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Resumo

Oliveira, D. A Classificacao de Faltas em Linhas de Transmissao com Alta Pe-
netracao de Fontes Eodlicas Interfaceadas por Inversores: uma abordagem via
Machine Learning - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo,

Sao Carlos, 2025

A crescente integragao de Fontes Edlicas Interfaceadas por Inversores (FEIIs) em linhas
de transmissao impoe desafios significativos aos métodos convencionais de classificagao
de faltas, uma vez que as contribui¢oes de curto-circuito dessas fontes sao determinadas
pelas estratégias de controle empregadas em seus inversores. Por isso, as contribui¢oes
para faltas das FEIIs diferem significativamente das de geradores convencionais, o que
desafia métodos de classificacdo convencionais. Neste contexto, o Aprendizado de Ma-
quina (AM) surge como uma abordagem promissora para superar essas limitacoes. Este
trabalho avaliou sete classificadores quanto a sua capacidade de generalizacao frente a
diferentes parametros de curtos-circuitos e terminais de medi¢do. Os modelos foram trei-
nados e testados com caracteristicas extraidas por meio da Transformada Discreta de
Fourier (TDF) de sinais de tensao e corrente obtidos em simulagbes computacionais no
software PSCAD. A biblioteca PyCaret foi utilizada para automatizar o treinamento e a
comparacao sistematica dos classificadores. Os resultados demonstraram que o algoritmo
Random Forest apresentou o melhor desempenho entre os métodos avaliados neste traba-
lho, com alta acuracia na maioria dos cenarios, além de notavel robustez a presenca de
ruido e capacidade de generalizacao para parametros de falta ndo observados durante o

treinamento.

Palavras-chave: Classificacao de faltas. Machine learning. PyCaret. Transformada

Discreta de Fourier.



Abstract

Oliveira, D. Exploring the Influence of Measurement Terminal and Fault Para-
meters on Fault Classification in Transmission Lines with High Penetration
of IBWRs. A Machine Learning Approach — Escola de Engenharia de Sao Carlos,
University of Sao Paulo, Sao Carlos, 2025

The increasing integration of Inverter-Based Wind Resources (IBWRs) into transmission
lines poses significant challenges for conventional fault classification methods, as the short-
circuit contributions of these sources depend on the control strategies employed in their
inverters. Therefore, the fault contributions from IBWRs differ significantly from those of
conventional generators, challenging conventional classification methods. In this context,
Machine Learning (ML) emerges as a promising approach to overcome these limitations.
This work evaluated seven classifiers for their generalization performance across diffe-
rent short-circuit parameters and measurement terminals. The models were trained and
tested with features extracted via the Discrete Fourier Transform (DFT) from voltage
and current signals obtained in computational simulations using the PSCAD software.
The PyCaret library was used to automate classifier training and systematic compari-
son. The results demonstrated that the Random Forest algorithm performed best among
the methods evaluated in this work, achieving high accuracy across most scenarios and
showing notable robustness to noise and generalization to fault parameters not observed

during training.

Keywords: Fault classification. Machine learning. PyCaret. Discrete Fourier Transform.
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1 Introducao

Marcada por sua elevada taxa de renovabilidade, a matriz energética brasileira apre-
senta um perfil de sustentabilidade singular no panorama mundial. Conforme [1], o Brasil
atingiu, em 2024, o marco histérico de 50,0% de sua Oferta Interna de Energia (OIE)
suprida por fontes renovaveis, um patamar significativamente superior a média global
(14,3% em 2022) e aos paises da OCDE (Organizacao para a Cooperagao e Desenvolvi-
mento Econoémico) (13,2% em 2023). No mesmo ano, a OIE totalizou 322 Mtep (milhdes
de toneladas equivalentes de petrdleo).

O diferencial da matriz brasileira reside na contribuicao de fontes de baixo carbono,
como a biomassa da cana (16,7%) e a hidraulica (11,6%). Conforme indicado na Figura
1, as fontes renovaveis tém apresentado uma clara tendéncia de crescimento, enquanto a
participagao de fontes nao renovaveis, como petroleo e derivados e gas natural, tende a
reduzir, caracterizando a mudanca estrutural da matriz. A participacao da energia edlica
na OIE, por exemplo, saltou de 0,6% em 2015 para 2,9% em 2024, sendo um dos principais
fatores da transicao gradativa da matriz energética brasileira. Em termos absolutos, a
oferta de energia edlica atingiu 9,3 Mtep em 2024, registrando um aumento significativo

de 12,4% em relacdo ao ano anterior.

Participacao das fontes na OIE (%) entre 2015 e 2024

Edlica 2,9 Solar 22
11,6 1,3
r_——w
11,3 T
0,6 0,2 Hidraulica Uranio U;0,
Lenha e Carvao Vegetal Derivados da Cana 8,1
34,0
&9 O, _01 7 H—d—/—‘o
37,2
8,3 16,9 4,1
Outras Renovaveis Petréleo e Derivados
0,6
13,6 5,9 0,6
G&s Natural Carvdo Minerale Coque Outras Nao Renovaveis

Figura 1: Contribui¢ao de cada fonte na OIE brasileira na tltima década. Fonte: [1].
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A relevancia da fonte edlica é ressaltada ao analisar a matriz elétrica, que é conside-
ravelmente mais limpa, atingindo 88,2% de participacao de fontes renovaveis em 2024.
Neste setor, a energia edlica consolidou-se como um pilar estratégico. A Figura 2 con-
firma o salto das geragoes edlica e solar na ultima década: a participacao conjunta dessas
fontes na geracao total de eletricidade alcangou 23,7% em 2024, contra 7,2% em 2015.
Esse crescimento foi crucial para a seguranca energética do pais, uma vez que a energia
edlica atua como um excelente complemento a geracao hidraulica. Ao operar em regimes
de ventos muitas vezes opostos aos periodos de seca dos reservatorios, a energia edlica
confere maior robustez ao Sistema Interligado Nacional (SIN), reduzindo a dependéncia

do acionamento de termelétricas, que tém menor eficiéncia e emitem mais poluentes.

Geragao de
=0O=Eolica eletricidade (GWh)

=0=Biomassa 107.654

Nuclear
=0=Solar Fotovoltaica

70.665
61.433

15.767

o 12.350
2
N —0 o, O B o ol o O
-, 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Figura 2: Geracao de eletricidade proveniente de fontes renovaveis no Brasil entre 2007 a

2025. Fonte: [1].

Em 2024, a geracao edlica atingiu 107,7 TWh, representando um crescimento de 12,4%
em relacao a 2023, e sua poténcia instalada chegou a 29.550 MW, com uma expansao de
3% no ano. A energia eélica lidera entre as fontes renovaveis nao-hidricas e, juntamente
com a solar fotovoltaica, responde por quase um quarto de toda a eletricidade gerada no
pais. A intensa renovabilidade da matriz elétrica, fortemente impulsionada pela energia
edlica, resulta em um setor de baixissimas emissoes de carbono: em 2024, foram emitidos
apenas 59,9 kg equivalentes de COy por MWh gerado, um valor muito inferior ao de
paises como os EUA, a China e as nagoes europeias. A expansao continua da energia
edlica consolida-se, portanto, como um dos pilares centrais para que o Brasil mantenha

sua lideranca na transicao energética global e cumpra seus compromissos climaticos.
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1.1 Classificacao de faltas em sistemas com alta penetracao de

FEIIs

A energia é o que move a sociedade moderna. Destarte, é de suma importancia
possibilitar que ela seja fornecida de forma estavel, eficaz e sustentavel. Neste contexto,
ao longo das ultimas décadas, devido a necessidade de redugao do consumo de combustiveis
fosseis e a busca por fontes de energia renovaveis, observou-se uma crescente insercao de
Fontes Eolicas Interfaceadas por Inversores (FEIIs) na rede convencional de transmissao
de energia de diversos paises ao redor do mundo [5], destacando-se duas topologias em
especial: as FEIIs do tipo 111, ou Geradores de Indugao Duplamente Alimentados (GIDA),
e as FEIIs de tipo IV, ou Geradores Full-Converter (GFC).

Inicialmente, quando a maior parte da geracdo disponivel era proveniente de fontes
convencionais, como usinas hidroelétricas, termoelétricas e nucleares, as FEIIs eram ra-
pidamente desconectadas da rede principal em situagoes de perturbagdao. No entanto,
com a crescente penetragao das FEIIs nos sistemas elétricos, como mostra [6] no Brasil, a
desconexao dessas fontes em caso de quaisquer disturbios na rede tornou-se uma situacao
critica para a estabilidade do sistema. Assim, foram adotados mundialmente os requisitos
denominados Fault Ride-Through para que as FEIIs se mantivessem conectadas a rede
priméria, a depender de sua tensao terminal, mesmo sob perturbagoes [7]. Com a adogao
destes requisitos, a avaliagao das contribui¢oes para os curtos-circuitos (faltas) provenien-
tes das FEIIs passou a ser o foco de varios pesquisadores, por apresentarem caracteristicas
atipicas, determinadas pelos controles empregados nos inversores [8].

A classificagao de faltas é um passo intermediario empregado por sistemas de protecao
para detectar as fases em curto-circuito, a fim de garantir que apenas as fases necessa-
rias sejam isoladas do sistema. Porém, diante deste contexto, observa-se que as FEIIs
propoem desafios aos sistemas tradicionais de classificacao, ja que estes se baseiam nas
caracteristicas das contribuigoes para faltas de geragoes sincronas convencionais, agora
fortemente impactadas pela presenga de FEIIs no sistema [9].

Assim, visando superar tais desafios, em [10], os autores foram pioneiros na utiliza¢ao
de métodos inteligentes para a classificacdo de faltas em sistemas com alta penetracao

de FEIIs. Entretanto, embora evidenciem o potencial desses métodos na classificacao de
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faltas em sistemas com FEIIs, apenas quatro métodos inteligentes foram avaliados, a saber:
Arvores de Decisio (AD), Suport Vectors Machine (SVM), k-Nearest Neighbors (k-NN)
e Ensemble Trees. Além disso, este estudo nao aborda a capacidade de generalizagao
desses métodos em relagao aos parametros de falta e a presenca de ruidos nos sinais,
caracteristicas importantes que testam a viabilidade de aplicagao dos modelos em campo.

Para esta pesquisa, vale adiantar que foi utilizada uma base de dados com oscilogra-
fias de um estudo prévio [4], que engloba diversos cendrios de falhas em um sistema com
topologia tipicamente empregada na interconexao de FEIIs a rede. Para processar tais
oscilografias, utilizou-se a TDF, a fim de construir uma base de dados para treinamento
e testes de sete modelos inteligentes disponibilizados pelo PyCaret. O PyCaret é uma
ferramenta que vem ganhando popularidade entre pesquisadores por disponibilizar varios
recursos que facilitam a introdugao ao tema de Aprendizado de Maquina (AM), simplifi-
cando os processos de construcao e avaliagao de métodos inteligentes e automatizando o
treinamento, a validacdo e os testes, com poucas linhas de codigo. Além desses pontos,
para esta pesquisa, o PyCaret foi escolhido por conter outros métodos ainda nao contem-
plados pelos trabalhos ja publicados na literatura, como o Randon Forest Classifier, o

Extreme Gradient Boosting e o Logistic Regression, entre outros.

1.2 Objetivos

Tendo em vista os desafios que as FEIIs impoem aos sistemas de classificacao de faltas
convencionais e a escassez de trabalhos que utilizam métodos inteligentes para a superacao

desses desafios, este projeto propoe-se a:

o Avaliar a influéncia dos parametros de falta na funcao de classificacao.
o Avaliar a influéncia do ruido sobre a funcao de classificagao.

e Avaliar a influéncia do terminal do provedor de sinais de tensao e corrente no pro-

cessamento de dados via TDF na funcao de classificagao.

o Comparar os resultados de diferentes métodos inteligentes utilizando a biblioteca

PyCaret.
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Ao fim do trabalho, deseja-se avaliar a capacidade de generalizacao dos métodos,
analisando em quais situagoes a metodologia de processamento e classificagdo produziu

os melhores resultados.
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2 Revisao Bibliografica

Com o intuito de buscar trabalhos relacionados ao tema deste projeto, foi realizada
uma pesquisa na base de dados Scopus, buscando por titulos, resumos e palavras-chave
com a seguinte combinagdo de termos: (“fault diagnosis” OR “fault classifica-
tion”) AND (“Transmission Line” OR “Transmission System”). O resultado
da pesquisa forneceu 2.379 documentos. Porém, ao adicionar, na sequéncia, os ter-
mos AND (“inverter-based” OR “inverter-interfaced” OR “converter-based”),
observaram-se apenas 38 documentos como resultado. Por fim, para alcancar o escopo
principal do trabalho proposto, o termo AND (”Machine Learning”) foi adicionado &
busca. Obteve-se, como resultado, somente 10 documentos, o que mostra que poucos tra-
balhos tém sido até entao reportados, considerando os sistemas de controle de geradores
interfaceados por inversores e utilizando uma abordagem baseada em ML.

No que tange a classificacao de faltas em sistemas convencionais, um dos primeiros
métodos foi reapresentado em [11], que se baseia na comparagao de fasores de correntes
superpostos e na corrente da componente de sequéncia zero fundamental. Conforme os
autores destacam, um dos pontos negativos deste método é a necessidade de definicao de
limiares fixos para sua aplicagao, os quais sao consideravelmente afetados por mudancas
na configuracao do sistema. Apesar de ser simples e eficiente em cenérios tradicionais, essa
abordagem depende fortemente de ajustes empiricos e apresenta dificuldades em condig¢oes
operacionais variaveis.

Com o avanco do processamento digital de sinais, surgiram técnicas mais robustas
para extragao de informacoes transitérias. Em [12], os autores propdem o uso dos coe-
ficientes de detalhe da Transformada Discreta de Wavelet (TDW) aplicados a sinais de
corrente obtidos de um terminal da linha de transmissdao. J& em [13], trés técnicas dis-
tintas de processamento (Transformada Discreta de Fourier, Transformada de Hilbert e
Transformada de Stockwell Ortonormal) sdo comparadas e combinadas para a criagao de
indices representativos do tipo de falta. De forma complementar, [14] também utiliza a
TDW, mas baseia a classificagdo na diferenca dos coeficientes de detalhe de primeiro nivel
obtidos em ambos os terminais da linha.

De acordo com a revisdo apresentada em [15], os métodos de processamento digital
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de sinais tém sido amplamente utilizados para a deteccao e classificagdo de faltas, sendo
a TDW, a Short-Time Fourier Transform (STFT) e a Hilbert-Huang Transform (HHT)
as mais empregadas. Os autores destacam que essas técnicas apresentam boa capacidade
de caracterizacao temporal e espectral, mas sua eficicia depende fortemente da escolha
dos parametros, como a funcio base e o tamanho da janela de analise. Além disso, a
necessidade de limiares fixos e a sensibilidade ao ruido permanecem limita¢ées comuns,
justificando a transicao para abordagens baseadas em aprendizado de méaquina.

Com o avanco das técnicas de inteligéncia artificial, as metodologias baseadas em
ML passaram a ser aplicadas com sucesso na area de protecao e diagnostico de sistemas
elétricos. O aprendizado de maquina pode ser definido como um processo computacional
que permite a um algoritmo aprender padroes a partir de dados e realizar predi¢oes, sem
a necessidade de modelar explicitamente o comportamento fisico do sistema. Em outras
palavras, o modelo é treinado com exemplos e ajusta seus parametros para melhorar o

desempenho na tarefa desejada [16].

® SVM @ Randon Forest KMNMN - @ Logistic Regression @ Decision Trees

Numero de publicag6es x1000

Ano

Figura 3: Numero de publicac¢oes utilizando métodos diferentes de ML. Fonte: elaborado

pelo autor.
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Como mostra a Figura 3, o nimero de publicagoes que utilizam ML cresceu signifi-
cativamente nas ultimas duas décadas, com destaque para o uso dos algoritmos Logistic
Regression (LR) e Random Forest (RF). Além disso, observa-se, conforme a Figura 4, o
crescimento no uso de técnicas de aprendizado de maquina no contexto das fontes renova-
veis, reforcando a tendéncia de adogao dessas metodologias em estudos de sistemas com

alta penetracao de fontes edlicas.
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Figura 4: Numero de publicacdes por ano em energia renovavel utilizando ML. Fonte:

Elaborado pelo autor.

No que tange a classificacao de faltas, trabalhos recentes tém integrado o uso de ML
a técnicas de processamento digital de sinais. Em [17], propoe-se o uso da Transformada
de Stockwell Hiperbdlica em conjunto com Redes Neurais Artificiais (RNA) para a clas-
sificagao de faltas em sistemas de transmissao, alcancando bons resultados em termos de
precisdo e tempo de resposta. Em [18], os autores combinam a TDW com uma SVM,
utilizando sinais de corrente provenientes de um tunico terminal da linha, reduzindo a
necessidade de sincronizacao entre as medigoes. Mais recentemente, [4] aplica a TDW
para a extracao de caracteristicas de sinais de tensao e corrente em sistemas com alta
penetracao de FEIIs, empregando cinco classificadores inteligentes, trés baseados em AD

e dois em regras de associagao, com resultados promissores para a identificacao de faltas.
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De forma complementar, o estudo apresentado em [19] realiza uma avaliacao sistema-
tica de diferentes algoritmos de aprendizado de maquina aplicados a classificagdo de faltas
em linhas de transmissao interconectadas a geradores baseados em inversores. Os autores
comparam modelos como SVM, RNA e RF sob diferentes condi¢ées de operacgao e de
ruido, destacando que o desempenho dos classificadores varia conforme as caracteristicas
dos sinais de entrada e a técnica de extragdo de atributos adotada. Os resultados apon-
tam que modelos baseados em arvores apresentam maior estabilidade e interpretabilidade,
enquanto RNAs e SVMs tendem a oferecer maior precisdo em cenarios com dados mais
limpos e bem segmentados.

Em resumo, as FEIIs apresentam um comportamento dindmico que se distingue subs-
tancialmente do das fontes sincronas convencionais. Seus inversores de poténcia limitam
a corrente de curto-circuito, alterando significativamente sua composi¢ao harmonica e fa-
sorial conforme a estratégia de controle adotada [20]. Esta caracteristica compromete a
eficacia dos métodos tradicionais de protecao, baseados em medicoes fasoriais.

Embora estudos recentes, como [4] e [19], demonstrem o potencial das técnicas de
aprendizado de maquina na protecao de sistemas com alta penetracao de FEIIs, lacunas
de conhecimento relevantes ainda persistem na literatura. Dessa forma, sao necessarios
trabalhos que abordem aspectos praticos da implementacao dessas ferramentas em campo.
Esses aspectos incluem: a capacidade de generalizacao para diferentes parametros de falta,
a robustez dos classificadores diante da presenca de ruidos nos sinais e a influéncia do
terminal de medicao. Paralelamente, também é necessario investigar um maior niimero
de classificadores.

Este cenario justifica a proposta do presente trabalho de conclusao de curso, o qual se
propoe a realizar uma analise conjunta dos principais fatores que influenciam o desempe-
nho de classificadores na tarefa de classificacao de faltas em sistemas com alta penetracao
de FEIIs, a saber: a influéncia da escolha do terminal de medicao para a extracao dos
sinais de tensao e corrente, a influéncia dos pardmetros de falta e a presenca de ruido nos

sinais.
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3 Fundamentos Teodricos

Para a condugao deste trabalho, foram considerados os dois tipos de geradores mais co-
mumente empregados em parques edlicos: os de Tipo 3 e 4. Na sequéncia, apresentam-se
as principais caracteristicas desses geradores. Além disso, apresentam-se os fundamentos
basicos das técnicas de processamento, tanto convencionais quanto inteligentes, emprega-

das nesta pesquisa.

3.1 Geradores de Tipo 3, ou GIDA

Os geradores GIDA possuem enrolamentos trifasicos de corrente alternada (CA) tanto
no estator quanto no rotor. O estator esta conectado diretamente a rede elétrica, enquanto
os enrolamentos trifdsicos do rotor sao ligados a um conversor de poténcia CA/CC por
meio de anéis coletores, que fornecem a magnitude e a frequéncia variaveis a tensao do
rotor. Outro conversor CC/CA é empregado para conectar o circuito do rotor a rede.
Todo o circuito do gerador é conectado a rede por meio de um transformador elevador,

como mostrado na Figura 5.
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Figura 5: Topologia de um gerador de Tipo 3. Fonte: Adaptado de [2]

Quando a turbina edlica opera abaixo da velocidade sincrona (sub-sincrona), o campo
magnético observado no estator é a soma da velocidade de rotacao mecéanica do rotor

e da rotagdo aparente causada pela excitacdo CA aplicada. Neste modo de operagao,
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a poténcia de saida do estator alimenta a rede elétrica, enquanto o conversor fornece
poténcia ao rotor.

J& quando a turbina opera acima da velocidade sincrona (super-sincrona), o campo
magnético resultante no rotor gira no sentido oposto a rotacao mecanica do proprio rotor.
Neste caso, a poténcia entregue a rede ¢ a soma da poténcia proveniente do estator e do
rotor, por meio do conversor.

Existem dois blocos principais de controle nos geradores GIDA. O primeiro é o controle
da velocidade de rotagao da turbina edlica em conjunto com o controle de passo das pas,
responsavel pelo controle da poténcia ativa gerada. O segundo é o controle do conversor,
que regula as poténcias ativa e reativa, ajustando a magnitude e o angulo de fase da tensao
do rotor. A poténcia reativa pode ser regulada diretamente ou utilizada para controlar a
tensao terminal do gerador edlico.

A excitacao de frequéncia variavel no circuito do rotor permite a operacao em uma
ampla faixa de velocidades, e o fluxo de poténcia ativa no conversor pode ser bidirecional,
dependendo se o gerador esta operando acima ou abaixo da velocidade sincrona. Além
das caracteristicas de controle, essas caracteristicas sao responsaveis pela ampla utilizacao
dos geradores do Tipo 3 em usinas edlicas devido ao seu modo de operacao flexivel e a

eficiéncia [2].

3.2 Geradores de Tipo 4, ou GFC

Os GFC também sao geradores de velocidade variavel, conectados a rede por meio de
dois conversores: o primeiro, do lado do gerador (CA-CC), e o segundo, do lado da rede
(CC-CA).

O gerador produz uma corrente alternada que varia em funcao da velocidade da turbina
edlica, sendo retificada pelo primeiro conversor. J4 o conversor do lado da rede (ou
inversor) converte a corrente continua (CC) em corrente alternada (CA) a frequéncia da
rede, de 50 Hz ou 60 Hz. A topologia de um gerador edlico do Tipo 4 é apresentada na
Figura 6.

Assim como em geradores do Tipo 3, a poténcia ativa é controlada para ajustar a

velocidade da turbina edlica e as cargas mecénicas, enquanto a poténcia reativa é utilizada
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Figura 6: Topologia de um gerador de Tipo 4. Fonte: Adaptado de [2]

para regular a tensao. Porém, o conversor do gerador edlico Tipo 4 é dimensionado
para operar com a poténcia nominal total da turbina edlica, enquanto os conversores de
geradores de Tipo 3 operam na faixa de 20 a 30% da poténcia nominal total da turbina

edlica [2].

3.3 Impactos das FEIIs em Métodos de Classificacao de faltas

Segundo [20, 4], fontes convencionais sao modeladas como fontes de tensao em série
com impedancias para a analise de faltas. Porém, as contribui¢oes para as faltas de
geradores de Tipo 3 e 4 podem ser significativamente diferentes, dependendo dos métodos
de controle dos inversores, o que torna a andlise mais complexa.

A contribui¢do de geradores GIDA durante faltas assume um carater transitorio, de-
crescente e potencialmente descontinuo. Este comportamento resulta da atuacao dos
circuitos de protegao crowbar ou chopper, que desviam as altas correntes de curto-circuito
do rotor para fora do conversor, protegendo os dispositivos semicondutores contra sobre-
aquecimento e sobretensao no link CC. J& os geradores GFC limitam suas contribui¢oes
a até 1,2 p.u. [8], devido a restri¢oes térmicas de seus componentes e apresentam com-
portamento variavel conforme o controle utilizado. Este trabalho adota o Controle de
Sequéncia Acoplado, no qual as contribui¢des para a falta possuem apenas componente
de sequéncia positiva, mesmo em distirbios assimétricos [20]. Entretanto, estudos recen-
tes sugerem novos métodos de controle, como o Controle de Sequéncia Desacoplada, que
permite corrente de sequéncia negativa em faltas assimétricas [20]. Vale lembrar também

que varios paises definiram codigos de rede que exigem, além da capacidade de Fault
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Ride-Through, que as FEIIs fornecam determinados niveis de corrente reativa durante
disttrbios, auxiliando no controle de tensao e frequéncia do sistema [4].

Além dos tipos de geradores empregados, outra fonte de complexidade na classificacao
de faltas em linhas de transmissao com alta penetracao de FEIIs esta relacionada aos
terminais de medic¢ao dos sinais de tensdo e corrente. Como mostrado na Figura 7, para
uma falta do tipo AT, os sinais de corrente obtidos do lado das fontes edlicas apresentam
uma assinatura harmonica com componentes de sequéncia zero expressivos, enquanto os
sinais de corrente medidos pelo terminal remoto indicam que somente a fase faltante

apresenta amplitude consideravel, similar a das fontes convencionais.

Correntes medidas pelo terminal local durante uma falta AT Correntes medidas pelo terminal remoto durante uma falta AT

20
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Figura 7: Sinais de corrente medidos em diferentes pontos do sistema durante uma falta

do tipo AT. Fonte: elaborado pelo autor.

Outro exemplo é apresentado na Figura 8 para uma falta do tipo AB. Neste caso, do
lado das FEIIs, observa-se uma contribuicao de corrente trifasica equilibrada, devido a
caracteristica de supressao de corrente de sequéncia negativa, enquanto as medigoes feitas
a partir do terminal remoto mostram que apenas as fases faltosas possuem amplitude
expressiva.

Nesse contexto, métodos tradicionais de classificagao de faltas, baseados nas caracte-
risticas das correntes de falta produzidas por geradores sincronos, estao significativamente
comprometidos devido as contribuicoes atipicas das FEIIs, determinadas pelos controles

dos conversores [4].
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Correntes medidas pelo terminal local durante uma falta AB Correntes medidas pelo terminal remoto durante uma falta AB
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Figura 8: Sinais de corrente medidos em diferentes pontos do sistema durante uma falta

do tipo AB. Fonte: elaborado pelo autor.

3.4 Transformada discreta de Fourier

A analise espectral é uma das ferramentas mais importantes no processamento de
sinais, permitindo identificar e compreender os componentes de frequéncia presentes neles.
Quando se trata de sinais discretos, obtidos por amostragem de sinais continuos, a TDF
tem sido, por muitos anos, a ferramenta mais utilizada na analise de sinais.

A versao cléssica da Transformada de Fourier (TF) mostra que sinais continuos no
tempo podem ser descritos como a soma de uma série de fungoes seno e cosseno, forma-
das por diferentes combinacoes de amplitude, frequéncia e fase, conforme demonstra a

Equagao 1, que utiliza a forma exponencial das fungoes trigonométricas.

Fw) =10 = [ g (1)
—o00

A Discrete Time Fourier Transform (DTFT) parte do principio do Teorema da Amos-
tragem, que estabelece que um sinal continuo pode ser recuperado a partir de suas amos-
tras sem perda de informacao, desde que a taxa de amostragem seja pelo menos o dobro
da maior frequéncia presente no sinal. Quando aplicada a DTFT em um sinal continuo
amostrado no tempo, o resultado é um espectro periddico no dominio da frequéncia, com
copias do espectro original espacadas pela frequéncia de amostragem. Se a taxa de amos-
tragem for insuficiente, ocorre o fendmeno de aliasing, no qual as réplicas se sobrepoem e

distorcem a informacao original no dominio da frequéncia, como mostra a Figura 9.

Enquanto a DTFT descreve o espectro de sinais discretos de comprimento infinito de
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Figura 9: Sobreposicao de espectros no dominio da frequéncia. Fonte: [3]

forma continua no dominio da frequéncia, a TDF é valida para sinais de comprimento
finito e produz uma representagao espectral também discreta no dominio da frequéncia,
transformando uma sequéncia de N valores no tempo em uma sequéncia de N valores
complexos no dominio da frequéncia. Cada valor no espectro contém informacgoes sobre
a amplitude e a fase das componentes senoidais que compoem o sinal. Por ser discreta, a
TDF também gera um espectro peridodico, com periodo N.

Na pratica, nao é possivel manipular digitalmente um sinal infinito. Por isso, a TDF
é usada, pois ela amostra a DTFT em N pontos, igualmente espagados, ao longo de

um periodo do espectro. Esses pontos de frequéncia correspondem a multiplos inteiros

21

~ > onde N ¢ o niimero de amostras no sinal. Este processo

da frequéncia fundamental
tem custo computacional reduzido, pois é realizado por meio de uma somatoéria finita,
enquanto a DTFT exige integracao.

Um exemplo pratico da implementagao da TDF ¢é apresentado na Figura 10, para um
sinal composto por dois cossenos com frequéncias de 20 e 60 Hz, com amplitudes de 5 e

2, respectivamente. E importante ressaltar que somente a parte positiva do espectro de

frequéncia é representada, pois o resultado da aplicacao da TDF gera espectros simétricos.
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Figura 10: Exemplo de aplicagao da TDF. Fonte: elaborado pelo autor.

3.5 Aprendizado de Maquina

O ML ¢é um ramo da inteligéncia artificial que permite que sistemas computacionais
aprendam padroes e tomem decisdes com base em dados, sem necessidade de programacao
explicita. Esta técnica utiliza algoritmos capazes de prever resultados e de melhorar seu
desempenho a medida que sao retreinados com novos exemplos, o que é essencial para o
desenvolvimento de tecnologias inteligentes.

Os modelos de classificagdo em ML sao comparados e selecionados com base em um
conjunto de caracteristicas que equilibram o desempenho preditivo e a eficiéncia operaci-

onal. Estas sdo as quatro principais:

o Custo Computacional: Refere-se aos recursos (tempo, memoria e poder de pro-
cessamento) necessarios para ajustar os parametros do modelo aos dados de treina-
mento. E medido em termos de complexidade temporal e é crucial para a escalabi-

lidade.

e Dimensionalidade: Um modelo com alta capacidade de dimensionalidade é capaz
de manter a robustez e o desempenho em conjuntos de dados com um ntimero muito

elevado de varidveis de entrada.
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o Laténcia: E a velocidade com que o modelo gera uma classificacdo para uma nova

amostra. Fator vital para aplicagdoes em tempo real.

o Interpretabilidade: Descreve a facilidade de compreender o raciocinio subjacente

a decisao de classificacdo do modelo.

Para a execucgao deste trabalho, foram considerados sete classificadores disponiveis na
biblioteca PyCaret, a saber: Decision Tree (DT), Extra Trees (ET), Gradient Boosting
(GBC), K-Nearest Neighbors (KNN), Light Gradient Boosting Machine (Light GBM), LR
e RF. Estes modelos foram selecionados com base em um estudo anterior que testou duas
metodologias de extracao de caracteristicas e analisou a influéncia do ruido na precisao
dos classificadores. A abordagem revelou que a TDF, associada a este conjunto especifico
de modelos, mostrou-se promissora para a classificagdo de faltas em linhas de transmissao
com alta penetragao de FEIIs. Além disso, trabalhos recentes [4] mostram que o KNN
e outros algoritmos baseados em DT sao modelos promissores para a classificacao de
faltas em linhas de transmissao com alta penetracao de FEIIs. A Tabela 1 apresenta as
principais caracteristicas desses classificadores e, em seguida, segue uma breve discussao

sobre cada um.

Tabela 1: Principais caracteristicas dos classificadores. Fonte: elaborado pelo autor.

Modelo Custo Dimensionalidade Laténcia Interpretabilidade
DT Médio Alta Baixa Alta

ET Médio Alta Baixa Média

GBC Alto Alta Média Baixa

k-NN Baixo Baixa Alta Alta
LightGBM  Baixo Alta Baixa Baixa

LR Baixo Alta Baixa Alta

RF Médio Alta Baixa Média
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3.5.1 Decision Trees

As arvores de decisao sao amplamente utilizadas em estatistica, mineracao de dados e
aprendizado de maquina por sua capacidade de representar, de forma intuitiva, o processo
de tomada de decisdo. Elas funcionam como modelos preditivos que utilizam uma estru-
tura hierdrquica para relacionar observagoes de entrada (nas bifurcages) a resultados ou
classes-alvo (nas folhas). Quando a varidvel de destino assume valores discretos, o modelo
é chamado de arvore de classificagdo. Enquanto isso, para valores continuos, denomina-se
arvore de regressao. Essa abordagem ¢ valorizada por sua simplicidade, interpretabilidade
e aplicacao em diversas areas, como no diagnéstico médico, na avaliagao de crédito e em
sistemas de apoio a decisao.

A estrutura interna de uma arvore de decisao segue uma topologia hierarquica, como
ilustrado na Figura 11. Esta estrutura é composta por trés tipos de elementos: o No
Raiz (o ponto de partida que contém o conjunto de dados completo), os Nés Internos
(onde sao realizados os testes nas variaveis de entrada, gerando ramificagoes) e os Nos
Folha (o0s nés terminais que representam a previsao final ou a classe de saida). O processo
preditivo segue um caminho recursivo e sequencial, iniciando na raiz e percorrendo os nés

até atingir uma folha.

Figura 11: Topologia simplificada de uma Decision Tree. Fonte: elaborado pelo autor.

O processo de aprendizado das arvores de decisao ¢ heuristico e baseado em uma busca
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sequencial e avida. A cada etapa, seleciona-se a melhor divisao possivel, com base em

métricas de impureza, como a entropia ou o indice de Gini.

e Indice de Gini: Mede a probabilidade de que uma amostra escolhida aleatoria-
mente seja classificada incorretamente, caso seja rotulada aleatoriamente com base
na distribui¢ao de classes no n6. O objetivo da divisao é minimizar o valor do indice

de Gini na divisio resultante. E matematicamente definido como:
c
Gini(S) =1- Y p? (2)
i=1

o Entropia: Conceito adaptado da teoria termodindmica para a Teoria da Informa-
¢do, que mede o nivel de desordem ou incerteza de um sistema. O algoritmo de
treinamento busca maximizar o ganho de informagao, que é a reducao da entropia
decorrente de uma divisdo. Quanto mais homogéneo (puro) for um né, menor sera

-

sua entropia. E expressa por:
C
Entropy(S) = — Y _ pilogy(p:) (3)
=1

Onde:

e S: N6 para o qual a impureza ¢ calculada.

o (" O numero total de classes distintas presentes no conjunto S.
e p;: A proporcao de instancias da classe ¢ no conjunto S.

O critério de divisdo que minimiza a impureza (Gini) ou maximiza o ganho (Entropia)
é escolhido, e o processo se repete recursivamente até que os nos se tornem puros ou até
que um critério de parada seja atingido. Essa busca nao é retroativa, ou seja, nao revisita
decisoes anteriores, mas tende a gerar modelos eficientes e robustos a ruidos nos dados.
Além disso, as arvores podem ser expressas como conjuntos de regras do tipo “se-entao”,
o que facilita sua compreensao e explicacao, consolidando-as como uma das técnicas mais

populares e acessiveis no aprendizado supervisionado [21].
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3.5.2 Extra Trees

O Extra Trees Classifier (Extremely Randomized Trees) é um algoritmo de aprendi-
zado supervisionado que se baseia no conceito de métodos de conjunto (ensemble learning).
Este modelo baseia-se em muiltiplas arvores de decisao independentes e combina seus re-
sultados para aprimorar o desempenho global da classificacao. A principal caracteristica
desse método ¢é a introducao de aleatoriedade adicional durante o processo de construcao
das arvores, o que o diferencia de modelos tradicionais, como o Random Forest. Em cada
arvore do conjunto, é selecionado um subconjunto aleatorio de varidveis e, diferentemente
das arvores convencionais, que utilizam critérios como a entropia ou o indice de Gini para
determinar o melhor ponto de divisao, o Extra Trees escolhe os pontos de divisao de forma
totalmente aleatdria no intervalo de valores das varidveis selecionadas.

Essa estratégia aumenta a diversidade entre as arvores do modelo, reduzindo a correla-
¢ao entre elas e melhorando a capacidade de generalizacao. A predicao final é obtida pela
agregacao das saidas individuais das arvores, de modo que a classe mais frequentemente
prevista seja escolhida como resultado. Essa abordagem estocastica contribui para miti-
gar o overfitting que pode ocorrer em modelos de arvores de decisao isoladas, mantendo

o equilibrio entre precisao, robustez e interpretabilidade [22].

3.5.3 Gradient Boosting

O GBC constréi um modelo preditivo forte de forma sequencial, combinando varios
modelos fracos, como arvores de decisao rasas. O processo comega com um modelo inicial
simples que faz uma previsao bdsica sobre o conjunto de dados. A partir dai, o algo-
ritmo calcula os erros desse modelo inicial, que, na verdade, correspondem aos gradientes
negativos da funcao de perda.

Em seguida, uma nova arvore de decisao é treinada especificamente para prever esses
erros. Essa nova arvore é, entdo, adicionada ao modelo cumulativo, mas com sua contri-
buicao ponderada por uma taxa de aprendizado. Esse hiperparametro controla o quao
rapidamente o modelo aprende a cada nova arvore, ajudando a evitar o overfitting.

Esse ciclo de calculo de erros e de treinamento de uma nova arvore para corrigi-los se

repete por um numero definido de iteragoes. No final, a previsao do classificador é a soma
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das previsoes das arvores individuais, resultando em um modelo final preciso e robusto.
A eficiéncia do algoritmo deve-se a sua capacidade de focar nos erros mais significativos

a cada passo [23].

3.5.4 K-Nearest Neighbors

O KNN é um método de aprendizado de méaquina supervisionado e nao paramétrico,
baseado em agrupamento, que faz suas previsoes com base na proximidade dos novos
dados em relacao aos dados de treinamento existentes, em contraste com outros modelos
que constroem uma fungao preditiva durante o treinamento [24].

Em tarefas de classificacao, o KNN determina a classe de um novo dado com base nas
amostras mais proximas no conjunto de treinamento. Para isso, calcula-se a distancia entre
a nova amostra e os dados existentes, geralmente utilizando a distancia euclidiana quando
as variaveis de entrada sdo continuas. Apéds identificar os K vizinhos mais proximos, o
algoritmo atribui a nova amostra a classe mais frequente entre eles.

O valor de K é um parametro crucial, pois influencia diretamente o desempenho do
modelo: valores muito baixos podem tornar o classificador sensivel a ruidos, enquanto
valores muito altos podem gerar classificagbes imprecisas. Por isso, costuma-se testar
diferentes valores de K para determinar o mais adequado.

Além da classificacao, o KNN também pode ser utilizado em regressao, na qual o valor
previsto é a média dos valores dos K vizinhos mais préximos. O método é especialmente
util em bases de dados em que as amostras se organizam em grupos bem definidos e é

adequado para situagoes em que ha pouco conhecimento prévio sobre os dados utilizados.

3.5.5 Light Gradient Boosting Machine

O LightGBM ¢é um algoritmo baseado no método GBC, desenvolvido pela Microsoft
em 2017. Assim como o GBC, ele constroi arvores de decisao de forma sequencial, nas
quais cada arvore tenta corrigir os erros das anteriores, mas foi projetado para superar
limitagoes de memoria e de desempenho em grandes conjuntos de dados.

O LightGBM utiliza um método baseado em histogramas, discretizando os valores

continuos em bins e construindo histogramas que armazenam informagoes, como a soma
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dos gradientes e o nimero de amostras. Essa abordagem reduz significativamente os custos
computacionais e de armazenamento, pois os pontos de divisao sao avaliados apenas entre
os limites discretos dos bins. Além disso, emprega um crescimento leaf-wise com limite
de profundidade, expandindo sempre a folha que reduz mais o erro, o que aumenta a
eficiéncia do aprendizado [25].

Comparado ao GBC, o Light GBM apresenta maior eficiéncia e escalabilidade, permi-
tindo lidar com bases de dados extensas e de alta dimensionalidade sem grandes impactos
na memoria ou no tempo de treinamento. Assim, otimiza-se o processo, tornando-o mais
rapido e preciso, especialmente em cenarios de grandes volumes de dados e alta comple-

xidade.

3.5.6 Logistic Regression

O modelo de Regressao Logistica é um algoritmo de classificacdo supervisionada uti-
lizado para prever a probabilidade de um evento bindrio (por exemplo, sucesso/falha,
sim/néo) com base em um conjunto de varidveis independentes. Diferente da regressiao
linear, que prevé valores continuos, a regressao logistica transforma a saida em uma proba-
bilidade entre 0 e 1 usando a fungao sigmoide (ou logistica). A fungao sigmoide é definida

CO1mo.

1
o(z) = e (4)

Onde z é a combinacao linear das varidveis independentes (z = [y + S1x1 + foxg +
-+« + Bn1,). Essa transformagao garante que a previsao esteja sempre no intervalo [0, 1]
e pode ser interpretada como uma probabilidade.

Para classificar uma nova amostra, o modelo calcula essa probabilidade e aplica um
limiar de decisdo (geralmente 0,5) para determinar a classe final. Por exemplo, se a
probabilidade prevista for maior que 0,5, a classe é considerada 1; caso contrario, é 0. O
modelo ajusta os coeficientes §; durante o treinamento, usando a maxima verossimilhanca,
para encontrar valores que convertam os dados de entrada na classificacdo correta da

amostra [26].

Além da classificagao binaria, a regressao logistica pode ser estendida para multiclasse
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(regressao logistica multinomial) ou utilizada para prever probabilidades condicionais de
eventos, sendo amplamente aplicada em areas como medicina, financas, marketing e ci-

éncia de dados.

3.5.7 Random Forest

O RF é um modelo de classificagdo que combina miltiplas arvores de decisao, em que
cada arvore é criada a partir de um vetor aleatério, amostrado de forma independente,
mas com a mesma distribuicao para todas as arvores. Para classificar um novo dado, o
modelo utiliza a categoria mais prevista pelas arvores que o compoem para determinar a
classe a qual a observagao pertence. O erro de generalizagao desta técnica converge para
um limite a medida que o nimero de arvores aumenta, o que significa que o overfitting
nao se torna um problema ao adicionar mais arvores.

A aleatoriedade esta presente em dois aspectos da construcao do modelo. O primeiro
mecanismo é o Bagging (Bootstrap Aggregation), em que cada nova arvore é treinada em
um novo conjunto de dados amostrado com reposi¢ao a partir do conjunto de treinamento
original. O segundo mecanismo, e o mais crucial, é a Selecao Aleatéria de Caracteristicas,
pela qual, em cada né da arvore de decisdao, apenas um pequeno subconjunto aleatorio
de variaveis de entrada é considerado para encontrar a melhor divisao. Essa dualidade de
aleatoriedade tem como objetivo fundamental minimizar a correlacao entre as arvores e
manter a for¢a (precisao) dos classificadores individuais, sendo esses os fatores determi-

nantes da performance do classificador [27].
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4 Metodologia

A seguir, sao descritos o sistema elétrico considerado neste estudo, assim como as
principais etapas metodologicas envolvidas no trabalho, como o pré-processamento e a
insercao de ruidos nos sinais, além do treinamento e testes dos classificadores, utilizando

a biblioteca PyCaret.

4.1 Descricao do sistema de teste e segmentacao do banco de

dados gerado por simulagées computacionais

A pesquisa visou avaliar os principais tipos de FEIIs, e, para isso, foram considera-
dos os geradores edlicos das duas topologias mais usuais: GFC e GIDA. Para ambos
os tipos de geracao, a usina edlica foi modelada para fornecer, em regime permanente,
poténcia ativa de 220,5 MW e poténcia reativa de 0 var. Para a modelagem das unidades
GIDA, o controle dos geradores foi ajustado conforme descrito em [28] e [29]. J4 para
a modelagem dos GFCs, o ajuste de controle foi realizado conforme descrito em [30] e
em [28]. O diagrama unifilar do sistema considerado esta apresentado na Figura 12, e os
parametros empregados estao na Tabela 2. A simulagao considerada foi por parametros
distribuidos, considerando os parametros de sequéncia R, R,, L, L,,C,, e C,, sendo,
respectivamente, os parametros resistivos, indutivos e capacitivos de sequéncia positiva e
Zero.

As simulagoes foram realizadas considerando o sistema de transmissao com a topologia
definida na Figura 12, para o qual foram simulados curto-circuitos na linha 1-2, variando
o tipo da falta (monofésica, envolvendo uma fase e o terra (AT, BT e CT), bifasica,
envolvendo duas fases ou duas fases e o terra (AB, AC, BC, ABT, ACT, BCT) e trifasica,
envolvendo as trés fases (ABC)); a resisténcia entre fases (R, igual a 0, 1, 1,5 ¢ 2 Q); a
resisténcia entre fases e terra (R, igual a 0, 25, 50 e 100 €2); o dngulo de incidéncia (0,
45 e 90 graus); e a localizagao da falta (de 0% a 100% da linha 1-2 em passos de 10%,
sendo 0% o ponto P1). Vale ressaltar que a base de dados utilizada nesta abordagem é

composta pelas oscilografias de ambos os geradores (tipos III e IV).
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Barra 1 Baira 2
(Terminal Local) (Terminal Remoto)

Linha 1-2
100 km Fonte 1

OO+ (O +ogrmro :>
fir A | Af Voo | — %

«~—F —

Faltas Internas

— 0,575kV —345kV 138 kV — 500 kV

Figura 12: Topologia do sistema de teste. Fonte: Adaptado de [4].

Tabela 2: Pardmetros do sistema de teste. Fonte: Adaptado de [4].

Parametros Valores

Vi = 500/0° kV
Fonte 1 R./R,=0,984/3,447 )
L./L, = 28,732/57,467 mll

Transformador Dynl1 (34,5 — 0,575 kV) 1,75 MVA - Z = 6%
Transformador YNd1 (138 - 34,5 kV) 90 MVA - Z = 10%
Transformador YNyn0 (500 — 138 kV) 250 MVA - Z = 10%

R./R,=0,017/0,331 Q/km
Linha 1-2 L,/L,=0,839/2,382 mH/km
C,/C,=0,0137/0,0082 uF /km

Visando analisar a capacidade de generalizacao dos métodos inteligentes em relacao
aos parametros de falta, as bases de dados de treino e teste dos modelos foram segmentadas
de modo que determinados valores das grandezas envolvidas nas simulagoes pertencessem
somente a um tnico conjunto de dados. A Tabela 3 mostra como os dados de treinamento

e teste foram organizados.

49



Tabela 3: Segmentacao de dados para a composicao das bases de dados de treino e teste.

Treino Teste
Local 1,3,5,7,9e 1l 2,4,6,8,10,e 12
Rp le-6,1e2Q 1.5 Q
Ry le-6, 25 e 100 Q2 50 Q
Ang. de Incidéncia 0,1° e 90, 1° 45, 1°

4.2 Pré-processamento via a TDF

A ferramenta de extracao de caracteristicas utilizada foi a TDF, por ser amplamente
empregada em diversas areas, ser mais simples e ter menor custo computacional. A Figura

13 detalha as etapas para a obtencao de caracteristicas utilizando a TDF.

[ Sinais de corrente e tenséao trifasicos

l

Obtengéo de uma janela de um ciclo, considerada a

partir de trés ciclos do instante inicial da falta

l

Aplicacédo da TDF e obtencéo dos coeficientes dos

sinais de tenséo e corrente
l
Obteng&o do médulo e fase dos coeficientes de
componente fundamental dos sinais

l

Normaliza os maédulos de
tens&o e corrente pelo maior
valor dentre as trés fases

]

Dados que compdem as instdncias de treino e testes
dos métodos inteligentes

Figura 13: Extracao de caracteristicas via a TDF. Fonte: elaborado pelo autor.

Para a obtencao dos coeficientes dos sinais, foi utilizada a funcao "fft.rfft()”da biblio-
teca "scipy”, que retorna a primeira metade do vetor dos coeficientes da decomposicao do
sinal, j& que este vetor é simetricamente espelhado, resultado da aplicacao da TDF em
um sinal amostrado no tempo. Em seguida, foi necessario normalizar o vetor pela metade
do nimero de amostras e, ainda assim, dividir o primeiro coeficiente por dois. Com isso,

obtém-se um vetor de niimeros complexos, dos quais os médulos e fases dos fasores podem
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ser obtidos aplicando, respectivamente, as fun¢oes "np.abs()” e "np.angle” da biblioteca

"numpy”.

4.3 Metodologia para a insercao de ruidos nos sinais

A fim de reproduzir uma situacao tipica de aplicacao, onde os sinais estdo constante-
mente submetidos a ruidos, foi utilizada uma metodologia para sobrepor os sinais obtidos
pelas oscilografias a ruidos de diferentes intensidades, respeitando diferentes SNRs, do
inglés Signal to Noise Ratio, que podem ser definidos como a razdo entre a média da

poténcia de um sinal (Pot,) e do rufdo nele contido (Pot,). Ou seja:

SNR = — (5)
Pot,

Esta relagdo é mais comumente apresentada na escala de decibéis, definida como:

SNR;p = 10Log(SNR) (6)

Da Equagao 6, é possivel obter a média da poténcia do ruido a ser sobreposta no sinal,
que é:

Pot,

POtT = W (7)

Assim, podemos obter o valor RMS do ruido (RMS,) a ser aplicado a um sinal, como

sendo:

RMS, =1/ Pot, (8)

Com isso, pode-se utilizar a fun¢do "np.random.normal()”’para gerar nimeros aleatd-

rios com distribui¢do normal (gaussiana). A fungdo tem trés principais parametros:

o loc (média): Esse pardmetro define a média da distribui¢ao normal, ou seja, o valor

central em torno do qual os dados se distribuem.

o scale (desvio padrao): Este parametro define o desvio padrao da distribuicao, que
controla a dispersdo dos valores em torno da média. E importante enfatizar que,

neste caso, o desvio padrao sera dado pelo valor calculado de RMS,.
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o size (forma ou quantidade de amostras): Esse parametro define o ntimero de valores

a serem gerados.

Um exemplo do resultado do processo de insercao de ruido é apresentado na Figura

14.

Sinal ariginal
s 100
[1¥]
g Y
o
} _100 T T T T T T T T T
000 005 010 015 020 025 030 035 040
Time (s)
Sinal com ruido de 40 dB
~ 100
=
[1¥]
g Y
o
} _100 T T T T T T T T T
000 005 010 015 020 025 030 035 040
Time (s)
Vetor de ruido de 40 dB
s 2
18]
g
[=]
} _2 T T T T T T T T

T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (s)

Figura 14: Gréficos de tensao obtidos antes e ap6s a insercao de ruidos no sinal de tensao

da fase "A”, durante uma falta "AT”. Fonte: elaborado pelo autor.

Os céddigos utilizados para o pré-processamento dos dados via a TDF, com a insercao

de ruidos, estao presentes no Apéndice.

4.4 A biblioteca PyCaret

PyCaret é uma biblioteca para Python que visa auxiliar na construc¢do e na com-
paragdo de modelos de aprendizado de maquina. Primeiro, é necessario configurar o
experimento, o que pode ser feito utilizando a Functional API, cuja funcao setup possui
diversos parametros. A Figura 15 ilustra a chamada da funcdo setup e seus atributos

internos.
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Os atributos da funcao setup sdo os seguintes:

o inder: admite dois valores (True e False). Por padrao, o indez é definido como
True, considerando que o conjunto de testes sera parte do conjunto de dados. Se
forem utilizados arquivos diferentes para treinamento e teste, é necessario alterar o

parametro para False.
e data: é a variavel que receberd o conjunto de dados para treino;

e train__size: caso o usuario deseje utilizar o mesmo conjunto de dados para treino e
teste, este parametro é utilizado para separar aleatoriamente uma porcao do con-
junto para treino e a outra para teste. Por exemplo, train_ size = 0.7 equivale a

70% dos dados para treino e 30% para testes;
o test_data: é a varidavel que recebera o conjunto de dados para testes;

e target: indica qual coluna da tabela que o classificador devera considerar no treino

e nos testes.

Em seguida, para comparar diferentes classificadores, utiliza-se a funcao compare__models,
cuja chamada e seus atributos sdo mostrados na Figura 16. Essa funcao treina e testa 14
classificadores disponiveis nativamente na biblioteca.

Os principais atributos da fun¢ao setup sao detalhados da seguinte forma:

e n_select: Define a quantidade de classificadores a serem retornados, em ordem do

melhor para o pior.

e sort: ranqueia os classificadores com base em uma das métricas utilizadas pelo

PyCaret;

Figura 15: Configuracao da funcao setup do PyCaret. Fonte: elaborado pelo autor.
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best_models = compare_models(

Figura 16: Instrucao para treinar, testar e comparar modelos. Fonte: elaborado pelo

autor.

e cross_walidation: é um parametro que, por padrao, é configurado como True, e, para
que os testes sejam realizados utilizando os dados de teste carregados, é necessario

altera-lo para False.

Apos a execugao do comando, o programa retorna uma lista com um ranking dos mé-
todos utilizados com base na métrica selecionada no comando compare__models, podendo

Ser:

o Precisao (Accuracy): a precisao mede a propor¢ao de predigoes corretas em relagao
ao total de predicdes. E uma métrica adequada quando as classes estdo balanceadas.

No entanto, pode ser enganosa em problemas com classes desbalanceadas.

ACC =TP/(TP + FP) (9)

Onde TP é o ntimero de verdadeiros positivos e FP é o niimero de falsos positivos.

+ Area sob a Curva ROC (AUC-ROC): a Curva ROC é uma representacio grafica
que mostra a taxa de verdadeiros positivos (TPR ou Sensibilidade) em relagao a
taxa de falsos positivos (FPR) para diferentes valores de limiar de probabilidade. A
Curva ROC pode ser criada calculando-se o TPR e o FPR para varios limiares de
probabilidade, variando de 0 a 1. Quanto maior a area, melhor serd o desempenho
do modelo. O método de calculo de AOC mais comum ¢ a integracao numérica. A
AUC fornece uma medida util do desempenho do modelo em relacao a classificacao

binaria

» Revocacao (Recall ou Sensibilidade): é uma métrica de avaliagdo de desempenho
usada em problemas de classificacao, especialmente em situagoes em que a identifica-

¢ao dos verdadeiros positivos é fundamental. O recall é uma métrica importante em
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problemas em que a deteccao de exemplos positivos é crucial e onde a consequéncia

de um falso negativo ¢ significativa.
Recall =TP/(TP + FN) (10)
Sendo FN o niimero de falsos negativos.

F1-Score: o F1-Score é uma métrica de avaliagdo de desempenho que combina pre-
cisao (precision) e recall (sensibilidade) em um tnico nimero, sendo especialmente
util em problemas de classificacio onde ha um desequilibrio entre as classes. O
F1-Score fornece uma tinica métrica que equilibra a precisao e o recall. Ele é especi-
almente 1til quando ha um desequilibrio entre as classes, pois nao favorece nenhuma

classe em particular.
F1 = (Prec- Recall)/(Prec+ Recall) (11)

O valor do F1-Score varia de 0 (pior desempenho) a 1 (melhor desempenho), sendo
um indicador geral de quao bem o modelo esta funcionando em relacao a classificacao

das classes positivas e negativas.

Cohen’s Kappa (Kappa): mede a concordancia entre as classificagoes previstas por
um modelo de AM e as classificacdes reais (rétulos verdadeiros). E especialmente
util quando se lida com problemas de classificacao, onde se deseja avaliar o quao
bem o modelo concorda com as categorias de classificacao. O indice Kappa é par-
ticularmente util quando se lida com problemas de classificacdo em que as classes
estao desbalanceadas, pois leva em consideragao a concordancia esperada ao acaso,

o que pode ajudar a evitar avaliagoes enganosas.

b Po— Pe 19
 1-—Pe (12)
Onde Po ¢é a proporcao de casos em que o modelo e os rotulos verdadeiros concor-
dam, e Pe é a proporc¢ao de concordancia que seria esperada ao acaso. k>1 indica
coeréncia perfeita entre as precisoes e os rotulos verdadeiros. k=0 indica que o

modelo esta realizando tao bem quanto o esperado ao acaso, e k<0 indica que o

modelo estd performando pior do que o esperado ao acaso (discordancia).
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« Matthews Correlation Coefficient (MCC): é uma métrica de avaliagao de desempe-
nho amplamente utilizada em problemas de classificagao bindria. O MCC leva em
consideracao tanto verdadeiros positivos (True Positives - TP), verdadeiros nega-
tivos (True Negatives - TN), falsos positivos (False Positives - FP) quanto falsos
negativos (False Negatives - FN) para calcular um tinico valor que reflete a qualidade

geral das previsoes de um modelo de AM.

TP-TN - FP-FN
MCC = (13)
/(TP + FP)TP+ FN)(TN + FP)(TN + FN)

MCC = 1 indica uma concordancia perfeita entre as previsdes do modelo e os
rotulos verdadeiros. MCC=0 indica que o modelo estd desempenhando tdo bem
quanto o esperado pelo acaso. MCC=-1 indica uma discordancia perfeita entre as
previsoes do modelo e os rétulos verdadeiros. O MCC ¢ especialmente 1til quando
o desbalanceamento entre as classes é significativo ou quando o custo de cometer
falsos positivos e falsos negativos é desigual. No entanto, é importante notar que
o MCC é mais adequado para problemas de classificacdo binaria e nao se aplica

diretamente a problemas de classificacao multiclasse.

Durante a pesquisa, a inica métrica considerada nos estudos foi a acuracia, dado que
essa abordagem visa avaliar o desempenho global de diferentes modelos de classificagao
em um contexto de classificagdo multiclasse. Além disso, o banco de dados para treino
e teste envolve todos os tipos de faltas, fazendo com que as classes estejam balanceadas
entre si. Vale lembrar que sete modelos, dentre os quatorze disponiveis nativamente na
biblioteca, foram considerados. Os modelos nativos disponiveis pelo PyCaret e suas siglas

sao apresentados na Tabela 4.
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Tabela 4: Classificadores disponibilizados pelo PyCaret.

Sigla Classificador

ET Ezxtra Trees

LightGBM  Light Gradient Boosting Machine
RF Random Forest

GBC Gradient Boosting

DT Decision Tree

QDA Quadratic Discriminant Analysis
KNN K-Nearest Neighbors

LR Logistic Regression

LDA Linear Discriminant Analysis
NB Naive Bayes

SVM Support Vector Machine

Ada AdaBoost Classifier

Dummy Dummy Classifier

Ridge Ridge Classifier
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5 Resultados obtidos

Com o objetivo de avaliar a influéncia dos terminais de onde sdo obtidas as oscilo-
grafias utilizadas na extragdo de caracteristicas sobre o desempenho dos classificadores,
foram conduzidos nove testes distintos. Em cada teste, variaram-se os terminais respon-
saveis pela formacao dos conjuntos de dados de treino e de teste, conforme a segmentacao
apresentada na Tabela 3. A configuracao especifica de cada teste é detalhada na Tabela
5. A seguir, sao apresentados e discutidos a performance dos classificadores em cada teste

e, na sequéncia, segue uma discussao geral dos resultados obtidos.

Tabela 5: Descri¢ao dos testes realizados no trabalho.

Teste Descrigao

Treino e teste com medigoes em ambos os terminais

Treino com ambos os terminais e teste com o terminal local
Treino com ambos os terminais e teste com o terminal remoto
Treino com o terminal local e teste com ambos os terminais
Treino e teste com o terminal local

Treino com o terminal local e teste com o terminal remoto
Treino com o terminal remoto e teste com ambos os terminais

Treino com o terminal remoto e teste com o terminal local

© o0 N O Ot ks W N

Treino e teste com o terminal remoto

5.1 Teste 1: Treino e teste com medicoes em ambos os terminais

Os resultados obtidos no Teste 1 sao apresentados na Figura 17. Neste caso, é possivel
observar que os modelos apresentaram um O6timo desempenho, com aproximadamente
100% de acuracia, com excecao dos Classificadores KNN e LR, que mantiveram uma taxa
de acerto de 78% e 42%, respectivamente. Vale ressaltar que o modelo LR desempenhou

melhor quando foi treinado e testado com sinais ruidosos, alcancando uma acurécia de

84%.
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Treino e testes com ambos terminais
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 17: Resultados obtidos com ambos os terminais para treino e teste. Fonte: elabo-

rado pelo autor

5.2 Teste 2: Treino com ambos os terminais e teste com o ter-

minal local

De acordo com a Figura 18, os resultados obtidos utilizando ambos os terminais para
treino e testando apenas com o terminal local ndo mostram alteracoes significativas na
precisao dos classificadores quando comparados ao Teste 1. Porém, vale ressaltar que o
desempenho do classificador LR caiu cerca de 20% quando treinado e testado com sinais
sem a presenca de ruido e, ao mesmo tempo, treinado com sinais sem ruido e testado com

sinais contendo ruido.
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Treino com ambos e teste com local
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 18: Resultados obtidos utilizando ambos os terminais para treino e o terminal

local para teste. Fonte: elaborado pelo autor

5.3 Teste 3: Treino com ambos os terminais e teste com o ter-

minal remoto

A 1ltima bateria de testes, utilizando ambos os terminais para o treino dos classifi-
cadores, apresentou niveis de desempenho semelhantes nos Testes 1 e 2, como mostrado
na Figura 19. Os classificadores DT, ET, GBC, Light GBM e RF se mantiveram com
altas taxas de acerto, enquanto KNN e LR se mantiveram com cerca de 80% de acuracia

maxima.
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Treino com ambos e testes com remoto
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 19: Resultados obtidos utilizando ambos terminais para treino e o terminal remoto

para teste. Fonte: elaborado pelo autor.

5.4 Teste 4: Treino com o terminal local e teste com ambos os

terminais

A Figura 20 mostra que o desempenho dos classificadores foi fortemente afetado
quando treinados com dados do terminal local e testados com ambos os terminais. Os
modelos DT, ET, GBC, Light GBM e RF que figuravam com taxas de acerto perto de
100% agora apresentam desempenho de cerca de 83%, 76%, 72%, 73% e 83%, respectiva-
mente. O algoritmo KNN também perdeu 15% de acuricia, assim como a LR, com um

decréscimo de 34%.
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Treino com local e teste com ambos
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 20: Resultados obtidos utilizando o terminal local para treino e ambos os terminais

para teste. Fonte: elaborado pelo autor.

5.5 Teste 5: Treino e teste com o terminal local

Os resultados obtidos com o terminal local, para treino e teste, sdo apresentados na
Figura 21. Como ja era esperado, os classificadores voltaram a ter um bom desempenho,
com DT, ET, GBC, Light GBM e RF apresentando acurécias de 100%, enquanto KNN e
LR seguiram o mesmo comportamento dos testes anteriores, figurando com 80% e 84%,

respectivamente.
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Treino e testes com local
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 21: Resultados obtidos utilizando o terminal local para treino e teste. Fonte:

elaborado pelo autor.

5.6 Teste 6: Treino com o terminal local e teste com o terminal

remoto

Ao finalizar a bateria de testes no terminal local para o treinamento dos classificadores,
é possivel observar, conforme mostrado na Figura 22, que os classificadores sao fortemente
afetados pelos terminais a partir dos quais os sinais de tensao e corrente sao extraidos. Os
classificadores DT, ET, GBC e Light GBM obtiveram uma acuracia de 52%, 55%, 44% e
46%, respectivamente, enquanto KNN e LR obtiveram 46% e 26% de acurédcia. O tnico

classificador que ainda permaneceu com uma taxa de assertividade relativamente alta foi

o RF, com 77%.
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Treino com local e teste com remoto
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 22: Resultados obtidos utilizando o terminal local para treino e terminal remoto

para teste. Fonte: elaborado pelo autor.

5.7 Teste 7: Treino com o terminal remoto e teste com ambos

0s terminais

O primeiro teste, utilizando o terminal remoto para treino dos classificadores, é apre-
sentado na figura 23. Neste caso, é possivel observar que o desempenho dos métodos DT,
ET, GBC, Light GBM e RF melhorou, se comparado com o teste anterior, o que ja era
esperado, com acuracias de 68, 78, 76, 78,5 e 79%, respectivamente. Enquanto KNN e

LR figuraram com 38,5 e 58% de acuricia.
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Treino com remoto e teste com ambos
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 23: Resultados obtidos utilizando o terminal remoto para treino e ambos os ter-

minais para teste. Fonte: elaborado pelo autor.

5.8 Teste 8: Treino com o terminal remoto e teste com o termi-

nal local

Os resultados obtidos utilizando o terminal remoto para treino e o local para teste
sao apresentados. LightGBM e RF figuraram com 33%, 70%, 55%, 58%, 34% e 43%
de acurécia, enquanto LR caiu para 34% na Figura 24. Ao analisar o desempenho dos
classificadores, é possivel deduzir que essa combinacao configura o pior cenario, tanto para
o treinamento quanto para os testes dos classificadores avaliados. Os classificadores DT,
ET, GBC e Light GBM e RF figuraram com 33, 70, 55, 58, 34 e 43% de acurécia, enquanto
LR caiu para 34%. Vale ressaltar que, neste caso, o classificador KNN nao apresentou
desempenho em nenhuma das abordagens, independentemente do nivel de ruido inserido

no sinal.
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Treino com remoto e testes com local
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 24: Resultados obtidos utilizando o terminal remoto para treino e o terminal local

para teste. Fonte: elaborado pelo autor.

5.9 Teste 9: Treino e teste com o terminal remoto

Por fim, os resultados obtidos com o terminal remoto para treino e teste sdo apre-
sentados na Figura 25. Como j4 era esperado, os classificadores voltaram a apresentar
desempenhos semelhantes aos dos melhores casos, uma vez que a influéncia dos terminais
foi removida. Neste teste, DT, ET, GBC, Light GBM e RF alcancaram novamente 100%

de desempenho, enquanto KNN e LR alcancaram 77% e 82% de acurécia, respectivamente.
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Treino e testes com terminal remoto
B Semruido [ Treino sem e testes comruido [l Treino e testes com ruido

100

75

a0

Acuracia (%)

25

DT ET GEC KMMN Light GEM LR RF

Classificadores

Figura 25: Resultados obtidos utilizando o terminal remoto para treino e teste. Fonte:

elaborado pelo autor.

5.10 Analise Geral dos Classificadores

Em resumo, a Tabela 6 apresenta os percentuais maximos e minimos de acerto de cada
classificador para cada condicao de teste avaliada. De acordo com os testes realizados,
observa-se que a maioria dos métodos avaliados, quando treinados com caracteristicas de
ambos os terminais, é capaz de aprender tanto as contribuigdes das FEIIs (terminal local)
quanto as dos geradores convencionais (terminal remoto) para a classificagdo das faltas.
No entanto, esse comportamento nao se mantém quando os classificadores sao testados
com caracteristicas provenientes de um terminal que nao esta presente no conjunto de
treinamento. Isso ocorre devido as diferencas nas contribuigoes de corrente de falta entre
FEIIs e fontes convencionais, conforme ilustrado nas Figuras 7 e 8. Durante o treinamento,
os classificadores ajustam seus hiperparametros para reconhecer os padroes caracteristicos
de cada tipo de fonte, tornando-se menos eficazes quando expostos a padroes distintos

dos que constam nos dados de treinamento.
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Tabela 6: Tabela resumo da acurdcia obtida em cada teste (valores em porcentagem).

Fonte: elaborado pelo autor.
Teste DT ET GBC KNN Light GBM LR RF

Max: 100 Max: 100 Max: 100 Max: 78,5 Max: 100 Max: 84 Max: 100

! Min: 100 Min: 100 Min: 100 Min: 72,5 Min: 100 Min: 40,5 Min: 100
9 Max: 100 Max: 100 Max: 100 Max: 80 Max: 100 Max: 84 Max: 100
Min: 99 Min: 100 Min: 100 Min: 73 Min: 100 Min: 40,5 Min: 100
3 Max: 100 Max: 100 Max: 100 Max: 77 Max: 100 Max: 86 Max: 100
Min: 100 Min: 100 Min: 100 Min: 72 Min: 100 Min: 58 Min: 100
4 Max: 83 Max: 76 Max: 72 Max: 63 Max: 73 Max: 52,5 Max: 83,5
Min: 76 Min: 73 Min: 70,5 Min: 58 Min: 70 Min: 19,5 Min: 82
5 Max: 100 Max: 100 Max: 100 Max: 80 Max: 100 Max: 84 Max: 100
Min: 100 Min: 100 Min: 100 Min: 73 Min: 100 Min: 14 Min: 100
5 Max: 52 Max: 55 Max: 46 Max: 46 Max: 46 Max: 25 Max: 77
Min: 52 Min: 46 Min: 41 Min: 43 Min: 40 Min: 21 Min: 68
. Max: 68 Max: 78,5 Max: 76 Max: 38,5 Max: 78,5 Max: 58 Max: 79
Min: 55 Min: 73 Min: 73 Min: 36,5 Min: 73 Min: 46 Min: 72
8 Max: 33 Max: 70 Max: 55 Max: - Max: 58 Max: 34 Max: 44
Min: 13 Min: 47 Min: 46 Min: - Min: 49 Min: 22 Min: 43
9 Max: 100 Max: 100 Max: 100 Max: 77 Max: 99 Max: 82 Max: 100
Min: 100 Min: 100 Min: 100 Min: 73 Min: 97 Min: 70 Min: 100
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6 Conclusao

O presente trabalho investigou o desenvolvimento de uma ferramenta inteligente para
a classificacao de faltas em linhas de transmissao com alta penetracao de FEIIs. Diante
dos desafios impostos pela variagao dos terminais de obtencao dos sinais de tensao e cor-
rente, os resultados obtidos utilizando a TDF demonstram a viabilidade da utilizagao de
classificadores baseados em arvore de decisao, que exibiram desempenho robusto e notavel
capacidade de generalizagdo em relacao aos parametros de falta e ao ruido presentes nos
sinais.

Conclui-se que, caso haja infraestrutura para captacao simultdnea e processamento
das medicoes dos dois terminais, é possivel que apenas uma ferramenta inteligente seja
treinada. Caso essa infraestrutura de comunicagao nao esteja disponivel, recomenda-se
o treinamento de uma ferramenta inteligente em cada terminal. Esta abordagem néao
apenas se alinha com a realidade operacional da maioria dos sistemas de protecao, que
possuem medi¢Oes primarias apenas em seus préprios terminais, mas também, conforme
evidenciado pelos testes, assegura a aplicabilidade e a eficicia do modelo, sem depender
de dados provenientes do terminal remoto, frequentemente indisponiveis ou com custos
de comunicagao proibitivos.

Dentre as técnicas avaliadas que utilizam a TDF para a extragao de caracteristicas,
os algoritmos DT, ET, GBC e Light GBM destacaram-se positivamente. Estes mode-
los combinam alta precisao com caracteristicas operacionais vantajosas, como reducao
do custo computacional, baixa laténcia, baixa dimensionalidade e nivel satisfatorio de
interpretabilidade.

Contudo, para uma implementacao em campo, o classificador RF destaca-se ligeira-
mente como a escolha mais promissora e robusta, uma vez que esse algoritmo nao apenas
compartilha as mesmas caracteristicas de custo computacional, laténcia, dimensionali-
dade e interpretabilidade, mas também apresenta desempenho igual ou superior ao dos
demais em todos os cenarios avaliados, como evidenciado pelo teste 6. Esta estabilidade
e confiabilidade sao atributos criticos para um sistema de protecao, tornando o Random
Forest o classificador mais recomendado para uma futura implementacao pratica.

Apesar das contribuicoes deste trabalho, os autores reconhecem que ainda ha campos a
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serem explorados para a incorporacao de ferramentas inteligentes nos sistemas de protecao.

Logo, como linhas de pesquisa futuras, pode-se destacar:

» Validacao do modelo Random Forest em ambiente de simulagdao em tempo
real (Hardware-in-the-Loop): Esta validagao pode ser implementada por meio
da integracao do classificador treinado a um simulador em tempo real, no qual o
algoritmo seria executado em um dispositivo embarcado dedicado. O sistema rece-
beria sinais de tensao e corrente gerados em tempo real pela simulacao do sistema
elétrico, processando-os continuamente para avaliar ndo apenas a precisao, mas tam-
bém o tempo de resposta e a robustez computacional do modelo em condigoes que

simulam a operagao real.

e Avaliacao do desempenho do algoritmo em sistemas com diferentes to-
pologias: Esta andlise envolveria a criacao de multiplos cenarios de simulagao que
consideram diferentes topologias de sistemas. Para cada configuragdo, seriam gera-
dos conjuntos de dados abrangentes por meio de simulagoes de faltas com variacao
sistemética dos pardmetros (localizagdo, resisténcia, dngulo de incidéncia), permi-
tindo quantificar a capacidade de generalizagao do classificador diante de mudancas

estruturais no sistema.

o Investigacao de classificadores alternativos com diferentes técnicas de ex-
tracao de caracteristicas: Um estudo comparativo poderia ser conduzido entre a
abordagem TDF utilizada neste trabalho e métodos baseados em TDW, aplicando
ambos a diversos algoritmos de classificacdo. Os testes deveriam incluir explicita-
mente cenarios com ruidos aditivos e varia¢des nos terminais de medicao, permi-
tindo uma avaliacao abrangente do desempenho relativo das diferentes combinacoes

caracteristica-classificador.

e Avaliacao dos classificadores em diferentes pontos de operacao dos gera-
dores: Por fim, uma possivel abordagem para futuras pesquisas seria considerar os
diferentes pontos de operacao dos geradores edlicos, a fim de avaliar a capacidade

de generalizacao dos classificadores diante de distintos perfis de geracao.
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Apéndice 01 - Cédigo implementado em Python para extragao de caracteristicas com

insercao de ruidos via TDF
import numpy as np
import pandas as pd
import comtrade

from scipy.fft import rfft, rfftfreq

# criando uma tabela que relaciona cada simulagdo com um tipo de falta

with open('oscilografias\Casos.txt', 'r') as file:
casos = file.read()

casos = casos.split()

casos = casos[6:] # excluindo a primeira linha (nome das colunas) lembrando
que indice run = 0, indice tipo = 2

tipos = ['No Fault', 'AT', 'BT', 'CT', 'ABT', 'ACT', 'BCT', 'ABCT', 'AB', '
AC', 'BC', 'ABC'] # o indice de cada elemento segue a convengio

utilizada pelo PSCad para caregorizar as faltas

tabela_casos = []

# criando uma tabela com os tempos de faltas para cada tipo de gerador
tempos = pd.read_csv('oscilografias\Tempos_de_Falta.csv', delimiter = ',"')

tempos = tempos.values.tolist ()

tabela_tempos = []

for linha in tempos:

tabela_tempos.append(linha)

vet = np.arange(0, len(casos),6)
for i in vet:

linha = casos[i:i+6]
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linha[2] = tipos[int(float(linha[2]))]

tabela_casos.append(linha)

# preparando para ler os arquivos

run_min = 1
run_max = 5280
lista_aux = list(range(run_min, run_max+1))

L]

lista_run

# retirar os zeros do nome da pasta de cada Run
for numero in lista_aux:
string_formatada = str(numero).zfill(5)

lista_run.append(string_formatada)

ruido = [40, 50, 60]
terminal = [0, 6]

lista_tipo = ['3','4"']

for ruido_dB in ruido:

dados_csv = [['Modulo_Va', 'Fase_Va', 'Modulo_Vb', 'Fase Vb', '
Modulo_Vc', 'Fase_ Vc',

'Modulo_TIa', 'Fase_Ia', 'Modulo_Ib', 'Fase_Ib', '
Modulo_Ic', 'Fase_Ic',

'NModulo_Va', 'NModulo Vb', 'NModulo Vc', 'Nmodulo_ Ia', '
Nmodulo_Ib', 'Nmodulo_Ic', 'Classe']]

for term in terminal:
for tipo in lista_tipo:

for run in lista_run:

print ('ruido:', ruido_dB, 'Tipo:', tipo, 'Run:', lista_aux[
lista_run.index(run)], 'Classe:',
tabela_casos[lista_aux[lista_run.index(run)] - 1]1[2])
caminho = "oscilografias\Type" + tipo + "\Rank_00001\Run_"

+ run + "\T4"
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cfg = caminho + ".cfg"

dat caminho + ".dat"

rec comtrade.load(cfg, dat)

media_ruido = 0

# Lendo e inserindo ruido ao sinal. 0 a 5 - local, 6 a 11 -
remoto

Va = np.array(rec.analog[0 + term])

pot_Va = np.mean(Va **x 2)

potencia_ruido = pot_Va / (10 ** (ruido_dB / 10))

ruido_Va = np.random.normal (media_ruido, np.sqrt(
potencia_ruido), len(Va))

Va = Va + ruido_Va

Vb

np.array(rec.analog[l + term])
pot_Vb = np.mean(Vb ** 2)
potencia_ruido = pot_Vb / (10 ** (ruido_dB / 10))
ruido_Vb = np.random.normal (media_ruido, np.sqrt(
potencia_ruido), len(Vb))

Vb = Vb + ruido_Vb

Vc = np.array(rec.analog[2 + term])

pot_Vc = np.mean(Vc ** 2)

potencia_ruido = pot_Vc / (10 ** (ruido_dB / 10))

ruido_Vc = np.random.normal (media_ruido, np.sqrt(
potencia_ruido), len(Vc))

Vc

Vc + ruido_Vc

Ia = np.array(rec.analog[3 + term])

pot_Ia = np.mean(Ia ** 2)

potencia_ruido = pot_Ia / (10 ** (ruido_dB / 10))
ruido_Ia = np.random.normal (media_ruido, np.sqrt(

potencia_ruido), len(Ia))
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Ia = TIa + ruido_Ia

Ib

np.array(rec.analog[4 + term])
pot_Ib = np.mean(Ib ** 2)
potencia_ruido = pot_Ib / (10 ** (ruido_dB / 10))
ruido_Ib = np.random.normal (media_ruido, np.sqrt(
potencia_ruido), len(Ib))
Ib = Ib + ruido_Ib

Ic = np.array(rec.analog[5 + term])

pot_Ic = np.mean(Ic ** 2)

potencia_ruido = pot_Ic / (10 ** (ruido_dB / 10))
ruido_Ic = np.random.normal (media_ruido, np.sqrt(

potencia_ruido), len(Ic))

Ic = Ic + ruido_Ic

Ns = len(Va) # nimero de amostras

Fs = 50000 # frequencia de amostragem
Ts = 1 / Fs # periodo de amostragem

t_plot = list(np.arange(0, Ns / Fs, Ts)) # cria um vetor
de tempo para tomar como referencia e realizar os plots
t_falta = tabela_tempos[lista_aux[lista_run.index(run)] -

1] [lista_tipo.index(tipo) + 1]

t_ciclo 1 / 60 # tempo demandado por um ciclo em s
n_ciclo = int(t_ciclo / Ts) # ntmero de indices

necessarios para percorrer 1 ciclo

# acha no vetor de tempo o indice relativo ao instante da
falta com menor erro possivel
difl =1
for t in t_plot:
dif2 = abs(t_falta - t)
if dif2 <= dif1:

n_falta = t_plot.index(t)
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dif1l

# obtendo

detecgdo da falta

Va = Va[n_falta + 3*n_ciclo:n_falta +
Vb = Vb[n_falta + 3*n_ciclo:n_falta +
Vc = Vc[n_falta + 3*n_ciclo:n_falta +
Ia = Ial[n_falta + 3*n_ciclo:n_falta +
Ib = Ib[n_falta + 3*n_ciclo:n_falta +
Ic = Ic[n_falta + 3*n_ciclo:n_falta +
t_plot =

dif2

1 ciclo

dos sinais apdés uma janela de 1ms apds a

4%n_ciclol
4xn_ciclo]

4%n_ciclol

4%n_ciclol
4%n_ciclol

4%n_ciclol

t_plot[n_falta + 3*n_ciclo:n_falta + 4*n_ciclol]

reajusta o vetor de tempo

Ns len(

sinal obtido

# Aplicando a FFT aos sinais e normalizando.

Va)

# atualizando o nimero de amostra para o

(rfft retorna

somente a primeira metade do vetor, ja que ele é simetrico)

coef Va
modulo_Va
modulo_Va

modulo_Va

fase_Va

coef VDb
modulo_Vb
modulo_Vb
modulo_Vb

fase_Vb
coef_Vc =
modulo_Vc
modulo_Vc

modulo_Vc

rfft(Va)

np.abs (coef_Va)

Lol

np.angle(coef_Va,

modulo_Va / (Ns

modulo_Va[0]

rfft (Vb)

np.abs (coef_Vb)

modulo_Vb / (Ns

[o]
np.angle (coef_Vb,

modulo_Vb [0]

rfft(Vc)

np.abs (coef_Vc)

/ 2)
/ 2
deg=True)

/ 2)
/ 2
deg=True)

modulo_Vc / (Ns / 2)
/ 2

[o] modulo_Vc [0]
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fase_Vc np.angle(coef_Vc, deg=True)

coef_Ta = rfft(Ia)

modulo_TIa np.abs (coef_Ia)

modulo_TIa modulo_TIa / (Ns / 2)
modulo_TIa[0] = modulo_Ial[0] / 2

fase_Ia = np.angle(coef_Ia, deg=True)

coef _Ib = rfft(Ib)

modulo_Ib

np.abs (coef_Ib)
modulo_Ib = modulo_Ib / (Ns / 2)
modulo_Ib[0] = modulo_Ib[0] / 2

fase_Ib = np.angle(coef_Ib, deg=True)

coef_Ic = rfft(Ic)

modulo_Ic np.abs (coef_Ic)

modulo_Ic modulo_Ic / (Ns / 2)
modulo_Ic[0] = modulo_Ic[0] / 2

fase_Ic = np.angle(coef_Ic, deg=True)

f = list(rfftfreq(len(Va), Ts))
n_fund = 1

modulo_Va modulo_Va[n_fund]

modulo_Vb

modulo_Vb[n_fund]

modulo_Vc modulo_Vc[n_fund]

fase Vb = fase Vb[n_fund]
fase _Va = fase_Val[n_fund]
fase _Vc = fase_Vc[n_fund]

modulo_TIa modulo_Ta[n_fund]

modulo_Ib = modulo_Ib[n_fund]

modulo_Ic = modulo_Ic[n_fund]
fase_Ia = fase_Tal[n_fund]
fase_Ib = fase_Ib[n_fund]
fase_Ic = fase_Ic[n_fund]
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v_max = max(modulo_Va, modulo_Vb, modulo_Vc)
i_max = max(modulo_Ia, modulo_Ib, modulo_Ic)
dados = [modulo_Va, fase_Va, modulo_Vb, fase_ Vb, modulo_Vc,

fase_Vc, modulo_Ia, fase_TIa, modulo_Ib,

fase_Ib, modulo_Ic, fase_Ic, modulo_Va / v_max,

modulo_Vb / v_max, modulo_Vc / v_max,

modulo_TIa / i_max, modulo_Ib / i_max, modulo_Ic /

i_max, tabela_casos[lista_run.index(run)][2]]
dados_csv.append(dados)
dados_csv = pd.DataFrame (dados_csv)

caminho_dados = 'C:/Users/faold/OneDrive/Area de Trabalho/TDF_Ruido_' +

str(ruido_dB) + 'dB.csv'

dados_csv.to_csv(caminho_dados, index = False, header = False)
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