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RESUMO

O objetivo deste trabalho é o desenvolvimento de um sistema de automacao da contagem de
placas de Zika virus do experimento plaque assay utilizando técnicas de visdo computacional.
Atualmente, o Zika virus é um problema de satude publica de impacto global, causando
doengas como a microcefalia. Para combaté-las, pesquisadores ao redor do mundo pesquisam
e desenvolvem tratamentos e medicamentos. Uma etapa comum nas pesquisas desta érea é a
titulacao viral, onde o plaque assay é uma das técnicas mais utilizadas. Contudo, erros
cometidos pelos pesquisadores na coleta dos resultados devido tanto a ma realizagdo do
experimento quanto a fatores aleatérios podem comprometer a eficiéncia da técnica. Sendo
assim esforcos para aumentar a precisao da coleta dos resultados sdo de grande interesse.
Nesse contexto, o presente trabalho propde um sistema de automacgao da contagem das placas
de Zika virus resultantes do experimento plaque assay, visando o aumento da eficiéncia da
titulagdo viral. O sistema é composto por trés etapas: processamento de imagens;
representacéo e descrigdo; reconhecimento e interpretacao. Na primeira etapa, as imagens dos
pocos sdo escolhidas, segmentadas e filtradas. As imagens das placas individuais sdo isoladas
e eventuais placas sobrepostas sio separadas. J4 na segunda etapa, as caracteristicas
geométricas das placas sdo extraidas. Na tltima etapa, cada placa é classificada como placa
viral ou ruido por um classificador binério, cujos parametros foram obtidos por meio de uma
técnica de treino supervisionado. Por fim, a contagem é obtida pela soma das placas
classificadas como placas virais. Para que fosse possivel avaliar a eficacia do sistema, quatro
pesquisadores da universidade de Brasilia, com experiéncia no uso do plaque assay,
forneceram a contagem e a classificacio de placas de trés de pocos distintos. Na etapa de
processamento de imagens, observou-se que foi isolado um nimero maior de placas do que o
numero médio fornecido pelos pesquisadores, gerando um erro médio relativo de 67,23% na
contagem. Ja na etapa de reconhecimento e interpretacdo, o classificador binario apresentou
um erro médio relativo de apenas 5,22%, melhorando a contagem anterior em 92,23%.
Concluiu-se que o sistema proposto contou automaticamente as placas de Zika virus das
amostras do experimento plaque assay com qualidade semelhante aquelas feitas por

pesquisadores experientes.

Palavras-chave: Visdo computacional, processamento de imagens, inteligéncia artificial,

plaque assay, Zika virus.






ABSTRACT

The aim of this work is to development of an automatic Zika virus plaque counter system
using computer vision techniques. Nowadays, the Zika virus is a public health problem with
global impacts, causing diseases such as microcephaly. To combat them, researchers around
the world research and develop treatments and medicaments. A common step on researches
in this area is the viral titer and the plaque assay is one of the most used techniques.
However, mistakes made by the researchers in the collection of results due both to bad
performed experiments and random factors may compromise the efficiency of the technique.
Therefore, efforts to increase the accuracy of the collection of results are of great interest. In
this context, the present work proposes an automation system for counting Zika virus
plaques from plaque assay experiments, aiming to increase the efficiency of viral titer. The
system consists of three steps: image processing; representation and description; recognition
and interpretation. In the first step, the well images are chosen, segmented and filtered. The
images of individual plaques are isolated and any eventual overlapping plaque are separated.
In the second stage, the geometric characteristics of the plaques are extracted. In the last
step, each plaque is classified as viral plaque or noise by a binary classifier, whose parameters
were obtained through a supervised training technique. Finally, the count is obtained by
summing the plaques classified as viral plaques. In order to evaluate the efficacy of the
system, four researchers from the University of Brasilia with experience in the plaque assay
experiment helped by providing the counting and the classification of plaques from three
different wells. In the image processing step, it was observed that a larger number of plaques
were isolated than the average number provided by the researchers, generating a mean
relative error of 67.23% in the count. In the recognition and interpretation step, the binary
classifier presented a mean relative error of only 5.22%, improving the previous count by
92.23%. It was concluded that the proposed system automatically counted the Zika virus
plaques from samples from the plaque assay experiment with similar quality to those made

by experienced researchers.

Key-words: Computer vision, image processing, artificial intelligence, plaque assay, Zika

virus.
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1 INTRODUCAO

1.1 Contextualizacao

Desde 430 A.C., hé relatos de doengas virais importantes que afetaram grande
parcela da populagio (RETIEF e CILLIERS, 1998). Entre as varias doengas virais
conhecidas, pode-se citar as seguintes: HIV/AIDS, hepatites virais, ebola, raiva, sarampo,
herpes, doencas causadas pelo virus Influenza e doencgas causadas pela familia de
Flavivirus como dengue, febre amarela e Zika.

No Brasil, recentemente, houveram relatos de epidemia causada pelo agente viral
Zika virus. Este virus foi primeiramente descrito em 1947 durante uma vigilancia de
rotina contra febre amarela em Uganda (DICK et al., 1952). Por muito tempo, pensou-se
que o Zika virus fosse majoritariamente um virus de primatas ndo humanos. Entretanto,
a zoonose passou a afetar a populacdo humana, onde seu primeiro relato é datado de
1952 (SMITHBURN, 1952). Contudo, apenas em 1964 o virus foi confirmado como
causador de doenga humana (SIMPSON, 1964).

O primeiro grande surto detectado por Zika virus ocorreu na Ilha de Yap em
2007, infectando 73% da populacdo. Esta foi a primeira vez que a doenga Zika estava
restrita a transmissdo humano-mosquito, ji4 que ndo foram encontrados macacos
proximos a regiao (DUFYY et al., 2009). O segundo surto por Zika virus foi registrado
na Polinésia Francesa em 2013, onde foi relatada uma possivel associagio do Zika virus
com complicacbes autoimunes, malformacoes congénitas e desordens neurologicas, como a
sindrome de Guillain-Barré (OEHLER et al, 2014).

A entrada do Zika virus em territério brasileiro pode ter se dado segundo duas
hipoteses: introdugéo durante a copa do mundo FIFA de 2014 ou pelo campeonato de
canoagem Va’a World Sprint, sendo a ultima a mais provavel (WHO, 2016). Em apenas
trés meses, de fevereiro de 2015 ao final de abril do mesmo ano, foram reportados
aproximadamente 7000 casos de pacientes contendo sintomas semelhantes aqueles
causados pelo Zika virus. Entretanto, foi apenas em maio de 2015 que houve confirmacgio
da circulagdo do Zika virus no pais (WHO, 2016). Em outubro de 2015, foi notado um
elevado aumento nos casos de microcefalia de recém-nascidos no Brasil, cerca de 3000
casos estavam sendo analisados (SCHULER-FACCINI, 2016). A doenga Zika se espalhou
pelo globo, atingindo 84 paises (WHO, 2017), onde, além de transmissdo por vetor,
houveram relatos de transmissdo de pessoa a pessoa, como por exemplo de forma sexual
(WHO, 2016).

Dos casos de pacientes contendo Zika virus que desenvolveram sintomas, os mais
comuns sao febre, erupgdes cutaneas, dor nas juntas e conjuntivite (CDC, 2017). Em
casos mais extremos, observa-se o aparecimento da sindrome de Guillain-Barré. Ja

mulheres gravidas que tenham contraido o Zika virus, podem apresentar bebés com
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malformagdes como microcefalia, problemas na audigdo, visdo e crescimento (WHO,
2017). Atualmente, a abordagem médica consiste no tratamento dos sintomas da doenga
ao invés do combate direto ao virus. Mesmo com todos os esforgos por parte dos
laboratérios de pesquisa, ainda nédo sdo encontrados remédios ou vacinas especificas para
o Zika virus (WHO, 2017).

1.2 Justificativas

Para a combater doenga causada pelo Zika virus, pesquisadores ao redor do
mundo investigam a sua biologia e buscam o desenvolvimento de testes de diagnoéstico,
vacinas e tratamentos. Para que as pesquisas possam ser realizadas, as amostras virais a
serem utilizadas devem ser quantificadas previamente (VIROCYT, 2013). Para tanto, os
pesquisadores utilizam métodos de titulagdo viral como o ensaio em placa, conhecido
como plaque assay. Este passo é essencial nos estudos que envolvem também outros
agentes virais, como HIV e ebola.

A determinagéo do titulo viral pelo plaque assay pode ser exaustiva e ambigua
(VIROCYT, 2013). A quantificacio viral pode ser estimada por meio da contagem do
nimero de zonas circulares, conhecidas como placas, presentes nos pogos ao término do
experimento. Dois fatores podem dificultar a correta contagem: a sobreposicio aleatoria
de duas ou mais placas e o ruido causado pelo desprendimento das células do fundo dos
pogos. Como as placas sdo contadas pelo pesquisador por inspecdo visual, o resultado
final é dependente da interpretacdo humana, a qual pode ser considerada subjetiva e,
consequentemente, passivel de erros, apresentando divergéncias que podem variar entre
5% e 44% na titulagdo viral de um mesmo experimento por diferentes pesquisadores
(BAE et al, 2003).

Portanto, o impacto do Zika virus na satde publica global justifica a busca por
ferramentas que auxiliem a elevar a eficiéncia das técnicas de titulagdo viral, como o
plaque assay, para auxiliar pesquisadores na busca da solugdo de um problema real e

relevante para a sociedade.

1.3 Objetivo

O presente trabalho tem como objetivo propor um sistema de contagem
automatica de placas de Zika virus, provenientes do experimento plaque assay, que
utiliza técnicas de processamento de imagens e inteligéncia artificial para diminuir erros
na coleta dos resultados devido a sobreposicao aleatéria das placas e ruidos causados por
células que se desprenderam do fundo dos pocos, aumentando assim a eficiéncia da

titulagéo viral.
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2 EMBASAMENTO TEORICO

2.1 Plaque Assay

A quantificacio de amostras virais pode ser considerada como um passo
primordial aos estudos em virologia. A confeccdo de proteinas recombinantes, vacinas,
drogas e métodos para o combate e entendimento de doencgas virais, por exemplo,
tornam-se dependentes de titulacdo viral prévia aos experimentos. As técnicas de
titulagdo viral podem ser agrupadas em duas categorias: tradicionais ou modernas. No
primeiro grupo, abrange-se técnicas como plaque assay e fluorescente focus assay (FFA).
Ja na categoria de técnicas modernas, pode-se citar as técnicas de reacdo em cadeia da
polimerase (PCR) e ensaio de imunoabsorc¢éo enzimatica (ELISA) (VIROCYT, 2013). A
tabela 1 apresenta a comparagio entre as técnicas acima mencionadas em relagdo as suas
respectivas reprodutibilidades, tempo de realizacdo, quantidade de trabalho para suas

execugoes e os custos envolvidos.

Tabela 1 — Comparagao entre técnicas de titulacio viral em relagio a reprodutibilidade, tempo de

execucdo, quantidade de trabalho e custos envolvidos (VIROCYT, 2013).

Técnica Reprodt;tibilidad Tempo Trabalho Custo

Plaque assay Pobre Dias Elevado Baixo
FFA Pobre Dias Elevado Alto
PCR Excelente Horas Elevado Alto
ELISA Boa Horas Moderado Alto

Devido ao seu baixo custo, um dos métodos amplamente utilizados de titulagdo
viral para analises da eficicia de moléculas no combate de doengas virais, por exemplo, é
o plaque assay. Originalmente criada para quantificar bacteriofagos (virus de bactérias),
a técnica de plaque assay foi aprimorada em 1952 para contagem de virus que infectam
animais pelo meédico patologista Renato Dulbecco (DULBECCO; VOGT, 1953),
agraciado com o Nobel de Fisiologia e Medicina no ano de 1975 por estudos com tumores
virais (NOBEL PRIZE, 2017). Hoje, o plaque assay pode ser utilizada para diferentes
virus e continua sendo considerada referéncia mesmo com advento de novas técnicas de
titulagao (BAER; KEHN-HALL, 2014).

A técnica de plaque assay consiste de infeccio de monocamada de células
cultivadas em placas de cultivo por dilui¢gdes seriadas da amostra viral. Apoés infecgio,
adiciona-se a cada pogo da placa um meio imobilizante para que a infeccdo se espalhe

apenas para as células vizinhas. Dependendo da linhagem celular e da cepa viral utilizada
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no experimento, a placa deve ser incubada em condigoes 6timas de cultivo por um
periodo que pode variar de poucos dias a duas semanas. Em seguida, as células s&o
fixadas a placa por método quimico e posteriormente coradas. Devido a utilizacdo de
meio imobilizante e tempo de espera suficiente, formam-se zonas circulares macroscopicas
provenientes de lise celular que podem ser vistas a olho nu e que sdo chamadas de placas.
Por fim, as placas sdo contadas e a titulagdo viral pode ser calculada em termos de
unidades formadoras de placa por ml (PFU/ml) de acordo com a equagao 2.1 (BAER;
KEHN-HALL, 2014):

PFU Numero total de placas no pogo

= 2.1
ml  Diluicido x Volume de virus adicionado ao pogo (2.1)

Para minimizar erros na contagem de placas formadas, escolhe-se o poco em que
sao encontradas de 10 a 100 placas. Sabe-se que, a cada 100 placas contadas, o titulo
amostrado pode variar 10% para mais ou para menos (BAER; KEHN-HALL, 2014).
Entretanto, mesmo com o as devidas precaugdes tomadas, a contagem das placas virais
varia de pesquisador para pesquisadores ja que estas podem apresentar diferentes
morfologias dependendo da linhagem celular e virus utilizados. Desse modo, considerando
as fontes de imprecisdo desde a confeccdo do experimento até a contagem final das
placas, a titulacio de um mesmo virus por diferentes pesquisadores pode variar entre 5%
e 44% (BAE et al, 2003).

2.2 Processamento de Imagens

2.2.1 Sistema de cores RGB e HSV

Segundo Gonzalez e Woods (2010, pg.264), o objetivo de um modelo de cores é
facilitar a especificacdo das cores em alguma forma padronizada e amplamente aceita.
Em geral, os modelos de cores definem um sistema de coordenadas e um subespaco
dentro deste, onde uma cor especifica é determinada tnica e exclusivamente por um
ponto pertencente a este subespaco.

De acordo com a defini¢io apresentada, o modelo RGB (red, green e blue) utiliza
coordenadas cartesianas (z,y,2) e tem como subespago um cubo unitéario, conforme figura
1, onde cada coordenada é associada a uma Unica cor primaria: vermelho, verde ou azul.
Portanto, qualquer cor dentro deste modelo pode ser expressa como um ponto com trés
coordenadas. Por exemplo, os pontos com coordenadas (1,0,0), (0,1,0) e (0,0,1)
representam respectivamente as cores priméarias vermelha, verde e azul. Dessa maneira, o
ponto de coordenada (1,1,0) representa a cor amarela enquanto o ponto (1,1,1)

representa a cor branca.
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O modelo de cores HSV (hue, saturation e valume) é uma alternativa ao modelo
de cores RGB. Amplamente utilizado, o modelo é mais intuitivo para a visdo humana
(CHENG ET AL., 2001). O modelo utiliza coordenadas cilindricas (g,p,z) e pode
apresentar diferentes subespagos. A figura 2 apresenta dois exemplos, um em formato de
piramide de base quadrada com lado unitario e outro em formato de cone com raio da
base também unitario. O primeiro componente do modelo é o matiz (hue), seu valor
varia de forma angular e expressa uma tnica cor. Assim, as cores puras do sistema RGB
s@o separadas por dngulos de 120°. O segundo componente é a saturacio (saturation) e
equivale ao componente radial do sistema de coordenadas cilindricas. Variando de 0 a 1,
este define o quéo proximo do nivel de cinza estara a cor definida pelo matiz. Por fim, o
terceiro é o brilho (value). O componente esta localizado na mesma dimensdo da altura
do sistema, também varia de 0 a 1, e define a intensidade do tom de cinza a ser
adicionado na cor pura, definida pelo matiz, conforme sua proximidade do centro do
sistema, definida pela saturagio. Por exemplo, os pontos de coordenadas (0,0,1) e (0,0,0)
apresentam as cores branca e preta, respectivamente, enquanto os pontos (0% 1,0),

(120°,1,0) e (240°,0,0) representam as cores vermelha, verde e azul.

Figura 1 - Modelo de cor RGB com sistema de coordenadas cartesiana e subespago no formato de

um cubo unitario.
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Figura 2 - Modelo de cor HSV de sistema de coordenadas cilindricas e subespago no formato de

piramide de base quadrada de lado unitario e de cone.com raio de base unitario.
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Fonte: GONZALEZ e WOODS, 2002.

2.2.2 Limiarizacao global 6tima

Segmentacao por similaridade é o processo que subdivide uma imagem em regides
menores que satisfagam um critério pré-determinado. De acordo com Sankur e Mehmet,
(2004), o método mais utilizado é o método estatistico de limiarizagdo global 6tima
conhecida como método de Otsu. Publicado em 1979 em um artigo intitulado ‘A
Threshold Selection Method from Gray-Level Histograms (OTSU, 1979), o autor propoe
um algoritmo que procura encontrar um limiar global 6timo que melhor separe um
histograma em dois utilizando o conceito de méaxima varidncia. O algoritmo 1 apresenta,

em linhas gerais, o funcionamento do método.

Algoritmo 1: Método de Otsu

1. hist[] <- histograma de uma imagem com L niveis de intensidade
2. Para todo T variando de 1 até L-2

3 C; <= hist[0,T]

4 C, <- hist[T+1,L-1]

5. var (i) <- variéncia entre C; e C;

6. Fim

7. Tormo <- indice do valor maximo de var

8. Fim

Se aplicado a uma imagem em escala de cinzas, o algoritmo permite que a mesma
seja eficientemente segmentada, ou seja, transformada da escala de cores original para
uma imagem em preto e branco. Neste caso, ap6s o algoritmo encontrar o valor de
Tormvo, todos os pizels da imagem & esquerda do limiar assumem o valor de 0 (preto)

enquanto os pizels a sua direita assumem o valor de 1 (branco).

2.2.3 Filtros morfologicos

Filtros morfologicos séo filtros nao lineares baseados na forma dos elementos de
interesse nas imagens e consistem em uma aplicagdo ordenada dos processos de abertura,
erosdo seguida de dilatagdo, e de fechamento, dilatagio seguida de erosdo. Uma abertura
seguida de um fechamento constitui em um filtro morfolégico, o qual é utilizado tanto
suavizacio de imagens como para remocdo de ruido. A etapa de abertura suprime
detalhes menores que o elemento estruturante fora das bordas de um objeto presente em
uma imagem, corroendo levemente suas bordas, enquanto a etapa de fechamento suprime
os detalhes menores que o elemento estruturante dentro das bordas, recuperando os
detalhes das bordas corroidas na etapa anterior (GONZALEZ e WOODS, 2010, pg.443).
Uma ilustracdo do funcionamento de um filtro morfologico, esté presente na figura 3.

Nas duas primeiras imagens, ocorre o processo de abertura. A etapa de erosio

remove os ruidos externos e diminui o tamanho da imagem enquanto aumenta os ruidos
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internos. Ja a etapa de dilatagdo restaura o seu tamanho e diminui ruidos internos
ressaltados anteriormente. O resultado do processo de abertura, presente na terceira
imagem, apresenta uma imagem com bordas suavizadas e limpa de ruidos externos. Nas
duas tultimas imagens, ocorre o processo de fechadura. A dilatagdo elimina os ruidos
internos da imagem e expande suas bordas enquanto a erosdo recupera o seu tamanho
original. O resultado do processo de fechamento e do filtro morfologico, presente na

dltima imagem, é o de uma imagem ainda com bordas suavizadas, mas livre de ruidos.

Figura 3 — Aplicagao de um filtro morfolégico para a remogao de ruidos internos e externos de

uma imagem.
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Se um objeto apresentar um formato majoritariamente circular, por exemplo,
deve-se utilizar um elemento estruturante no formato de disco a fim de minimizar a
deformagdo do mesmo durante o processo de filtragem. Exemplos de elementos

estruturantes podem ser encontrados na figura 4.

Figura 4 - Exemplos de elemento estruturantes no formato de cruz, quadrado, linha e disco,

respectivamente da esquerda para a direita.
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2.2.4 Algoritmo seguidor de fronteira

Algoritmos descritores de fronteiras focam nas caracteristicas externas dos

objetos, como seu formato geométrico, orientagdo, tamanho, etc. De fato, Suzuki e Abe
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(1985) definem um algoritmo seguidor de fronteiras como uma func¢do que deriva uma
sequéncia coordenada de pontos da fronteira de um objeto conectado. Em outras
palavras, o algoritmo busca descrever o formato bidimensional de uma imagem em um
vetor unidimensional (GONZALEZ e WOODS, 2010, pg.524). Para explicar seu
funcionamento, considere a figura 3

Escolhendo um ponto de referéncia by qualquer da fronteira do objeto, o algoritmo
varre, no sentido horario, sua regido 8-conectada partir do ponto cg. Ao encontrar um
ponto com o valor de 1, o algoritmo descola o ponto de referéncia de by para este novo
ponto. Este entao passa a ser denominado como b;. O algoritmo repete o processo até que
a coordenada do ponto by seja igual a coordenada do ponto by, realizando assim uma
volta completa na fronteira do objeto. Se a coordenada do ponto de referéncia for
armazenada em um vetor a cada troca, obtém-se uma representagdo unidimensional do

objeto pelas coordenadas de sua fronteira.

Figura 5 - Exemplo do algoritmo seguidor de fronteira.
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2.3 Inteligéncia artificial

2.3.1 Fungéo sigmoide

A funcio sigmoide, também conhecida funcéo logistica, é definida conforme a
equacio 2.2. E uma funcio f: R — R com dominio {x € R | -o0 < x < o} e contradominio
{f(x) € R | 0<x <1} O nome sigmoide deriva do formato em “s” do seu grafico em torno
do intervalo I = {x € R | -5 < x < 5} e apresenta aplicagdes em diversas areas do

conhecimento, como biologia, psicologia e economia (VON SEGGERN, 2007, p.148).
1
fO) =1 = (2.2)

Nota-se que seu contradominio ¢ limitado ao intervalo I = {f(x) € R | 0 < f(x) <

1} para qualquer valor de z. Nota-se também que f(0) = 0.5. Essas duas propriedades
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fazem com que a fungéo seja amplamente utilizada como um classificador binario dentro
da area de inteligéncia artificial (VON SEGGERN, 2007, p.148).
2.3.2 Método do gradiente

O método do gradiente, também conhecido como método do maximo declive, é
um algoritmo iterativo de otimizacdo de primeira ordem utilizado para encontrar
minimos locais de uma funcdo (ARFKEN e WEBER, 2011). Dado uma fungao
multivariada f(z) definida e diferengavel em torno de uma vizinhanca 9, ela decrescera
mais rapidamente caso x varie de d; para #;,; na diregao de -f(d;), ou seja, na diregao do
negativo do gradiente de f calculado @#. A equagéo iterativa que rege o comportamento

do algoritmo esta presente na equacao 2.3.

of(9;)

Vip1 =9 —kVf(9) =9, — k 29,

(2.3)

A constante k é conhecida como o taxa de aprendizado e se for pequena o
suficiente f(,1) serda menor que f(d;). Caso essa condigao seja falsa, o algoritmo finaliza
as iteragbes, convergindo para o minimo local #,; O algoritmo 2 resume de forma

sucinta o funcionamento do algoritmo.

Algoritmo 2: Método do gradiente

. Enquanto 6; £ 0,

1. 8 <- ponto inicial

2. k <- taxa de aprendizado
3. Faca:

4., 61 <- O

5. 62, <- 6: — kVi(61)

6. 6. <- 0O

7

8.

Fim

E importante ressaltar que, se o valor de k for muito grande, o algoritmo pode
divergir e se for muito pequeno, a convergéncia pode ser lenta. A definicdo de pequeno e
grande varia de aplicacio para aplicacdo, contudo, uma boa pratica para ajustar seu
valor é calcular o ntmero de iteracoes realizadas até a convergéncia do algoritmo para
diferentes valores de k. Por fim, o algoritmo busca convergir para minimos locais,
portanto a escolha aleatéria do ponto inicial ndo garante sua convergéncia para um ponto

de minimo global.
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3 MATERIAIS E METODOS

Neste trabalho é proposto um sistema de contagem automatica de placas de Zika
virus obtidas em titulagoes virais por meio do experimento plaque assay utilizando um
conjunto de técnicas de processamento de imagens e inteligéncia artificial. Em linhas
gerais a arquitetura e o design do sistema sdo uma adaptagéo do framework proposto por
Gonzalez e Woods (2010, p.16). Os autores dividem as técnicas em dois grandes grupos,
aquelas que apresentam em sua entrada e saida imagens e aquelas em que a entrada pode
ou ndo ser uma imagem, mas a salda é necessariamente um conjunto de dados, como as
caracteristicas extraidas das imagens de entrada, por exemplo. Neste trabalho, estes
grupos foram nomeados de processamento de imagens e representacdo, sendo descritos
em detalhes nas secgoes 3.2 e 3.3 respectivamente. Ja na segdo 3.4, um terceiro grupo
denominado reconhecimento e representagio foi adicionado a composicdo original do
sistema. Este, por sua vez é responsavel pelo tratamento dos dados extraidos na secao
3.3, portanto suas entradas e saidas sfo exclusivamente um conjunto de dados. A
descricao detalhada de cada etapa, presente em suas respectivas segdes, é precedida pela
secdo 3.1, na qual é apresentada uma visdo geral da arquitetura do sistema. Todo o
sistema foi desenvolvido na linguagem de programacéo utilizada pelo software MatLab®)
da empresa MathWorks em sua versao R2017a. Este foi escolhido devido a sua extensa e
otimizada biblioteca de processamento de imagens. Os codigos fonte utilizados no
desenvolvimento de todo o trabalho estdo disponiveis em um repositério piblico cujo

endereco eletrénico esté presente no apéndice A.
3.1 Arquitetura do sistema.

Para alcangar a automagao proposta, a arquitetura do sistema, presente na figura
6, foi dividida em trés estagios: processamento de imagens (blocos azuis), representagao e
descrigao (bloco verde) e reconhecimento e interpretagao (blocos vermelhos). A figura 6
apresenta também o nome e o tipo da informacio de entrada e saida de cada um dos
blocos, sendo estas imagens ou dados, para facilitar o acompanhamento da descricao
detalhada de cada uma das etapas.

Nos blocos azuis do estigio de processamento de imagem, a melhor imagem em
escala de cinza igray(x,y) da imagem colorida i(x,y) de um pogo é escolhida, segmentada
e filtrada, obtendo-se a imagem em preto e branco ipmary(x,y) do poco. As imagens
ipLaQuE(x,y) das placas individuais s@o isoladas da imagem ipmarY(X,y) e, caso
apresentem algum tipo de sobreposicio, sdo devidamente processadas e separadas. J& na
etapa de representacio e descri¢do, o bloco verde recebe como entrada as imagens das
placas isoladas no tultimo bloco do estagio de processamento de imagens. Neste estagio, as

caracteristicas geométricas das placas séo extraidas e organizadas em uma matriz que,
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por sua vez, é salva em um arquivo no formato CSV (comma-separeted values) intitulado
banco de dados. Por fim, o arquivo é utilizado na entrada do estagio de reconhecimento e
interpretacdo. No bloco de treino supervisionado, os parametros de um classificador
binario sdo obtidos por meio de uma técnica de aprendizagem supervisionada utilizando
tanto o banco de dados quanto conhecimentos providenciados por pesquisadores com
experiéncia no experimento plaque assay. Ja o bloco de classificacdo binéria recebe tanto
os pardmetros treinados quanto o banco de dados. Este utiliza um classificador binario
para decidir se uma placa é uma placa viral ou um ruido, permitindo a contagem final

das placas.

Figura 6 — Arquitetura proposta do sistema para a automagio da contagem de placas de Zika
virus do experimento plaque assay. Blocos azuis e verdes representam etapas de processamento de

imagem enquanto os blocos vermelhos de inteligéncia artificial.
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3.2 Processamento de imagens

3.2.1 Aquisicao das imagens dos pogos.

As imagens das amostras utilizadas neste trabalho foram obtidas de um
experimento de plaque assay presente no relatério da aluna Luiza Zuvanov (ZUVANOV,
2016). Este, por sua vez, foi escrito durante sua participagio na realizagdo do projeto
intitulado Zika Virus and Cells Interactions, realizado pelo grupo do Dr. Alain Kohl no
Centre for Virus Research, vinculado a Universidade de Glasgow.

Para a obtencdo das amostras de placas virais em monocamada celular, foram
utilizadas células A549/BVDV-Npro (DONALD et al, 2016) previamente crescidas em
meio Dulbecco's modified Eagle's medium (DMEM) acrescido com 10% de soro fetal
bovino (FCS). A cepa viral brasileira Zika virus PE243 (DONALD et al, 2016) foi

utilizada para realizacdo do ensaio em placa. O experimento foi conduzido em placa para
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cultivo celular contendo 6 pogos. Monocamadas de células A549/BVDV-Npro, com 2.5 x
10° células por poco, foram infectadas com diluigdes seriadas da cepa Zika virus PE243.
As células foram incubadas a 37°C contendo DMEM suplementado com 4% FCS e 1.2%
Awicel a proporgao 1:1 por um periodo de 5 dias ap6s infecgdo. Seguidamente, as células
foram fixadas com adi¢do de 10% de formaldeido e, a posteriori, coradas com 0.1% de
azul de toluidina (ZUVANOV, 2016).

A imagem de uma das placas de cultivo celular resultantes pode ser vista na
figura 7. Da esquerda para a direita, a quantidade de virus aplicado nos pogos vai
aumentando com um fato de 10, ou seja, a placa mais a direita tem 10 vezes mais virus
que a placa imediatamente a sua esquerda. E possivel notar entdo que existe uma relacéo

direta entre a quantida de placas presentes na pogo e quantidade de virus aplicada.

Figura 7 — Exemplo do resultado do experimento plaque assay realizado em células A549/BVDV-
Npro 5 dias apds a infecgio. Em cada pogo, 2.5 x 10° células foram infectadas com a cepa Zika
virus PE243, em diluigdes seriadas de 10'77 10° e 10'57 da esquerda para a direita. Pogos

organizados na mesma coluna representam a mesma dilui¢do de virus.

Fonte: ZUVANOV, 2016.

Levando em consideragéo o fato de que o PFU ¢é normalizado pela quantidade de
virus aplicada no pogo em que as placas foram contadas, conforme exposto na equacio
2.1, é possivel afirmar que ndo ha diferenca tedria entre estimar seu valor contando as
placas presentes em pogos com mais ou menos virus. Portanto, para reduzir erros e
aumentar a precisdo da estimativa do PFU é recomendado que se escolha os pogos em
que seja mais facil a contagem das placas formadas (BAER; KEHN-HALL, 2014). Nesse
sentido, trés amostras de pocos foram isoladas para serem utilizadas neste trabalho e
estdo presentes na figura 8.

As imagens das amostras foram capturadas com a cAmera de 8 megapizels de um

celular Nezus 5 e foram recortadas e salvas no formato padrao JPG (Joint Photographic
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Group) com o tamanho de 850 x 850 pizels, resolucdo de 72 dpi (dots per inch) e uma
profundidade de cor (bit depth) de 24 bits, sendo 8 para cada canal RGB. As imagens

estao disponiveis no enderego eletrénico presente no apéndice A.

Figura 8 —Trés amostras do experimento plaque assay realizado em células A549/BVDV-Npro 5
dias apos a infecgdo. Em cada pogo, 2.5 x 10° células foram infectadas com a cepa Zika virus
PE243, em diluigoes de 10’6, 10°% e 10'7, da esquerda para a direita. Os pogos foram utilizados para
o desenvolvimento do sistema.

Fonte: ZUVANOV, 2016.

3.2.2 Segmentagao

Devido a utilizagdo de métodos derivativos de primeira e segunda ordem, os
métodos de segmentacio por descontinuidade sdo muito sensiveis a ruido. Como os pogos
apresentam regides em que as células se desprenderam do seu fundo, as suas imagens
apresentam regides ruidosas por toda a sua extensio, tornando assim inviavel a utilizagdo
deste tipo de segmentacao. Portanto, métodos de segmentagio por similaridade podem
ser mais adequados para este tipo de imagem.

O método de segmentacio por similaridade escolhido foi o método estatistico de
limiarizagdo global 6tima (método de Otsu) devido a sua simplicidade e elevada
eficiéncia. Para que o método possa encontrar o valor limiar 6timo, a imagem deve
apresentar um histograma idealmente bimodal. Neste sentido, o fato das imagens dos
pocos serem coloridas torna-se uma vantagem pois pode-se obter diversas imagens em
escala de cinza utilizando diferentes sistemas de cor, bastando escolher aquele que
apresentar o histograma bimodal melhor definido. Neste trabalho, foram explorados seis
niveis de cinza de cada imagem, trés provenientes do sistema de cor RGB e trés do
sistema HSV. A imagem em escala de cinza escolhida e a imagem binaria em preto e
branco resultante do processo de segmentacdo foram denominadas como icrav(x,y) e

IBINARY(X,y) respectivamente.

3.2.3 Filtragem

Buscando mitigar o problema dos ruidos isolados inerentes do experimento plaque

assay e provaveis imperfei¢des geradas durante o processo de segmentacio, uma filtragem
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ndo linear com um filtro morfolégico foi aplicado a imagens dos pocos segmentada
iBINARY(X,y). Esta etapa foi realizada para que o processo de abertura elimine os ruidos
isolados enquanto o processo de fechamento ajude a corrigir as imperfeigdes presentes nas
bordas das placas. Como estas possuem idealmente um formato circular, um elemento
estruturante morfoléogico no formato de disco se torna a melhor opcdo para esta

aplicagdo. De forma empirica, seu raio foi definido em seis pizels.

3.2.4 Aquisicao das imagens das placas.

A penultima etapa do processamento de imagens consiste no isolamento
individual da imagem de cada placa do seu respectivo poco, formando assim as imagens
ipLAQuE(X,y). Devidamente segmentada e filtrada, a imagem de um pogo iBNARY(X,Y)
apresenta placas com bordas continuas e bem definidas, num formato idealmente circular
e na cor preta, contrastando, assim, com a camada de células do poco na cor branca.
Para a identificacio das placas, a imagem ipmary(x,y) foi varrida de ponta a ponta e,
sempre que um pixel preto fosse atingido, um algoritmo seguidor de fronteira foi
aplicado. Desse modo, captaram-se os pizels ou as coordenadas da fronteira de cada placa
dentro em uma matriz M nx2 de m linhas por duas colunas, uma para o seu pizel no eixo
das abcissas e outro no eixo das ordenadas, respectivamente. E importante salientar que
o nimero de linhas m ndo é tnico e depende diretamente do tamanho da placa. Em
seguida, as matrizes contendo as coordenadas das fronteiras foram deslocados para a
origem por meio da subtracdo do valor minimo de cada coluna em suas respectivas

linhas, conforme algoritmo 3.

Algoritmo 3: Normalizacdo do cédigo de fronteira

1. xMin <- minimo das abscissas de Mmx»

2. yMin <- minimo das ordenadas de Mmx>

3. Para todo i variando de 1 até 2

4 Para todo j variando de 1 até m

5. Se i = 1 entdo M(j,1i) <- M(j,1i) - xMin
6 Se 1 = 2 entdo M(j,i) <- M(j,i) - yMin
7 Fim
8. Fim

Por fim, a imagem de cada placa foi reconstruida de acordo com a logica presente
no algoritmo 4. Se o pixel estiver dentro ou na borda do poligono formado pelo codigo de
fronteira presente na matriz M x2, ele recebe o valor de zero, representando a cor preta.

Caso contrario, recebe o valor de um, formando-se, por fim, a imagem de cada placa

Algoritmo 4: Construcdo da imagem de uma placa

1. Para todo i variando de 1 até m
2. Para todo j variando de 1 até m
3. Se o ponto (i,Jj) estiver dentro ou na borda do poligono em Mpx




3.2.  Processamento de imagens 37

4. Iprague (1,3) <= 0
5. Sendo

6. Iprague (1,]J) <- 1
7. Fim

8. Fim

3.2.5 Separacao de placas sobrepostas

Como observado posteriormente na segdo 3.2.1, os virus tendem a se espalhar
pelas células presentes nos pogos segundo um padréo predominantemente circular. Caso o
centro de formacgdo de uma placa seja proximo de outro, pode acontecer a sobreposicao
de duas ou mais placas. Esse tipo de situagio pode comprometer a contagem, pois placas
sobrepostas podem ser interpretadas como uma tunica. Isso ocorre porque o algoritmo
seguidor de fronteira ird incluir as fronteiras de todas as placas sobrepostas em uma
Unica matriz M mxo.

A assinatura de um objeto de interesse presente em uma imagem é um vetor
contendo a distancia euclidiana entre cada um dos pontos da fronteira deste objeto com o
seu centro de massa. Se um objeto apresentar um formato geométrico perfeitamente
circular, sua assinatura sera constante, pois a distancia entre qualquer ponto da fronteira

e o seu centro de massa sera igual ao seu raio. A figura 10 ilustra esta situagéo.

Figura 9 - Assinatura (curva azul) de um circulo.
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Fonte: Autoria propria.

Caso um objeto seja composto pela superposicio de dois circulos, nota-se a
formagédo de dois vales em sua assinatura. Além disso, quanto mais distantes forem os
seus centros, mais acentuados serio estes vales. Ambas as situagdes estfo ilustradas nas
figuras 11 e 12. Observa-se este fato mesmo em situagdes em que os circulos sobrepostos

apresentam raios de diferentes tamanhos, como ilustrado na figura 13.
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Figura 10 - Assinatura (curva azul) de dois circulos sobrepostos com centros distantes.
Signature

12k B H — Signature
Iean value

7
)
\

o
o
L

Scaled radius r{o)

02r : : 4

0 i I i i L i
2

3 4 5 &
Angle (8)

Fonte: Autoria propria.

Figura 11 - Assinatura (curva azul) de dois circulos sobrepostos com centros proximos.
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Figura 12 - Assinatura (curva azul) de dois circulos sobrepostos de tamanhos diferentes.
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Este comportamento se propaga para situacées em que héa a superposicao de trés
ou mais circulos, desde que cada um se sobreponha a todos os outros. Para exemplificar
esta situacao, considere o exemplo da sobreposicdo de trés circulos. No caso em que os
trés se sobrepdoem como na figura 14, observamos a presenca de trés vales em sua
assinatura, chama-se esse caso de sobreposicdo total. J4 no caso em que um dois dos

circulos sobrepdem apenas um, como o exemplo presente na figura 15, ainda observamos
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a presenca de trés vales. Contudo, um deles nédo representa um ponto de cruzamento de

fronteiras de placas, invalidando assim a generalizacdo proposta. Chama-se esse tltimo

tipo de sobreposicédo parcial.

Figura 13 - Assinatura (curva azul) de trés circulos sobrepostos de maneira total.
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Figura 14 - Assinatura (curva azul) de trés circulos sobrepostos de maneira parcial.
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Portanto, este trabalho propde um método para a separagdo de um ntmero

qualquer de placas sobrepostas para o caso em que ha a sobreposicdo total, presente no

algoritmo 5. De maneira recursiva, o algoritmo desenha uma linha branca entre os dois

pirels mais proximos do centro de massa do objeto.

Algoritmo 5:

Separacdo de placas sobrepostas com sobreposicgdo total

R s O 00 J oy O W DN -

s[] <- assinatura de irpague(X,V)

ds’ [] <- derivada da média mdével de s|[]

min[] <- cruzamento por zero de 9s’ de ‘baixo para cima’
Se o tamanho de min[] 2 2

minA <- minimo valor de min[]
minB <- minimo valor de min[] diferente de minA

Desenhar linha branca em ipiague(X,y) entre os pontos minA e minB

ipiague (X,y) <- parte separada de Ipague(X,y) de maior &rea
Pule para o passo 1

Sendo

Fim
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Em suma, o algoritmo calcula e insere a assinatura do objeto no vetor s. Calcula-
se entdo a sua assinatura suavizada s’ por meio de uma média moével, suavizando os
ruidos presentes na fronteira das placas reais. Em seguida, toma a primeira derivada de
s’ para encontrar os pontos de méximo e minimo locais da sua assinatura, estes
representam os pixels mais distantes e mais préximos do centro de massa do objeto. Para
diferenciar os pontos de minimo dos de méaximo, o algoritmo avalia se o cruzamento por
zero de 0s’ ocorre ‘de baixo para cima’ ou ‘de cima para baixo’. Caso existam pelo menos
dois pontos de minimo, o algoritmo toma os indices dos dois pontos de menor valor
dentre o conjunto de pontos de minimo elegiveis e desenha uma linha branca entre eles,
separando as placas. Por fim, repete-se o algoritmo utilizando o pedago da placa cortada
com a area de maior valor. O algoritmo para quando houver menos que dois pontos de
minimo

Para ilustrar o seu funcionamento, aplicou-se a imagem da figura 14, a parte do
algoritmo proposto que identifica os pontos de minimo locais do objeto. O resultado pode
ser visto na figura 16. No grafico da assinatura representado pela curva agzul, foi
adicionado a curva verde que é a sua derivada da média moével, a qual foi ampliada e
deslocada em torno da média da assinatura (curva vermelhar) para facilitar sua
visualizacdo. Nota-se que, toda vez que a curva verde cruza a curva vermelha de ‘baixo
para cima’, um ponto vermelho foi marcado na curva azul. Estes pontos séo os pontos de
minimo da curva da assinatura. Nota-se também que o ntimero de pontos de minimos é o
mesmo namero de placas sobrepostas. Para facilitar a interpretacao do grafico, os pontos
foram marcados na prépria figura das placas sobrepostas. Observa-se que eles estédo
exatamente nos pontos de intersec¢do das fronteiras dos circulos sobrepostos, exatamente

nos pontos aonde a linha branca deve ser desenhada.

Figura 15 - Pontos de minimo (pontos vermelhos) da assinatura (curva azul) de trés circulos
sobrepostos de maneira completa. A curva e o ponto verde representam a derivada da média

movel da assinatura (curva azul) e o centro de massa da imagem, respectivamente.
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3.3 Representacao e descricao

O estagio de processamento de imagens selecionou e filtrou as imagens dos pocos,
permitindo assim que as imagens individuais das placas pudessem ser isoladas. Contudo,
existe a possibilidade de a area da regido formada pelo desprendimento das células do
fundo dos pocgos ser maior que a area do elemento estruturante utilizada pelo filtro
morfologico no processo de filtragem. Neste caso, a imagem individual deste ruido sera
isolada como se fosse uma placa viral legitima e, consequentemente, a contagem poderé
ser prejudicada. Para mitigar este problema, o sistema proposto refinaré a contagem das
placas resultante exclusivamente do estagio de processamento de imagens por meio de
técnicas de inteligéncia artificial baseadas no formato geométrico das placas no estagio de
reconhecimento e interpretacao.

Para tanto, o estdgio de representagio e descricio é a etapa responsavel por
extrair as caracteristicas geométricas de cada irLaqQuE(X,y), sendo ela uma placa viral ou
ndo. Utilizando fungdes das bibliotecas de processamento de imagens do software
utilizado no desenvolvimento do projeto, foram extraidas trés caracteristicas geométricas
das imagens individuas das placas: area, excentricidade e presenca ou nao do centro de
massa dentro das bordas da figura. Estes trés parametros foram escolhidos pelas
seguintes razoes: como as placas tendem a apresentar um formato geométrico de padrao
circular, espera-se que elas apresentem seus respectivos centros de massa dentro dos
limites das suas fronteiras e que apresentem uma excentricidade proxima de um. Além
disso, espera-se também que uma placa viral possua um valor de area maior que o valor
de um ruido. Por fim, os trés parametros foram organizados em um vetor x, de trés

dimensoes, e estes em uma matriz de caracteristicas X mx3, com m linhas (namero total de

placas isoladas) e 3 colunas, uma para cada caracteristica extraida, conforme equagao 3.1.

X1 xll Xf
X= 5]=[2 ] (3.1)
Xm xrln ee xr:);l

3.4 Reconhecimento e interpretacao

O ualtimo estagio da arquitetura consiste no refinamento da contagem realizada
pelo estagio de processamento de imagens por meio de técnicas de inteligéncia artificial.
A ideia geral desta etapa é utilizar um classificador binario que receba como entrada os
dados geométricos de uma placa e retorne em sua saida a sua classificacdo como placa
viral ou ruido. Para que o classificador seja capaz de realizar tal classificagdo, o mesmo
deve ter seus parametros ajustados através de uma técnica de treino supervisionado. A

figura 16 apresentam as etapas realizadas neste processo.
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Figura 16 - Estégio de interpretagao e descrigio. A classificagio das placas por pesquisadores e as
amostras 1 e 2 serdo utilizadas para obter os parametros do classificador binario. Este, por sua vez
contard o ntimero de placas em cada amostra.
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Fonte: Autoria propria.

Em suma, as amostras 1 e 2, em conjunto com o conhecimento a priori sobre a
classificagio de suas placas em placa viral ou ruido, sdo utilizadas no treino
supervisionado para treinar os parametros do classificador bindrio por meio de um
algoritmo de otimizagdo chamado método de gradiente Um vez treinado, o classificador
binario, que utiliza uma funcio sigmoide, recebe os dados geométricas de cada uma das
placas de cada amostra e as classifica como placa viral ou ruido, permitindo assim gerar
de maneira automatica a contagem final das placas virais do experimento plaque assay. E
importante ressaltar que o a amostra 3 foi propositalmente excluida do treino
supervisionado justamente para que a qualidade da classificacio possa ser avaliada.

O conhecimento a priori sobre a classificacdo das placas foi obtido por meio do
auxilio de quatro pesquisadores do instituto de biologia da universidade de Brasilia.
Com experiéncia na realizagio do experimento plaque assay, cada pesquisador forneceu
nio so, a classificacio de cada placa da amostra 1 e 2, mas também o namero de placas
virais presentes em cada uma das trés amostras. Por fim, a contagem final do sistema
automatico foi comparada com a contagem do estigio de processamento de imagens e

com o valor médio da contagem fornecida pelos pesquisadores.
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4.1 Processamento de imagens

A primeira etapa do processamento de imagens é o bloco de aquisi¢do de imagens
dos pocos. Para que a melhor imagem em escala de cinza fosse escolhida, os histogramas
do sistema de cor RBG e HSV de todas as amostras foram obtidos. As figuras 17 e 18

apresentam os histogramas mencionados para as amostras 1 e 2.

Figura 17 — Amostra 1: histogramas no sistema de cor RGB e HSV.
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Figura 18 — Amostra 2: histogramas no sistema de cor RGB e HSV.
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Uma possivel explicagdo para o pico presente no canal azul do histograma RGB é
devido ao fato de que o corante utilizado no experimento ser o azul de toluidina. Este
fato é evidenciado pela concentracdo em torno do valor de 0.7 do matiz do histograma

HSV. Observa-se que o valor do brilho no histograma HSV apresenta um comportamento
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semelhante e esperado pois as placas nado apresentam variagdes relevantes em seus
respectivos brilhos. Observa-se também, que os histogramas do canal vermelho e verde
apresentam comportamento semelhantes, ambos colaboram com a formagéo da cor roxa,
com picos em torno de 50, e com a cor cinza do fundo, com picos em torno de 100. Por
fim, observa-se claramente que os histogramas do canal verde do RGB e de saturagéo do
HSV apresentam os histogramas mais proximos de histogramas bimodais, tornando-os as
melhores opgdes para escolha da imagem em escala de cinza. Por uma questdo de
performance, foi escolhido a imagem em escala de cinza do histograma da saturacao do
HSV para ser utilizada como igrav(x,y).

As figuras 19 e 20 apresentam os resultados dos blocos de aquisi¢io da imagem do
pogo, segmentagao e filtragem, nas quais foram obtidas as imagens i(x,y), icrav(x,y) e

iBINARY(X,y) antes e depois da filtragem para cada um dos pogos.

Figura 19 — Amostra 1. Da esquerda para a direita temos i(x,y), igray(X,y), iBINARY(X,y) antes e

depois do filtragem morfologica.

Fonte: Autoria propria.

Figura 20 - Amostra 2. Da esquerda para a direita temos i(x,y), icrav(x,y), iBINARY(X,y) antes e

depois do filtragem morfologica.

Fonte: Autoria propria.

Observa-se que filtro morfologico foi capaz de filtrar grande parte do ruido
causado pelo desprendimento das células do fundo dos pogos. Contudo, nota-se também a
formacgio de placas de ruidos devido a area de determinados aglomerados de células
desprendidas serem maiores que a area do elemento estruturante utilizado pelo filtro. Por
fim, nota-se também sobreposicao de placas duplas e triplas de maneira parcial.

No bloco de aquisi¢do da imagem das placas, as imagens individuais das placas

ipLaQuE(x,y) foram isoladas das imagens dos seus respectivos pogos. Estas foram entao
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submetidas ao algoritmo separador de placas sobrepostas proposto no algoritmo 5 As
figuras 22 e 23 apresentam exemplos de placas simples, dupla e triplas para a amostra 1 e
2, independe destas serem placas virais ou ruidos. E possivel observar que o
comportamento da assinatura para um caso real varia muito mais do que as assinaturas
apresentadas no capitulo anterior. Este fato justifica a utilizacdo da média movel para
suavizagdo da mesma, pois se nao fosse utilizada, a curva da derivada poderia oscilar a

tal ponto que os pontos de minimo seriam erroneamente obtidos.

Figura 21 — Amostra 1: placas simples, duplas e triplas. A curva azul representa a assinatura da
placa, a curva verde sua derivada, o ponto verde seu centro de massa e os pontos vermelhos seus

minimos locais
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Figura 22 — Amostra 2: placas simples, duplas e triplas. A curva azul representa a assinatura da
placa, a curva verde sua derivada, o ponto verde seu centro de massa e os pontos vermelhos seus

minimos locais
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Como esperado, as placas simples apresentam m comportamento mais uniforme
enquanto as placas duplas apresentam dois vales bem definidos. Além disso, todas as
placas triplas apresentaram sobreposicdo parcial, portanto um dos pontos de minimo
identificados néo serd um ponto de intersecio de fronteiras e, consequentemente, o
algoritmo de separacio ndo conseguird separa estas placas em outras trés placas
distintas. Para ilustrar o resultado final desta etapa, o algoritmo de separacio foi
aplicado também nas imagens binérias dos pogos iBmvarY(X,y) da amostra 1 e da amostra

2, enfatizando assim a sua boa performance na separacdo das placas duplas e a falha
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parcial na separagdo das placas triplas com sobreposigdo parcial, conforme figura 24. A

tabela 2 apresenta a contagem final das placas resultante desta etapa.

Figura 23 — Amostra 1 e 2: separagiio parcial de placas sobrepostas.

Fonte: Autoria propria.

Tabela 2 - Contagem final de placas na etapa de processamento de imagens.

Amostra Total de placas
1 31
2 37
3 59

4.2 Representacdo e descrigao

Nesta etapa, foram extraidas as seguintes caracteristicas geométricas de cada uma
das ipLaquE(x,y): area, excentricidade e presenga ou ndo do centro de massa dentro da
placa, formando assim os vetores de caracteristicas x de cada placa. Os resultados foram
compilados e armazenados em duas matrizes de caracteristicas, uma contendo os vetores
de caracteristicas da amostra 3 e a outra ndo. Essa segunda foi utilizada no bloco de

treinamento supervisionado, enquanto a primeira foi aplicada no classificado binario.

4.3 Reconhecimento e interpretacéo

A tabela 3 apresenta a contagem das placas de cada amostra realizada pelos
pesquisadores colaboradores. Nota-se que ha um desvio padrdao médio de

aproximadamente 3 placas.
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Tabela 3 - Contagem das placas de Zika virus das trés amostras por pesquisadores com

experiéncia no experimento plaque assay.

Amostra 1 2 3 4 Média Desvio Padrao
1 16 19 19 22 19 2.5
2 26 22 26 23 24 2.1
3 36 30 28 33 32 3.5

Ja a tabela 4 apresenta uma comparagido entre o valor médio da contagem feira
pelos pesquisadores e a contagem realizada exclusivamente pelo estagio de processamento
de imagens. Com um erro médio relativo de 67,23%, é evidente afirmar que so a etapa de

processamento de imagens nao é o suficiente, portanto, sua contagem deve ser refinada.

Tabela 4 - Comparagéo entre a contagem do estagio de processamento de imagens e da contagem

realizadas por pesquisadores com experiéncia no experimento plaque assay.

Contagem por Contagem por processamento .
Amostra ) Error Relativo
pesquisadores de imagem
1 19 31 63,15%
2 24 37 54,16%
3 32 29 84,38%

Para realizar tal refinamento, aplicou-se o ultimo estigio do sistema proposto, o
de reconhecimento e interpretacgio. A figura 25 apresenta os dados geométricos das placas
das amostras 1 e 2 separados em dois grupos pelos pesquisadores: o grupo de placas virais
(pontos verdes) e o grupo de ruidos (pontos azuis). Nota-se que as placas classificadas
como ruido apresentam, em geral, um menor valor de area que as placas classificadas
como placas virais. A figura 27 apresenta a fronteira de decisdo obtida através do método
do gradiente. Todas as placas abaixo da linha pontilhada foram classificadas como ruidos
e todas acima, como placas virais. O treino atingiu uma taxa de acerto de
aproximadamente 82,13%.

Por fim, os parametros refinados foram inseridos no classificador binario e este
gerou a contagem presente na tabela 5. A contagem apresentou um erro médio de apenas
5,22% em relacdo a contagem realizada pelos pesquisadores, melhorando em 92,23% a

contagem realizada pela etapa do processamento de imagens, conforme tabela 6.
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Figura 24 - Area e excentricidade das placas das amostras 1 e 2 classificadas como placas virais

(pontos verdes) ou ruido (pontos azuis) de acordo com pesquisadores com experiéncia no

experimento plaque assay.
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Figura 25 — Fronteira de decisdo obtida por meio do método do gradiente. Placas com um

conjunto de caracteristicas geométricas acima da fronteira serdo classificadas como placas virais.

Taxa de acerto de 82,12%.
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Tabela 5 - Comparagéo entre a contagem do estiagio de reconhecimento e interpretagdo e da

contagem realizadas por pesquisadores com experiéncia no experimento plaque assay.

Contagem por Contagem por inteligéncia Error
Amostra ) o )
pesquisadores artificial Relativo
1 19 18 5,26%
2 24 23 4,17%
3 32 34 6,25%

Tabela 6 - Comparagéo entre o erro médio da contagem do estigio de processamento de imagens e

do erro médio da contagem do estagio de reconhecimento e interpretacao.

Erro médio da contagem por Erro médio da contagem por Diferenga entre os

processamento de imagem inteligéncia artificial erros médios

67,23 5,22 92,23%
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5 CONCLUSAO

O objetivo do trabalho foi o desenvolvimento de um sistema de contagem
automatica de placas de Zika virus, provenientes do experimento plaque assay, que
utiliza técnicas de processamento de imagens e inteligéncia artificial para diminuir erros
na coleta dos resultados, aumentando assim a eficiéncia da titulacao viral. O problema se
resumiu na dificuldade da contagem final das placas pelo olho humano devido a
sobreposicdo aleatoria das placas e o ruido causado pelo desprendimento das células do
fundo da placa, podendo apresentar diferencas de até 44% na contagem de um mesmo
experimento por diferentes pesquisadores. Buscando mitigar os erros na contagem e
aumentar a eficiéncia da titulagao viral, foi proposto um sistema para a automacao da
contagem das placas de Zika virus resultantes do experimento plaque assay utilizando
visdo computacional.

A arquitetura do sistema foi composta por trés estagios distintos: processamento
de imagens; representacio e descri¢do; reconhecimento e interpretagio. Na primeira
etapa, as imagens de 3 pogos foram selecionas, segmentada e filtradas. Posteriormente a
imagem individual de cada placa for isolada da imagem dos seus respectivos pogos e
eventualmente separadas no caso de sobreposi¢io de placas. O algoritmo de separacao de
placas conseguiu separar todas as placas duplas mas falhou parcialmente na separacio
das placas triplas pois estas apresentaram sobreposi¢do parcial de placas. O filtro
morfologico utilizado na etapa de filtragem conseguiu remover uma grande quantidade de
ruido das placas, contudo o ntmero de placas contadas apresentou um erro médio
relativo de 67,23% em relagdo a contagem realizada por quatro especialistas na area, ou
seja, o namero total de placas isoladas foi composto tanto por placas virais quanto por
ruidos. No segundo estigio, as seguintes caracteristicas geométricas das placas foram
coletadas: area, excentricidade e presenca ou néo do centro de massa dentro da fronteira
da placa. Por fim, o ultimo estagio utilizou técnicas de treino supervisionado para treinar
os pardmetros de um classificador binirio de placas. Este classificador apresentou uma
contagem de placas com um erro médio relativo de apenas 5,22%, apresentando uma
melhora de 92,23% em relagio a contagem anterior.

Concluiu-se que o sistema proposto contou automaticamente as placas de Zika
virus das 3 amostras do experimento plaque assay com qualidade semelhante aquelas
feitas por pesquisadores experientes, apresentando um erro de aproximadamente 5%.

O sistema apresentado neste trabalho extrapolou as fronteiras do ambiente
académico. Desenvolvida em conjunto com Luiza Zuvanov, colaboradora deste projeto, a
ideia foi aprovada em um programa de empreendedorismo e pré-aceleracio de startups
chamado Academic Working Capital (AWC, 2017). O programa, fruto da parceria do
instituto de inovacdo da TIM e do Niucleo de Empreendedorismo da USP de Sdo Paulo,

busca transformar os trabalhos de conclusdo de curso em produtos prontos para serem
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lancados no mercado. Neste sentido, o autor deste trabalho, em parceria com sua
colaboradora, vem trabalhando desde abril de 2017 para alcangar o objetivo proposto
pelo programa. Em agosto do mesmo ano, a equipe foi contatada por uma empresa de
venture capital para apresentar o projeto. Em setembro de 2017 a ideia foi vencedora de
um hackathon promovido pelo IME-USP com o seguinte tema: utilizando a tecnologia
para melhorar a producéo cientifica (EESC, 2017). J& em dezembro de 2017 o projeto,
sob o nome de beThink, sera apresentado em uma feira de investimentos para potenciais
investidores (AWC, 2017).
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APENDICE A - CODIGO FONTE E IMAGENS

Os codigos fonte dos algoritmos desenvolvidos neste trabalho estdao presente em
um repositorio publico para livre acesso no seguinte enderego eletronico:
https://github.com/andreMarcosPerez/SEL0444 finalYearProject.






