LAIS PEREIRA OLIVEIRA

MIGRACAO DE MODELO DE DADOS RELACIONAL PARA NOSQL

Monografia apresentada ao PECE -
Programa de Educagido Continuada em
Engenharia da Escola Politécnica da
Universidade de S&o Paulo como parte
dos requisitos para conclusdo do curso de
MBA em Tecnologia de Software.

Sao Paulo
2013

LAIS PEREIRA OLIVEIRA

MIGRAGCAO DE MODELO DE DADOS RELACIONAL PARA NOSQL

Monografia apresentada ao PECE -
Programa de Educacdo Continuada em
Engenharia da Escola Politécnica da
Universidade de Sao Paulo como parte
dos requisitos para a conclus&o do curso
de MBA em Tecnologia de Software.

Area de Concentracgo: Tecnologia de
Software

Orientador: Prof. Dr. Kechi Hirama

S&o0 Paulo
2013

@%% .
oD
9’(, T
\J
Escola Politécnica - EPEL
31588823122
2" FICHA CATALOGRAFICA
0 & ¢

QOliveira, Lais Pereira

Migracéio de modelo de dados relacional para NoSQL / L.P.
Oliveira. -- $Sao0 Paulo, 2013.

65 p.

Monografia (MBA em Tecnologia de Software) — Escola
Politécnica da Universidade de Sdo Paulo. Programa de Edu-
cagdo Continuada em Engenharia.

1.Banco de dados 2.NoSQL l.Universidade de S&o Paulo.
Escola Politécnica. Programa de Educagéo Continuada em En-
genharia IL.t.

DEDICATORIA

Dedico este trabalho aos meus pais e
minha irmd que sempre me apoiam e

s8o a felicidade da minha vida.

AGRADECIMENTOS

Aos meus pais, minha irma e Luiz que s8o minha grande inspiragéo, incentivam
sempre meu crescimento profissional e me ddo forgas para n&o desistir dos meus
objetivos.

Ao professor Kechi Hirama, pela paciéncia, confianga, orientagdo e apoio no
desenvolvimento deste trabalho.

Aos meus amigos e colegas de trabalho da Summa, Cardif, Avenue Code e Wal-
Mart, pelo apoio.

RESUMO

Este trabalho apresenta um estudo sobre a migragéo de banco de dados relacional
para NoSQL.. A partir dos trabalhos de Schram, Anderson (2012) e Cruz et al. (2011)
foi possivel identificar um processo para realizar a migracdo do modelo de dados
bem como as principais dificuldades e decisdes envolvidas.

Os bancos de dados NoSQL estdo ganhando cada vez mais popularidade e
consequentemente o interesse em migrar sistemas existentes que utilizam bancos
de dados relacionais também é cada vez maior. Diversas solugdes de banco de
dados NoSQL foram criadas para suprir as necessidades ndo atendidas pelos
bancos de dados relacionais. Contudo, devido a especificidade dos bancos de dados
NoSQL, realizar a migracéo envolve a dificil decisdo de escolher o banco de dados
mais apropriado e saber como construir o modelo de dados de forma a atender os

requisitos de negocio e de sistema.

ABSTRACT

This work presents a study concerning the migration of relational databases to
NoSQL databases. Based on the work of Schram, Anderson (2012) and Cruz et al.
(2011) a process to accomplish the data model migration as well as the main
difficulties and decisions involved could be identified.

The NoSQL databases are gaining more popularity and consequently the interest in
migrating existing systems that currently rely on relational databases is also
increasing. Several NoSQL databases solutions were created to meet the flaws of
relational databases. However, due to the specificity of NoSQL databases, perform
the migration involves the difficult decision of choosing the most appropriate
database and also build the data model to meet the business and system
requirements.

LISTA DE ILUSTRAGCOES

Pag.
Figura 1 — Exemplo de um arquivo em formato JSON (Couchbase, 2013).............. 22
Figura 2 — Dados desnormalizados em formato JSON (Couchbase, 2013) 23
Figura 3 - Pares de chave-valor armazenados em um bucket (Basho, 2012).......... 26
Figura 4 — Representagdo de registros comparadas relacional x documentos
(Couchbase, 2013) ... 27
Figura 5 — Modelo de dados orientado a colunas do Cassandra (Sadalage & Fowler,
202) e e e 30
Figura 6 - Exemplo da técnica de modeiagem Skinny rows (Schram & Anderson,
2012). et e 32
Figura 7 — Exemplo da técnica de modelagem Wide rows (Schram & Anderson,
P T 33
Figura 8 - Exemplo de modelagem com chave composta (Schram & Anderson, 2012)
.. 33
Figura 9 — Exemplo de modelagem com chave composta (Schram & Anderson,
2012) ettt e 34
Figura 10 - Processo de migrag&o para NOSQLooveeoeeeooeeoeeoeeoeo 38
Figura 11 — Utilizagdo de servigos para abstrair o acesso aos dados ao invés de
acessar diretamente os bancos de dados (Sadalage & Fowler, 2012). o, 41
Figura 12 - Vis&o das trés camadas do sistema antes da migragao............... L 47
Figura 13 - Modelo de dados relacional utilizado pelo servigo WishService............. 49
Figura 14 — Consulta SQL do REQUISILO 6..........c..eeeeeeeeeeeeeoeeooeeeeeoeeoeeeoo 50
Figura 15 ~ Modelo de dados representado em Documento - Embeded 51
Figura 16 — Modelo de dados representado em Documento - Reference................. 52
Figura 17 — Modelo de dados representado em Documento - Reference............. 53
Figura 18 — Modelo de dados representado em Documento - Reference................ 53
Figura 19 ~ Modelo de dados representado em Documento - Reference 53

Figura 20 - Visao das trés camadas do sistema apos a MIGragao........cceeeecvuneenne.... 54

ORM
CAP
ACID
SQL

LISTA DE ABREVIATURAS E SIGLAS

Object Relational Mapping

Consistency Availability Partition Tolerance
Atomicity, Consistency, Isolation, Durability
Structured Query Language

SUMARIO

Pag.
1. INTRODUGAD ... sessescesssecsessee s eeesersssssssasesssssessssme s sssesse e e 11
1A MOUVAGEES ... e e e e e 11
1.2 OBJBUVO ..ottt e e e 12
1.3 JUSHITICAtIVAS ... e e 12
1.4 Estrutura do TrabalnO.........ccooiveiee e 12
2. BANCO DE DADOS NOSQL.....cccccommrmeviremremssmsnnesinssmssssssstsstessessanssssanssssnssssmnn 14
2.1 Controle ranSACIONANccoeueviirieieeie et 15
2.2TEOMEMA CAP ...ttt e e ee e 16
2.3 LimitagGes dos Bancos de Dados Relacionaiscoeverveeeeeeeeeeeeeeenn, 17
2.4 Modelos de Dados dos Bancos de Dados NOSQL «......oeeeeeeeeeeeeeeeoeoeeoeee 20
2.5 Modelagem de Dados com Bancos de Dados NOSQL ...o..oveeeeeeeooee, 21
2.6 Tipos de Banco de Dados NOSQL ..ot e e 23
2.8.1 ChAVE-VAIOT ..ottt ettt e e 24
2.8.2 DOCUMEBNTOScoveiiiii ettt ettt eee e et e e 26
28.3 COUNGS ..ottt et et ee e et e e 29
2.7 Pontos de Atengéo com os Bancos de Dados NOSQLc.vevveveveeeeeeeeeeeeaeen 35
2.8 Consideragdes do CapitUlOocuieere oo 36
3. PROCESSO DE MIGRAGAO PARA NOSQLcveeieeecevertresmeesseeessssersasesssssnns 37
3.1 Isolar Camada de PersiSt8NnCialc.oooveueeeeee e e, 39
3.2 Identificar REQUISITOSc.eoooeeiiecee e 41
3.3 Migrar Banco de Dados..........o...ooeeoeeeeee e 42
3.3.1 Escolha do tipo de banco de dados NOSQLcooeeeeeooeeeeeeeeeeoeeee 42
3.3.2 Migrac&io do Modelo de Dadosoceoermreeeeeeeeeeeeeeeee e e 44
3.4 Consideragfes do Capituloc.ocoo oot 45
4. APLICAGCAO DO PROCESSO DE MIGRAGAOD.......occicesinssseeese e sresesesesnenas 46
4.1 DesCriGa0 dO SISIEMA ...covveieeeeee e e, 46
4.2 Processo de Migrag@io para NOSQL......ccceeiveiee it 46
4.2.1 Isolar Camada de PersiStENGCIac.ocuuvieeeiveee oo eeeeeeeeeeeeeee e, 46
4.2.2 1dentificar REQUISIEOScoviiieieeet oo eee e 48
4.2.3 Migrar Banco de Dados.........c.ccuoeeieueeeieie e, 50
4.3 Arquitetura ApOs @ MIQraGB0.........cccoovemie e e e e e e ee e, 54
4.4 Consideragtes do CapitUulO............c.oveeuieee oo e e s oo e eee e, 54
5. CONSIDERAGOES FINAISomuceeeeerericeesessmssseeiseeseesessesasessessssassssssessessssens 56
5.1 Contribuigdes do Trabalnocc.ooi oot eeeee e 56
5.2 TrabalNos FULUMOS ..ot e e 57
REFERENCIAS.......couremeesresnssaressasesssrsssessssssssssss srems sessssssssseseesssssessssesesssssssseessees 59
APENDICE A - REQUISITOS DE NEGOCIO DO SISTEMA ADVENTUROUS 61

11

1. INTRODUGAO

Este capitulo apresenta as motivagbes, objetivo e justificativa de realizar este
trabalho.

1.1 Motivacdes

Os bancos de dados relacionais vém sido utilizados com sucesso por mais de 20
anos fornecendo persisténcia, controle de concorréncia e um mecanismo de
integracao de aplicagdes.

O aumento cada vez maior dos dados na Web é um problema enfrentado por
grandes empresas como Google e Amazon. Estas empresas tém que lidar com
tera/peta bytes de dados e as requisigbes devem ser respondidas sem laténcia
notavel. Estas empresas foram pioneiras na utilizacio de banco de dados NoSQL,
tendo criado o préprio sistema de banco de dados.

O fator que impulsionou as mudancas na forma de armazenamento dos dados foi a

necessidade de manipular grande quantidade de dados de forma distribuida.

A abordagem NoSQL, defende a utilizagio dos bancos de dados relacionais e nao
relacionais em conjunto, no mesmo sistema ou até na mesma aplicagéo, visando
fazer uso das tecnologias que sejam mais apropriadas para o negécio (Sadalage &
Fowler, 2012).

A utilizagdo de bancos de dados n3o relacionais é cada vez mais uma realidade
para aplicagbes de menor porte, ja que os todos buscam de alguma forma:
escalabilidade, desempenho, menor custo e agilidade no desenvolvimento do
software.

As decisbes gue devem ser tomadas para a utilizagdo destes bancos de dados s3o

muitas e por ser uma mudanga recente, ndo ha padronizagao.

12

Assim, uma das formas de enfrentar este cendrio é através do estudo da migracgo
de modelos de relacionais para ndo relacionais, pois através deste estudo & possivel
compreender os conceitos dos diversos modelos de dados, as preocupacdes e

decisGes envolvidas nesta nova abordagem.

1.2 Objetivo

O objetivo do trabalho apresentar um processo de migragéo de um modelo de dados
relacional para um modeio de dados com um banco de dados NoSQL. Para que este
objetivo seja cumprido s&o apresentados os passos para realizar a migragdo para
NoSQL bem como uma aplicagéo do processo.

1.3 Justificativas

Existem diversos trabalhos que tratam do assunto NoSQL. Dentre eles os trabalhos
de Schram & Anderson (2012) e Cruz et al. (2011) relatam a migrac&o de banco de

dados relacional para NoSQL.

O trabalho de Schram & Anderson (2012) descreve as dificuldades e preocupagses
desta migracdo de forma detalhada, porém n&o ha discussdo profunda das
alternativas para a modelagem dos dados e para a escolha do tipo de banco de

dados utilizado.

Ja o trabatho de Cruz et al. (2011) relata a migragao de uma forma menos detalhada
que também ndo discute profundamente as decisdes tomadas, mas pode-se

observar que existe um processo informal sendo utilizado nesta migragao.

1.4 Estrutura do Trabalho

O Capitulo 1 INTRODUGAO apresenta as motivagbes, o objetivo, as justificativas e a
estrutura do trabalho.

O Capitulo 2 BANCOS DE DADOS NOSQL apresenta conceitos e vis&o geral dos

bancos de dados NoSQL, bem como caracteristicas das suas categorias e as

13

respectivas técnicas de modelagem de dados. No fim do capitulo, s3io apresentadas
também algumas limitagdes dos bancos de dados relacionais e pontos de atengao
ao se trabalhar com bancos de dados NoSQL.

O Capitulo 3 PROCESSO DE MIGRACAO PARA NOSQL apresenta as fases do
processo para realizar a migracéo extraidas principalmente dos trabalhos de Schram
& Anderson (2012) e Cruz et al. (2011).

O Capitulo 4 APLICACAO DO PROCESSO DE MIGRACAO descreve um exercicio
de migragdo de um sistema ficticio que aplica o processo e evidencia a importancia

das alternativas de modelagem de dados apresentadas nos capitulos anteriores.

O Capitulo 5 CONSIDERAGOES FINAIS descreve a conclusdo do trabalho, as

dificuldades encontradas, as contribuicées e os trabalhos futuros.

REFERENCIAS relaciona os trabalhos citados.

APENDICE A apresenta os requisitos de negécio do sistema utilizado na aplicagéo

do processo apresentado no capitulo 4.

ANEXO A apresenta uma comparagao de banco de dados NoSQL

14

2. BANCO DE DADOS NOSAQL.

O termo NoSQL é um neologismo acidental. Ndo existe uma definigdo coerente
sobre o termo, que para alguns significa No SQL (N&o ao SQL) e para alguns Not
onfy SQL (N&o somente SQL). NoSQL é também o nome de um banco de dados
relacional criado no final dos anos 90, que n&o tem influéncia alguma na abordagem
NoSQL (Sadalage & Fowler, 2012).

Quando aplicado aos bancos de dados, o termo NoSQL refere-se a um conjunto
destes que em sua maioria compartilham as seguintes caracteristicas : (Sadalage &
Fowler, 2012).

* N&o usam o modelo relacional

* Operam em cluster com naturalidade

* Open-source

* Construidos para as aplicagbes Web do século 21

* Na&o possuem estrutura rigida de modelo de dados (schemaless)

Ainda é comum encontrar aplicagbes que utilizam apenas o banco de dados
relacional, mas com o tempo esta se tornando popular usar varias bancos de dados
de tipos diferentes em conjunto, potencializando suas forgcas para criar um
ecossistema que é mais poderoso, capaz e robusto do que a soma de suas partes.
Esta pratica é conhecida como persisténcia poliglota (Redmond & Wilson, 2012).

A maioria dos bancos de dados NoSQL sdo open source, acompanhando os
desenvolvimentos do mercado global de software, o que permite aos usuarios

realizar avaliagdes técnicas de baixo custo (Sadalage & Fowler, 2012).

Diferentes bancos de dados NoSQL possuem diferentes abordagens. O que eles
tém em comum & que eles n&o s&o relacionais. Sua principal vantagem é que, ao
contrario de bancos de dados relacionais, eles lidam com dados néo estruturados,
como arquivos de texto, e-mail e multimidia, de forma eficiente. Bancos de dados
relacionais trabalham melhor com dados estruturados, que facilmente podem ser
organizados e acomodados em tabelas (Leavitt, 2010).

15

A escalabilidade em um banco de dados relacional pode ser alcangada através da
escalabilidade vertical, adicionando mais poder de processamento ao servidor de
banco de dados e consequentemente gerando mais custos. Para atingir um nivel
maior de escalabilidade deve-se adotar a escalabilidade horizontal, que consiste em
distribuir os dados por muiltiplos servidores. (Leavitt, 2010)

Durante anos, o desenvolvimento de sistemas de informagdo vem provendo
escalabilidade vertical (também chamado de scale-up), investindo em novos e caros

grandes servidores {(Pokorny, 2011).

A distribuicao de dados em tempo real pode causar diminuigdo do desempenho do
sistema. O particionamento no banco de dados em varios servidores baratos
adicionados dinamicamente, provendo escalabilidade horizontal (também chamado
scale-out), aparentemente pode garantir a escalabilidade de uma forma mais eficaz
e mais barata (Pokorny, 2011).

Para alcangar a escalabilidade horizontal, os bancos de dados NoSQL dispensaram
algumas caracteristicas de banco de dados comuns, como por exemplo, restrictes

do modelo de dados relacional e exigéncias de processamento de transacbes
(Pokorny, 2011).

As proximas segdes apresentam conceitos importantes, controle transacional e o
teorema CAP, sobre as caracteristicas que os bancos de dados NoSQL mudaram

com relagao aos bancos de dados relacionais.

2.1 Controle transacional

Uma das caracteristicas basicas dos bancos de dados é o controle de transacéo
caracterizado por Atomicidade, Consisténcia, Isolamentoc e Durabilidade, as
chamadas propriedades ACID (Atomicity, Consistency, Isolation, Durability)
(Pokorny, 2011).

16

Segundo Leavitt (2010), a Atomicidade (Atomicity) dos bancos de dados garantem
que as operagbes executadas na mesma transagdo sdo persistidas somente se
todas forem executadas com sucesso, caso contrario todas sdo descartadas. A
Consisténcia (Consistency) significa que uma transagéo é realizada com sucesso
quando as restrigbes do banco de dados s&o respeitadas, como por exemplo, as
chaves primarias dos bancos de dados relacionais. O Isolamento (/solation) garante
que as transagbes em execugdo de forma concorrente sdo isoladas de forma que
uma nao interfere na execugdo das demais. A Durabilidade (Durability) garante que
apos finalizada, as operagdes de uma transagéo séo persistidas no banco de dados
e assim devem permanecer.

Bancos de dados que ndo implementam totalmente ACID sido eventualmente
consistentes. Em principio, ao ceder um pouco de consisténcia, ganha-se mais
disponibilidade e uma melhora significativamente a escalabilidade do banco de
dados {Pokorny, 2011).

2.2 Teorema CAP

O teorema CAP (Consistency, Availability, Partition Tolerance) afirma que qualquer
sistema de dados compartilhados operando numa rede pode ter somente duas das
trés propriedades desejadas. (Brewer, 2012).

Consisténcia (Consistency) significa que sempre que os dados sdo gravados, todos
que leiam a partir do banco de dados obterdo sempre a atualizagdo mais recente
dos dados. (Pokorny, 2011).

Disponibilidade (Avaifability) significa que se pode sempre esperar que cada
operagao termine em uma resposta pretendida. A alta disponibilidade é normalmente
realizada através de um grande ndmero de servidores fisicos que agem como um
nico banco de dados com os dados compartilhados entre varios nés de banco de
dados e replicagbes de dados. {Pokorny, 2011).

Tolerancia a Particionamento (Partition Tolerance) significa que o banco de dados

ainda pode ler e armazenar dados mesmo quando partes dele sejam completamente

17

inacessiveis. Por exemplo, quando a conex&o de rede entre um niimero significativo
de servidores de banco de dados ¢ interrompida a tolerancia a particionamento pode
ser alcancada através do envio das requisicées de escrita destinadas aos servidores
inacessiveis para os que estdo ainda acessiveis. Entdo, quando os servidores com
fatha voltarem a se conectar na rede, eles recebem os dados escritos que foram
perdidos (Pokorny, 2011).

Apds mais de uma década da afirmagdo do teorema CAP, Brewer (2012) explica
que ao manipular partigdes explicitamente, os desenvolvedores podem otimizar a
consisténcia e disponibilidade, conseguindo assim um balanceamento de todas as
trés propriedades (Brewer, 2012).

Os conceitos de controle transacional e do teorema CAP sdo importantes para a
compreensdo das principais limitagbes dos bancos de dados relacionais
apresentadas na proxima segao.

2.3 Limitag6es dos Bancos de Dados Relacionais

Os bancos de dados relacionais possuem algumas limitacdes assim como os bancos
de dados NoSQL. Conhecer as limitagbes dos bancos de dados relacionais &
importante para compreender as principais motivagdes para a criagdo dos bancos de

dados NoSQL e também quais sdo as principais diferencas entre eles.

Desempenho

Bancos de dados NoSQL geralmente processam dados mais rapidamente do que os
bancos de dados relacionais. As operagbes realizadas nos bancos de dados
relacionais, sejam operagdes que requerem grande precisdo ou n&o, estio sujeitos
as restrigbes de ACID (Leavitt, 2010).

Ter que executar essas restricbes em todos os dados faz com que os bancos de
dados relacionais sejam mais lentos. A maioria dos bancos de dados NoSQL ndo
suportam ACID a fim de aumentar o desempenho, e isso pode causar problemas
quando usados para aplicagdes que necessitam de grande precisdo (Leavitt, 2010).

18

Bancos de dados NoSQL também sdo muitas vezes mais rapidos, pois seus
modelos de dados s@o mais simples. Existe um balango entre a velocidade e a

complexidade do modelo e na maioria dos casos € uma troca vantajosa (Leavitt,
2010).

Escalabilidade

Bancos de dados relacionais n&o foram criados para operar de forma distribuida com
particdo de dados. Realizar consultas que envolvem varias fabelas que est&o
distribuidas n&o é facil {Leavitt, 2010).

SaQL
Usar a linguagem SQL é conveniente com dados estruturados. Porém, com outros

tipos de dados é dificll porque o SQL foi criado para funcionar com dados
estruturados, fixos e relacionalmente organizados.

Trabalhar com a linguagem SQL e consequentemente com banco de dados
relacionais pode envolver uma grande quantidade de cddigo complexo e nao
funciona bem com o desenvolvimento agil moderno (Leavitt, 2010). Isto porque no
desenvolvimento de software o projeto do modelo de dados exige uma fase, que
pode ser longa, antes do desenvolvimento e que se néo for bem projetado acarreta
em muitas manutengoes.

Flexibilidade

A estrutura dos dados num banco de dados relacional é pré-definida pelo layout das
tabelas e pelos nomes e tipos fixos das colunas (Leavitt, 2010).

A manutencdo e evolugdo dos modelos de dados relacionais é normalmente
trabalhosa, principalmente acomodar os dados ja existentes no banco de dados em
uma nova estrutura. Enquanto que com os bancos de dados NoSQL muitas vezes
n&o ha um modelo de dados fixo, portanto fica a cargo da aplicagéo lidar com as

diferentes versdes dos dados.

Complexidade

19

Com os bancos de dados relacionais, todos os dados devem ser convertidos para
tabelas. Quando os dados nZo se encaixam facilmente em uma tabela, a estrutura
acaba ficando complexa, lenta e dificil de se manipular (Leavitt, 2010).

Recursos do banco de dados

Bancos de dados relacionais oferecem um grande conjunto de recursos e
integridade dos dados. Porém, os defensores dos bancos de dados NoSQL dizem
que os usuarios muitas vezes néo precisam de todos os recursos, bem como o custo
e a complexidade que eles podem trazer (Leavitt, 2010). A seguranga € um exemplo,
porque pode ser obtida através da aplicagao responsavel pelos dados (Sadalage &
Fowler, 2012).

Incompatibilidade de Impedancia / Mapeamento Objeto-Relacional
Conhecido como impedance mismatch, é a diferenca entre o modelo relacional e a

estrutura de dados que estd em memoria na aplicagao.

Nos bancos de dados relacionais, os relacionamentos fornecem simplicidade e
padronizagéo porém também adicionam limitages. Os valores de uma tupla néo
podem conter estruturas complexas como de registros aninhados e listas, enquanto
que estruturas manipuladas em memodria pela aplicagio podem.

No desenvolvimento de aplicagies orientadas a objetos, o trabalho de mapeamento
das diferentes estruturas foi facilitado pelos frameworks ORM (object-relational
mapping), como o Hibernate, que vém sendo largamente utilizados, mas podem
acarretar em problemas de desempenho e adicionar ainda mais complexidade

quando mal utilizados (Sadalage & Fowler, 2012).

Conforme apresentado no inicio deste capitulo, os bancos de dados NoSQL
n&o usam o modelo de dados relacional, justamente para evitar os problemas como
a flexibilidade, complexidade e a incompatibilidade com o mapeamento objeto-

relacional.

20

2.4 Modelos de Dados dos Bancos de Dados NoSQL

Um modelo de dados descreve a organizagdo dos dados de uma aplicagdo no
banco de dados. Um modelo de armazenamento descreve como o banco de dados
armazena e manipula os dados internamente (Sadalage & Fowler, 2012).

Idealmente os usuarios dos bancos de dados n#do precisariam conhecer
profundamente o modelo de armazenamento, porém na pratica s80 necessarios
conhecimentos um pouco mais do que basicos para alcangar um bom desempenho
na sua utilizagdo (Sadalage & Fowler, 2012).

O termo modelo de dados é também utilizado com o sentido de modelo de
armazenamento quando se refere aos tipos de modelos de armazenamento de
bancos de dados NoSQL. (Sadalage & Fowler, 2012).

Os bancos de dados NoSQL s3do categorizados de acordo com o modelo de dados
que utilizam internamente. Essencialmente os tipos de modelos de armazenamento,

ou modelos de dados NoSQL, s&o : chave-valor, documento, coluna e grafo.

Portanto, quatro categorias, das quais chave-valor, documento e coluna sdo também
categorizadas como orientadas a agregados por compartilharem algumas
caracteristicas de seus modelos de dados. Eles permitem que os dados persistidos
possuam esfruturas complexas, como de objetos aninhados e listas, trabalhando de
forma natural com agregados (Sadalage & Fowler, 2012).

Agregado € um termo vindo do DDD (Domain Driven Design). No DDD, um
agregado é uma colecéo de objetos relacionados com a qual se interage como uma
unidade (Sadalage & Fowler, 2012).

Nos bancos de dados orientados a agregados, o agregado é uma unidade para
manipulagdo e gerenciamento de consisténcia dos dados. Como os dados de um
agregado sdo sempre manipulados, na escrita e leitura, como uma unidade, a
comunicagéo com o banco de dados é atdmica, ndo sendo necessario controle
transacional adicional, além de facilitar a operagéo do banco de dados de forma

21

distribuida, ja que um agregado é também uma unidade natural para replicagdo e
particionamento (Sadalage & Fowler, 2012).

Nao existe uma forma bem definida para a modelagem dos agregados, depende
totalmente de como a aplicagio pretende manipular os dados. Devido a este fato,

muitas vezes a modelagem dos agregados envolve outras disciplinas (Sadalage &
Fowler, 2012).

Um modelo de armazenamento que n3o suporta a estrutura de agregados, como por
exemplo os modelos relacionais, permite que os dados sejam acessados de formas
diferentes, portanto ¢ a methor escolha para os casos em que ndo haja uma

estrutura dos dados e bem definida, bem como sua forma de utilizagdo (Sadalage &
Fowler, 2012).

A grande vantagem dos agregados é a facilidade de distribuicdo dos dados, poIs
estes estdo no mesmo servidor devido a sempre serem manipulados juntos,
evitando o problema de fazer uma consulta que precise juntar dados distribuidos em
varios servidores (Sadalage & Fowler, 2012).

2.5 Modelagem de Dados com Bancos de Dados NoSQL

O formato JSON (Javascript Object Notation) & normalmente utilizado para
representar as estruturas dos dados nos bancos de dados NoSQL (Pokorny, 2011).

Na figura 1 pode ser visto um exemplo de um arquivo em formato JSON.

22

“ID*: 1,

“ERR”: “Out of Memory”,

“TIME”: “2004-05-16T23:59:58.75",
ALY DCII: \\NYCI’,

“NUM”: “212-223-2332"

“ID7: 2,
“ERR”: “ECC Error”,
“TIME”: “2004-09-16T23:59:59.00",
W DC’I: \\NYC’I ’
“NUM™: “212-223-2332~
1

Figura 1 — Exemplo de um arquivo em formato JSON {Couchbase, 2013)

Enquanto a modelagem de dados de aplicagbes que utilizam bancos de dados
relacionais tem a preocupagdo em formar relacionamentos normalizados, na
modelagem de dados de aplicagdes que utilizam bancos de dados NoSQL a

desnormalizagéo é fortemente encorajada. (Schram & Anderson, 2012)

Desnormalizagéo pode ser descrita como um processo para reduzir o grau de
normalizagéo de um modelo de dados com o objetivo de melhorar o desempenho e
reduzir o tempo de resposta do processamento de consultas realizadas no banco de
dados (Sanders & Shin, 2001).

Uma das areas mais Gteis para aplicagdo de técnicas de desnormalizagdo é em
implementagbes de Data Warehouse para mineragdo de dados (Sanders & Shin,
2001).

Na Figura 2, pode ser visto um exemplo da desnormalizagdo do modelo de dados
relacional, onde as tabelas User Info e Address Info séo representadas em um Gnico

arquivo JSON, fazendo com que estes dados sejam recuperados mais rapidamente.

23

User Info Address Info

A Eo £ G B R
{ t Fank welgsl 2 3 DEN KD o303
“qpT 1,
“FIRST”: “Frank”,
“LAST": “Weigel”, — 2 Al Dotion 2 + 2 L €4 94040
“ZIP": “94040", e
i, by, A [
";:_'::'Té”_'fc:,’, 3 WMak Azad p: 3 B i 60608
}

ISON 4 Steve Yan 3 4 WY WY 30010

Figura 2 — Dados desnormalizados em formato JSON (Couchbase, 2013)

Os conceitos de desnormalizagéo e agregados s&o importantes para a construgéo
de modelos de dados para bancos de dados NoSQL. A partir destes conceitos e dos
estudos e literatura apresentados por Schram & Anderson (2012); Cruz et al. (2011);
Saladage & Fowler (2012); Redmond & Wilson (2012) é possivel identificar diversas
alternativas e decisdes de modelagem, algumas se aplicam a varias categorias de
bancos de dados NoSQL e outras somente a categorias especificas.

Algumas destas alternativas e decisbes sdo apresentadas nas segbes que seguem
juntamente com mais detalhes sobre cada categoria de banco de dados NoSQL.

2.6 Tipos de Banco de Dados NoSQL

Nas segbes seguintes sdo apresentadas, para cada tipo de banco de dados, as
caracteristicas do modelo de dados, casos de utilizagdo recomendada e nao
recomendada e alternativas e decisées de modelagem de dados.

Foram considerados somente os bancos de dados orientados a agregados (ver
secdo 2.4) para detalhamenio e apresentacédo das decisdes de modelagem, portanto
a categoria de banco de dados NoSQL de Grafos n&o é apresentada.

Os bancos de dados de grafos sdo menos utilizados, e sdo excelentes para lidar
com dados interligados. Um banco de dados de grafo consiste em nés e as relagdes
entre os nés. Ambos os nds e os relacionamentos podem ter propriedades, pares de
chave-valor, que armazenam os dados. Os dados sdo acessados através da

navegar pelos nés seguindo os relacionamentos (Redmond & Wilson, 2012).

24

2.6.1 Chave-Valor

Como o nome indica, os bancos de dados desta categoria armazenam valores
indexados para que sejam recuperados por sua chave correspondente. Estes

sistemas podem conter dados estruturados ou nédo estruturados.

Este ¢ o modelo mais simples entre os modelos das categorias NoSQL. O modelo
de dados é caracterizado por pares formados por uma chave e um valor, como na
estrutura de dados de tabela hash (Redmond & Wilson, 2012).

Um sistema de arquivos pode ser considerado um armazenamento de chave-valor,
onde o caminho do arquivo é a chave e o contetido do arguivo como o valor
(Redmond & Wilson, 2012)

Utillizagdo recomendada :

Com pouca ou nenhuma necessidade de manter indices, os bancos de dados do
tipo chave-valor sd0 muitas vezes projetados para serem escalaveis horizontalmente
e extremamente rapidos. Eles sdo particularmente adequados para problemas onde
os dados ndo s&o altamente relacionados. Por exemplo, em uma aplicagdo Web,
dados de sessdo dos usuérios atendem a esse critério, a atividade da sesséo de
cada usuario sera diferente e nao relacionada com a atividade de outros usuarios
(Redmond & Wilson, 2012)

Utilizacao n&o recomendada :

Em casos que seja necessario manipular os dados com operagbes além basicas
CRUD (Create, Read, Update, Delete). (Redmond & Wilson, 2012)

Decisdes de modelagem

1) Modelo simples

Neste modelo a chave é formada por um valor Unico e o valor recebe um agregado.

25

Fornece atomicidade dada pelo agregado (v. se¢do 2.4.1), porém o trata como um
valor opaco, o que significa que pode-se obter o valor apenas pela chave. O banco
de dados n&o tem conhecimento do conteldo do valor, por isso ndo se pode
executar consultas para retornar apenas uma parte do agregado (Sadalage &
Fowler, 2012).

Armazenar diversos agregados sem segmenta-los por tipo aumenta as chances de
conflitos com as chaves. Exemplo : a chave java pode referenciar a linguagem de
programagéo e também a ilha da Indonésia (Sadalage & Fowler, 2012).

2) Modelo com chave composta

Neste modelo a chave é formada por um valor Unico concatenado com o nome do
objeto que sera atribuido ao valor. Desta forma, é possivel acessar os objetos
individualmente, resolvendo o problema de acesso de partes do agregado do

modelo simples, e s&o reduzidas as chances de conflitos de chaves (Sadalage &
Fowler, 2012).

Contudo a consisténcia & aplicada somente para operacdes em chaves Unicas, no
caso de atomicidade para agregados a consisténcia fica a cargo da aplicagso, ja que

0s objetos estdo sendo persistidos separadamente (Sadalage & Fowler, 2012).

3) Modelo segmentado por dominio

As caracteristicas deste modelo se assemelham as do modelo simples, a chave é
formada por um valor unico e o valor recebe um agregado. Porém para poder
acessar os objetos individualmente dentro do agregado sem alterar a estrutura da
chave, como no modelo com chave composta, alguns bancos de dados do tipo
chave-valor possuem os buckets, que permitem que as chaves sejam segmentadas
por dominio, também reduzindo as chances de conflitos de chaves.

Neste modelo, assim como no anterior, a consisténcia é aplicada somente para

operagcdes em chaves unicas, no caso de atomicidade para agregados a

26

consisténcia fica a cargo da aplicagdo, ja que os objetos estdo sendo persistidos
separadamente, segmentados por dominio.

bucket

a4 & & & 8 & 8 8 8 8 LA A B B O B BN B B BN BN B B R NN Y

key value
key value
key value
o | key value

Figura 3 - Pares de chave-valor armazenados em um bucket (Basho, 2012)

Na figura 3 € possivel visualizar a organizagdo do modelo de dados do tipo chave-
valor com um bucket.

2.6.2 Documentos

Para os bancos de orientados a documentos, a palavra documento ndo esta
relacionada com o significado utilizado em um contexto geral, ou seja, no significa
livros, cartas ou artigos. Um documento, neste contexto, refere-se a um registro de
dados que & auto-descritivo com relagdo aos dados que nele s&do contidos.
Documentos nos formatos XML, HTML e JSON sdo exemplos que se encaixam
neste contexto {Couchbase, 2013).

Um documento é como um hash, com um campo de identificador tnico e valores
que podem ser de variados tipos, incluindo um proéprio hash.

Os documentos podem conter estruturas aninhadas, e assim eles apresentam um
alto grau de flexibilidade, permitindo sua utilizagdo para diversos dominios. O
sistema impbe poucas restricdes sobre os dados de entrada, contanto que eles

atendam ao requisito basico de ser expresso como um documento.

27

Diferentes bancos de dados deste tipo possuem diferentes abordagens com relacao
a indexacdo, consultas ad-hoc, replicagdo, consisténcia e outras decisdes de
projeto. Fazer a melhor escolha entre eles requer a compreensao dessas diferencas

e como elas impactam os casos de uso especificos.

Os bancos de dados orientados a documentos permitem qualquer ndmero de
campos por objeto e até mesmo permitem que os objetos a sejam aninhados em
qualquer profundidade como valores de outros campos.

Uma vez que os documentos nfo se relacionam entre si, como bancos de dados
relacionais, eles s&@o relativamente faceis de particionar e replicar em varios
servidores, tornando as implementagdes distribuidas bastante comuns.

A Figura 4 compara a representagdo de quatro registros em um banco de dados
relacional com quatro registros em um banco de dados orientado a documentos.

A 50
RIC1 RIC2 RIC3 RIC4 D |
i_ | T ,_____‘..\ I;‘ "R{%) ;
= ™ - 5 P
R2C1 R2C2 R2C3 R2CA T | ||
. . " 1 1]
! | 3 i
R3C1 R3C2 R3C3 R3Ca I 1 | | :
¢ 9§ | | P
R4C1 R4C2 R4AC3 R4CA | ;
| ———
Relational data model Document data model

Figura 4 — Representagdo de registros comparadas relacional x documentos (Couchbase,
2013)

O modelo de dados relacional é caracterizado pela organizacdo de tabelas
estruturadas com formato dos dados e estrutura dos registros rigidamente definidos.

28

O modelo de dados de documentos possui colegdes de documentos complexos com

formato arbitrario e aninhado de dados e formato dos registros variado. {Couchbase,
2013)

Utilizag&o recomendada :

Bancos de dados orientados a documentos s8o adequados para os problemas que
envolvem dominios altamente varidveis e também para quando ndo se sabe de
antem&o exatamente como serdo os dados da aplicacdo. Além disso, devido a
natureza dos documentos, muitas vezes eles s&o faciimente mapeados para
modelos de programag&o orientada a objetos. Isso significa menos incompatibilidade
(impedance mismatch) ao mover dados entre 0 modelo de dados e 0 modelo de
aplicagdo (Redmond & Wilson, 2012).

Utilizacao ndo recomendada :

Para realizar consultas elaboradas com modelos altamente normalizados.

Um documento geralmente deve conter a maioria ou todas as informagtes
relevantes necessarias para o uso. Assim, enquanto em um banco de dados
relacional, naturalmente os dados s&o normalizados para reduzir ou eliminar as
copias que podem ficar dessincronizadas, com bancos de dados orientados a

documentos, dados desnormalizados é a regra (Redmond & Wilson, 2012).

Decisbes de modelagem

1) Embeded

Este modelo visa a desnormalizagdo dos dados e trabalha de forma transparente
com agregados, permitindo a execugdo de consultas para obter partes do agregado.
Porém como o documento ndo possui uma definicdo da sua estrutura, o banco de
dados n&o pode agir muito na estrutura do documento para otimizar o

armazenamento e leitura de partes dos agregados (MongoDB, 2013).

Beneficios deste modelo (MongoDB, 2013):

29

» Normalmente melhor desempenho para operaces de leitura.
- Habilidade de requisitar e obter dados relacionados em uma dGnica operagéo
no banco de dados.

Embutir dados relacionados em documentos pode ocasionar situagbes onde os
documentos cresgam depois da criagio. A criaggo de um documento pode impactar
o desempenho de escrita dos dados e levar a fragmentag&o dos dados (MongoDB,
2013).

Além disso, o tamanho dos documentos pode ser limitado, por exemplo para o
MongoDB que € um banco de dados popular orientado a documentos, eles devem
ser menores do que o tamanho méximo permitido para um documento BSON (Binary
Script Object Notation) (MongoDB, 2013).

2) Reference

Este modelo visa a normalizagdo dos dados, armazenando referéncias entre dois

documentos para indicar um relacionamento entre eles (MongoDB, 2013).

Esta modelo pode ser usado quando (MongoDB, 2013) :

O modelo Embeded resultar em duplicagéo de dados que nao fornega
vantagens suficientes no desempenho de leitura para compensar as
implica¢des da duplicagéo.

» Para representar relacionamentos mais complexos do tipo Muitos-para-
Muitos.

+ Para modelar grandes hierarquias, como estruturas de dados de arvore.

Este modelo oferece mais flexibilidade do que o Embeded, porém requer acessos ao
servidor, pois para resolver as referéncias, as aplicagdes clientes devem requisitar

consultas adicionais (MongoDB, 2013).

2.6.3 Colunas

30

Os bancos de dados orientados a colunas s&o assim chamados porgue o aspecto
importante de sua estrutura é que os dados de uma determinada coluna (no sentido
de tabela bidimensional) sdo armazenado em conjunto. Por outro lado, um banco de
dados orientado a linhas (como o relacional) mantém informagdes sobre uma linha
juntos (Redmond & Wilson, 2012).

A diferenga pode parecer irrelevante, mas o impacto desta decisdo de projeto é mais
profunda. Nos bancos de dados orientados a colunas, adicionar colunas é uma
operacdo de pouca oneragéo e ¢ feita de linha em linha. Cada linha pode ter um
conjunto diferente de colunas, ou nenhum, permitindo que as tabelas permanegam
dispersas sem incorrer em um custo de armazenamento para valores nulos
(Redmond & Wilson, 2012).

A Figura 5 apresenta a organizagdo do modelo dados de colunas do banco de dados
Cassandra, que € um dos mais populares desta categoria.

W T I TR O WG A W W NG DT WY N T TR T A R WA e Ol e e R NG SRR T i e D N e R e A ok b e o m n ay

ROW
Row Coluomni Column2 Colunmi
KeyX] \(namel:vatuel)J \(namez:value2 nawui: valuel

ROW
Row Columnl Coluf_ng__ C!?}ti_:!_i_nﬂ
KeyY nasel:valuel nased:vatued)J \(named:valueN)

B L I P g v

Figura 5 — Modelo de dados orientado a colunas do Cassandra (Sadalage & Fowler, 2012)

A familia de colunas (column family) é formada por linhas (rows) que possuem um
identificador (row key). As linhas sd&o compostas de colunas, onde cada coluna

possui um nome e um valor (Pokorny, 2011).

Utilizagao recomendada:
Os bancos de dados orientados a colunas tém sido tradicionalmente desenvolvidos

com escalabilidade horizontal como objetivo principal. Por isso, eles s&o

31

particularmente adequados para lidar com grandes volumes de dados, presentes em
grupos de dezenas, centenas ou milhares de nés. Eles também tendem a ter suporte
integrado para recursos como compressao e versionamento. O exemplo candnico de
um bom problema de armazenamento de dados em um modelo de colunas é indexar
paginas da Internet. Isto porque elas sdo altamente textuais (beneficios da
compressao), pouco interrelacionadas, e mudam ao longo do tempo (beneficios do

versionamento) (Redmond & Wilson, 2012).

Utilizagao ndo recomendada:

Diferentes bancos de dados orientados a colunas tém caracteristicas diferentes
entre eles e, portanto, diferentes desvantagens. Porém, o que eles t8m em comum é
que € melhor projetar 0 modelo de dados da aplicagdo com base em como se
pretende consultar os dados. Isso significa que se deve ter alguma ideia com
antecedéncia de como os dados seréo utilizados pela aplicagéo, ndo apenas do que
eles serdo consistidos. Se os padrbes de uso de dados ndo podem ser definidos
com antecedéncia, por exemplo, relatérios ad-hoc, entdo este tipo de banco de

dados pode n&o ser o mais adequado (Redmond & Wilson, 2012).

Decis6es de modelagem

1) Skinny rows

Este modelo é aplicavel aos bancos de dados orientados a colunas, e & mais similar

ao modelo de dados relacional.

As caracteristicas deste modelo s&o familias de colunas que definem o tipo de dado,
poucas colunas e linhas com as mesmas colunas usadas em varias linhas diferentes
(Sadalage & Fowler, 2012).

Nesta técnica o identificador da linha (row key) recebe o valor do identificador de
uma entidade. As linhas s&o formadas por colunas que representam os atributos da
entidade. O nome de cada coluna é o nome de cada atributo da entidade. O valor da

coluna recebe o valor do atributo.

32

Tweet Id 1 createdAt text Screen_name eee
Date String String eoo

ase
Tweet Ild N createdAt text screen_name eee
Date String String eoo

Figura 6 - Exemplo da técnica de modelagem Skinny rows (Schram & Anderson, 2012),

A Figura 6 apresenta um exemplo deste modelo, que armazena os dados da
entidade Tweet (obtidos do Twitter).

2) Wide rows

As caracteristicas deste modelo sdo muitas colunas {(da ordem de milhares)
diferentes para cada linha, modela uma lista, com cada coluna sendo um elemento

desta lista e cada linha representa um agregado (Sadalage & Fowler, 2012).

Neste modelo, o identificador da linha (row key) recebe o valor do identificador de
uma entidade. As linhas sdo formadas por colunas que representam os atributos da
entidade. O nome de cada coluna € o0 nome de cada atributo da entidade. O valor da

coluna recebe o valor do atributo. (Sadalage & Fowler, 2012).

A familia de colunas é baseada no tipo de consuita/resultado que a aplicagéo
necessita/espera, ou seja, dados que normalmente sio acessados junios. O
identificador da linha é tnico e representa uma entidade do tipo da familia de coluna.
(Sadalage & Fowler, 2012).

A linha é formada por varias colunas e cada coluna representa uma entidade,
portanto, o numero de colunas de cada linha vai variar de acordo com a quantidade
de entidades associadas ao identificador da linha (pode chegar a dezenas de
milhdes ou mais...) (Sadalage & Fowler, 2012).

33

Event Name 1 Tweet Id 1 see Tweet Id N
JSON eoo JSON

Event Name N Tweet Id 1 soe Tweet Id N
JSON soe JSON

Figura 7 - Exemplo da técnica de modelagem Wide rows (Schram & Anderson, 2012)

No exemplo da Figura 7, na familia de colunas chamada eventos, o identificador da
linha “Event Name 17, é o identificador (nico do evento. As colunas sdo modeladas
de forma que o nome seja o identificador da entidade, e o valor sejam os atributos
da entidade em um formato opaco para a aplicagdo, por exemplo em formatos
JSON/ XML / String, ou seja para a coluna de nome “Tweet Id 1", seus atributos
como createdAt, text e outros (v. Figura 6) estido contidos em um formato JSON.

3) Modelo com chave composta

Este modelo pode ser utilizado quando a manipulagédo da estrutura de dados se
tornar custosa devido a grandes volumes de dados (Schram & Anderson, 2012).

O modelo com chave composta traz muitos beneficios quando um repositério com
chaves ordenadas é utilizado. Chaves compostas em conjunto com ordenacédo
secundaria permite que sejam construidos um tipo de indice multidimensional.
(Katsov, 2012)

Event Name 1 Tweet Id 1 oo Tweet Id N
JSON eos JSON

"o

Event Name N Tweet Id 1 ooe Tweet Id N
JSON oeo JSON

Figura 8 - Exemplo de modelagem com chave composta (Schram & Anderson, 2012)

No exemplo da Figura 8, o modelo armazena os objetos que representam um Tweet

em formato JSON relacionados a eventos, o identificador da linha é formado pelo

34

identificador do evento. Com este modelo, podem ser armazenados centenas de
milhbes de Tweets por evento causando o problemas devido a quantidade de
colunas.

Neste modelo o identificador da linha é composto pelo identificador de uma entidade

e outros valores que se queira utilizar como filtro.

Event Name 1:

Day W Tweet Id 1

JSON

Tweet Id N
JSON

Event Name 1: Tweetld1 ees Tweetld N

Day X
JSON eoe JSON
208
Event Name N:
Day Y Tweetld1 ese TweetId N
JSON eee JSON
a0
Event Name N: Tweetid1 eee Tweetld N
Day Z

JSON eoe JSON

Figura 9 — Exemplo de modelagem com chave composta (Schram & Anderson, 2012)

Na Figura 9, foi adicionado no identificador da linha o dia do evento (Evento:Periodo,

que poderia ser hora, minuto, conforme a necessidade), limitando a quantidade de
colunas por linha.

Desta forma, quando a aplicagdo buscar os dados por esta chave composta a
quantidade de colunas sera menor, de um tamanho que a aplicagdo consiga alocar
na memoéria para manipulagdo, além de melhorar no tempo de

replicag&o/distribuigdo dos dados no cluster.

O ponto negativo desta técnica é que o modelo de dados fica dependente dos
requisitos de consulta da aplicagdo. Se mudar, na maioria das vezes é inviavel

reformular a estrutura de dados j& coletados. Entdo, normalmente a solugéo seria

35

que as novas consultas teréo resultados apenas para os novos dados coletados.
(Schram & Anderson, 2012)

2.7 Pontos de Atengdo com os Bancos de Dados NoSQL

Apbs conhecer os conceitos, vantagens e principais caracteristicas dos bancos
NoSQL, vistos nas segbes anteriores, finalmente é importante conhecer também
alguns dos cuidados que devem ser tomados ao se trabalhar com estes bancos de

dados para que possa ser feita uma boa avaliagédo de quando utiliza-los

Complexidade
Devido aos bancos de dados NoSQL néo trabalharem com a linguagem SQL, eles
exigem programagdo manual das consultas, que pode ser rapida para tarefas

simples, mas demorada para os outras mais complexas (Leavitt, 201 0).

Confiabilidade

Bancos de dados relacionais suportam nativamente ACID, enquanto a maioria dos
bancos de dados NoSQL ndo. Bancos de dados NoSQL, portanto, ndo oferecem
nativamente o grau de confiabilidade que ACID oferece. Fica a cargo da aplicagao
responsavel pelos dados garantir que estes sejam confiaveis. (Leavitt, 201 0).

Consisténcia

Devido aos bancos de dados NoSQL n#o suportarem nativamente transactes ACID,
a consisténcia dos dados pode ser comprometida, a ndo ser que suporte manual
seja fornecido. N&o fornecer consisténcia permite um melhor desempenho e
escalabilidade, mas é um problema para certos tipos de aplicagdes e transacdes,

tais como as envolvidas no setor bancdrio (Leavitt, 2010).

Falta de familiaridade com a tecnologia

A maioria das organizagdes ndo esta familiarizada com bancos de dados NoSQL,
portanto, podem n&o sentir-se confiante o suficiente para escolher um produto ou até
mesmo para determinar qual abordagem poderia ser melhor para os seus fins
(Leavitt, 2010).

36

Ambiente limitado
Ao contrario dos bancos de dados relacionais comerciais, muitos bancos de dados

NoSQL open-source ainda ndo possuem ferramentas de apoio aos usuarios ou de
gestao (Leavitt, 2010).

2.8 Consideragdes do Capitulo

Neste capitulo, os bancos de dados NoSQL foram introduzidos através da descrigdo
das principais caracteristicas, conceitos importantes como o ACID e o teorema CAP
e das categorias chave-valor, documentos e colunas com suas respectivas

caracteristicas e decisdes de modelagem de dados.

Foram também apresentadas as principais limitagdes dos bancos de dados
relacionais e cuidados a serem tomados com os bancos de dados NoSQL, com o
propésitc de compreender as motivagbes para utilizagdo dos bancos de dados
NoSQL e ajudar na avaliagdo de quando utiliza-los.

37

3. PROCESSO DE MIGRAGAO PARA NOSQL

Os bancos de dados n&o relacionais existem desde o final da década de 60, porém
somente nos Ultimos anos que os novos tipos de banco de dados ndo relacionais,

chamados de NoSQL, comegaram a atrair o mercado (Leavitt, 2010).

Inicialmente, a adogdo dos bancos de dados NoSQL vem ocorrendo em projetos
especificos que tratam de sistemas distribuidos, que envolvem grande quantidade
de dados e que precisam de larga escalabilidade. Com o passar do tempo a adogéo
deve ocorrer em maiores escalas, inclusive porque trabalhar com os bancos de
dados NoSQL é mais facil para os desenvolvedores que nio estdo familiarizados
com SQL. Haverd uma crescente percepcio de que os bancos de dados relacionais
em uso nos dias de hoje sdo na maioria dos casos boas ferramentas, mas que
também existe espaco para outras (Leavitt, 2010),

E importante ter a consciéncia de que os bancos de dados NoSQL néo substituirdo
os bancos de dados relacionais, mas serdo uma melhor opgéo para certos tipos de
projetos.(Edlich, 2012) (Leavitt, 2010).

A adocdo de grandes mudancas de tecnologia causa resisténcia das empresas,
principalmente pelo alto custo, como ja ocorreu no passado com as mudangas de
plataformas Mainframe para Cliente-Servidor, depois de Cliente-Servidor para a
aplicagbes que aplicam os conceitos de SOA, SOA para WEB, e agora de bancos de
dados relacionais para nio relacionais (NoSQL). As empresas que estdo tentando
rapidamente integrar com banco de dados NoSQL estardo melhor posicionadas para
o futuro (Edlich, 2012).

A migragdo para NoSQL possibilita que no mesmo sistema ou até na mesma
aplicagéo, diversos tipos bancos de dados, relacionais ou n3o relacionais, possam
ser utilizados para atender apropriadamente aos requisitos do sistema, ou seja, a
migracdo pode ocasionar a utilizagdo de bancos de dados nao relacionais para
alguns requisitos e o relacional para outros. Isto ndo significa que os bancos de
dados relacionais ser&o totalmente substituidos (Schram & Anderson, 2012)

38

A convivéncia de diversos tipos de bancos de dados traz diversos desafios. A partir
de estudos de migracdo para NoSQL apresentados por Schram & Anderson (2012)
e Cruz et al. (2011) foi possivel identificar um processo de migragdo. Este processo
de migragdo & composto de trés fases.

[T~

Requisitos de
negdcio

Isolar camada de
persisténcia

Identificar

Arquitetira de Requisitos

Sistema

Especificagao ae [

Requisitos de
Sistema

Migrar Banca de

Dados Modelo de dados

migrado (NoSQL)

Figura 10 - Processo de migragdo para NoSQL

Conforme pode ser visto na Figura 10, a primeira fase Isolar Camada de
Persisténcia tem como objetivo isolar a camada de persisténcia da aplicacéo afim de
facilitar que esta possa ser facilmente substituida ou alterada sem grandes impactos.
Esta fase, a depender do resultado da analise feita a partir da especificacédo da
arquitetura do sistema e do codigo implementado supondo que os requisitos do

sistema ja sdo conhecidos, pode gerar muito trabalho ou nenhum.

Paralelamente, a fase Identificar Requisitos tem como objetivo identificar os

requisitos funcionais que serdo implementados com uma nova tecnologia de banco
de dados.

39

A terceira fase Migrar Banco de Dados tem como obijetivo realizar a migracio do
modelo de dados existente a partir dos requisitos funcionais e néo funcionais.

As préximas segbes apresentam mais detalhes sobre as fases do processo de
migragao para NoSQL.

3.1 Isolar Camada de Persisténcia

A aplicagdo deve permitir que o acesso aos dados seja exposto através de uma
camada de persisténcia abstrata (sem dependéncia da fonte de dados).
(Schram & Anderson, 2012) (Sadalage & Fowler, 2012)

Nesta fase, deve ser feita uma andlise para determinar se com a arquitetura atual &
possivel fazer a migragéo sem grandes impactos. Caso o resultado da analise seja
positivo a migragéo segue para a proxima fase do processo, caso o resultado seja

negativo & necessario que mudangas sejam feitas na aplicagéo.

O objetivo destas mudangas é que a aplicagio tenha suporte a persisténcia hibrida e
para isto, praticas de como utilizar SQL como um mecanismo de integracdo entre
aplicagbes deve ser reavaliado. Neste cendrio, o banco de dados relacional age
como um banco de dados de integragdo, com varias aplicagbes, normalmente
desenvolvidas por diferentes equipes, armazenando seus dados em um banco de
dados comum.

Esta pratica melhora a comunicagdo entre as aplicacdes pois todas estardo em
operacdo num consistente conjunto de dados persistidos. Contudo, existem pontos
negativos nesta integracdo feita com banco de dados compartilhado. Uma estrutura
que € projetada para integrar muitas aplicagdes acaba sendo mais complexa de

manter do que manter uma aplicagdo individual.

O cenario ideal € que o banco de dados seja da aplicagdo. Com um banco de dados
de aplicagéo, somente a equipe responsavel pela aplicagdo precisa conhecer a

estrutura do banco de dados, o que permite que o modelo do banco de dados seja

40

mantido e evoluido mais facilmente. Como uma Unica aplicag&o controla o banco de

dados, a responsabilidade da integridade dos dados pode ser atribuida a ela.

Desta forma, com 0s bancos de dados ndo sendo mais utilizados como mecanismo
de integragdo entre aplicagdes, muitos adotaram a tecnologia Web Services como
uma nova forma de comunicagdo para substituir os banco de dados relacionais

como mecanismo de integragao.

A mudanga para Web Services como mecanismo de integracdo resulta em mais
flexibilidade para a estrutura dos dados que estdo sendo trafegados. Com a
integrag@o via banco de dados, os dados tem que ser estruturados de forma
relacional. Porém, com servicos € possivel construir estruturas de dados mais ricas,
como por exemplo, registros aninhados e listas. Estas estruturas sdo normalmente
representadas como documentos XML ou JSON. (Sadalage & Fowler, 2012)

Assim que a decisdo de adotar um banco de dados de aplicacdo é tomada, tem-se
mais liberdade para a escolha de um banco de dados. Como existe um
desacoplamento entre o banco de dados e os servigos que se comunicam para fazer
as integracdes, os clientes destes servigos nao precisam conhecer a forma de
armazenamento dos seus dados, permitindo que bancos de dados ndo relacionais
possam ser considerados como opgdo (Sadalage & Fowler, 2012) e que a
implementacéo da persisténcia dos dados possa ser alterada e evoluida sem

grandes impactos para os clientes (Schram & Anderson, 2012).

41

e-commerce platform

2 i

Shopping cart
and session Inv:gﬁary
data Item Price Customer
social graph
Completed
Orders
4 . Yy
Session storage J - , :
service Inventory and Nodes and
' [order persistenceq Price service Relations service
' R ——- ——
Key—?a lue service .
stare RDBMS Graph store
Document {Legacy QB)
-) store = e
S I

Figura 11 - Utilizagdo de servigcos para abstrair o acesso aos dados ao invés de acessar
diretamente os bancos de dados (Sadalage & Fowler, 2012).

Na Figura 11, pode-se ver um exemplo de um sistema de comercio eletrénico em
que ao inves de cada aplicagdo acessar diretamente o banco de dados, elas
acessam 0s servigos que s&o responsaveis pelos dados. A ideia de possuir Servigos
responsaveis pelos dados é que podem existir outras aplicagdes que se beneficiem
do uso destes dados. Por exemplo, outras aplicagdes que precisam obter os dados
de pedidos nao precisam acessar a base de dados do tipo documentos, Document
Store. Para isto, elas podem simplesmente utilizar o servigo, Completed Orders que
& responsavel por estes dados (Sadalage & Fowler, 2012).

3.2 Identificar Requisitos

O objetivo desta fase do processo é identificar e avaliar os requisitos para gue estes

possam ser utilizados como insumo para fase seguinte do processo de migragao.

A motivac#o para realizar a migragéo para NoSQL é a resolugdo de algum problema
com a forma de manipular os dados do sistema. Normalmente, este problema esta

relacionado a limitagdes dos bancos de dados relacionais, listados na secao 2.3.

Estas limitagbes sdo critérios para eleger os requisitos funcionais que serdo
implementados com uma nova tecnologia de banco de dados, cuja motivagdo pode

42

ser originada de um requisito de negécio, de um requisito funcional ou de um
requisitc nao funcional, que se transforma em um problema de manipulacdo dos
dados.

Contudo, somente estes critérios ndo sao suficientes. Identificar estes requisitos
muitas vezes nao & uma tarefa facil, visto que é necessario isolar corretamente as
fungdes do sistema para fazer o melhor uso destas novas tecnologias, levando-se
em conta a modularizagdo ndo sé a nivel de codigo, mas também a nivel de

sistema. Para isto, intenso esforgo de engenharia de software é necessario.

A escolha dos requisitos cuja implementagédo pode ser migrada para NoSQL requer
0 entendimento dos processos de negoécio e dos respectivos préprios requisitos
implementados pela aplicagéo.

Os servigos implementados gue possuem operagdes detalhadamente definidas, com
entradas e saidas pré-definidas e especificas séo candidatos a serem
implementados usando NoSQL.

Outros servigos que necessitam de mais fiexibilidade no acesso aos dados, por
exemplo quando sdo realizadas consultas ad-hoc, ou servicos analiticos, s&o
candidatos a continuarem trabalhando com o banco de dados relacional, pois com o
SQL tem-se esta flexibilidade no acesso aos dados, que podem ser consultados de

diversas formas atendendo a varios requisitos. (Schram & Anderson, 2012)

3.3 Migrar Banco de Dados
O objetivo desta fase é realizar a migragdo do modelo de dados da aplicacdo

usando os requisitos eleitos na fase |dentificar Requisitos. Antes disso, é necessario

escolher o tipo de bancos de dados NoSQL.

3.3.1 Escolha do tipo de banco de dados NoSQL

43

Realizar a transicdo de um modelo de dados relacional, que possui uma estrutura
fixa e bem definida, para um modelo da dados n&o relacional, que possui uma
estrutura flexivel, n&o é trivial pois existe pouco suporte de ferramentas e os
frameworks e APIls disponiveis ndo possuem documentagao detalhada e completa.
Além de serem necessarios conhecimentos profundos em sistemas distribuidos e

habilidades em administracéo de sistemas (Schram & Anderson, 2012).

Estes conhecimentos sdo necessarios pois na pratica é de responsabilidade do
desenvolvedor da aplicagdo decidir usar o banco de dados relacional ou ndo
relacional (Leavitt, 2010}, e com esta decisdo outros aspectos, como consisténcia e
integridade dos dados, disponibilidade e escalabilidade, que n&o sdo considerados
normalmente devem ser estudados para a escolha do banco de dados.

Para a escolha do banco de dados, primeiramente, os dados que serdo manipulados
devem ser avaliados para identificar um modelo de dados compativel. Isto para
evitar complexidade desnecessaria devido a transformacdes e mapeamento destes
dados (Hecht & Jablonski, 2011).

As consultas que a aplicagdo necessita que o banco de dados suporte também
devem ser consideradas, pois esses requisitos de consulta tem grande influencia no
design do modelo de dados, como também foi apresentado nas Técnicas de
Modelagem, capitulo 2.3.1. (Hecht & Jablonski, 2011).

Além da escolha do tipo de banco de dados, é preciso escolher também o produto
(ferramenta) que sera utilizado. Isto porque os produtos de um mesmo tipo,
apresentam caracteristicas e formas de lidar com certos atributos diferentes.

O ftrabalho de Hetch e Jablonski (2011), cita os principais pontos a serem avaliados
na escolha do produto e também do tipo de banco de dados :

* Possibilidades de query/ consulta
* Modelo de dados
¢ Controle de concorréncia

* Particionamento

44

* Replicagdo e consisténcia

* Disponibilidade

* Mecanismo de Durabilidade

» Suporte do produto pela comunidade

* Versionamento

Mais detalhes para auxiliar nesta escolha podem ser vistos no ANEXO A —

Comparagéo de bancos de dados NoSQL.

3.3.2 Migracédo do Modelo de Dados

Um dos principais desafios para uma migragéo de sucesso para banco de dados
NoSQL € a conversdo do modelo relacional existente para o modelo no relacional
escolhido.

A forma de como o desenvolvimento de software utilizando a programac¢ao orientada
a objetos vem sendo feito em conjunto com os bancos de dados relacionais evoluiu
a ponto de permitr gue as tabelas do banco de dados sejam geradas
automaticamente a partir das classes, possibilitando que o desenvolvedor mantenha

o foco em outros aspectos da construgdo do software.

O desenvolvimento de software com banco de dados relacionais ja possui processos
e técnicas amplamente conhecidas e por isso é facilmente mapeado com os

conceitos de orientagdo a objetos.

Normalmente o modelo de dados & construido a partir do modelo de classes, as
classes e atributos s&o traduzidos em tabelas e suas respectivas colunas. O
relacionamento entre as classes pode ser facilmente mapeado com frameworks
ORM nos diversos tipos (um para um, muitos para muitos, etc.). (Schram &
Anderson, 2012)

Ja no desenvolvimento com bancos de dados NoSQL diferentemente do

desenvolvimento com bancos de dados relacionais, a construgdo do modelo de

45

dados comega pela definicdo de como os dados serdo utilizados na implementagdo
dos requisitos. (Schram & Anderson, 2012) (Cruz et al., 2011)

Para fazer isto, & necessario identificar os dados de entrada e saida esperados de
cada operac&o. Com as entradas e saidas, 0 modelo de dados é criado de forma
que a partir da entrada, a saida esperada seja facilmente obtida. Para isto, as
consultas SQL existentes em cada operagdo que s&o baseadas em JOINS podem
ser traduzidas para estruturas de dados onde eles sdo naturalmente indexados.
(Cruz et al., 2011)

Para realizar a migragéo desta estrutura existem alternativas de modelagem que
devem ser consideradas na construgdo do modelo ideal baseado nos requisitos
funcionais e ndo funcionais. Essas alternativas de modelagem possuem também
grande influéncia na escolha do tipo de banco de dados NoSQL mais apropriado.
Algumas decisbes de modelagem, vantagens e desvantagens de cada tipo de banco
de dados estao descritas na sego 2.5.

3.4 Consideragoes do Capitulo

Este capitulo discutiu aspectos sobre a migragdo para NoSQL e apresentou um
processo para migrar o modelo de dados relacional para um dos modelos utilizados
pelos bancos de dados NoSQL. De acorde com este processo, a partir dos requisitos
de negocio, requisitos de sistema e da arquitetura atual do sistema é possivel

realizar a migragéo do modelo de dados .

A migragao do modelo de dados ¢é feita logo apos as atividades de Isolar a Camada
de persisténcia e I|dentificar Requisifos que consistem respectivamente em uma
avaliagdo da arquitetura do sistema, que deve permitir a utilizagdo de um novo
repositorio de dados sem grandes impactos, e a identificagdo dos requisitos, que
visa avaliar os requisitos, as necessidades e motivacbes da migragdo. Estas
atividades s&o importantes para a tomada de decisdes na migragéo do modelo de

dados.

46

4. APLICAGAO DO PROCESSO DE MIGRAGAO

Este capitulo apresenta um exercicio baseado em um sistema ficticio, com intuito de

mostrar a aplicacéo do processo de migracdo descrito no capitulo anterior.

Primeiramente, & feita uma breve apresentagdo do sistema e suas principais
caracteristicas e, em seguida, é apresentada a aplicagéo do processo de migragéo
para este sistema. A necessidade de uso de um banco de dados NoSQL sera

explicada durante a fase [dentificar requisitos.

O foco do exercicio € mostrar a aplicagéo de algumas das técnicas de modelagem e

as decisbes envolvidas na migragdo do modelo de dados.

4.1 Descrigdo do Sistema

O sistema Adventurous é utilizado para criar e gerenciar planos de viagens através

da Internet. Os principais requisitos de negocio estéo listados no Apéndice A.

4.2 Processo de Migragdo para NoSQL

As segbes a seguir descrevem a aplicagao do processo de migragéo apresentado no

capitulo 3 para o sistema Adventurous.

4.2.1 Isolar Camada de Persisténcia

O sistema possui uma arquitetura de 3 camadas: Apresentagdo, Servico e Dados,

conforme pode ser visto na Figura 12.

47

Camada de apresentacé@o
" Interface web do
usuario
Camada de servigo

[

" PlanService

—— T

Ad\}éntureService

Camada de dades

Relacional

Figura 12 - Visdo das trés camadas do sistema antes da migracao

A implementag&o dos requisitos principais do sistema esta distribuida entre os trés

servicos: WishService, PlanService e AdventureService.

Na camada de Servigo, existe uma camada légica de persisténcia que é utilizada por
cada servico. Cada servigo é responsavel pelo acesso de um tipo de dado, por
exemplo, o servigo WishService é responsavel por todas as operagdes relacionadas
aos desejos do usudrio, e este acesso é feito através do repositério que também é
responsavel por um tipo de dado.

O acesso ao banco de dados relacional é feito através da camada logica de
persisténcia. Os repositorios fazem uso dos componentes presentes na camada de

persisténcia que abstraem o acesso ao banco de dados relacional.

A arquitetura atual do sistema ja possui uma camada de persisténcia desacoplada
suficientemente para que as mudangas necessdrias no acesso ao banco de dados

sejam feitas com o menor impacto para os servicos.

48

4.2.2 I|dentificar Requisitos

Nesta fase, conforme descrito no secao 3.2 € necessario ter uma motivagéao para

realizar a migracgéo.

Para o sistema Adventurous, uma das motivac¢des identificadas foi originada de um

novo requisito de negodcio que teve impacto em dois requisitos do sistema.

Requisito 2 (ver APENDICE A) : o sistema deve realizar a Coleta de informagdes
para cada desejo, estas informagbes podem ser links, comentarios, fotos,
documentos e anotagdes.

Foi solicitado que o sistema também possa coletar informagées obtidas de redes

sociais, por exemplo: likes do Facebook, tweets do Twitter e pins do Pinterest.

Requisito 6 (ver APENDICE A) : o sistema deve realizar a Consuita de desejos do
usuario. Deve ser possivel consultar todas as informagdes disponiveis para o desejo.
Devido a solicitagdo do Requisito 2, a consulta de um desejo do usuario deve exibir
as informag&es disponibilizadas pelo Requisito 2.

O requisito original esta implementado no servico WishService (Figura 12), que além
deste implementa também outros requisitos relacionados a um desejo :
* Requisito 1 : Criagdo de um desejo de realizar uma atividade ou experiéncia
(sem associacdo 4 aventura).
* Requisito 5: Listagem de desejos do usuario que pode opcionalmente ser
filtrada por categoria.

O servigo WishService utiliza o repositéric WishRepository para manipulagdo dos
dados. O WishRepository por sua vez é responsavel pelo acesso aos dados no
banco de dados relacional, e acessa estrutura de tabelas apresentada na Figura 13.

49

| Wishinfo -
| User v | Wish v aWishinf INT
dUser INT dWish INT kivfo BLOB
useiName VARCHAR(45 o e on VARGHARI4S e Vash oWish INT
emall YARCHAR(45) User wilsee INT Wigh User cillear INT
> » WishintoType idWishinioType INT
T >
|
A
_lCategory v . x g
dCategory INT e S | WishinfoType v
name VARGHAR{AS) + R Wish User iduser INT dWishinfoType INT
" Category aCatsgoty INT nams VARCHAR(45)

» >

Figura 13 - Modelo de dados relacional utilizado pelo servigo WishService

Na tabela Wishinfo, sdo armazenadas as informagdes de cada desejo. A fim de
evitar a criagdo de uma estrutura rigida e complexa para suportar o contetido destas
informacdes que podem variar entre um simples texto até dados mais complexos
como a representacéo binaria de arquivos ou listas de valores, estes dados foram
armazenados em um campo do tipo BLOB.

Com esta solucéo, os dados ficam sem visibilidade para o banco de dados, ou seja
néo existe no banco de dados a estrutura para representar um link, uma foto, um
uma anotagédo, um documento, pois estes dados estdo sendo armazenados em sua
representacéo binaria num campo do tipo BLOB. Impedindo por exemplo que a
aplicacao utilize estes dados como filtro de pesquisa.

Estas informagbes coletadas para cada desejo s&o variaveis, cada uma possui
atributos diferentes e também s&o de tipos diferentes. ldealmente, estes dados
estariam armazenados em uma estrutura que os comporte de forma natural, o que
certamente tornaria complexc o modelo de dados relacional que deveria possuir

uma tabela para cada tipo de informag&o a ser coletada.

Como ndo ha garantias de que novos tipos de informagbdes n&o irdo surgir, isto
resultaria em uma quantidade ilimitada e imprevisivel de tabelas fazendo com que as

consultas se tornem complexas com muitos joins.

50

Com esta analise, chega-se a conclusdo que para o sistema Adventurous, as
principais motivacoes identificadas para a migragdo para NoSQL s&o a flexibilidade
e complexidade dos dados (ver se¢éo 2.3).

Portanto estes requisitos sao elegiveis para migragdo para banco de dados NoSQL
pois, como pode ser visto na Figura 13, o modelo de dados relacional relativo a este
servico ndo possui a flexibilidade requerida e se fosse alterado para atender aos
requisitos se tornaria complexo.

4.2.3 Migrar Banco de Dados

Com base no modelo de dados relacional existente, sdo apresentadas técnicas de

modelagem para atender aos requisitos escolhidos para serem migrados.

Para fazer a consulta de desejos do usuario, o sistema executa a consuita SQL
apresentada na Figura 14.

SELECT wish

FROM

WHERE

category
wishinfo
wish wish
INNER JOIN wish categories wishCategories

ON wishCategories wish_idwish wish idwish
INNER JOIN category category

ON wishCategories category idcategory category.idcategory
INNER JOIN wishinfo wishInfo

ON wishinfo wish idwish wish. idwish
INNER JOIN wishinfotype wishInfoType

ON wishinfotype idwishinfotype

wishinfo wishinfotype idwishinfotype

wish.user 1
AND wish. idwish 1

Figura 14 — Consulta SQL do Requisito 6

Analisando as entradas, nota-se que a consulta de um desejo é feita sempre pelo
seu identificador Gnico e pelo identificador do usuério.

Analisando a saida nota-se que s3o retornados todos os campos das tabelas, pois

todos as informagdes serdo utilizadas para a visualizacédo do usuario.

51

Com isto é necessario um modelo que suporte a consulta com estas entradas e
saidas. O modelo de dados orientado a documentos possui suporte e sera utilizado
com base nas principais motivagbes para realizar a migracdo, flexibilidade e
complexidade dos dados (v. se¢do 4.2.1) e nas caracteristicas dos tipos de bancos
de dados NoSQL apresentadas na segfo 2.4.

a. Documentos

As decistes de modelagem de documentos envolvem determinar como estruturar os
documentos da melhor forma. Para isto, as duas decisdes principais de modelagem:
Documentos Embeded e Reference sdo aplicadas.

* Embeded

"id": "Mergulho na liha de pascoa",
"user™: {
"userName"; "laisoliveira”,
"email": "laisoliveira@gmail.com”

}

#,

’ ishinfos": [

"info": "Info sobre quando”,
"wishinfoType": "WHEN"

{

"info": "Info sobre onde”,
"wishInfoType": "WHERE"
}
1

"categories”: [
{
"name”: "TRAVEL"
|8
{

"name": "SPORTS"

}
]
}

Figura 15 - Modelo de dados representado em Documento - Embeded

52

Conforme pode ser visto na Figura 15, 0 modelo conta com uma colegéio de wishes,
que resulta em um documento com as informagdes de um Wish. Neste modelo, o
atributo categories representa um relacionamento N para N e o atributo wishInfos

representa um relacionamento 1 para N.

Dentro do documento de wish, eles sdo estruturados dentro de um array. Neste
caso € necessario avaliar a possibilidade de crescimento destes arrays dentro do
documento de wish, pois os documentos em algumas ferramentas possuem um
tamanho maximo (16MB no caso do MongoDB). Por exemplo, a colecdo de

wishinfos, que possivelmente pode crescer.

A vantagem deste modelo é que a quantidade de acessos ao banco de dados pela
aplicagao diminui, pois com uma Unica requisic&o todos os dados de um wish s#o
recuperados.

* Reference

A aplicag&o deste modelo resulta em 4 documentos :
- Coleg@o de wishes, de documentos com as informagdes de um Wish. (Figura 16)

{

llidll: Il1 ll’

“title": "Mergulho na llha de pascoa”,
}

Figura 16 — Modelo de dados representado em Documento - Reference

53

- Colecdo de categories, de documentos com as informagdes de um Category.
(Figura 17)

"categories": [

“name": "TRAVEL",
"id": 1

h

{
‘name": "SPORTS",

llidll: 2
}

Figura 17 — Modelo de dados representado em Documento - Reference

- Colecdo de user, de documentos com as informagdes de um User. (Figura 18)

llidlf. 1
"userName": "laisoliveira",
"email"; "laiscliveira@gmail.com"

}

Figura 18 — Modelo de dados representado em Documento - Reference

- Colegdo de wishinfos, de documentos com as informacdes de um Wishinfo
(Figura 19)

{
"id" 1,
"wish": 1,
"info": "Info sobre quando",
"wishinfoType": "WHEN"
}

Figura 19 — Modelo de dados representado em Documento - Reference

Com este modelo, é necessario que que os JOINS que eram feitos anteriormente
com a consulta SQL (Figura 14) sejam agora feitos programaticamente pela
aplicagdo para obter todos os dados de um Wishinfo, pois os dados estdo
espalhados em diversos documentos e ndo existe join de documentos. Este modelo
de documentos representa um modelo relacional, a diferenga é que esta

armazenado num banco de dados de documentos.

54

A consisténcia e integridade dos dados pode ser mais facilmente afetada com este
modelo também, pois para a criagdo de um Wish, por exemplo, a escrita & feita em
diversos documentos .

4.3 Arquitetura Apos a Migracéo

Apds a migragéo a arquitetura da aplicagdo pode ser representada como na Figura
20.

- Camada de apresentagio

Figura 20 - Visdo das trés camadas do sistema apds a migragio

Um novo repositdrio, NoSQLWishRepository foi adicionado para manipular os dados
no banco de dados NoSQL. Este novo repositério sera utilizado pelo WishService,

para a operacgao de consulta de desejos do usuario.

4.4 Consideragoes do Capitulo

Por ser um exercicio de um sistema ficticio, o proposito do exercicio foi ilustrar a
aplicacéo do processo com foco nas técnicas de modelagem. Por esta raz&o a lista
de requisitos disponivel no Apéndice A que foi utilizada na aplicagdo do processo foi

descrita de forma superficial. Em um caso real, espera-se que o insumo para a fase

55

de Identificar Requisitos seja conforme descrito na segéo 3.2, com os requisitos

funcionais e requisitos ndo funcionais de sistema.

A motivagdo para migragao foi impulsionada por um novo requisito do sistema. Nos
trabalhos de Schram & Anderson (2012) e Cruz et al. (2011) utilizados como
principal referéncia sobre a migragdo para NoSQL, a motivacdo de ambos foi o
grande volume de dados que estava causando problemas de desempenho. Porém,
a migragdo desta aplicacdo se justifica pelos requisitos de flexibilidade e
complexidade.

56

5. CONSIDERAGOES FINAIS

Neste trabatho é possivel ver que mais de um resultado pode ser obtido na
aplicagéo do processo de migragdo para NoSQL a partir de um mesmo modelo de
dados relacional. A variagdo destes resultados esta ligada a escolha do tipo de

banco de dados NoSQL e as técnicas de modelagem aplicadas.

As principais dificuldades foram :

» Mapeamento das diferentes decisdes de modelagem.

As decisdes de modelagem apresentadas para cada tipo de banco de dados foram
identificadas a partir de uma grande quantidade de fontes, como exemplos de
utilizagdo dos bancos de dados nos livros e artigos e documentacéo de fornecedores
dos bancos de dados, e acredito que foram um dos pontos chave para a

compreensédo da migracao para NoSQL..

* Mapeamento das questdes envolvidas nas decisdes da migracéo e alternativas.
As decisbes de modelagem sdo complexas e envolvem a andlise de muitos
requisitos funcionais e nao funcionais do sistema, por isto foi dificil explicar estas

decisbes fora do contexto de um sistema real.

- Utilizag&o das técnicas de modelagem no processo de migragao.
No exercicio do processo de migracdo apresentado foi dificil utilizar e avaliar as
decisbes de modelagem por se tratar de um sistema ficticio que ndo possui a

complexidade de um sistema real.

5.1 Contribuigdes do Trabalho

O processo de migracéo que foi proposto a partir da leitura dos dois trabalhos que
foram as principais referencias, Schram & Anderson (2012} e Cruz et al. (2011) séao
complementares e coincidem. A primeira que foi a principal referéncia conta os
desafios e o trabalho de migracdo feito com alto nivel de detalhe, enquanto a

segunda conta também o trabalho de migragdo com menos detalhes. Foi possivel

57

identificar os passos para realizar a migragdo e observar as dificuldades e pontos de

atencéo.

O trabalho mostrou a importancia que as decisGes de modelagem de dados
possuem no processo de migracdo. Além do modeio de dados NoSQL que melhor
se encaixa para cada caso de uso, é preciso conhecer as diferentes técnicas de
modelagem e suas implicagbes. Ou seja, cada tipo de banco de dados NoSQL
possui um modelo de dados, porém isso ndo significa que a partir de um modelo de

dados relacional, o resultado do modelo para o tipo escolhido sera sempre igual.

Isto porque a variag8o destes resultados esta ligada ndo somente a escolha do tipo

de banco de dados NoSQL, mas também as decisGes de modelagem aplicadas.

Para um caso real, as decisOes sdo bem mais dificeis, pois existem muitos outros
requisitos importantes como, desempenho, escalabilidade, entre outros.
De modo geral, o trabalho foi importante para visualizar os passos e as principais

consideragtes a serem tomadas na migragdo para bancos de dados NoSQL..

5.2 Trabalhos Futuros

Como trabalho futuro é possivel explorar mais as alternativas de modelagem de
dados. Neste trabalho foram considerados modelos basicos e de mais facil
compreens&o, sem explorar mais detalhadamente os recursos de cada banco de

dados.

Poderia ser discutida a aplica¢éo da persisténcia poligiota, que faria uso de diversos
bancos de dados de tipos diferentes no mesmo sistema.

Também pode ser considerado aplicar o processo de migragdo em uma aplicagdo
real, para que possam ser considerados requisitos funcionais e nao funcionais

variados € mais complexos.

58

Outro trabalho interessante seria pesquisar e aplicar alternativas de modelagem e o
processo de migragéo para os bancos de dados do tipo Grafo, que néo foi discutido
neste trabalho.

59

REFERENCIAS

BASHO. From Relational to Riak. Disponivel em <http://basho.com/assets/
RelationaltoRiakDEC.pdf>. Acesso em: 12 mai. 2013

BREWER, E. CAP Twelve Years Later: How the “Rules” Have Changed. Computer,
vol. 45, no.2, p. 23 — 29, Fev. 2012.

COUCHBASE. Making the Shift from Relational to NoSQL. Disponivel em
<http://info.couchbase.com/Relational-to-NoSQL.html>. Acesso em: 29 mai. 2013.a

COUCHBASE. Why NoSQL. Disponivel em <http://www.couchbase.com/why-
nosqi/nosql-database>. Acesso em: 22 mai. 2013.b

CRUZ, F.; GOMES, P; OLIVEIRA, R; PEREIRA, J. Assessing NoSQL Databases for
Telecom Applications. In: Commerce and Enterprise Computing, 2011,
Luxembourg. p. 267 — 270.

EDLICH, S. The State of NoSQL. InfoQ NoSQL eMag, vol. 1, p. 4 — 8, Maio. 2013.

HECHT, R.; JABLONSKI, S. NoSQL Evaluation: A Use Case Oriented Survey. In:
Cloud and Service Computing, 2011, Hong Kong. p. 336 — 341.

KATSOV, |. NoSQL Data Modeling Techniques. Disponivel em:
<http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques>.
Acesso em: 17 mar. 2013

LEAVITT, N. Will NoSQL Databases Live Up to Their Promise. Computer, vol. 43,
no. 2, p. 12-14, Fev. 2010.

MONGODB. Data Modeling. Disponivel em <http://docs.mongodb.org/manual/data-
modeling>. Acesso em: 17 mar. 2013

60

POKORNY, J. NoSQL Databases: a step to database scalability in Web

environment. In: Information Integration and Webh-based Applications and
Services, 2011, Ho Chi Minh City. p. 278 — 283.

REDMOND, E.; WILSON, J. R. Seven Databases in Seven Weeks: A Guide to
Modern Databases and the NoSQL Movement. 1. ed. Dallas: Pragmatic Bookshelf,
2012. 333 p.

SALADAGE, P. J.; FOWLER, M. NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence. 1. ed. Crawfordsville: Addison-Wesley, 2012. 192 p.

SANDERS, G.L.; SHIN, S. Denormalization Effects on Performance of RDBMS. In:
System Sciences, 2001, Hawaii. p. 336 — 341.

SCHRAM, A.; ANDERSON, K. M. MySQL to NoSQL.: Data Modelling Challenges in
Supporting Scalability. In: SPLASH, 2012, Tucson. p. 191 — 202.

ZHANG, H.; WANG, Y.; HAN, J. Middleware Design for Integrating Relational
Database and NOSQL Based on Data Dictionary. In: Transportation, Mechanical,
and Electrical Engineering (TMEE), 2011, Changchun. p. 1469 — 1472.

61

APENDICE A - REQUISITOS DE NEGOCIO DO SISTEMA ADVENTUROUS

O sistema Adventurous é utilizado para criar e gerenciar planos de viagens através

da Internet. Seus principais requisitos de negocio s&o:

1- Criagdo de um desejo de realizar uma atividade ou experiéncia. Os desejos
podem ser opcichalmente associados a uma ou mais aventuras.

Exemplo:

Desejo 1: “Mergulho na llha de Pascoa”.

Desejo 2 : “Fazer um mochilao”.

Desejo 3 : “Escalar um vulcdo”.

Aventura 1 : "Férias 2013”, que contém os desejos 1, 2 e 3.

Aventura 2 : "Férias 2014”, que contém o desejo 2.

2- Coleta de informagdes para cada desejo, que podem ser links, comentarios,

fotos, documentos, anotagdes e devem responder as seguintes perguntas:

a. O que é esta atividade ou experiéncia?

Exemplo de um link de um site que contém informagdes gerais sobre Mergulhos
na llha de Pascoa:

hitp://www.brasilmergulho.com/port/points/inter/ilha_pascoa/index.shtmi

b. Quando este desejo podera ser realizado?
Exemplo de uma anotagéo de possiveis datas: “Estarei em férias no final do ano,

mas talvez fevereiro seja um mes mais interessante de ir devido ao clima”

¢. Onde este desejo pode ser realizado?

Exemplo de arquivo PDF: um guia sobre a ilha e os pontos de mergutho.

d. Quem esta envolvido neste desejo?

Exemplo de uma anotagédo: “Pessoas interessadas: Maria — maria@gmail.com,

José — jose@gmail.com”.

e. Por que realizar este desejo?

62

Exemplo de fotos que inspiraram este desejo.

f. Como realizar este desejo?
Exemplo de um link de um site de uma operadora de mergulho:
hitp://www.mikerapu.cl.

Cada desejo pode conter mais de uma informagéo de cada tipo (0 qué, quando,
onde, quem, por qué e como)

3- Criagdo de um ou mais planos para os desejos. Os planos devem conter
informagbes concretas sobre a execugdo da atividade ou experiéncia desejada,
como o preco, duragéo e local. Um plano pode conter varios desejos.

4- Gerenciamento da execugZo de um plano. A Aventura contém um plano
escolhido para ser executado e informagbes necessarias para a execucédo das
atividades e experiéncias planejadas. Exemplo : Documentos de reservas,
comprovantes e checklists.

5- Listagem de desejos do usuario que opcionalmente pode ser fiitrada por
categoria.

6- Consulta de desejos do usuario. Deve ser possivel consultar todas as

informagoes disponiveis para o desejo.

ANEXO A - COMPARAGAO DE BANCOS DE DADOS NOSQL

63

Redmond, Wilson (2012) disponibilizaram vérias tabelas com comparagtes entre

diversas ferramentas de banco de dados NoSQL. Estas tabelas auxiliam na escolha

do banco de dados mais adequado.

Genre

Version ba_taty;:es_ o “I.'J_at-a"ﬁéﬂl"ations
MongoDB Document 2.0 Typed None
CouchDB Document 1.1 Typed None
Riak Key-value 1.0 Blob Ad hoc (Links)
Redis Key-value 2.4 Semi-typed None
PostgreSQL Relational 9.1 Predefined Predefined
and typed
Neodj Graph 1.7 Untyped Ad hoc (Edges)
HBase Colummar 0.90.3 Predefined None
and typed
Standard Object Written in " Interface Protocol HTTP/REST
Language
MongoDB JSON Ct++ Custom over Simple
TCP
CouchDB JSON Erlang HTTP Yes
Riak Text Erlang HTTP, Yes
proiobuf
Redis String C/C++ Simple text No
over TCP
PostgreSQL Table C Custom over No
TCP
Neo4j Hash Java HTTP Yes
HBase Columns Java Thrift, HTTP Yes

Ad Hoc Query Mapreduce o Scalable Durability
MongoDB Commands, JavaScr_iEt ~ Datacenter Write-ahead
mapreduce journaling,
Safe mode
CouchDB Temporary JavaScript Datacenter Crash-only
views (via BigCouchy)
Riak Weak support, JavaScript, Datacenter Durable write
Lucene Erlang quorum
Redis Commands No Cluster (via Append-only
master-slave) log
PostgreSQL SQL No Cluster {via ACID
add-ons)
Neo4j Graph walk- No {in the Cluster (via ACID
ing, Cypher, distributed HA)
search sense)
HBase Weak Hadoop Datacenter Write-ahead
logging
Secondary Versioning Bulk Load Very Large Files
Indexes
MongoDB Yes No mongoimport GridFS
CouchDB Yes Yes Bulk Doc API Attachments
Riak Yes Yes No Lewak
{deprecated)
Redis No No No No
PostgreSQL Yes No COPY BLOBs
command
Neodj Yes (via No No No
Lucene)
HBase No Yes No No

64

65

Requires Replication Sharding Concurrency
Compaction
MongoDB No Master-slave Yes Write lock
{via replica
sets)
CouchDB File rewrite Master-master Yes (with Lock-free
filters in MVCC
BigCouch)
Riak No Peer-based, Yes Vector-clocks
master-master
Redis Snapshot Master-slave Add-ons (e.g., None
client)
PostgreS@QL No Master-slave Add-ons (e.g.., Table/row
PL/Proxy) writer lock
Neodj No Master-slave No Write lock
(in Enterprise
Edition)
HBase No Master-slave Yes via HDFS Consistent per
TOwW
o " Transactions "i'-rig;gers' Securlty) Mljlntrter;nzy_
_MongoDB No No Users Yes
CouchDB No Update Users Yes
validation or
Changes APL
Riak No Pre/post- None No
commits
Redis Multi opera- No Passwords No
tion queues
PostgreSQL ACID Yes Users/groups Yes
Neo4j ACID Transaction None No
event handlers
HBase Yes (when No Kerberos via No
enabled} Hadoop
security
Main Differentiator Weaknesses
MongoDB Easily query Big Data Embed-ability
CouchDB Durable and embeddable Query-ability
clusters
Riak Highly available Query-ability
Redis _\-fery, very fast Complex data
PostgreS@QL Best of OSS RDBMS model Disiributed availability
Neo4dj Flexible graph BLOBs or terabyte scale
HBase mVery large-scale, Hadoop Flexible growth, query-ability

infrastructure

