, uma vez que o front-end
do usuário possui um layout padrão em todas as telas, mas diferentes usuários possuem
diferentes Centrais de Controle e Periféricos. Para ficar mais claro o modelo MVC, na
subseção seguinte será apresentada uma breve explicação sobre os conceitos do modelo.
Esses conceitos serão necessários para entender o desenvolvimento do protótipo. Logo em
seguida, uma breve explicação sobre oque é uma API.

A Aplicação Web foi desenvolvida utilizando a linguagem de programação Ruby, em
conjunto com o framework Ruby-on-Rails, hospedado no servidor Heroku, um platform as
a Service (PaaS). A seguir uma breve explicação sobre as características específicas desses
componentes e, logo após, os detalhes de implementação da Aplicação Web do protótipo.

3.2.3.1 Desenvolvimento

Após a apresentação de alguns conceitos importantes sobre o framework utilizado, a
linguagem de programação e os conceitos do modelo MVC e API do Capítulo anterior,
nessa seção é detalhado os por menores do desenvolvimento da Aplicação Web.

Na estrutura de um projeto desenvolvido utilizando o Ruby-on-Rails, existem alguns
arquivos importantes para a compreensão do sistema, o primeiro a ser detalhado será
o routes.rb. Esse é o arquivo que mapeia as requisições HTTP e redirecionam para os
controllers correspondentes e também é aqui onde os recursos disponíveis estão definidos,
como os users, peripherals e devices que serão explicados na seção sobre os models do
sistema.

56 Capítulo 3. Materiais e Métodos

A primeira definição é a root, ou seja, quando nenhuma URI é fornecida, esse tipo
de requisição é feita por um usuário acessando o sistema pelo seu navegador, ele é então
redirecionado para um view onde é possível fazer o login ou criar um novo usuário. Esse
padrão se repete para todo o sistema do Ruby-on-Rails, a requisição é recebida no route.rb,
que tem a tarefa de acionar um controller, esse é o responsável por receber os parâmetros
da URI, casos existam, e, utilizando esses parâmetros, acionar um view e/ou realizar
alguma alteração em algum model.

Portanto, exemplificando, quando um usuário acessa o site, o controller sessions é
acionado, e a viewindex é exibida ao usuário. Nessa página é possível o usuário fazer
um login ou criar um novo User, aqui User faz referência a um model do sistema, e o
controller Session é responsável por buscar um User no model ou criar um, caso essa ação
seja solicitada. Esse fluxo pode ser reproduzido para toda Aplicação Web, portanto, para
explicar o sistema, será necessário apenas explicar os Models, Views e Controllers.

3.2.3.2 Modelo

Os Models, são as estruturas de dados, no Ruby-on-Rails são tabelas em um banco de
dados, as tabelas e as relações entre elas podem ser vistos na Figura 14.

Figura 14: Modelo do Banco de Dados.

O modelo Users são usuários do sistema, pessoas que se cadastraram no site, elas
possuem um nome, e-mail e um password. Esses dados identificam o usuário ao sistema.

Devices são as Centrais de Controle, elas possuem um nome e um DeviceID. As Cen-
trais de Controle são criadas por usuários cadastrados no sistema, eles podem inserir um
nome que identifica o lugar onde a Central de Controle foi instalada, por exemplo, Escri-
tório ou Minha Casa, e precisam inserir um DeviceID, que é um identificador único dessa
Central de Controle, trata-se de um valor fixo determinado pelo fabricante.

UsersDevices é um modelo auxiliar, uma vez que a relação entre usuários e Centrais de
Controle é uma relação nxn, ou seja, um mesmo usuário pode ter uma ou mais Centrais

3.2. Métodos 57

de Controle e uma Central de Controle pode ter um ou mais usuários, uma tabela auxiliar
que guarde a informação de qual device está associado a qual user é necessária.

Peripherals representam os periféricos instalados pelo usuário do sistema, esses dispo-
sitivos precisam ser instalados fisicamente no local onde deseja-se acionamento remoto,
também precisam ser cadastrados no sistema web. Eles possuem um nome, que iden-
tificam o periférico para o usuário como, por exemplo, Lâmpada da Sala ou Portão da
Garagem, possuem três campos booleanos chamados de control, sensor1 e sensor2, esses
campos identificam, respectivamente, uma variável para o controle do periférico e a lei-
tura de dois sensores que podem ou não estar presentes nos mesmos. Possuem um campo
chamado DeviceID, que associa esse Periférico a uma Central de Controle, todo periférico
precisa estar contido em uma Central de Controle e, por último, um campo chamado Pe-
ripheralID, também é um valor fixo determinado pelo fabricante do periférico que precisa
ser inserido manualmente pelo usuário.

3.2.3.3 Views

Os views são as páginas que os usuários navegam, ou os dados que são enviados à
Central de Controle ou a Aplicação Móvel através de sua API, cada model está associado
a pelo menos um view.

Os usuários que utilizam o sistema, podem navegar através das páginas do servidor
web e cada ação está associada a um view, entre as ações disponíveis para eles estão criar,
editar, visualizar ou excluir seu próprio user, qualquer device ou peripheral que o mesmo
tenha acesso. Através dos views os usuários também podem verificar o estado dos sensores
instalados em cada periférico e controlar remotamente os mesmos.

3.2.3.4 Controlador

O sistema possui sete Controllers, a seguir uma explicação mais detalhada das funções
de cada controlador:

1. ApplicationController : esse controlador da aplicação contém somente uma função,
chamada de CurrentUser responsável por criar um objeto do tipo user para a sessão
caso o usuário faça login no site.

2. DevicesController : responsável por qualquer ação relacionada ao modelo device,
ele possui funções básicas para criar, editar, atualizar e destruir objetos do tipo
device, e além das funções básicas, possui a função index para listar todos os devices
relacionados ao objeto CurrentUser, retornado do controlador ApplicationControler,
e show, um método para mostrar um device específico que o usuário deseja.

3. PeripheralsController : responsável por qualquer ação relacionada ao modelo pe-
ripherals, ele possui funções básicas para criar, editar, atualizar e destruir objetos

58 Capítulo 3. Materiais e Métodos

do tipo peripherals e, além das funções básicas, possui a função index para listar
todos os periféricos relacionados a um device, e show, um método para mostrar um
periférico específico que o usuário deseja verificar o estado dos sensores ou controlar
o mesmo.

4. SessionsController : possui três funções, login, que utiliza outra função do mesmo
controlador chamada de authorize, que busca por uma combinação de e-mail e se-
nha na tabela do banco de dados referente aos Users, caso a função encontre essa
combinação, retorna o userID do usuário, e a função logout que encerra a sessão
fazendo com que o userID seja nulo.

5. TasksController Esse controlador contém todas as funções da API utilizada pelo
navegador, Central de Controle ou Aplicação Móvel, ao todo são sete funções:

getInfo utilizada pela Central de Controle para receber todos os dados de todos
os periféricos de um DeviceID específico, passado como parâmetro.

updateSensor, função utilizada pela Central de Controle quando a mesma deseja
alterar o valor de um sensor, os parâmetros necessários são DeviceID, PeripheralID
e qual sensor será atualizado, além disso o valor booleano da leitura do sensor.

ControlPeripheral, é utilizada pela Aplicação Móvel ou pelo navegador para alterar
o bit do periférico referente ao controle do mesmo, para isso é necessário que o
parâmetro PeripheralID seja fornecido.

mobileLogin, utilizada pela Aplicação Móvel para receber o userID, passando
como parâmetros o e-mail e a senha, similar a função login do controlador Sessions-
Controller.

listDevices função utilizada pela Aplicação Móvel para receber uma lista de
todos os nomes e DeviceIDs associados ao userID, que é passado como parâmetro,
recebido do método anterior chamado mobileLogin.

listPeriherals função utilizada pela Aplicação Móvel para receber uma lista de
todos os nomes e PeripheralIDs associados ao deviceID, que é passado como parâ-
metro, recebido do método anterior chamado listDevices.

6. UserDevicesController possui somente uma função chamada new para criar uma
entrada na tabela UsersDevices, essa função é usada internamente para fazer uma
associação de um user a um device.

7. UsersController possui uma função chamada create utilizada pelo navegador para
criar o cadastro de um novo usuário.

3.2. Métodos 59

3.2.4 Central de Controle

A Central de Controle é um sistema embarcado que faz a ponte entre os Periféricos e
a Aplicação Web.

Um sistema embarcado é um sistema microprocessado no qual um computador é com-
pletamente encapsulado ou dedicado ao dispositivo ou sistema que ele controla. A dife-
rença entre um computador comum e um embarcado, é que o último realiza um conjunto
de tarefas predefinidas, geralmente com requisitos específicos. Uma vez que o sistema
é dedicado à algumas tarefas específicas, é possível otimizar o hardware reduzindo seu
tamanho, recursos de armazenamento e processamento e, consequentemente, o custo final
do produto. (SHIBU, 2009)

Esse dispositivo precisa de capacidade de processamento suficiente para que o mesmo
seja capaz de conectar-se a um servidor web e interpretar todos os dados de forma rápida,
estável e constante.

Outra responsabilidade da Central de Controle é a comunicação wireless com os Peri-
féricos, portanto o dispositivo precisa de algum tipo de comunicação com drivers externos
como SPI, serial, USB e etc.

Para o protótipo da Central de Controle foi utilizado um Arduino Uno em conjunto
com um Dragino Yun Shield e um Módulo nRF24L01+. Os detalhes de cada um desses
componentes de hardware utilizados, e os motivos da escolha de cada um, estão apresen-
tados na subseção 3.1.6 desse capítulo.

3.2.4.1 Desenvolvimento

Para a programação do Arduino UNO da Central de Controle, foram utilizadas as
bibliotecas SPI.h, RF24.h e Bridge.h, explicadas, respectivamente, nas subseções 3.1.3,e
3.1.4 e 3.1.5.

3.2.4.2 Programa

Um fluxograma com alto nível de abstração pode ser observado na Figura 15.
Após importar as biblioteca, algumas variáveis globais utilizadas no programa são

definidas. A primeira delas é o ID da central de controle, uma string de 8 bits que
identifica, para a Aplicação Web, qual é a Central de Controle, essa identificação que faz
com que a Aplicação Web responda à várias possíveis Centrais de Controle conectadas ao
mesmo tempo no sistema, pensando em uma possível escalabilidade do projeto. Essa ID
também define a URL que a Central de Controle fará suas requisições HTTP. Essa ID é
uma configuração do fabricante, não é configurável e é informada ao usuário para que o
mesmo cadastre esse ID na Aplicação Web. Outras variáveis também são definidas como,
por exemplo, o endereço do servidor onde a Aplicação Web está hospedada.

60 Capítulo 3. Materiais e Métodos

Figura 15: Fluxograma da Central de Controle.

Também é criada uma tabela de Dados (Tabela 1), com 8 colunas e uma quantidade
de linhas igual ao número de periféricos instalados na Central de Controle em específico.
Essa tabela de dados armazena informações sobre a ID dos periféricos, que são os 4 bits
mais significativos da string, enquanto os 4 bits menos significativos são informações sobre
os sensores e controle das funcionalidades referentes à esse periférico.

Tabela 1: Exemplo de Tabela de Dados

Dados[i]
0 1 2 3 4 5 6 7

Periférico 1 1 0 0 0 1 0 0 1
Periférico 2 1 0 0 0 1 0 1 1
Periférico 3 1 0 0 0 1 1 0 1

Dutos de comunicação também são definidos, esses dutos são utilizados para a co-
municação, através dos módulos nRF24L01+, com os periféricos, a Central de Controle
consegue receber dados através de 1 duto, com um endereço específico, e consegue trans-

3.2. Métodos 61

mitir dados através de vários dutos, esses endereços são fixos e definidos no início da
execução do programa.

Por último, são passados os parâmetros de quais pinos do Arduino Uno, estão conec-
tados o Chip Enable (CE) e Chip Select (CS) do módulo nRF24L01+. A conexão física
entre o Arduino UNO e o módulo RF24L01 está detalhada na sessão sobre os Periféricos.

Os programas Arduino, por padrão, tem duas estruturas fixas, uma chamada setup e
outra loop, a estrutura setup é executada uma vez quando o dispositivo é ligado e, após
entrar na estrutura loop, o programa fica em um loop infinito.

Na estrutura setup, primeiramente é executado o método begin, da biblioteca Bridge.h,
que executa uma rotina para iniciar a comunicação do ATmega328 com o AR9331. Após
feita essa inicialização, o método begin da biblioteca RF24 também é executado, nesse
momento dois parâmetros, quantidade de bits das informações enviadas através dos mó-
dulos RF24L01, chamado de Payload, e quantidade de tentativas de enviar as mensagens
antes do timeout, são definidos.

Na estrutura loop, três funções são chamadas sequencialmente, são elas: as funções
download, enviaRF e upload, portanto o código fica executando essas três funções em um
loop infinito. Abaixo segue uma explicação mais detalhada de cada uma dessas funções.

A função download, é a responsável por requisitar ao servidor da Aplicação Web os
dados referentes à essa Central de Controle. Através de uma requisição HTTP do tipo
GET, onde o parâmetro ID da Central de Controle é passado, o servidor responde com os
dados referentes à essa Central de Controle. Ainda na função download, os dados recebidos
são salvos na tabela de dados, onde cada linha corresponde a um Periférico instalado nessa
Central de Controle. Um exemplo de uma tabela de dados com 3 periféricos instalados
pode ser visto na Tabela 1.

Após o término da rotina de download, a função enviaRF é executada. Essa é a função
responsável por transmitir para os Periféricos, através do módulo nRF24L01, os dados
armazenados na tabela. Uma vez que cada linha de dados é referente a um Periférico, e
cada um deles possui um duto de comunicação, a Central de Controle envia um pacote
em cada duto para cada linha da tabela. Os dutos fazem parte da configuração do
sistema, são determinados na hora do desenvolvimento. A comunicação com os módulos
nRF24L01+ é do tipo handshake, ou seja, a Central de Controle envia o dado em um duto
de transmissão e espera uma resposta no duto de recepção, essa resposta é a garantia de
que o dado foi transmitido com sucesso e, além disso, essa resposta contém a informação
dos sensores do Periférico que recebeu o dado, portanto esse dado é salvo na tabela de
dados, atualizando os valores referentes à leitura de sensores. Após enviar os dados de
todos os Periféricos instalados e atualizar a tabela com todas as leituras dos sensores, a
função upload é executada.

A função upload tem como finalidade enviar para o servidor da Aplicação Web a tabela
de dados atualizada com os valores atuais dos sensores de cada Periférico. Utilizando

62 Capítulo 3. Materiais e Métodos

o método POST, cada linha da tabela é enviada ao servidor através de uma requisição
HTTP. Os parâmetros utilizados para informar a Aplicação Web de quais dados se tratam
são os ID’s tanto da Central de Controle quanto do Periférico, esses IDs são únicos e
identificam pra Aplicação Web de qual Periférico em qual Central de Controle está sendo
atualizado.

3.2.5 Periféricos

Os dispositivos, referenciados nesse trabalho de conclusão de curso como Periféricos,
são sistemas embarcados que adicionam funcionalidades físicas ao projeto, esses dispositi-
vos podem ser compostos por vários componentes de hardware, como pode ser visualizado
na Figura 10. São esses dispositivos que agem diretamente no mundo real, seja com o
propósito de monitoramento, como é o caso de sensores, ou controle através de relés.

Os Periféricos consistem de, no mínimo, um microcontrolador e um driver externo de
comunicação wireless. A capacidade de processamento dos periféricos podem ser extre-
mamente reduzidas, dependendo da complexidade do protocolo de comunicação do driver
externo utilizado.

O objetivo é que esses drivers tenham um protocolo simples porém robusto o suficiente
para ser utilizada no projeto.

As possibilidades de Periféricos que podem ser desenvolvidos para serem controlados
remotamente, com a arquitetura criada nesse trabalho, são inúmeras. Até o presente
momento foi desenvolvido um Periférico chamado de Interruptor Inteligente.

São muitas as possibilidades para o desenvolvimento de Periféricos, porém, como o
protótipo se limita a demonstrar os conceitos e funcionamento da arquitetura do sis-
tema como um todo, o desenvolvimento ficou limitado a somente um tipo de periférico,
explicado a seguir.

3.2.5.1 Interruptor Inteligente

O interruptor inteligente é um exemplo de um possível Periférico, desenvolvido uti-
lizando um Arduino Uno e um módulo de comunicação wireless nRF24L01, o objetivo
desse periférico é o de substituir um dos interruptores em um cômodo onde se deseja con-
trolar a iluminação e monitorar o estado das lâmpadas. Também conta com um sensor de
movimento que identifica a presença de pessoas no ambiente, sensores estes que podem
vir a integrar parte de um sistema de segurança.

Os módulos nRF24L01+ permitem a comunicação dos periféricos com a Central de
Controle, a iniciativa da comunicação é sempre da Central de Controle, os periféricos
permanecem constantemente monitorando os sensores, porém esses valores só são enviados
para a Central de Controle, que por sua vez envia os dados para a Aplicação Web, quando

3.2. Métodos 63

a Central de Controle toma a iniciativa da conversa e estabelece uma comunicação com
o Periférico.

Antes dos detalhes de implementação desse Periférico, é importante uma explicação
sobre as principais bibliotecas utilizadas, que também foram usadas no desenvolvimento
da Central de Controle, por contar com o mesmo dispositivo RF.

3.2.5.2 Programa

Para a programação do Arduino Uno do Periférico Interruptor Inteligente, foram uti-
lizadas as biblioteca SPI e RF24, explicadas anteriormente.

Um fluxograma com um alto nível de abstração pode ser observado na Figura 16.

Figura 16: Fluxograma do Periférico Interruptor Inteligente.

Primeiramente as variáveis globais do Periférico e algumas de suas configurações são
definidas. Um objeto pertencente à classe RF24 é instanciado, passando como argumento
os parâmetros de quais pinos do Arduino Uno estão conectados às portas CE e CS, os dutos
de comunicação de leitura e escrita para os módulos nRF24L01 também são definidos.

64 Capítulo 3. Materiais e Métodos

São criadas as variáveis que irão armazenar os dados recebidos da Central de Controle,
e o ID do periférico também é definido, esse é o valor que precisa ser cadastrado pelo
usuário na Aplicação Web para que consiga controlar esse dispositivo remotamente, as
portas do Arduino Uno que serão utilizadas para leitura dos sensores e controle do relé
são definidas.

Na estrutura setup do código, os pinos do Arduino Uno referentes aos sensores são
definidos como entrada de dados enquanto que o pino referente ao relé é definido como
saída de dados. O método begin da classe RF24 é então executado, parâmetros do número
de tentativas de retransmissão dos dados antes de o pacote ser dado como perdido e o
tamanho dos pacotes, em bits, enviados também são definidos, nesse ponto o método star-
tListening da classe RF24 é executado, fazendo com que o dispositivo fique monitorando
a recepção de dados, à espera de uma mensagem da Central de Controle.

A estrutura loop do código, primeiramente atualiza os dados com os valores atuais de
leitura dos sensores, feito isso, verifica se existe algum dado para ser recebido no buffer do
módulo nRF24L01, caso negativo, o processo é repetido. Uma vez que existir algum dado
para ser recebido, o Periférico recebe o dado, salva em uma variável e compara seu ID
com o contido no dado enviado pela Central de Controle, caso sejam diferentes, ele ignora
o dado e retoma o processo de manter as leituras dos sensores atualizadas, caso sejam
iguais, ele compara o dado referente ao controle do relé e decide se faz o chaveamento ou
não, feito isso, ele envia um pacote de dados de volta à Central de Controle, confirmando
que a comunicação foi feita com sucesso e informando o estado atual dos sensores que
possui.

3.2.6 Aplicação Móvel

A Aplicação Móvel é um aplicativo para celulares smartphones. O requisito mínimo é
que os dispositivos precisam de acesso à internet uma vez que o aplicativo não se conecta
diretamente à Central de Controle, tanto os comandos de controle quanto os comandos
para monitoramento dos Periféricos instalados no sistema são realizados através da API
da Aplicação Web.

O aplicativo precisa contar com as seguintes funcionalidades:

1. Login: O cadastro de usuários será feito através da Aplicação Web, porém, quando
o mesmo deseja utilizar seu smartphone para controlar os Periféricos, existe a neces-
sidade do usuário identificar-se perante ao sistema, isso é realizado através de um
login no aparelho.

2. Listar Centrais de Controle: Uma vez feito o login, utilizando a API da Aplicação
Web, os dados referentes às Centrais de Controle que o usuário logado controla será
recebido. O aplicativo deve então ser capaz de criar uma lista com esses dados
recebidos exibindo o nome de cada Central de Controle e, cada item dessa lista,

3.2. Métodos 65

deve ser um botão que, ao clicar, direciona para uma tela de exibição de Periféricos
instalados naquela Central de Controle.

3. Exibir Periféricos: Deve ser uma tela similar a tela de Centrais de Controle, porém,
aqui serão listados os Periféricos cadastrados em uma Central de Controle específica.
Cada item aqui também deve ser um botão que, ao clicar, direciona para uma tela
de exibição daquele Periférico específico.

4. Controlar Periférico: Tela específica de cada Periférico, aqui será exibido as leituras
de sensores, caso existam, e um botão que, ao ser clicado, controla o Periférico em
questão.

3.2.6.1 Desenvolvimento

A Aplicação Móvel consiste de um aplicativo para smartphones com o Sistema Ope-
racional Android. O desenvolvimento do aplicativo do protótipo foi realizado utilizando
a Integrated Development Environment (IDE) e Software Development Kit (SDK) oficiais
para desenvolvimento de aplicativos Android, chamada de Android Studio.

A Aplicação Móvel foi desenvolvida em JAVA, uma linguagem de programação orien-
tada a objetos, concorrente, baseada em classes e desenvolvida para ter o mínimo possível
de dependências na implementação. Ela foi adotada como linguagem base para os aplicati-
vos construídos para a plataforma Android, sendo assim, como o desenvolvimento foi feito
especificamente para essa plataforma e utilizada suas ferramentas, essa foi a linguagem
de programação adotada.

Para explicar o funcionamento, esse trabalho resume o desenvolvimento da Aplicação
Móvel, que nesse projeto é um aplicativo Android, limitando-se à explicar as activitys
existentes. São elas:

1. Login: Essa é a activity relacionada à tela principal do aplicativo, o aplicativo
é iniciado através dessa atividade. A tela consiste de dois campos para o usuário
inserir o email e a senha do seu cadastro no sistema. Uma vez confirmado o cadastro
do usuário pelo servidor, a informação do ID do usuário é salva e passada para a
próxima activity chamada Devices.

2. Devices: Com a informação do usuário, uma requisição é feita ao servidor sobre os
dispositivos, nesse trabalho tratados como Centrais de Controle, que o mesmo tem
acesso. Uma lista é gerada e possibilita que o mesmo escolha entre as Centrais de
Controle, uma vez que uma é clicada, essas informações são salvas e passadas para
a próxima activity, chamada Peripherals.

3. Peripherals: Essa é a tela responsável por mostrar ao usuário todos os Periféricos
que existem instalados na Central de Controle selecionada, uma lista desses pe-
riféricos é gerada através dos dados fornecidos pelo servidor. Uma vez escolhido

66 Capítulo 3. Materiais e Métodos

um Periférico que o usuário deseja interagir, essas informações são passadas para a
próxima activity, chamada de Sensors.

4. Sensors: Aqui são mostrados ao usuário todos os componentes e funcionalidades
existentes no Periférico da Central de Controle que o mesmo deseja interagir, no
caso do interruptor inteligente, desenvolvido nesse protótipo, ele conta com dois
sensores, que seus estados são mostrados na tela e um botão para que o usuário
possa controlar remotamente esse periférico.

Além das activitys e os layouts associados às mesmas, foram necessárias duas classes
auxiliares, uma responsável por tratar as requisições HTTP realizadas ao servidor, e outra
utilizada para tratar os dados recebidos e gerar as listas de forma dinâmica.

3.2.7 Relacionamento dos componentes com o Modelo de Do-
mínio

Nessa seção são apresentados os resultados do desenvolvimento do protótipo e como
esses componentes se relacionam com o modelo desenvolvido através do projeto IoT-A.

Todas as telas da Aplicação Web que são mostradas a seguir, estão associadas com
os serviços de frontend descritos no Modelo de Domínio (Figura 10), esses serviços são
expostos através dessas telas. A Figura 18 é a tela onde um novo usuário pode ser
cadastrar, no Modelo de Domínio essa tela é representada pelo componente de software
Login, da Aplicação Web.

Figura 17: Tela de login da Aplicação Web.

3.2. Métodos 67

Figura 18: Tela de cadastro da Aplicação Web.

A partir do momento que o usuário se identifica na Aplicação Web uma tela exibe
para o mesmo as Centrais de Controle que ele tem acesso (Figura 19) e permite que
uma nova Central de Controle seja criada no sistema. Essas telas de configuração estão
associadas com o componente de software chamado de Preset Configuration, como descrito
no modelo.

Uma vez escolhida a Central que deseja acessar, ele pode verificar as pessoas que
podem monitorar e controlar essa Central de Controle (Figura 20), ou pode navegar para
os Periféricos que estão cadastrados na mesma, os Periféricos disponíveis nessa Central
de Controle e permite que o usuário edite, exclua ou crie um novo Periférico associado à
essa Central (Figura 21). Também é possível criar um novo Periférico, inserindo o nome
que deseja, o PeripheralID fornecido pelo fabricante e o tipo do Periférico (Figura 22). No
Modelo de Domínio, essas telas estão descritas tanto pelo Preset Configuration quanto
pelos componentes chamados de Leitura de Sensores e Controle Remoto. Todos esses
serviços que são expostos por essas telas, invocam recursos do banco de dados do sistema
através de consultas ao banco de dados.

Figura 19: Tela de Centrais de Controle da Aplicação Web.

68 Capítulo 3. Materiais e Métodos

Figura 20: Tela da Central de Controle da Aplicação Web.

Figura 21: Tela de Periféricos da Aplicação Web.

Após fazer a configuração do sistema através da Aplicação Web, o usuário pode utilizar
seu smartphone e fazer o login (Figura 23). Todas as telas e componentes de software
associados ao smartphone estão descritos no modelo pelos componentes chamados de
Aplicação Móvel, onde estão representados os serviços de Login, Leitura do Sensor e
Controle Remoto. Também existe uma tela onde o mesmo pode verificar as Centrais de
Controle que tem acesso (Figura 24) e, ao escolher alguma, é redirecionado para a tela que
exibe os Periféricos cadastrados nessa Central de Controle (Figura 25). Ao selecionar o
Periférico desejado, o usuário pode monitorar os estados dos sensores presentes no mesmo
e controlar o Periférico (Figura 26). Esses recursos oferecidos pelo smartphone também
invocam recursos da Aplicação Web através de requisições HTTP ao servidor, onde o
mesmo responde com os dados solicitados através de acessos ao banco de dados.

3.2. Métodos 69

Figura 22: Tela de Novo Periféricos Aplicação Web.

O protótipo foi então montado em uma maquete para demonstração dos conceitos, a
parte dos fundos onde estão instalados os componentes pode ser vista na Figura 27, onde
é possível visualizar instalados 3 Periféricos, presos na parte de trás da maquete e uma
Central de Controle.

70 Capítulo 3. Materiais e Métodos

Figura 23: Tela de login da
Aplicação Móvel.

Figura 24: Tela de Centrais de Controle da
Aplicação Móvel.

3.2. Métodos 71

Figura 25: Tela de Periféricos da
Aplicação Móvel.

Figura 26: Tela do Periférico da
Aplicação Móvel.

72 Capítulo 3. Materiais e Métodos

Figura 27: Maquete com o protótipo.

73

Capítulo 4
Resultados

Como resultados desse trabalho, é possível visualizar os dados presentes no banco
de dados da Aplicação Web. Os cadastros são referentes ao protótipo apresentado. A
Figura 28, Figura 29 e Figura 30 representam, respectivamente, as entradas no banco de
dados referentes aos Usuários, Centrais de Controle e Periféricos.

Figura 28: Tabela de usuários.

Figura 29: Tabela de Centrais de Controle.

74 Capítulo 4. Resultados

Figura 30: Tabela de Periféricos.

Os recursos de download e upload que estão associados à Central de Controle des-
critos no Modelo de Domínio, são requisições ao servidor que, através de acesso ao seu
banco de dados, enviam os dados requiridos pela Central ou atualizam os dados enviados
pela Central, esses recursos são mostrados através da resposta do servido representados,
respectivamente, através da Figura 31 e Figura 32.

Figura 31: Download dos dados da Central de Controle.

Figura 32: Upload dos dados da Central de Controle.

75

Os recursos da Aplicação Móvel para visualizar os estados dos sensores e controlar
um Periférico podem ser visualizados através da reposta do servidor às requisições do
smartphone na Figura 33 e Figura 34, respectivamente. Após a requisição enviada pelo
smartphone de controlar o Periférico, é possível visualizar que o mesmo foi controlado
através da Figura 35. Também é possível ver as telas do smartphone indicando que a
lâmpada do cômodo onde está instalado o Periférico esta acesa na Figura 36 e quando
a luz está acesa e o sensor de movimento está detectando alguma agitação no cômodo
(Figura 37).

Figura 33: Requisição dos estados dos sensores da Aplicação Móvel.

Figura 34: Controle de um Periférico pela Aplicação Móvel.

76 Capítulo 4. Resultados

Figura 35: Periférico Controlado pela Aplicação Móvel.

77

Figura 36: Tela de um Periférico
leitura dos sensores.

Figura 37: Tela de um Periférico
leitura dos sensores.

78 Capítulo 4. Resultados

79

Capítulo 5
Discussões e Conclusão

Nesse capítulo são discutidos os resultados encontrados, as dificuldades durante o pro-
cesso de desenvolvimento e algumas discussões relevantes sobre as tecnologias e produtos
utilizados no protótipo.

5.1 Discussões

Os resultados obtidos do desenvolvimento deste projeto foram promissores, a arquite-
tura do sistema resultante é escalável e aproxima-se bastante de uma possível estrutura
para um Minimum Viable Product (MVP) de um produto comercializável. Esse fato com-
prova a viabilidade da utilização das modelagens propostas pelo projeto IoT-A. A seguir
serão apresentados comentários e discussões referentes a cada componente do sistema
desenvolvido.

5.1.1 Aplicação Web

A Aplicação Web é, sem dúvida, o grande gargalo do sistema quando o assunto é
escalabilidade. Uma vez que é através da sua API, que está hospedada no mesmo servi-
dor que também trata as navegações nos browsers dos usuários do sistema, que todo o
funcionamento ocorre. Requisições HTTP da Aplicação Móvel e Central de Controle são
constantes, toda informação precisa passar pela Aplicação Web, uma vez que é lá onde
as informações são armazenadas nos bancos de dados.

O motivo pelo qual foi decidido no design do sistema por não hospedar a Aplicação
Web na própria Central de Controle, o que resolveria o problema de escalabilidade pois,
cada sistema, teria seu próprio servidor, diferentemente do modelo atual onde tudo fica
concentrado em um único servidor na nuvem, foi o fato de não ser uma tarefa fácil tornar
esse servidor local visível na internet. Para um usuário comum, alvo do desenvolvimento
desse projeto, alterar configurações no roteador de sua rede local, encontrar seu IP de
internet, que na maioria dos casos desses usuários é um IP dinâmico, IP local da Cen-

80 Capítulo 5. Discussões e Conclusão

tral de Controle nessa rede local e juntar todas essas e outras informações para fazer a
configuração do sistema não seria uma tarefa trivial. O servidor web centralizado resolve
todos esses problemas, tirando a responsabilidade dessas configurações do usuário final.

A velocidade do servidor em responder uma requisição e a forma como o mesmo
trata as concorrências são fatores extremamente críticos nesse projeto. Uma vez que a
Central de Controle está constantemente requisitando os dados do banco de dados do
servidor, um delay de resposta do servidor a uma requisição da Central de Controle
impacta diretamente na experiência do usuário em, ao apertar um botão de controle, o
comando demorar a acontecer.

Uma vez que todo o servidor é um Cloud Service, a responsabilidade de conseguir
manter e responder todas as mensagens com um desempenho satisfatório, ou seja, para
que o usuário final não perceba nenhum delay em suas ações, é toda do serviço contratado.
Caso viessem a existir milhares de Centrais de Controle, em um cenário onde o sistema
estaria instalado em milhares de lugares diferentes, um redimensionamento da capacidade
do servidor seria necessário. Apesar de crítico, esse problema é facilmente solucionável e
precisa ser tratado a medida que a adesão ao sistema cresça.

Com o auxílio do framework Ruby-on-Rails, foi possível criar uma interface gráfica
para o usuário bem intuitiva e fácil de configurar. Um dos objetivos, que o sistema fosse
de fácil configuração, foi totalmente alcançado na Aplicação Web. Um usuário que viesse
a instalar o sistema em sua residência, conseguiria através do site desenvolvido, criar uma
conta, cadastrar os IDs dos dispositivos colocados em sua residência e, automaticamente,
esse usuário passaria a controlar e monitorar remotamente os Periféricos.

5.1.2 Central de Controle

A Central de Controle mostrou-se estável e robusta, permaneceu durante semanas com
o sistema ligado e não apresentou nenhum problema que o sistema tenha “quebrado” e
precisasse ser reiniciado. Com a utilização do Shield Dragino Yún, que oferece grande
capacidade de processamento de dados, o tempo que o sistema demora para processar os
dados, uma vez que o download dos mesmos é feito, é zero, isso também se deve ao fato
de os dados,fornecidos pelo servidor, serem otimizados para essa aplicação.

Uma vez que a Central de Controle possui um funcionamento sequencial e a mesma
possui um timeout de 100ms para uma resposta do Periférico, é possível concluir, a partir
de uma análise do fluxograma da mesma, que conforme a quantidade de pacotes perdidos
aumenta, o tempo de resposta do sistema aumenta proporcionalmente. Por exemplo,
quando 10 pacotes são perdidos um delay de, no mínimo, 1 segundo é adicionado ao
tempo de resposta, o que causa uma sensação ruim na experiência do usuário, que espera
uma resposta instantânea quando controla seus Periféricos.

Um problema que também impacta em uma experiência ruim do usuário do sistema é
um erro que o mesmo possa vir a cometer na hora de configurar seus Periféricos, caso ele

5.2. Conclusão 81

possua periféricos cadastrados na Aplicação Web que não estão fisicamente instalados no
mesmo cenário de sua Central de Controle, ou que estejam com o ID errado ou fora do
range de alcance da Central, cada Periférico que esteja cadastrado errado vai adicionar
um delay no tempo de resposta de cada ciclo, impactando assim negativamente na sua
experiência utilizando o sistema.

5.1.3 Periféricos

O tempo de resposta do Periférico desenvolvido, batizado de Interruptor Inteligente,
foi excelente, ou seja, uma vez recebido o dado da Central de Controle, se esse contiver a
informação para que o mesmo chaveie, o tempo que o dispositivo demora para interpretar
esse dado, chavear e responder para a Central de Controle com os valores lidos dos sen-
sores é zero, uma vez que os dados foram desenvolvidos para minimizar a quantidade de
processamento necessária. A Central de Controle possui um timeout de 100ms, portanto
é razoável supor que o tempo que o Periférico demora em sua rotina deve ser bem menor
que esse valor.

5.1.4 Aplicação Móvel

Apesar de se tratar de uma aplicação leve, relativamente simples e com poucas funci-
onalidades, a dificuldade no desenvolvimento foi grande, devido a falta de conhecimento
prévio da linguagem Java e da estrutura dos aplicativos Android. O aplicativo foi desenvol-
vido focado na facilidade de utilização, minimizando as informações na tela e tornando-o
assim intuitivo para os usuários.

O Aplicativo Móvel, assim como a Central de Controle, depende totalmente da inter-
net, seu tempo de resposta é similar ao da Central de Controle na requisição dos dados
do servidor. Uma vez que poucos dados são processados no aparelho e esses são enviados
da Aplicação Web de uma forma que sejam fáceis de tratar no aplicativo, praticamente
todo o tempo que o mesmo demora na navegação entre as telas é devido às requisições ao
servidor, e essa demora depende totalmente da velocidade de conexão do smartphone.

5.2 Conclusão

O objetivo de utilizar uma arquitetura de referência que guia desenvolvedores de sis-
temas na criação de soluções de Internet das Coisas foi alcançado com sucesso, o projeto
IoT-A auxiliou no desenvolvimento para que aspectos importantes de sistemas IoT fossem
tratados, aspectos como escalabilidade discutidos nesse trabalho.

Os objetivos propostos no escopo do projeto foram alcançados, a arquitetura do sis-
tema provou-se funcional, escalável e de fácil configuração através do protótipo desenvol-
vido. Na fase de prototipagem, os quatro componentes propostos, referenciados durante

82 Capítulo 5. Discussões e Conclusão

o trabalho como Central de Controle, Periféricos, Aplicação Web e Aplicação Móvel fo-
ram desenvolvidos com sucesso e provaram a estabilidade do sistema e, portanto, da
arquitetura que gerou esse modelo. Esse trabalho mostrou que a arquitetura do sistema
desenvolvido pode ser utilizada para um possível produto comercial com aplicações re-
ais, através dos requisitos discutidos é possível derivar um produto mais barato que as
soluções presentes hoje no mercado, tornando-o assim competitivo e interessante.

O grande conhecimento adquirido durante o desenvolvimento desse trabalho de con-
clusão de curso, mostrou que algumas das tecnologias utilizadas no protótipo não eram
as ideais para a aplicação. Como proposta para futuros trabalhos fica, principalmente:
Melhorar a comunicação entre a Central de Controle e os Periféricos, isso pode ser feito
implementando a rede mesh nos módulos nRF24L01 utilizados e, consequentemente, au-
mentar o alcance da rede ou utilizar outras tecnologias disponíveis. Implementar uma
comunicação persistente entre a Central de Controle e a Aplicação Web, constantes re-
quisições HTTP sobrecarregam mais o sistema do que conexões do tipo WebSocket, por
exemplo. Desenvolver novos Periféricos com outras funcionalidades, basicamente qual-
quer coisa que possa ser controlada pode ser adaptada ao sistema. Aumentar a segurança
do sistema, utilizando criptografias nas comunicações, implementar HTTPS no servidor,
cifrar os banco de dados e mensagens trocadas entre a Central de Controle e os Periféricos.

83

Referências Bibliográficas

ARDUINO. Arduino Shields. [S.l.], 2014. Disponível em: <http://arduino.cc/en-
/Main/ArduinoShields>. Acesso em: 14.04.2015.

. Arduino Uno. [S.l.], 2014. Disponível em: <http://arduino.cc/en/Main-
/ArduinoBoardUno>. Acesso em: 14.04.2015.

. What is Arduino? [S.l.], 2014. Disponível em: <http://arduino.cc/en/Guide-
/Introduction>. Acesso em: 12.04.2015.

. Bridge Library for Arduino Yun. [S.l.], 2015. Disponível em: <http://www-
.arduino.cc/en/Reference/YunBridgeLibrary>. Acesso em: 14.04.2015.

ATHEROS. AR9331 Highly-Integrated and Cost Effective IEEE 802.11n
1x1 2.4 GHz SoC for AP and Router Platforms. [S.l.], 2010. Disponível em:
<https://www.openhacks.com/uploadsproductos/ar9331 datasheet.pdf>. Acesso em:
02.05.2015.

BAUER, M. et al. Introduction to the Architectural Reference Model for the
Internet of Things. IoT-A, 2011. Disponível em: <http:///www.iot-a.eu>.

. Final architectural reference model for the IoT. IoT-A, 2013. Disponível
em: <http:///www.iot-a.eu>.

BERNERS-LEE, T. Hypertext Transfer Protocol – HTTP/1.0. [S.l.], 1996.
Disponível em: <http://tools.ietf.org/html/rfc1945>. Acesso em: 10.05.2015.

BERNERS-LEE, T.; FIELDING, R.; FRYSTYK, H. Hypertext Transfer Protocol –
HTTP/1.0, RFC1945. [S.l.]: Network Working Group, 1996.

BRADLEY, J.; BARBIER, J.; HANDLER, D. Embracing the Internet of
Everything To Capture Your Share of 14.4 Trillion dollars. [S.l.], 2013.
Disponível em: <http://www.cisco.com/web/about/ac79/docs/innov/IoE Economy-
.pdf>. Acesso em: 21.02.2015.

BUTLER, J. et al. Wireless Networking in the Developing World. [S.l.: s.n.],
2013.

CAELUM. Desenvolvimento Web com Ruby on Rails. [S.l.], 2004. Disponível em:
<http://www.caelum.com.br/apostila-ruby-on-rails/>. Acesso em: 14.04.2015.

http://arduino.cc/en/Main/ArduinoShields
http://arduino.cc/en/Main/ArduinoShields
http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Guide/Introduction
http://arduino.cc/en/Guide/Introduction
http://www.arduino.cc/en/Reference/YunBridgeLibrary
http://www.arduino.cc/en/Reference/YunBridgeLibrary
http:///www.iot-a.eu
http:///www.iot-a.eu
http://tools.ietf.org/html/rfc1945
http://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf
http://www.caelum.com.br/apostila-ruby-on-rails/

84 Referências Bibliográficas

CLINTON, J. Ruby Phrasebook. [S.l.], 2009.

DRAGINO. Yun Shield. [S.l.], 2014. Disponível em: <http://www.dragino.com-
/products/yunshield/item/86-yun-shield.html>. Acesso em: 14.04.2015.

FAYAD, M. E.; SCHMIDT, D. C. Object-Oriented Application Frameworks. [S.l.],
1997.

FOLDOC. Free On-line Dictionary Of Computing. [S.l.], 1995. Disponível em:
<http://foldoc.org/ApplicationProgramInterface>. Acesso em: 12.05.2015.

FOROUZAN, B. A. TCP/IP Protocol Suite. 4rd. ed. New York, NY, USA:
McGraw-Hill Companies, 2010.

JUNGLING, M.; WOOD, P. A. The internet of things is now: Connecting the real
economy. Morgan Stanley Blue Papers, 2014. 2014.

MANYIKA, J. et al. Disruptive technologies: Advances that will transform life, business,
and the global economy. McKinsey Global Institute, 2013. p. 51–60, 2013.

MEDEIROS, J. C. de O. Princípiois de Comunicação. 2nd. ed. [S.l.]: Editora Érica,
2007.

REENSKAUG, T. The original MVC reports. [S.l.], 1979.

RIVA, F. de la. 8 ideias de negcóios promissores para 2015. [S.l.], 2014. Disponível
em: <http://exame.abril.com.br/pme/noticias/8-ideias-de-negocios-promissores-para-
2015>. Acesso em: 27.03.2015.

SEMICONDUTOR, N. nRF24L01 Ultra low power 2.4GHz RF Transceiver.
[S.l.], 2014. Disponível em: <http://www.nordicsemi.com/eng/Products/2.4GHz-RF-
/nRF24L01P>. Acesso em: 17.04.2015.

SHIBU. Introduction to Embedded Systems 1E. [S.l.]: Tata McGraw-Hill
Education, 2009.

STEWART, B. An Interview with the Creator of Ruby. [S.l.], 2001. Disponível em:
<http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html>. Acesso em:
21.04.2015.

http://www.dragino.com/products/yunshield/item/86-yun-shield.html
http://www.dragino.com/products/yunshield/item/86-yun-shield.html
http://foldoc.org/ApplicationProgramInterface
http://exame.abril.com.br/pme/noticias/8-ideias-de-negocios-promissores-para-2015
http://exame.abril.com.br/pme/noticias/8-ideias-de-negocios-promissores-para-2015
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01P
http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html

	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de siglas
	Sumário
	Introdução
	Objetivos
	Justificativa

	Fundamentação Teórica
	Projeto IoT-A
	Modelo de Arquitetura de Referência
	Modelo de Domínio
	Modelo de Informação

	Internet
	TCP/IP
	HTTP

	Comunicação sem fio
	MVC
	API
	Android

	Materiais e Métodos
	Materiais
	Ruby
	Ruby-on-Rails
	Biblioteca SPI
	Biblioteca RF24
	Biblioteca Bridge
	Hardware
	Arduino UNO
	Dragino Yún Shield
	Módulo nRF24L01+

	Métodos
	Modelagem do Sistema
	Modelo de Domínio
	Modelo de Informação

	Componentes Do Sistema
	Aplicação Web
	Desenvolvimento
	Modelo
	Views
	Controlador

	Central de Controle
	Desenvolvimento
	Programa

	Periféricos
	Interruptor Inteligente
	Programa

	Aplicação Móvel
	Desenvolvimento

	Relacionamento dos componentes com o Modelo de Domínio

	Resultados
	Discussões e Conclusão
	Discussões
	Aplicação Web
	Central de Controle
	Periféricos
	Aplicação Móvel

	Conclusão

	Referências Bibliográficas

