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ORIENTADORA: Prof. Dra. Kalinka Regina L. J. C. Branco

USP – São Carlos

2016



AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Sartin, Alex Monteiro
 S249d Definição e implementação de uma plataforma 

multissensorial de navegação com o Filtro de Kalman
Estendido / Alex Monteiro Sartin; orientadora Kalinka
Regina L. J. C. Branco. São Carlos, 2016.

Monografia (Graduação em Engenharia Elétrica com 
ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2016.

1. Plataforma Multissensorial. 2. Fusão de dados. 
3. Navegação Inercial. I. Título.







Aos meus pais, Antonio Carlos e Mônica. . .
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auxiliou e compartilhou comigo inúmeros conhecimentos, transformando a realização

desse projeto posśıvel.
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Resumo

Este trabalho contém o projeto e a implementação de uma plataforma multis-

sensorial para aquisição de dados, que explora a técnica e as capacidades de filtragem

do Extended Kalman Filter em estimar as informações de posição, velocidade e ati-

tude do sistema com os sensores de GPS, sonar e uma unidade de medida inercial.

Uma plataforma móvel e compacta foi desenvolvida, empregando o minicomputa-

dor Odroid-XU4, conectado aos sensores inerciais ADIS16407, o receptor de GPS

LS20031 e o sonar MB1242 interligados pelo shield XU4 Shifter e circuitos de con-

versão de tensão. O funcionamento da plataforma é demonstrado por meio da coleta

de dados dos sensores e da aplicação do filtro de Kalman. Um levantamento teórico e

experimental dos rúıdos presentes no sistema foi realizado e utilizado para parametri-

zar as matrizes de covariância do filtro de Kalman. Os resultados obtidos mostram

bom desempenho de estimação do filtro, obtendo-se assim informações confiáveis

para a navegação inercial.

Palavras-Chave: Plataforma Multissensorial, Fusão de dados, Navegação

Inercial.





Abstract

This work presents the design and implementation of a multisensory data

acquisition platform and explores the technique and filtering capabilities of the Ex-

tended Kalman Filter to estimate the position, velocity and attitude of the system,

using GPS, sonar and inertial sensors. A mobile and compact platform was deve-

loped using the Odroid-XU4 minicomputer, connected to the ADIS16407 inertial

sensors, the LS20031 GPS receiver and the MB1242 sonar by the XU4 Shifter shield

and voltage conversion circuits. The operation of the platform is demonstrated by

collecting sensor data and applying it to the Kalman filter. A theoretical and experi-

mental study of the system’s intrinsic noise was carried out and used to parameterize

the covariance matrices of the Kalman filter. The obtained results display the good

performance of the filter estimations, thus obtaining more reliable information for

the inertial navigation.

Key-Words: Multisensory platform, Data Fusion, Inertial Navigation.
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3.7 Posśıveis tensões de comunicação dos sensores. . . . . . . . . . . . . . 75

4.1 Comandos para configuração do módulo GPS. . . . . . . . . . . . . . 83
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4.5 Considerações finais . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Conclusões 117

5.1 Trabalhos Futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



24



25

Caṕıtulo 1

Introdução

Véıculos Aéreos Não Tripulados (VANTs) são aeronaves que não necessitam

de pilotos humanos a bordo para serem guiadas. Esses tipos de véıculos são capazes

de operar de forma completamente autônoma ou teleguiadas remotamente graças ao

piloto automático embarcado, que mantém a aeronave em voo de forma estável e

segura [1].

O correto funcionamento do piloto automático só é posśıvel graças às in-

formações do ambiente em que a aeronave se encontra. Esses dados são provenien-

tes de sensores, como GPS (Global Positioning System), acelerômetros, giroscópios,

magnetômetros e barômetros.

Esses dispositivos sensoriais fornecem dados que auxiliam o piloto automático

nas tarefas de navegação, como estabilização e seguimento de trajetórias. Para isso,

é necessário possuir conhecimento da posição espacial da aeronave e de suas veloci-

dades.

Atualmente, essas informações estão dispońıveis em mais de um sensor, per-

mitindo que sejam utilizadas técnicas de fusão de dados sensoriais para aprimorar a

estimativa desses dados com maior confiabilidade e estabilidade.
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1.1 Motivação

A fusão de dados de diversos sensores, mesmo que de baixo custo, permite

obter estimativas de maior confiabilidade, equivalentes às medidas produzidas por

sensores de alto custo. Essa vantagem é importante no desenvolvimento de VANTs,

pois permite diminuir os gastos com a construção da aeronave. Ainda mais, sensores

de diversos tipos e caracteŕısticas utilizados são abstráıdos no processo de fusão,

garantindo uma maior facilidade de troca e manutenção do sistema [2].

Outra vantagem da fusão de dados é a possibilidade de adquirir dados com

uma taxa de aquisição mais alta do que usando sensores com baixa taxa de aquisição,

como no caso do GPS. Dessa forma, obtém-se informações relevantes para a tomada

de decisões por parte do piloto automático, com um pequeno custo de processamento.

1.2 Objetivos do Trabalho

Pelas razões apresentadas anteriormente, o objetivo deste trabalho é a de-

finição e implementação de uma plataforma integrada para a aquisição de dados e o

desenvolvimento da técnica de fusão de dados com o Extended Kalman Filter para

estimar informações de posição, velocidade e atitude do véıculo aéreo.

Essa plataforma será empregada em um VANT capaz de aterrissar e decolar

verticalmente e voar horizontalmente, chamado AVALON [3]. Portanto, a imple-

mentação da plataforma deve cobrir a interligação dos sensores na placa de proces-

samento do piloto automático (Odroid-XU4) e contemplar os requisitos do sistema.

Espera-se, como resultado, obter estimativas de posição, velocidade e atitude

mais precisas do que as obtidas pelos sensores individualmente.
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1.3 Organização do Trabalho

A monografia está dividida da seguinte maneira: o Caṕıtulo 2 apresenta todo

o conhecimento teórico necessário para o desenvolvimento do trabalho, em especial,

o funcionamento dos sensores e seus protocolos de comunicação e as técnicas de fusão

de dados; no Caṕıtulo 3 são relatados os sensores escolhidos, os detalhes da placa de

processamento, o interligamento entre eles e a representação do algoritmo Extended

Kalman Filter para o caso da navegação em um VANT; o Caṕıtulo 4 apresenta os

resultados do trabalho como um todo; e no Caṕıtulo 5 são apresentadas as conclusões

finais do trabalho e os trabalhos futuros.
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Caṕıtulo 2

Embasamento Teórico

2.1 Considerações Iniciais

Este caṕıtulo compila a bibliografia necessária para o entendimento e o de-

senvolvimento deste projeto, abordando os dispositivos (hardware) envolvidos e suas

propriedades e, o algoritmo de fusão de dados utilizado.

2.2 Sistema de posicionamento global (GPS)

O sistema de posicionamento global ou GPS (Global Positioning System) é

um sistema de navegação global via satélites, desenvolvido pelo Departamento de

Defesa dos Estados Unidos, com o intuito de ser o principal meio de navegação

de seu exército. Seu uso, entretanto, encontrou outra aplicação no meio civil, a

de localização geo-espacial absoluta. Com sua utilidade e popularização, outros

páıses, baseando-se no GPS, lançaram seus próprios sistemas de localização como o

GLONASS (Rússia), Galileo (União Européia) e Beidou (China) [4].

Os receptores de GPS vêm seguindo a evolução da indústria eletrônica e seus
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modelos podem ser encontrados em diversos tamanhos, robustez, frequências, com-

patibilidade com múltiplos sistemas de posicionamento, capacidade de se conectar

com múltiplos satélites e, sobretudo, com diferentes taxas de atualização de posição,

custo e precisão. Na Figura 2.1 é ilustrado um exemplo dos diversos receptores de

GPS encontrados no mercado.

Figura 2.1: Modelos de GPS encontrados no mercado, adaptado de [5, 6, 7].

Em geral, até os módulos mais simples possuem taxas de atualização que va-

riam de 1 à 18 vezes por segundo, além de uma precisão que pode alcançar 2,5 metros

ou 2,0 metros quando o sistema é assistido com uma infraestrutura de triangulação

terrestre, encontrado em páıses como Estados Unidos e União Europeia [8].

O processo de localização geográfica do GPS é chamado de trilateração (usu-

almente chamado de triangulação), e consiste na leitura e medição dos sinais de

radiofrequência emitidos pelos satélites que orbitam a Terra. As informações pro-

venientes de quatro ou mais satélites e seus respectivos tempos de resposta até o

receptor, permitem calcular a posição atual do GPS no globo terrestre [9].

A vantagem deste sistema é que, uma vez que os sinais dos satélites são

recebidos corretamente, a qualidade e a precisão do posicionamento é garantida,

limitando a propagação de erro do sistema no longo prazo. Porém, por depender de

um sinal externo, o GPS está sujeito a erros que ocorrem na triangulação dos sinais

[9].

O processo de triangulação depende fortemente das ondas eletromagnéticas

que chegam até o GPS e está sujeito a sofrer diversas interferências do meio externo,
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especialmente em regiões urbanas, montanhosas ou subterrâneas. Atrasos de pro-

pagação na atmosfera, perda ou oscilação do sinal, reflexão das ondas em prédios

e até no próprio solo formam multi-caminhos das ondas entre o GPS e os satélites,

confundindo e alterando os dados do GPS, gerando uma medida que não corresponde

à realidade [10]. Na Figura 2.2 são ilustrados alguns destes erros.

Figura 2.2: Tipos de interferência sofrida pelo sinal de GPS, adaptado de [11].

A taxa de atualização e a precisão da localização são imprescind́ıveis para

véıculos aéreos de alta velocidade, tripulados ou não. É por isso que o GPS é utilizado

para localização absoluta (em longo prazo), mas não pode ser o único instrumento de

posicionamento. Para maior precisão, em curto prazo, utiliza-se o sistema inercial,

descrito na próxima seção.

2.3 Unidade de Medição Inercial

A unidade de medição inercial, ou Inertial Measurement Unit (IMU) é um

dispositivo composto por um conjunto de três acelerômetros e três giroscópios, per-

pendiculares entre si, que medem respectivamente a força espećıfica proveniente da

aceleração do corpo e a velocidade angular produzida nos seus três eixos (x, y e z).

Com essas informações é posśıvel calcular o movimento translacional e rotacional que

um determinado corpo sofre utilizando a segunda lei de Newton [9].
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Muitas vezes esses sensores são compostos por micro sistemas eletromecânicos,

ou MEMS (Micro Electro Mechanical Systems). Essa tecnologia integra não só

estruturas mecânicas (como acelerômetros, giroscópios e barômetros), mas também

outros sistemas (como os elétricos e eletrônicos) de forma compacta barata, porém

com baixa precisão para sistemas dinâmicos [12].

Dispositivos que utilizam essa tecnologia conseguem produzir um equipa-

mento portátil, completo, robusto e com baixo consumo de energia atendendo as

especificações necessárias para navegação de véıculos autônomos de pequeno porte.

Na Figura 2.3 é ilustrado um modelo de unidade inercial da Analog Devices.

Figura 2.3: Unidade de medida inercial da Analog Devices, modelo ADIS16355 [13].

Com o avanço da tecnologia dos MEMS cada vez mais componentes então

sendo integrados numa mesma plataforma. Além dos sensores, as unidades de medida

inercial (do tipo MEMS) mais completas, geralmente são acompanhadas de [14]:

• Elementos de filtragem analógica: filtros passa-baixa para rejeições de

rúıdos e atenuação de efeitos de aliasing 1;

1Aliasing é um efeito que ocorre em sinais discretizados quando a frequência de amostragem
não é grande o suficiente. Neste caso, componentes do sinal analógico com frequências elevadas
aparecem no sinal digitalizado em uma outra frequência, descaracterizando o sinal.
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•• Dispositivos de amostragem: conversores analógico-digital (ADC) para

aquisição dos sinais (não processados) dos sensores;

• Microcontrolador: processador digital que realiza o condicionamento do si-

nal amostrado, efetuando calibragem e correção nas leituras dos sensores, apli-

cando filtros digitais para atenuar diferentes tipos de rúıdos e imprecisões,

formatando e fornecendo os dados sensoriais por meio de uma interface digital

de comunicação.

Na Figura 2.4 são ilustrados os componentes citados em uma IMU tipo

MEMS;

Figura 2.4: Diagrama de blocos dos componentes integrados de uma IMU.

Os sensores comumente encontrados numa IMU são o acelerômetro, giroscópio,

magnetômetro, barômetro e termômetro, descritos nas subseções a seguir.

2.3.1 Acelerômetro

O acelerômetro mede a força espećıfica aplicada ao corpo do módulo, que

é a soma da aceleração aplicada com a aceleração da gravidade da Terra [9]. A

aceleração do corpo, portanto, pode ser facilmente extráıda do sensor. A partir dela,

integrações sucessivas no tempo disponibilizam a velocidade e posição relativa do

corpo. Um conjunto de três sensores ortogonais entre si dispõe as acelerações do

corpo nas três direções do espaço, notada pelo vetor ã = [ax, ay, az]
T .
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Acelerômetros MEMS são feitos de um substrato endentado móvel, conectado

por molas adjacentes a um segundo substrato, também endentado, mas fixo. Os

dentes, ou pás, entre os substratos são dispostos de forma a criar placas paralelas

entre si, se comportando como pequenos capacitores. As forças produzidas no sensor

deslocam o substrato móvel alterando a distância entre as placas e sua capacitância.

Um transdutor é formado utilizando esse capacitor num circuito elétrico, con-

vertendo a aceleração aplicada em tensão [15]. Seu funcionamento é ilustrado na

Figura 2.5.

Figura 2.5: Componentes de acelerômetro MEMS, adaptado de [16].

O desempenho do sensor é diretamente influenciado pelos rúıdos presentes,

especialmente quando medindo pequenas acelerações. Além do desempenho, a pre-

cisão do sensor é agravada com a velocidade de leitura do sensor.

2.3.2 Giroscópio

O giroscópio mede a velocidade angular em torno de seu eixo. Com essas

informações pode-se calcular as rotações aplicadas num determinado corpo.

Os giroscópios mecânicos são baseados no efeito Coriolis: fenômeno pelo qual

objetos que se movem com uma certa velocidade angular em uma estrutura giratória

apresentam forças chamadas de Coriolis, proporcionais a sua rotação. Os giroscópios
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MEMS do tipo feixe ressonante, utilizam a oscilação de pêndulos piezoelétricos para

medir (eletricamente) a velocidade angular aplicada em seu corpo [17].

Um conjunto de três sensores ortogonais entre si dispõe a velocidade angular

do corpo nas três direções do espaço, notada pelo vetor ω̄ = [ωx, ωy, ωz]
T .

2.3.3 Magnetômetro

O magnetômetro mede a intensidade, direção e sentido do campo magnético

em suas proximidades e é utilizado para calcular o Norte ou ângulo de direção (hea-

ding) de uma aeronave.

Magnetômetros do tipo escalar medem apenas a magnitude do campo, en-

quanto magnetômetros vetoriais medem a magnitude e sentido do campo magnético

[10].

Em 90% dos casos os magnetômetros MEMS utilizam o efeito Hall para

mediação do campo magnético. Quando uma corrente elétrica percorre uma placa

condutora e que está sobre a ação de uma força magnética, os elétrons e os prótons

se deslocam em oposições opostas. A deflexão de cargas na placa gera uma diferença

de potencial que é medida e convertida em intensidade de campo [18]. Este efeito é

ilustrado na Figura 2.6.

Um conjunto de três sensores ortogonais entre si dispõe a velocidade angular

do corpo nas três direções do espaço, notada pelo vetor H̃ = [Hx, Hy, Hz]
T .

2.3.4 Barômetro

O barômetro utiliza materiais piezelétricos resistivos para medir a pressão

atmosférica local, utilizada no cálculo da altitude relativa da plataforma em relação

a sua posição em solo, denotada por h̃.
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Figura 2.6: Efeito Hall empregado em sensores MEMS [18].

2.3.5 Termômetro

O termômetro mede a temperatura local para cálculos atmosféricos desejados

e principalmente para a correção dos rúıdos e desvios dos sensores provocados pela

mudança da temperatura.

2.3.6 Vantagens e desvantagens da IMU

Ao contrário do GPS, a IMU possui alta taxa de atualização, que pode chegar

a 10 mil amostras por segundo já incluindo a ação do filtro de média digital que

diminui essa taxa. Isso significa que a cada 100 microssegundos uma amostra de

cada sensor está pronta para ser lida e processada. Além disso, a IMU pode ser

chamada de sistema autocontido, pois é independente de sinais externos, como os

dos satélites. Isso assegura um sensoriamento cont́ınuo do movimento da plataforma

independente do ambiente interno ou externo [12].

A posição relativa da aeronave pode ser obtida pela dupla integração da

aceleração medida pela IMU e, portanto, sofre acúmulos e acréscimo de erros ao

longo do tempo (conhecido em inglês como drift), tornando a navegação inercial

ideal apenas para pequenas distâncias [19]. Ainda mais, a qualidade e precisão dos
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sensores da IMU estão diretamente relacionadas com o desempenho e sucesso da

navegação, pois uma medição depende da anterior.

Os sistemas de GPS e IMU são complementares entre si e a união deles é

estritamente necessária para minimizar suas deficiências e maximizar seus desem-

penhos, garantindo precisões a curto e longo prazo, do movimento e da posição do

véıculo.

Nos procedimentos mais cŕıticos da navegação, como decolagem e o pouso da

aeronave, uma precisão superior da medida da sua altitude é desejada. Para isto, o

sonar é incorporado no sistema e seu funcionamento é detalhado na próxima seção.

2.4 Sonar

Sonares são sensores acústicos que utilizam o prinćıpio da reflexão de ondas

mecânicas (eco) para medir a distância até um objeto. O sensor emite uma onda

ultrassônica (onda sonora com frequência acima da aud́ıvel) que se transporta pelo

meio, geralmente o ar, até encontrar um objeto. Ao se chocar com esse objeto a

onda retorna pelo caminho inverso e chega de volta ao sensor. Admitindo-se que o

tempo e a distância de ida e volta da onda são iguais e a velocidade da onda acústica

é constante, pode-se calcular a distância entre o sensor e o objeto pela equação (2.1),

onde t é o tempo medido pelo sensor em segundos. Na Figura 2.7 é ilustrada a

emissão e reflexão da onda sonora.

D(t) = t·vsom
2

= t·343,2m/s
2

D(t) = t · 171, 6 [m]

(2.1)

Esse tipo de sensor possui alto ńıvel de eficiência e conformidade de medição,

pois ele sempre mede a onda que leva o menor tempo para chegar ao sensor. Por isso,

as ondas que percorrem distâncias maiores, como as refletidas em múltiplos objetos,
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Figura 2.7: Funcionamento do sonar [20].

não interferem na medida final do sensor.

Os módulos de sonares mais simples possuem apenas dois sinais de controle.

Um comanda a emissão da onda acústica, enquanto o outro, escuta o eco da onda

refletida. Para esse tipo de sensor é necessário um microcontrolador ou circuitos de

conversão que monitorem o tempo entre a transmissão e a recepção da onda [20].

Os sensores mais inteligentes, entretanto, realizam o processo de medição

automaticamente e disponibilizam uma interface de comunicação onde disponibilizam

as medidas de distância efetuadas [21].

A maior limitação desse tipo de sensor consiste na máxima distância em que

um objeto é reconhecido. O alcance é limitado pelas propriedades de propagação da

onda sonora. Do mesmo jeito que um ser humano tem dificuldades em ouvir uma

pessoa a 30 metros de distância, o sensor não dispõe potências suficientes para ouvir

a resposta do seu sinal a partir de alguns metros.

Apesar do sonar possuir pouco alcance, suas medições são mais precisas do

que o GPS e imune à rúıdos do que a IMU, e por isso, é utilizado na navegação de

véıculos não tripulados, medindo a altura do véıculo em relação ao solo no processo

de pouso e de decolagem.
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Conforme relatado, os sensores mais modernos possuem um formato próprio

de comunicação para acesso às informações coletadas. Esse procedimento é realizado

por meio de protocolos de comunicação, muitas vezes espećıficos para cada sensor.

2.5 Protocolos de Comunicação

Protocolo de comunicação é um conjunto de regras adotado para facilitar o

entendimento de duas ou mais partes. É a “linguagem” utilizada por dispositivos

para que eles consigam se comunicar e trocar informações entre si.

Os protocolos de comunicação de hardware utilizados neste projeto, pelos

sensores, são detalhados nas próximas seções.

2.5.1 Serial Peripheral Interface (SPI)

O protocolo SPI foi criado e desenvolvido pela Motorola para comunicação

de periféricos inteligentes, como microcontroladores. Trata-se de um protocolo de

comunicação serial (um dado por vez) śıncrono entre periféricos que compartilham

o mesmo clock, operando em full-duplex com transmissão e recebimento simultânea

de dados.

O SPI possui uma arquitetura master-slave (do inglês, mestre-escravo), onde

o mestre é responsável por controlar e permitir as comunicações efetuadas no barra-

mento. Nesta arquitetura, múltiplos periféricos podem estar conectados no mesmo

barramento, entretanto, num dado momento, apenas um dispositivo pode ser mestre

se comunicando com outro dispositivo escravo [22]. Sua arquitetura é ilustrada na

Figura 2.8.

O barramento da arquitetura SPI possui quatro sinais unidirecionais [22]:

• SCL (Serial Clock): Sinal enviado apenas pelo mestre, é a linha utilizada para

sincronismo (ou sinal do relógio) e controle da velocidade de comunicação. O

dado só é enviado quando ocorre a transição deste sinal;
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•• MOSI (Master Output Slave Input): Linha de transmissão de dados do mestre

para o escravo. O escravo escuta esta linha apenas quando requisitado.

• MISO (Master Input Slave Output): Linha de transmissão de dados do escravo

para o mestre. Após solicitação do dado, o mestre aguarda a resposta do escravo

nesta linha para, somente depois, liberar o barramento.

• SS (Slave Select) ou CS (Chip Select): Linha utilizada pelo mestre para esco-

lher o dispositivo com o qual ele deseja se comunicar. Esta linha é única para

cada periférico pois dois escravos não conseguem conversar ao mesmo tempo.

Figura 2.8: Topologia do barramento f́ısico SPI, adaptada de [23].

A comunicação neste protocolo geralmente ocorre entre o mestre (geralmente

um microcontrolador) que acessa os bancos de registradores dispońıveis nos pe-

riféricos escravos (como sensores). O processo se inicia quando o mestre seleciona

o escravo levando seu sinal de CS ao ńıvel lógico zero. A partir desse momento, o

escravo designado recebe o comando, que pode ser de leitura ou escrita, e responde

adequadamente para o mestre pela linha MISO. O tamanho do dado é sempre um

valor fixo e constante portanto, o mestre sabe quando a informação chegou e encerra
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o processo de comunicação.

Um exemplo do processo de comunicação entre um microcontrolador (mestre)

com um sensor (escravo) pode ser relatado da seguinte maneira: o mestre escreve um

valor no registrador de um termômetro que corresponde ao pedido de realizar uma

medida de temperatura. Quando ela é cumprida, o sensor disponibiliza a informação

em um segundo registrador (com um endereço diferente). O mestre, sem saber o

momento que a nova informação está dispońıvel, realiza leituras em um terceiro

registrador indicando justamente tal disponibilidade. Quando o terceiro registrador

indicar uma nova medida, o mestre realiza a leitura da temperatura e processa o

dado [14].

Algumas vantagens do protocolo SPI em relação aos demais são: (a) a ve-

locidade de comunicação pode ser mais alta e full-duplex, (b) a frequência do clock

não é limitada pelo protocolo e atualmente, consegue atingir 100MHz, atingindo

transferências numa taxa de 30Mbps, (c) as palavras (ou tamanho do dado) não

são limitadas a 8 bits e (d) a flexibilidade de comunicação com diferentes ńıveis de

tensões, quando seus circuitos utilizam sáıdas do tipo coletor-aberto [23].

Suas desvantagens incluem: (a) falta de controle de dados (aumentando sua

susceptibilidade a erros), (b) desconhecimento do escravo (o mestre transmite sem

saber quem está conectado), (c) suporte a apenas um dispositivo mestre e (d) maior

limitação de distância entre periféricos quando comparada a outros protocolos [23].

2.5.2 Inter-Integrated Circuit (I2C)

O protocolo I2C, desenvolvido na Philips em 1996, essencialmente aceita qual-

quer número de dispositivos mestres ou escravos conectados ao barramento. Sua

comunicação serial é śıncrona, half-duplex (recebe ou envia dados) e possui somente

duas linhas de comunicação bidirecionais [22]:

• SCL (Serial Clock): Também conhecido como sinal do relógio, é um sinal

utilizado para sincronismo dos dados e controlado apenas pelo mestre. O dado



42

é transmitido apenas quando ocorre transição neste sinal;

•• SDA (Serial Data): Linha de transmissão de dados entre o mestre e o escravo.

O escravo escuta esta linha apenas quando requisitado.

Entre os dispositivos deste protocolo, apenas o mestre pode iniciar a comu-

nicação e este deve conhecer de antemão o endereço de 7 bits único do dispositivo

escravo com o qual deseja se comunicar. A velocidade do barramento é definida em

100 kbps, 400 kbps ou 3,4 Mbps denominados como standard mode, fast mode e high

speed mode, respectivamente [23].

A arquitetura de seu barramento é ilustrada na Figura 2.9.

Figura 2.9: Barramento f́ısico I2C, adaptado de [24].

A comunicação no I2C se inicia com o mestre enviando uma condição de ińıcio

(bit 0) na linha SDA. Isso serve como um alerta para que todos os dispositivos

conectados ao barramento comecem a ”ouvir” os dados enviados. Em seguida, o

mestre envia os 7 bits de endereço do escravo que deseja acessar junto com uma

indicação, se o acesso é do tipo leitura ou escrita. Neste momento todos os periféricos

comparam o endereço recebido com o seu próprio. Se não houver correspondência,

eles param de escutar o barramento e esperam até que a próxima condição de ińıcio

seja reproduzida novamente. Entretanto, se o endereço comparado corresponder

ao do enviado, o escravo manda um sinal de reconhecimento (acknowledge) para

o mestre. Quando o mestre recebe esta resposta, ele pode transmitir o resto da
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instrução. Para cada byte transmitido com sucesso, um sinal de reconhecimento

deve ser enviado para quem o transmitiu. Quando o processo estiver acabado, o

mestre emite uma condição de fim, voltando o barramento ao seu estado ocioso [23].

As maiores vantagens do protocolo I2C são a utilização de apenas dois fios e

a existência de um controle de fluxo de dados que auxilia tanto na detecção de falhas

no barramento, como também evita o choque de dados entre dois ou mais mestres

na tentativa de se comunicarem simultaneamente [23].

Suas desvantagens incluem: (a) menor taxa de transmissão de dados, (b) ne-

cessidade de resistores externos, (c) incompatibilidade de operação com dispositivos

de diferentes tensões de alimentação (pois não possuem sáıda em dreno-aberto), (d)

restrições entre seus endereços, pois dispositivos com o mesmo endereço não podem

ser interligados juntos e (e) limitação de número de dispositivos ligados ao mesmo

barramento [23].

2.5.3 Protocolo serial asśıncrono

Este protocolo utiliza duas vias de sinais, ambas para envio de dados, deno-

minados TX (transmissão) e RX (recepção). Tanto a linha TX quanto a RX podem

transportar dados simultaneamente, caracterizando esse protocolo como full-duplex

[25].

A comunicação serial, ao contrário da I2C e SPI, não utiliza sinal de sin-

cronismo (clock) e por isso é denominada asśıncrona. Em vez disso, o transmissor

adiciona bits de sincronia entre os dados, denominados start e stop bits. Quando o

receptor detecta o bit de ińıcio, começa a ler os dados de entrada, compostos de 7

ou 8 bits no formato ASCII (American Standard Code for Information Interchange),

em uma frequência pré-combinada entre ambos os dispositivos. A frequência, ou

velocidade, do protocolo é chamada de baud rate expressado em bits por segundo

(bps) e pode chegar, na maioria dos casos a 115200 bps, ou seja, cerca de 0,11 Mbps

[25]
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Além do start e stop bits, o protocolo implementa o bit de paridade, usado

para checar se o dado enviado pelo transmissor chegou livre de modificações no

receptor.

A baixa velocidade do protocolo, apesar de full-duplex, se dá pela falta de

sincronismo entre os dispositivos, sendo que ambos devem ter seu próprio relógio

(clock) com alta precisão. Na Figura 2.10 é ilustrada a topologia e um t́ıpico frame

de transmissão.

Figura 2.10: (a) Topologia e (b) pacote de dados da cominação serial asśıncrona,
adaptado de [26, 27].

Suas vantagens incluem usar somente dois fios unidirecionais, porém, com

comunicação full-duplex, e possuir checagem de erro e integridade fazendo uso do bit

de paridade. Enquanto suas desvantagens, entretanto, incluem suporte para apenas

2 dispositivos por barramento, a necessidade de um oscilador a cristal externo para

gerar o clock com alta precisão e baixa velocidade de transmissão [25].
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2.6 Navegação inercial

Navegação inercial é o processo que fornece informações sobre velocidade,

posição, atitude2 e direção de um sistema em relação a um determinado referen-

cial, utilizando-se, para isso, de dados provenientes de sensores inerciais como o

acelerômetro e o giroscópio e sensores de posicionamento global, como o GPS [17] .

Para realizar o processo de fusão de dados sensoriais é preciso primeiro estabe-

lecer a relação dos dados entre si. Isso é feito encontrando as equações de movimento

em diferentes sistemas de coordenadas que definem os estados da navegação inercial

e as relações de medições.

Sistemas de coordenadas são utilizados para geo-referenciar, de forma padro-

nizada, determinados corpos ou plataformas. Para estabelecer a localização do objeto

faz-se necessário definir um sistema de coordenadas onde tal objeto está inserido.

Os sistemas de coordenadas utilizados possuem três eixos ortogonais e podem

ser tanto fixos, no centro da Terra, quanto móveis, acompanhando o véıculo em

questão. Os sistemas utilizados nesse trabalho são descritos a seguir, juntamente

com a definição das equações de movimento dos estados de navegação.

2.6.1 Referencial de navegação terrestre

O sistema North-East-Down (NED), também chamado de sistema de na-

vegação inercial local, ou n-frame, está fixo na Terra e tem como origem a posição

inicial do véıculo. Por convenção acrescenta-se o ı́ndice “n” aos seus eixos, onde o

eixo Yn corresponde ao North (ou Norte), o eixo Xn corresponde ao East (ou Leste),

e o eixo Zn corresponde ao Down (ou baixo) [17].

2Atitude é a posição de um sistema ou corpo gerado pela inclinação de seus eixos com relação
a um referencial inercial pré-determinado.
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O sistema NED é geralmente adotado para os referenciais de navegação, uma

vez que seu sistema forma um plano tangencial com a superf́ıcie da Terra, de modo

que, ele pode ser facilmente relacionado com o modelo de localização global utili-

zado pelo GPS, o Sistema Universal Transversa de Mercator (UTM). Esse sistema

representa a Terra como uma superf́ıcie plana (projetando o globo num plano 2D)

com coordenadas de latitude, longitude e altura [28]. O sistema UTM é ilustrado na

Figura 2.11 abaixo.

Figura 2.11: Sistema de coordenadas UTM, utilizado no GPS. Adaptado de [29].

As relações entre o sistema navegacional adotado (NED) e o sistema de posi-

cionamento (UTM) são [17]:

• Eixo East ou eixo Xn: aponta na direção em que a longitude cresce e pode

ser referenciado com os eixos Yn e Zn pela regra da mão direita.

• Eixo North ou eixo Yn: aponta na direção em que a latitude cresce, que

corresponde ao Norte geográfico da Terra;

• Eixo UP ou eixo Zn: aponta na direção que a altura (ou altitude) cresce ou

aponta para fora da Terra (oposto ao centro da Terra).

Na Figura 2.12 são ilustrados os sistemas NED e UTM no globo terrestre.
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Figura 2.12: Sistemas de coordenadas Noth-East-Down e UTM [29].

2.6.2 Referencial da plataforma

O sistema de coordenadas referencial da plataforma possui suas origens fixas

ao véıculo ou corpo alvo, e por isso, também é chamado, de body frame, ou b-frame.

Normalmente o centro do sistema está localizado junto ao centro geométrico ou

centro de massa do corpo (onde também deve estar localizada a unidade de medida

inercial), de maneira que a orientação do corpo não muda no sistema [17].

Acrescenta-se o ı́ndice “b” aos seus eixos, onde o eixo Xb do sistema da

plataforma aponta para a direção frontal do movimento do véıculo, o eixo Yb deve

ser ortogonal a Xb e apontar para a direita, enquanto que o eixo Zb aponta para

baixo (utilizando a regra da mão direita).

Na Figura 2.13 é ilustrado o sistema fixo de coordenadas em um véıculo aéreo.



48

Figura 2.13: Sistema de coordenas da plataforma ou body frame, adaptada de [30].

2.6.3 Parâmetros de Navegação

De acordo com [31], os parâmetros para a navegação inercial são compostos

de três conjuntos de variáveis: posição, velocidade e atitude.

Os parâmetros de posição determinam a localização do corpo na superf́ıcie

da Terra e é muito importante para a navegação. A posição é dada pelas três coor-

denadas North, East e Down, p = [xn, xe, xd]
T .

A velocidade também expressa no sistema NED, possui componentes verticais

e horizontais do movimento do véıculo, de forma que, a componente horizontal vn

aponta para o Norte e a horizontal ve para o Leste. Por fim, a componente vertical vd

aponta para a Terra e é a velocidade definida como a variação temporal da altitude.

Seu vetor é escrito como: v = [vn, ve, vd]
T .

A atitude define a rotação nos eixos x, y, e z de um body frame. As prin-

cipais formas de representação da atitude de um corpo são feitas em ângulos de

Euler ou quatérnios unitários. A conversão entre sistemas, quando necessária, é feita

utilizando a matriz de rotação, ou a matriz de cossenos diretores [17].



49

Os ângulos de Euler expressam a orientação do corpo por três ângulos defi-

nidos como [31]:

• Roll (φ): Ou ângulo de rolagem, correspondente à rotação no eixo X (eixo

longitudinal do véıculo).

• Pitch (θ): Ou ângulo de arfagem, correspondente à rotação no eixo Y.

• Yaw (ψ): Ou ângulo de guinagem, correspondente à rotação no eixo Z. Se

a direção de referência é o Norte Geográfico, o ângulo de guinagem pode ser

chamado de ângulo de rumo (ou em inglês, heading).

Apesar dos ângulos de Euler retratarem a atitude de forma intuitiva, esse sis-

tema possui um problema representativo de singularidade, chamado de Gimbal Lock.

Isso ocorre quando θ = 90◦ e o eixo Y alinha-se com o Z, fazendo com que rotações

com os ângulos Roll e Yaw apliquem movimentos indistintas na aeronave. Este é um

problema fundamental dos ângulos de Euler e só pode ser resolvido utilizando um

método diferente de representação das rotações [17].

Por este motivo, o Quaternion será o sistema adotado para a representação

da atitude, dado que além de possuir a singularidade de representação desejada, seu

custo computacional é menor, pois possui menos coeficientes para serem determina-

dos na sua matriz de rotação [32].

Sua representação é composta de quatro números hipercomplexos na forma

q = q1 + iq2 + jq3 + kq4 ou na forma matricial q = [q1 q2 q3 q4]
T [32].

2.6.4 Equações de Navegação

Adotados os parâmetros de posição, velocidade e atitude no sistema de co-

ordenadas NED, as equações da navegação inercial podem ser estabelecidas pelas

equações (2.2) a (2.4) [32].
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v̇ = Cn
b ã+ gn

ṗ = v

q̇ = 1
2
Ωw̃q

(2.2)

Cn
b =


q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) q21 − q22 + q23 − q24 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) q21 − q22 − q23 + q24

 (2.3)

Ωw̃ =


0 w̃p w̃q w̃r

−w̃p 0 −w̃r w̃q

−w̃q w̃r 0 −w̃p
−w̃r −w̃q w̃p 0


(2.4)

Onde:

ã = vetor força espećıfica, fornecido pelo acelerômetro, que atua sobre o corpo;

gn = vetor da gravidade da Terra com sinal positivo por convenção NED;

Cn
b = matriz de conversão dos vetores do corpo do avião (body frame) para o

sistema de navegação (n-frame);

ṗ = posição do sistema, integrado numericamente do vetor velocidade;

q̇ = atitude do sistema, em função da velocidade angular;

Ωw̃ = matriz anti-simétrica de w̃ (vetor da velocidade angular);

As medidas de latitude, longitude e altura do GPS proporcionam a posição

do véıculo, porém no sistema UTM. Como o véıculo (body frame) utiliza um sistema

de referência diferente para a navegação, esses dados devem ser transformados para

o sistema North-East-Down aplicando as equações (2.5) [33].
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ZGPS = [dn de − du]T

(2.5)

Onde:

ZGPS = Posição obtida do GPS nas coordenadas NED, em metros.

Os ângulos de Roll e Pitch são calculados diretamente do giroscópio e con-

vertidos em quaternions pelas equações em (2.6).

q1 = cos(φ
2
) ∗ cos( θ

2
) ∗ cos(ψ

2
) + sin(φ

2
) ∗ sin( θ

2
) ∗ sin(ψ

2
);

q2 = −cos(φ
2
) ∗ sin( θ

2
) ∗ sin(ψ

2
) + sin(φ

2
) ∗ cos( θ

2
) ∗ cos(ψ

2
);

q3 = cos(φ
2
) ∗ sin( θ

2
) ∗ cos(ψ

2
) + sin(φ

2
) ∗ cos( θ

2
) ∗ sin(ψ

2
);

q4 = cos(φ
2
) ∗ cos( θ

2
) ∗ sin(ψ

2
)− sin(φ

2
) ∗ sin( θ

2
) ∗ cos(ψ

2
);

q = [q1 q2 q3 q4]
T ;

(2.6)

O ângulo Yaw (ψ), ou ângulo de direção, pode ser obtido utilizando o campo

magnético medido pelos magnetômetros e os ângulos Roll e Pitch.

Dado que a aeronave geralmente não está completamente plana e paralela à

superf́ıcie da Terra, a IMU e seus magnetômetros também não estão. Para calcular

o Yaw, rotaciona-se as medidas dos magnetômetros (H̃x, H̃y, H̃z) com os ângulos de

Roll e Pitch (obtidos pelo giroscópio), pelas equações (2.7), e calcula-se o ângulo de

Yaw utilizando a equação (2.8) [34].
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M̃x = H̃x cos θ + H̃y sinφ sin θ + H̃z cosφ sin θ

M̃y = H̃y cosφ− H̃z sinφ
(2.7)

ψ̃ = tan−1

(
−M̃y

M̃x

)
+ ψdec (2.8)

Onde:

H̃ = medidas do magnetômetro (campo magnético);

φ = ângulo de roll ;

θ = ângulo de pitch;

ψ̃ = ângulo de yaw.

ψdec = fator de correção entre o Norte magnético e o Norte real;

A altura do véıculo, acima de seu referencial, pode ser calculada a partir da

pressão atmosférica ρ̃ medida pelo barômetro. Primeiramente, calcula-se a pressão

na altura inicial pela equação (2.9). Após isso, a medida de altitude, h̃, é calculada

a partir de (7).

ρh0 = ρ0

(
1− Lh0

T0

)RL
gM

(2.9)

h̃ =
T0
L

1−
(
ρ̃

ρh0

)RL
gM

 (2.10)

Onde:

ρ0 = Pressão atmosférica;

h0 = Altura inicial determinada pelo GPS;

L, T0, R, g e M = Constantes atmosféricas internacionais [35].
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Sendo assim, foram definidas as equações que traduzem as medições dos senso-

res para os estados de navegação. O vetor de estados de navegação contendo os dados

de posição (North, East e Down), velocidade (das três orientações de referência) e

os valores do quaternion da atitude de dez variáveis é mostrado em (2.11).

x =



xn

xe

xd

vn

ve

vd

q1

q2

q3

q4



(2.11)

Onde:

xd representa a altitude relativa da plataforma inercial, e pode ser medida pela

integração dupla do acelerômetro, pelo GPS, pelo sonar ou pela conversão de pressão

do barômetro.

2.7 Fusão sensorial

Com a necessidade e o desejo de automatizar diversos processos, desde os

mais simples como abrir a torneira de uma pia quando uma pessoa se aproxima para

lavar as mãos, até os sistemas mais complexos, como a automação industrial ou um

piloto automático de aviões, o mercado disponibiliza diversos sensores com opções

de diversas tecnologias.

Com a existência desses inúmeros sensores, cujas naturezas são diferentes,
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é imprescind́ıvel uma plataforma, suficientemente flex́ıvel, que consiga captar seus

sinais e processá-los.

O processo de associar, correlacionar e combinar dados de diferentes sensores

(de mesma natureza ou não) de tal modo que a informação resultante é, de alguma

forma, mais precisa do que seria posśıvel quando utilizando-se os sensores individu-

almente, é denominado fusão sensorial [36].

A fusão entre sensores tem o objetivo de fornecer dados de medidas mais

refinados e mais próximos à realidade, proporcionando ao sistema que os utiliza

maior confiabilidade e estabilidade. As técnicas de fusão são extremamente versáteis

e dependem apenas da modelagem do sistema em questão.

Dependendo da arquitetura do sistema, a fusão de dados pode ocorrer de duas

formas [36]:

• Fusão direta: Quando os sensores utilizados fornecem medidas compat́ıveis

entre si, a fusão pode ser realizada diretamente dos dados colhidos dos sensores

[37]. Exemplo: Fusão da distância (ou altura) fornecida pelo sonar, sensor infra-

vermelho e barômetro. Como a conversão de pressão para altura do barômetro

é facilmente realizada, o sistema pode fundir diretamente as distâncias captu-

radas do sistema.

•• Fusão do vetor de estados: Quando sensores fornecem medidas em unidades

e naturezas diferentes, elas são correlacionadas e convertidas para um vetor de

estados que é utilizado na fusão [37]. Exemplo: Os dados do acelerômetro,

magnetômetro, e sonar são convertidos em um vetor de estados que é fundido

para calcular a altura relativa do sistema.

Na Figura 2.14 é ilustrado um sistema com os dois tipos de fusões descritas

e um sistema sem fusão da dados.

Dentro da fusão sensorial, o filtro de Kalman é um dos métodos mais utili-

zados em sistemas aerodinâmicos, como o proposto neste trabalho. Apesar de suas
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Figura 2.14: (a) Sistema sem uso de fusão sensorial, (b) fusão direta com sensores di-
ferentes porém de mesma natureza, (c) integração de sensores de diferentes naturezas
com fusão de vetor estado.

limitações, este filtro é extremamente efetivo não só em fundir os dados sensoriais,

mas também, em prever a dinâmica do sistema e estimar seus estados. Sua operação

é descrita na subseção 2.7.1.

2.7.1 Filtro de Kalman (KF)

O filtro de Kalman, ou KF (Kalman Filter), foi nomeado em homenagem à

Rudolf Kalman em 1960 quando ele publicou o artigo que propõe uma solução recur-

siva linear para o problema de filtragem linear de dados discretos. O filtro de Kalman

é, essencialmente, um conjunto de equações matemáticas que implementam um ex-

celente estimador do tipo preditor-corretor, minimizando a estimativa de covariância

de erro dos sensores e, portanto, do sistema [38].

Como o sistema de navegação possui diversos sensores de naturezas diferentes,

o filtro é aplicado apenas ao vetor de estado que representa a navegação do sistema

e que é formado pelos dados dos sensores dispońıveis.

Apesar de sua grande versatilidade, o algoritmo do filtro de Kalman realiza as

estimativas dos estados de forma linear e, portanto, não é recomendado para sistemas
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com comportamentos não lineares como o da navegação inercial de véıculos aéreos.

Para os casos em que o sistema não é linear, o filtro de Kalman também

pode ser utilizado, com suas devidas modificações, e é chamado de filtro de Kalman

estendido ou EKF (Extended Kalman Filter) [39]. Os detalhes desse filtro, utilizado

para fusão sensorial, são descritos na subseção 2.7.2.

2.7.2 Filtro de Kalman Estendido (EKF)

O EKF é um estimador de estados amplamente utilizado para sistemas não

lineares e é chamado de estendido pois amplia as capacidades do filtro de Kalman

linear [39].

O filtro estendido aplica a conhecida expansão de Taylor (até sua primeira

ordem) para a linearização dos estados de seu sistema e suas respectivas estimativas

e, a partir destas, utiliza os mesmos processos matemáticos de predição e estimativa

do filtro linear.

Assumindo que o modelo de processo é descrito como uma equação diferen-

cial estocástica não linear f(xk, uk, wk) com um modelo de observação semelhante a

h(xk, vk), o sistema pode ser descrito por (2.12) [39].

xk+1 = f(xk, uk) + wk

zk = h(xk) + vk
(2.12)

Onde xk e zk são os vetores de estado e medição, uk é o vetor de controle e

wk e vk são rúıdos Gaussianos aditivos, não correlatos, de média zero do processo e

da observação, respectivamente.

O algoritmo EKF é dividido em duas etapas, a predição e atualização [39]:

• Durante a predição, ou progressão temporal, é realizada a propagação no tempo

do vetor de estado e da matriz de covariância, projetando o estado atual do

filtro para um estado a priori da próxima medição dos sistema.
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• Durante a correção, ou atualização, o ganho adaptativo de Kalman Kk+1 é cal-

culado comparando as medidas preditas com as medidas realizadas do sistema

e então, é utilizado no processo de estimativa do vetor de estado e da incerteza

do sistema.

O algoritmo da predição e correção de Kalman é ilustrado na Tabela 2.1 [40].

Tabela 2.1: Algoritmo do Filtro de Kalman Estendido.

Predição

x̂−k+1 = f(x̂k, uk)

P−
k+1 = AkPkA

T
k +WkQW

T
k

Atualização

Kk+1 = P−
k+1H

T
k+1

(
Hk+1P

−
k+1H

T
k+1 +R

)−1

x̂k+1 = x̂−k+1 +Kk+1

(
zk+1 − h(x−k+1)

)
Pk+1 = (I −Kk+1Hk+1)P

−
k+1

Onde:

x̂−k+1 e P−
k+1 são a estimativa anterior do estado e sua matriz de covariância;

x̂k+1 e Pk+1 são uma estimativa posterior do estado e da sua matriz de covariância;

zk+1 é a medição observada;

Ak é o jacobiano do modelo de processo em relação à x avaliados em x̂k;

Wk é o jacobiano do modelo do processo com relação a w avaliado em x̂k;

Hk+1 é o jacobiano do modelo de observação em relação a x avaliados em x̂k.

A implementação do EKF para o sistema de navegação de véıculo aéreo não

tripulado, desse projeto, tem como vetor de estados: posição, velocidade e atitude

em quaternion, denotados por x = [p, v, q]T e propagados de acordo com a versão

discreta em (2.2).

O modelo de propagação para o EKF pode ser visto em (2.13).
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pk+1 = pk + vkdt

vk+1 = vk +
(
Cn
b ã− gn

)
dt

qk+1 = qk ⊗∆qk

(2.13)

Onde dt é o tempo de amostragem, ∆qk é definido por (2.14) e ⊗ indica

multiplicação de quatérnios.

∆qk =

 cos
(
0.5‖w̃‖ dt

)
sin
(
0.5‖w̃‖ dt

) w̃
‖w̃‖

 (2.14)

As equações de observação são definidas como em (2.15) para o GPS e sonar

e (2.16) para o barômetro e magnetômetro.

pGPS = p

psonar = pd
(2.15)

pdBar = h0 − pd

ψMag = tan−1

(
2(q2q3 + q1q4)

q21 + q22 − q23 − q24

) (2.16)

O EKF fornece bons resultados quando a estimativa mantida pelo filtro está

próxima do verdadeiro estado. Isso significa que os termos da expansão da Série de

Taylor de segunda ordem e de ordens superiores são pequenas o suficiente, o que de-

pende da inicialização adequada dos estados para proporcionar modelos linearizados

precisos.

Porém, caso o sistema dinâmico apresente grandes não linearidades, a quali-

dade da estimativa do filtro EKF pode ser baixa e insuficiente. Outra desvantagem

deste método é a dificuldade em avaliar analiticamente as matrizes jacobianas dos

modelos de processo e observação [39].
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2.8 Considerações Finais

Este caṕıtulo apresentou o embasamento e as informações necessárias utiliza-

das para a realização da aquisição e fusão sensorial para um véıculo aéreo.

Cada sensor descrito neste caṕıtulo utiliza um protocolo de comunicação es-

pećıfico e, para que a aquisição de dados seja bem sucedida, as conexões corretas entre

os dispositivos devem ser feitas. O próximo caṕıtulo descreve os sensores utilizados

e as conexões necessárias realizadas.

Os conceitos de fusão sensorial, como o filtro de Kalman Estendido, também

foram apresentados e são apontados na literatura como eficientes para sistemas iner-

ciais. O seu uso e as equações de navegação e de observação dos sensores deste

trabalho são apresentados no próximo caṕıtulo.
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Caṕıtulo 3

Materiais e Métodos

3.1 Considerações iniciais

Com o propósito de construir um sistema de medição inercial de precisão para

navegação aérea, os sensores precisam que alguns requisitos sejam cumpridos:

• Os erros de medida e de propagação da Unidade de Medição Inercial (IMU)

precisam ser reduzidos ao máximo;

• A frequência de atualização e aquisição da IMU deve ser alta para que as

medidas sejam representativas e para que as decisões possam ser determinadas

rapidamente;

• A sensibilidade dos sensores deve ser grande o suficiente para captar minuciosas

variações no corpo do véıculo;

• Os rúıdos presentes (e inevitáveis) devem ser os menores posśıveis para que se

possa aumentar a confiabilidade da medida.

Um sistema de aquisição e processamento deve estar presente e embarcado no
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sistema a fim de se comunicar com os sensores presentes, bem como para realizar o

condicionamento de seus dados e executar as fases do filtro de Kalman Estendido, dis-

ponibilizando o estado completo (posição, velocidade e atitude) para outros sistemas

(como um piloto automático). O mesmo sistema ainda será utilizado futuramente

para outras funções da aeronave como detecção e desvio de obstáculos. Para que

tudo isso seja posśıvel, certos requisitos de hardware, devem ser cumpridos:

• Utilização de uma plataforma de alta performance, com interfaces de comu-

nicação em hardware adaptáveis, aptas a realizar aquisições de múltiplos sen-

sores, num pequeno intervalo de tempo e ter um processador de alta capa-

cidade para sustentar a demanda computacional requerida pelos cálculos e

multiplicações matriciais;

• As tarefas e os programas utilizados na plataforma computacional para este

projeto devem ocupar apenas uma pequena parcela do uso total de seus pro-

cessadores. o processador utilizado deve possuir (preferencialmente) múltiplos

núcleos de processamento, para a divisão concorrente de tarefas, tantas a deste

projeto, como as implementadas futuramente.

• O protocolo de comunicação, em hardware, deve ser rápido o suficiente para

suportar a demanda do fluxo de dados dos sensores;

• Consumir pouca energia, visando que o sistema embarcado ficará localizado

em uma plataforma aérea pequena, com limitações de peso e altura para as

baterias.

Nesse contexto, foram selecionados os dispositivos receptor GPS LS20031, a

IMU ADIS 16407, o Sonar MB1242 e a plataforma de processamento Odroid-XU4

que atendem aos requisitos impostos, formando uma plataforma sensorial para a

navegação de um véıculo aéreo não tripulado. Este caṕıtulo detalha os dispositivos

mencionados com a descrição da interligação entre eles.
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3.2 Receptor GPS - LS20031

Este módulo é um receptor de GPS completo que incorpora um rádio receptor

de sinais de GPS da LOCOSYS, uma smart antena embutida no módulo e um chip

de interfaceamento para a comunicação serial.

A comunicação serial é asśıncrona, conforme descrito na subseção 2.5.3, e faz

uso das linhas TX e RX para controle do GPS e recepção dos dados. O maior baud

rate do dispositivo é 115200 bps com uma tensão de comunicação (TTL) fixa em 3,3

V.

O receptor de GPS é capaz de estabelecer conexões com até 66 satélites que

fornecem, em curto tempo, a primeira medida de posição e, a partir dela, consegue

fornecer as futuras posições em uma frequência máxima de 10 Hz com precisão de

3 m (quando localizado no Brasil). Seu consumo é considerado baixo e em torno de

130 mW quando está fixando a posição. Na Tabela 3.1 são contempladas algumas

outras caracteŕısticas do GPS.

Segundo a folha de dados do fabricante (datasheet) [41], o módulo é indicado

para navegação automotiva e marinha. Para a navegação aérea, geralmente usa-

se um GPS mais robusto e preciso, o que encarece muito o produto. O algoritmo

de fusão de dados propõe utilizar um módulo de GPS intermediário e tratar seus

dados para aumentar sua confiabilidade de modo a transformá-lo num sistema de

alta qualidade, deixando o projeto robusto e barato.

O módulo do GPS vem de fábrica sem conectores, portanto cinco pinos (pin-

header de 90o) foram soldados para facilitar sua conexão. Na Figura 3.1 é ilustrado

o módulo soldado e sua pinagem.

3.3 Unidade Inercial – ADIS 16407

ADIS 16407 é um módulo inercial completo de orientação tridimensional e

dez graus de liberdade. Ele possui três acelerômetros, três giroscópios, três mag-
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Tabela 3.1: Caracteŕısticas do GPS LS20031 [41].

Dispositivo LS20031

Chip MediaTek MT3339

Frequência do rádio L1 1575.42 MHz

Taxa de Atualização 10 Hz (max)

Precisão Raio de ±3,0 m

Altitude máxima 50.000 m

Velocidade máxima 515 m/s

Tensão de Alimentação 3,3 V

Consumo 130 mW

Tamanho 30x30 mm

Peso 12 gramas

Temperatura de operação −40◦C ≤ To ≤ +85◦C

Preço U$60 (∼R$188)

netômetros nos eixos (X, Y, Z), um barômetro e um sensor de temperatura.

O módulo é feito pela Analog Devices e consegue confinar todos os sensores

em um espaço muito reduzido utilizando a tecnologia MEMS. Esse tipo de tecno-

logia permite o melhor alinhamento entre os diferentes sensores inclusive entre seus

próprios eixos ortogonais (o que é dif́ıcil de se alcançar em um sistema onde cada

sensor encontra-se em diferentes encapsulamentos). A tecnologia ainda viabiliza o

processo de produção em larga escala e deixa seu custo mais baixo.

A orientação da IMU pode ser vista na figura 3.2 e deve ser alinhada com os

eixos estabelecidos pelo referencial NED (North-East-Down) no centro de massa do

véıculo, de preferência fixada em uma estrutura livre de vibrações. As letras a, g e

m correspondem, respectivamente, à aceleração, giro e campo magnético.

Além dos sensores, esse módulo possui conversores analógico-digital e digital-

analógico, banco de registradores, interface para comunicação SPI, pinos de alarme,

pinos digitais e processos de filtragem e calibração dos sensores, todos controlados
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Figura 3.1: Soldagem e mapa de pinos do GPS LS20031, adaptado de [6].

Figura 3.2: Orientação dos eixos da IMU [14].

pelo microcontrolador embutido. O diagrama de bloco da Figura 3.3 ilustra os com-

ponentes presentes dentro do módulo.

O módulo pode ser alimentado com tensões entre 4,75 V e 5,25 V. Sua in-

terface de comunicação SPI é compat́ıvel com tensões de 5,0 V ou 3,3 V e funciona

da maneira descrita na seção 2.5.1, como um dispositivo escravo. Sua frequência

máxima de atualização é de 819,2 Hz, disponibilizando 819 amostras por segundo

nos seus registradores [14].

Para cada amostra nova dispońıvel, o módulo gera um pulso quadrado no

seu primeiro pino digital e seta uma flag (bit de sinalização) no registrador de cada
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Figura 3.3: Diagrama de blocos dos componentes da IMU [14].

sensor, possibilitando realizar novas medidas tanto por controle em hardware (via

interrupção) quanto por software (checando a flag dispońıvel).

Os dados da IMU, incluindo os sensores, são disponibilizados por meio da

comunicação SPI por bancos de registradores que possuem um endereço único, de

16 bits, listado no datasheet do fabricante. Enquanto alguns registradores, como os

dos dados dos sensores, são apenas para leitura, outros, como os dos registradores

de configuração da IMU, podem ser sobrescritos.

O acesso aos registradores via SPI no modo leitura necessita de dois ciclos

de dados de 16 bits. No primeiro ciclo, envia-se o endereço do registrador desejado

pelo canal MOSI. No segundo ciclo, a IMU retorna o valor do registrador pelo canal

MISO. No caso da escrita de um registrador utiliza-se os dois ciclos da comunicação

enviando primeiramente o endereço e em seguida o valor a ser escrito pelo canal

MOSI.

3.3.1 Caracteŕısticas do ADIS16407

Nas tabelas 3.2 e 3.3 são compiladas as principais informações dos sensores

(sensibilidade e rúıdos) e o módulo da IMU, respectivamente.
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Tabela 3.2: Caracteŕısticas dos sensores da IMU ADIS16407 [14].

Caracteŕıstica Giroscópio Acelerômetro

Alcance dinâmico ±75 a ±350 o/s ±18 g

Sensibilidade 0,0125 a 0,05 o/s/bit 3,33 mg/bit

Erro de viés máximo 0,007 o/s 0,2 mg

Densidade de rúıdo 0,044 o/
√
hrrms 0,5 mg/

√
hrrms

Caracteŕıstica Magnetômetro Barômetro

Alcance dinâmico ±3,5 gauss 10 a 1200 mbar

Sensibilidade 0,5 mgauss/bit 0,3125 µbar

Erro máximo ±4 mgauss 1,5 mbar

Tabela 3.3: Caracteŕısticas gerais da IMU ADIS16407 [14].

IMU

Erro máximo de
alinhamento entre eixos

0,5 o

Frequência do clock
máxima (SPI)

1,0 MHz

Consumo 350 mW

Dimensões 32x23x23 mm

Peso 16 gramas

Temperatura de
operação

−40◦C ≤ To ≤ +85◦C

Preço U$662 (∼R$2070)
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3.3.2 Adaptação do conector

A IMU utiliza o conector CLM-112-02 para comunicação e alimentação. Este

conector tem dimensões de aproximadamente 14x4 mm e é muito pequeno para

realizar conexões com fio. A solução utilizada foi desenvolver uma placa de circuito

impresso (PCB) com a função de converter o conector da IMU para um conector

fêmea tipo barramento de 2,54 mm (padrão de protoboard).

O novo conector possibilita a conexão da IMU por fios ŕıgidos ou jumper-

cables. Na Figura 3.4 é ilustrada a placa de circuito impresso desenvolvida para esse

projeto e a sua conexão com a IMU.

Figura 3.4: Conversão do conector da IMU com a placa PCB.

3.4 Sonar - MB1242

O sensor de distância modelo da categoria I2CXL-MaxSonar R© é fabricado pela

Max Botix, possui ńıvel industrial de elevada potência acústica o que lhe garante um

alto alcance para sensores do tipo ultrassônicos. Nesse módulo existe apenas um
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transdutor de áudio que atua alternadamente como emissor e transmissor.

Esse módulo é chamado de smart sensor (ou sensor inteligente, em português)

porque incorpora diversos ajustes próprios, como calibração, ajuste de ganho au-

tomático, análise de forma de onda e algoritmo de rejeição de rúıdos, tudo em

tempo real, para que ocorra adaptação a diversas condições acústicas, elétricas e

atmosféricas, fornecendo sempre leituras precisas e sem rúıdos. O modelo ainda aco-

moda interface de comunicação I2C que permite uma integração fácil de múltiplos

sensores usando apenas um barramento de dois fios.

O módulo opera com tensões entre 3,0 V e 5,5 V emitindo ondas na frequência

de 42 kHz (acima dos 20kHz aud́ıveis pelo ser humano). Seu sensor é capaz de

determinar, com uma precisão de 1cm, distâncias de objetos de 20 cm a 765 cm,

conseguindo, inclusive, identificar objetos que se apresentam a menos de 20 cm [21].

O sonar fornece três comandos via protocolo I2C:

• Pedido de medição: Pede para o sensor realizar uma medição e guardar a

distância na memória até o próximo pedido. O comando é realizado enviando

o número 81 para o endereço I2C de escrita do sensor.

• Informar a distância: Envia o comando para o sensor para que ele retorne o

último dado salvo. É recomendado que este comando seja enviado pelo menos

80ms depois do pedido de medição. O dado é lido acessando o endereço I2C

de leitura do sensor.

• Troca de endereço: Troca o último endereço ou o endereço padrão de leitura

e escrita do sensor. O comando é realizando enviando os número 170 e 165

seguido do novo endereço desejado para o endereço I2C atual.

Os endereços I2C padrões de fábrica e as informações do sensor são ilustradas

nas Tabelas 3.4 e 3.5.
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Tabela 3.4: Informações do sonar MB1242 [21].

Informações - Sonar MB1242

Tensão de alimentação
(VCC)

3,3 V a 5,0 V

Consumo médio
8,9 mW a 22 mW

(dependendo de VCC)

Alcance
20 cm a 640 cm (VCC = 5,0 V)
20 cm a 500 cm (VCC = 3,3 V)

Sensibilidade 1 cm

Frequência de atualização Até 40 Hz

Modo I2C Escravo

Frequência máxima do
clock (SCL)

400 kHz

Dimensões 20x22x25 mm

Peso 5,9 gramas

Temperatura de operação 0◦C ≤ To ≤ +65◦C

Preço U$40 (∼R$125)

Tabela 3.5: Endereços I2C do sonar MB1242 [21].

Endereços I2C padrões do sonar

Leitura 224

Escrita 225
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A taxa de atualização recomendada para as medidas do sensor é de 10 vezes

por segundo, mas pode ser alterada para até 40 vezes nas leituras de objetos locali-

zados próximos do sensor, frequência essa, satisfatória no sistema que já dispõe de

duas outras formas para determinar sua altura (GPS e IMU).

O sonar MB1242 foi escolhido para esse projeto pois apresenta alta imunidade

a rúıdo, confiabilidade na medição e comunicação padrão I2C facilmente integrado em

diversos sistemas embarcados e por ter, ainda, pequeno consumo de energia e baixo

custo. Todas essas caracteŕısticas definem esse módulo, como um módulo que possui

maior custo benef́ıcio quando comparado a outros modelos geralmente utilizados.

A foto e o mapa de pinos do sensor são ilustrados na Figura 3.5.

Figura 3.5: (a) foto do sonar MB1242 [20], (b) sonar com barramento soldado e seu
mapa de pinos.

3.5 Plataforma Odroid-XU4

O Odroid é um computador completo, de alta performance, constrúıdo em

uma única placa (SBC), fabricado pela Hard Kernel com dimensões reduzidas (82x58x22

mm) e tecnologia ARM R© , como ilustrado na Figura 3.6.

O modelo XU4 possui 2 GB de memória LPDDR3 e dois processadores inte-

grados, sendo eles o Samsung Exynos5422 CortexTM-A15 de 2,1 Ghz e o CortexTM-A7

de 1,5 GHz, cada um com 4 núcleos de processamento, acompanhado do processador
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Figura 3.6: Placa Odroid, modelo XU4 [42].

gráfico Mali-T628 MP6. A tecnologia big.LITTLETM, dispońıvel em seu sistema,

possibilita a integração entre seus dois processadores e combina os seus oito núcleos

de forma a aumentar sua performance em 40% e economizar até 75% de energia1.

Com isso, o desempenho de processamento dessa placa chega a ser três vezes maior

do que seus concorrentes, como por exemplo a conhecida plataforma Raspberry Pi

(Versão 2) [42]. IO A placa ainda é equipada com portas USB 2.0 e 3.0, Ether-

net, HDMI, entrada para cartão de memória (MicroSD e eMMC) para o sistema

operacional e 42 pinos GPIO (General Purpose Input/Output) geralmente utilizados

para comunicação ou controle de outros periféricos. Na Tabela 3.6 são ilustradas as

principais caracteŕısticas do Odroid-XU4.

De acordo com a Hard Kernel, o Odroid é compat́ıvel com sistemas operaci-

onais baseados em Linux (como o Ubuntu e o Debian), com sistemas operacionais

1A tecnologia big.LITTLETM consegue tal desempenho pois cria, neste caso, quatro núcleos
virtuais, cada um formado de 1 núcleo chamado BIG do processador CortexTM-A15 2,1 Ghz e
um núcleo chamado LITTLE do processador CortexTM-A7 1,5 GHz. Ambos os processadores
compartilham da mesma memória de cache e por isso eles podem se dividir para executar tarefas
distintas ou trabalhar juntos quando a demanda de processos aumentar [43].
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Tabela 3.6: Caracteŕısticas da Odroid Modelo XU4 [42].

Caracteŕıstica Descrição

CPU Samsung Exynos-5422 : CortexTM-A15 e CortexTM-A7
com fusão big.LITTLE

GPU Mali-T628 MP6 (com OpenGL ES e OpenCL)

RAM 2 GB LPDDR3 933 MHz

Armazenamento -MicroSD (64 GB max)
-eMMC 5.0 (64 GB max)

Áudio/Video Digital Audio / 1920x1200 por HDMI

Rede Realtek RTL8153-CG 10/100/1000M

Periféricos -42 GPIOs (2xUART, IRQ, SPI, ADC, I2S, I2C)
-2x USB 3.0, 1x USB 2.0
-Ethernet RJ-45 10/100/1000M
-HDMI 1.4 tipo-A

Tensão dos GPIOs 1,8 V

Alimentação 5 V, 4 A via conector P4

Consumo 4 W

Tamanho 82x58x22 mm

Peso 60 gramas

SO Android (4.4 ou TV OS) e Linux (Ubuntu)

Preço U$74 (∼R$240)

móveis da Google (como o Android TV OS e o Android Kitkat) e outros sistemas

compat́ıveis com o processador ARM [42]. Além disso, várias linguagens de pro-

gramação, como C/C++, Phyton, Java e Bash Script, podem ser utilizadas quando

se opera em sistemas Linux.

A placa Odroid-XU4 apresenta baixo consumo de energia, tamanho reduzido,

flexibilidade de comunicação com diversos periféricos via pinos GPIO e alta capa-

cidade de processamento, que será explorada futuramente com a implementação de

outros sistemas auxiliares para a navegação inercial. Todas essas caracteŕısticas são
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desejáveis para uma plataforma com limitações de espaço e energia e por esta razão,

esta placa foi escolhida para utilização no projeto.

O sistema operacional adotado para execução do projeto foi o Ubuntu versão

15.4 no cartão de memória eMMC de 32 GB com um desempenho de leitura e escrita

três vezes superior aos dos cartões microSD, geralmente adotados.

A linguagem de programação C é uma linguagem de alto ńıvel, que permite

escrever programas otimizados para arquiteturas espećıficas. Por esta razão, é a lin-

guagem adotada pelo Kernel (núcleo do sistema operacional) do Linux e por muitos

dos seus programas e também será adotada para a aquisição dos dados sensoriais.

3.6 Conexão dos dispositivos

A interligação dos sensores à plataforma de controle Odroid deve ser feita

adequadamente de forma a manter a integridade do sistema e eliminar, ao máximo,

os rúıdos eletromagnéticos internos e externos que interferem na comunicação entre

seus componentes.

Por motivos de tecnologia, o processador do Odroid não consegue seguir os

padrões de tensão utilizados na maioria dos dispositivos do mercado, como 3,3 V e

5,0 V. Conforme ilustrado na Tabela 3.6, sua tensão de operação é 1,8 V. Uma vez

que os pinos dispońıveis de GPIO são uma extensão do processador, eles também

operam em 1,8 V.

Para que os sensores do projeto possam se conectar sem danificar o proces-

sador, um conversor de ńıvel de tensão deve ser conectado entre o Odroid e seus

periféricos.

Para clareza na escolha do conversor de tensão, na Tabela 3.7 são informados

os padrões de tensão aceitos pelos sensores do projeto.
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Tabela 3.7: Posśıveis tensões de comunicação dos sensores.

Sensores
Tensões de comunicação

3,3 V 5,0 V

GPS LS20031 4 8

IMU ADIS 16407 4 4

Sonar MB1242 4 441

1O sonar opera em ambas as tensões, mas consegue um alcance
20% maior quando alimentado com 5,0 V.

Com base na Tabela 3.7 fica evidente que a maneira mais simples de adequar

a ligação de todos os sensores ao computador Odroid é realizada a conversão das

tensões dos pinos do processador para 3,3 V.

Porém, visto que o potencial elétrico da alimentação e comunicação do sonar

devem ser os mesmos, a adoção da tensão de 3,3 V, ao invés de 5V, diminui a potência

entregue ao transmissor do sensor, implicando na atenuação de seu alcance de 640

cm para 500 cm (cerca de 22%).

A solução para conversão elétrica entre os dispositivos é descrita na subseção

3.6.1.

3.6.1 Conversão dos sinais

Converter os padrões de comunicação, de forma a maximizar suas carac-

teŕısticas, mostra-se uma atividade complexa.

Como visto na seção 2.5.2, o protocolo I2C, utilizado pelo sonar, requer dois

sinais de comunicação bidirecionais. A implementação discreta para a conversão

deste tipo de sinal demanda inúmeros componentes eletrônicos e ocupam um grande

espaço f́ısico, sendo, inviável para esse projeto.

A solução para conversão dos sinais dos dispositivos é proposta em duas
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etapas. A primeira utiliza um módulo Shifter, do mesmo fabricante do Odroid, e a

segunda se utiliza de um circuito de componentes discretos, descritos nas subseções

3.6.2 e 3.6.3 seguintes.

3.6.2 Shield XU4 Shifter

Shields são placas de circuito impresso especialmente projetadas para se co-

nectar perfeitamente a sistemas, expandindo ou modificando suas capacidades.

O shield XU4 Shifter é fabricado pela Hard Kernel e projetado para funcionar

com o Odroid-XU4 utilizado neste projeto. Na Figura 3.7 é ilustrada a foto do

conversor e sua conexão com a placa Odroid.

Figura 3.7: (a) Shield XU4 Shifter, (b) shield conectado a Odroid XU4 [44].

Este shield possui três circuitos integrados (modelo TXS0108ERGY) para

conversão bi-direcional dos pinos de GPIO da Odroid. As novas tensões de sáıda

podem ser ajustadas em 3,3 V ou 5,0 V por meio de uma chave de seleção. O shield

ainda converte os pinos do Odroid para o barramento padrão duplo de 2,54 mm.
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De acordo com o fabricante, para o bom funcionamento do módulo, a corrente

máxima de sáıda de cada pino não deve ultrapassar 4 mA [44], o que não apresenta

uma limitação para o projeto, visto que os pinos utilizados pelos periféricos são de

comunicação e, portanto, possuem alta impedância de entrada, consumindo pequenas

correntes em torno de microamperes.

A tensão de sáıda escolhida do shield foi de 5,0 V para se conectar diretamente

com o sonar MB1242 que utiliza dois fios bi-direcionais de comunicação (via I2C) e

com a IMU ADIS 16407 que utiliza quatro fios unidirecionais (via SPI).

A arquitetura adotada maximiza a operação e o alcance do sonar, porém é

incompat́ıvel com o GPS do projeto. A conversão dos sinais do GPS é mostrada na

subseção 3.6.3.

3.6.3 Conversor de tensão do GPS

Optou-se por converter os sinais do GPS porque, como descrito na seção 3.2,

seu protocolo de comunicação utiliza sinais de dados unidirecionais que são mais

simples e necessitam de menos componentes eletrônicos para conversão do que um

sinal bidirecional.

O processo se dá em duas etapas: Converter o sinal de transmissão (TX) do

shield de 5,0 V para 3,3 V e o sinal de transmissão GPS de 3,3 V para 5,0 V.

Sabendo que os pinos do GPS possuem alta impedância, um simples divisor

resistivo pode ser aplicado para a conversão do sinal RX, como ilustrado na Figura

3.8.

Dada a notação ilustrada na Figura 3.8, V 1 = 5, 0V e V 2 = 3, 3V e R1 e R2

são relacionados pela regra de divisão de tensão dada na equação 3.1.

R2

R1
=

V 1

V 2− V 1
= 1, 941 (3.1)

Escolhendo um valor de 10 kΩ para o resistor R2, o valor comercial mais



78

Figura 3.8: Conversor de 5,0 V para 3,3 V.

próximo para R1 é 4,7 kΩ. Com estes valores de resistência a tensão V 2 é 3,40 V e

está dentro dos limites aceitáveis do GPS.

A potência total dissipada pelo circuito é dada pela equação 3.2.

PTOTAL =
V 12

R1 +R2
= 1, 7mW (3.2)

Já para a conversão do sinal TX que possui uma tensão superior a sua original,

utiliza-se um circuito ativo com um transistor NPN polarizado em base-comum e um

resistor pull-up, como ilustrado na Figura 3.9.

Figura 3.9: Conversor de 3,3 V para 5,0 V.

R3 é o resistor de polarização do transistor e deve ser pequeno o suficiente

apenas para polarizar o transistor BC547B em modo de saturação. R4 funciona como
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resistor de pull-up visto pelo shield e como um limitador de corrente do pino TX do

GPS. Pelo datasheet do GPS [41], a corrente máxima nos seus pinos de comunicação

não devem ultrapassar 2 mA. Pela Lei de ohm, R4 pode ser estimado pela equação

3.3.

R4 ≥ 5, 0V

IGPS(max)
≥ 2, 5kΩ (3.3)

Os valores escolhidos para os resistores do circuito da Figura 3.9 foram: R3 =

10kΩ e R4 = 4, 7kΩ.

De acordo com o protocolo de comunicação asśıncrona do GPS, os pinos RX

e TX mantém em ńıvel lógico alto, enquanto aguardam o ińıcio da comunicação.

O conversor neste momento não está conduzindo e, portanto, não consome energia.

Quando há comunicação, o sinal TX varia entre zeros e uns de acordo com o dado

enviado. Não é posśıvel calcular a potência dissipada exata do circuito, mas seu

consumo máximo pode ser calculado pela equação 3.4.

Pmax = PR3 + Ptransistor + PR4

Pmax =
V 2
R3

R3
+ (Vbe · IR3 + Vce · IR4) + 5,0V 2

R4

Pmax = 1, 95mW

(3.4)

3.6.4 Circuito final

O conjunto completo dos dispositivos sensoriais, o sistema de aquisição e pro-

cessamento do projeto (Odroid-XU4) e os métodos de conversão de tensão descritos,

são ilustrados na Figura 3.10.

O circuito completo consome 4,5 W e tem um peso total de 93,9 g, ideais

para a plataforma móvel especificada.
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Figura 3.10: Circuito do sistema completo.

3.7 Considerações finais

Este caṕıtulo apresentou os materiais e métodos utilizados para o desenvolvi-

mento da plataforma multissensorial. Apresentados os materiais (diferentes sensores)

e métodos (incluindo filtro de Kalman Estendido e os protocolos de comunicação dos

sensores) para comunicação digital com os sensores, o próximo caṕıtulo exibe deta-

lhes em software para coleta dos dados sensoriais e seus respectivos resultados.
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Caṕıtulo 4

Resultados e Discussões

4.1 Considerações Iniciais

Nesse caṕıtulo são apresentados os meios necessários para a aquisição de da-

dos nos sensores por meio do computador Odroid-XU4. Também são descritos os

experimentos realizados com a técnica EKF de fusão de dados sensoriais, a partir

dos dados adquiridos, diretamente dos sensores.

4.2 Aquisição de Dados

A aquisição de dados sensoriais é realizada a partir do Odroid-XU4

As bibliotecas <linux/spi/spidev.h>, <linux/i2c-dev.h>, <termios.h> e

<time.h> são disponibilizadas pelo sistema operacional e fornecem (em alto ńıvel)

acesso aos componentes de hardware (baixo ńıvel) da plataforma, como a comu-

nicação SPI, a comunicação I2C, a comunicação asśıncrona e os temporizadores.

Para simular uma plataforma móvel embarcada, da forma mais fiel posśıvel, o
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controle e a observação do processo de aquisição de dados, bem como a comunicação

com a plataforma foram realizados via rede, pela comunicação SSH (Secure Shell)

sem o uso de teclado, mouse ou monitor.

As seções a seguir, detalham os métodos utilizados para a comunicação do

Odroid com os demais sensores.

4.2.1 Aquisição de dados do GPS

O módulo GPS LS20031 fornece inúmeras informações para o usuário como:

posição, velocidade, curso, altitude, número de satélites dispońıveis, data e hora

GMT (do inglês, Greenwich Mean Time), entre outros. Sua transmissão é feita em

caracteres ASCII pelo protocolo NMEA 0183, criado pela National Marine Elec-

tronics Association (NMEA) e mundialmente utilizado. Mais detalhes podem ser

encontrados em [45].

A fim de acelerar a comunicação entre do Odroid com o módulo GPS, a velo-

cidade da comunicação asśıncrona, foi estabelecida em 115200 bps limitando o envio

dos dados apenas à sua posição (latitude, longitude) com uma taxa de aquisição de

10 Hz. Informações de satélites, velocidade e status não são utilizadas pela imple-

mentação do filtro e, portanto, foram desabilitadas na comunicação para minimizar

o processamento de informações pelo Odroid.

Os comandos utilizados e enviados para o GPS para realizar a configuração

descrita anteriormente, são apresentados na Tabela 4.1.

A vantagem deste módulo, operando no protocolo de comunicação asśıncrona,

é que, uma vez aberta a porta de comunicação, o Odroid recebe os dados enviados

pelo GPS passivamente, sem a necessidade de executar qualquer comando ou acessar

qualquer endereços.

A decodificação das mensagens (em formato NMEA) recebidas pelo GPS, para

latitude e longitude (no formato decimal), é realizada pelos comandos da Tabela 4.2,

provindos da biblioteca instalada: “NMEA Library” [46].
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Tabela 4.1: Comandos para configuração do módulo GPS.

Comando Sentença

Velocidade de
comunicação
(115200 bps)

$PMTK314,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29

Enviar apenas
posição

$PMTK314,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29

Taxa de
aquisição (10

Hz)
$PMTK220,100*2F

Tabela 4.2: Comandos para decodificação do GPS.

Retorno Comando

Informação
[em graus]

nmea_parse(mensagem)

Latitude e
longitude

[em decimal]
nmea_info2pos(informaç~ao)

4.2.2 Aquisição dos dados da IMU

Para cada experimento realizado com a IMU ADIS 16407, o comando de ”soft-

reset” é enviado para que o módulo reinicie a sua operação e recalibre os seus sensores.

Após a calibração inicial, dez registradores são lidos para capturar os valores [x, y, z]

do acelerômetro, giroscópio e magnetômetro e o valor do barômetro. Também foi

desabilitado o filtro da mediana do módulo, gerando uma taxa de amostragem de

820 Hz.

Os dados são obtidos em notação binária (de complemento de dois), conver-

tidos para a forma decimal e multiplicados pelo seu fator de escala alcançando a

medida esperada pela entrada do filtro implementado.
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Os comandos (em forma de endereço) são enviados à IMU pelas funções

write() e read() do Linux. Estes comandos são ilustrados na Tabela 4.3.

Tabela 4.3: Comandos da IMU

Comando Endereço

Configuração da taxa de
amostragem para 820 Hz

(escrita)
0xBB00

Soft reset
(escrita)

0xC280

Aquisição dos sensores
(leitura)

0x04,0x06,0x08,

0x0A,0x0C,0x0E,

0x10,0x12,0x14,

0x16

O Odroid possui capacidade de realizar milhares de amostras por segundo,

entretanto, o sensor neste quesito, é limitado. Para ajustar a frequência entre ambos,

uma frequência de aquisição (limitadora) foi imposta ao programa. Visto que, o sis-

tema operacional utilizado não é voltado para aplicações em tempo real, o programa

utilizado para a aquisição sensorial não consegue controlar por completo a frequência

limitadora desejada. Por consequência, a frequência sofre oscilações que produzem

leituras repetidas do sensor. Para evitar que dados repetidos não sejam utilizados, o

programa realiza checagens nas flags da IMU que indicam se os dados obtidos não

são repetidos.

4.2.3 Aquisição do sonar

Da mesma maneira que a comunicação SPI, a comunicação I2C utiliza funções

write() e read() do Linux para se comunicar com o sonar MB1242, no seu respectivo

endereço de barramento. Os comandos utilizados são descritos na seção 3.4.

A taxa de amostragem deste sensor é de 18 Hz, que corresponde ao tempo de

espera necessário de 55ms entre o pedido de medição e a leitura do dado.
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Ocorrendo um erro de leitura do barramento I2C, o dado corrompido é sina-

lizado e exclúıdo antes do processo de filtragem.

4.3 Fusão sensorial com o EKF

Para demonstrar a viabilidade do uso dessa plataforma sensorial, que pretende

auxiliar a navegação de véıculos aéreos não tripulados, foi implementada a fusão

sensorial com os dados reais, obtidos diretamente dos sensores descritos, pelo Odroid-

XU4.

A técnica de fusão escolhida foi o EKF, pois esta técnica trata de sistemas com

equações não lineares de forma linearizada. O filtro possui uma operação dividida

em duas etapas: a predição e a atualização, conforme detalhado na subseção 2.7.2.

Sua implementação segue as equações de navegação inercial e a observação

dos sensores magnetômetro e o GPS, representadas pelas equações (2.13) a (2.16).

Durante a fase de predição foram utilizados os dados provenientes dos ace-

lerômetros e dos giroscópios, enquanto que, na fase de atualização foram utilizados

os dados do GPS, do sonar e dos magnetômetros. Como os dados do GPS e do

sonar não estavam dispońıveis, com a mesma frequência que os demais, foram cria-

das fases diferentes de atualização para cada um deles, aplicadas apenas quando os

dados estão dispońıveis, com prioridade para o GPS, seguido do sonar e, por fim,

dos magnetômetros.

Foram consideradas nas simulações situações onde as medidas do sonar estão

dispońıveis, como pouso ou voo abaixo de 7,65 metros. Dentro dessa altitude, os

dados provenientes do sonar possuem maior confiabilidade que os do barômetro e

do GPS. Por esta razão, os valores do barômetro são coletados mas, ao contrário do

sonar, não são utilizados nas atualizações do filtro, neste projeto.

Os sensores, e consequentemente o sistema representado por eles, possuem

rúıdos aleatórios estocásticos, advindos de diversas circunstâncias como: instabili-

dades de aquisição e conversão do sinal analógico, variação de temperatura, não
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linearidade do sensor, variação da polarização (em inglês, bias) e vibrações.

O filtro de Kalman Estendido utiliza duas matrizes de covariância que devem

ser fornecidas como entrada de seu algoritmo.

A matriz de entrada R refere-se aos rúıdos de medição dos sensores, enquanto

a matriz Q refere-se a rúıdos de processo, associados às imperfeições do modelo e da

entrada [47].

Neste trabalho, os rúıdos no filtro EKF são modelados como rúıdos brancos

gaussianos aditivos, que possuem valor médio zero, com densidade espectral cons-

tante, também conhecido como passeio aleatório (ou do inglês, Random Walk) no

âmbito dos sensores.

A matriz de covariância R corresponde aos erros aleatórios presentes nas me-

didas dos sensores do GPS, do sonar e do magnetômetro, para o ciclo de atualização

do filtro e demonstradas em (4.1).

RGPS =


σ2
GPSx

0 0

0 σ2
GPSy

0

0 0 σ2
GPSz



RMag =
(
σ2
Mag

)

Rsonar =
(
σ2
sonar

)

(4.1)

Onde:

σGPS e σMag são o desvio padrão dos rúıdos gaussianos ou as incertezas do GPS e

do magnetômetro, dados pelas mesmas unidades utilizadas no vetor estado do filtro

(metros e radianos respectivamente).

A matriz de covariância Q dos erros associados ao modelo do sistema e da

entrada dos sensores do acelerômetro e giroscópio, para a fase de predição, é repre-

sentado por (4.2).
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Q =



σ2
Accx

0 0 0 0 0

0 σ2
Accy

0 0 0 0

0 0 σ2
Accz

0 0 0

0 0 0 σ2
Gyrr

0 0

0 0 0 0 σ2
Gyrp

0

0 0 0 0 0 σ2
Gyry


(4.2)

Onde:

σAcc é o desvio padrão das incertezas provindas do acelerômetro (em m/s2), nos

seus respectivos eixos (x, y, z);

σGyr é o desvio padrão das incertezas provindas do giroscópio (em rad/s), nos seus

respectivos eixos (θ, φ, ψ).

As matrizes Q e R participam ativamente no processo de predição e atu-

alização do filtro de Kalman e, portanto, seus parâmetros e incertezas devem ser

ajustados da melhor forma posśıvel, para ocorrer a convergência correta dos vetores

estado do sistema [47].

Como os sensores apresentam outras fontes de rúıdos, além do rúıdo gaussi-

ano, existe um limite anaĺıtico para a quantificação desses parâmetros, que devem

ser ajustados por tentativa e erro.

Na próxima seção, as estimativas do filtro de Kalman Estendido são apresen-

tadas e comparadas, utilizando os dados coletados e os diferentes métodos de ajuste

das matrizes Q e R.

4.4 Experimentos em repouso

Durante este experimento, manteve-se a plataforma parada em uma altura

fixa de 0, 70 m do chão. Dessa forma, o resultado esperado para os estados do filtro da
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aeronave são para uma posição constante igual a [0, 0,−0, 7] m, velocidade e atitude

constantes e iguais a zero.

O experimento foi realizado em um espaço de tempo de 4,5 segundos, com

a frequência máxima de aquisição da IMU (820 amostras por segundo) gerando em

torno de 3600 medidas inerciais, 90 medidas do sonar e 50 medidas do GPS.

A posição geográfica do GPS, a aceleração, a velocidade angular e o campo

magnético do sensor inercial e a altura do sonar capturadas para este experimento

são ilustrados nas Figuras 4.1 a 4.5. Esses dados são utilizados no filtro de Kalman

Estendido.

O ajuste do EKF e sua convergência são feitos pelas matrizes de covariância

dos sensores do sistema. Tais matrizes foram obtidas e calculadas de maneiras di-

ferentes com o intuito de aprimorar os resultados e minimizar os erros do filtro de

Kalman e são apresentados nas subseções a seguir.

Figura 4.1: Posição do GPS obtida em repouso.
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Figura 4.2: Altitude do sonar obtida em repouso.

Figura 4.3: Aceleração da IMU obtida em repouso.
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Figura 4.4: Velocidade angular da IMU obtida em repouso.

Figura 4.5: Campo magnético da IMU obtida em repouso.
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4.4.1 Obtendo-se a covariância de forma emṕırica

Nesse primeiro caso, as matrizes de covariância dos sensores foram ajustadas

empiricamente e notou-se uma grande influência negativa na fase de atualização dos

valores dos quatérnios. Por esse motivo, aplicou-se à fase de atualização apenas aos

estados do filtro de posição e velocidade quando os dados do GPS e do sonar estavam

dispońıveis. Este método emṕırico é muito utilizado quando não se dispõe de muitas

informações dos sensores e foi adotado inicialmente para fins de comparação.

Com base em sensores de baixa confiança de alta presença de rúıdos, os valores

emṕıricos utilizados nas matrizes 4.2 e 4.1 foram:

σGPSx,y = 0, 5 m

σGPSz = 2, 0 m

σSonar = 0, 01 m

σMag = 0, 2 rad

σAccx,y,z = 0, 8 m/s2

σGyrr,p,y = 0, 5 rad/s

Os resultados obtidos referentes às posições da plataforma, a partir dos sen-

sores e do filtro EKF, são ilustrados nas Figuras 4.6, 4.7 e 4.8.



92

0 0.5 1 1.5 2 2.5 3 3.5 4

Tempo (s)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

P
o
si

ç
ã
o
 N

o
r
th

 (
m

)

GPS

Acelerômtero

Filtro

Referência

Figura 4.6: Posição North (N) estimada com valores emṕıricos.
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Figura 4.7: Posição East (E) estimada com valores emṕıricos.
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Figura 4.8: Posição Down (D) estimada com valores emṕıricos.

Como o esperado, a integração temporal do acelerômetro para o cálculo de

posição, gera erros significativamente altos (a partir de três segundos).

O filtro de Kalman Estendido, entretanto, mesmo com os valores emṕıricos

das covariâncias, obteve sucesso em fundir a posição estática do GPS, com o ace-

lerômetro, para os eixos N e E, diminuindo o erro final durante todo o processo.

Utilizando-se as medidas mais confiáveis do sonar, o filtro de Kalman Esten-

dido conseguiu estimar, a posição do eixo D (relativa à altura), com grande precisão.

Além disso, o maior erro de estimativa de posição do filtro é de 60 cm (ocorrido no

eixo N).

São ilustrados, nas Figuras 4.9, 4.10 e 4.11, os resultados obtidos referente à

velocidade da plataforma em cada eixo.
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Figura 4.9: Velocidade North (N) estimada com valores emṕıricos.
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Figura 4.10: Velocidade East (E) estimada com valores emṕıricos.
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Figura 4.11: Velocidade Down (D) estimada com valores emṕıricos.

Como a plataforma não está em movimento, não existe um valor sensorial de

velocidade a ser medido pelo acelerômetro, portanto, os rúıdos aleatórios predominam

sobre a real situação da plataforma. Apesar disso, o maior erro de estimativa da

velocidade do filtro, foi de 0,2 m/s no eixo E, representando um pequeno valor se

comparado com as velocidades que o véıculo aéreo pode atingir.

O ripple (do inglês, ondulação) presente na sáıda do filtro também é esperado

e decorre das diferentes taxas de atualização entre o sonar, o GPS e a IMU.

Os resultados obtidos para a atitude da plataforma, são ilustrados nas Figu-

ras 4.12, 4.13 e 4.14.
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Figura 4.12: Ângulo Roll (φ) estimado com os valores emṕıricos.

0 0.5 1 1.5 2 2.5 3 3.5 4
Tempo (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Â
ng

ul
o 

P
it

c
h

 (
gr

au
s)

Giroscópio
Filtro
Referência

Figura 4.13: Ângulo Pitch (θ) estimado com os valores emṕıricos.
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Figura 4.14: Ângulo Yaw (ψ) estimado com os valores emṕıricos.

Para os ângulos Roll e Pitch, o filtro dispõe apenas do giroscópio para a

medição das suas velocidades angulares e o cálculo do quatérnion.

Mesmo com as elevadas incertezas da matriz Q (referente ao giroscópio), o

filtro não apresenta um bom desempenho para rejeitar as medidas errôneas deste

sensor, acompanhando o erro acumulativo do seu próprio sistema.

Para o ângulo Yaw, entretanto, o erro do giroscópio é limitado e corrigido

pelo magnetômetro, obtendo-se nesse caso, bons resultados na fusão sensorial.

O filtro nesta configuração apresentou resultados mais condizentes com a

realidade, se comparado com o dado de um único sensor, porém, com uma precisão

e qualidade insatisfatória.

4.4.2 Utilizando a covariância do fabricante

O método emṕırico utilizado anteriormente, apresentou melhores resultados

do que na ausência do filtro, mesmo utilizando valores de rúıdos caracteŕısticos de

IMUs de baixa qualidade.
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Entretanto, a IMU utilizada neste projeto, é indicada para aplicações voltadas

para a navegação e robótica e, portanto, apresenta menores taxas de rúıdos e medidas

mais exatas.

A qualidade dos sensores inerciais pode ser representada quantitativamente

pela densidade espectral de seu rúıdo. De acordo com [48], o rúıdo random walk de

alta frequência, que mais influência nos estados de navegação, pode ser representado

pelo rúıdo branco gaussiano de média zero e densidade constante.

Para sensores inerciais, a covariância do rúıdo e a densidade espectral de

potência (PSD) se correlacionam conforme demonstrado nas equações 4.3 e 4.4.

σ2(T ) =
Q2

T
(4.3)

Ou:

σ(T ) =
Q√
T

(4.4)

Onde:

σ2(T ) é a covariância do sinal;

σ(T ) é a raiz quadrada da covariância, chamada de desvio padrão do sinal;

Q2 é a densidade espectral de potência do sinal com o rúıdo gaussiano;

T é o peŕıodo da largura de banda do sinal (dada em segundos−1 ou Hz).

De acordo com essas equações, os dados de densidade de potência (em uni-

dade/
√
Hzrms), fornecidos pelo fabricante da IMU, correspondem à própria variância

utilizada, pelas matrizes Q e R do filtro de Kalman.

Para os valores de variância do GPS, considera-se que a imprecisão de seu

posicionamento é dada pela incerteza das suas medidas e consequentemente pelo

desvio padrão do sensor.

Utilizando-se os valores de densidade de rúıdos da IMU, compilados na Tabela

3.2, e a precisão de posição do GPS, na Tabela 3.1, são obtidos novos valores para as

matrizes de covariância que, apesar de teóricos, são mais condizentes com a realidade
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dos sensores utilizados neste trabalho. Os valores são dados a seguir:

σGPSx,y = 3, 0 m

σGPSz = 3, 0 m

σSonar = 0, 01 m

σMag = 0, 06× 10−3 rad

σAccx,y,z = 0, 50× 10−3 m/s2

σGyrr,p,y = 0, 044 rad/s

Comparando este valores com os utilizados na seção 4.4.1 anterior (de forma

emṕırica), a covariância do GPS diminuiu 1,6 vezes, enquanto a do acelerômetro

diminuiu 1600 vezes. Isso indica para o filtro que, agora, o acelerômetro possui rúıdos

ainda menores do que o GPS e suas medidas estão relativamente mais confiáveis do

que a do GPS.

Os resultados obtidos para as posições da plataforma, a partir dos novos das

matrizes R e Q do filtro EKF, são ilustrados nas Figuras 4.15, 4.16 e 4.17.
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Figura 4.15: Posição North(N) estimada com valores teóricos.
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Figura 4.16: Posição East (E) estimada com valores teóricos.
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Figura 4.17: Posição Down (D) estimada com valores teóricos.
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Como consequência do novos valores de R e Q, espera-se que o filtro consi-

dere as medidas do acelerômetro mais relevantes para a predição de sua posição e

velocidade.

Nos gráficos de posição North e East, é posśıvel observar que o filtro segue as

medidas do acelerômetro até nos primeiros dois segundos de amostra, comparado com

apenas um segundo dos gráficos da seção 4.4.1. Após este tempo, o erro acumulativo

do acelerômetro aumenta e o filtro converge os seus resultados para a posição estática

do GPS.

Os ajustes realizados nas matrizes de covariância resultaram na melhora de

30% da estimativa da plataforma para posição do eixo North e 35% para a posição

do eixo East. Entretanto, como a variância do sonar não foi alterada, os resulta-

dos da posição Down sofreram maior influência do acelerômetro (e de seus erros

acumulativos no tempo) aumentando o erro da altitude de 8 para 34 cm.

Nas Figuras 4.18, 4.19 e 4.20 são ilustrados os resultados obtidos referentes à

velocidade da plataforma em cada eixo.
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Figura 4.18: Velocidade North (N) estimada com valores teóricos.
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Figura 4.19: Velocidade East (E) com valores teóricos.
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Figura 4.20: Velocidade Down (D) com valores teóricos.
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Do mesmo modo que na estimativa da posição, o acelerômetro teve um peso

maior na estimativa da velocidade da plataforma. Apesar do filtro seguir os dados

da acelerômetro por até dois segundos, os tamanhos dos erros de velocidade obtidos

no eixo North e Down foram os mesmos comparados aos da seção 4.4.1, enquanto

no eixo East, obteve-se um resultado mais estável e um erro duas vezes menor,

acompanhando as caracteŕısticas da posição neste eixo.

Os resultados obtidos referente à atitude da plataforma são ilustrados nas

Figuras 4.21, 4.22 e 4.23.
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Figura 4.21: Ângulo Roll (φ) estimado com valores teóricos.
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Figura 4.22: Ângulo Pitch (θ) estimado com valores teóricos.
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Figura 4.23: Ângulo Yaw (ψ) estimado com valores teóricos.
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Os ângulos Roll e Pitch, estimados pelo filtro, obtiveram os mesmos resultados

observados quando da utilização dos valores emṕıricos de covariância da seção 4.4.1.

Isso demonstra que os valores dos rúıdos obtidos do giroscópio tem pouca influência

nas incertezas do sistema, independentemente dos seus valores de covariância na

matriz Q.

O ângulo Yaw possui atualização pelas medidas do magnetômetro, e demons-

trou, uma melhor estimativa do que a da seção 4.4.1. Isso se deve a menor covariância

do magnetômetro utilizada pela matriz R.

O método utilizado nesta seção, como o esperado, se mostrou ainda mais

efetivo quando comparado aos resultados que fazem uso de valores emṕıricos de

covariância, resultando em erros até duas vezes menores de velocidade e posição do

sistema.

Apesar de bons resultados, os métodos até aqui utilizados foram teóricos. Os

valores dos rúıdos apresentados pelo fabricante, são valores (médios) t́ıpicos e não

são especificados para cada eixo de seus sensores. Por serem dispositivos MEMS,

estes ainda podem exibir diferenças entre os seus eixos, divergindo ainda mais do

valor fornecido pelo fabricante.

Para representar os rúıdos dos sensores deste trabalho da melhor forma posśıvel

e quantificá-los da maneira correta, um terceiro método experimental é abordado e

descrito na seção 4.4.3.

4.4.3 Valores experimentais com a Variância de Allan

A variância de Allan é um método experimental de análise de dados, para le-

vantar, no domı́nio do tempo, os rúıdos intŕınsecos de uma amostra. Este método foi

adotado pelo IEEE em 1966 como um procedimento padrão para estimar e identificar

diferentes tipos de rúıdo, presentes em sensores inerciais.

Esta análise consiste em calcular, a raiz da variância média de um sinal em

função de diferentes agrupamentos de amostras no tempo (chamada de clusters),
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sendo seu algoritmo definido pelas equações 4.5 a 4.7 [49].

m < N/2

to = m× T
(4.5)

σ2
y(τ) =

1

2(N − 2m)

m−1∑
i=1

(ȳi+1 − ȳi)2 (4.6)

σy(τ) =
√
σ2
y(τ) (4.7)

Onde:

N é o número total de amostras computadas;

m é o fator de média do algoritmo;

T é o peŕıodo de amostragem do sinal;

to é o peŕıodo de cada cluster ;

τ é o peŕıodo da análise amostral;

ȳi e ȳi+1 são as médias aritméticas do cluster, iniciando em τ e τ+1, respectivamente;

σ2(τ) é a variância obtida no tempo;

σ(τ) é o outro modo de representar o rúıdo, chamado de desvio de Allan.

Os resultados são ilustrados em um gráfico de escala log/log possibilitando

analisar cada região da variância de Allan e correlacionar as inclinações de suas curvas

com diferentes tipos de rúıdos. Mais detalhes deste processo, podem ser verificados

em [49].

Para a realização do gráfico de Allan as medidas da unidade inercial foram

realizadas nas mesmas condições impostas na seção 4.4, obtendo-se aproximadamente

720 mil amostras, em um intervalo de 40 minutos.

Os gráficos gerados destas amostras, a partir de [49] e dos dados coletados,

são ilustrados nas Figuras 4.24, 4.25 e 4.26.
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Figura 4.24: Covariância de Allan do acelerômetro.

Figura 4.25: Covariância de Allan do giroscópio.
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Figura 4.26: Covariância de Allan do magnetômetro.

De acordo com a equação 4.4, a partir dos gráficos de Allan (para T = 1),

obteve-se os valores dos rúıdos dos sensores que equivalem à sua densidade de rúıdo.

Com os gráficos, pode-se observar que os rúıdos possuem magnitudes variadas

nos diferentes eixos de um mesmo sensor. No acelerômetro, o rúıdo encontrado no

eixo z (que está medindo a gravidade) é quatro vezes maior quando comparado ao

rúıdo presente no eixo x. Isso pode ser explicado pela não linearidade de medição

(e consequentemente de rúıdos) do próprio sensor que acontece quando ele mede

diferentes valores dentro da sua escala.

A partir dos valores obtidos nos gráficos de Allan, para τ = 1, as matrizes R

e Q do filtro de Kalman são modeladas pelos desvios apresentados a seguir:

σGPS = 3, 00 m

σSonar = 0, 01 m

σAccX = 4, 0 × 10−3 m/s2

σAccY = 6, 6 × 10−3 m/s2

σAccZ = 16, 0× 10−3 m/s2
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σGyrR = 7, 6× 10−4 rad/s

σGyrP = 8, 9× 10−4 rad/s

σGyrY = 6, 2× 10−4 rad/s

σMag = 4, 6 × 10−3 rad

Comparando os valores experimentais, com os teóricos da seção 4.4.2, nota-se

que a densidade de rúıdo obtida é de 8 a 32 vezes superior no acelerômetro e no

magnetômetro e 70 vezes inferior no giroscópio. Isso mostra que giroscópio possui

menos rúıdos e medidas mais confiáveis do que é indicado pelo fabricante. Já o

acelerômetro e o magnetômetro os rúıdos se apresentam maior do que o indicado

e portanto suas mediadas serão tratas com menos relevância pelo filtro de Kalman

Estendido.

Os resultados do filtro EKF, obtidos para as posições da plataforma, a partir

dos valores de covariância obtidos experimentalmente, são ilustrados nas Figuras

4.27, 4.28 e 4.29.
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Figura 4.27: Posição North(N) estimada com valores experimentais.
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Figura 4.28: Posição East (E) estimada com valores experimentais.
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Figura 4.29: Posição Down (D) estimada com valores experimentais.
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Segundo os gráficos de posição da plataforma, pode-se observar que o fil-

tro apresenta o mesmo comportamento quando comparado ao filtro ajustado pela

seção 4.4.2. Entretanto, a maior covariância obtida experimentalmente para o ace-

lerômetro, faz a posição do filtro (nos eixos North e East) convergir mais rapida-

mente para os valores do GPS.

Neste experimento, o sonar ainda é o sensor com as medidas mais confiáveis

do sistema (sem acumulo de erros) e portanto seus valores possuem maior influência

na estimativa do filtro para a posição do eixo Down.

Nas Figuras 4.30, 4.31 e 4.32 são ilustrados os resultados obtidos referentes à

velocidade nos três eixos da plataforma.
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Figura 4.30: Velocidade North (N) estimada com valores experimentais.
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Figura 4.31: Velocidade East (E) estimada com valores experimentais.
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Figura 4.32: Velocidade Down (D) estimada com valores experimentais.
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Nas estimadas de velocidade dos eixos N e E, o comportamento do filtro se re-

pete, no sentido de rejeitar de forma acentuada, as amostras ruidosas do acelerômetro

e convergir para um valor mais condizente com a realidade do experimento. Para o

eixo D, entretanto, a estimativa desta velocidade correlaciona-se com a altitude do

sonar e apresenta resultados superiores.

A utilização dos valores de covariância obtidos nesta seção, no lugar dos for-

necidos pelo fabricante, não melhorou os erros das estimativas da velocidade da pla-

taforma (de 0,4 m/s no eixo N e de 0,1 m/s no eixo E), mas aumentou a estabilidade

de suas predições.

Os resultados obtidos referentes à atitude da plataforma são ilustrados nas

Figuras 4.33, 4.34 e 4.35.
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Figura 4.33: Ângulo Roll (φ) estimado com valores experimentais.
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Figura 4.34: Ângulo Pitch (θ) estimado com valores experimentais.
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Figura 4.35: Ângulo Yaw (ψ) estimado com valores experimentais.
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Mais uma vez, os ângulos de Roll, Pitch e Yaw, apresentam os mesmos resul-

tados da seção 4.4.1 (com valores emṕıricos de covariância), afirmando que os rúıdos

obtidos do giroscópio tem pouca influência nas incertezas do sistema, independente-

mente dos seus valores de covariância na matriz Q.

Mesmo utilizando uma covariância 76 vezes maior (e imprecisa) do mag-

netômetro, o filtro foi capaz de estimar o ângulo Yaw e convergir para o ângulo

zero esperado.

O método utilizado nesta seção, obteve os mesmos resultados quando com-

parados aos obtidos na seção com os dados do fabricante, entretanto, ocorreu uma

convergência mais rápida para as posições do sistema. Isto demonstra uma confiabi-

lidade nos dados apresentados pelo fabricando e ainda a robustez do filtro de Kalman

Estendido, que apresentou bons resultados em todos os casos.

4.5 Considerações finais

Neste caṕıtulo, foram apresentados três métodos para quantificar o rúıdo

gaussiano (ou white noise) presente nas medições do sensores da plataforma. Os

valores obtidos foram utilizados para ajustar as matrizes de covariância (R e Q) do

Filtro de Kalman Estendido e os seus resultados de posição, velocidade e atitude

foram comparados.

O próximo caṕıtulo exibe as conclusões e os posśıveis trabalhos para serem

realizados no futuro.
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Caṕıtulo 5

Conclusões

Este trabalho definiu e implementou uma plataforma multissensorial para

aquisição de medidas, utilizando a técnica de fusão de dados, por meio de filtragem,

para estimar as informações de posição, velocidade e atitude da plataforma.

O filtro de Kalman Estendido foi utilizado com o intuito de fundir sensores

de diferentes naturezas, de minimizar as incertezas produzidas por eles e fornecer

estimativas confiáveis dos estados utilizados pela navegação aérea inercial.

A versão estendida do filtro de Kalman foi aplicada para tratar as equações

não lineares do sistema de navegação inercial, aproximando este sistema para um

modelo linear com método de Taylor. A convergência do filtro, para o teste em

repouso, mostra que a aproximação de Taylor é uma boa estimação, mesmo utilizando

apenas o primeiro termo de sua série.

Os resultados obtidos pelo filtro, comprovam a eficácia e os benef́ıcios da fusão

de mais de um sensor, possibilitando estimar de forma bastante precisa e confiável

os estados (posição, velocidade e atitude) dessa plataforma, mesmo com os sensores

apresentando falhas e não conformidades.

O algoritmo utilizado, além de robusto, é de fácil implementação em sistemas
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discretos, recursivos e ainda utiliza pouca memória, viabilizando sua execução mesmo

em microprocessadores com recursos limitados.

A plataforma computacional (Odroid-XU4), em conjunto com seu sistema

operacional (Linux) e sua acessibilidade de hardware em baixo ńıvel, possibilitou

a implementação dos protocolos de comunicação, o acesso aos pinos GPIOs, e a

elaboração de softwares para comunicação e aquisição dos sensores de forma simples

e direta.

Apesar das facilidades oferecidas pelo Odroid, o sistema operacional utilizado

não é voltado para aplicações em tempo real, e se divide para a execução de ou-

tras tarefas. Esta caracteŕıstica, prejudicou o processo de aquisição da IMU para

uma taxa de aquisição de 820 Hz. Nesta ocasião, o intervalo das leituras sensoriais

variaram de forma incontrolável, colhendo amostras repetidas, ou ainda, perdendo

amostras realizadas pelo módulo.

Além disso, problemas com a comunicação SPI (entre o Odroid e a IMU)

foram identificados, tais como, o ajuste do tempo de espera entre um comando e

um dado do barramento SPI, e não puderam ser contornados via hardware, devido a

indisponibilidade de controle em baixo ńıvel do processador e dos GPIOs do Odroid.

Em relação à qualidade e o desempenho dos sensores, a investigação teórica

e experimental dos rúıdos presentes, permitiu quantificar e relacionar o rúıdo do

sistema com as estimativas de grandezas da aeronave e, inclusive, a robustez do

filtro.

Os resultados obtidos pela plataforma implementada demonstram como uma

solução de baixo custo é atrativa para aplicação em sistemas de navegação aéreos,

como o proposto neste trabalho (AVALON), ou outros VANTs.

5.1 Trabalhos Futuros

Inúmeras aplicações podem ser obtidas para este sistema, incluindo monito-

ramento e navegação de diversos véıculos (tripulados ou não) por meio da imple-
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mentação de pilotos automáticos.

Apesar do filtro de Kalman Estendido ter demonstrado bons resultados e boa

imunidade a rúıdos sensoriais, grandes picos de rúıdos foram detectados nas medidas

dos experimentos e seu tratamento poderá auxiliar na melhora da estimativa do filtro

e na sua estabilidade.

Além disto, outras técnicas de fusão e filtragem sensorial poderiam ter sido

utilizadas. O filtro EKF poderia ter sido substitúıdo por outras versões, como o filtro

de Kalman Unscented (UKF) para estimativas de sistemas não lineares ou inclusive

filtros em cascata, para melhor rejeição de rúıdos.

Acrescenta-se, ainda, a possibilidade de estudar e modelar, além do rúıdo

gaussiano, outros rúıdos presentes no sistema com o intuito de obter soluções ainda

melhores na estimação dos estados.

O modelo e a plataforma, nesse trabalho implementados, também podem ser

testados em outras condições, como o meio externo, incluindo condições mais severas

como ventos e chuva.

Todos os dados coletados foram salvos em arquivos e possibilitam a realização

de outros estudos de técnicas de fusão sensorial, ou ainda, um estudo mais aprofun-

dado sobre os rúıdos presentes nos sensores. Além destes, outros dados do GPS

(como sua velocidade) podem ser coletados e adicionados como medidas na etapa de

atualização do filtro de Kalman estendido, podendo ajudar na predição da velocidade

e da posição do sistema.

Os problemas em hardware gerados pelo Odroid, de comunicação e de controle

das GPIOs, podem ser sanados utilizando drivers para o Linux, dedicados para a

aplicação, ou ainda, introduzindo um processador de baixo custo e com controle em

baixo ńıvel (como o PIC ou o ATmega), dedicado às aquisições sensoriais, atuando

como uma ponte entre os sensores e o sistema computacional da plataforma.
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[31] FRANÇA JR, J. A.; MORGADO, J. A.; PINTO, M. F. Simulação e imple-

mentação em tempo real de sistemas de navegação inercial integrados ins/gps.

2009. 113 p. 2009. Tese (Doutorado em F́ısica) - Dissertação de Mestrado,
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