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RESUM O 

 

O objetivo deste trabalho é o desenvolvimento de um sistema de automação da contagem de 

placas de Zika vírus do experimento plaque assay utilizando técnicas de visão computacional. 

Atualmente, o Zika vírus é um problema de saúde pública de impacto global, causando 

doenças como a microcefalia. Para combatê-las, pesquisadores ao redor do mundo pesquisam 

e desenvolvem tratamentos e medicamentos. Uma etapa comum nas pesquisas desta área é a 

titulação viral, onde o plaque assay é uma das técnicas mais utilizadas. Contudo, erros 

cometidos pelos pesquisadores na coleta dos resultados devido tanto à má realização do 

experimento quanto a fatores aleatórios podem comprometer a eficiência da técnica. Sendo 

assim esforços para aumentar a precisão da coleta dos resultados são de grande interesse. 

Nesse contexto, o presente trabalho propõe um sistema de automação da contagem das placas 

de Zika vírus resultantes do experimento plaque assay, visando o aumento da eficiência da 

titulação viral. O sistema é composto por três etapas: processamento de imagens; 

representação e descrição; reconhecimento e interpretação. Na primeira etapa, as imagens dos 

poços são escolhidas, segmentadas e filtradas. As imagens das placas individuais são isoladas 

e eventuais placas sobrepostas são separadas. Já na segunda etapa, as características 

geométricas das placas são extraídas. Na última etapa, cada placa é classificada como placa 

viral ou ruído por um classificador binário, cujos parâmetros foram obtidos por meio de uma 

técnica de treino supervisionado. Por fim, a contagem é obtida pela soma das placas 

classificadas como placas virais. Para que fosse possível avaliar a eficácia do sistema, quatro 

pesquisadores da universidade de Brasília, com experiência no uso do plaque assay, 

forneceram a contagem e a classificação de placas de três de poços distintos. Na etapa de 

processamento de imagens, observou-se que foi isolado um número maior de placas do que o 

número médio fornecido pelos pesquisadores, gerando um erro médio relativo de 67,23% na 

contagem. Já na etapa de reconhecimento e interpretação, o classificador binário apresentou 

um erro médio relativo de apenas 5,22%, melhorando a contagem anterior em 92,23%. 

Concluiu-se que o sistema proposto contou automaticamente as placas de Zika vírus das 

amostras do experimento plaque assay com qualidade semelhante àquelas feitas por 

pesquisadores experientes. 

 

Palavras-chave: Visão computacional, processamento de imagens, inteligência artificial, 

plaque assay, Zika vírus. 

  



  



ABSTRACT 

 

The aim of this work is to development of an automatic Zika virus plaque counter system 

using computer vision techniques. Nowadays, the Zika virus is a public health problem with 

global impacts, causing diseases such as microcephaly. To combat them, researchers around 

the world research and develop treatments and medicaments. A common step on researches 

in this area is the viral titer and the plaque assay is one of the most used techniques. 

However, mistakes made by the researchers in the collection of results due both to bad 

performed experiments and random factors may compromise the efficiency of the technique. 

Therefore, efforts to increase the accuracy of the collection of results are of great interest.  In 

this context, the present work proposes an automation system for counting Zika virus 

plaques from plaque assay experiments, aiming to increase the efficiency of viral titer. The 

system consists of three steps: image processing; representation and description; recognition 

and interpretation. In the first step, the well images are chosen, segmented and filtered. The 

images of individual plaques are isolated and any eventual overlapping plaque are separated. 

In the second stage, the geometric characteristics of the plaques are extracted. In the last 

step, each plaque is classified as viral plaque or noise by a binary classifier, whose parameters 

were obtained through a supervised training technique. Finally, the count is obtained by 

summing the plaques classified as viral plaques. In order to evaluate the efficacy of the 

system, four researchers from the University of Brasília with experience in the plaque assay 

experiment helped by providing the counting and the classification of plaques from three 

different wells. In the image processing step, it was observed that a larger number of plaques 

were isolated than the average number provided by the researchers, generating a mean 

relative error of 67.23% in the count. In the recognition and interpretation step, the binary 

classifier presented a mean relative error of only 5.22%, improving the previous count by 

92.23%. It was concluded that the proposed system automatically counted the Zika virus 

plaques from samples from the plaque assay experiment with similar quality to those made 

by experienced researchers. 

 

Key-words: Computer vision, image processing, artificial intelligence, plaque assay, Zika 

virus. 
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1 INTRODUÇÃO 

 

1.1  Contextualização 

 

Desde 430 A.C., há relatos de doenças virais importantes que afetaram grande 

parcela da população (RETIEF e CILLIERS, 1998). Entre as várias doenças virais 

conhecidas, pode-se citar as seguintes: HIV/AIDS, hepatites virais, ebola, raiva, sarampo, 

herpes, doenças causadas pelo vírus Influenza e doenças causadas pela família de 

Flavivirus como dengue, febre amarela e Zika.  

No Brasil, recentemente, houveram relatos de epidemia causada pelo agente viral 

Zika vírus. Este vírus foi primeiramente descrito em 1947 durante uma vigilância de 

rotina contra febre amarela em Uganda (DICK et al., 1952). Por muito tempo, pensou-se 

que o Zika vírus fosse majoritariamente um vírus de primatas não humanos. Entretanto, 

a zoonose passou a afetar a população humana, onde seu primeiro relato é datado de 

1952 (SMITHBURN, 1952). Contudo, apenas em 1964 o vírus foi confirmado como 

causador de doença humana (SIMPSON, 1964). 

O primeiro grande surto detectado por Zika vírus ocorreu na Ilha de Yap em 

2007, infectando 73% da população. Esta foi a primeira vez que a doença Zika estava 

restrita a transmissão humano-mosquito, já que não foram encontrados macacos 

próximos a região (DUFYY et al., 2009). O segundo surto por Zika vírus foi registrado 

na Polinésia Francesa em 2013, onde foi relatada uma possível associação do Zika vírus 

com complicações autoimunes, malformações congênitas e desordens neurológicas, como a 

síndrome de Guillain-Barré (OEHLER et al, 2014). 

A entrada do Zika vírus em território brasileiro pode ter se dado segundo duas 

hipóteses: introdução durante a copa do mundo FIFA de 2014 ou pelo campeonato de 

canoagem Va’a World Sprint, sendo a última a mais provável (WHO, 2016). Em apenas 

três meses, de fevereiro de 2015 ao final de abril do mesmo ano, foram reportados 

aproximadamente 7000 casos de pacientes contendo sintomas semelhantes àqueles 

causados pelo Zika vírus. Entretanto, foi apenas em maio de 2015 que houve confirmação 

da circulação do Zika vírus no país (WHO, 2016). Em outubro de 2015, foi notado um 

elevado aumento nos casos de microcefalia de recém-nascidos no Brasil, cerca de 3000 

casos estavam sendo analisados (SCHULER-FACCINI, 2016). A doença Zika se espalhou 

pelo globo, atingindo 84 países (WHO, 2017), onde, além de transmissão por vetor, 

houveram relatos de transmissão de pessoa a pessoa, como por exemplo de forma sexual 

(WHO, 2016). 

Dos casos de pacientes contendo Zika vírus que desenvolveram sintomas, os mais 

comuns são febre, erupções cutâneas, dor nas juntas e conjuntivite (CDC, 2017). Em 

casos mais extremos, observa-se o aparecimento da síndrome de Guillain-Barré. Já 

mulheres grávidas que tenham contraído o Zika vírus, podem apresentar bebês com 
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malformações como microcefalia, problemas na audição, visão e crescimento (WHO, 

2017). Atualmente, a abordagem médica consiste no tratamento dos sintomas da doença 

ao invés do combate direto ao vírus. Mesmo com todos os esforços por parte dos 

laboratórios de pesquisa, ainda não são encontrados remédios ou vacinas específicas para 

o Zika vírus (WHO, 2017). 

 

1.2  Justificativas 

 

Para a combater doença causada pelo Zika vírus, pesquisadores ao redor do 

mundo investigam a sua biologia e buscam o desenvolvimento de testes de diagnóstico, 

vacinas e tratamentos. Para que as pesquisas possam ser realizadas, as amostras virais a 

serem utilizadas devem ser quantificadas previamente (VIROCYT, 2013). Para tanto, os 

pesquisadores utilizam métodos de titulação viral como o ensaio em placa, conhecido 

como plaque assay. Este passo é essencial nos estudos que envolvem também outros 

agentes virais, como HIV e ebola. 

A determinação do título viral pelo plaque assay pode ser exaustiva e ambígua 

(VIROCYT, 2013). A quantificação viral pode ser estimada por meio da contagem do 

número de zonas circulares, conhecidas como placas, presentes nos poços ao término do 

experimento. Dois fatores podem dificultar a correta contagem: a sobreposição aleatória 

de duas ou mais placas e o ruído causado pelo desprendimento das células do fundo dos 

poços. Como as placas são contadas pelo pesquisador por inspeção visual, o resultado 

final é dependente da interpretação humana, a qual pode ser considerada subjetiva e, 

consequentemente, passível de erros, apresentando divergências que podem variar entre 

5% e 44% na titulação viral de um mesmo experimento por diferentes pesquisadores 

(BAE et al, 2003). 

Portanto, o impacto do Zika vírus na saúde pública global justifica a busca por 

ferramentas que auxiliem a elevar a eficiência das técnicas de titulação viral, como o 

plaque assay, para auxiliar pesquisadores na busca da solução de um problema real e 

relevante para a sociedade. 

 

1.3 Objetivo 

 

O presente trabalho tem como objetivo propor um sistema de contagem 

automática de placas de Zika vírus, provenientes do experimento plaque assay, que 

utiliza técnicas de processamento de imagens e inteligência artificial para diminuir erros 

na coleta dos resultados devido a sobreposição aleatória das placas e ruídos causados por 

células que se desprenderam do fundo dos poços, aumentando assim a eficiência da 

titulação viral. 

  

 

Capítulo 1. Introdução 
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2 EM BASAM ENTO TEÓRICO 

 

2.1 Plaque Assay 

 

A quantificação de amostras virais pode ser considerada como um passo 

primordial aos estudos em virologia. A confecção de proteínas recombinantes, vacinas, 

drogas e métodos para o combate e entendimento de doenças virais, por exemplo, 

tornam-se dependentes de titulação viral prévia aos experimentos. As técnicas de 

titulação viral podem ser agrupadas em duas categorias: tradicionais ou modernas. No 

primeiro grupo, abrange-se técnicas como plaque assay e fluorescente focus assay (FFA). 

Já na categoria de técnicas modernas, pode-se citar às técnicas de reação em cadeia da 

polimerase (PCR) e ensaio de imunoabsorção enzimática (ELISA) (VIROCYT, 2013). A 

tabela 1 apresenta a comparação entre as técnicas acima mencionadas em relação as suas 

respectivas reprodutibilidades, tempo de realização, quantidade de trabalho para suas 

execuções e os custos envolvidos. 

 

Tabela 1 – Comparação entre técnicas de titulação viral em relação a reprodutibilidade, tempo de 

execução, quantidade de trabalho e custos envolvidos (VIROCYT, 2013). 

Técnica 
Reprodutibilidad

e 
Tempo Trabalho Custo 

Plaque assay Pobre Dias Elevado Baixo 

FFA Pobre Dias Elevado Alto 

PCR Excelente Horas Elevado Alto 

ELISA Boa Horas Moderado Alto 

 

Devido ao seu baixo custo, um dos métodos amplamente utilizados de titulação 

viral para análises da eficácia de moléculas no combate de doenças virais, por exemplo, é 

o plaque assay. Originalmente criada para quantificar bacteriófagos (vírus de bactérias), 

a técnica de plaque assay foi aprimorada em 1952 para contagem de vírus que infectam 

animais pelo médico patologista Renato Dulbecco (DULBECCO; VOGT, 1953), 

agraciado com o Nobel de Fisiologia e Medicina no ano de 1975 por estudos com tumores 

virais (NOBEL PRIZE, 2017). Hoje, o plaque assay pode ser utilizada para diferentes 

vírus e continua sendo considerada referência mesmo com advento de novas técnicas de 

titulação (BAER; KEHN-HALL, 2014). 

A técnica de plaque assay consiste de infecção de monocamada de células 

cultivadas em placas de cultivo por diluições seriadas da amostra viral. Após infecção, 

adiciona-se a cada poço da placa um meio imobilizante para que a infecção se espalhe 

apenas para as células vizinhas. Dependendo da linhagem celular e da cepa viral utilizada 
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no experimento, a placa deve ser incubada em condições ótimas de cultivo por um 

período que pode variar de poucos dias a duas semanas. Em seguida, as células são 

fixadas à placa por método químico e posteriormente coradas. Devido a utilização de 

meio imobilizante e tempo de espera suficiente, formam-se zonas circulares macroscópicas 

provenientes de lise celular que podem ser vistas a olho nu e que são chamadas de placas. 

Por fim, as placas são contadas e a titulação viral pode ser calculada em termos de 

unidades formadoras de placa por ml (PFU/ml) de acordo com a equação 2.1 (BAER; 

KEHN-HALL, 2014): 

 

 
𝑃𝐹𝑈

𝑚𝑙
=

𝑁ú𝑚𝑒𝑟𝑜 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑝𝑙𝑎𝑐𝑎𝑠 𝑛𝑜 𝑝𝑜ç𝑜

𝐷𝑖𝑙𝑢𝑖çã𝑜 𝑥 𝑉𝑜𝑙𝑢𝑚𝑒 𝑑𝑒 𝑣í𝑟𝑢𝑠 𝑎𝑑𝑖𝑐𝑖𝑜𝑛𝑎𝑑𝑜 𝑎𝑜 𝑝𝑜ç𝑜
 (2.1) 

 

Para minimizar erros na contagem de placas formadas, escolhe-se o poço em que 

são encontradas de 10 a 100 placas.  Sabe-se que, a cada 100 placas contadas, o título 

amostrado pode variar 10% para mais ou para menos (BAER; KEHN-HALL, 2014). 

Entretanto, mesmo com o as devidas precauções tomadas, a contagem das placas virais 

varia de pesquisador para pesquisadores já que estas podem apresentar diferentes 

morfologias dependendo da linhagem celular e vírus utilizados. Desse modo, considerando 

as fontes de imprecisão desde a confecção do experimento até a contagem final das 

placas, a titulação de um mesmo vírus por diferentes pesquisadores pode variar entre 5% 

e 44% (BAE et al, 2003). 

 

2.2 Processamento de Imagens 

 

2.2.1 Sistema de cores RGB e HSV 

 

Segundo Gonzalez e Woods (2010, pg.264), o objetivo de um modelo de cores é 

facilitar a especificação das cores em alguma forma padronizada e amplamente aceita. 

Em geral, os modelos de cores definem um sistema de coordenadas e um subespaço 

dentro deste, onde uma cor específica é determinada única e exclusivamente por um 

ponto pertencente a este subespaço. 

De acordo com a definição apresentada, o modelo RGB (red, green e blue) utiliza 

coordenadas cartesianas (x,y,z) e tem como subespaço um cubo unitário, conforme figura 

1, onde cada coordenada é associada a uma única cor primária: vermelho, verde ou azul. 

Portanto, qualquer cor dentro deste modelo pode ser expressa como um ponto com três 

coordenadas. Por exemplo, os pontos com coordenadas (1,0,0), (0,1,0) e (0,0,1) 

representam respectivamente as cores primárias vermelha, verde e azul. Dessa maneira, o 

ponto de coordenada (1,1,0) representa a cor amarela enquanto o ponto (1,1,1) 

representa a cor branca.  
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O modelo de cores HSV (hue, saturation e valume) é uma alternativa ao modelo 

de cores RGB. Amplamente utilizado, o modelo é mais intuitivo para a visão humana 

(CHENG ET AL., 2001). O modelo utiliza coordenadas cilíndricas (ρ,φ,z) e pode 

apresentar diferentes subespaços. A figura 2 apresenta dois exemplos, um em formato de 

pirâmide de base quadrada com lado unitário e outro em formato de cone com raio da 

base também unitário. O primeiro componente do modelo é o matiz (hue), seu valor 

varia de forma angular e expressa uma única cor. Assim, as cores puras do sistema RGB 

são separadas por ângulos de 120º. O segundo componente é a saturação (saturation) e 

equivale ao componente radial do sistema de coordenadas cilíndricas. Variando de 0 a 1, 

este define o quão próximo do nível de cinza estará a cor definida pelo matiz. Por fim, o 

terceiro é o brilho (value). O componente está localizado na mesma dimensão da altura 

do sistema, também varia de 0 a 1, e define a intensidade do tom de cinza a ser 

adicionado na cor pura, definida pelo matiz, conforme sua proximidade do centro do 

sistema, definida pela saturação. Por exemplo, os pontos de coordenadas (0,0,1) e (0,0,0) 

apresentam as cores branca e preta, respectivamente, enquanto os pontos (0º,1,0), 

(120º,1,0) e (240º,0,0) representam as cores vermelha, verde e azul. 

 

Figura 1 - Modelo de cor RGB com sistema de coordenadas cartesiana e subespaço no formato de 

um cubo unitário. 

 
Fonte: GONZALEZ e WOODS, 2002. 

 

Figura 2 - Modelo de cor HSV de sistema de coordenadas cilíndricas e subespaço no formato de 

pirâmide de base quadrada de lado unitário e de cone.com raio de base unitário. 
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Fonte: GONZALEZ e WOODS, 2002. 

2.2.2 Limiarização global ótima 

 

Segmentação por similaridade é o processo que subdivide uma imagem em regiões 

menores que satisfaçam um critério pré-determinado. De acordo com Sankur e Mehmet, 

(2004), o método mais utilizado é o método estatístico de limiarização global ótima 

conhecida como método de Otsu. Publicado em 1979 em um artigo intitulado ‘A 

Threshold Selection Method from Gray-Level Histograms’ (OTSU, 1979), o autor propõe 

um algoritmo que procura encontrar um limiar global ótimo que melhor separe um 

histograma em dois utilizando o conceito de máxima variância. O algoritmo 1 apresenta, 

em linhas gerais, o funcionamento do método. 

 
Algoritmo 1: Método de Otsu 

1. hist[] <- histograma de uma imagem com L níveis de intensidade 

2. Para todo T variando de 1 até L-2 

3.   C1 <- hist[0,T] 

4.   C2 <- hist[T+1,L-1] 

5.   var(i) <- variância entre C1 e C2 

6. Fim 

7. TOTIMO <- índice do valor máximo de var 

8. Fim 

 

Se aplicado a uma imagem em escala de cinzas, o algoritmo permite que a mesma 

seja eficientemente segmentada, ou seja, transformada da escala de cores original para 

uma imagem em preto e branco. Neste caso, após o algoritmo encontrar o valor de 

TOTIMO, todos os pixels da imagem à esquerda do limiar assumem o valor de 0 (preto) 

enquanto os pixels a sua direita assumem o valor de 1 (branco). 

 

2.2.3 Filtros morfológicos 

 

 Filtros morfológicos são filtros não lineares baseados na forma dos elementos de 

interesse nas imagens e consistem em uma aplicação ordenada dos processos de abertura, 

erosão seguida de dilatação, e de fechamento, dilatação seguida de erosão. Uma abertura 

seguida de um fechamento constitui em um filtro morfológico, o qual é utilizado tanto 

suavização de imagens como para remoção de ruído. A etapa de abertura suprime 

detalhes menores que o elemento estruturante fora das bordas de um objeto presente em 

uma imagem, corroendo levemente suas bordas, enquanto a etapa de fechamento suprime 

os detalhes menores que o elemento estruturante dentro das bordas, recuperando os 

detalhes das bordas corroídas na etapa anterior (GONZALEZ e WOODS, 2010, pg.443). 

Uma ilustração do funcionamento de um filtro morfológico, está presente na figura 3.  

Nas duas primeiras imagens, ocorre o processo de abertura. A etapa de erosão 

remove os ruídos externos e diminui o tamanho da imagem enquanto aumenta os ruídos 
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internos. Já a etapa de dilatação restaura o seu tamanho e diminui ruídos internos 

ressaltados anteriormente. O resultado do processo de abertura, presente na terceira 

imagem, apresenta uma imagem com bordas suavizadas e limpa de ruídos externos. Nas 

duas últimas imagens, ocorre o processo de fechadura. A dilatação elimina os ruídos 

internos da imagem e expande suas bordas enquanto a erosão recupera o seu tamanho 

original. O resultado do processo de fechamento e do filtro morfológico, presente na 

última imagem, é o de uma imagem ainda com bordas suavizadas, mas livre de ruídos. 

 

Figura 3 – Aplicação de um filtro morfológico para a remoção de ruídos internos e externos de 

uma imagem. 

 
Fonte: GONZALEZ e WOODS, 2010. 

 

Se um objeto apresentar um formato majoritariamente circular, por exemplo, 

deve-se utilizar um elemento estruturante no formato de disco a fim de minimizar a 

deformação do mesmo durante o processo de filtragem. Exemplos de elementos 

estruturantes podem ser encontrados na figura 4. 

 

Figura 4 - Exemplos de elemento estruturantes no formato de cruz, quadrado, linha e disco, 

respectivamente da esquerda para a direita. 

 
Fonte: GONZALEZ e WOODS, 2010. 

 

2.2.4 Algoritmo seguidor de fronteira 

 

 Algoritmos descritores de fronteiras focam nas características externas dos 

objetos, como seu formato geométrico, orientação, tamanho, etc. De fato, Suzuki e Abe 
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(1985) definem um algoritmo seguidor de fronteiras como uma função que deriva uma 

sequência coordenada de pontos da fronteira de um objeto conectado. Em outras 

palavras, o algoritmo busca descrever o formato bidimensional de uma imagem em um 

vetor unidimensional (GONZALEZ e WOODS, 2010, pg.524). Para explicar seu 

funcionamento, considere a figura 3  

Escolhendo um ponto de referência b0 qualquer da fronteira do objeto, o algoritmo 

varre, no sentido horário, sua região 8-conectada partir do ponto c0. Ao encontrar um 

ponto com o valor de 1, o algoritmo descola o ponto de referência de b0 para este novo 

ponto. Este então passa a ser denominado como b1. O algoritmo repete o processo até que 

a coordenada do ponto bN seja igual a coordenada do ponto b0, realizando assim uma 

volta completa na fronteira do objeto. Se a coordenada do ponto de referência for 

armazenada em um vetor a cada troca, obtêm-se uma representação unidimensional do 

objeto pelas coordenadas de sua fronteira. 

 

Figura 5 - Exemplo do algoritmo seguidor de fronteira. 

 
Fonte: GONZALEZ e WOODS, 2010. 

 

2.3 Inteligência artificial 

 

2.3.1 Função sigmoide 

 

A função sigmoide, também conhecida função logística, é definida conforme a 

equação 2.2. É uma função f: ℝ → ℝ com domínio {x ∈ ℝ | -∞ ≤ x ≤ ∞} e contradomínio 

{f(x) ∈ ℝ | 0 ≤ x ≤ 1} O nome sigmoide deriva do formato em “s” do seu gráfico em torno 

do intervalo I = {x ∈ ℝ | -5 ≤ x ≤ 5} e apresenta aplicações em diversas áreas do 

conhecimento, como biologia, psicologia e economia (VON SEGGERN, 2007, p.148). 

 

 𝑓(𝑥) =
1

1 + 𝑒−𝑘𝑥
 (2.2) 

 

Nota-se que seu contradomínio é limitado ao intervalo I = {f(x) ∈ ℝ | 0 ≤ f(x) ≤ 

1} para qualquer valor de x. Nota-se também que f(0) = 0.5. Essas duas propriedades 
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fazem com que a função seja amplamente utilizada como um classificador binário dentro 

da área de inteligência artificial (VON SEGGERN, 2007, p.148).  

2.3.2 Método do gradiente 

 

O método do gradiente, também conhecido como método do máximo declive, é 

um algoritmo iterativo de otimização de primeira ordem utilizado para encontrar 

mínimos locais de uma função (ARFKEN e WEBER, 2011). Dado uma função 

multivariada f(x) definida e diferençável em torno de uma vizinhança θ, ela decrescerá 

mais rapidamente caso x varie de θi para θi+1 na direção de -∇f(θi), ou seja, na direção do 

negativo do gradiente de f calculado θi. A equação iterativa que rege o comportamento 

do algoritmo está presente na equação 2.3. 

 

 𝜗𝑖+1 = 𝜗𝑖 − 𝑘∇𝑓(𝜗𝑖) = 𝜗𝑖 − 𝑘
∂f(𝜗𝑖)

∂𝜗𝑖

 (2.3) 

 

A constante k é conhecida como o taxa de aprendizado e se for pequena o 

suficiente f(θi+1) será menor que f(θi). Caso essa condição seja falsa, o algoritmo finaliza 

as iterações, convergindo para o mínimo local θi+1. O algoritmo 2 resume de forma 

sucinta o funcionamento do algoritmo. 

 

Algoritmo 2: Método do gradiente 

1. θ <- ponto inicial 

2. k <- taxa de aprendizado 

3. Faça: 

4.   θ1 <- θ 

5.   θ2 <- θ1 – k∇f(θ1) 

6.   θ. <- θ2 

7. Enquanto θ2 ≤ θ2 

8. Fim 

 

É importante ressaltar que, se o valor de k for muito grande, o algoritmo pode 

divergir e se for muito pequeno, a convergência pode ser lenta. A definição de pequeno e 

grande varia de aplicação para aplicação, contudo, uma boa prática para ajustar seu 

valor é calcular o número de iterações realizadas até a convergência do algoritmo para 

diferentes valores de k. Por fim, o algoritmo busca convergir para mínimos locais, 

portanto a escolha aleatória do ponto inicial não garante sua convergência para um ponto 

de mínimo global. 
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3 M ATERIAIS E M ÉTODOS  

 

Neste trabalho é proposto um sistema de contagem automática de placas de Zika 

vírus obtidas em titulações virais por meio do experimento plaque assay utilizando um 

conjunto de técnicas de processamento de imagens e inteligência artificial. Em linhas 

gerais a arquitetura e o design do sistema são uma adaptação do framework proposto por 

Gonzalez e Woods (2010, p.16). Os autores dividem as técnicas em dois grandes grupos, 

aquelas que apresentam em sua entrada e saída imagens e aquelas em que a entrada pode 

ou não ser uma imagem, mas a saída é necessariamente um conjunto de dados, como as 

características extraídas das imagens de entrada, por exemplo. Neste trabalho, estes 

grupos foram nomeados de processamento de imagens e representação, sendo descritos 

em detalhes nas seções 3.2 e 3.3 respectivamente. Já na seção 3.4, um terceiro grupo 

denominado reconhecimento e representação foi adicionado a composição original do 

sistema. Este, por sua vez é responsável pelo tratamento dos dados extraídos na seção 

3.3, portanto suas entradas e saídas são exclusivamente um conjunto de dados. A 

descrição detalhada de cada etapa, presente em suas respectivas seções, é precedida pela 

seção 3.1, na qual é apresentada uma visão geral da arquitetura do sistema. Todo o 

sistema foi desenvolvido na linguagem de programação utilizada pelo software MatLab® 

da empresa MathWorks em sua versão R2017a. Este foi escolhido devido a sua extensa e 

otimizada biblioteca de processamento de imagens. Os códigos fonte utilizados no 

desenvolvimento de todo o trabalho estão disponíveis em um repositório público cujo 

endereço eletrônico está presente no apêndice A. 

 

3.1 Arquitetura do sistema. 

 

Para alcançar a automação proposta, a arquitetura do sistema, presente na figura 

6, foi dividida em três estágios: processamento de imagens (blocos azuis), representação e 

descrição (bloco verde) e reconhecimento e interpretação (blocos vermelhos). A figura 6 

apresenta também o nome e o tipo da informação de entrada e saída de cada um dos 

blocos, sendo estas imagens ou dados, para facilitar o acompanhamento da descrição 

detalhada de cada uma das etapas. 

Nos blocos azuis do estágio de processamento de imagem, a melhor imagem em 

escala de cinza iGRAY(x,y) da imagem colorida i(x,y) de um poço é escolhida, segmentada 

e filtrada, obtendo-se a imagem em preto e branco iBINARY(x,y) do poço. As imagens 

iPLAQUE(x,y) das placas individuais são isoladas da imagem iBINARY(x,y) e, caso 

apresentem algum tipo de sobreposição, são devidamente processadas e separadas. Já na 

etapa de representação e descrição, o bloco verde recebe como entrada as imagens das 

placas isoladas no último bloco do estágio de processamento de imagens. Neste estágio, as 

características geométricas das placas são extraídas e organizadas em uma matriz que, 

 



33 
 

por sua vez, é salva em um arquivo no formato CSV (comma-separeted values) intitulado 

banco de dados. Por fim, o arquivo é utilizado na entrada do estágio de reconhecimento e 

interpretação. No bloco de treino supervisionado, os parâmetros de um classificador 

binário são obtidos por meio de uma técnica de aprendizagem supervisionada utilizando 

tanto o banco de dados quanto conhecimentos providenciados por pesquisadores com 

experiência no experimento plaque assay. Já o bloco de classificação binária recebe tanto 

os parâmetros treinados quanto o banco de dados. Este utiliza um classificador binário 

para decidir se uma placa é uma placa viral ou um ruído, permitindo a contagem final 

das placas. 

 

Figura 6 – Arquitetura proposta do sistema para a automação da contagem de placas de Zika 

vírus do experimento plaque assay. Blocos azuis e verdes representam etapas de processamento de 

imagem enquanto os blocos vermelhos de inteligência artificial. 

 
Fonte: Autoria própria. 

 

3.2 Processamento de imagens 

 

3.2.1 Aquisição das imagens dos poços. 

 

As imagens das amostras utilizadas neste trabalho foram obtidas de um 

experimento de plaque assay presente no relatório da aluna Luiza Zuvanov (ZUVANOV, 

2016). Este, por sua vez, foi escrito durante sua participação na realização do projeto 

intitulado Zika Virus and Cells Interactions, realizado pelo grupo do Dr. Alain Kohl no 

Centre for Virus Research, vinculado a Universidade de Glasgow.  

Para a obtenção das amostras de placas virais em monocamada celular, foram 

utilizadas células A549/BVDV-Npro (DONALD et al, 2016) previamente crescidas em 

meio Dulbecco's modified Eagle's medium (DMEM) acrescido com 10% de soro fetal 

bovino (FCS). A cepa viral brasileira Zika vírus PE243 (DONALD et al, 2016) foi 

utilizada para realização do ensaio em placa. O experimento foi conduzido em placa para 
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cultivo celular contendo 6 poços. Monocamadas de células A549/BVDV-Npro, com 2.5 x 

105 células por poço, foram infectadas com diluições seriadas da cepa Zika vírus PE243. 

As células foram incubadas a 37°C contendo DMEM suplementado com 4% FCS e 1.2% 

Avicel a proporção 1:1 por um período de 5 dias após infecção. Seguidamente, as células 

foram fixadas com adição de 10% de formaldeído e, a posteriori, coradas com 0.1% de 

azul de toluidina (ZUVANOV, 2016). 

A imagem de uma das placas de cultivo celular resultantes pode ser vista na 

figura 7. Da esquerda para a direita, a quantidade de vírus aplicado nos poços vai 

aumentando com um fato de 10, ou seja, a placa mais a direita tem 10 vezes mais vírus 

que a placa imediatamente a sua esquerda. È possível notar então que existe uma relação 

direta entre a quantida de placas presentes na poço e quantidade de virus aplicada.  

 

Figura 7 – Exemplo do resultado do experimento plaque assay realizado em células A549/BVDV-

Npro 5 dias após a infecção. Em cada poço, 2.5 x 10
5
 células foram infectadas com a cepa Zika 

vírus PE243, em diluições seriadas de 10
-7
, 10

-6
 e 10

-5
, da esquerda para a direita. Poços 

organizados na mesma coluna representam a mesma diluição de vírus. 

 
Fonte: ZUVANOV, 2016. 

 

Levando em consideração o fato de que o PFU é normalizado pela quantidade de 

virus aplicada no poço em que as placas foram contadas, conforme exposto na equação 

2.1, é possível afirmar que não há diferença teória entre estimar seu valor contando as 

placas presentes em poços com mais ou menos vírus. Portanto, para reduzir erros e 

aumentar a precisão da estimativa do PFU é recomendado que se escolha os poços em 

que seja mais fácil a contagem das placas formadas (BAER; KEHN-HALL, 2014). Nesse 

sentido, três amostras de poços foram isoladas para serem utilizadas neste trabalho e 

estão presentes na figura 8. 

As imagens das amostras foram capturadas com a câmera de 8 megapixels de um 

celular Nexus 5 e foram recortadas e salvas no formato padrão JPG (Joint Photographic 
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Group) com o tamanho de 850 x 850 pixels, resolução de 72 dpi (dots per inch) e uma 

profundidade de cor (bit depth) de 24 bits, sendo 8 para cada canal RGB. As imagens 

estão disponíveis no endereço eletrônico presente no apêndice A. 

 

Figura 8 –Três amostras do experimento plaque assay realizado em células A549/BVDV-Npro 5 

dias após a infecção. Em cada poço, 2.5 x 10
5
 células foram infectadas com a cepa Zika vírus 

PE243, em diluições de 10
-6
, 10

-6
 e 10

-7
, da esquerda para a direita. Os poços foram utilizados para 

o desenvolvimento do sistema. 

 

Fonte: ZUVANOV, 2016. 

 

3.2.2 Segmentação 

 

Devido a utilização de métodos derivativos de primeira e segunda ordem, os 

métodos de segmentação por descontinuidade são muito sensíveis a ruído. Como os poços 

apresentam regiões em que as células se desprenderam do seu fundo, as suas imagens 

apresentam regiões ruidosas por toda a sua extensão, tornando assim inviável a utilização 

deste tipo de segmentação. Portanto, métodos de segmentação por similaridade podem 

ser mais adequados para este tipo de imagem. 

O método de segmentação por similaridade escolhido foi o método estatístico de 

limiarização global ótima (método de Otsu) devido a sua simplicidade e elevada 

eficiência. Para que o método possa encontrar o valor limiar ótimo, a imagem deve 

apresentar um histograma idealmente bimodal. Neste sentido, o fato das imagens dos 

poços serem coloridas torna-se uma vantagem pois pode-se obter diversas imagens em 

escala de cinza utilizando diferentes sistemas de cor, bastando escolher aquele que 

apresentar o histograma bimodal melhor definido. Neste trabalho, foram explorados seis 

níveis de cinza de cada imagem, três provenientes do sistema de cor RGB e três do 

sistema HSV. A imagem em escala de cinza escolhida e a imagem binária em preto e 

branco resultante do processo de segmentação foram denominadas como iGRAY(x,y) e 

iBINARY(x,y) respectivamente. 

 

3.2.3 Filtragem 

 

Buscando mitigar o problema dos ruídos isolados inerentes do experimento plaque 

assay e prováveis imperfeições geradas durante o processo de segmentação, uma filtragem 
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não linear com um filtro morfológico foi aplicado a imagens dos poços segmentada 

iBINARY(x,y). Esta etapa foi realizada para que o processo de abertura elimine os ruídos 

isolados enquanto o processo de fechamento ajude a corrigir as imperfeições presentes nas 

bordas das placas. Como estas possuem idealmente um formato circular, um elemento 

estruturante morfológico no formato de disco se torna a melhor opção para esta 

aplicação. De forma empírica, seu raio foi definido em seis pixels. 

 

3.2.4 Aquisição das imagens das placas. 

 

A penúltima etapa do processamento de imagens consiste no isolamento 

individual da imagem de cada placa do seu respectivo poço, formando assim as imagens 

iPLAQUE(x,y). Devidamente segmentada e filtrada, a imagem de um poço iBINARY(x,y) 

apresenta placas com bordas contínuas e bem definidas, num formato idealmente circular 

e na cor preta, contrastando, assim, com a camada de células do poço na cor branca. 

Para a identificação das placas, a imagem iBINARY(x,y) foi varrida de ponta a ponta e, 

sempre que um pixel preto fosse atingido, um algoritmo seguidor de fronteira foi 

aplicado. Desse modo, captaram-se os pixels ou as coordenadas da fronteira de cada placa 

dentro em uma matriz M mx2 de m linhas por duas colunas, uma para o seu pixel no eixo 

das abcissas e outro no eixo das ordenadas, respectivamente. É importante salientar que 

o número de linhas m não é único e depende diretamente do tamanho da placa. Em 

seguida, as matrizes contendo as coordenadas das fronteiras foram deslocados para a 

origem por meio da subtração do valor mínimo de cada coluna em suas respectivas 

linhas, conforme algoritmo 3.  

 

Algoritmo 3: Normalização do código de fronteira 

1. xMin <- mínimo das abscissas de Mmx2 

2. yMin <- mínimo das ordenadas de Mmx2 

3. Para todo i variando de 1 até 2 

4.   Para todo j variando de 1 até m 

5.     Se i = 1 então M(j,i) <- M(j,i) – xMin 

6.     Se i = 2 então M(j,i) <- M(j,i) – yMin 

7.   Fim 

8. Fim 

 

Por fim, a imagem de cada placa foi reconstruída de acordo com a lógica presente 

no algoritmo 4. Se o pixel estiver dentro ou na borda do polígono formado pelo código de 

fronteira presente na matriz M mx2, ele recebe o valor de zero, representando a cor preta. 

Caso contrário, recebe o valor de um, formando-se, por fim, a imagem de cada placa  

 

Algoritmo 4: Construção da imagem de uma placa 

1. Para todo i variando de 1 até m 

2.   Para todo j variando de 1 até m 

3.     Se o ponto (i,j) estiver dentro ou na borda do polígono em Mmx2 
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4.       IPLAQUE(i,j) <- 0 

5.     Senão 

6.       IPLAQUE(i,j) <- 1 

7.   Fim 

8. Fim 

 

3.2.5 Separação de placas sobrepostas 

 

Como observado posteriormente na seção 3.2.1, os vírus tendem a se espalhar 

pelas células presentes nos poços segundo um padrão predominantemente circular. Caso o 

centro de formação de uma placa seja próximo de outro, pode acontecer a sobreposição 

de duas ou mais placas. Esse tipo de situação pode comprometer a contagem, pois placas 

sobrepostas podem ser interpretadas como uma única. Isso ocorre porque o algoritmo 

seguidor de fronteira irá incluir as fronteiras de todas as placas sobrepostas em uma 

única matriz M mx2.  

A assinatura de um objeto de interesse presente em uma imagem é um vetor 

contendo a distância euclidiana entre cada um dos pontos da fronteira deste objeto com o 

seu centro de massa. Se um objeto apresentar um formato geométrico perfeitamente 

circular, sua assinatura será constante, pois a distância entre qualquer ponto da fronteira 

e o seu centro de massa será igual ao seu raio. A figura 10 ilustra esta situação.  

 

Figura 9 - Assinatura (curva azul) de um círculo. 

 
Fonte: Autoria própria. 

 

Caso um objeto seja composto pela superposição de dois círculos, nota-se a 

formação de dois vales em sua assinatura. Além disso, quanto mais distantes forem os 

seus centros, mais acentuados serão estes vales. Ambas as situações estão ilustradas nas 

figuras 11 e 12. Observa-se este fato mesmo em situações em que os círculos sobrepostos 

apresentam raios de diferentes tamanhos, como ilustrado na figura 13. 
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Figura 10 - Assinatura (curva azul) de dois círculos sobrepostos com centros distantes. 

 
Fonte: Autoria própria. 

 

Figura 11 - Assinatura (curva azul) de dois círculos sobrepostos com centros próximos. 

 
Fonte: Autoria própria. 

 

Figura 12 - Assinatura (curva azul) de dois círculos sobrepostos de tamanhos diferentes. 

 
Fonte: Autoria própria. 

 

Este comportamento se propaga para situações em que há a superposição de três 

ou mais círculos, desde que cada um se sobreponha a todos os outros. Para exemplificar 

esta situação, considere o exemplo da sobreposição de três círculos. No caso em que os 

três se sobrepõem como na figura 14, observamos a presença de três vales em sua 

assinatura, chama-se esse caso de sobreposição total. Já no caso em que um dois dos 

círculos sobrepõem apenas um, como o exemplo presente na figura 15, ainda observamos 
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a presença de três vales. Contudo, um deles não representa um ponto de cruzamento de 

fronteiras de placas, invalidando assim a generalização proposta. Chama-se esse último 

tipo de sobreposição parcial. 

 

Figura 13 - Assinatura (curva azul) de três círculos sobrepostos de maneira total. 

 
Fonte: Autoria própria. 

 

Figura 14 - Assinatura (curva azul) de três círculos sobrepostos de maneira parcial. 

 
Fonte: Autoria própria. 

 

Portanto, este trabalho propõe um método para a separação de um número 

qualquer de placas sobrepostas para o caso em que há a sobreposição total, presente no 

algoritmo 5. De maneira recursiva, o algoritmo desenha uma linha branca entre os dois 

pixels mais próximos do centro de massa do objeto. 

 

Algoritmo 5: Separação de placas sobrepostas com sobreposição total 

1. s[] <- assinatura de iPLAQUE(x,y) 

2. ∂s’[] <- derivada da média móvel de s[] 

3. min[] <- cruzamento por zero de ∂s’ de ‘baixo para cima’ 

4. Se o tamanho de min[] ≥ 2 

5.   minA <- mínimo valor de min[] 

6.   minB <- mínimo valor de min[] diferente de minA 

7.   Desenhar linha branca em iPLAQUE(x,y) entre os pontos minA e minB 

8.   iPLAQUE(x,y) <- parte separada de IPLAQUE(x,y) de maior área 

9.   Pule para o passo 1 

4. Senão 

10.  Fim 
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Em suma, o algoritmo calcula e insere a assinatura do objeto no vetor s. Calcula-

se então a sua assinatura suavizada s’ por meio de uma média móvel, suavizando os 

ruídos presentes na fronteira das placas reais. Em seguida, toma a primeira derivada de 

s’ para encontrar os pontos de máximo e mínimo locais da sua assinatura, estes 

representam os pixels mais distantes e mais próximos do centro de massa do objeto. Para 

diferenciar os pontos de mínimo dos de máximo, o algoritmo avalia se o cruzamento por 

zero de ∂s’ ocorre ‘de baixo para cima’ ou ‘de cima para baixo’. Caso existam pelo menos 

dois pontos de mínimo, o algoritmo toma os índices dos dois pontos de menor valor 

dentre o conjunto de pontos de mínimo elegíveis e desenha uma linha branca entre eles, 

separando as placas. Por fim, repete-se o algoritmo utilizando o pedaço da placa cortada 

com a área de maior valor. O algoritmo para quando houver menos que dois pontos de 

mínimo  

Para ilustrar o seu funcionamento, aplicou-se a imagem da figura 14, a parte do 

algoritmo proposto que identifica os pontos de mínimo locais do objeto. O resultado pode 

ser visto na figura 16. No gráfico da assinatura representado pela curva azul, foi 

adicionado a curva verde que é a sua derivada da média móvel, a qual foi ampliada e 

deslocada em torno da média da assinatura (curva vermelhar) para facilitar sua 

visualização. Nota-se que, toda vez que a curva verde cruza a curva vermelha de ‘baixo 

para cima’, um ponto vermelho foi marcado na curva azul. Estes pontos são os pontos de 

mínimo da curva da assinatura. Nota-se também que o número de pontos de mínimos é o 

mesmo número de placas sobrepostas. Para facilitar a interpretação do gráfico, os pontos 

foram marcados na própria figura das placas sobrepostas. Observa-se que eles estão 

exatamente nos pontos de intersecção das fronteiras dos círculos sobrepostos, exatamente 

nos pontos aonde a linha branca deve ser desenhada. 

 

Figura 15 - Pontos de mínimo (pontos vermelhos) da assinatura (curva azul) de três círculos 

sobrepostos de maneira completa. A curva e o ponto verde representam a derivada da média 

móvel da assinatura (curva azul) e o centro de massa da imagem, respectivamente. 

 
Fonte: Autoria própria. 
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3.3 Representação e descrição 

 

O estágio de processamento de imagens selecionou e filtrou as imagens dos poços, 

permitindo assim que as imagens individuais das placas pudessem ser isoladas. Contudo, 

existe a possibilidade de a área da região formada pelo desprendimento das células do 

fundo dos poços ser maior que a área do elemento estruturante utilizada pelo filtro 

morfológico no processo de filtragem. Neste caso, a imagem individual deste ruído será 

isolada como se fosse uma placa viral legítima e, consequentemente, a contagem poderá 

ser prejudicada. Para mitigar este problema, o sistema proposto refinará a contagem das 

placas resultante exclusivamente do estágio de processamento de imagens por meio de 

técnicas de inteligência artificial baseadas no formato geométrico das placas no estágio de 

reconhecimento e interpretação. 

Para tanto, o estágio de representação e descrição é a etapa responsável por 

extrair as características geométricas de cada iPLAQUE(x,y), sendo ela uma placa viral ou 

não. Utilizando funções das bibliotecas de processamento de imagens do software 

utilizado no desenvolvimento do projeto, foram extraídas três características geométricas 

das imagens individuas das placas: área, excentricidade e presença ou não do centro de 

massa dentro das bordas da figura. Estes três parâmetros foram escolhidos pelas 

seguintes razões: como as placas tendem a apresentar um formato geométrico de padrão 

circular, espera-se que elas apresentem seus respectivos centros de massa dentro dos 

limites das suas fronteiras e que apresentem uma excentricidade próxima de um. Além 

disso, espera-se também que uma placa viral possua um valor de área maior que o valor 

de um ruído. Por fim, os três parâmetros foram organizados em um vetor x, de três 

dimensões, e estes em uma matriz de características Xmx3, com m linhas (número total de 

placas isoladas) e 3 colunas, uma para cada característica extraída, conforme equação 3.1. 

 

 𝑿 = [

𝑥1

⋮
𝑥𝑚

] = [
𝑥1

1 ⋯ 𝑥1
3

⋮ ⋱ ⋮
𝑥𝑚

1 ⋯ 𝑥𝑚
3

] (3.1) 

 

3.4 Reconhecimento e interpretação 

 

O último estágio da arquitetura consiste no refinamento da contagem realizada 

pelo estágio de processamento de imagens por meio de técnicas de inteligência artificial. 

A ideia geral desta etapa é utilizar um classificador binário que receba como entrada os 

dados geométricos de uma placa e retorne em sua saída a sua classificação como placa 

viral ou ruído. Para que o classificador seja capaz de realizar tal classificação, o mesmo 

deve ter seus parâmetros ajustados através de uma técnica de treino supervisionado. A 

figura 16 apresentam as etapas realizadas neste processo. 
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Figura 16 - Estágio de interpretação e descrição. A classificação das placas por pesquisadores e as 

amostras 1 e 2 serão utilizadas para obter os parâmetros do classificador binário. Este, por sua vez 

contará o número de placas em cada amostra. 

 
Fonte: Autoria própria. 

 

Em suma, as amostras 1 e 2, em conjunto com o conhecimento a priori sobre a 

classificação de suas placas em placa viral ou ruído, são utilizadas no treino 

supervisionado para treinar os parâmetros do classificador binário por meio de um 

algoritmo de otimização chamado método de gradiente  Um vez treinado, o classificador 

binário, que utiliza uma função sigmoide, recebe os dados geométricas de cada uma das 

placas de cada amostra e as classifica como placa viral ou ruído, permitindo assim gerar 

de maneira automática a contagem final das placas virais do experimento plaque assay. É 

importante ressaltar que o a amostra 3 foi propositalmente excluída do treino 

supervisionado justamente para que a qualidade da classificação possa ser avaliada. 

O conhecimento a priori sobre a classificação das placas foi obtido por meio do 

auxílio de quatro pesquisadores do instituto de biologia da universidade de Brasília.  

Com experiência na realização do experimento plaque assay, cada pesquisador forneceu 

não só, a classificação de cada placa da amostra 1 e 2, mas também o número de placas 

virais presentes em cada uma das três amostras. Por fim, a contagem final do sistema 

automático foi comparada com a contagem do estágio de processamento de imagens e 

com o valor médio da contagem fornecida pelos pesquisadores. 
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4 RESULTADOS E DISCUSSÃO 

 

4.1 Processamento de imagens 

 

A primeira etapa do processamento de imagens é o bloco de aquisição de imagens 

dos poços. Para que a melhor imagem em escala de cinza fosse escolhida, os histogramas 

do sistema de cor RBG e HSV de todas as amostras foram obtidos. As figuras 17 e 18 

apresentam os histogramas mencionados para as amostras 1 e 2.  

 

Figura 17 – Amostra 1: histogramas no sistema de cor RGB e HSV. 

 
Fonte: Autoria própria. 

 

Figura 18 – Amostra 2: histogramas no sistema de cor RGB e HSV. 

 
Fonte: Autoria própria. 

 

Uma possível explicação para o pico presente no canal azul do histograma RGB é 

devido ao fato de que o corante utilizado no experimento ser o azul de toluidina. Este 

fato é evidenciado pela concentração em torno do valor de 0.7 do matiz do histograma 

HSV. Observa-se que o valor do brilho no histograma HSV apresenta um comportamento 
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semelhante e esperado pois as placas não apresentam variações relevantes em seus 

respectivos brilhos. Observa-se também, que os histogramas do canal vermelho e verde 

apresentam comportamento semelhantes, ambos colaboram com a formação da cor roxa, 

com picos em torno de 50, e com a cor cinza do fundo, com picos em torno de 100. Por 

fim, observa-se claramente que os histogramas do canal verde do RGB e de saturação do 

HSV apresentam os histogramas mais próximos de histogramas bimodais, tornando-os as 

melhores opções para escolha da imagem em escala de cinza. Por uma questão de 

performance, foi escolhido a imagem em escala de cinza do histograma da saturação do 

HSV para ser utilizada como iGRAY(x,y).  

As figuras 19 e 20 apresentam os resultados dos blocos de aquisição da imagem do 

poço, segmentação e filtragem, nas quais foram obtidas as imagens i(x,y), iGRAY(x,y) e 

iBINARY(x,y) antes e depois da filtragem para cada um dos poços. 

 

Figura 19 – Amostra 1. Da esquerda para a direita temos i(x,y), iGRAY(x,y), iBINARY(x,y) antes e 

depois do filtragem morfológica. 

 
Fonte: Autoria própria. 

 

Figura 20 - Amostra 2. Da esquerda para a direita temos i(x,y), iGRAY(x,y), iBINARY(x,y) antes e 

depois do filtragem morfológica. 

 
Fonte: Autoria própria. 

 

Observa-se que filtro morfológico foi capaz de filtrar grande parte do ruído 

causado pelo desprendimento das células do fundo dos poços. Contudo, nota-se também a 

formação de placas de ruídos devido a área de determinados aglomerados de células 

desprendidas serem maiores que a área do elemento estruturante utilizado pelo filtro. Por 

fim, nota-se também sobreposição de placas duplas e triplas de maneira parcial. 

No bloco de aquisição da imagem das placas, as imagens individuais das placas 

iPLAQUE(x,y) foram isoladas das imagens dos seus respectivos poços. Estas foram então 
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submetidas ao algoritmo separador de placas sobrepostas proposto no algoritmo 5 As 

figuras 22 e 23 apresentam exemplos de placas simples, dupla e triplas para a amostra 1 e 

2, independe destas serem placas virais ou ruídos. É possível observar que o 

comportamento da assinatura para um caso real varia muito mais do que as assinaturas 

apresentadas no capítulo anterior. Este fato justifica a utilização da média móvel para 

suavização da mesma, pois se não fosse utilizada, a curva da derivada poderia oscilar a 

tal ponto que os pontos de mínimo seriam erroneamente obtidos. 

 

Figura 21 – Amostra 1: placas simples, duplas e triplas. A curva azul representa a assinatura da 

placa, a curva verde sua derivada, o ponto verde seu centro de massa e os pontos vermelhos seus 

mínimos locais 

 
Fonte: Autoria própria. 
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Figura 22 – Amostra 2: placas simples, duplas e triplas. A curva azul representa a assinatura da 

placa, a curva verde sua derivada, o ponto verde seu centro de massa e os pontos vermelhos seus 

mínimos locais 

 
Fonte: Autoria própria. 

 

Como esperado, as placas simples apresentam m comportamento mais uniforme 

enquanto as placas duplas apresentam dois vales bem definidos. Além disso, todas as 

placas triplas apresentaram sobreposição parcial, portanto um dos pontos de mínimo 

identificados não será um ponto de interseção de fronteiras e, consequentemente, o 

algoritmo de separação não conseguirá separa estas placas em outras três placas 

distintas. Para ilustrar o resultado final desta etapa, o algoritmo de separação foi 

aplicado também nas imagens binárias dos poços iBINARY(x,y) da amostra 1 e da amostra 

2, enfatizando assim a sua boa performance na separação das placas duplas e a falha 
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parcial na separação das placas triplas com sobreposição parcial, conforme figura 24. A 

tabela 2 apresenta a contagem final das placas resultante desta etapa. 

 

Figura 23 – Amostra 1 e 2: separação parcial de placas sobrepostas. 

 
Fonte: Autoria própria. 

 

Tabela 2 - Contagem final de placas na etapa de processamento de imagens. 

Amostra Total de placas  

1 31 

2 37 

3 59 

 

4.2 Representação e descrição 

 

Nesta etapa, foram extraídas as seguintes características geométricas de cada uma 

das iPLAQUE(x,y): área, excentricidade e presença ou não do centro de massa dentro da 

placa, formando assim os vetores de características x de cada placa. Os resultados foram 

compilados e armazenados em duas matrizes de características, uma contendo os vetores 

de características da amostra 3 e a outra não. Essa segunda foi utilizada no bloco de 

treinamento supervisionado, enquanto a primeira foi aplicada no classificado binário. 

 

4.3 Reconhecimento e interpretação 

 

A tabela 3 apresenta a contagem das placas de cada amostra realizada pelos 

pesquisadores colaboradores. Nota-se que há um desvio padrão médio de 

aproximadamente 3 placas. 
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Tabela 3 - Contagem das placas de Zika vírus das três amostras por pesquisadores com 

experiência no experimento plaque assay.  

Amostra 1 2 3 4 Média Desvio Padrão 

1 16 19 19 22 19 2.5 

2 26 22 26 23 24 2.1 

3 36 30 28 33 32 3.5 

 

Já a tabela 4 apresenta uma comparação entre o valor médio da contagem feira 

pelos pesquisadores e a contagem realizada exclusivamente pelo estágio de processamento 

de imagens. Com um erro médio relativo de 67,23%, é evidente afirmar que só a etapa de 

processamento de imagens não é o suficiente, portanto, sua contagem deve ser refinada. 

 

Tabela 4 - Comparação entre a contagem do estágio de processamento de imagens e da contagem 

realizadas por pesquisadores com experiência no experimento plaque assay. 

Amostra 
Contagem por 

pesquisadores 

Contagem por processamento 

de imagem 
Error Relativo 

1 19 31 63,15% 

2 24 37 54,16% 

3 32 59 84,38% 

 

Para realizar tal refinamento, aplicou-se o último estágio do sistema proposto, o 

de reconhecimento e interpretação. A figura 25 apresenta os dados geométricos das placas 

das amostras 1 e 2 separados em dois grupos pelos pesquisadores: o grupo de placas virais 

(pontos verdes) e o grupo de ruídos (pontos azuis). Nota-se que as placas classificadas 

como ruído apresentam, em geral, um menor valor de área que as placas classificadas 

como placas virais. A figura 27 apresenta a fronteira de decisão obtida através do método 

do gradiente. Todas as placas abaixo da linha pontilhada foram classificadas como ruídos 

e todas acima, como placas virais. O treino atingiu uma taxa de acerto de 

aproximadamente 82,13%.  

Por fim, os parâmetros refinados foram inseridos no classificador binário e este 

gerou a contagem presente na tabela 5. A contagem apresentou um erro médio de apenas 

5,22% em relação a contagem realizada pelos pesquisadores, melhorando em 92,23% a 

contagem realizada pela etapa do processamento de imagens, conforme tabela 6. 
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Figura 24 - Área e excentricidade das placas das amostras 1 e 2 classificadas como placas virais 

(pontos verdes) ou ruído (pontos azuis) de acordo com pesquisadores com experiência no 

experimento plaque assay. 

  
Fonte: Autoria própria. 

 

Figura 25 – Fronteira de decisão obtida por meio do método do gradiente. Placas com um 

conjunto de características geométricas acima da fronteira serão classificadas como placas virais. 

Taxa de acerto de 82,12%. 

 
Fonte: Autoria própria. 
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Tabela 5 - Comparação entre a contagem do estágio de reconhecimento e interpretação e da 

contagem realizadas por pesquisadores com experiência no experimento plaque assay. 

Amostra 
Contagem por 

pesquisadores 

Contagem por inteligência 

artificial 

Error 

Relativo 

1 19 18 5,26% 

2 24 23 4,17% 

3 32 34 6,25% 

 

Tabela 6 - Comparação entre o erro médio da contagem do estágio de processamento de imagens e 

do erro médio da contagem do estágio de reconhecimento e interpretação. 

Erro médio da contagem por 

processamento de imagem 

Erro médio da contagem por 

inteligência artificial 

Diferença entre os 

erros médios 

67,23 5,22 92,23% 
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5 CONCLUSÃO 

 

O objetivo do trabalho foi o desenvolvimento de um sistema de contagem 

automática de placas de Zika vírus, provenientes do experimento plaque assay, que 

utiliza técnicas de processamento de imagens e inteligência artificial para diminuir erros 

na coleta dos resultados, aumentando assim a eficiência da titulação viral. O problema se 

resumiu na dificuldade da contagem final das placas pelo olho humano devido a 

sobreposição aleatória das placas e o ruído causado pelo desprendimento das células do 

fundo da placa, podendo apresentar diferenças de até 44% na contagem de um mesmo 

experimento por diferentes pesquisadores. Buscando mitigar os erros na contagem e 

aumentar a eficiência da titulação viral, foi proposto um sistema para a automação da 

contagem das placas de Zika vírus resultantes do experimento plaque assay utilizando 

visão computacional. 

A arquitetura do sistema foi composta por três estágios distintos: processamento 

de imagens; representação e descrição; reconhecimento e interpretação. Na primeira 

etapa, as imagens de 3 poços foram selecionas, segmentada e filtradas. Posteriormente a 

imagem individual de cada placa for isolada da imagem dos seus respectivos poços e 

eventualmente separadas no caso de sobreposição de placas. O algoritmo de separação de 

placas conseguiu separar todas as placas duplas mas falhou parcialmente na separação 

das placas triplas pois estas apresentaram sobreposição parcial de placas. O filtro 

morfológico utilizado na etapa de filtragem conseguiu remover uma grande quantidade de 

ruído das placas, contudo o número de placas contadas apresentou um erro médio 

relativo de 67,23% em relação a contagem realizada por quatro especialistas na área, ou 

seja, o número total de placas isoladas foi composto tanto por placas virais quanto por 

ruídos. No segundo estágio, as seguintes características geométricas das placas foram 

coletadas: área, excentricidade e presença ou não do centro de massa dentro da fronteira 

da placa. Por fim, o último estágio utilizou técnicas de treino supervisionado para treinar 

os parâmetros de um classificador binário de placas. Este classificador apresentou uma 

contagem de placas com um erro médio relativo de apenas 5,22%, apresentando uma 

melhora de 92,23% em relação a contagem anterior. 

Concluiu-se que o sistema proposto contou automaticamente as placas de Zika 

vírus das 3 amostras do experimento plaque assay com qualidade semelhante àquelas 

feitas por pesquisadores experientes, apresentando um erro de aproximadamente 5%. 

O sistema apresentado neste trabalho extrapolou as fronteiras do ambiente 

acadêmico. Desenvolvida em conjunto com Luíza Zuvanov, colaboradora deste projeto, a 

ideia foi aprovada em um programa de empreendedorismo e pré-aceleração de startups 

chamado Academic Working Capital (AWC, 2017). O programa, fruto da parceria do 

instituto de inovação da TIM e do Núcleo de Empreendedorismo da USP de São Paulo, 

busca transformar os trabalhos de conclusão de curso em produtos prontos para serem 
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lançados no mercado. Neste sentido, o autor deste trabalho, em parceria com sua 

colaboradora, vem trabalhando desde abril de 2017 para alcançar o objetivo proposto 

pelo programa. Em agosto do mesmo ano, a equipe foi contatada por uma empresa de 

venture capital para apresentar o projeto. Em setembro de 2017 a ideia foi vencedora de 

um hackathon promovido pelo IME-USP com o seguinte tema: utilizando a tecnologia 

para melhorar a produção científica (EESC, 2017). Já em dezembro de 2017 o projeto, 

sob o nome de beThink, será apresentado em uma feira de investimentos para potenciais 

investidores (AWC, 2017). 
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APÊNDICE A – CÓDIGO FONTE E IM AGENS 

 

 Os códigos fonte dos algoritmos desenvolvidos neste trabalho estão presente em 

um repositório público para livre acesso no seguinte endereço eletrônico: 

https://github.com/andreMarcosPerez/SEL0444_finalYearProject. 

 

 



 
 

 


