
SIMONIA HELENA DE ANDRADE

PROPOSTA DE PROCESSO DE MANUTENÇÃO

Monografia apresentada à Escola
Politécnica da Universidade de São

Paulo para obtenção do Título de
MBA em Engenharia de Software.

Área de Concentração:

Engenharia de Software

Orientadora:

Proía. Dra. Jussara Pimenta Matos.

São Paulo

2005

A Deus e a minha família pelo apoio e

incentivo.

OK

AGRADECIMENTOS

À Professora Jussara Pimenta Matos, orientadora deste trabalho, pela paciência e

dedicação.

Às colegas Fernanda Moreira Sena Gomes e Maria Rosemere Degan Melchert, que me

auxiliaram com críticas e sugestões no decorrer deste trabalho.

Aos meus amigos e familiares.

A todos que colaboraram direta ou indiretamente, para a execução deste trabalho.

RESUMO

Este trabalho apresenta uma proposta para um processo de manutenção de sistema de

software, onde são descritos as atividades, os responsáveis e os artefatos gerados em

cada uma de suas fases. O desenvolvimento de software vem nos últimos anos passando

por processo de melhoria de qualidade, com isto as empresas estão alcançando o

almejado controle de custo e prazo. Porém, o mesmo não ocorre na manutenção de um

sistema de software, pois suas atividades não são claras e com isto não é possível a

implementação de um processo de qualidade. Portanto, esta proposta tem como objetivo

a obtenção de um melhor controle do gerenciamento dessas atividades e o
estabelecimento de melhoria da qualidade.

ABSTRACT

This work presents a proposal of a maintenance process, where they are descr}bed: the

activities, responsible and the devices generated in each phase. The software development

comes in the last years passing for process of quality improvement, with this the companies are

reaching the longed for control of cost and stated period. The same it does not occur how much

to the process of maintenance of a software system, therefore its activities are not clear and with

this the implementation of a quality process is not possible. Therefore, this work has the

objective of the attainment of one better control of the management of these aCtivities and
establishment of improvement of the quality.

SUMÁRIO

Listas de Tabelas

Listas de Figuras

Lista de abreviaturas e siglas_._._......._......_....................................._....._... iii

1 Introdução ...,........................... 1

1.1 Objetivo do Trabalho__.............._......._..._................_........ 1

1.2 Motivação do Trabalho .. 1

1.3 Estrutura do Trabalho

2. Manutenção e processo de software,.................................... 4

2.1 Considerações Iniciais. _...._...._......._......................._......_...._.._...._._...... 4

2.2 Norma ISO 12207:1998 – Processos de ciclo de vida de soflware .._._....... 4

2.2.1 Processos Fundamentais_...._............................._...._._.................... 6

2.2.2 Processos de Apoio,..............._..............__............_....._.............._ 6

2.2.3 Processos Organizacionais_......._._.......,__...._...._..............._.........._.... 8

2.2.4 Processo de Manutenção .._.. 8

2.3 Processos de Software_._._........................_........................._............ 10

2.4 Conceitos de Manutenção .__..______....._..._...__.__........._..._................... 17

2.5 Considerações Finais_.._..._............_........._...... 20

11

2

3

3.1

3.2

3.3

3.4

3.5

3.5.1

3.5.2

3.5.3

3.6

3.7.

3.8

4

4. 1

4.2

4.3

5

5.1

5.2

Mensuração_.._...................................... 21

Considerações Iniciais._.....__....._._._........,........._._.._........._..........._ 21

Conceitos de Métricas e a importância da mensuração_............._...... 21

Classificação das Medidas e Métricas de Software _.............._.......,............ 23

Implementação da Atividade de Medição... 25

Métrica de Funcionalidade – Pontos de Função ._...__................................ 26

Identificação dos parâmetros ... 27

Contagem de Ponto de Função._.._.__............................._._.__......... 28

Diferença entre os tipos de contagem.. 34

Métricas de Tamanho – Linhas de Códigos.. 36

Modelo de Custo,.,.........._......__......_....._..._._._....._..._...._.........._.. 37

Considerações Finqis..,.......................... 39

Modelo de processo de Manutenção_........................._..................... 40

Considerações Iniciais_....._..._._........_..................._......._....... 40

Proposta de Modelo de Processo de Manutenção_........................ 40

Considerações Finais... 56

Implementação do Processo de Manutenção ._............_.........,.................. 57

Considerações Iniciais,....._.__._.........._................_....................._...... 57

Visão Geral do Processo Atual_..............__............................ 57

5.2.1

5.2.2

5.3

5.4

6

6.1

6.2

Estrutura do Ambiente ...57

Estrutura do Organizacional ._._......._._._........._........,...__.._._...._..._..... 63

Implementação do Processo..66

Considerações Finais.,...68

Conclusão_....__..._....._....................._.._._..........__.._...._...__..70

Pontos Positivos ._..............._._..._...._............_.._.._................_.............. 70

Pontos que necessitam de melhoria_................_............._. 71

Referências Bibliográficas .._..._......._._......._...._..............__...........__... 72

LISTA DE TABELAS

Tabela 3.1 – Tipo de Função / Complexidade

Tabela 4.1 – Matriz de Responsabilidade Fase 1

Tabela 4.2 – Matriz de Responsabilidade Fase 2

Tabela 4.3 – Matriz de Responsabilidade Fase 3

Tabela 4.4 – Matriz de Responsabilidade Fase 4

Tabela 4.5 – Matriz de Responsabilidade Fase 5

Tabela 4.6 – Matriz de Responsabilidade Fase 6

Tabela 5.1 – Documento por Fase

31

43

46

48

50

53

55

61

LISTA DE FIGURAS

Figura 2.1 –Estrutura da Norma NBR ISO/IEC-12207-1998__..._..._......._. 05

Figura 2.2 – Modelo Cascata,.........._................................_............. 11

Figura 2.3 – Modelo Espiral .._..__...................._................_.........._..._............. 13

Figura 2.4 - Estrutura Estática RUP,_..._._._._...._.._,_..._.._.__._....._...._.. 15

Figura 2.5 – O EUP ciclo de vida

Figura 2.6 – Distribuição de Esforço_.._................_.................. 18

Figura 3.1 – Fases da Contagem de Pontos de Função Não Ajustado_......._ 30

Figura 4.1 – Processo de Manutenção – Fase x Tempo_.............. 55

Figura 5.1 – Fluxo da Migração de Versões_............................. 58

Figura 5.2 – Estrutura Hierárquica .._.._...._...._....._._..._.._...._._..._._............. 64

Figura 5.3 – Fluxo para softwares novos,... 65

Figura 5.4 – Fluxo para manutenção de softwares _.........._............_................. 66

LISTA DE ABREVIATURAS E SIGLAS

ALI – Arquivo lógico interno.

AIE – Arquivo e interface externa.

CE - Consulta externa.

EE – Entrada externa

EUP – Entreprise Unified Process.

IEEE – Institute of Electrical and Electronics Engineers.

IFPUG - International Function Point Group

ISO – International Organization for Standardization.

LOC – Lines of Code.

SE – Saída externa.

RUP – Rational Unified Process

1. INTRODUÇÃO

1.1 Objetivo do Trabalho

O objetivo deste trabalho é propor um Processo de Manutenção, tendo como base os

processos de desenvolvimento de software e as atividades apresentadas na norma NBR-

ISO/IEC-12207 (1998). Esta proposta visa proporcionar melhorias no gerenciamento

das atividades referente à manutenção, desta forma, é possível estabelecer um melhor

controle sobre a execução dessas atividades. Além disso, também é apresentada a

definição dos artefatos que devem ser gerados e atualizados, com isto obterem subsídios

para a melhoria do produto a ser entregue em prazo mais adequado.

1.2 Motivação do Trabalho

A necessidade de desenvolver software com qualidade e em prazos e custos menores,

levou alguns estudiosos e profissionais a elaborar modelos de processos para

desenvolvimento de software. Estes modelos auxiliam na padronização das atividades

de construção e no controle da execução de um sistema de software, auxiliando no

gerenciamento de custo e prazo do projeto.

Após sua construção e validação, o sistema de software é instalado no ambiente

operacional e, a partir de então qualquer necessidade de alteração seja para correção ou

para implementação de novas funcionalidades, é tratada como manutenção. As

2

atividades que devem ser executadas para o atendimento da alteração, não são as

mesmas do seu desenvolvimento, pois não se está construindo um novo produto e sim

alterando um produto que já se encontra em operação. Estas atividades compõem o

Processo de Manutenção. Porém, existem poucos estudos sob as atividades necessárias

em um processo de manutenção, as normalmente identificadas são adaptações do

processo de desenvolvimento.

A falta de controle pela gerência e a ausência de um padrão definido para as atividades a

serem executadas, geram inúmeros desgastes entre a equipe técnica, como

conseqüência, os prazos e os custos se tornam elevados, assim como, os produtos

gerados, normalmente, são de baixa qualidade. Porém, como os propósitos dos

processos são diferentes, conseqüentemente, suas atividades e os artefatos gerados não

possuem as mesmas finalidades, com isto o processo adaptado não atende as

necessidades esperadas, como uma dessas necessidades, pode-se citar o controle do

custo. De acordo com Glass (2004), o gasto com a manutenção de software,

corresponde entre 40% a 80% do custo de sua construção.

Esses dados foram alguns dos fatores que motivaram a apresentação de uma proposta de

um Processo de Manutenção, por meio da definição de uma padronização das

atividades, visando permitir um controle gerencial, de forma a alcançar melhorias tanto

nos prazos e quanto nos custos.

1.3 Estrutura do Trabalho

A monografia está estruturada em 6 capítulos conforme apresentação a seguir.

3

O Capítulo 1 apresenta o tema a ser tratado, o objetivo do trabalho, a motivação para

escolha do tema e a estrutura dos capítulos da monografia.

O Capitulo 2 apresenta as atividades referentes à manutenção, utilizando como base a

norma NBR-ISO/IEc-12207 (1998); que estabelece um conjunto de atividades tanto

para o desenvolvimento quanto para a manutenção de software, entre outras. Além

disso, também são apresentados os modelos de desenvolvimento que influenciaram no

embasamento da proposta e os conceitos de manutenção.

o Capitulo 3 apresenta a importância da atividade de medição de software tanto no

processo de desenvolvimento como na manutenção, descrevendo das métricas passíveis

de serem utilizadas na medição das alterações.

O Capitulo 4 apresenta a Proposta de Processo de Manutenção, as atividades relativas a

cada uma das fases definidas, os artefatos que devem ser gerados ou atualizados e os

papéis das pessoas envolvidas.

O Capitulo 5 apresenta a estrutura atual da empresa selecionada para o estudo, quais são

as adequações necessárias para a implementação do processo proposto e os resultados

obtidos em uma equipe piloto.

O Capitulo 6 apresenta a conclusão, descrevendo os resultados esperados com a

implementação, os pontos positivos da proposta e os que merecem melhorias para

futuros estudos.

2. MANUTENÇÃO E PROCESSO DE SOFTWARE

2.1 Considerações Iniciais.

O objetivo deste capitulo é apresentar os tipos de manutenção de um sistema de

software. Primeiramente é apresentada a Norma NBR-ISO/IEC-12207 (1998) tendo

como foco o Processo Fundamental de Manutenção. Em seguida, são apresentados os

processos de desenvolvimento adaptados para a manutenção e finalmente, são

detalhados os tipos de manutenção e os principais motivos identificados que 9 levam o

custo de sua execução.

2.2–Norma NBR-ISO/IEC 12207:1998 – Processos de ciclo de vida de software

Para estabelecer uma padronização em relação à definição das atividades e das tarefas a

serem aplicadas durante aquisição, desenvolvimento ou prestação de serviço de

software a International Organization for Standardization (ISO) definiu a Norma NBR-

ISO/IEC-12207 (1998) – Processos de ciclo de vida de software.

A norma destaca três conjuntos de processos como principais que, consistem dos

Processos Fundamentais, Processos de Apoio e Processos Organizacionais, como

mostra a figura 2.1, sendo que cada um é composto por seus processos específicos.

O Processo de Manutenção é considerado como um dos Processos Fundamentais.

5

5. Processos fundamentais de ciclo de vida 6. Processos de apoio de ciclo de vida

5.1 Aquisição 6.1 Documentação

5.2 Fornecimento 6.2 Gerência de configuração

6.3 Garantia de qualidade

6.4 Verificação

6.5 Validação

6.6 Revisão conjunta

6.7 Auditoria

5.4 Operação

Desenvolvimento
5.3

5.5 Manutenção

6.8 Resolução de problema

7. Processos organizacionais de ciclo de vida

7.1 Gerência

7.3 Melhoria

7.2 Infra-estrutura

7.4 Treinamento

Figura 2.1 - Estrutura da Norma NBR ISO/ IEC 12207 (1998)

2.2,1 Processos Fundamentais

Os Processos Fundamentais são compostos de cinco processos que abrange a aquisição,

o fornecimento, o desenvolvimento, a operação e a manutenção. A seguir são

apresentados, sucintamente, cada um desses processos:

• Processo de aquisição: define as atividades do cliente (comprador) de um

produto de software ou serviço.

• Processo de fornecimento: define as atividades do fornecedor, quem provê o

sistema, produto ou serviço do software.

• Processo de desenvolvimento: define as atividades que devem ser seguidas

pelos desenvolvedores de soítware. Estas atividades são baseadas nos diversos

modelos de processo de desenvolvimento, onde foram estabelecidas às

principais atividades desta fase.

• Processo de operação: define as atividades que a empresa, responsável pela

operacionalização do software, deverá executar e controlar.

• Processo de manutenção: define as atividades que devem ser executadas pelas

empresas responsáveis em manter o software, sendo que o principal é manter a

documentação atualizada.

2.2.2 Processos de Apoio

7

Os Processos de Apoio ao Ciclo de Vida são compostos de oito processos, que auxiliam

na execução dos processos fundamentais, para garantir a qualidade e o controle do

projeto de software. A seguir são apresentados, sucintamente, cada um desses

processos:

• Processo de documentação: define as atividades para o registro da informação

produzida nos processos fundamentais.

• Processo de Gerência de Configuração: define as atividades da gerência de

configuração, para garantir a estabilidade do produto.

• Processo de Garantia de Qualidade: define as atividades que garantem que o

produto e processo de software estejam em conformidade com os planos e

requisitos especificados.

• Processo de Verificação: define as atividades para avaliação do produto, quanto

ao atendimento de seus requisitos básicos.

• Processo de Validação: define as atividades para a validação do produto junto

ao cliente.

• Processo de Revisão: define as atividades para avaliação da situação e dos

produtos gerados nas atividades dos processos fundamentais.

• Processo de Auditoria: define as atividades para determinar a conformidade

com os requisitos, planos e contratos.

• Processo de Resolução de Problemas: define as atividades para a análise e

remoção dos problemas de qualquer natureza ou origem, descoberto durante as

atividades dos processos de desenvolvimento, operação e manutenção.

2.2.3 Processos Organizacionais

Os Processos Organizacionais do ciclo de vida são compostos de quatro processos que

são empregados para estabelecer e implementar uma estrutura subjacente, constituída

dos processos de ciclo de vida e do pessoal associado. A seguir são apresentados

sucintamente, cada um desses processos:

• Processo de gerência: define as atividades básicas da gerência.

• Processo de infra-estrutura: define as atividades básicas para estabelecimento

das estruturas de apoio.

• Processo de melhoria: define as atividades básicas para executar o conaole e

melhoria dos processos de ciclo de vida.

• Processo de treinamento: define as atividades para prover o pessoal

adequadamente treinado.

Os processos organizacionais e de apoio auxiliam no controle e na melhoria dos

processos fundamentais de ciclo de vida.

2.2.4 Processo de Manutenção

9

Um processo de manutenção é um dos processos fundamentais do ciclo de vida, suas

atividades determinam a padronização da execução das tarefas que são efetuadas no

decorrer de uma alteração no software. A seguir são descritas as atividades a serem

exercidas no processo de manutenção:

• Implementação do Processo: esta atividade visa documentar e registrar as

ocorrências de alterações e ou implementações que o produto venha a sofrer.

Para isto é necessário estabelecer alguns procedimentos de documentação ou a

utilização de ferramentas que auxiliem nesta tarefa.

• Análise do Problema e da Modificação: esta atividade visa avaliar os impactos

que a correção ou implementação venha ocasionar no produto. Para esta

avaliação é sugerido que seja aplicada métrica de mensuração, para dimensionar

o tamanho da mudança solicitada.

• Implementação da Modificação: esta atividade visa a implementação fisica das

mudanças solicitadas. Deve ser efetuadas análise e correção e/ou implementação

no produto e em seus artefatos. A validação das alterações realizada no produto

deve ser executada detalhadamente, para garantir a integridade do produto que

entrará em operação.

• Revisão e Aceitação da Manutenção: esta atividade visa a obtenção da revisão

pelo cliente das alterações efetuadas e assim obter a autorização para a

implementação do novo produto em operação

• Migração: esta atividade visa executar a migração do produto alterado para o

ambiente operacional. É fundamental nesta atividade a garantia da configuração

do produto antigo com o novo, para não perder a integridade.

10

• Descontinuidade do Software: esta atividade visa a desativar o software,

operacionalmente a pedido do proprietário, necessitando de toda a

documentação associada a esta atividade.

A norma ISO/IEC-12207 (1998) estabelece o conjunto de atividades para cada um dos

processos apresentados, cabendo ao desenvolvedor sua adaptação.

23 Processos de Software

A norma ISO/IEC-12207 (1998) define que processo é um conjunto de atividades inter-

relacionadas, que transforma entradas em saídas. Pressman (2003) define como “um

roteiro que ajuda a criar a tempo um resultado de alta qualidade”.

Portanto, o estabelecimento de um processo padrão é importante, pois fornece

estabilidade e controle para o desenrolar de uma atividade, que sem este controle pode-

se tornar caótica (SOMERVILLE, 2004).

Na engenharia de software existem diversos modelos de processo de desenvolvimento,

alguns são mais conhecidos e utilizados pelos profissionais da área, pois apresenta um

roteiro fácil e mais adaptável nas organizações. A seguir são apresentados três destes

modelos:

a) Modelo Cascata: este é um dos primeiros processos descrito pela Engenharia de

Software. Proposto por Royce em 1970 (PFLEEGER;FRANKLIN, 2004), ele é

definido como uma seqüência de atividades conforme mostra a figura 2.2, que devem

ser executadas uma após a outra, sendo que a próxima atividade não pode iniciar sem

11

que a anterior tenha sido concluída. Este tipo de comportamento ressalta a qualidade de

um modelo rígido e linear, no sentido que somente se inicia uma fase ao termino da

anterior, sem a possibilidade de procedimento de ajustes nas atividades efetuadas nas

fases anteriores.

Engenharia
de Sistemas

Análise

Projeto

Implementação

Teste

Manutenção

Figura 2.2 - Modelo Cascata (PRESSMAN, 2003).

Este modelo é muito utilizado até hoje, por possuir atividades bem claras e específicas

que normalmente são seguidas nos roteiros de desenvolvimento, mas devida a sua

estrutura, recebe muitas críticas, que fizeram seus mais ativos defensores questionarem

sua aplicabilidade (PRESMMAN, 2003). Alguns dos pontos apontados são:

• projetos reais não sewem o fluxo seqüencial que o modelo propõe, iterações

sempre ocorrem e isto traz problemas na aplicação do modelo.

12

• raramente o cliente declara todas as informações explicitamente no início do

projeto, neste modelo as adequações em fases mais adiantas geram um custo e

um retrabalho muito grande.

Mesmo assim, suas fases são utilizadas como base para outros modelos que surgiram

posteriormente. Conforme apresentado na figura 2.2, a manutenção é tratada neste

modelo como a última fase do ciclo de vida do software.

b) Modelo Espiral: este modelo recomenda que todas as fases descritas no modelo

cascata sejam executadas diversas vezes ao longo do projeto, produzindo ciclo que se

repetem ao longo de todo o desenvolvimento. Cada ciclo, que compreende desde a

identificação de requisitos até implementação, recebe o nome de iteração9 conforme

representado na figura 2.3. No desenvolvimento iterativo, o software cresce a cada

iteração, isto é, o resultado de cada iteração é um software pronto, testado e aprovado9

sendo que a primeira contém poucas funcionalidades, enquanto a última contém todas

as funcionalidades do sistema (TELES, 2004).

Neste modelo não existe a referência a fase de manutenção, mas seu conceito de

iteração e a aplicação da análise de risco são os fatores mais importantes que este

modelo contribui.

13

CUSTO 1ÁCUMULADO

L
AVANCa

Determina objetivos
alternatIvas e restrições

Avalia alternativas.
identifica e resolve

Revisão
.Plano de Requisito

Plano de Ciclo
de Vida

Plano de
Desenvolvimento

Plano di

Üíteqraçâo e Testes
Próximas etapas

do plano Desenvolve e verifica
Produto do Próximo

Nivel

Figura 23 - Modelo Espiral (JALOTE, 1997).

c) Processo Unificado: este processo é apresentado em Jacobson, Booch e Rumbaugh

(1999), tem como objetivo a melhora do gerenciamento através de um processo que

possa ser configurável para diversos tipos de projeto. O processo está baseado em de

três conceitos básicos que são apresentados a seguir:

• Baseado em casos de uso: os casos de uso representam as interações entre o

sistema e seus usuários. Os usuários podem ser pessoas ou outros sistemas. Cada

caso de uso representa uma parte da funcionalidade do sistema, e o conjunto de

14

todos os casos de uso deve descrever por completo toda a funcionalidade do

sistema.

e Centrado em arquitetura: o conceito de arquitetura de software engloba os

aspectos dinâmicos e estáticos mais significativos do sistema, esses aspectos são

representados através do conjunto de modelos gerados durante o

desenvolvimento.

• Iterativo e incremental: todo projeto pode ser dividido em partes menores, que

somados representam o projeto inteiro. Cada parte menor do projeto é chamada

de iteração, e seu resultado, um incremento. Portanto, um processo iterativo e

incremental é composto de fases, cujos produtos convergem em direção ao

produto final do processo.

No Processo Unificado, o desenvolvimento é dividido em quatro fases, como mostra a

figura 2.4, dentro das quais podem ocorrer uma ou mais iterações:

• Iniciação: tem como objetivo iniciar o projeto, construindo o modelo de

negócio, que inclui a viabilidade técnica e econômica, e justifica a continuidade

do projeto. Deve definir a visão e o escopo do sistema, estabelecer arquiteturas

candidatas, identificar os principais riscos e estimar de maneira aproximada os

custos e recursos necessários para o projeto.

• Elaboração: tem como objetivo capturar os requisitos, formular os mesmos em

casos de uso, estabelecer os fundamentos da arquitetura do sistema, monitorar

alterações nos riscos identificados e identificar novos riscos, e detalhar o plano

de projeto.

15

• Construção: tem como objetivo desenvolver, em iterações e incrementos, um

sistema pronto para a operação inicial em seu ambiente final, o ambiente do

usuário. Os componentes da arquitetura são implementados, integrados e

testados.

• Transição: tem como objetivo estabelecer o produto em seu ambiente

operacional final. Se o produto vai ser disponibilizado ao mercado, ou se será

instalado apenas em um único cliente, por exemplo, é nesta fase que isto

acontece.

Fases

InicIação nHa@ ConstrIIÇão

dllHllllB

.::-M!

BB

Disciplinas

Modelagem de Ne9óeios

Rega Ê5it05

Análise e Design

lmplernentôção
Teste

implantação

Ge@n. de
Configuração e Mudança

Ger€nçiament$ de Projeto
AmtFlento

Figura 2.4 - Estrutura Estática do RUP (JACOBSON; BOOCH;RUMBAU(,H, 1999)

Este processo é direcionado para desenvolvimento orientado a objeto.

16

O Processo Unificado contempla apenas as atividades referentes ao desenvolvimento,

em Ambler, Nalbone e Vizdos (2005), são apresentadas complementações em relação as

fases e as disciplinas desse processo, onde duas novas fases e oito novas disciplinas são

acrescentadas, buscando a visão total do ciclo de vida do software e atender as

perspectivas da Tecnologia da Informação. Este processo recebeu o nome de Enterprise

Unified Process (EUP) 1, conforme é apresentado na figura 2.5.

Pha ses
-l:kvê+üpl»eüt Diseis34ines

BusinQ SE FLq!:.1;el r>g

RQqtn relnf! ' 11$

A'tÂivsi', ,\ nRn nn

1 11}-11elr1 ?111ta? nrt
Fest

Í:'nrllc\'WIen!
Support Disciplinas

;rPfçQi)ratio 1-1 {+ Çt’anüp ?,+=mt

Pt 1:Dect NqünEBefr}8111
F l=vlrç,ir merlt

tlF'Cf :-11 Dll 3 .!, 5llpPIJf:

Enterprise Disc+9111188
F ’ltj?ri}r 58 F.Li 51 re+5

+dlutJelII tq

1-\:,1 11l>llc:1 h#ítl:;J{;Õ't\111 11

FrtiõrF rIU-! -\'rhil«,-l1. rH

f; ir,=ITe=t;if: Ru:.13jy

F ’c:4JiU P/ul 131}IX Ileílt

EIItgr }vIso Ac rr1 11 lis 1111Ltc:11

St)It\\’dre :’ :y.:pb $

1 ' 1-:3,1>t.'t,IIly Iii

€fabcration T[FiZ::IFIiii;;;il

5üFf»M-mT.:?

X!ET-??;h,rum} : -„-.-----' : -'**-,.-
1-===:::::-:.'{:-:-.--:&-=:b-..' i -n'w-'- ! _++na.

:_Hmnp»p.
: aai A

lllTlí1
tt©ratiôris

/5

J+ b Ee a1b =lb
: mans=3N\;»çn+ :

+ A À
N F nn ! if11 ::: + 11! :i:= =5

Figura 2.5 EUP ciclo de vida (AMBLER;NALBONE;ViZDOS, 2005)

A fase de Produção ÇProduction) atende as manutenções que o software sofrerá após

sua instalação em ambiente operacional. A fase de Descontinuidade ÇRetirement) foi

adicionada para tratar o encerramento ou retirada do software do ambiente operacional

produtivo.

1 Os termos apresentados para o processo - Enterprise UniDed Process" estão em idioma original pois não foram identificadas as
traduções oficiais.

17

2.4 – Conceitos de Manutenção

No ciclo de desenvolvimento de software, a manutenção é considerada a última fase do

processo, isto é, ocorre após a implantação operacional, quando o sistema está em

utilização pelos usuários em um ambiente real de produção. Qualquer alteração efetuada

em relação ao sistema implantado, após o início de sua operação, é considerada como

manutenção (PFLEEGER;FRANKLIN, 2004).

Essas modificações podem ser geradas por diversos fatores tais como9 correções de

defeitos, falhas, inclusão de novas funcionalidades, mudanças ocorridas no mundo

externo, passíveis de afetar o resultado apresentado pelo software, assim como9

mudança do ambiente operacional e alterações institucionais.

SeNdo Vehvilaimen (2000) o Institute of Electrical and Electronics Engineers

(IEEE), definiu quatro categorias pma manutenção de software> conforme apresentado a

seguIr:

• Correção ou Manutenção Corretiva: consiste da atividade de correção de

erros observados durante a operação do sistema;

• Adaptação ou Manutenção Adaptativa: consiste na realização das alterações

no software, para que ele possa ser executado sobre um novo ambiente (CPU,

arquitetura, novos dispositivos de hardware, novo sistema operacional, dentre

outros);

18

• Aperfeiçoamento ou Manutenção Perfectiva: consiste na realização das

alterações para melhorar alguns aspectos do software, como por exemplo, o seu

desempenho, a sua interface, a introdução de novas funções.

• Manutenção preventiva: consiste na ocorrência de uma modificação do

software, para melhorar a confiabilidade ou a manutenibilidade futura, ou para

oferecer uma base melhor para futuras ampliações. Esta atividade é

caracterizada pelas técnicas de engenharia reversa e reengenharia.

A princípio, a atividade de manutenção pode ser classificada individualmente. Na

prática, não há uma distinção nítida entre esses diferentes tipos de manutenção, pois em

uma correção de defeito, pode-se implementar uma rotina para prevenção ou até mesmo

uma nova funcionalidade (SOMMEVILLE, 2003).

Adaptativa 25%

Corretiva 21 %

Preventiva 4%

Aperfeiçoamento 50%

Figura 2.6 Distribuição do Esforço (PFLEEGER, 2004)

19

Como pode ser verificado na figura 2.6, os maiores esforços são despendidos na

manutenção para melhoria do software, isto é, novas funcionalidades ou adaptações que

não foram previstas na fase de desenvolvimento ou também mudanças nas regras do

negócIo+

Um dos motivos para que esta categoria tenha a percentagem apresentada é devido ao

pouco conhecimento do cliente, das necessidades do negócio quando solicita o

desenvolvimento do software. Muitas vezes, estes clientes partem de conhecimentos

obtidos no mercado e que desejam implementar na sua empresa, porém sem consultar o

usllário, aquele que trabalha no negócio diariamente, criando então um software com

muitos recursos, mas que não atendem as necessidades reais do negócio, utilizadas pelos

usuários. Para que o software não cause maiores prejuízos são solicitadas alterações,

para atender as necessidades dos usuários.

Um outro motivo é a falta de entendimento do desenvolvedor na solicitação do cliente.

Requisitos que não estejam claros e que tenham duplo entendimento é a causa principal

desta ocorrência, que poderia ser identificada se houvesse melhoria na fase de

levantamento de requisitos ou nas fases de testes e/ou homologação pelo cliente, mas

normalmente isto não ocorre, pois as fases citadas são quase sempre ignoradas,

principalmente quando o desenvolvimento está atrasado. Somente após sua implantação

operacional é que se identifica a discrepância entre o solicitado e o construído, e para

tentar minimizar os prejuízos são solicitadas às mudanças para adequar o software.

A mudança que mais ocorre é a inclusão de novas funcionalidades, pois com o tempo de

utilização e as evoluções do negócio, fazem com que o software passe a necessitar de

adequações para contemplar essas novas necessidades.

20

As alterações em um software serão melhores executadas, se durante o seu

desenvolvimento houver a preocupação em se desenvolver um produto adaptável a

futuras mudanças. Isto implica em ter uma documentação atualizada e códigos fontes

bem construídos. Mas, se no desenvolvimento isto não for previsto, uma pequena

alteração poderá gerar o custo de um novo desenvolvimento do software. Portanto, para

diminuir o custo gasto na manutenção é importante construir software com qualidade e

com uma boa estrutura, estando preparado para as futuras adaptações que irão ocorrer.

2.5 Considerações Finais

Para este trabalho são destacadas as atividades apresentadas pela norma NBR-ISO/IEC-

12207 (1998) que estabelece um processo de manutenção, nos demais modelos de

processo apresentados, a manutenção é tratada com uma fase que complementa o ciclo

de vida do software, não sendo estabelecidas às atividades que a ela devem ser

aplicadas.

O custo gasto com a manutenção pode ser considerado muito maior do que desenvolver

um novo software, portanto, é necessário que se tenha estratégias para minimizar estes

gastos. A definição de um processo com atividades claras e especificas pode ser uma

destas estratégias, visando a melhoria da qualidade.

21

3 MENSURAÇÃO

3.1 Considerações Iniciais.

O objetivo deste capitulo é apresentar a importância da mensuração para o processo de

software, tanto no desenvolvimento quanto na manutenção, visando a melhoria da

qualidade. Para isto são apresentados os conceitos de métricas de software, suas

classificações, como utilizar e as dificuldades encontradas de sua implementação. Além

disso, são apresentadas as duas métricaF utilizadas para a obtenção do tamanho do

software, isto é, Pontos de Função e Linhas de Código Fonte. Estas métricas também

são utilizadas para calcular o tamanho e o prazo para as alterações ocorridas no

software.

3.2 – Conceitos de Métricas e a importância da mensuração

Para que se possa medir algo, é necessário que se saiba como fazê-lo e a esse conceito é

que chamamos de métrica (PRESMMAN, 2003).

A definição dada por DeMarco apud Silva (2005), onde "Métrica é o número que você

vincula a uma idéia, mais precisamente, é uma indicação mensuráve] de algum aspecto

quantitativo do sistema”. Esta definição explica que a métrica é um padrão de medida,

utilizada para julgar os atributos de algo que está sendo medido.

22

Tom DeMarco (1989) define que uma métrica pode ser considerada útil quando for

diferenciada e possuir quatro características:

• Mensurável: quando é obtido como resultado, um valor que possa representar uma

quantidade que se possa medir.

• Independente: quando a obtenção de seus dados não sofre influência direta, das

pessoas que estão interagindo na medição.

• Coletável: os dados obtidos devem ser armazenados, para servirem como base para

outras atividades;

• Precisa: seus dados devem apresentar uma ftmção de exatidão, isto é, os dados

coletados devem ser avaliados quanto a sua exatidão para que sirvam de base de

informação para o futuro.

Desde modo, uma métrica que atenda as características citadas, deverá ser

implementada com facilidade e seus resultados devem alcançar os objetivos previstos

para a sua aplicação. A simplicidade de entendimento também facilita na

implementação e utilização da métrica.

A utilização da métrica auxilia o planejamento do projeto, pois, quando se obtém um

valor absoluto do que se irá fazer, pode-se calcular prazo e custo com maior

probabilidade de acerto, no desenvolvimento do produto e na melhoria contínua da

qualidade do processo (DEMARCO, 1989).

Não se consegue avaliar os benefícios de uma métrica de forma imediata; por isso, há a

necessidade da criação de uma base com os dados históricos de medições realizadas,

que serve também para avaliação e refinamento da métrica utilizada.

23

Dentre as dificuldades que foram relatadas na utilização de uma métrica de software, as

mais citadas são: é a falta de experimentos para validação, a falta de ferramentas de

apoio, a falta de base conceitual e a falta de base histórica (DEMARCO, 1989).

Assim podemos ressaltar que as métricas auxiliam no gerenciamento e no planejamento

do desenvolvimento e manutenção dos sistemas de software, além de oferecer uma

compreensão sobre o processo de engenharia de software e de seu produto.

3.3 Classificação das Medidas e Métricas de Software

Conforme a norma NBR ISO/IEC 9126-1 (2003) as medidas são divididas em duas

categorias, conforme exposto a seguir:

• Medidas Diretas: são aquelas medidas de um atributo que não depende da

medida de qualquer outro atributo.

• Medidas Indiretas: são aquelas medidas de um atributo, a qual é derivada de

medidas de um ou de vários outros atributos.

As métricas de software também se enquadram nestas categorias e são classificadas sob

diferentes formas, considerando o tipo de dado a ser coletado, os objetivos e o nível de

utilização delas, conforme apresentado a seguir.

• Métricas de Tamanho: medida direta do software e do processo por meio do

qual ele é desenvolvido. São medidas de fácil obtenção, mas que ainda não estão

universalmente aceita, pois falta precisão e dependem do que está sendo medido.

24

• Métricas de Esforço: medida indireta que são pré-requisitos para medidas

confiáveis de custo de projetos em desenvolvimento e que auxiliam as

organizações na melhoria do processo de desenvolvimento.

• Métricas de Qualidade: medida indireta que proporcionam um indicador de

como se ajusta o software aos requisitos implícitos do cliente.

• Métricas de Funcionalidade: medida indireta do software e do processo pelo

qual se desenvolve. Utiliza-se o ponto de vista do usuário. Estas medidas se

centralizam na funcionalidade do produto.

• Métricas de Desempenho: medida indireta que avaliam o desempenho do

produto, como tempo de resposta.

• Métricas de Confiabilidade: medida indireta em que são indicadas

probabilidades do software de realizar suas tarefas sob determinadas condições

em um período de tempo.

• Métricas de Produtividade: medida indireta que se concentram na saída do

processo de engenharia de software.

• Métricas Orientadas às pessoas: medida indireta que compilam informações

sobre a maneira segundo a qual as pessoas desenvolvem software e percepções

humanas sobre a efetividade das ferramentas e métodos.

• Métricas de Custo: medida indireta que principalmente envolvem o custo de

recursos humanos pelo tempo decorrido e ferramentas utilizadas.

As métricas de funcionalidade e de tamanho são as mais conhecidas e utilizadas, pois,

com base na informação gerada por elas, é possível estabelecer parâmetros a serem

25

utilizados em outras métricas, tais como qualidade e produtividade; usadas no

planejamento e na avaliação da qualidade.

Como a medição deve ser uma atividade constante no processo de desenvolvimento e

manutenção, devemos selecionar as métricas mais adequadas ao projeto dentro das

metas estabelecidas pela organização, alcançando assim um controle efetivo do que está

sendo construído, visando a um software com melhor qualidade.

Para que os resultados gerados pelas métricas escolhidas se apresentem coerentes, temos

que estabelecer os objetivos e as metas, da medição, antes de iniciarmos a coleta de

dados, definir cada métrica de forma não ambígua e avaliando o resultado com dados

anteriormente coletados ou em bases disponíveis no mercado (DEMARCO, 1989).

O conhecimento mais aprofundado das métricas, de suas características e tipos, facilita a

implementação desta atividade, isto também facilita a seleção das métricas ideais para

as metas almejadas pela empresa.

3.4 Implementação da Atividade de Medição.

Conhecendo as métricas existentes é possível selecionar quais são as mais adequadas

para a implementação da atividade de medição, esta atividade não é uma tarefa fácil.

Segundo Presmman (2003), a maior dificuldade para implementar a atividade de

medição é o convencimento das pessoas envolvidas da sua necessidade. Existe uma

resistência natural, pois o medo que a utilização das informações geradas, seja utilizada

26

para avaliação de desempenho pessoal, acaba tornando-se um grande dificultador desta

atividade.

Segundo Tom DeMarco (1989), quando uma empresa for implantar a atividade de

medição, é necessário que seja composta uma equipe especializada para essa função,

que não sofra interferência das equipes de projeto. Esta equipe deverá determinar as

metas e os objetivos a serem mensurados nos projetos, bem como ser responsável pela

criação de uma base de dados, gerados a partir dos dados obtidos das medições.

Portanto, é importante que seja definido quais são as metas da empresa para utilização

da atividade de medição, estas devem ser claras e difundidas nas equipes.

A equipe designada para iniciar esta atividade deverá também efetuar a medição do

software já existente criando uma base de dados histórica. Este trabalho é difícil, pois

dependerá de informações antigas, que nem sempre estão disponíveis. Este

levantamento é muito importante, pois com nas informações obtidas, é possível a

avaliação e definição de métricas, para avaliação do desempenho e da qualidade, como

também servirá para a medição das alterações que o software venha a sofrer.

Caberá a esta equipe, o suporte e treinamento necessários às demais equipes da

empresa, esclarecendo sempre a importância desta atividade e conscientizando a todos

das metas principais.

3.5 Métrica de Funcionalidade – Pontos de Função

27

Ponto de função é uma medida funcional de tamanho de software, cujo conceito foi

inicialmente introduzido por Allan J. Albrecht (IBM White Plains) em 1979 (AGUIAR,

2003). Posteriormente, esse conceito foi aprimorado em metodologia formal, tornando-

se de domínio público em 1984. Com a utilização desta metodologia, foi formado um

grupo de usuários que resolveram efetuar padronizações adicionais às regras de

contagem; este grupo formou a partir de 1986 o Grupo Internacional de Usuários de

Ponto de Função, organização internacional sem fins lucrativos, sediada nos Estados

Unidos da América (DEEKERS, 1998). Hoje este grupo é responsável pelas

publicações do Manual de Práticas de Contagem, atualmente em sua versão 4.2, que

estabelece os padrões para o cálculo dos pontos de função. O grupo também responde

pelas publicações de artigos, certificações de especialistas e treinamento, ele realiza

também, duas conferências anuais. Possui membros em mais de 13 países, inclusive no

Brasil, que participam nos comitês, conferências e treinamentos. Em 2002 esta métrica

passou à condição de padrão internacional, através da norma ISO/IEC 20926 de 2002

apud Dekkers (2003).

A métrica de Ponto de Função é considerada uma medida funcional, pois é baseada em

uma avaliação padronizada dos requisitos lógicos dos usuários. Quando utilizada com

outras métricas, auxilia o planejamento dos projetos de software.

Uma das maiores vantagens desta métrica é que podemos utilizá-la em qualquer tipo de

projeto do software, independentemente de linguagem, método de desenvolvimento ou

modelo de projeto.

3.5.1 Identificação dos parâmetros

28

Para iniciar o processo de contagem de Pontos de Função, temos que estabelecer alguns

parâmetros como tipo de contagem e a definição das fronteiras da aplicação.

O Tipo de contagem determina as funcionalidades que serão incluídas numa contagem

específica de Ponto de Função.

Existem três tipos de contagem de ponto de função:

• Contagem de ponto de função de projetos em desenvolvimento;

• Contagem de ponto de função para projeto finalizado;

• Contagem de ponto de função para projeto de manutenção

A fronteira da aplicação indica a linha entre o software que está sendo medido e o

usuário, servindo como membrana através da qual os dados processados, passam para

dentro e para fora do sistema de software. Ajuda também a identificar os dados lógicos

referenciados, mas não mantido pelo sistema de software.

3.5.2 Contagem de Ponto de Função.

A contagem de Pontos de Função está dividida em duas fases:

• Contagem de Pontos de Função não ajustados;

• Fator de Ajustamento.

29

A contagem de Ponto de Função não ajustado reflete especificamente a contagem das

frmcionalidades providas para o usuário através do projeto. Somente o que foi

requisitado e definido pelo usuário é contado.

A contagem de pontos de função não ajustados, conforme figura 3.1, compreende dois

tipos de funções:

• Funções de dados: constituem arquivos lógicos internos e arquivos de interface

externa;

• Funções transacionais: constituem entradas externas, saídas externas e consultas

externas.

A contagem das funções de dados representa as funcionalidades disponíveis para o

usuário, através de dados internos e externos que foram requeridos. Estas funções de

dados são tratadas como Arquivo Lógico Interno (ALI) e Arquivo de Interface Externa

(AIE).

Um arquivo lógico interno é um grupo de dados lógicos relacionados ou informações de

controle, identificados pelo usuário e que sejam mantidos pelo sistema de software.

Um arquivo de interface externa é um grupo de dados lógicos relacionados ou

informações de controle, que são utilizadas pelo sistema de software medido, mas que

não sofra manutenção, isto é, é um arquivo lógico interno de outro sistema.

A contagem das funções transacional representa as funcionalidades disponíveis para o

usuárIo processar os dados. Estas fUnções são chamadas de Entrada Externa (EE),

Consulta Externa(CE) e Saída Externa (SE).

30

Entrada Externa é um processo elementar, trata os dados ou informações de controle

que entram no sistema, mantendo (incluindo/alterando/excluídos) dados de um ou mais

ALI

Consulta Externa é um processo elementar que envia dados ou informações de controle

para fora da aplicação, isto é, apresenta os dados mantidos no ALI e AIE sem efetuar

nenhum processamento lógico (cálculo ou fórmulas matemáticos).

Saída Externa é um processo elementar que envia os dados mantidos pelo sistema nos

ALIs, efetuando algum tipo de processamento lógico (cálculo ou fórmulas

matemáticas), criando dados derivados.

Pode-se calcular os pontos de ftmção não ajustados a pmtir da identificação das funções

do projeto.

Pontos de
Função não
Aiustados

Figura 3.1 - Fases da Contagem de Pontos de Função não Ajustados (TFPU(,)

31

Após essa identificação, devemos classificar cada uma das funções conforme seu nível

de complexidade baixa, média ou alta.

O nível de complexidade das funções de dados é determinado pelos números de

elementos de dados e tipos de elementos de registro associados com os ALI e AIE.

O nível de complexidade das funções transacionais é determinado pelos números de

tipos de arquivos referenciados e tipos de elementos de dados associados com os EE, SE

e CE

A tabela 3.1 apresenta o número de pontos de função atribuídos conforme as

complexidades das funções.

Para se obter o resultado do Total de Pontos de Função não Ajustados (TPFNA), utiliza-

se a seguinte fórmula:

TPFNA = E (ALI x Fi) + E(AIE x Fi) + E(EE x Fi) + E(SE x Fi) + }.(CE x Fi)

Tabela 3.1 - Tipo de Função/Complexidade (DEKKERS, 1998).

m
a

onsulta Externa (CE)

luÉvo Lógico Interno (ALI)

ruivo Interface Externa (AtE)

Após a obtenção do TPFNA, temos que determinar o fator de ajustamento (FA) que

indica a funcionalidade geral proporcionada ao usuário. O FA consiste de 14

32

cmacterísticas, que devem ser avaliadas através do nível de influência que é dado em

uma escala de 0 a 5 conforme descrito abaixo:

0 - não está presente ou não tem influência

1 - pouca influência

2 - moderada influência

3 - média influência

4 - significante influência

5 - forte influência

As 14 características são descritas a seguir:

1a - Comunicação de Dados: descreve o grau em que a aplicação se comunica

diretamente com o processador.

2’ - Processamento de Dados Distribuído: descreve o grau em que a aplicação

transfere dados entre os componentes da aplicação.

3a - Desempenho: descreve o grau em que as considerações de tempo de resposta e do

tempo de processamento influenciaram o desenvolvimento da aplicação.

4- – Utilização de Equipamento Configuração altamente utilizada: descreve o grau

em que as restrições de recursos de computador influenciaram o desenvolvimento da

aplicação.

5’ – Volume de Transação: descreve o grau da quantidade de transações previstas no

negócio que influência o desenvolvimento da aplicação.

33

6a - Entrada de Dados On-Line: descreve o grau em que os dados são fornecidos

através de transações interativas.

7’ - Eficiência do Usuário Final: descreve o grau de consideração em relação a fatores

humanos e a facilidade de uso, para o usuário, da aplicação objeto de contagem.

8’ - Atualização On-Line: descreve o grau em que a aplicação possibilita atualização

on-line dos arquivos lógicos internos.

9a - Processamento Complexo: descreve o grau em que o processamento lógico tem

influenciado o desenvolvimento da aplicação.

10’ – Reutilização de Código: descreve o grau em que a aplicação e os códigos têm

sido especificamente projetados, desenvolvidos e suportados para serem utilizáveis para

outras aplicações.

11’ - Facilidade de Instalação: descreve o grau em que a conversão de ambiente

anterior tem influenciado o desenvolvimento da aplicação.

12’ - Facilidade Operacional: descreve uma característica da aplicação. Uma

aplicação minimiza a necessidade de atividades manuais, tais como: montagem de fitas,

manuseio de papéis e intervenção manual direta do operador.

13’ - Múltiplas Instalações: descreve o grau em que a aplicação tem sido desenvolvida

para várias localizações e organizações dos usuários.

14’ - Facilidade de Mudanças: descreve o grau em que a aplicação tenha sido

desenvolvida de modo que permita facilidade de modificação do processamento lógico

ou da estrutura de dados.

34

Após a aplicação dos níveis de influência em cada uma das 14 características,

totalizando, teremos o nível de influência total (TNI), que utilizaremos para determinar

o FA conforme a fórmula a seguir:

FA = 0.65 + (0.01 x TNI) onde:

TNI : é o somatório dos níveis de influência.

O valor 0,01 é uma constante para simplificar a divisão por 100.

O valor 0,65 é para produzir uma variação de +/- 35%. Esta variação foi definida por

Albretch na época da apresentação de Análise de Pontos de Função e deveria

representar a variação das 14 características para a realidade dos si$temas da época.

Recentemente o IFPUG tornou o uso do fator de ajuste opcional como uma adequação

necessária ao padrão ISO/IEC de medição funcional (VAZQUEZ;SIM(-)ES;ALBERT,

2003).

Para calcular o total de pontos de função do projeto, é necessário multiplicar o Fator de

Ajuste (FA) pelo Total de Pontos de Função Não Ajustados (TPFNA).

TPF = FA x PFNA

O total de pontos de função indica o tamanho estimado do projeto a ser desenvolvido.

Com estes dados, podem ser estimados o prazo e o custo, utilizando-se métricas de

esforço.

3.5.3 Diferença entre os tipos de contagem

35

Existem três tipos de contagem aceitos pela IFPUG conforme é apresentado a sewir:

, Projeto de Desenvolvimento: onde são medidas as funcionalidades fornecidas

aos usuários finais do software quando da sua primeira instalação.

e Projeto de Melhoria: mede as funções adicionadas, modificadas ou excluídas

em uma aplicação já instalada, e também eventuais funções de conversão de

dados.

• Aplicação: mede as funcionalidades fornecidas aos usuários para uma aplicação

instalada.

A contagem do Projeto de Desenvolvimento é utilizado na fase de planejamento, para

que seja obtida uma medição estimada do projeto, e assim calcular o custo e prazo

estimado. Esta contagem é baseada nas estimativas das funções de dados e funções

transacionais

A contagem de Projeto de Melhoria é utilizado para a medição das alterações ou

inclusões que são efetuadas durante a Manutenção. Cada organização estabelece como

utilizar este tipo, obedecendo às regras do IFPUG, visto que as mesmas podem ser

adaptadas. Esta contagem é obtida pontuando as alterações sofridas nas funções de

dados e flmções transacionais.

A contagem da Aplicação é utilizada para medição do software após sua finalização.

Estes conceitos são os definidos pelo IFPUG em seu manual de Contagem de Pontos de

Função.

36

3.6 Métricas de Tamanho – Linhas de Código

A métricas de tamanho são medidas diretas que se obtém totalizando a quantidade de

linhas descritas nos códigos fontes do software. Moller e Paulish (GRUBB;TAKANG,

2003) definiram linhas de código (LOC) como “a quantidade de linhas do código

excluindo comentários e linhas em branco”.

Embora esta métrica possa parecer simples, existe discordância sobre o que corutitui

uma linha de código (VAZQUEZ;SIMÕES;ALBERT, 2003), pois nem todos seguem as

definições de Moller e Paulish e totalizam linhas em branco e comentários, o que geram

inúmeras controvérsias na sua utilização. Outra crítica a esta métrica é que por ser

simples ela não reflete o custo ou produtividade do projeto (GRUBB;TAKANG, 2003).

Para a utilização de LOC, o ideal é ter um padrão de programação por lingpagem na

empresa, assim, a partir deste padrão, torna-se mais fácil à utilização de ferramentas

para a obtenção dos dados.

Uma das vantagens desta métrica e que ela é de fácil obtenção e podendo ser utilizada

para avaliar a qualidade, como por exemplo, quantidade de erros encontrados por linhas

de código (erros/kloc).

LOC pode ser utilizada no processo de manutenção, desde que se tenha a quantidade de

linhas que a aplicação tinha antes da alteração ou da inclusão de nova funcionalidade e

verificar a quantidade de linhas que foram incluídas, excluídas ou alteradas pela

mudança. Com isto se obtêm o tamanho da manutenção.

37

3,7. Modelo de Custo

Boehm projetou um modelo do custo chamado Corrstructive Cost Model (COCOMO)

como modelo estático de valor simples que contabiliza o esforço e custo de

desenvolvimento de software em função do tamanho do software, sua calibração foi

efetuada a partir dos dados obtidos nos projetos da empresa TRW, uma consultoria

situada na Califómia (FENTON;FFLEGER, 1997). COCOMO é um modelo

relativamente direto baseado nas entradas que se relacionam ao tamanho -do software

com o custo que afeta a produtividade. O modelo original de COCOMO foi publicado

primeiramente em 1981 (Boehm, 1981). Boehm fez evoluções no modelo para abranger

novas tecnologias, que é chamado COCOMO II (BOEHM, 2000).

O COCOMO pode ser aplicado em três classes de projetos de software, conforme é

apresentado a seguir:

• Modelo orgânico: projeto de software simples, equipe pequena com boa

expenêncla;

• Modo semidestacado: projeto de software intermediário, em tamanho e

complexidade, no qual equipes com níveis de experiência mistos devem atingir

uma combinação de requisitos rígidos e não tão rígidos;

• Modo embutido: projeto de software que deve ser desenvolvido dentro de um

conjunto rígido de restrições operacionais, de hardware e de software ('por

exemplo, software para controle de vôo de aeronaves).

38

O modelo básico é ampliado para considerar um conjunto de "atributos direcionadores

do custo" que podem ser agrupados em quatro grandes categorias:

• Atributos do produto

a. Confiabilidade exigida do software

b. Tamanho do banco de dados da aplicação.

c. Complexidade do produto.

• Atributos do hardware

a. Restrições ao desempenho em tempo de execução.

b. Restrições de memória.

c. Volatilidade do ambiente de máquina virtual.

d. Tempo para completar o ciclo exigido.

• Atributos de pessoal

a. Capacidade de análise.

b. Capacidade em engenharia de software.

c. Experiência em aplicações.

d. Experiência em máquina virtual.

e. Experiência em linguagens de programação,

• Atributos de projeto

a. Uso de ferramentas de software.

b. Aplicação de métodos de engenharia de software.

c. Cronograma de atividades de desenvolvimento exigido

Cada um dos 15 atributos é classificado de acordo com uma escala de 6 pontos que

varia de "muito baixo" a "extremamente elevado", em importância e valor.

39

Baseando-se na classificação, um multiplicador de esforços é determinado a partir das

tabelas publicadas por Boehm (Boehm, 1981) e o produto de todos os resultados de

multiplicadores de esforços torna-se um fator de ajustamento de esforços (EAF).

Os valores típicos do EAF variam de 0,9 a 1,4.

3.8 Considerações Finais.

Para obter o controle do que está sendo executado é necessário que se saiba o tamanho

do produto que está sendo gerado ou alterado. As métricas auxiliam os gerentes neste

controle, pois fornecem dados para a avaliação de custo, prazos e qualidade.

Dentre as métricas utilizadas para medição do tamanho, as mais utilizadas são KLOC e

Pontos de Função, sendo que a última por definição mede as funcionalidades do

software.

Na manutenção estas métricas também podem ser utilizadas, seus dados podem estimar

o tamanho da alteração e assim através de dados históricos são calculados o custo e

prazo da execução.

40

4 MODELO PROPOSTO DE PROCESSO DE MANUTENÇ'ÃO

4.1 Considerações Iniciais

O objetivo deste capitulo é apresentar o processo proposto para a Manutenção de

Software. Este modelo visa estabelecer as fases e as atividades voltadas à manutenção,

também apresenta os artefatos que devem ser gerados e atualizados em cêda uma das

fases e os responsáveis por cada atividade. Os modelos de desenvolvimento tiveram as

seguintes influências nesta proposta: as fases foram baseadas na Norma NBR ISO/IEC-

12207 e no Modelo Cascata; do Modelo Espiral o embasamento se deu pelos conceitos

de interatividade com o cliente e análise de risco, responsável pela solicitação da

alteração, que pode decidir pela continuidade ou não da execução da alteração; a

iteração das fases e o controle do gerenciamento e a definição dos papéis dos

responsáveis são os conceitos apresentados no Processo Unificado e do Enterprise

Uni$ed Process.

4.2 Modelo de Processo de Manutenção.

Após a instalação do software em operação, qualquer solicitação de mudança seja uma

inclusão de nova funcionalidade, correção de um defeito ou melhoria de desempenho; o

desenvolvimento desta alteração deve ser tratado no Processo de Manutenção. O

41

modelo proposto apresentado a seguir, define as fases e as atividades previstas para a

manutenção.

a) Fase 1: Análise da Manutenção

Nesta fase deve ser efetuada a pré-análise da alteração avaliando sua viabilidade, a

estimativa de custo e de prazo para a execução. A seguir são apresentadas as

atividades previstas para esta fase:

• Recebimento da Alteração: esta atividade inicia o processo de manutenção.

Normalmente, a solicitação é repassada através de um documento formal ou

através de e-mail ou uma chamada telefônica. Porém, independente da forma

como é efetuada, a solicitação deve ser registrada em um documento próprio,

denominado Termo de Abertura para Manutenção.

• Avaliação da Viabilidade da Alteração: esta atividade deve ser efetuada

baseada no Termo de Abertura de Manutenção, sendo que a análise deve ser

efetuada pela equipe de manutenção, avaliando a viabilidade de sua execução.

Caso seja considerado não viável deve-se retornar ao cliente um documento com

a explicação detalhada dos riscos que impedem a realização da alteração e

proceder ao arquivamento do documento.

• Rastreamento da Alteração: no caso de ser considerada uma alteração viável,

deve-se então, avaliar dentro da versão do software em operação, quais são as

funções que serão afetadas com a mudança, executando um rastreamento nos

requisitos já existentes e avaliar os possíveis riscos.

• Estimativa de Tamanho: após o rastreamento é estimado o tamanho da

alteração para obter prazo e o custo estimado da manutenção. Para efetuar esta

42

estimativa, devem ser utilizadas métricas de software apropriadas, como Pontos

de Função.

Em cada atividade nesta fase deve envolver os seguintes perfis:

• Gerente de Manutenção: é o responsável pelo recebimento da solicitação de

alteração e de encaminhar a equipe de manutenção correspondente.

• Analista de Negócio: é o responsável no entendimento da alteração avaliando

junto ao cliente e a equipe de manutenção a sua viabilidade e no rastreamento

dos requisitos a fim de verificar quais funções serão afetadas com a mudança.

• Analista de Manutenção: é o responsável em conjunto com o analista de

negócio, da avaliação da alteração quanto a sua viabilidade, deve executar o

rastreamento dos requisitos e executar uma prévia estimativa de prazo para a

execução da alteração.

• Cliente: é o responsável pela solicitação da alteração, que deverá estar descrita

de forma clara. Auxi]iando nos esclarecimentos das dúvidas da equipe técnica.

É o responsável pela autorização para continuidade da alteração.

Os artefatos que são gerados nesta fase:

• Termo de Abertura de Manutenção: é onde se descreve a solicitação do cliente.

• Documento de avaliação da alteração: é onde se descreve sucintamente a

alteração que será executada, bem como as funções e requisitos que serão

afetados e os possíveis riscos que a ela poderá ocasionar no software em

operação.

43

• Documento de Prazo e Custo: onde é apresentado ao cliente o prazo e o custo da

alteração. Estas informações devem estar baseadas em uma métrica como Ponto

de Função.

Tabela 4.1 - Matriz de Responsabilidade – Fase 1

;}:

@ @ $@E@1 É@d

Fase 1 - Ànálise (FvKn=taB

1.1 Recebimento
da Alteração

1.2. Avaliação da
Viabilidade da

Alteração

Gerente de | Gerente de É Analista de

Manutenção | Manutenção | Negócio

Gerente d, | A„,Ii,t, d, | 9ali_st? de

]V1[11a11o1 ut e n Ç ã o | •]|\1 e g 1E$E1HqF i o | Ti=: e | cli em e

Docurr
de | Abertura de

Solicitação l Manutenção

Termo de | Avaliação
Abertura IPreliminar da

IHomologaçãol Alteração

Avaliação | Avaliação
IPreliminar dal Final da

Alteração | Alteração

1.3. Rastreamento | Gerente de | Analista de | Analista de

da Alteração | Manutenção | Manutenção | Negócio

1.3. Estimativa de | Gerente de | Analista de | Gerente de | _..

Tamanho | Manutenção | Manutenção | M„,utenção | Cliente

b) Fase 2: Projeto de Manutenção

Nesta fase é iniciada a partir da aceitação do cliente) e deve ser executado o

detalhamento da alteração, o rastreamento dos documentos e códigos que serão

alterados. A seguir são apresentadas as atividades previstas para esta fase:

• Avaliação detalhada da alteração: a partir da aceitação do cliente deve ser

detalhada a alteração, avaliando o impacto que causará nos registros de

requisitos e no modelo de dados. Caso haja uma equipe específica para tratar do

modelo de dados, esta avaliação deve ser executada em conjunto com a mesma.

44

• Alteração do Modelo de Dados: caso no detalhamento tenha sido identificado

que a mudança solicitada implique em alterações no modelo de dados, a mesma

deverá ser executada pela equipe especifica, caso haja, ou pela própria equipe de

manutenção.

• Alteração nos Registros de Requisitos: após o detalhamento da alteração, se

deve avaliar os registros de requisitos que serão alterados ou incluídos e

proceder a sua alteração.

• Rastreamento dos Códigos Fontes: com o modelo de dados e os registros de

requisitos alterados, deve ser executado o rastreamento nos códigos fontes para

avaliação de quais serão afetados com a mudança, separando uma cópia dos

códigos a serem alterados em uma biblioteca própria para manutenção. Esta

atividade é muito importante, pois visa a integridade das versões dos códigos

em operação.

• Preparação do Ambiente para Teste: com o modelo de dados e os registros de

requisitos alterados, a equipe de teste pode iniciar a preparação do plano de teste

e dos casos de teste, para a validação das alterações.

• Estimativa de tamanho detalhada: a nova medição é efetuada com os registros

de requisitos e modelo de dados alterados, com esses dados é possível obter a

estimativa de tamanho da alteração e assim calcular o custo e prazo estimado

para sua execução. Pode se então gerar o cronograma detalhado das demais

atividades da alteração.

Em cada atividade nesta fase deve envolver os seguintes perfis:

45

e Gerente de Manutenção: é o responsável pelo envio da aceitação do cliente a

equipe de manutenção, da elaboração do cronograma e deve também

acompanhar e controlar a execução da alteração.

, Analista de Banco de Dados: é o responsável em conjunto com a equipe de

manutenção pela alteração no modelo de dados e sua atualização.

e Analista de Negócio: é o responsável no esclarecimento de dúvidas entre a

equipe de manutenção e o cliente, auxilia o Gerente na elaboração do

cronograma.

• Analista de Manutenção: é o responsável pelo rastreamento e atualização dos

requisitos; em conjunto com Analista de Banco de Dados em alterar o modelo de

dados; em conjunto com Arquiteto de Teste da criação do plano e caso de teste e

de controlar as versões dos códigos fontes que serão alterados.

• Arquiteto de Teste: é o responsável em conjunto com a equipe de manutenção

da criação do plano e caso de teste.

Os artefatos que são gerados nesta fase:

• Modelo de banco de dados atualizado: é onde constam as tabelas e o

relacionamento entre elas, apresentando assim a estrutura de armazenamento das

informações mantidas pelo software. Este modelo deve ser atualizado a cada

alteração nos atributos das tabelas ou em seus relacionamentos ou também na

inclusão de novas tabelas.

• Registro de Requisitos atualizado: é o documento onde devem ser registrados os

requisitos do software, devendo ser atualizado a cada alteração.

46

• Plano de Teste: é o documento onde constam os tipos de testes a serem

realizados e como deve ser sua execução.

• Casos de Teste: é o documento onde constam as funcionalidades que devem ser

testadas.

• Cronograma: é o documento onde constam as atividades, prazos, recursos

alocados e custos do projeto.

Tabela 4.2 - Matriz de Responsabilidade Fase 2

MPT;;

Fase 2 - Projeto de Manutenção

no
Preliminar da

Alteração,
Registro de
Requisitos e
Modelo de

Dados

2.1 Avaliação
detalhada da

Alteração

Gerente de | Analista de | Analista de

Manutenção | Manutenção | Negócio

Avaliação
Final da

Alteração e
ÊModelo Dados

Anterior

2.2 - Alteração no
Modelo de Dados

Gerente de | Analista de : Analistade
Manutenção | Banco Dados | Manutenção

Analista de

Negócio

Modelo de
Dados

Atualizado

2.3 - Alteração dos
Registros de

Requisitos

Gerente de | Analista de | Analista de

Manutenção | Manutenção | Manutenção

Analista de

Negócio

Registro de
Requisitos

anterior

Registro de
Requisitos
Atualizado

2.4 -Rastreamento

dos códigos fontes

Gerente de | Analista de

Manutenção | Manutenção
Códigos
Fontes

Lista de

Códigos
Fontes a serem

alterados
Modelo de

Dados
Atualizado e

Registro de

Requisitos
Atualizado
Modelo de

Dados
Atualizado e

Requisitos
Atualizado

2.5 - Preparação do
Ambiente de Teste

Gerente de | Arquiteto de | Analista de

Manutenção | Teste l Manutenção

Analista de

Negócio

Plano de
Testes e Casos

de Testes

2.6. Estimativa da

Alteração

Analista de

Gerente de | Analista de | Negócio e
Manutenção | Manutenção | Gerente de

Manutenção

Cliente Cronograma e
Custo

c) Fase 3: Construção

47

Nesta fase são executadas as alterações nas especificações de programas, as alterações

nos bancos de dados, as alterações e implementações nos códigos fontes. O importante

desta fase é manter a integridade dos códigos em operação com os que estão em

manutenção. A seguir são apresentadas as atividades previstas para esta fase:

• Alteração nas Especificações de Programas: com o rastreamento dos códigos

fontes a serem alterados, e com base nos registros de requisitos e modelo de

dados alterados, deve se proceder à alteração nas especificações de programas

existentes e a especificação dos novos programas. É importante manter

registrado no documento: o motivo da alteração, a data e o responsável pela

solicitação.

• Alteração dos Bancos de Dados: com o modelo de dados alterado, deve se

proceder à alteração nos bancos de dados. Em empresas que mantêm equipes

especialistas em Banco de Dados, esta atividade é efetuada por essa equipe.

• Alteração nos Códigos Fontes: com as especificações de programas a serem

alterados e das novas especificações, são executadas as alterações nas cópias dos

códigos fontes que estão na biblioteca própria para a manutenção.

• Testes Unitários: a cada finalização das alterações nos códigos fonte deve ser

executada os testes unitários no programa, para validar a alteração com o que foi

descrito na especificação.

Em cada atividade nesta fase deve envolver os seguintes perfis:

• Gerente de Manutenção: é o responsável em acompanhar e controlar a

execução da alteração.

48

• Analista de Manutenção: é o responsável pelo controle de configuração,

especificação dos programas e auxilia os programadores nos testes.

• Programadores: é o responsável pela codificação dos códigos fontes e dos

testes unitários.

Os artefatos que são gerados nesta fase:

• Especificações dos códigos fontes alteradas e novas: é o documento onde

constam as definições das funcionalidades de um programa.

• Banco de dados alterados: são as tabelas que mantêm as informações do

software.

• Códigos fontes alterados e novos.

Tabela 43 - Matriz de Responsabilidade Fase 3

3.1 - Alteração
Gerente de | Analista denas

Especificações | Manutenção | Manutenção
de Programas

3.2 - Alteração
dos Bancos de

Dados

Gerente de
Manutenção

Analista de
Banco de

Dados

Analista de

Manutenção

Modelo de Modelo de
Dados Dados Físico

Atualizado Atualizado

Analista de
Manutenção

IEspecifIcações
de programas

alterados e

ias

Fontes
Alterados e

novos

3.3 Gerente de

Unitários | Manutenção

Analista de
ramada

Manutenção

IEspecincações Doc. de

de programas | Evidência de
alteradas Testes

49

d) Fase 4: Teste

Nesta fase devem ser realizados os testes de verificação das alterações, não somente os

códigos fontes, mas também devem ser avaliados as integrações do software com os

demais softwares que fazem interface. Assim, é recomendado que as atividades desta

fase sejam executadas por uma equipe especializadas em teste, que tenha o

conhecimento de como efetuar a validação seguindo o plano de teste que foi idealizado

na fase de projeto. Essa equipe participa na fase de projeto de manutenção, elaborando o

plano de teste tendo como base os registros de requisitos e prepara os casos de testes

para verificação e validação do software. A seguir são apresentadas as atividades

previstas para esta fase:

• Elaboração dos Casos de Teste: a partir do plano de teste elaborado na fase de

Projeto de Manutenção são criados os casos de testes para a validação do

software alterado.

• Criação da Massa de Teste: com os casos de testes e preparada a massa de

teste para a execução das validações e verificações da nova versão;

• Execução dos Testes: com a massa de teste pronta deve ser executado o teste de

integração, de regressão e de sistema, para se evitar possíveis falhas que podem

ocorrer, avaliando os resultados das alterações nas integrações junto aos demais

softwares. Todos os resultados devem ser anotados, pois farão parte da

documentação da manutenção.

• Correção dos erros: os erros encontrados deverão ser encaminhados a equipe

de manutenção para a correção. A equipe de manutenção deve corrigir os erros e

retornar o software a uma segunda bateria de testes.

50

• Avaliação dos resultados dos testes: as equipes de teste e manutenção devem

avaliar o término dos testes, disponibilizado para a validação junto ao cliente.

Em cada atividade nesta fase deve envolver os seguintes perfis:

• Gerente de Manutenção: é o responsável em acompanhar e controlar a execução

da alteração.

• Analista de Manutenção: é o responsável em conjunto com o analista de teste da

execução é avaliação dos resultados dos testes

• Arquiteto de Teste: é o responsável pela criação dos casos de teste e execução

dos testes.

• Analista de Teste: é o responsável em conjunto com o Analista de Manutenção

na execução dos testes e na avaliação.

• Programador: é a responsável pela correção nos códigos fonte dos erros

encontrados.

O artefato que é gerado nesta fase:

• Documento de Evidência de Teste: é onde devem constar os resultados obtidos

com os testes.

51

Tabela 4.4 - Matriz de Responsabilidade Fase 4

ma
dos Casos de

Testes

Gerente de

Manutenção
Arquiteto de

Teste

r
Teste e Teste e

Manutenção IManutenção

Plano de
Teste

Casos de
Teste

Modelo de
Analista de Dados

Teste e Atualizado
e E-Rlanutenção

Atualizado

4.2 - Criação daI Gerente de

Massa de Teste | Manutenção
Arquiteto de

Teste

Analista de
Teste e

Manutenção

Massa de
Teste

4.3 - Execução
dos Testes

Gerente de

Manutenção
Arquiteto de

Teste

Analista de
Teste e

Manut to

Analista de
Teste e

lanutenção

Massa de
Testes

4.4 – Correção
dos Erros

Encontrados

Gerente de

Manutenção

Analista de | Analista de
Progamador Teste eTeste e

Manutenção [anutenção

Códigos
Fontes

Códigos
Fontes

Alterados

4.5– Avaliação
dos Resultados

dos Testes

Gerente de

Manutenção

Analista de | Analista de | Analista de
Teste e Negocio e Negocio e

Manutenção | Manutenção IManutenção

Doc. de
Evidência

dos
Resultados
dos Testes

e) Fase 5: Homologação

Nesta fase, o software é disponibilizado ao cliente para a validação das mudanças

solicitadas. Esta disponibilização deve ocorrer em um ambiente intermediário entre o

desenvolvimento e a operação, denominado Ambiente de Homologação. A seguir são

apresentadas as atividades previstas para esta fase:

• Preparação do Ambiente de Homologação: antes de iniciar a homologação é

necessário preparar o ambiente para a execução da nova versão. Preparando a

rotina de execução, alterando os bancos de dados e outras tarefas que sejam

inevitáveis para a boa execução do software, também deve ser instalada a nova

versão.

52

• Validação Operacional: após a preparação do ambiente e da instalação da nova

versão, deve ser verificado se o software está sendo executado corretamente,

quanto a sua parte operacional, isto é necessário, para se evitar a ocorrência de

um erro operacional durante a homologação do cliente.

• Validação Funcional: após a validação operacional o software será disponível

ao cliente para que ele possa proceder a sua validação. O cliente deve criar seus

casos de testes ou utilizar informações operacionais para validar a alteração

solicitada. Ele deve avaliar as alterações e seus reflexos no software e se o

resultado esperado foi atendido. Após a avaliação dos resultados da

homologação e estando o software validado pelo cliente, ele deverá proceder a

autorização da migração da versão para o ambiente operacional, através de um

documento especifico a ser repassado a equipe de operação.

Em cada atividade nesta fase deve envolver os seguintes perfis:

• Gerente de Manutenção: é o responsável em acompanhar junto ao cliente a

validação do software.

• Analista de Negócio: é o responsável em conjunto com o cliente de criar os

casos de teste e executar a validação.

• Analista de Manutenção: é o responsável em prestar orientação ao cliente das

alterações efetuadas.

• Cliente: é o responsável em conjunto com o analista de negocio de criar os casos

de teste e executar a validação das alterações do software. Também responde

pela autorização da migração da nova versão ao ambiente operacional.

53

O artefato que é gerado nesta fase:

• termo de homologação: documento que deve ser emitido pelo cliente

autorizando a operacionalização do software.

Tabela 4.5 - Matriz de Responsabilidade Fase 5

11r 1 1lr1[1[) J11e1|= :8:: = H

111:

i@#

Fase 5 – Homologal to

Modelo de
Dados

.,*„. t'::.:_;’J=f 3:=,';:de

Requisitos
Atualizado

“.':;:':"='=*.;:*;::, 4:„:}ji;:
5.2 - v,IN,çã, G „,„te d, | A laJela_de

;"*”'”-ã*„\':':;“

'*'«='''===;.-"“ =~};:',:

Analista de

N41anutenção

Cliente
Termo de

IHomologação

f) Fase 6: Implantação

Nesta fase o software é implementado em ambiente operacional. Esta migração deve

ocorrer do ambiente intermediário para o operacional, com a filosofia de pacotes que

contenham todas as versões executáveis dos códigos alterados, visando sempre a

integridade do software. Caso ocorra algum problema de catalogação das versões no

ambiente operacional, deve-se ter uma rotina de contingência para voltar o software à

versão anterior, sem prejuízo ao que está sendo executado em operação.O software será

considerado implementado em operação, quando todas as versões dos códigos que

foram alterados, forem migradas e estiverem em execução com geração de dados

54

consistentes com o esperado. A seguir são apresentadas as atividades previstas para esta

fase:

• Preparação do Ambiente Operacional: após receber a autorização para a

instalação da nova versão em ambiente operacional, a equipe de operação deve

proceder às alterações necessárias para a instalação da versão. As tarefas são as

mesmas executadas na atividade de Preparação do Ambiente de Homologação.

• Migração do Software: a instalação da versão em operação deve ser executada

em horário definido entre a equipe de manutenção, cliente e equipe de operação,

para não causar grandes impactos nas rotinas existentes, que utilizam

informações geradas pelo software.

• Controle de Configuração: após a instalação da nova versão, deve ser

executada uma verificação se todos os programas e versões estão instalados

corretamente.

• Avaliação da Implantação: após a implantação da nova versão o cliente deve

validar o comportamento da nova versão do software em ambiente operacional.

Em cada atividade nesta fase deve envolver os seguintes perfis:

• Gerente de Manutenção: é o responsável em acompanhar junto à equipe de

operação e do cliente a validação do software.

• Analista de Manutenção: é o responsável em prestar orientação a equipe de

operação das alterações efetuadas

55

• Analista de Operação: é o responsável em preparar o ambiente operacional,

instalar a nova versão do software e acompanhar a sua execução, executando as

validações e acertos necessários.

Tabela 4.6 - Matriz de Responsabilidade Fase 6

1 - Preparaçãol
do Ambiente
Operacional

:rente de

lanutenção joperacional

tista de

lutenção

’ermo de
[omologação

mrllistar

íanutenção joperacionaldas Versões !anutenção

Doc de

lvaliação

llantação

.3 - Avaliação
Implantação

terente de
lanutenção

:liente e
lalista de

[anutenção
liente

F
A
S

E
S

Gerenciamento de Configuração

Gerenciamento do Projeto de Manutenção

TEMPO

Figura 4.1 – Processo de Manutenção -Fase x Tempo

56

43 – Considerações Finais

Neste capitulo, é apresentada uma proposta para urn processo de manutenção, que tem

por finalidade estabelecer um roteiro básico, estabelecendo as fases e as atividades a

serem executadas durante uma alteração de software. Este processo também deve ser

utilizado para auxiliar a gerência no controle dos custos e prazo da manutenção.

O processo proposto é composto por fases que tem dependência, iteração e paralelismo,

conforme apresentado na figura 4.1. A fase de Projeto de Manutenção é dependente da

fase anterior, Análise de Manutenção, e da aprovação do cliente para sua continuação. A

fase Construção pode ser iniciada durante a fase Projeto de Manutenção. As fases Teste

e Homologação devem ser iniciadas durante a de Projeto de Manutenção. Assim é

apresentado o paralelismo que podem ocorrer entre as fases. A fase de Implantação é

dependente direta da fase anterior, Homologação, e da aprovação do cliente.

O acompanhamento das gerências de manutenção e de configuração durante todo o

processo tem a finalidade de assegurar a execução das atividades e garantir a

integridade das versões nos ambientes.

Este processo foi proposto a partir de um caso de estudo real e da dificuldade

encontrada no controle das execuções das tarefas.

57

5 IMPLEMENTAÇÃO DO PROCESSO DE MANUTENÇÃO

5.1 Considerações Iniciais

O objetivo deste capitulo é apresentar a implementação do processo proposto em uma

empresa que desenvolve e mantém software, primeiramente, é apresentada a situação

atual da empresa no que se refere à infra-estrutura do ambiente e o nível organizacional,

pois ambos interagem no fluxo da execução das alterações dos softwares ou na sua

construção.

5..2 Visão Geral do Processo Atual

Para a implernentação do processo é necessário fazer uma análise da situação atual da

empresa, buscando ressaltar os pontos que merecem melhorias e aqueles que devem ser

adaptados ao processo.

5.2.1 Estrutura do Ambiente

Devido à determinação dos Órgãos Regularizadores foi necessária a criação de

ambientes separados para desenvolvimento/manutenção, homologação e operação, e foi

58

também estabelecido um prazo para que todos os softwares legados, isto é, aqueles que

já estão em operação, fossem instalados no ambiente de homologação, para que somente

pudessem ser validados neste ambiente. Atualmente já existem softwares legados e

novos que são validados neste ambiente.

Quando ocorre a implementação de nova versão destes softwares, antes de migrar para o

ambiente operacional o mesmo deve ser validado na homologação pelo cliente e

somente após a sua autorização é que se migra a versão para a operação. Todos os

softwares novos devem ser validados em ambiente de homologação.

Ambiente de Desenvolvimento /
Manutenção

V
E
R

S

Ã
0

A

A
L
T
E
R
A
R

Versão alterada para
digitação

Ambiente
e Homologação

Versão Validada pelo
Cliente

Ambiente de Operação

Figura 5+1 - Fluxo da Migração de Versões

59

As versões dos softwares são controladas por uma ferramenta. A ferramenta mantém

um histórico do código fonte com todas as alterações efetuadas, sendo possível obter

versões anteriores a atual que está em operação. A versão do software executada em

homologação deve ser a mesma que a executada em operação, exceto quando o software

está sendo homologado pelo cliente.

Quando é efetuada a manutenção do software, deve ser obtida uma cópia do código

fonte da versão que está em operação. Migra-la para o ambiente de

desenvolvimento/manutenção e após sua alteração, a versão é transferida para o

ambiente de homologação. Depois de validada e autorizada pelo cliente à nova versão é

instalada no ambiente operacional, conforme mostra a figura 5.1.

Uma outra determinação dos órgãos regtrlaüzadores foi à implementação da

documentação de todos os softwares novos e legados. Houve um prazo para que fosse

implementada esta documentação e eventualmente auditores destes órgãos selecionam

alguns softwares para avaliação.

Para que fosse disseminado este conceito em todas as equipes, foi estabelecida uma

metodologia de desenvolvimento de sistemas, que padroniza e estabelece a

documentação necessária no desenvolvimento do software.

Esta metodologia está baseada no Modelo Cascata é contém sete fases:

• Anteprojeto: nesta fase, é executada uma pré-análise do software solicitado,

gerando um documento que contenha os parâmetros técnicos e estimativas de

tamanho, esforço, duração e custo, visando estabelecer um contrato entre o

cliente e o desenvolvimento.

60

• Planejamento: nesta fase, é definido o escopo do projeto, o cronograma de

atividades, custos e recursos humanos e análise de risco.

• Análise da Área de Negócio: nesta fase, é efetuado o detalhamento dos

documentos gerados na fase anterior.

• Projeto de Sistema de Negócio: nesta fase, são especificados os procedimentos e

programas que devem implementar o software.

• Projeto Técnico e Construção do Sistema de Informação: nesta fase, é construído

o software.

• Homologação: nesta fase, é efetuada a validação do software antes do mesmo

passar para o ambiente de operação.

• Implantação: nesta fase, é instalado o software no ambiente operacional.

Em cada fase são gerados os documentos, conforme tabela 5.1, que ao final do processo

comporão a documentação do software. As fases são dependentes, isto é, não se pode

iniciar uma fase sem a conclusão da anterior.

61

Tabela 5.1 - Documentos por Fase

Fases- Dàcumentt>$ Gerados ’
c

Diagrama de Contexto
s
c

c de Tamanho-Prelimina]
r
Plano de Desenvolvimento de Sistema

justa de Requisitos
e
mr
O

c
r

Anteprojeto

Planejamento

Modelo de Dados Refinado

Diagrama de Fluxo de Dados
a
a
Estratégia de Teste
e

Análise da Área de Negócio

ILayout das interfaces

,rquitetura de Solu ao Refinada
O

S

o

a
(
a
a
a

Meo 10

Projeto do Sistema de Negócio

Projeto Técnico e Construção

Homojogação do Sistema
Implantação do Sistema

A metodologia vem auxiliando na melhoria do controle dos projetos. Alguns pontos são

importantes e devem ser adaptados para o processo de manutenção, conforme

destacamos a seguir:

62

• Foram criadas equipes de qualidade para executar o acompanhamento dos

projetos novos, auxiliando as equipes de desenvolvimento nas atividades da

metodologia, na geração da documentação e no controle dos projetos.

• Foi adquirida a ferramenta de controle de configuração, que mantém a

integridade das versões dos softwares nos três ambientes: desenvolvimento,

homologação e operação.

• Foi estabelecido um processo para validação que é aplicado para os softwares

novos e para alguns legados que estão instalados no ambiente de Homologação.

e Foi adquirida uma ferramenta, e estabelecido um processo que auxilia no

controle das mudanças das versões dos softwares entre os ambientes de

desenvolvimento e operação.

• Foi desenvolvida uma ferramenta para controlar as solicitações dos clientes

quanto as alterações no software ou no pedido de novos softwares.

• É utilizada a métrica de Pontos de Função para dimensionar os softwares novos,

para os softwares em manutenção dependendo da avaliação da equipe a

alteração pode ou não ser pontuada. Já existe uma base histórica para a

estimativa dos prazos e dos custos. Quando o software é desenvolvido pela

fábrica de software, o custo e prazo são obtidos através das informações que

constam no contrato, estabelecido com a empresa contratada para

desenvolvimento e manutenção de software.

O processo atual é voltado ao desenvolvimento, sendo que as atividades que se refere à

manutenção não é tratada, a seguir é apresentados os pontos que merecem melhorias:

63

• A metodologia para o desenvolvimento é muito rígida, sendo que suas atividades

não são adaptáveis no tratamento da manutenção.

+ A equipe de qualidade não auxilia no controle dos projetos de manutenção, com

isto não há um controle de custo e prazo no atendimento.

• Não existe uma equipe especializada que auxilie as demais equipes na confecção

dos testes de verificação.

• Cada equipe de manutenção trabalha de uma forma diferente, não existindo uma

padronização das atividades.

' Não existe um controle quanto à atualização da documentação existente, quando

ocorre alteração nos softwares.

A implementação de um processo para a Manutenção auxiliará na melhoria dos

seguintes pontos:

• Padronização das atividades em todas as equipes de manutenção da empresa.

• Definição dos documentos que devem ser atualizados.

• Definição dos responsáveis por cada atividade.

• Controle por parte da gerência das atividades que estão sendo executadas.

5.2.2 - Estrutura do Organizacional

64

A estrutura organizacional da empresa, está relacionada diretamente com o fluxo de

trabalho no desenvolvimento e manutenção dos softwares. A organização possui três

departamentos:

• Departamento de Análise de Negócio: responsável pelo contato com o cliente e

encaminhamento das demandas de manutenção e novos softwares

• Departamento de Desenvolvimento/Manutenção: responsável pelas manutenções

nos softwares e desenvolvimento de novos softwares.

• Departamento de Operação: responsável pela execução dos softwares no

ambiente operacional e pelo ambiente de homologação.

Cada departamento é responsável por uma parte da demanda, o relacionamento entre

eles é regido por Acordos de Nível de Serviço estabelecido entre os mesmos.

Gerente de
Tecnojogja

Coordenador
Proieto Coordenador

de Qualidade

Supervisor
Qualidade

Supervisor
Qualidade

Lideres de
Proieto

Lideres de
Píoieto

Lideres de
Qua]idade

Lideres de
Qualidade

Equipe
Técnica

Equipe
Técnica

Figura 5.2 - Estrutura Hierárquica.

65

No Departamento de Desenvolvimento/Manutenção são executadas as atividades de

alterações e desenvolvimento de soítware, sua representação hierárquica está

apresentada na figura 5.2.

As equipes abaixo do Coordenador de Projeto são responsáveis pelo desenvolvimento

de projetos novos e manutenção dos softwares legados.

As equipes abaixo do Coordenador de Qualidade são responsáveis pelo

acompanhamento dos softwares novos junto às equipes de projeto e de treinar as

equipes na metodologia utilizada.

As equipes técnicas são compostas por analistas e prestadores de serviços, eles são

gerenciados pelo Líder de Projeto. Cada Líder de Projeto é responsável por um grupo de

software que pode estar em desenvolvimento (softwares novos) ou em manutenção

(software legado).

As figuras 5.3 e 5.4 representam o fluxo de encaminhamento das solicitações de

desenvolvimento e manutenção de software.

Cliente Analista de

Negócio

Líder de Projeto

.Figüra 5.3 - Fluxo para Softwares novos

66

O Cliente encaminha para o Analista de Negócio a solicitação de alteração ou novo

software, que executa uma pré-avaliação e encaminha para o Departamento de

Desenvolvimento/Manutenção utilizando a ferramenta de solicitação de demanda, que

tem a finalidade de registrar a solicitação. As equipes somente podem executar uma

alteração se receber a solicitação através da ferramenta

Cliente Analista de

Negócio

Supervisor de
Tecnologia

Analistas de
Manutenção

Figura 5.4 - Fluxo para Manutenção de Software

Após o recebimento da solicitação no departamento de desenvolvimento/manutenção,

conforme figuras 5.3 e 5.4, ela é encaminhada à equipe técnica que a executa e registra

na ferramenta de solicitação, seus entendimentos, prazo e custo da execução. Após a

finalização da demanda é solicitado ao cliente que seja efetuada a homologação.

Concluindo a homologação o cliente emite o Termo de Homologação que é a

autorização para o Departamento de Operação instalar o software.

5.3 Implementação do Processo.

67

Para a implementação do processo, foi necessário selecionar uma demanda que não

implicasse em prejuízo ao negócio, pois o prazo para a execução da manutenção poderia

ser maior para a adaptação da equipe ao processo. Também foi selecionado um software

que tivesse documentação um pouco mais atualizada, pois em software sem

documentação ou com documentação desatualizada, as atividades que executam

avaliação da documentação seriam prejudicadas. Outro detalhe importante, é que a

equipe escolhida como piloto, possuía integrantes com um bom conhecimento de

processo, isto facilitou o entendimento e a aplicação do processo.

Primeiramente foi necessário efetuar uma apresentação do processo proposto a equipe

de manutenção, nesta apresentação foram expostas algumas sugestões de melhoria ao

processo, mas que não foram adaptados a ele no momento.

Seguindo a estrutura do processo proposto e da adaptação do mesmo com a utilização

das ferramentas e rotinas do processo atual, a implementação foi bem aceita e o

entendimento da equipe foi adequado. Os resultados apresentados estão a seguir:

• atualização da documentação existente: a equipe avaliou, que a existência de

uma atividade especifica para esta tarefa, facilita a compreensão dos

desenvolvedores da necessidade de sua execução, principalmente, quando eles

precisaraIn avaliar a demanda a partir dos documentos existentes.

• rastreamento dos códigos fontes a serem alterados: a equipe avaliou, que esta

atividade é muito importante, pois evita o esquecimento de algum código no

decorrer da execução da alteração.

68

• testes: a equipe avaliou, que mesmo sem ter uma equipe especializada em teste,

esta atividade deve ser sempre executada, independente do tamanho da

alteração.

• gerenciamento: o líder pode acompanhar a execução da demanda, identificando

as atividades mais complexas, isto é, aquelas onde foram gasto um maior tempo

em sua execução. Ele também pode avaliar e controlar os prazos e custos com

maior eficácia.

5.4 Considerações Finais.

A empresa citada neste processo de implementação já possui algumas regras que

auxiliam na aplicação deste novo processo, o que difere de muitas outras organizações

no mercado.

Este processo visa conscientizar as equipes a não somente proceder à alteração na

versão do software, mas em todos os artefatos por ele gerados que necessita manter

atualizada a versão em operação.

Outro fator importante é a padronização nos procedimentos de uma alteração,

estabelecer atividades e controlar sua execução, auxilia para que todas equipes

independentes do tipo de software, ou das pessoas envolvidas, executem as mesmas

atividades. Assim o nível gerencial, Coordenadores, Supervisores e Lideres, pode

controlar as alterações e encaminhar dados reais quando solicitado para outras áreas.

69

A adaptação do modelo proposto nas atividades que atualmente já são executadas pelas

equipes, pode facilitar sua implementação nas demais equipes.

Os resultados esperados com este processo são: melhoria no gerenciamento da

alteração; estabelecimento de prazos viáveis e atingíveis, e redução de custo;

atualização da documentação com a versão do software em operação; e melhora da

qualidade das alterações no software.

70

6. CONCLUSÃO

Neste capitulo são apresentados os pontos positivos do processo proposto e aqueles que

necessita de melhoria, inclusive os apontados pela equipe piloto. Este processo foi

elaborado para uma empresa que trabalha com manutenção em ambiente de grande

porte, mas pode ser adaptado a outros tipos de empresas que trabalhem em outras

plataformas. A aplicação deste processo em outros ambientes pode contribuir para a sua

melhoria como acrescentar pontos não abordados no ambiente da proposta.

6.1 Pontos Positivos.

Dentro do objetivo para o desenvolvimento desta proposta, são apresentados a seguir os

pontos relevantes obtidos com sua implementação:

• Proporcionou uma clara definição de fases, de papéis e de responsabilidades,

além da definição dos documentos gerados e alterados, durante o processo de

manutenção.

e Padronização das atividades de manutenção entre todas equipes da empresa.

• Possibilita ao Gerente ou Líder de Projeto uma visão mais clara das atividades

de manutenção, podendo assim obter com maior segurança o controle de prazo e

custo.

• Destaca pontos que necessitam de controles especiais, como a gerência de

configuração.

71

• Sugere melhorias em pontos como inâa-estrutura fisica para os ambientes de

desenvolvimento e operacional.

• Sua concepção foi proposta de forma flexível para ser adaptável em outras

organizações.

6.2 Pontos que necessitam de melhoria

Para concluir este estudo, são apresentados alguns possíveis caminhos de melhoria no

processo, inclusive os apontados pela equipe piloto, como forma de incentivar trabalhos

futuros, que dêem continuidade ao que foi aqui proposto e aplicado:

• O processo propõe a necessidade de atualização da documentação, mas não

vincula a isto a manutenção da mesma em um repositório único.

• o processo não apresenta uma atividade que execute a revisão da documentação

gerada.

• O processo não apresenta um plano de comunicação entre as equipes das

alterações.

• o processo não apresenta uma atividade de medição do software, ao final da

manutenção, para a obtenção do tamanho final do software.

Desta forma, é possível que pesquisadores e outros profissionais que trabalhem nesta

área, possam avaliar e dar prosseguimento a este trabalho, contribuindo com a

Engenharia de Software nos estudos sobre a Manutenção de Software.

72

REFERENCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO/IEC-12207,

Tecnologia da Informação - Processos de ciclo de vida de software, ABNT, 1998.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO/IEC 9126-1,

Engenharia de Software – Qualidade de Produto Parte 1: Modelo de qualidade. ABNT.

2003.

AGUIAR, M. Pontos de função ou pontos de caso de uso? Como estimar projetos

orientados a objetos. Developers’magazine. V. 7, n. 77. Jan., 2003.

AMBLER,S.;NALBONE,J.;VIZDOS,M.: The Enterprise Unined Process – Extending

the Rational Unified Process. Pearson Education. Indiana-USA. 2005.

ARNOLD, M. PEDROSS,P.: Software Size Measurement and Productivity Ratingin a

Large-Scale Software Development Department, IEEE, 1998

BOOCH, G.; RUMBAUGH, J.; JACOBSON, 1. The un#led software development:

ADDISON-WESLEY. 1998.

BOEHM, B.: Software Engineering Economics, Prentice-Hall, 1981

BOEHM, B.: Software Cost Estimation With COCOMO II. Prentice Hall, Englewood

Cliffs, NJ, U.S.A., 2000.

DEKKFRS, C. Measuring the 'logical’ or 'ftmctional’ size of software projects and

software application. ISO BULLETIN. May, 2003.

73

DEKKF,RS, C. Pontos de Função e Medidas. O que é um Ponto de Função? –no QA Journal,

dez de 1998,. Disponível em: <http: www.bfpug.com.br> Acesso em: 21 out 2005

DEMARCO, T., Controle de Projetos de Software, Norma P Carvalho, - Rio de

Janeiro, Editora Campus, 1989.

FENTON; PFLEEGER, S. Software metrics: a rigorous & practical approach. Boston:

PWS Publishing Company, 1997.

GLASS, R.: Learning to Distinguish a Solution #om a Problem, IEEE Software, p. 112,

113. MAY/JUNE 2004.

B, P.;TAKANG, A.: Software Maintenance, 2. ed, World Scientific, 2003GRUB

IFPUG. International Function Point Users Group. Function Point Counting Practices

Manual: Release 4.2, 2005

JALOTE, P. An integrated approach to software engineering. 2 ed. New York:Springer-

Verlag, 1997.

PLEEGER, S.; FRANKLIN, D.: Engenharia de Software: Teoria e Prática. Prentice

Hall. 2004.

PRESMMAN, Roger S., Engenharia de software – 5a ed., McGraw-Hill, 2003.

STEPHEN, S; ROBIN, A.: An Integrated Lyfe-Cicle Model for Software Maintenance,

IEEE Transaction Software Engineering, vol 14, 8 AUG 1988.

SILVA, R.P. ENGENHARIA DE SOFTWARE SEGURO, Monografia apresentada

para o curso de Especialização em Engenharia de Software da Universidade Candido

Mendes, Rio & Janeiro, 2005, disponível em

74

<www.riosoft.softex.br/arquivos/engenhariasoftwareseguro-renatopessanha.pdf:>, em 21 de

out 2005.

SOMERVILLE, 1. : Engenharia de Software. 6.ed Addison Wesley, 2003.

VAZQUEZ,C.;SIMÕES,G.; ALBERT,R.; Análise de Pontos de Função, 1. ed. São

Paulo, Érica, 2003

VEHVILAINEN,R.: What is Preventive Software Maintenance?. IEEE Computer

Society p.18 e 19. 2000.

TELES,V.: Extreme Programam: Aprenda Como Encantar seus Usuários. Novatec.

São Paulo. 2004.

ZVEGINTZOV,N.;PARIKH,G. : 60 years of Software Maintenance: Lessons Learned.

IEEE Computer Society. 2005.

