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Resumo

Oliveira, D. A Classificação de Faltas em Linhas de Transmissão com Alta Pe-

netração de Fontes Eólicas Interfaceadas por Inversores: uma abordagem via

Machine Learning - Escola de Engenharia de São Carlos, Universidade de São Paulo,

São Carlos, 2025

A crescente integração de Fontes Eólicas Interfaceadas por Inversores (FEIIs) em linhas

de transmissão impõe desafios significativos aos métodos convencionais de classificação

de faltas, uma vez que as contribuições de curto-circuito dessas fontes são determinadas

pelas estratégias de controle empregadas em seus inversores. Por isso, as contribuições

para faltas das FEIIs diferem significativamente das de geradores convencionais, o que

desafia métodos de classificação convencionais. Neste contexto, o Aprendizado de Má-

quina (AM) surge como uma abordagem promissora para superar essas limitações. Este

trabalho avaliou sete classificadores quanto à sua capacidade de generalização frente a

diferentes parâmetros de curtos-circuitos e terminais de medição. Os modelos foram trei-

nados e testados com características extraídas por meio da Transformada Discreta de

Fourier (TDF) de sinais de tensão e corrente obtidos em simulações computacionais no

software PSCAD. A biblioteca PyCaret foi utilizada para automatizar o treinamento e a

comparação sistemática dos classificadores. Os resultados demonstraram que o algoritmo

Random Forest apresentou o melhor desempenho entre os métodos avaliados neste traba-

lho, com alta acurácia na maioria dos cenários, além de notável robustez à presença de

ruído e capacidade de generalização para parâmetros de falta não observados durante o

treinamento.

Palavras-chave: Classificação de faltas. Machine learning. PyCaret. Transformada

Discreta de Fourier.



Abstract

Oliveira, D. Exploring the Influence of Measurement Terminal and Fault Para-

meters on Fault Classification in Transmission Lines with High Penetration

of IBWRs. A Machine Learning Approach – Escola de Engenharia de São Carlos,

University of São Paulo, São Carlos, 2025

The increasing integration of Inverter-Based Wind Resources (IBWRs) into transmission

lines poses significant challenges for conventional fault classification methods, as the short-

circuit contributions of these sources depend on the control strategies employed in their

inverters. Therefore, the fault contributions from IBWRs differ significantly from those of

conventional generators, challenging conventional classification methods. In this context,

Machine Learning (ML) emerges as a promising approach to overcome these limitations.

This work evaluated seven classifiers for their generalization performance across diffe-

rent short-circuit parameters and measurement terminals. The models were trained and

tested with features extracted via the Discrete Fourier Transform (DFT) from voltage

and current signals obtained in computational simulations using the PSCAD software.

The PyCaret library was used to automate classifier training and systematic compari-

son. The results demonstrated that the Random Forest algorithm performed best among

the methods evaluated in this work, achieving high accuracy across most scenarios and

showing notable robustness to noise and generalization to fault parameters not observed

during training.

Keywords: Fault classification. Machine learning. PyCaret. Discrete Fourier Transform.





Lista de Figuras

1 Contribuição de cada fonte na OIE brasileira na última década. Fonte: [1]. 25

2 Geração de eletricidade proveniente de fontes renováveis no Brasil entre

2007 a 2025. Fonte: [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Número de publicações utilizando métodos diferentes de Machine Learning

(ML). Fonte: elaborado pelo autor. . . . . . . . . . . . . . . . . . . . . . . 31

4 Número de publicações por ano em energia renovável utilizando ML. Fonte:

Elaborado pelo autor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Topologia de um gerador de Tipo 3. Fonte: Adaptado de [2] . . . . . . . . 34

6 Topologia de um gerador de Tipo 4. Fonte: Adaptado de [2] . . . . . . . . 36

7 Sinais de corrente medidos em diferentes pontos do sistema durante uma

falta do tipo AT. Fonte: elaborado pelo autor. . . . . . . . . . . . . . . . . 37

8 Sinais de corrente medidos em diferentes pontos do sistema durante uma

falta do tipo AB. Fonte: elaborado pelo autor. . . . . . . . . . . . . . . . . 38

9 Sobreposição de espectros no domínio da frequência. Fonte: [3] . . . . . . . 39

10 Exemplo de aplicação da Transformada Discreta de Fourier (TDF). Fonte:

elaborado pelo autor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11 Topologia simplificada de uma Decision Tree. Fonte: elaborado pelo autor. 42

12 Topologia do sistema de teste. Fonte: Adaptado de [4]. . . . . . . . . . . . 49

13 Extração de características via a TDF. Fonte: elaborado pelo autor. . . . . 50

14 Gráficos de tensão obtidos antes e após a inserção de ruídos no sinal de

tensão da fase ”A”, durante uma falta ”AT”. Fonte: elaborado pelo autor. 52

15 Configuração da função setup do PyCaret. Fonte: elaborado pelo autor. . . 53

16 Instrução para treinar, testar e comparar modelos. Fonte: elaborado pelo

autor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

17 Resultados obtidos com ambos os terminais para treino e teste. Fonte:

elaborado pelo autor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

18 Resultados obtidos utilizando ambos os terminais para treino e o terminal

local para teste. Fonte: elaborado pelo autor . . . . . . . . . . . . . . . . . 60



19 Resultados obtidos utilizando ambos terminais para treino e o terminal

remoto para teste. Fonte: elaborado pelo autor. . . . . . . . . . . . . . . . 61

20 Resultados obtidos utilizando o terminal local para treino e ambos os ter-

minais para teste. Fonte: elaborado pelo autor. . . . . . . . . . . . . . . . 62

21 Resultados obtidos utilizando o terminal local para treino e teste. Fonte:

elaborado pelo autor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

22 Resultados obtidos utilizando o terminal local para treino e terminal re-

moto para teste. Fonte: elaborado pelo autor. . . . . . . . . . . . . . . . . 64

23 Resultados obtidos utilizando o terminal remoto para treino e ambos os

terminais para teste. Fonte: elaborado pelo autor. . . . . . . . . . . . . . . 65

24 Resultados obtidos utilizando o terminal remoto para treino e o terminal

local para teste. Fonte: elaborado pelo autor. . . . . . . . . . . . . . . . . 66

25 Resultados obtidos utilizando o terminal remoto para treino e teste. Fonte:

elaborado pelo autor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67





Lista de Tabelas

1 Principais características dos classificadores. Fonte: elaborado pelo autor. . 41

2 Parâmetros do sistema de teste. Fonte: Adaptado de [4]. . . . . . . . . . . 49

3 Segmentação de dados para a composição das bases de dados de treino e

teste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Classificadores disponibilizados pelo PyCaret. . . . . . . . . . . . . . . . . 57

5 Descrição dos testes realizados no trabalho. . . . . . . . . . . . . . . . . . 58

6 Tabela resumo da acurácia obtida em cada teste (valores em porcentagem).

Fonte: elaborado pelo autor. . . . . . . . . . . . . . . . . . . . . . . . . . . 68





Lista de Abreviaturas e Siglas

AD Árvores de Decisão

AM Aprendizado de Máquina

CA Corrente Alternada

CC Corrente Contínua

DFT Discrete Fourier Transform

DT Decision Trees

DTFT Discret Time Fourier Transform

ET Extra Trees

FEIIs Fontes Eólicas Interfaceadas por Inversores

GBC Gradient Boosting Classifier

GFC Geradores Full-Converter

GIDA Geradores de Indução Duplamente Alimentados

HHT Hilbert-Huang Transform

k-NN k-Nearest Neighbors

LightGBM Light Gradient Boosting Machine

LR Logistic Regression

ML Machine Learning

OCDE Organização para a Cooperação e Desenvolvimento Econômico

OIE Oferta Interna de Energia

IoT Internet of Things

PSCAD Power Systems Computer Aided Design

RF Random Forest

RNAs Redes Neurais Artificiais

STFT Short-Time Fourier Transform

SVM Support Vector Machine

TDF Transformada Discreta de Fourier

TDW Transformada Discreta de Wavelet

TF Transformada de Fourier





Conteúdo

1 Introdução 25

1.1 Classificação de faltas em sistemas com alta penetração de FEIIs . . . . . 27

1.2 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Revisão Bibliográfica 30

3 Fundamentos Teóricos 34

3.1 Geradores de Tipo 3, ou GIDA . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Geradores de Tipo 4, ou GFC . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Impactos das FEIIs em Métodos de Classificação de faltas . . . . . . . . . 36

3.4 Transformada discreta de Fourier . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Aprendizado de Máquina . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Extra Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.3 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.4 K-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.5 Light Gradient Boosting Machine . . . . . . . . . . . . . . . . . . . 45

3.5.6 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.7 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Metodologia 48

4.1 Descrição do sistema de teste e segmentação do banco de dados gerado por

simulações computacionais . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Pré-processamento via a TDF . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Metodologia para a inserção de ruídos nos sinais . . . . . . . . . . . . . . . 51

4.4 A biblioteca PyCaret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Resultados obtidos 58

5.1 Teste 1: Treino e teste com medições em ambos os terminais . . . . . . . . 58

5.2 Teste 2: Treino com ambos os terminais e teste com o terminal local . . . . 59



5.3 Teste 3: Treino com ambos os terminais e teste com o terminal remoto . . 60

5.4 Teste 4: Treino com o terminal local e teste com ambos os terminais . . . . 61

5.5 Teste 5: Treino e teste com o terminal local . . . . . . . . . . . . . . . . . 62

5.6 Teste 6: Treino com o terminal local e teste com o terminal remoto . . . . 63

5.7 Teste 7: Treino com o terminal remoto e teste com ambos os terminais . . 64

5.8 Teste 8: Treino com o terminal remoto e teste com o terminal local . . . . 65

5.9 Teste 9: Treino e teste com o terminal remoto . . . . . . . . . . . . . . . . 66

5.10 Análise Geral dos Classificadores . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusão 69



1 Introdução

Marcada por sua elevada taxa de renovabilidade, a matriz energética brasileira apre-

senta um perfil de sustentabilidade singular no panorama mundial. Conforme [1], o Brasil

atingiu, em 2024, o marco histórico de 50,0% de sua Oferta Interna de Energia (OIE)

suprida por fontes renováveis, um patamar significativamente superior à média global

(14,3% em 2022) e aos países da OCDE (Organização para a Cooperação e Desenvolvi-

mento Econômico) (13,2% em 2023). No mesmo ano, a OIE totalizou 322 Mtep (milhões

de toneladas equivalentes de petróleo).

O diferencial da matriz brasileira reside na contribuição de fontes de baixo carbono,

como a biomassa da cana (16,7%) e a hidráulica (11,6%). Conforme indicado na Figura

1, as fontes renováveis têm apresentado uma clara tendência de crescimento, enquanto a

participação de fontes não renováveis, como petróleo e derivados e gás natural, tende a

reduzir, caracterizando a mudança estrutural da matriz. A participação da energia eólica

na OIE, por exemplo, saltou de 0,6% em 2015 para 2,9% em 2024, sendo um dos principais

fatores da transição gradativa da matriz energética brasileira. Em termos absolutos, a

oferta de energia eólica atingiu 9,3 Mtep em 2024, registrando um aumento significativo

de 12,4% em relação ao ano anterior.

Figura 1: Contribuição de cada fonte na OIE brasileira na última década. Fonte: [1].
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A relevância da fonte eólica é ressaltada ao analisar a matriz elétrica, que é conside-

ravelmente mais limpa, atingindo 88,2% de participação de fontes renováveis em 2024.

Neste setor, a energia eólica consolidou-se como um pilar estratégico. A Figura 2 con-

firma o salto das gerações eólica e solar na última década: a participação conjunta dessas

fontes na geração total de eletricidade alcançou 23,7% em 2024, contra 7,2% em 2015.

Esse crescimento foi crucial para a segurança energética do país, uma vez que a energia

eólica atua como um excelente complemento à geração hidráulica. Ao operar em regimes

de ventos muitas vezes opostos aos períodos de seca dos reservatórios, a energia eólica

confere maior robustez ao Sistema Interligado Nacional (SIN), reduzindo a dependência

do acionamento de termelétricas, que têm menor eficiência e emitem mais poluentes.

Figura 2: Geração de eletricidade proveniente de fontes renováveis no Brasil entre 2007 a

2025. Fonte: [1].

Em 2024, a geração eólica atingiu 107,7 TWh, representando um crescimento de 12,4%

em relação a 2023, e sua potência instalada chegou a 29.550 MW, com uma expansão de

3% no ano. A energia eólica lidera entre as fontes renováveis não-hídricas e, juntamente

com a solar fotovoltaica, responde por quase um quarto de toda a eletricidade gerada no

país. A intensa renovabilidade da matriz elétrica, fortemente impulsionada pela energia

eólica, resulta em um setor de baixíssimas emissões de carbono: em 2024, foram emitidos

apenas 59,9 kg equivalentes de CO2 por MWh gerado, um valor muito inferior ao de

países como os EUA, a China e as nações europeias. A expansão contínua da energia

eólica consolida-se, portanto, como um dos pilares centrais para que o Brasil mantenha

sua liderança na transição energética global e cumpra seus compromissos climáticos.
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1.1 Classificação de faltas em sistemas com alta penetração de

FEIIs

A energia é o que move a sociedade moderna. Destarte, é de suma importância

possibilitar que ela seja fornecida de forma estável, eficaz e sustentável. Neste contexto,

ao longo das últimas décadas, devido à necessidade de redução do consumo de combustíveis

fósseis e a busca por fontes de energia renováveis, observou-se uma crescente inserção de

Fontes Eólicas Interfaceadas por Inversores (FEIIs) na rede convencional de transmissão

de energia de diversos países ao redor do mundo [5], destacando-se duas topologias em

especial: as FEIIs do tipo III, ou Geradores de Indução Duplamente Alimentados (GIDA),

e as FEIIs de tipo IV, ou Geradores Full-Converter (GFC).

Inicialmente, quando a maior parte da geração disponível era proveniente de fontes

convencionais, como usinas hidroelétricas, termoelétricas e nucleares, as FEIIs eram ra-

pidamente desconectadas da rede principal em situações de perturbação. No entanto,

com a crescente penetração das FEIIs nos sistemas elétricos, como mostra [6] no Brasil, a

desconexão dessas fontes em caso de quaisquer distúrbios na rede tornou-se uma situação

crítica para a estabilidade do sistema. Assim, foram adotados mundialmente os requisitos

denominados Fault Ride-Through para que as FEIIs se mantivessem conectadas à rede

primária, a depender de sua tensão terminal, mesmo sob perturbações [7]. Com a adoção

destes requisitos, a avaliação das contribuições para os curtos-circuitos (faltas) provenien-

tes das FEIIs passou a ser o foco de vários pesquisadores, por apresentarem características

atípicas, determinadas pelos controles empregados nos inversores [8].

A classificação de faltas é um passo intermediário empregado por sistemas de proteção

para detectar as fases em curto-circuito, a fim de garantir que apenas as fases necessá-

rias sejam isoladas do sistema. Porém, diante deste contexto, observa-se que as FEIIs

propõem desafios aos sistemas tradicionais de classificação, já que estes se baseiam nas

características das contribuições para faltas de gerações síncronas convencionais, agora

fortemente impactadas pela presença de FEIIs no sistema [9].

Assim, visando superar tais desafios, em [10], os autores foram pioneiros na utilização

de métodos inteligentes para a classificação de faltas em sistemas com alta penetração

de FEIIs. Entretanto, embora evidenciem o potencial desses métodos na classificação de
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faltas em sistemas com FEIIs, apenas quatro métodos inteligentes foram avaliados, a saber:

Árvores de Decisão (AD), Suport Vectors Machine (SVM), k-Nearest Neighbors (k-NN)

e Ensemble Trees. Além disso, este estudo não aborda a capacidade de generalização

desses métodos em relação aos parâmetros de falta e a presença de ruídos nos sinais,

características importantes que testam a viabilidade de aplicação dos modelos em campo.

Para esta pesquisa, vale adiantar que foi utilizada uma base de dados com oscilogra-

fias de um estudo prévio [4], que engloba diversos cenários de falhas em um sistema com

topologia tipicamente empregada na interconexão de FEIIs à rede. Para processar tais

oscilografias, utilizou-se a TDF, a fim de construir uma base de dados para treinamento

e testes de sete modelos inteligentes disponibilizados pelo PyCaret. O PyCaret é uma

ferramenta que vem ganhando popularidade entre pesquisadores por disponibilizar vários

recursos que facilitam a introdução ao tema de Aprendizado de Máquina (AM), simplifi-

cando os processos de construção e avaliação de métodos inteligentes e automatizando o

treinamento, a validação e os testes, com poucas linhas de código. Além desses pontos,

para esta pesquisa, o PyCaret foi escolhido por conter outros métodos ainda não contem-

plados pelos trabalhos já publicados na literatura, como o Randon Forest Classifier, o

Extreme Gradient Boosting e o Logistic Regression, entre outros.

1.2 Objetivos

Tendo em vista os desafios que as FEIIs impõem aos sistemas de classificação de faltas

convencionais e a escassez de trabalhos que utilizam métodos inteligentes para a superação

desses desafios, este projeto propõe-se a:

• Avaliar a influência dos parâmetros de falta na função de classificação.

• Avaliar a influência do ruído sobre a função de classificação.

• Avaliar a influência do terminal do provedor de sinais de tensão e corrente no pro-

cessamento de dados via TDF na função de classificação.

• Comparar os resultados de diferentes métodos inteligentes utilizando a biblioteca

PyCaret.
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Ao fim do trabalho, deseja-se avaliar a capacidade de generalização dos métodos,

analisando em quais situações a metodologia de processamento e classificação produziu

os melhores resultados.
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2 Revisão Bibliográfica

Com o intuito de buscar trabalhos relacionados ao tema deste projeto, foi realizada

uma pesquisa na base de dados Scopus, buscando por títulos, resumos e palavras-chave

com a seguinte combinação de termos: (“fault diagnosis” OR “fault classifica-

tion”) AND (“Transmission Line” OR “Transmission System”). O resultado

da pesquisa forneceu 2.379 documentos. Porém, ao adicionar, na sequência, os ter-

mos AND (“inverter-based” OR “inverter-interfaced” OR “converter-based”),

observaram-se apenas 38 documentos como resultado. Por fim, para alcançar o escopo

principal do trabalho proposto, o termo AND (”Machine Learning”) foi adicionado à

busca. Obteve-se, como resultado, somente 10 documentos, o que mostra que poucos tra-

balhos têm sido até então reportados, considerando os sistemas de controle de geradores

interfaceados por inversores e utilizando uma abordagem baseada em ML.

No que tange à classificação de faltas em sistemas convencionais, um dos primeiros

métodos foi reapresentado em [11], que se baseia na comparação de fasores de correntes

superpostos e na corrente da componente de sequência zero fundamental. Conforme os

autores destacam, um dos pontos negativos deste método é a necessidade de definição de

limiares fixos para sua aplicação, os quais são consideravelmente afetados por mudanças

na configuração do sistema. Apesar de ser simples e eficiente em cenários tradicionais, essa

abordagem depende fortemente de ajustes empíricos e apresenta dificuldades em condições

operacionais variáveis.

Com o avanço do processamento digital de sinais, surgiram técnicas mais robustas

para extração de informações transitórias. Em [12], os autores propõem o uso dos coe-

ficientes de detalhe da Transformada Discreta de Wavelet (TDW) aplicados a sinais de

corrente obtidos de um terminal da linha de transmissão. Já em [13], três técnicas dis-

tintas de processamento (Transformada Discreta de Fourier, Transformada de Hilbert e

Transformada de Stockwell Ortonormal) são comparadas e combinadas para a criação de

índices representativos do tipo de falta. De forma complementar, [14] também utiliza a

TDW, mas baseia a classificação na diferença dos coeficientes de detalhe de primeiro nível

obtidos em ambos os terminais da linha.

De acordo com a revisão apresentada em [15], os métodos de processamento digital
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de sinais têm sido amplamente utilizados para a detecção e classificação de faltas, sendo

a TDW, a Short-Time Fourier Transform (STFT) e a Hilbert-Huang Transform (HHT)

as mais empregadas. Os autores destacam que essas técnicas apresentam boa capacidade

de caracterização temporal e espectral, mas sua eficácia depende fortemente da escolha

dos parâmetros, como a função base e o tamanho da janela de análise. Além disso, a

necessidade de limiares fixos e a sensibilidade ao ruído permanecem limitações comuns,

justificando a transição para abordagens baseadas em aprendizado de máquina.

Com o avanço das técnicas de inteligência artificial, as metodologias baseadas em

ML passaram a ser aplicadas com sucesso na área de proteção e diagnóstico de sistemas

elétricos. O aprendizado de máquina pode ser definido como um processo computacional

que permite a um algoritmo aprender padrões a partir de dados e realizar predições, sem

a necessidade de modelar explicitamente o comportamento físico do sistema. Em outras

palavras, o modelo é treinado com exemplos e ajusta seus parâmetros para melhorar o

desempenho na tarefa desejada [16].

Figura 3: Número de publicações utilizando métodos diferentes de ML. Fonte: elaborado

pelo autor.
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Como mostra a Figura 3, o número de publicações que utilizam ML cresceu signifi-

cativamente nas últimas duas décadas, com destaque para o uso dos algoritmos Logistic

Regression (LR) e Random Forest (RF). Além disso, observa-se, conforme a Figura 4, o

crescimento no uso de técnicas de aprendizado de máquina no contexto das fontes renová-

veis, reforçando a tendência de adoção dessas metodologias em estudos de sistemas com

alta penetração de fontes eólicas.

Figura 4: Número de publicações por ano em energia renovável utilizando ML. Fonte:

Elaborado pelo autor.

No que tange à classificação de faltas, trabalhos recentes têm integrado o uso de ML

a técnicas de processamento digital de sinais. Em [17], propõe-se o uso da Transformada

de Stockwell Hiperbólica em conjunto com Redes Neurais Artificiais (RNA) para a clas-

sificação de faltas em sistemas de transmissão, alcançando bons resultados em termos de

precisão e tempo de resposta. Em [18], os autores combinam a TDW com uma SVM,

utilizando sinais de corrente provenientes de um único terminal da linha, reduzindo a

necessidade de sincronização entre as medições. Mais recentemente, [4] aplica a TDW

para a extração de características de sinais de tensão e corrente em sistemas com alta

penetração de FEIIs, empregando cinco classificadores inteligentes, três baseados em AD

e dois em regras de associação, com resultados promissores para a identificação de faltas.
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De forma complementar, o estudo apresentado em [19] realiza uma avaliação sistemá-

tica de diferentes algoritmos de aprendizado de máquina aplicados à classificação de faltas

em linhas de transmissão interconectadas a geradores baseados em inversores. Os autores

comparam modelos como SVM, RNA e RF sob diferentes condições de operação e de

ruído, destacando que o desempenho dos classificadores varia conforme as características

dos sinais de entrada e a técnica de extração de atributos adotada. Os resultados apon-

tam que modelos baseados em árvores apresentam maior estabilidade e interpretabilidade,

enquanto RNAs e SVMs tendem a oferecer maior precisão em cenários com dados mais

limpos e bem segmentados.

Em resumo, as FEIIs apresentam um comportamento dinâmico que se distingue subs-

tancialmente do das fontes síncronas convencionais. Seus inversores de potência limitam

a corrente de curto-circuito, alterando significativamente sua composição harmônica e fa-

sorial conforme a estratégia de controle adotada [20]. Esta característica compromete a

eficácia dos métodos tradicionais de proteção, baseados em medições fasoriais.

Embora estudos recentes, como [4] e [19], demonstrem o potencial das técnicas de

aprendizado de máquina na proteção de sistemas com alta penetração de FEIIs, lacunas

de conhecimento relevantes ainda persistem na literatura. Dessa forma, são necessários

trabalhos que abordem aspectos práticos da implementação dessas ferramentas em campo.

Esses aspectos incluem: a capacidade de generalização para diferentes parâmetros de falta,

a robustez dos classificadores diante da presença de ruídos nos sinais e a influência do

terminal de medição. Paralelamente, também é necessário investigar um maior número

de classificadores.

Este cenário justifica a proposta do presente trabalho de conclusão de curso, o qual se

propõe a realizar uma análise conjunta dos principais fatores que influenciam o desempe-

nho de classificadores na tarefa de classificação de faltas em sistemas com alta penetração

de FEIIs, a saber: a influência da escolha do terminal de medição para a extração dos

sinais de tensão e corrente, a influência dos parâmetros de falta e a presença de ruído nos

sinais.
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3 Fundamentos Teóricos

Para a condução deste trabalho, foram considerados os dois tipos de geradores mais co-

mumente empregados em parques eólicos: os de Tipo 3 e 4. Na sequência, apresentam-se

as principais características desses geradores. Além disso, apresentam-se os fundamentos

básicos das técnicas de processamento, tanto convencionais quanto inteligentes, emprega-

das nesta pesquisa.

3.1 Geradores de Tipo 3, ou GIDA

Os geradores GIDA possuem enrolamentos trifásicos de corrente alternada (CA) tanto

no estator quanto no rotor. O estator está conectado diretamente à rede elétrica, enquanto

os enrolamentos trifásicos do rotor são ligados a um conversor de potência CA/CC por

meio de anéis coletores, que fornecem a magnitude e a frequência variáveis à tensão do

rotor. Outro conversor CC/CA é empregado para conectar o circuito do rotor à rede.

Todo o circuito do gerador é conectado à rede por meio de um transformador elevador,

como mostrado na Figura 5.

Figura 5: Topologia de um gerador de Tipo 3. Fonte: Adaptado de [2]

Quando a turbina eólica opera abaixo da velocidade síncrona (sub-síncrona), o campo

magnético observado no estator é a soma da velocidade de rotação mecânica do rotor

e da rotação aparente causada pela excitação CA aplicada. Neste modo de operação,
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a potência de saída do estator alimenta a rede elétrica, enquanto o conversor fornece

potência ao rotor.

Já quando a turbina opera acima da velocidade síncrona (super-síncrona), o campo

magnético resultante no rotor gira no sentido oposto à rotação mecânica do próprio rotor.

Neste caso, a potência entregue à rede é a soma da potência proveniente do estator e do

rotor, por meio do conversor.

Existem dois blocos principais de controle nos geradores GIDA. O primeiro é o controle

da velocidade de rotação da turbina eólica em conjunto com o controle de passo das pás,

responsável pelo controle da potência ativa gerada. O segundo é o controle do conversor,

que regula as potências ativa e reativa, ajustando a magnitude e o ângulo de fase da tensão

do rotor. A potência reativa pode ser regulada diretamente ou utilizada para controlar a

tensão terminal do gerador eólico.

A excitação de frequência variável no circuito do rotor permite a operação em uma

ampla faixa de velocidades, e o fluxo de potência ativa no conversor pode ser bidirecional,

dependendo se o gerador está operando acima ou abaixo da velocidade síncrona. Além

das características de controle, essas características são responsáveis pela ampla utilização

dos geradores do Tipo 3 em usinas eólicas devido ao seu modo de operação flexível e à

eficiência [2].

3.2 Geradores de Tipo 4, ou GFC

Os GFC também são geradores de velocidade variável, conectados à rede por meio de

dois conversores: o primeiro, do lado do gerador (CA-CC), e o segundo, do lado da rede

(CC-CA).

O gerador produz uma corrente alternada que varia em função da velocidade da turbina

eólica, sendo retificada pelo primeiro conversor. Já o conversor do lado da rede (ou

inversor) converte a corrente contínua (CC) em corrente alternada (CA) à frequência da

rede, de 50 Hz ou 60 Hz. A topologia de um gerador eólico do Tipo 4 é apresentada na

Figura 6.

Assim como em geradores do Tipo 3, a potência ativa é controlada para ajustar a

velocidade da turbina eólica e as cargas mecânicas, enquanto a potência reativa é utilizada

35



Figura 6: Topologia de um gerador de Tipo 4. Fonte: Adaptado de [2]

para regular a tensão. Porém, o conversor do gerador eólico Tipo 4 é dimensionado

para operar com a potência nominal total da turbina eólica, enquanto os conversores de

geradores de Tipo 3 operam na faixa de 20 a 30% da potência nominal total da turbina

eólica [2].

3.3 Impactos das FEIIs em Métodos de Classificação de faltas

Segundo [20, 4], fontes convencionais são modeladas como fontes de tensão em série

com impedâncias para a análise de faltas. Porém, as contribuições para as faltas de

geradores de Tipo 3 e 4 podem ser significativamente diferentes, dependendo dos métodos

de controle dos inversores, o que torna a análise mais complexa.

A contribuição de geradores GIDA durante faltas assume um caráter transitório, de-

crescente e potencialmente descontínuo. Este comportamento resulta da atuação dos

circuitos de proteção crowbar ou chopper, que desviam as altas correntes de curto-circuito

do rotor para fora do conversor, protegendo os dispositivos semicondutores contra sobre-

aquecimento e sobretensão no link CC. Já os geradores GFC limitam suas contribuições

a até 1,2 p.u. [8], devido a restrições térmicas de seus componentes e apresentam com-

portamento variável conforme o controle utilizado. Este trabalho adota o Controle de

Sequência Acoplado, no qual as contribuições para a falta possuem apenas componente

de sequência positiva, mesmo em distúrbios assimétricos [20]. Entretanto, estudos recen-

tes sugerem novos métodos de controle, como o Controle de Sequência Desacoplada, que

permite corrente de sequência negativa em faltas assimétricas [20]. Vale lembrar também

que vários países definiram códigos de rede que exigem, além da capacidade de Fault
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Ride-Through, que as FEIIs forneçam determinados níveis de corrente reativa durante

distúrbios, auxiliando no controle de tensão e frequência do sistema [4].

Além dos tipos de geradores empregados, outra fonte de complexidade na classificação

de faltas em linhas de transmissão com alta penetração de FEIIs está relacionada aos

terminais de medição dos sinais de tensão e corrente. Como mostrado na Figura 7, para

uma falta do tipo AT, os sinais de corrente obtidos do lado das fontes eólicas apresentam

uma assinatura harmônica com componentes de sequência zero expressivos, enquanto os

sinais de corrente medidos pelo terminal remoto indicam que somente a fase faltante

apresenta amplitude considerável, similar à das fontes convencionais.

Figura 7: Sinais de corrente medidos em diferentes pontos do sistema durante uma falta

do tipo AT. Fonte: elaborado pelo autor.

Outro exemplo é apresentado na Figura 8 para uma falta do tipo AB. Neste caso, do

lado das FEIIs, observa-se uma contribuição de corrente trifásica equilibrada, devido à

característica de supressão de corrente de sequência negativa, enquanto as medições feitas

a partir do terminal remoto mostram que apenas as fases faltosas possuem amplitude

expressiva.

Nesse contexto, métodos tradicionais de classificação de faltas, baseados nas caracte-

rísticas das correntes de falta produzidas por geradores síncronos, estão significativamente

comprometidos devido às contribuições atípicas das FEIIs, determinadas pelos controles

dos conversores [4].
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Figura 8: Sinais de corrente medidos em diferentes pontos do sistema durante uma falta

do tipo AB. Fonte: elaborado pelo autor.

3.4 Transformada discreta de Fourier

A análise espectral é uma das ferramentas mais importantes no processamento de

sinais, permitindo identificar e compreender os componentes de frequência presentes neles.

Quando se trata de sinais discretos, obtidos por amostragem de sinais contínuos, a TDF

tem sido, por muitos anos, a ferramenta mais utilizada na análise de sinais.

A versão clássica da Transformada de Fourier (TF) mostra que sinais contínuos no

tempo podem ser descritos como a soma de uma série de funções seno e cosseno, forma-

das por diferentes combinações de amplitude, frequência e fase, conforme demonstra a

Equação 1, que utiliza a forma exponencial das funções trigonométricas.

F (ω) = Ff(t) =

∫ ∞

−∞
f(t)e−iωt dt (1)

A Discrete Time Fourier Transform (DTFT) parte do princípio do Teorema da Amos-

tragem, que estabelece que um sinal contínuo pode ser recuperado a partir de suas amos-

tras sem perda de informação, desde que a taxa de amostragem seja pelo menos o dobro

da maior frequência presente no sinal. Quando aplicada à DTFT em um sinal contínuo

amostrado no tempo, o resultado é um espectro periódico no domínio da frequência, com

cópias do espectro original espaçadas pela frequência de amostragem. Se a taxa de amos-

tragem for insuficiente, ocorre o fenômeno de aliasing, no qual as réplicas se sobrepõem e

distorcem a informação original no domínio da frequência, como mostra a Figura 9.

Enquanto a DTFT descreve o espectro de sinais discretos de comprimento infinito de
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Figura 9: Sobreposição de espectros no domínio da frequência. Fonte: [3]

forma contínua no domínio da frequência, a TDF é válida para sinais de comprimento

finito e produz uma representação espectral também discreta no domínio da frequência,

transformando uma sequência de N valores no tempo em uma sequência de N valores

complexos no domínio da frequência. Cada valor no espectro contém informações sobre

a amplitude e a fase das componentes senoidais que compõem o sinal. Por ser discreta, a

TDF também gera um espectro periódico, com período N.

Na prática, não é possível manipular digitalmente um sinal infinito. Por isso, a TDF

é usada, pois ela amostra a DTFT em N pontos, igualmente espaçados, ao longo de

um período do espectro. Esses pontos de frequência correspondem a múltiplos inteiros

da frequência fundamental 2π
N

, onde N é o número de amostras no sinal. Este processo

tem custo computacional reduzido, pois é realizado por meio de uma somatória finita,

enquanto a DTFT exige integração.

Um exemplo prático da implementação da TDF é apresentado na Figura 10, para um

sinal composto por dois cossenos com frequências de 20 e 60 Hz, com amplitudes de 5 e

2, respectivamente. É importante ressaltar que somente a parte positiva do espectro de

frequência é representada, pois o resultado da aplicação da TDF gera espectros simétricos.

39



Figura 10: Exemplo de aplicação da TDF. Fonte: elaborado pelo autor.

3.5 Aprendizado de Máquina

O ML é um ramo da inteligência artificial que permite que sistemas computacionais

aprendam padrões e tomem decisões com base em dados, sem necessidade de programação

explícita. Esta técnica utiliza algoritmos capazes de prever resultados e de melhorar seu

desempenho à medida que são retreinados com novos exemplos, o que é essencial para o

desenvolvimento de tecnologias inteligentes.

Os modelos de classificação em ML são comparados e selecionados com base em um

conjunto de características que equilibram o desempenho preditivo e a eficiência operaci-

onal. Estas são as quatro principais:

• Custo Computacional: Refere-se aos recursos (tempo, memória e poder de pro-

cessamento) necessários para ajustar os parâmetros do modelo aos dados de treina-

mento. É medido em termos de complexidade temporal e é crucial para a escalabi-

lidade.

• Dimensionalidade: Um modelo com alta capacidade de dimensionalidade é capaz

de manter a robustez e o desempenho em conjuntos de dados com um número muito

elevado de variáveis de entrada.
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• Latência: É a velocidade com que o modelo gera uma classificação para uma nova

amostra. Fator vital para aplicações em tempo real.

• Interpretabilidade: Descreve a facilidade de compreender o raciocínio subjacente

à decisão de classificação do modelo.

Para a execução deste trabalho, foram considerados sete classificadores disponíveis na

biblioteca PyCaret, a saber: Decision Tree (DT), Extra Trees (ET), Gradient Boosting

(GBC), K-Nearest Neighbors (KNN), Light Gradient Boosting Machine (Light GBM), LR

e RF. Estes modelos foram selecionados com base em um estudo anterior que testou duas

metodologias de extração de características e analisou a influência do ruído na precisão

dos classificadores. A abordagem revelou que a TDF, associada a este conjunto específico

de modelos, mostrou-se promissora para a classificação de faltas em linhas de transmissão

com alta penetração de FEIIs. Além disso, trabalhos recentes [4] mostram que o KNN

e outros algoritmos baseados em DT são modelos promissores para a classificação de

faltas em linhas de transmissão com alta penetração de FEIIs. A Tabela 1 apresenta as

principais características desses classificadores e, em seguida, segue uma breve discussão

sobre cada um.

Tabela 1: Principais características dos classificadores. Fonte: elaborado pelo autor.

Modelo Custo Dimensionalidade Latência Interpretabilidade

DT Médio Alta Baixa Alta

ET Médio Alta Baixa Média

GBC Alto Alta Média Baixa

k-NN Baixo Baixa Alta Alta

LightGBM Baixo Alta Baixa Baixa

LR Baixo Alta Baixa Alta

RF Médio Alta Baixa Média
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3.5.1 Decision Trees

As árvores de decisão são amplamente utilizadas em estatística, mineração de dados e

aprendizado de máquina por sua capacidade de representar, de forma intuitiva, o processo

de tomada de decisão. Elas funcionam como modelos preditivos que utilizam uma estru-

tura hierárquica para relacionar observações de entrada (nas bifurcações) a resultados ou

classes-alvo (nas folhas). Quando a variável de destino assume valores discretos, o modelo

é chamado de árvore de classificação. Enquanto isso, para valores contínuos, denomina-se

árvore de regressão. Essa abordagem é valorizada por sua simplicidade, interpretabilidade

e aplicação em diversas áreas, como no diagnóstico médico, na avaliação de crédito e em

sistemas de apoio à decisão.

A estrutura interna de uma árvore de decisão segue uma topologia hierárquica, como

ilustrado na Figura 11. Esta estrutura é composta por três tipos de elementos: o Nó

Raiz (o ponto de partida que contém o conjunto de dados completo), os Nós Internos

(onde são realizados os testes nas variáveis de entrada, gerando ramificações) e os Nós

Folha (os nós terminais que representam a previsão final ou a classe de saída). O processo

preditivo segue um caminho recursivo e sequencial, iniciando na raiz e percorrendo os nós

até atingir uma folha.

Figura 11: Topologia simplificada de uma Decision Tree. Fonte: elaborado pelo autor.

O processo de aprendizado das árvores de decisão é heurístico e baseado em uma busca
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sequencial e ávida. A cada etapa, seleciona-se a melhor divisão possível, com base em

métricas de impureza, como a entropia ou o índice de Gini.

• Índice de Gini: Mede a probabilidade de que uma amostra escolhida aleatoria-

mente seja classificada incorretamente, caso seja rotulada aleatoriamente com base

na distribuição de classes no nó. O objetivo da divisão é minimizar o valor do índice

de Gini na divisão resultante. É matematicamente definido como:

Gini(S) = 1−
C∑
i=1

p2i (2)

• Entropia: Conceito adaptado da teoria termodinâmica para a Teoria da Informa-

ção, que mede o nível de desordem ou incerteza de um sistema. O algoritmo de

treinamento busca maximizar o ganho de informação, que é a redução da entropia

decorrente de uma divisão. Quanto mais homogêneo (puro) for um nó, menor será

sua entropia. É expressa por:

Entropy(S) = −
C∑
i=1

pi log2(pi) (3)

Onde:

• S: Nó para o qual a impureza é calculada.

• C: O número total de classes distintas presentes no conjunto S.

• pi: A proporção de instâncias da classe i no conjunto S.

O critério de divisão que minimiza a impureza (Gini) ou maximiza o ganho (Entropia)

é escolhido, e o processo se repete recursivamente até que os nós se tornem puros ou até

que um critério de parada seja atingido. Essa busca não é retroativa, ou seja, não revisita

decisões anteriores, mas tende a gerar modelos eficientes e robustos a ruídos nos dados.

Além disso, as árvores podem ser expressas como conjuntos de regras do tipo “se-então”,

o que facilita sua compreensão e explicação, consolidando-as como uma das técnicas mais

populares e acessíveis no aprendizado supervisionado [21].
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3.5.2 Extra Trees

O Extra Trees Classifier (Extremely Randomized Trees) é um algoritmo de aprendi-

zado supervisionado que se baseia no conceito de métodos de conjunto (ensemble learning).

Este modelo baseia-se em múltiplas árvores de decisão independentes e combina seus re-

sultados para aprimorar o desempenho global da classificação. A principal característica

desse método é a introdução de aleatoriedade adicional durante o processo de construção

das árvores, o que o diferencia de modelos tradicionais, como o Random Forest. Em cada

árvore do conjunto, é selecionado um subconjunto aleatório de variáveis e, diferentemente

das árvores convencionais, que utilizam critérios como a entropia ou o índice de Gini para

determinar o melhor ponto de divisão, o Extra Trees escolhe os pontos de divisão de forma

totalmente aleatória no intervalo de valores das variáveis selecionadas.

Essa estratégia aumenta a diversidade entre as árvores do modelo, reduzindo a correla-

ção entre elas e melhorando a capacidade de generalização. A predição final é obtida pela

agregação das saídas individuais das árvores, de modo que a classe mais frequentemente

prevista seja escolhida como resultado. Essa abordagem estocástica contribui para miti-

gar o overfitting que pode ocorrer em modelos de árvores de decisão isoladas, mantendo

o equilíbrio entre precisão, robustez e interpretabilidade [22].

3.5.3 Gradient Boosting

O GBC constrói um modelo preditivo forte de forma sequencial, combinando vários

modelos fracos, como árvores de decisão rasas. O processo começa com um modelo inicial

simples que faz uma previsão básica sobre o conjunto de dados. A partir daí, o algo-

ritmo calcula os erros desse modelo inicial, que, na verdade, correspondem aos gradientes

negativos da função de perda.

Em seguida, uma nova árvore de decisão é treinada especificamente para prever esses

erros. Essa nova árvore é, então, adicionada ao modelo cumulativo, mas com sua contri-

buição ponderada por uma taxa de aprendizado. Esse hiperparâmetro controla o quão

rapidamente o modelo aprende a cada nova árvore, ajudando a evitar o overfitting.

Esse ciclo de cálculo de erros e de treinamento de uma nova árvore para corrigi-los se

repete por um número definido de iterações. No final, a previsão do classificador é a soma

44



das previsões das árvores individuais, resultando em um modelo final preciso e robusto.

A eficiência do algoritmo deve-se à sua capacidade de focar nos erros mais significativos

a cada passo [23].

3.5.4 K-Nearest Neighbors

O KNN é um método de aprendizado de máquina supervisionado e não paramétrico,

baseado em agrupamento, que faz suas previsões com base na proximidade dos novos

dados em relação aos dados de treinamento existentes, em contraste com outros modelos

que constroem uma função preditiva durante o treinamento [24].

Em tarefas de classificação, o KNN determina a classe de um novo dado com base nas

amostras mais próximas no conjunto de treinamento. Para isso, calcula-se a distância entre

a nova amostra e os dados existentes, geralmente utilizando a distância euclidiana quando

as variáveis de entrada são contínuas. Após identificar os K vizinhos mais próximos, o

algoritmo atribui à nova amostra a classe mais frequente entre eles.

O valor de K é um parâmetro crucial, pois influencia diretamente o desempenho do

modelo: valores muito baixos podem tornar o classificador sensível a ruídos, enquanto

valores muito altos podem gerar classificações imprecisas. Por isso, costuma-se testar

diferentes valores de K para determinar o mais adequado.

Além da classificação, o KNN também pode ser utilizado em regressão, na qual o valor

previsto é a média dos valores dos K vizinhos mais próximos. O método é especialmente

útil em bases de dados em que as amostras se organizam em grupos bem definidos e é

adequado para situações em que há pouco conhecimento prévio sobre os dados utilizados.

3.5.5 Light Gradient Boosting Machine

O LightGBM é um algoritmo baseado no método GBC, desenvolvido pela Microsoft

em 2017. Assim como o GBC, ele constrói árvores de decisão de forma sequencial, nas

quais cada árvore tenta corrigir os erros das anteriores, mas foi projetado para superar

limitações de memória e de desempenho em grandes conjuntos de dados.

O LightGBM utiliza um método baseado em histogramas, discretizando os valores

contínuos em bins e construindo histogramas que armazenam informações, como a soma
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dos gradientes e o número de amostras. Essa abordagem reduz significativamente os custos

computacionais e de armazenamento, pois os pontos de divisão são avaliados apenas entre

os limites discretos dos bins. Além disso, emprega um crescimento leaf-wise com limite

de profundidade, expandindo sempre a folha que reduz mais o erro, o que aumenta a

eficiência do aprendizado [25].

Comparado ao GBC, o LightGBM apresenta maior eficiência e escalabilidade, permi-

tindo lidar com bases de dados extensas e de alta dimensionalidade sem grandes impactos

na memória ou no tempo de treinamento. Assim, otimiza-se o processo, tornando-o mais

rápido e preciso, especialmente em cenários de grandes volumes de dados e alta comple-

xidade.

3.5.6 Logistic Regression

O modelo de Regressão Logística é um algoritmo de classificação supervisionada uti-

lizado para prever a probabilidade de um evento binário (por exemplo, sucesso/falha,

sim/não) com base em um conjunto de variáveis independentes. Diferente da regressão

linear, que prevê valores contínuos, a regressão logística transforma a saída em uma proba-

bilidade entre 0 e 1 usando a função sigmoide (ou logística). A função sigmoide é definida

como:

σ(z) =
1

1 + e−z
(4)

Onde z é a combinação linear das variáveis independentes (z = β0 + β1x1 + β2x2 +

· · · + βnxn). Essa transformação garante que a previsão esteja sempre no intervalo [0, 1]

e pode ser interpretada como uma probabilidade.

Para classificar uma nova amostra, o modelo calcula essa probabilidade e aplica um

limiar de decisão (geralmente 0,5) para determinar a classe final. Por exemplo, se a

probabilidade prevista for maior que 0,5, a classe é considerada 1; caso contrário, é 0. O

modelo ajusta os coeficientes βi durante o treinamento, usando a máxima verossimilhança,

para encontrar valores que convertam os dados de entrada na classificação correta da

amostra [26].

Além da classificação binária, a regressão logística pode ser estendida para multiclasse
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(regressão logística multinomial) ou utilizada para prever probabilidades condicionais de

eventos, sendo amplamente aplicada em áreas como medicina, finanças, marketing e ci-

ência de dados.

3.5.7 Random Forest

O RF é um modelo de classificação que combina múltiplas árvores de decisão, em que

cada árvore é criada a partir de um vetor aleatório, amostrado de forma independente,

mas com a mesma distribuição para todas as árvores. Para classificar um novo dado, o

modelo utiliza a categoria mais prevista pelas árvores que o compõem para determinar a

classe à qual a observação pertence. O erro de generalização desta técnica converge para

um limite à medida que o número de árvores aumenta, o que significa que o overfitting

não se torna um problema ao adicionar mais árvores.

A aleatoriedade está presente em dois aspectos da construção do modelo. O primeiro

mecanismo é o Bagging (Bootstrap Aggregation), em que cada nova árvore é treinada em

um novo conjunto de dados amostrado com reposição a partir do conjunto de treinamento

original. O segundo mecanismo, e o mais crucial, é a Seleção Aleatória de Características,

pela qual, em cada nó da árvore de decisão, apenas um pequeno subconjunto aleatório

de variáveis de entrada é considerado para encontrar a melhor divisão. Essa dualidade de

aleatoriedade tem como objetivo fundamental minimizar a correlação entre as árvores e

manter a força (precisão) dos classificadores individuais, sendo esses os fatores determi-

nantes da performance do classificador [27].
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4 Metodologia

A seguir, são descritos o sistema elétrico considerado neste estudo, assim como as

principais etapas metodológicas envolvidas no trabalho, como o pré-processamento e a

inserção de ruídos nos sinais, além do treinamento e testes dos classificadores, utilizando

a biblioteca PyCaret.

4.1 Descrição do sistema de teste e segmentação do banco de

dados gerado por simulações computacionais

A pesquisa visou avaliar os principais tipos de FEIIs, e, para isso, foram considera-

dos os geradores eólicos das duas topologias mais usuais: GFC e GIDA. Para ambos

os tipos de geração, a usina eólica foi modelada para fornecer, em regime permanente,

potência ativa de 220,5 MW e potência reativa de 0 var. Para a modelagem das unidades

GIDA, o controle dos geradores foi ajustado conforme descrito em [28] e [29]. Já para

a modelagem dos GFCs, o ajuste de controle foi realizado conforme descrito em [30] e

em [28]. O diagrama unifilar do sistema considerado está apresentado na Figura 12, e os

parâmetros empregados estão na Tabela 2. A simulação considerada foi por parâmetros

distribuídos, considerando os parâmetros de sequência R+, Ro, L+, Lo, C+, e Co, sendo,

respectivamente, os parâmetros resistivos, indutivos e capacitivos de sequência positiva e

zero.

As simulações foram realizadas considerando o sistema de transmissão com a topologia

definida na Figura 12, para o qual foram simulados curto-circuitos na linha 1-2, variando

o tipo da falta (monofásica, envolvendo uma fase e o terra (AT, BT e CT), bifásica,

envolvendo duas fases ou duas fases e o terra (AB, AC, BC, ABT, ACT, BCT) e trifásica,

envolvendo as três fases (ABC)); a resistência entre fases (Rp igual a 0, 1, 1,5 e 2 Ω); a

resistência entre fases e terra (Ry igual a 0, 25, 50 e 100 Ω); o ângulo de incidência (0,

45 e 90 graus); e a localização da falta (de 0% a 100% da linha 1-2 em passos de 10%,

sendo 0% o ponto P1). Vale ressaltar que a base de dados utilizada nesta abordagem é

composta pelas oscilografias de ambos os geradores (tipos III e IV).
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Figura 12: Topologia do sistema de teste. Fonte: Adaptado de [4].

Tabela 2: Parâmetros do sistema de teste. Fonte: Adaptado de [4].

Parâmetros Valores

Fonte 1
Vs1 = 500 0◦ kV

R+/Ro = 0, 984/3, 447 Ω

L+/Lo = 28, 732/57, 467 mH

Transformador Dyn11 (34,5 – 0,575 kV) 1,75 MVA - Z = 6%

Transformador YNd1 (138 - 34,5 kV) 90 MVA - Z = 10%

Transformador YNyn0 (500 – 138 kV) 250 MVA - Z = 10%

Linha 1-2
R+/Ro = 0, 017/0, 331 Ω/km

L+/Lo = 0, 839/2, 382 mH/km

C+/Co = 0, 0137/0, 0082 µF/km

Visando analisar a capacidade de generalização dos métodos inteligentes em relação

aos parâmetros de falta, as bases de dados de treino e teste dos modelos foram segmentadas

de modo que determinados valores das grandezas envolvidas nas simulações pertencessem

somente a um único conjunto de dados. A Tabela 3 mostra como os dados de treinamento

e teste foram organizados.
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Tabela 3: Segmentação de dados para a composição das bases de dados de treino e teste.

Treino Teste

Local 1, 3, 5, 7, 9 e 11 2, 4, 6, 8, 10, e 12

Rp 1e-6, 1 e 2 Ω 1.5 Ω

Ry 1e-6, 25 e 100 Ω 50 Ω

Ang. de Incidência 0, 1◦ e 90, 1◦ 45, 1◦

4.2 Pré-processamento via a TDF

A ferramenta de extração de características utilizada foi a TDF, por ser amplamente

empregada em diversas áreas, ser mais simples e ter menor custo computacional. A Figura

13 detalha as etapas para a obtenção de características utilizando a TDF.

Figura 13: Extração de características via a TDF. Fonte: elaborado pelo autor.

Para a obtenção dos coeficientes dos sinais, foi utilizada a função ”fft.rfft()”da biblio-

teca ”scipy”, que retorna a primeira metade do vetor dos coeficientes da decomposição do

sinal, já que este vetor é simetricamente espelhado, resultado da aplicação da TDF em

um sinal amostrado no tempo. Em seguida, foi necessário normalizar o vetor pela metade

do número de amostras e, ainda assim, dividir o primeiro coeficiente por dois. Com isso,

obtém-se um vetor de números complexos, dos quais os módulos e fases dos fasores podem
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ser obtidos aplicando, respectivamente, as funções ”np.abs()” e ”np.angle” da biblioteca

”numpy”.

4.3 Metodologia para a inserção de ruídos nos sinais

A fim de reproduzir uma situação típica de aplicação, onde os sinais estão constante-

mente submetidos a ruídos, foi utilizada uma metodologia para sobrepor os sinais obtidos

pelas oscilografias a ruídos de diferentes intensidades, respeitando diferentes SNRs, do

inglês Signal to Noise Ratio, que podem ser definidos como a razão entre a média da

potência de um sinal (Pots) e do ruído nele contido (Potr). Ou seja:

SNR =
Pots

Potr
(5)

Esta relação é mais comumente apresentada na escala de decibéis, definida como:

SNRdB = 10Log(SNR) (6)

Da Equação 6, é possível obter a média da potência do ruído a ser sobreposta no sinal,

que é:

Potr =
Pots

10SNRdB/10
(7)

Assim, podemos obter o valor RMS do ruído (RMSr) a ser aplicado a um sinal, como

sendo:

RMSr =

√
Potr (8)

Com isso, pode-se utilizar a função ”np.random.normal()”para gerar números aleató-

rios com distribuição normal (gaussiana). A função tem três principais parâmetros:

• loc (média): Esse parâmetro define a média da distribuição normal, ou seja, o valor

central em torno do qual os dados se distribuem.

• scale (desvio padrão): Este parâmetro define o desvio padrão da distribuição, que

controla a dispersão dos valores em torno da média. É importante enfatizar que,

neste caso, o desvio padrão será dado pelo valor calculado de RMSr.
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• size (forma ou quantidade de amostras): Esse parâmetro define o número de valores

a serem gerados.

Um exemplo do resultado do processo de inserção de ruído é apresentado na Figura

14.

Figura 14: Gráficos de tensão obtidos antes e após a inserção de ruídos no sinal de tensão

da fase ”A”, durante uma falta ”AT”. Fonte: elaborado pelo autor.

Os códigos utilizados para o pré-processamento dos dados via a TDF, com a inserção

de ruídos, estão presentes no Apêndice.

4.4 A biblioteca PyCaret

PyCaret é uma biblioteca para Python que visa auxiliar na construção e na com-

paração de modelos de aprendizado de máquina. Primeiro, é necessário configurar o

experimento, o que pode ser feito utilizando a Functional API, cuja função setup possui

diversos parâmetros. A Figura 15 ilustra a chamada da função setup e seus atributos

internos.
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Os atributos da função setup são os seguintes:

• index: admite dois valores (True e False). Por padrão, o index é definido como

True, considerando que o conjunto de testes será parte do conjunto de dados. Se

forem utilizados arquivos diferentes para treinamento e teste, é necessário alterar o

parâmetro para False.

• data: é a variável que receberá o conjunto de dados para treino;

• train_size: caso o usuário deseje utilizar o mesmo conjunto de dados para treino e

teste, este parâmetro é utilizado para separar aleatoriamente uma porção do con-

junto para treino e a outra para teste. Por exemplo, train_size = 0.7 equivale a

70% dos dados para treino e 30% para testes;

• test_data: é a variável que receberá o conjunto de dados para testes;

• target: indica qual coluna da tabela que o classificador deverá considerar no treino

e nos testes.

Em seguida, para comparar diferentes classificadores, utiliza-se a função compare_models,

cuja chamada e seus atributos são mostrados na Figura 16. Essa função treina e testa 14

classificadores disponíveis nativamente na biblioteca.

Os principais atributos da função setup são detalhados da seguinte forma:

• n_select: Define a quantidade de classificadores a serem retornados, em ordem do

melhor para o pior.

• sort: ranqueia os classificadores com base em uma das métricas utilizadas pelo

PyCaret;

Figura 15: Configuração da função setup do PyCaret. Fonte: elaborado pelo autor.
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Figura 16: Instrução para treinar, testar e comparar modelos. Fonte: elaborado pelo

autor.

• cross_validation: é um parâmetro que, por padrão, é configurado como True, e, para

que os testes sejam realizados utilizando os dados de teste carregados, é necessário

alterá-lo para False.

Após a execução do comando, o programa retorna uma lista com um ranking dos mé-

todos utilizados com base na métrica selecionada no comando compare_models, podendo

ser:

• Precisão (Accuracy): a precisão mede a proporção de predições corretas em relação

ao total de predições. É uma métrica adequada quando as classes estão balanceadas.

No entanto, pode ser enganosa em problemas com classes desbalanceadas.

ACC = TP/(TP + FP ) (9)

Onde TP é o número de verdadeiros positivos e FP é o número de falsos positivos.

• Área sob a Curva ROC (AUC-ROC): a Curva ROC é uma representação gráfica

que mostra a taxa de verdadeiros positivos (TPR ou Sensibilidade) em relação à

taxa de falsos positivos (FPR) para diferentes valores de limiar de probabilidade. A

Curva ROC pode ser criada calculando-se o TPR e o FPR para vários limiares de

probabilidade, variando de 0 a 1. Quanto maior a área, melhor será o desempenho

do modelo. O método de cálculo de AOC mais comum é a integração numérica. A

AUC fornece uma medida útil do desempenho do modelo em relação à classificação

binária

• Revocação (Recall ou Sensibilidade): é uma métrica de avaliação de desempenho

usada em problemas de classificação, especialmente em situações em que a identifica-

ção dos verdadeiros positivos é fundamental. O recall é uma métrica importante em
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problemas em que a detecção de exemplos positivos é crucial e onde a consequência

de um falso negativo é significativa.

Recall = TP/(TP + FN) (10)

Sendo FN o número de falsos negativos.

• F1-Score: o F1-Score é uma métrica de avaliação de desempenho que combina pre-

cisão (precision) e recall (sensibilidade) em um único número, sendo especialmente

útil em problemas de classificação onde há um desequilíbrio entre as classes. O

F1-Score fornece uma única métrica que equilibra a precisão e o recall. Ele é especi-

almente útil quando há um desequilíbrio entre as classes, pois não favorece nenhuma

classe em particular.

F1 = (Prec ·Recall)/(Prec+Recall) (11)

O valor do F1-Score varia de 0 (pior desempenho) a 1 (melhor desempenho), sendo

um indicador geral de quão bem o modelo está funcionando em relação à classificação

das classes positivas e negativas.

• Cohen’s Kappa (Kappa): mede a concordância entre as classificações previstas por

um modelo de AM e as classificações reais (rótulos verdadeiros). É especialmente

útil quando se lida com problemas de classificação, onde se deseja avaliar o quão

bem o modelo concorda com as categorias de classificação. O índice Kappa é par-

ticularmente útil quando se lida com problemas de classificação em que as classes

estão desbalanceadas, pois leva em consideração a concordância esperada ao acaso,

o que pode ajudar a evitar avaliações enganosas.

k =
Po− Pe

1− Pe
(12)

Onde Po é a proporção de casos em que o modelo e os rótulos verdadeiros concor-

dam, e Pe é a proporção de concordância que seria esperada ao acaso. k>1 indica

coerência perfeita entre as precisões e os rótulos verdadeiros. k=0 indica que o

modelo está realizando tão bem quanto o esperado ao acaso, e k<0 indica que o

modelo está performando pior do que o esperado ao acaso (discordância).
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• Matthews Correlation Coefficient (MCC): é uma métrica de avaliação de desempe-

nho amplamente utilizada em problemas de classificação binária. O MCC leva em

consideração tanto verdadeiros positivos (True Positives - TP), verdadeiros nega-

tivos (True Negatives - TN), falsos positivos (False Positives - FP) quanto falsos

negativos (False Negatives - FN) para calcular um único valor que reflete a qualidade

geral das previsões de um modelo de AM.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(13)

MCC = 1 indica uma concordância perfeita entre as previsões do modelo e os

rótulos verdadeiros. MCC=0 indica que o modelo está desempenhando tão bem

quanto o esperado pelo acaso. MCC=-1 indica uma discordância perfeita entre as

previsões do modelo e os rótulos verdadeiros. O MCC é especialmente útil quando

o desbalanceamento entre as classes é significativo ou quando o custo de cometer

falsos positivos e falsos negativos é desigual. No entanto, é importante notar que

o MCC é mais adequado para problemas de classificação binária e não se aplica

diretamente a problemas de classificação multiclasse.

Durante a pesquisa, a única métrica considerada nos estudos foi a acurácia, dado que

essa abordagem visa avaliar o desempenho global de diferentes modelos de classificação

em um contexto de classificação multiclasse. Além disso, o banco de dados para treino

e teste envolve todos os tipos de faltas, fazendo com que as classes estejam balanceadas

entre si. Vale lembrar que sete modelos, dentre os quatorze disponíveis nativamente na

biblioteca, foram considerados. Os modelos nativos disponíveis pelo PyCaret e suas siglas

são apresentados na Tabela 4.
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Tabela 4: Classificadores disponibilizados pelo PyCaret.

Sigla Classificador

ET Extra Trees

LightGBM Light Gradient Boosting Machine

RF Random Forest

GBC Gradient Boosting

DT Decision Tree

QDA Quadratic Discriminant Analysis

KNN K-Nearest Neighbors

LR Logistic Regression

LDA Linear Discriminant Analysis

NB Naive Bayes

SVM Support Vector Machine

Ada AdaBoost Classifier

Dummy Dummy Classifier

Ridge Ridge Classifier
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5 Resultados obtidos

Com o objetivo de avaliar a influência dos terminais de onde são obtidas as oscilo-

grafias utilizadas na extração de características sobre o desempenho dos classificadores,

foram conduzidos nove testes distintos. Em cada teste, variaram-se os terminais respon-

sáveis pela formação dos conjuntos de dados de treino e de teste, conforme a segmentação

apresentada na Tabela 3. A configuração específica de cada teste é detalhada na Tabela

5. A seguir, são apresentados e discutidos a performance dos classificadores em cada teste

e, na sequência, segue uma discussão geral dos resultados obtidos.

Tabela 5: Descrição dos testes realizados no trabalho.

Teste Descrição

1 Treino e teste com medições em ambos os terminais

2 Treino com ambos os terminais e teste com o terminal local

3 Treino com ambos os terminais e teste com o terminal remoto

4 Treino com o terminal local e teste com ambos os terminais

5 Treino e teste com o terminal local

6 Treino com o terminal local e teste com o terminal remoto

7 Treino com o terminal remoto e teste com ambos os terminais

8 Treino com o terminal remoto e teste com o terminal local

9 Treino e teste com o terminal remoto

5.1 Teste 1: Treino e teste com medições em ambos os terminais

Os resultados obtidos no Teste 1 são apresentados na Figura 17. Neste caso, é possível

observar que os modelos apresentaram um ótimo desempenho, com aproximadamente

100% de acurácia, com exceção dos Classificadores KNN e LR, que mantiveram uma taxa

de acerto de 78% e 42%, respectivamente. Vale ressaltar que o modelo LR desempenhou

melhor quando foi treinado e testado com sinais ruidosos, alcançando uma acurácia de

84%.
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Figura 17: Resultados obtidos com ambos os terminais para treino e teste. Fonte: elabo-

rado pelo autor

5.2 Teste 2: Treino com ambos os terminais e teste com o ter-

minal local

De acordo com a Figura 18, os resultados obtidos utilizando ambos os terminais para

treino e testando apenas com o terminal local não mostram alterações significativas na

precisão dos classificadores quando comparados ao Teste 1. Porém, vale ressaltar que o

desempenho do classificador LR caiu cerca de 20% quando treinado e testado com sinais

sem a presença de ruído e, ao mesmo tempo, treinado com sinais sem ruído e testado com

sinais contendo ruído.
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Figura 18: Resultados obtidos utilizando ambos os terminais para treino e o terminal

local para teste. Fonte: elaborado pelo autor

5.3 Teste 3: Treino com ambos os terminais e teste com o ter-

minal remoto

A última bateria de testes, utilizando ambos os terminais para o treino dos classifi-

cadores, apresentou níveis de desempenho semelhantes nos Testes 1 e 2, como mostrado

na Figura 19. Os classificadores DT, ET, GBC, Light GBM e RF se mantiveram com

altas taxas de acerto, enquanto KNN e LR se mantiveram com cerca de 80% de acurácia

máxima.
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Figura 19: Resultados obtidos utilizando ambos terminais para treino e o terminal remoto

para teste. Fonte: elaborado pelo autor.

5.4 Teste 4: Treino com o terminal local e teste com ambos os

terminais

A Figura 20 mostra que o desempenho dos classificadores foi fortemente afetado

quando treinados com dados do terminal local e testados com ambos os terminais. Os

modelos DT, ET, GBC, Light GBM e RF que figuravam com taxas de acerto perto de

100% agora apresentam desempenho de cerca de 83%, 76%, 72%, 73% e 83%, respectiva-

mente. O algoritmo KNN também perdeu 15% de acurácia, assim como a LR, com um

decréscimo de 34%.
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Figura 20: Resultados obtidos utilizando o terminal local para treino e ambos os terminais

para teste. Fonte: elaborado pelo autor.

5.5 Teste 5: Treino e teste com o terminal local

Os resultados obtidos com o terminal local, para treino e teste, são apresentados na

Figura 21. Como já era esperado, os classificadores voltaram a ter um bom desempenho,

com DT, ET, GBC, Light GBM e RF apresentando acurácias de 100%, enquanto KNN e

LR seguiram o mesmo comportamento dos testes anteriores, figurando com 80% e 84%,

respectivamente.
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Figura 21: Resultados obtidos utilizando o terminal local para treino e teste. Fonte:

elaborado pelo autor.

5.6 Teste 6: Treino com o terminal local e teste com o terminal

remoto

Ao finalizar a bateria de testes no terminal local para o treinamento dos classificadores,

é possível observar, conforme mostrado na Figura 22, que os classificadores são fortemente

afetados pelos terminais a partir dos quais os sinais de tensão e corrente são extraídos. Os

classificadores DT, ET, GBC e Light GBM obtiveram uma acurácia de 52%, 55%, 44% e

46%, respectivamente, enquanto KNN e LR obtiveram 46% e 26% de acurácia. O único

classificador que ainda permaneceu com uma taxa de assertividade relativamente alta foi

o RF, com 77%.
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Figura 22: Resultados obtidos utilizando o terminal local para treino e terminal remoto

para teste. Fonte: elaborado pelo autor.

5.7 Teste 7: Treino com o terminal remoto e teste com ambos

os terminais

O primeiro teste, utilizando o terminal remoto para treino dos classificadores, é apre-

sentado na figura 23. Neste caso, é possível observar que o desempenho dos métodos DT,

ET, GBC, Light GBM e RF melhorou, se comparado com o teste anterior, o que já era

esperado, com acurácias de 68, 78, 76, 78,5 e 79%, respectivamente. Enquanto KNN e

LR figuraram com 38,5 e 58% de acurácia.
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Figura 23: Resultados obtidos utilizando o terminal remoto para treino e ambos os ter-

minais para teste. Fonte: elaborado pelo autor.

5.8 Teste 8: Treino com o terminal remoto e teste com o termi-

nal local

Os resultados obtidos utilizando o terminal remoto para treino e o local para teste

são apresentados. LightGBM e RF figuraram com 33%, 70%, 55%, 58%, 34% e 43%

de acurácia, enquanto LR caiu para 34% na Figura 24. Ao analisar o desempenho dos

classificadores, é possível deduzir que essa combinação configura o pior cenário, tanto para

o treinamento quanto para os testes dos classificadores avaliados. Os classificadores DT,

ET, GBC e Light GBM e RF figuraram com 33, 70, 55, 58, 34 e 43% de acurácia, enquanto

LR caiu para 34%. Vale ressaltar que, neste caso, o classificador KNN não apresentou

desempenho em nenhuma das abordagens, independentemente do nível de ruído inserido

no sinal.
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Figura 24: Resultados obtidos utilizando o terminal remoto para treino e o terminal local

para teste. Fonte: elaborado pelo autor.

5.9 Teste 9: Treino e teste com o terminal remoto

Por fim, os resultados obtidos com o terminal remoto para treino e teste são apre-

sentados na Figura 25. Como já era esperado, os classificadores voltaram a apresentar

desempenhos semelhantes aos dos melhores casos, uma vez que a influência dos terminais

foi removida. Neste teste, DT, ET, GBC, Light GBM e RF alcançaram novamente 100%

de desempenho, enquanto KNN e LR alcançaram 77% e 82% de acurácia, respectivamente.
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Figura 25: Resultados obtidos utilizando o terminal remoto para treino e teste. Fonte:

elaborado pelo autor.

5.10 Análise Geral dos Classificadores

Em resumo, a Tabela 6 apresenta os percentuais máximos e mínimos de acerto de cada

classificador para cada condição de teste avaliada. De acordo com os testes realizados,

observa-se que a maioria dos métodos avaliados, quando treinados com características de

ambos os terminais, é capaz de aprender tanto as contribuições das FEIIs (terminal local)

quanto as dos geradores convencionais (terminal remoto) para a classificação das faltas.

No entanto, esse comportamento não se mantém quando os classificadores são testados

com características provenientes de um terminal que não está presente no conjunto de

treinamento. Isso ocorre devido às diferenças nas contribuições de corrente de falta entre

FEIIs e fontes convencionais, conforme ilustrado nas Figuras 7 e 8. Durante o treinamento,

os classificadores ajustam seus hiperparâmetros para reconhecer os padrões característicos

de cada tipo de fonte, tornando-se menos eficazes quando expostos a padrões distintos

dos que constam nos dados de treinamento.
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Tabela 6: Tabela resumo da acurácia obtida em cada teste (valores em porcentagem).

Fonte: elaborado pelo autor.
Teste DT ET GBC KNN Light GBM LR RF

1
Max: 100

Min: 100

Max: 100

Min: 100

Max: 100

Min: 100

Max: 78,5

Min: 72,5

Max: 100

Min: 100

Max: 84

Min: 40,5

Max: 100

Min: 100

2
Max: 100

Min: 99

Max: 100

Min: 100

Max: 100

Min: 100

Max: 80

Min: 73

Max: 100

Min: 100

Max: 84

Min: 40,5

Max: 100

Min: 100

3
Max: 100

Min: 100

Max: 100

Min: 100

Max: 100

Min: 100

Max: 77

Min: 72

Max: 100

Min: 100

Max: 86

Min: 58

Max: 100

Min: 100

4
Max: 83

Min: 76

Max: 76

Min: 73

Max: 72

Min: 70,5

Max: 63

Min: 58

Max: 73

Min: 70

Max: 52,5

Min: 19,5

Max: 83,5

Min: 82

5
Max: 100

Min: 100

Max: 100

Min: 100

Max: 100

Min: 100

Max: 80

Min: 73

Max: 100

Min: 100

Max: 84

Min: 14

Max: 100

Min: 100

6
Max: 52

Min: 52

Max: 55

Min: 46

Max: 46

Min: 41

Max: 46

Min: 43

Max: 46

Min: 40

Max: 25

Min: 21

Max: 77

Min: 68

7
Max: 68

Min: 55

Max: 78,5

Min: 73

Max: 76

Min: 73

Max: 38,5

Min: 36,5

Max: 78,5

Min: 73

Max: 58

Min: 46

Max: 79

Min: 72

8
Max: 33

Min: 13

Max: 70

Min: 47

Max: 55

Min: 46

Max: -

Min: -

Max: 58

Min: 49

Max: 34

Min: 22

Max: 44

Min: 43

9
Max: 100

Min: 100

Max: 100

Min: 100

Max: 100

Min: 100

Max: 77

Min: 73

Max: 99

Min: 97

Max: 82

Min: 70

Max: 100

Min: 100
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6 Conclusão

O presente trabalho investigou o desenvolvimento de uma ferramenta inteligente para

a classificação de faltas em linhas de transmissão com alta penetração de FEIIs. Diante

dos desafios impostos pela variação dos terminais de obtenção dos sinais de tensão e cor-

rente, os resultados obtidos utilizando a TDF demonstram a viabilidade da utilização de

classificadores baseados em árvore de decisão, que exibiram desempenho robusto e notável

capacidade de generalização em relação aos parâmetros de falta e ao ruído presentes nos

sinais.

Conclui-se que, caso haja infraestrutura para captação simultânea e processamento

das medições dos dois terminais, é possível que apenas uma ferramenta inteligente seja

treinada. Caso essa infraestrutura de comunicação não esteja disponível, recomenda-se

o treinamento de uma ferramenta inteligente em cada terminal. Esta abordagem não

apenas se alinha com a realidade operacional da maioria dos sistemas de proteção, que

possuem medições primárias apenas em seus próprios terminais, mas também, conforme

evidenciado pelos testes, assegura a aplicabilidade e a eficácia do modelo, sem depender

de dados provenientes do terminal remoto, frequentemente indisponíveis ou com custos

de comunicação proibitivos.

Dentre as técnicas avaliadas que utilizam a TDF para a extração de características,

os algoritmos DT, ET, GBC e Light GBM destacaram-se positivamente. Estes mode-

los combinam alta precisão com características operacionais vantajosas, como redução

do custo computacional, baixa latência, baixa dimensionalidade e nível satisfatório de

interpretabilidade.

Contudo, para uma implementação em campo, o classificador RF destaca-se ligeira-

mente como a escolha mais promissora e robusta, uma vez que esse algoritmo não apenas

compartilha as mesmas características de custo computacional, latência, dimensionali-

dade e interpretabilidade, mas também apresenta desempenho igual ou superior ao dos

demais em todos os cenários avaliados, como evidenciado pelo teste 6. Esta estabilidade

e confiabilidade são atributos críticos para um sistema de proteção, tornando o Random

Forest o classificador mais recomendado para uma futura implementação prática.

Apesar das contribuições deste trabalho, os autores reconhecem que ainda há campos a
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serem explorados para a incorporação de ferramentas inteligentes nos sistemas de proteção.

Logo, como linhas de pesquisa futuras, pode-se destacar:

• Validação do modelo Random Forest em ambiente de simulação em tempo

real (Hardware-in-the-Loop): Esta validação pode ser implementada por meio

da integração do classificador treinado a um simulador em tempo real, no qual o

algoritmo seria executado em um dispositivo embarcado dedicado. O sistema rece-

beria sinais de tensão e corrente gerados em tempo real pela simulação do sistema

elétrico, processando-os continuamente para avaliar não apenas a precisão, mas tam-

bém o tempo de resposta e a robustez computacional do modelo em condições que

simulam a operação real.

• Avaliação do desempenho do algoritmo em sistemas com diferentes to-

pologias: Esta análise envolveria a criação de múltiplos cenários de simulação que

consideram diferentes topologias de sistemas. Para cada configuração, seriam gera-

dos conjuntos de dados abrangentes por meio de simulações de faltas com variação

sistemática dos parâmetros (localização, resistência, ângulo de incidência), permi-

tindo quantificar a capacidade de generalização do classificador diante de mudanças

estruturais no sistema.

• Investigação de classificadores alternativos com diferentes técnicas de ex-

tração de características: Um estudo comparativo poderia ser conduzido entre a

abordagem TDF utilizada neste trabalho e métodos baseados em TDW, aplicando

ambos a diversos algoritmos de classificação. Os testes deveriam incluir explicita-

mente cenários com ruídos aditivos e variações nos terminais de medição, permi-

tindo uma avaliação abrangente do desempenho relativo das diferentes combinações

característica-classificador.

• Avaliação dos classificadores em diferentes pontos de operação dos gera-

dores: Por fim, uma possível abordagem para futuras pesquisas seria considerar os

diferentes pontos de operação dos geradores eólicos, a fim de avaliar a capacidade

de generalização dos classificadores diante de distintos perfis de geração.
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Apêndice 01 - Código implementado em Python para extração de características com

inserção de ruídos via TDF

import numpy as np

import pandas as pd

import comtrade

from scipy.fft import rfft, rfftfreq

# criando uma tabela que relaciona cada simulação com um tipo de falta

with open('oscilografias\Casos.txt', 'r') as file:

casos = file.read()

casos = casos.split()

casos = casos[6:] # excluindo a primeira linha (nome das colunas) lembrando

que indice run = 0, indice tipo = 2

tipos = ['No Fault', 'AT', 'BT', 'CT', 'ABT', 'ACT', 'BCT', 'ABCT', 'AB', '

AC', 'BC', 'ABC'] # o índice de cada elemento segue a convenção

utilizada pelo PSCad para caregorizar as faltas

tabela_casos = []

## ===============================================================

## ===============================================================

# criando uma tabela com os tempos de faltas para cada tipo de gerador

tempos = pd.read_csv('oscilografias\Tempos_de_Falta.csv', delimiter = ',')

tempos = tempos.values.tolist()

tabela_tempos = []

## ===============================================================

## ===============================================================

for linha in tempos:

tabela_tempos.append(linha)

vet = np.arange(0, len(casos),6)

for i in vet:

linha = casos[i:i+6]
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linha[2] = tipos[int(float(linha[2]))]

tabela_casos.append(linha)

# preparando para ler os arquivos

run_min = 1

run_max = 5280

lista_aux = list(range(run_min, run_max+1))

lista_run = []

# retirar os zeros do nome da pasta de cada Run

for numero in lista_aux:

string_formatada = str(numero).zfill(5)

lista_run.append(string_formatada)

ruido = [40, 50, 60]

terminal = [0, 6]

lista_tipo = ['3','4']

for ruido_dB in ruido:

dados_csv = [['Modulo_Va', 'Fase_Va', 'Modulo_Vb', 'Fase_Vb', '

Modulo_Vc', 'Fase_Vc',

'Modulo_Ia', 'Fase_Ia', 'Modulo_Ib', 'Fase_Ib', '

Modulo_Ic', 'Fase_Ic',

'NModulo_Va', 'NModulo_Vb', 'NModulo_Vc', 'Nmodulo_Ia', '

Nmodulo_Ib', 'Nmodulo_Ic', 'Classe']]

for term in terminal:

for tipo in lista_tipo:

for run in lista_run:

print('ruido:', ruido_dB, 'Tipo:', tipo, 'Run:', lista_aux[

lista_run.index(run)], 'Classe:',

tabela_casos[lista_aux[lista_run.index(run)] - 1][2])

caminho = "oscilografias\Type" + tipo + "\Rank_00001\Run_"

+ run + "\T4"
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cfg = caminho + ".cfg"

dat = caminho + ".dat"

rec = comtrade.load(cfg, dat)

media_ruido = 0

# Lendo e inserindo ruído ao sinal. 0 a 5 - local, 6 a 11 -

remoto

Va = np.array(rec.analog[0 + term])

pot_Va = np.mean(Va ** 2)

potencia_ruido = pot_Va / (10 ** (ruido_dB / 10))

ruido_Va = np.random.normal(media_ruido , np.sqrt(

potencia_ruido), len(Va))

Va = Va + ruido_Va

Vb = np.array(rec.analog[1 + term])

pot_Vb = np.mean(Vb ** 2)

potencia_ruido = pot_Vb / (10 ** (ruido_dB / 10))

ruido_Vb = np.random.normal(media_ruido , np.sqrt(

potencia_ruido), len(Vb))

Vb = Vb + ruido_Vb

Vc = np.array(rec.analog[2 + term])

pot_Vc = np.mean(Vc ** 2)

potencia_ruido = pot_Vc / (10 ** (ruido_dB / 10))

ruido_Vc = np.random.normal(media_ruido , np.sqrt(

potencia_ruido), len(Vc))

Vc = Vc + ruido_Vc

Ia = np.array(rec.analog[3 + term])

pot_Ia = np.mean(Ia ** 2)

potencia_ruido = pot_Ia / (10 ** (ruido_dB / 10))

ruido_Ia = np.random.normal(media_ruido , np.sqrt(

potencia_ruido), len(Ia))
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Ia = Ia + ruido_Ia

Ib = np.array(rec.analog[4 + term])

pot_Ib = np.mean(Ib ** 2)

potencia_ruido = pot_Ib / (10 ** (ruido_dB / 10))

ruido_Ib = np.random.normal(media_ruido , np.sqrt(

potencia_ruido), len(Ib))

Ib = Ib + ruido_Ib

Ic = np.array(rec.analog[5 + term])

pot_Ic = np.mean(Ic ** 2)

potencia_ruido = pot_Ic / (10 ** (ruido_dB / 10))

ruido_Ic = np.random.normal(media_ruido , np.sqrt(

potencia_ruido), len(Ic))

Ic = Ic + ruido_Ic

Ns = len(Va) # número de amostras

Fs = 50000 # frequencia de amostragem

Ts = 1 / Fs # periodo de amostragem

t_plot = list(np.arange(0, Ns / Fs, Ts)) # cria um vetor

de tempo para tomar como referencia e realizar os plots

t_falta = tabela_tempos[lista_aux[lista_run.index(run)] -

1][lista_tipo.index(tipo) + 1]

t_ciclo = 1 / 60 # tempo demandado por um ciclo em s

n_ciclo = int(t_ciclo / Ts) # número de índices

necessários para percorrer 1 ciclo

# acha no vetor de tempo o índice relativo ao instante da

falta com menor erro possível

dif1 = 1

for t in t_plot:

dif2 = abs(t_falta - t)

if dif2 <= dif1:

n_falta = t_plot.index(t)
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dif1 = dif2

# obtendo 1 ciclo dos sinais após uma janela de 1ms após a

detecção da falta

Va = Va[n_falta + 3*n_ciclo:n_falta + 4*n_ciclo]

Vb = Vb[n_falta + 3*n_ciclo:n_falta + 4*n_ciclo]

Vc = Vc[n_falta + 3*n_ciclo:n_falta + 4*n_ciclo]

Ia = Ia[n_falta + 3*n_ciclo:n_falta + 4*n_ciclo]

Ib = Ib[n_falta + 3*n_ciclo:n_falta + 4*n_ciclo]

Ic = Ic[n_falta + 3*n_ciclo:n_falta + 4*n_ciclo]

t_plot = t_plot[n_falta + 3*n_ciclo:n_falta + 4*n_ciclo] #

reajusta o vetor de tempo

Ns = len(Va) # atualizando o número de amostra para o

sinal obtido

# Aplicando a FFT aos sinais e normalizando. (rfft retorna

somente a primeira metade do vetor, ja que ele é simetrico)

coef_Va = rfft(Va)

modulo_Va = np.abs(coef_Va)

modulo_Va = modulo_Va / (Ns / 2)

modulo_Va[0] = modulo_Va[0] / 2

fase_Va = np.angle(coef_Va, deg=True)

coef_Vb = rfft(Vb)

modulo_Vb = np.abs(coef_Vb)

modulo_Vb = modulo_Vb / (Ns / 2)

modulo_Vb[0] = modulo_Vb[0] / 2

fase_Vb = np.angle(coef_Vb, deg=True)

coef_Vc = rfft(Vc)

modulo_Vc = np.abs(coef_Vc)

modulo_Vc = modulo_Vc / (Ns / 2)

modulo_Vc[0] = modulo_Vc[0] / 2
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fase_Vc = np.angle(coef_Vc, deg=True)

coef_Ia = rfft(Ia)

modulo_Ia = np.abs(coef_Ia)

modulo_Ia = modulo_Ia / (Ns / 2)

modulo_Ia[0] = modulo_Ia[0] / 2

fase_Ia = np.angle(coef_Ia, deg=True)

coef_Ib = rfft(Ib)

modulo_Ib = np.abs(coef_Ib)

modulo_Ib = modulo_Ib / (Ns / 2)

modulo_Ib[0] = modulo_Ib[0] / 2

fase_Ib = np.angle(coef_Ib, deg=True)

coef_Ic = rfft(Ic)

modulo_Ic = np.abs(coef_Ic)

modulo_Ic = modulo_Ic / (Ns / 2)

modulo_Ic[0] = modulo_Ic[0] / 2

fase_Ic = np.angle(coef_Ic, deg=True)

f = list(rfftfreq(len(Va), Ts))

n_fund = 1

modulo_Va = modulo_Va[n_fund]

modulo_Vb = modulo_Vb[n_fund]

modulo_Vc = modulo_Vc[n_fund]

fase_Vb = fase_Vb[n_fund]

fase_Va = fase_Va[n_fund]

fase_Vc = fase_Vc[n_fund]

modulo_Ia = modulo_Ia[n_fund]

modulo_Ib = modulo_Ib[n_fund]

modulo_Ic = modulo_Ic[n_fund]

fase_Ia = fase_Ia[n_fund]

fase_Ib = fase_Ib[n_fund]

fase_Ic = fase_Ic[n_fund]
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v_max = max(modulo_Va , modulo_Vb , modulo_Vc)

i_max = max(modulo_Ia , modulo_Ib , modulo_Ic)

dados = [modulo_Va , fase_Va, modulo_Vb , fase_Vb, modulo_Vc ,

fase_Vc, modulo_Ia , fase_Ia, modulo_Ib ,

fase_Ib, modulo_Ic , fase_Ic, modulo_Va / v_max,

modulo_Vb / v_max, modulo_Vc / v_max,

modulo_Ia / i_max, modulo_Ib / i_max, modulo_Ic /

i_max, tabela_casos[lista_run.index(run)][2]]

dados_csv.append(dados)

dados_csv = pd.DataFrame(dados_csv)

caminho_dados = 'C:/Users/faold/OneDrive/Área de Trabalho/TDF_Ruido_' +

str(ruido_dB) + 'dB.csv'

dados_csv.to_csv(caminho_dados , index = False, header = False)
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