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RESUMO

GODINHO, L. J. Avaliação do desempenho de Redes Neurais Convolucionais
para o reconhecimento biométrico da região periocular utilizando Transfer
Learning. 2019. 87p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2019.

O reconhecimento biométrico tem diversas aplicações atualmente por ser uma maneira
segura de identificação. Dentre as diversas maneiras de se fazer o reconhecimento biométrico,
o método que vem se destacando mais é a utilização de redes neurais convolucionais (CNN).
Apesar de apresentarem bons resultados em diversas aplicações, a etapa de treinamento
requer um conjunto de dados composto por muitas amostras e exige em longo tempo de
execução. Estes pré-requisitos do treinamento se tornam um problema pois nem sempre
existe um conjunto de dados com muitas amostras para a aplicação específica. Neste
trabalho, é avaliada a técnica de transfer learning onde uma rede pré treinada é utilizada
de base para uma rede nova adaptada ao problema. Com esta técnica, é possível treinar a
nova rede rapidamente e utilizando uma quantidade menor de dados. Foram escolhidas
quatro redes pré treinadas, baseadas em seu desempenho no ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). Estas redes foram sintonizadas por transfer learning
com um subconjunto de imagens da base CASIA-IrisV4, coletada pela Chinese Academy
of Sciences’ Institute of Automation (CASIA).As CNNs testadas apresentaram acurácias
elevadas, de 91% a 95%, quando as duas regiões perioculares (olho esquerdo e direito) são
utillizadas no treinamento. Além disso, a inversão por software das imagens das regiões
perioculares direita ou esquerda na fase de teste reduziu o desempenho das redes para
acurácias abaixo de 50% quando um olho invertido é testado em uma rede treinada apenas
com o olho oposto. O desempenho das CNNs, no entando, apresenta acurácias próximas de
80% quando o olho invertido é testado em uma rede treinada com a região periocular do
mesmo lado da face. Os resultados mostram que as características de uma região periocular
(direita ou esquerda) possuem propriedades discriminativas próprias, que são identificadas
pelas redes, mesmo em caos de inversão da imagem.

Palavras-chave: Aprendizagem de máquina, Aprendizagem Profunda. Transfer learning.
Fine tunning. CNN. Iris a distância. CASIA-IrisV4. Reconhecimento da região periocular.





ABSTRACT

GODINHO, L. J. Performance evaluation of Convolutional Neural Networks
for biometric recognition of the periocular region using Transfer Learning.
2019. 87p. Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2019.

Biometric recognition has a lot of aplications nowadays because it’s a safe form of identifi-
cation. Between the many ways of doing biometric recognition, the method that has stood
out the most is the use of convolutional neural networks (CNN). Despite presenting good
results in various applications, The training step requires a dataset consisting of many
samples and a long execution time. These requirements can become a problem because
there isn’t always a dataset with many samples for the specific application. In this project,
we study the transfer learning technique where a pre-trained network is used as a base to
the new network, adapted to the problem. With this technique, it’s possible to quickly
train the new network using a smaller amount of data. Four pre-trained network were used,
based on their performance on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). These networks were tuned by transfer learning with a subset of images from
the database CASIA-IrisV4, collected by the Chinese Academy of Sciences’ Institute of
Automation (CASIA). The tested CNNs presented high accuracy, from 91% to 95%, when
the two periocular regions (left and right eyes) are used in the training. In addition, image
inversion by software of right or left periocular regions in the test phase reduced net
performance to accuracy below 50% when an inverted eye is tested in a network trained
with the opposite eye only. However, the performance of CNNs is close to 80% when the
inverted eye is tested in a trained network with the periocular region on the same side
of the face. The results show that the characteristics of a periocular region (right or left)
have their own discriminative properties that are identified by the network, even in cases
of imagem inversion.

Keywords: Machine learning. Deep learning. Transfer learning. Fine tunning. CNN. Iris
at distance. CASIA-IrisV4. Recognition of the periocular region.
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1 INTRODUÇÃO

O objetivo da biometria é a identificação do indivíduo utilizando apenas caracterís-
ticas físicas ou comportamentais específicas dele, trazendo um grau de confiabilidade maior
do que uma senha digitada que pode ser esquecida ou roubada. A face humana é uma
peculiaridade biométrica de fácil aquisição e que pode ser usada em diversas aplicações
devido à grande quantidade de informação que dela pode ser extraída. Diversas formas
de reconhecimento facial já estão sendo utilizadas em sistemas de segurança ao redor do
mundo (DESHPANDE, 2016), seja de forma complementar ou substituindo completamente
outras formas de identificação (DELAC; GRGIC, 2004).

Em anos mais recentes, vem crescendo o uso de redes neurais na área de visão
computacional pelo seu potencial discriminativo em problemas de classificação de imagem
(SAEZ-TRIGUEROS; MENG; HARTNETT, 2018). Como reconhecimento facial é um
caso específico de classificação de imagens, cresce a cada dia o número de sistemas que
estão implementando redes neurais em seus algoritmos de reconhecimento facial.

A face humana apresenta diversas regiões com características discriminativas
diferentes, tais como íris, região periocular, textura da pele, formato da boca, do nariz ou
das orelhas, cor dos cabelos, etc. Deste modo, uma tendência na biometria facial é utilizar
apenas uma dessas características, não somente pela facilidade de aquisição, mas também
pela facilidade de disfarce se usada a face como um todo. Baseando-se na capacidade
humana de reconhecer outros indivíduos olhando apenas para seus olhos, estuda-se a
utilização da região periocular para se fazer o reconhecimento biométrico.

A região periocular trás então algumas das vantagens do reconhecimento pela íris
sem a necessidade de que a imagem tenha alta uma resolução. Assim como imagens do
rosto inteiro, a região periocular pode ser capturada e reconhecida a longas distancias em
ambientes não controlados e sem a cooperação do individuo identificado. Desta forma,
a região periocular apresenta vantagens tanto da iris quanto da região da face inteira,
trazendo uma opção equilibrada entre ambas.

1.1 Motivação

Os métodos tradicionais de reconhecimento periocular se baseiam em algoritmos
de pré-processamento, segmentação e extração de características. No entanto, o trabalho
de pré-processamento da imagem e comparação das características extraídas com o banco
de dados tornam estes algoritmos lentos e dificultam seu uso.

Algoritmos de aprendizado profundo, em contraponto, conseguem aprender sozinhos
as características a serem analisadas nas imagens. Estes ainda são capazes de fazer a
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identificação sem a necessidade de se consultar um banco de dados, tornando-os mais
rápidos, uma vez implementados. Assim, técnicas de aprendizado profundo vem sendo
cada vez mais utilizadas em reconhecimento biométrico.

A acurácia dessas técnicas depende da forma que a rede foi treinada e da quan-
tidade de imagens fornecidas durante esta etapa de treinamento. A quantidade ideal
de imagens para o treinamento não é exata pois varia com as especificidades de cada
problema, entretanto, observando-se arquiteturas de redes previamente desenvolvidas,
conclui-se que algumas centenas de milhares de imagens são necessárias para um bom
desempenho (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) (TSANG, 2018). O tempo
de treinamento também apresenta um desafio, uma vez que outros métodos de reconheci-
mento biométrico são mais rápidos de se implementar do que redes neurais convolucionais
(SAEZ-TRIGUEROS; MENG; HARTNETT, 2018).

Para contornar estes problemas, é possível utilizar uma rede neural convolucional
já treinada e apenas sintonizá-la para adaptá-la a um problema específico, permitindo
reduzir o número de imagens utilizadas no treinamento da rede, assim como o tempo
de processamento. Essa técnica de adaptação de uma rede de um problema para outro
chama-se transfer learning (LI; HOIEM, 2016) e é utilizada neste trabalho.

1.2 Objetivos

O objetivo geral deste trabalho é avaliar redes neurais convolucionais pré treinadas e
analisar seus desempenhos quando submetidas a problemas relacionados ao reconhecimento
biométrico da região periocular da face humana. As redes escolhidas foram sintonizadas com
a técnica de transfer learning e submetidas a diversos ensaios usando uma pequena base de
imagens de faces humanas adquiridas à distância (BIT, 2010). A região periocular destas
imagens faciais foram recortadas e utilizadas como entrada de uma CNN pré-treinada.

Os objetivos específicos deste trabalho são: avaliar a eficiência da técnica de transfer
learning na redução do conjunto de imagens necessário para treinar uma rede, diminuindo
assim seu tempo de processamento; verificar se a região periocular possui características
discriminativas suficientes para ser utilizada na biometria; investigar se regiões perioculares
de lados diferentes da face humana podem ser utilizadas na fase de teste das CNNs
invertendo-se as imagens das mesmas por software (via flip) tendo sido a rede treinada
apenas com imagens não invertidas.

1.3 Organização do trabalho

Este trabalho está organizado em 6 capítulos e 5 apêndices. O primeiro capítulo é
a introdução, onde o tema é apresentado e os problemas abordados pela primeira vez. O
segundo capítulo trata da região periocular e suas peculiaridades biométricas. O terceiro
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capítulo detalha conceitos de aprendizado de máquina e na arquitetura das redes neurais
bem como o estado da arte e trabalhos relacionados ao tema. No quarto capítulo são
apresentados os materiais e métodos utilizados neste trabalho, os estudos que foram
planejados e a motivação por trás deles. No quinto capítulo os resultados dos ensaios são
apresentados e discutidos. No sexto capítulo conclui-se o trabalho com as considerações
finais e sugestões para trabalhos futuros relacionados ao tema. Por fim, nos apêndices, são
apresentados os códigos utilizados durante o trabalho.





27

2 BIOMETRIA DA REGIÃO PERIOCULAR

Os maiores problemas dos sistemas biométricos estão relacionados à sua aceitação
devido a equipamentos invasivos ou que necessitem da colaboração do usuário e a ambientes
reais não controlados onde as imagens são geralmente de baixa qualidade, baixa resolução
e ruidosas. Por isso, os sistemas biométricos aplicados, por exemplo, na área de vigilância,
devem ser os mais discretos possíveis, evitando a interação direta com o usuário e resolvendo
os problemas de ambientes não controlados. Diz-se que um sistema biométrico nessas
condições é não cooperativo e não controlado. Dentre os traços biométricos possíveis de
serem capturados com estas restrições, a face e a íris ocupam lugar de destaque. No entanto,
a face é facilmente disfarçável por adereços, maquiagens e características voláteis como
barbas e bigodes. A íris e a região ocular podem ser obstruídas normalmente por óculos,
mas é um traço biométrico que pode ser usado mais facilmente com as restrições impostas.

Grandes esforços têm sido focalizados para melhorar o desempenho, a escala e a
usabilidade dos sistemas biométricos. O programa AADHAR da Índia (UIDAI, 2019), o
Apple’s Touch ID, o reconhecimento de íris em dispositivos móveis da NTT DOCOMO
(TODAY, 2015) e o programa de controle de fronteira dos Emirados Árabes Unidos
(UAESS, 2019) são exemplos de tais tendências em aplicações comerciais e governamentais.
Devido a aplicações bem sucedidas, como as citadas anteriormente, há um crescente
interesse e demanda para estender os recursos de biometria para reconhecimento de longo
alcance (Long-Range-Recognition - LRR) onde a cooperação do usuário é minimizada.

2.1 Íris a Distância

Há uma quantidade significativa de pesquisas em reconhecimento de íris que
utilizam imagens de alta resolução capturadas em ambientes controlados e cooperativos.
Os resultados destas pesquisas já se transformaram inclusive em produtos comerciais
disponíveis para reconhecimento biométrico.

O primeiro trabalho que utiliza o termo “Iris-at-a-distance – IAAD” foi publicado
por De Villar (VILLAR; IVES; MATEY, 2010). O sistema IAAD proposto é um protótipo
que ilustra a viabilidade de reconhecimento de íris a uma distância de 30 metros. O sistema
usa uma câmera de campo-de-visão-largo para localizar uma pessoa pela detecção da face
e dos olhos. Uma câmera de campo-de-visão-estreito, acoplada a um telescópio de oito
polegadas, é então apontada para o primeiro olho detectado.

Posteriormente, o termo IAAD foi utilizado por outros pesquisadores (NGUYEN et
al., 2017) para identificar o reconhecimento de íris por qualquer equipamento a distâncias
superiores a 1 m sem a necessidade de colaboração do usuário.
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O problema dos sistemas de IAAD é que atualmente dependem de equipamentos
específicos e caros para a aquisição das imagens tais como portais com iluminação NIR
(Near Infra Red) e câmeras de alta resolução espacial com lentes específicas para a situação.

2.2 Informação periocular

A região periocular é definida como a região facial nas imediações dos olhos,
normalmente englobando as pálpebras, cílios, sobrancelhas e a área da pele vizinha. A
biometria periocular analisa a forma das pálpebras, o formato do olho, a distribuições de
cílios e informações de textura da pele ou esclera. O reconhecimento periocular baseia-se no
senso comum da capacidade humana de “reconhecer alguém simplesmente por olhar para
seus olhos”, o que fornece quantidades substanciais de informação discriminante (PARK;
ROSS; JAIN, 2009) (PARK et al., 2011) (AMBIKA; RADHIKA; SESHACHALAM, 2012),
a qual permanece relativamente estável durante longos períodos de tempo. Os elementos
típicos da região periocular são mostrados na figura 1.

Figura 1: Região Periocular

Fonte: (BARCELLOS et al., 2019)

O traço periocular é adequado para sistemas LRR, pois pode ser capturado e reco-
nhecido em distâncias mais longas sem a necessidade de sensores adicionais. A característica
biométrica periocular pode ser usada com uma resolução menor do que a necessária para
a íris. Essa propriedade fornece uma grande vantagem quando a resolução ou a qualidade
da íris é baixa. Como uma característica biométrica única, a região periocular fornece um
bom equilíbrio entre a íris e a face em termos de distância de imagem, desempenho de
reconhecimento e cooperação do usuário em condições não controladas (PARK; ROSS;
JAIN, 2009) (AMBIKA; RADHIKA; SESHACHALAM, 2012) (NIGAM; VATSA; SINGH,
2015). A primeira tentativa de usar a região periocular como um traço biométrico foi
realizada por Park, Ross e Jain (2009).
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Os métodos tradicionais de reconhecimento periocular são baseados nas técnicas
estabelecidas de visão computacional, caracterizadas por pré-processamento, segmentação,
extração de características e classificação. No entanto, o fato de ser necessário processar
uma imagem para extrair características e depois comparar com uma base de dados,
torna os métodos tradicionais de visão computacional lentos e de difícil implementação na
solução de problemas reais que requerem uma grande quantidade de imagens.

2.3 Biometria Ocular

Devido à eficácia do traço periocular como uma modalidade autônoma biométrica,
bem como seu benefício complementar ao reconhecimento de íris, as duas modalidades
podem ser também combinadas para melhorar a robustez dos sistemas LRR. A maioria
das abordagens na literatura empregam Fusão por Pontuação em nível simples por soma
ponderada e exibem notável melhoria em base de dados de longo alcance (TAN; KUMAR,
2012) (RAGHAVENDRA et al., 2013) (WOODARD et al., 2010) (TAN; KUMAR, 2013)
(XIAO; SUN; TAN, 2012).

Santos et al (2015) utilizam uma rede neural com duas camadas escondidas treinada
para fundir as pontuações obtidas pela íris e a região periocular. Enquanto a Fusão por
Pontuação tem provado ser eficaz para íris e região periocular, outras abordagens como
a Fusão de Características não têm sido bem exploradas. Além disso, a combinação das
características de íris e periocular em ordem de importância das características obtidas
pode melhorar a robustez do sistema, especialmente no caso de grandes distâncias e
condições de aquisição não controladas (DOYNOV; DERAKHSHANI, 2012). A vanguarda
da investigação nesta linha de pesquisa é o reconhecimento de imagens que contenham
a região do olho, parte da face (periocular) e a íris. Nestas imagens, a íris pode ser de
qualidade variável. Esta nova linha investigativa de pesquisa é referida como Reconheci-
mento Biométrico Ocular (Biometric Ocular Recognition – BOR) para diferenciá-lo dos
problemas semelhantes de reconhecimento independente de íris e IAAD. O desafio inter-
nacional, The Ocular Challenge (FOCS, 2010) promovido pelo NIST (National Institute
of Standards and Technology), objetiva encorajar o desenvolvimento de novos algoritmos
nesta linha. Para isso, uma base de dados é disponibilizada publicamente com imagens de
uma única região de íris e dos olhos. Estas regiões foram extraídas de sequências de vídeo
capturadas em infravermelho próximo (NIR) coletadas no sistema Iris On the Move (IoM)
(MATEY et al., 2006) e disponível no Portal MBGC (Multiple Biometric Grand Challenge)
(MBGC, 2010). As bases disponíveis para o desafio não contemplam imagens adquiridas
no espectro visível e com múltiplos sensores (cross-sensors) o que limita a portabilidade
das soluções do desafio para reconhecimento biométrico real em ambientes não controlados
e não cooperativos.
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2.4 Reconhecimento da região periocular ou da íris usando aprendizagem profunda

Com a capacidade de aprender as características dos dados de treinamento, técnicas
de aprendizagem profunda estão impulsionando o desempenho de reconhecimento de íris,
especialmente sob condições não controladas.

Algumas pesquisas investigam aplicações dessa abordagem em visão computacional,
especificamente para o reconhecimento de íris. Liu et al (2015) utilizam aprendizagem
profunda para o Reconhecimento Heterogêno de Iris (HIR) devido à existência de grande
demanda por um sistema de gerenciamento de identidade em grande escala. As imagens
de íris adquiridas em ambiente heterogêneo, caracterizado pelo uso de diferentes câmeras,
têm grandes variações intraclasse, tais como diferentes resoluções, diferente óptica do
sensor, iluminação, escala, etc. Por métodos tradicionais, conhecidos pelo termo em inglês
handcraft, é um desafio criar manualmente um filtro robusto para tratar as complexas
variações intraclasse nas imagens de íris obtidas em meios heterogêneos. A proposta
chamada de DeepIris (LIU et al., 2015) aprende características relacionais para medir
a similaridade entre pares de imagens de íris, baseada em redes neurais convolucionais
(CNN).

Da mesma maneira, o trabalho de De Marsico, Petrosino e Ricciardi (2016) faz
um levantamento de 37 métodos de reconhecimento de íris utilizando aprendizagem de
máquina, para os quais são utilizadas as bases CASIA v1, CASIA v2 e CASIA v3. Nenhum
dos métodos publicadas envolve IAAD e nem utiliza aprendizagem produfnda.

Recentemente, Redes Neurais Convolucionais foram aplicadas no reconhecimento de
íris utilizando a arquitetura VGG-Net (MINAEE; ABDOLRASHIDIY; WANG, 2016) nas
bases CASIA-Iris-1000 e IITD, e usando a arquitetura AlexNet (ALASLANI; ELREFAEI,
2018) nas bases IITD, CASIA-Iris-V1, CASIA-Iris-1000 e CASIA-Iris-V3 Interval. Apesar
dos excelentes resultados obtidos, estas bases não são adequadas para análise da região
ocular, pois, as imagens foram adquiridas especificamente para reconhecimento de íris,
prejudicando a visibilidade da área da região periocular. Outras arquiteturas de CNN,
como a DeepIrisNet-A e DeepIrisNet-B (GANGWAR; JOSHI, 2016), foram propostas
especificamente com solução para o reconhecimento da íris, sendo inviável o uso em
reconhecimento ocular.

Em um trabalho recente, Lee et al. (2017) propõem um novo método de reconheci-
mento de imagem de íris com ruído e de imagens oculares usando uma imagem de íris e
duas de regiões perioculares, baseadas em três redes neurais convolucionais (CNNs) em
paralelo e fusão de pontuação. Neste trabalho a íris é detectada, segmentada, transformada
em coordenadas polares e normalizada, sendo posteriormente utilizada como entrada de
uma CNN. Os resultados demonstraram um acréscimo de acurácia no reconhecimento, no
entanto, o fato de ter que processar as imagens de íris requer maior tempo de processa-
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mento, o que pode inviabilizar o uso desta solução em aplicações que tenham uma base de
dados com grande número de imagens.

A segmentação da íris baseada em aprendizagem profunda apresenta a desvantagem
de requerer um longo tempo de processamento. Para resolver esse problema, Lee et al
(2019) propõem um método que encontra rapidamente uma área aproximada da íris sem
segmentar com precisão a respectiva região nas imagens de entrada e reconhece a região
ocular. Uma rede residual profunda (ResNet) é utilizada para resolver o problema de
taxas de reconhecimento reduzidas devido ao desalinhamento entre as imagens de íris
registradas e de reconhecimento. As experiências foram realizadas usando três bases de
dados: CASIA-Iris-Distance, CASIA-Iris-Lamp e CASIA-Iris-Thousand (BIT, 2010). Para
encontrar uma área aproximada da íris nas imagens de entrada o método proposto realiza
a correspondência de modelos baseados em sub-blocos. Das três bases de dados usadas
neste estudo, a base de dados CASIA-Iris-Distance possui imagens com uma grande área
facial que inclui os dois olhos. Dessa forma, casos de detecção falsa, em que áreas fora
do olho são detectados incorretamente podem ocorrer durante a detecção ocular que usa
apenas o modelo com base em sub-blocos. Para resolver esse problema, o estudo utiliza
o detector de olhos Adaboost em uma região de pesquisa que inclui os dois olhos na
imagem de entrada. As ROIs da pupila e da ocular são encontradas nessa região através
da correspondência de modelos baseados em sub-blocos. O aumento dos dados também
foi utilizado para aumentar o número de imagens de treinamento. Foram executadas a
translação de seis pixels e o recorte nas direções para cima, para baixo, para a esquerda e
para a direita para aumentar os dados por um fator de 169. A base de dados Iris-Distance
passou de 2567 imagens para 351520 com 142 classses. Nos testes, os modelos ResNet-50,
101 e 152 foram utilizados para realizar o ajuste fino através dos dados de treinamento
aumentados. As acurácias obtidas foram de 97,42% para a ResNet-50, de 97,86% para a
ResNet-101 e de 97,89% para a ResNet-152.

Dada a característica da base CASIA-Iris-Distance de ser composta por faces
inteiras adquiridas à distância e em alta resolução, decidiu-se por utilizá-la neste trabalho
de conclusão de curso para avaliar o desempenho de redes neurais convolucionais aplicadas
ao reconhecimento biométrico da região periocular utilizando transfer learning.
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3 REDES NEURAIS

Aprendizagem de máquina é o estudo de algoritmos que são capazes de se aprimo-
rarem sozinhos. Uma das formas mais comuns de aprendizagem de máquina são as redes
neurais, uma forma de algoritmo que recebe este nome pela sua semelhança estrutural
com a rede de neurônios do sistema nervoso. O algoritmo, ao ser criado, tem uma acurácia
muito baixa devido a sua natureza inicial aleatória, mas após várias fases de treinamento a
partir de exemplos, o algoritmo aprende e pode atingir níveis de acerto surpreendentemente
altos. A figura 2 mostra a crescente na acurácia de um algoritmo de rede neural conforme
ele passa pelos vários ciclos de treinamento

Figura 2: Acurácia e erro de uma rede durante seu treinamento

Fonte: Autor (2019)

Uma rede neural representa um jeito novo de pensar a resolução de problemas
utilizando código e linguagem de programação. Ao escrever um algoritmo convencional,
o programador tem em mente tudo que ele fará; todos os passos são explicitados e o
programador tem completa ciência do que ocorre em seu código linha a linha. Por outro
lado, com as redes neurais, o programador é capaz de entender o código de aprendizado,
mas não é capaz de entender o algoritmo já treinado.
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3.1 Aplicações de redes neurais

As redes neurais são capazes de dar respostas a problemas complexos demais para
algoritmos convencionais, como diagnósticos de doenças (NATURE, 2019) e agrupamento
de dados (GOGGIN, 2018), devido à sua natureza de aprendizado. Entretanto, para um
problema simples, a rede neural pode dar resultados menos precisos que um algoritmo
comum. Desta forma é importante reconhecer suas limitações e em quais problemas
aplicá-las.

As redes neurais se destacam em problemas em que coletam um conjunto de dados
quantificáveis de entrada e dão uma resposta a partir disso, seja uma resposta numérica
ou uma classificação. Um exemplo de resposta numérica é a precificação de uma casa; os
dados de entrada podem envolver o número de janelas, quartos e área total e a saída seria
o preço da casa. Em contraponto, um exemplo de classificação é o diagnóstico de doenças;
os dados de entrada são uma lista dos sintomas e a saída uma lista de prováveis doenças.

Seja pra dar uma resposta única ou uma classificação, uma rede neural precisa
ser treinada exaustivamente. Sua acurácia e desempenho estão diretamente ligados à
quantidade de exemplos dados, à qualidade dos exemplos e à duração do treinamento. As
redes mais importantes atualmente tiveram acesso a centenas de milhares de exemplos
para atingirem seus resultados (TSANG, 2018), assim deve-se escolher os problemas, e
grupo de exemplos, de acordo.

Para o exemplo da precificação de casas, o algoritmo gerado pode apresentar uma
boa qualidade se seu espaço amostral for pequeno, como um bairro ou uma cidade pequena.
Em contrapartida, algoritmos que utilizam redes sociais como entrada costumam ser
bem eficientes pela grande quantidade de exemplos fornecidos diariamente pelos seus
usuários(PENNACCHIOTTI; POPESCU, 2011) (RUTHS; PFEFFER, 2014).

3.2 Aprendizagem profunda

As redes neurais são arquitetadas por camadas, cada camada adicionando um nível
de complexidade. Nas camadas de entrada são aprendidos os conceitos mais simples, como
linhas contornos e texturas, e a cada camada adicional os conceitos da camada anterior se
relacionam para criar conceitos mais complexos. A esse conceito de aprendizado por cama-
das, cada vez mais profundas, da-se o nome de aprendizagem profunda (GOODFELLOW;
BENGIO; COURVILLE, 2016). Na figura 3 é possível ver como cada camada consegue
identificar conceitos mais complexos até chegar na parte final onde ocorre a classificação.
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Figura 3: Evolução na complexidade das características identificadas em cada camada

Fonte: Adaptado de (GOODFELLOW; BENGIO; COURVILLE, 2016)

3.3 CNN e imagens

Redes neurais convencionais utilizam como elemento de entrada um vetor, o que
causa um problema em situações onde é necessário trabalhar com imagens. Ao transformar a
imagem em uma estrutura unidimensional perdem-se muitas informações sobre a vizinhança
de cada pixel, parte essencial para resolução dos problemas.

Assim, para o tratamento de imagens, utilizam-se Redes Neurais Convolucionais
(Convolutional Neural Network - CNN) (CS231N, 2016) (DESHPANDE, 2016). Estas
utilizam como entrada uma matriz quadrada com um canal para imagens preto e branco e
3 canais para imagens coloridas. Desta forma, diversos problemas de visão computacional,
desde reconhecimento de números e letras escritos à mão (NIELSEN, 2018) até problemas
na área médica (NATURE, 2019), podem ser resolvidos com aprendizagem de máquina
utilizando as CNNs.
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As redes Convolucionais recebem esse nome devido aos filtros de convolução que
são utilizados em suas camadas. Cada filtro trata toda a matriz, alterando e adicionando
uma nova camada de informação na imagem. A convolução traz novas informações para a
matriz, mas também a diminui levemente. Assim, após algumas camadas, a matriz terá
reduzido em altura e largura, mas aumentado significativamente sua profundidade. A
figura 4 representa o redimensionamento através das camadas.

Figura 4: Redimensionamento que acontece através das camadas

Fonte: Adaptado de (CS231N, 2016)

3.4 Camadas de uma CNN

Uma CNN é montada em camadas, cada camada recebe os dados da camada
anterior e a modifica de alguma forma. A figura 5 apresenta os vencedores da ImageNet
Large Scale Visual Regocnition Challenge (ILSVRC) (RUSSAKOVSKY et al., 2015) e
o número de camadas de cada uma das redes. As camadas podem ser de vários tipos,
sendo os mais comuns: entrada, filtros de convolução, pooling, ReLU e camada totalmente
conectada.

3.4.1 Entrada

A primeira camada, ou camada de entrada, representa a imagem a ser analisada
pelo algoritmo ainda inalterada. Essa imagem será representada por uma matriz quadrada
com profundidade padronizada igual a um, para imagens em preto e branco, ou três, para
imagens coloridas.
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Figura 5: Vencedores do ILSVRC em cada ano, o número de camadas em suas redes e sua
porcentagem de erro no desafio

Fonte: Adaptado de (DAS, 2017)

3.4.2 Filtros de convolução

Nessas camadas aplicam-se os filtros. Cada filtro irá analisar uma pequena parte da
matriz e avançar para a parte seguinte até percorrer a matriz inteira. A relação do tamanho
do filtro e o tamanho do passo é importante para que a matriz inteira seja percorrida de
forma correta. Para alguns filtros é interessante que o tamanho do passo seja igual ao
tamanho do filtro para que não haja setores filtrados diversas vezes. É comum também,
para alguns filtros, a utilização de um padding de zeros na matriz para melhorar sua
performance. O padding de zeros irá adicionar uma camada de zeros ao redor da matriz,
permitindo assim que o centro do filtro atinja as bordas da imagem. O número de filtros, o
tamanho de cada filtro, a utilização de padding e o tamanho do passo ficam todos a cargo
do programador que escrever o algoritmo e alterar esses valores altera a rede neural como
um todo. Ao final dessa camada, produz-se uma matriz de tamanho a × a × c × n, sendo n
o número de filtros aplicados, c o número de canais da imagem e a é dada pela equação 3.1

a = ((input − tam + 2 × pad)/pas) + 1 (3.1)

• input - Tamanho da matriz de entrada
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• tam - Tamanho dos filtros

• pad - Tamanho do padding de zeros

• pas - Tamanho dos passos

É possível observar pela equação 3.1 que a cada filtro a matriz ganha mais uma
camada de profundidade enquanto diminui um pouco em altura e largura.

3.4.3 Pooling

Camadas de pooling são camadas de subamostragem utilizadas com o único propó-
sito de diminuir a matriz de entrada. Assim, os dados recebidos são simplificados para
que a próxima camada possa analisá-los de forma mais eficiente. Uma camada de pooling
resulta em uma altura e largura menor, sem adição de informação, portanto a profundidade
se mantém a mesma. A figura 6 mostra um exemplo de max pooling. É possível ver, através
da figura, como a camada de pooling diminui a matriz de entrada. Não há um método
de pooling que se destaque, apenas alguns mais utilizados pela sua simplicidade. Além
do max pooling, também é comum o uso do average pooling, onde se utiliza a média dos
valores da região em vez do seu valor máximo.

Figura 6: Representação de uma camada de max pooling

Fonte: Adaptado de (CS231N, 2016)

3.4.4 ReLU

ReLU significa Rectified Linear Unit e representa a camada de retificação linear
que costuma ser aplicada após camadas de convolução.
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A imagem de entrada pode ser interpretada como um vetor e os filtros como outro
vetor, tornando o processo de convolução em um produto escalar onde a resposta é um
vetor que mapeia a similaridade entre os trechos da imagem original e o filtro.

Utilizando uma função não linear como f(x) = max(0, X) pode-se destacar melhor
os pontos importantes da imagem. Outra grande vantagem é substituir os grandes valores
negativos fora do esperado para o trecho por zeros, o que facilita o cálculo e poupa proces-
samento computacional, ao custo de negligenciar parte da imagem que seja interessante
no momento.

A função de máximo é apenas um exemplo simples, mas diversas funções não
lineares são utilizadas como camadas de ReLU. A figura 7 mostra a função softplus, uma
das mais utilizadas, em comparação com a função max(0, X).

Figura 7: Gráfico mostrando a diferença entre uma função max(0, X) e softplus.

Fonte: Adaptado de (ETER, 2016)
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3.4.5 Camada Totalmente Conectada

Conforme a matriz vai passando por camadas de filtro e camadas de pooling, suas
dimensões se alteram. A cada camada de filtro, a matriz ganha mais profundidade, contudo
perde altura e largura a depender do filtro utilizado. Com as camadas de pooling, as
dimensões diminuem ainda mais resultando em uma matriz bem pequena e com várias
camadas de profundidade. Nesse ponto da rede, começam as camadas totalmente conectadas
(Fully connected layers - FCL).

Nas FCL, a CNN se comporta como uma rede neural convencional e portanto
precisa de um vetor de entrada em vez de uma matriz. Desta forma, a matriz, que já está
adequada para tal, é transforada num vetor de tamanho igual ao produto das dimensões
da matriz de entrada. Exemplificando, se na entrada havia uma imagem de dimensões
224×224×3 e após várias camadas de pooling e filtros ela se tornou uma matriz 7×7×3×28
então o vetor de entrada da FCL será de 4116 elementos.

A diferença entre as camadas do tipo filtro de convolução e totalmente conectadas
é que nas primeira os dados só são relacionados com aqueles suficientemente próximos para
serem abordados pelo filtro ao mesmo tempo. Em contrapartida, nas FCL os dados são inter
relacionados por completo. Portanto, nas camadas convolutivas há um aprendizado de quais
características são importantes e a cada camada mais profunda, geram-se características
mais complexas. Enquanto isso, nas FCL essas características já estabelecidas são analisadas
e relacionadas para preparar a rede para uma classificação.

3.5 Treinamento

3.5.1 Forward propagation e backpropagation

Quando inicializada a rede neural, todos os seus parâmetros começam com va-
lores aleatórios que serão ajustados para cada problema durante a fase de treinamento.
Esse treinamento da rede neural se dá através de duas etapas: forward propagation e
backpropagation.

Durante a fase de forward propagation, a imagem passa pelas camadas com parâ-
metros aleatórios e chega a um resultado final, que será comparado a um gabarito para
medir a eficiência da rede neural. Com isso define-se a função perda (também conhecida
como função erro ou loss), onde as variáveis são os valores e pesos dos filtros em cada
camada de ativação e a resposta é o quão distante do gabarito a rede neural está.

Após estabelecer a função erro, é possível utilizar derivadas para encontrar o
menor erro possível. Para a função loss, não seria viável encontrar seus valores de mínimo
local, uma vez que a mesma possui muitas variáveis, porém pode-se calcular o gradiente
descendente da função. Deste modo, mesmo sem a informação exata do local do mínimo
erro, conhece-se a direção em que o erro diminui. Assim, na fase de backpropagation, o
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algoritmo ajusta as variáveis das camadas apropriadas dando um passo na direção certa,
de modo que o erro da rede neural seja menor.

Após o término do backpropagation e com um algoritmo um pouco modificado,
retorna-se a fase de forward propagation. Esse ciclo se repete diversas vezes e a cada
iteração o algoritmo torna-se capaz de aumentar o número de acertos para o qual está
sendo treinado. O processo se mantém até a melhora no erro ser menor do que um limite
pré estabelecido.

Existem duas constantes importantes a serem definidas pelo responsável pelo
desenvolvimento do algoritmo de treinamento durante o processo: o tamanho do passo
e o limite do erro. O tamanho do passo indica quanto cada variável mudará na direção
do gradiente a cada iteração de backpropagation. Enquanto passos pequenos estenderão o
tempo de aprendizado, valores grandes dificultam a precisão do algoritmo, podendo até
prendê-lo em um loop onde o limite do erro nunca é atingido.

O limite do erro determina quando o algoritmo não consegue mais melhorar sua
performance. Ao escolher um valor muito alto, perde-se precisão desnecessariamente no
algoritmo, mas ao escolher um valor muito baixo é possível que o algoritmo nunca atinja o
objetivo desejado.

3.5.2 Batch Size e Treinamento estocástico

O forward propagation e backpropagation se utilizam da função perda (loss) para
determinar a acurácia da rede neural. Sabendo que é necessário aplicar o gradiente da
função, ao invés de sua derivada, um problema surge: não é possível saber se o mínimo
apontado pelo gradiente é o mínimo possível ou apenas um mínimo local.

Com isso em vista, é utilizada apenas uma pequena amostra da base de imagens cujo
tamanho é denominado batch size. Com tamanhos pequenos, cada iteração do treinamento
tem seu próprio gradiente, condição que contorna o problema de mínimos locais além de
acelerar o processo de cálculo da função perda. Quando o treinamento é feito com batch
size igual a um, ele é chamado de treinamento estocástico.

3.5.3 Transfer Learning

Para que os filtros deixem de ter valores aleatórios característicos da inicialização
dos parâmetros da criação da rede neural, é necessária uma grande quantidade de imagens
e tempo de treinamento para passarem a gerar informações úteis.

Uma vez treinada, a rede está pronta para realizar apenas a função designada,
o que gera diversas situações com necessidade de treiná-la novamente, como casos em
que se é preciso adicionar mais uma classe a um classificador. Por métodos clássicos, isso
exige que toda a rede seja treinada novamente, o que além de demandar tempo, exige a
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disponibilidade das imagens usadas no primeiro treinamento, recurso nem sempre viável.

Para resolver os problemas supracitados, surgiram as técnicas de transfer learning
que possibilitam utilizar uma rede já treinada como base para sua nova rede. Assim, é
possível adicionar novas funções para uma rede já existente em um tempo muito mais
curto e sem precisar de toda a base de imagens do treinamento inicial.

Como os filtros das CNN representam formas abstratas porém universais, uma
CNN pode ser pré treinada para reconhecer certos padrões mais amplos e, posteriormente,
refinada para um propósito mais específico utilizando a técnica de transfer learning. Um
exemplo é o uso de uma rede já treinada para carros na identificação de motos, visto que
as características de ambos tipos de veículos são semelhantes (PISTORI, 2017).

Com isso, surgem grandes empresas gerando CNN’s robustas treinadas com milhares
de imagens sendo capazes de reconhecer diversos padrões diferentes. Essas CNN’s são
então disponibilizadas para a criação de redes com boa acurácia utilizando apenas uma
fração do tempo e das imagens, como AlexNet, LeNet, ResNet e GoogLeNet.

A técnica de transfer learning pode ser feita de diversas formas, com cada variante
se diferenciando pela forma que lida com a comparação entre os parâmetros já existentes
e a serem adicionados. Os três tipos mais comuns são: Fine Tuning, Feature Extraction e
Joint Trainning (LI; HOIEM, 2016).

O método de Feature Extraction considera que a rede pré treinada já extrai as
características da imagem de forma coerente para o novo problema, não modificando o
começo da rede mas apenas suas camadas finais, onde estão os classificadores. O treinamento
com base nas camadas finais torna o processo mais rápido, requerendo poucas imagens de
treino. Como boa parte da rede se mantém inalterada, sua escolha é importante para a
extração das características desejadas.

Por outro lado, Fine Tuning modifica a rede inteira durante o treinamento. Assim
como em Feature Extraction, alteram-se as camadas finais para as novas tarefas, porém
durante o treinamento, as imagens novas são usadas para ajustar levemente também
as camadas iniciais para um melhor desempenho. Desta forma, é possível realizar um
treinamento focado na nova aplicação sem a necessidade de retreinar por completo as
camadas iniciais. Uma cópia da rede original pode ser feita antes do Fine Tuning, criando-se
uma rede levemente alterada, para cada nova tarefa.

Joint Training é similar a Fine Tunning, com a diferença em que as imagens
utilizadas para o treinamento da rede original serão adicionadas às imagens do novo
treinamento. Assim, minimiza-se a perda de acurácia nas tarefas já existentes da rede ao
implementar a nova.

No artigo Learning Without Forgetting (LI; HOIEM, 2016), os autores propõem
outra técnica para transfer learning enquanto discorrem sobre as existentes:
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"Each of these strategies has a major drawback. Feature extraction
typically underperforms on the new task because the shared pa-
rameters fail to represent some information that is discriminative
for the new task. Fine-tuning degrades performance on previously
learned tasks because the shared parameters change without new
guidance for the original task-specific prediction parameters. Dupli-
cating and fine-tuning for each task results in linearly increasing
test time as new tasks are added, rather than sharing computation
for shared parameters. Joint training becomes increasingly cumber-
some in training as more tasks are learned and is not possible if
the training data for previously learned tasks is unavailable." (LI;
HOIEM, 2016)

A figura 8 adaptada de (LI; HOIEM, 2016) ilustra as diferenças entre as técnicas
de transfer learning e as comparam com a técnica que propõem.

Figura 8: Diferentes técnicas de transfer learning.

Fonte: Adaptado de (LI; HOIEM, 2016)

3.6 CNNs pré-treinadas

Uma das partes mais importantes em transfer learning, é escolher uma boa CNN
de base. Nessa sessão serão introduzidas algumas CNN reconhecidas no meio acadêmico
pelas suas capacidades e por serem marcos no desenvolvimento de CNN. Os resultados
dessas redes são anualmente validados na ILSVRC (RUSSAKOVSKY et al., 2015).



44

3.6.1 AlexNet

AlexNet foi a primeira CNN a ser aplicada a reconhecimento de imagens em larga
escala. Foi proposta por Alex Krizhevsky (KRIZHEVSKY; SUTSKEVER; HINTON, 2015)
e trazia soluções novas para problemas de overfitting, vencendo assim o ILSVRC de 2012.
Seu treinamento levou de 5 a 6 dias em duas GPUs NVIDIA GTX 580 3GB e utilizou mais
de 1 milhão de imagens. Sua arquitetura inclui uma camada de entrada, cinco camadas de
convolução com ReLU, três camadas de pooling e três camadas completamente conectadas
totalizando doze camadas.

3.6.2 GoogLeNet

GoogLeNet foi proposta em (SZEGEDY et al., 2014) e venceu o ILSVRC de 2014.
Possui uma arquitetura de vinte duas camadas e troca as diversas camadas completamente
conectadas no final por uma camada de pooling e uma única camada completamente
conectada. Essa troca é reconhecida como uma boa alternativa por salvar mais parâmetros
vindo das camadas convolucionais. A GoogLeNet também introduziu o conceito de Inception
module onde a saída de uma camada passa por diversas camadas diferentes em paralelo
para no fim seus resultados serem recombinados.

3.6.3 ResNet

A ResNet foi proposta em (HE et al., 2015) e venceu o ILSVRC de 2015. O nome
Residual Network (ResNet) vem de uma técnica de blocos residuais que permitem a ResNet
vencer o problema da degradação por camada e assim fazer redes com grande número
de camadas. Desta forma, a ResNet foi a primeira rede bem sucedida com mais de 100
camadas. ResNet possui quatro versões: ResNet18, ResNet50, ResNet101 e ResNet152,
tendo respectivamente dezoito, cinquenta, cento e uma e cento e cinquenta e duas camadas.
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4 MATERIAL E MÉTODO

4.1 Escolha das CNNs

Para a execução de todos os treinamento e testes, foi utilizado o software MATLAB
versão R2018a em uma CPU Intel i7-6700. As redes pré treinadas disponíveis neste
programa são mostradas na figura 9 pela sua classificação quanto à acurácia e tempo de
predição. Para este trabalho, foram escolhidas as redes AlexNet, GoogLeNet, ResNet18 e
ResNet50 por apresentarem baixo tempo de predição e por terem funções já implementadas
na biblioteca do MATLAB.

Figura 9: Redes disponíveis no software MATLAB quanto à acurácia e tempo de predição.

Fonte: Adaptado de (MATHWORKS, 2018a)

Em cada rede, foram retiradas as camadas finais de softmax, FCL e classificação e
recriadas camadas novas condizentes com o problema a ser abordado. Nos apêndices B, C,
D e E estão presentes os algoritmos utilizados para fazer o transfer learning nas redes e a
validação em cada tipo de imagem.

A técnica de transfer learning escolhida foi a de Fine Tunning com uma taxa de
aprendizado de 20 para 1, ou seja, as mudanças nas novas camadas aconteceriam com
um peso 20 vezes maior do que para as camadas já existentes. O valor da proporção foi
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sugerida por (MATHWORKS, 2018b). Não foi feito nenhum tipo de data augmentation nas
imagens pois o objetivo do trabalho é conseguir bons resultados com um limitado número
de imagens. Assim, apenas um redimensionamento foi feito para atender as dimensões de
entrada de cada rede.

4.2 Base de Imagens utilizada

A base de imagens utilizada nos treinamentos é o subgrupo CASIA-Iris-Distance
da base CASIA-IrisV4 (BIT, 2010). A base CASIA-IrisV4 é um grupo de imagens utilizada
para biometria a partir da iris do individuo coletadas pela Chinese Academy of Sciences’
Institute of Automation (CASIA). No subgrupo CASIA-Iris-Distance utilizado, as fotos
são tiradas a distância, com alta resolução e do rosto inteiro. São um total de 2567 fotos
divididas em 142 classes, uma para cada individuo. As fotos foram tiradas a distâncias de
3 metros com uma resolução de 2352 × 1728 pixels.

As imagens utilizadas neste trabalho foram recortadas manualmente na região
periocular dos indivíduos por meio do software Photoshop, criando 3 tipos de imagens: fotos
do rosto inteiro, fotos apenas da região periocular esquerda, e fotos da região periocular
direita. Na figura 10 é possível ver um exemplo de uma imagem original e suas regiões
perioculares recortadas.

Figura 10: Exemplo da imagem de um individuo,(a) e de suas regiões perioculares di-
reita,(b) e esquerda,(c) recortadas

Fonte: (a) (BIT, 2010), (b) Autor (2019) e (c) Autor (2019)

Para a análise de desempenho das CNNs, é necessário dividir as imagens em três
grupos: 70% das imagens formam um subconjunto de treinamento, 15% formam um
subconjunto de validação e 15% um subconjunto de teste. As imagens foram divididas
de forma aleatória com o uso do algoritmo que está no apêndice A. O algoritmo ainda
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criou outros dois tipos de imagem: a região periocular esquerda ou direita invertida no
eixo vertical. Assim, passam-se a ter os seguintes tipos de imagens para os testes:

1. Rosto Inteiro

2. Região Periocular Esquerda

3. Região Periocular Direita

4. Região Periocular Esquerda Invertida

5. Região Periocular Direita Invertida

6. Ambas as Regiões Perioculares

4.3 Experimentos

Cada uma das quatro redes foram treinadas quatro vezes separadas, totalizando
dezesseis experimentos, e em cada treinamento foi analisada a acurácia em cada tipo
de imagem. Foram então anotados os tempos de treinamento e as acurácias para cada
experimento.

Primeiramente, cada algoritmo foi treinado com ambas as regiões perioculares (tipo
6) e então foi analisada a sua capacidade de acerto com os tipos de imagem de regiões
perioculares (tipos 2 a 6). Em seguida, o treinamento foi feito com as regiões perioculares
esquerda e direita (tipos 2 e 3) e entre cada treinamento foram testadas as capacidades
de acerto de forma similar ao primeiro treinamento. Por fim, realizou-se um treinamento
com imagens do rosto inteiro (tipo 1), validado apenas com imagens também do rosto
inteiro, para uma analise final comparativa entre o reconhecimento da região periocular e
o reconhecimento facial.
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5 RESULTADOS

Os experimentos foram realizados utilizando quatro redes, AlexNet, GoogLeNet,
ResNet18 e ResNet50 e cada rede foi treinada quatro vezes. A primeira com imagens do
rosto inteiro e testada apenas com imagens do rosto inteiro, para que uma comparação
entre região periocular e a face inteira possa ser feita. O segundo treinamento foi feito com
imagens da região periocular esquerda e direita juntas em um mesmo grupo, para este
ensaio foram usados todos os tipos de imagem de região periocular para fazer os testes. O
terceiro treinamento foi feito usando imagens da região periocular esquerda e o quarto
treinamento com imagens da região periocular direita, em ambos os casos, foram usadas
todos os tipos de imagens da região periocular para se fazer os testes.

5.1 AlexNet

A AlexNet teve os resultados mais rápidos, porém os menos precisos, tal como
esperado pela figura 9. As tabelas 1 a 4 mostram os resultados dos experimentos.

Para o primeiro experimento, treinado e testado com imagens do rosto inteiro, a
AlexNet obteve os seguintes resultados:

Tabela 1: Acurácia da rede AlexNet treinada com o rosto inteiro

AlexNet - Rosto inteiro
Tempo de treinamento 115m 08s
Acurácia rosto inteiro 0,9355

Fonte: Autor (2019)

Para o segundo experimento, treinado com imagens de ambas as regiões perioculares,
a Alexnet obteve os seguintes resultados:

Tabela 2: Acurácias da rede AlexNet treinada com ambas regiões perioculares

AlexNet - Ambas regiões perioculares
Tempo de treinamento 284m 01s
Acurácia ambos 0,9171
Acurácia dir. 0,9215
Acurácia esq. 0,9128
Acurácia dir. inv. 0,8508
Acurácia esq. inv. 0,8385

Fonte: Autor (2019)
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Para o terceiro experimento, treinado com imagens de da região periocular esquerda,
a Alexnet obteve os seguintes resultados:

Tabela 3: Acurácias da rede AlexNet treinada com a região periocular esquerda

AlexNet - Região periocular esquerda
Tempo de treinamento 82m 48s
Acurácia ambos 0,6593
Acurácia dir. 0,4136
Acurácia esq. 0,9000
Acurácia dir. inv. 0,4581
Acurácia esq. inv. 0,8282

Fonte: Autor (2019)

Para o quarto experimento, treinado com imagens de da região periocular direita,
a Alexnet obteve os seguintes resultados:

Tabela 4: Acurácias da rede AlexNet treinada com a região periocular direita

AlexNet - Região periocular direita
Tempo de treinamento 79m 35s
Acurácia ambos 0,6386
Acurácia dir. 0,9005
Acurácia esq. 0,3821
Acurácia dir. inv. 0,7958
Acurácia esq. inv. 0,4154

Fonte: Autor (2019)

5.2 GoogLeNet

A GoogLeNet teve resultados melhores que a AlexNet, porém os tempos de treina-
mento foram por volta de 2.5 vezes maiores. As tabelas 5 a 8 mostram os resultados dos
experimentos.

Para o primeiro experimento, treinado e testado com imagens do rosto inteiro, a
GoogLeNet obteve os seguintes resultados:
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Tabela 5: Acurácia da rede GoogLeNet treinada com o rosto inteiro

GoogLeNet - Rosto inteiro
Tempo de treinamento 226m 38s
Acurácia rosto inteiro 0,9306

Fonte: Autor (2019)

Para o segundo experimento, treinado com imagens de ambas as regiões perioculares,
a GoogLeNet obteve os seguintes resultados:

Tabela 6: Acurácias da rede GoogLeNet treinada com ambas regiões perioculares

GoogLeNet - Ambas regiões perioculares
Tempo de treinamento 779m 37s
Acurácia ambos 0,9288
Acurácia dir. 0,9293
Acurácia esq. 0,9282
Acurácia dir. inv. 0,8979
Acurácia esq. inv. 0,9077

Fonte: Autor (2019)

Para o terceiro experimento, treinado com imagens de da região periocular esquerda,
a GoogLeNet obteve os seguintes resultados:

Tabela 7: Acurácias da rede GoogLeNet treinada com a região periocular esquerda

GoogLeNet - Região periocular esquerda
Tempo de treinamento 219m 34s
Acurácia ambos 0,6775
Acurácia dir. 0,4450
Acurácia esq. 0,9051
Acurácia dir. inv. 0,4948
Acurácia esq. inv. 0,8923

Fonte: Autor (2019)

Para o quarto experimento, treinado com imagens de da região periocular direita,
a GoogLeNet obteve os seguintes resultados:
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Tabela 8: Acurácias da rede GoogLeNet treinada com a região periocular direita

GoogLeNet - Região periocular direita
Tempo de treinamento 207m 42s
Acurácia ambos 0,6503
Acurácia dir. 0,9162
Acurácia esq. 0,3897
Acurácia dir. inv. 0,8194
Acurácia esq. inv. 0,4410

Fonte: Autor (2019)

5.3 ResNet18

A ResNet18 obteve resultados mais precisos que a GoogLeNet com tempos de
treinamento menores, diferente do esperado pela figura 9, se mostrando mais eficiente. As
tabelas 9 a 12 mostram os resultados dos experimentos.

Para o primeiro experimento, treinado e testado com imagens do rosto inteiro, a
ResNet18 obteve os seguintes resultados:

Tabela 9: Acurácia da rede ResNet18 treinada com o rosto inteiro

ResNet18 - Rosto inteiro
Tempo de treinamento 197m 56s
Acurácia rosto inteiro 0,9578

Fonte: Autor (2019)

Para o segundo experimento, treinado com imagens de ambas as regiões perioculares,
a ResNet18 obteve os seguintes resultados:

Tabela 10: Acurácias da rede ResNet18 treinada com ambas regiões perioculares

ResNet18 - Ambas regiões perioculares
Tempo de treinamento 667m 25s
Acurácia ambos 0,9469
Acurácia dir. 0,9476
Acurácia esq. 0,9462
Acurácia dir. inv. 0,9136
Acurácia esq. inv. 0,9154

Fonte: Autor (2019)

Para o terceiro experimento, treinado com imagens de da região periocular esquerda,
a ResNet18 obteve os seguintes resultados:
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Tabela 11: Acurácias da rede ResNet18 treinada com a região periocular esquerda

ResNet18 - Região periocular esquerda
Tempo de treinamento 191m 11s
Acurácia ambos 0,6982
Acurácia dir. 0,4555
Acurácia esq. 0,9359
Acurácia dir. inv. 0,5288
Acurácia esq. inv. 0,8231

Fonte: Autor (2019)

Para o quarto experimento, treinado com imagens de da região periocular direita,
a ResNet18 obteve os seguintes resultados:

Tabela 12: Acurácias da rede ResNet18 treinada com a região periocular direita

ResNet18 - Região periocular direita
Tempo de treinamento 180m 13s
Acurácia ambos 0,6710
Acurácia dir. 0,9293
Acurácia esq. 0,4179
Acurácia dir. inv. 0,8246
Acurácia esq. inv. 0,5385

Fonte: Autor (2019)

5.4 ResNet50

A ResNet50 obteve os resultados mais precisos, porem os mais lentos, conforme
esperado pela figura 9. Similar a comparação entre AlexNet e GoogLeNet, a ResNet18 e
ResNet50 apresentam acurácias próximas, mas com tempos de treinamento bem distintos
com a ResNet50 chegando a tempos 3,5 vezes maiores. As tabelas 13 a 16 mostram os
resultados dos experimentos.

Para o primeiro experimento, treinado e testado com imagens do rosto inteiro, a
ResNet50 obteve os seguintes resultados:
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Tabela 13: Acurácia da rede ResNet50 treinada com o rosto inteiro

ResNet50 - Rosto inteiro
Tempo de treinamento 584m 29s
Acurácia rosto inteiro 0,9529

Fonte: Autor (2019)

Para o segundo experimento, treinado com imagens de ambas as regiões perioculares,
a ResNet50 obteve os seguintes resultados:

Tabela 14: Acurácias da rede ResNet50 treinada com ambas regiões perioculares

ResNet50 - Ambas regiões perioculares
Tempo de treinamento 2303m 37s
Acurácia ambos 0,9482
Acurácia dir. 0,9450
Acurácia esq. 0,9513
Acurácia dir. inv. 0,9162
Acurácia esq. inv. 0,9333

Fonte: Autor (2019)

Para o terceiro experimento, treinado com imagens de da região periocular esquerda,
a ResNet50 obteve os seguintes resultados:

Tabela 15: Acurácias da rede ResNet50 treinada com a região periocular esquerda

ResNet50 - Região periocular esquerda
Tempo de treinamento 659m 47s
Acurácia ambos 0,6671
Acurácia dir. 0,4005
Acurácia esq. 0,9282
Acurácia dir. inv. 0,4921
Acurácia esq. inv. 0,8821

Fonte: Autor (2019)

Para o quarto experimento, treinado com imagens de da região periocular direita,
a ResNet50 obteve os seguintes resultados:
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Tabela 16: Acurácias da rede ResNet50 treinada com a região periocular direita

ResNet50 - Região periocular direita
Tempo de treinamento 613m 24s
Acurácia ambos 0,7150
Acurácia dir. 0,9476
Acurácia esq. 0,4872
Acurácia dir. inv. 0,9162
Acurácia esq. inv. 0,5103

Fonte: Autor (2019)

5.5 Análise dos resultados

5.5.1 Transfer Learning

A primeira análise realizada sobre a eficácia da técnica de transfer learning no
reconhecimento biométrico da região periocular mostra que: todas as redes obtiveram
níveis de acurácia iguais ou superiores a noventa por cento quando validadas com o mesmo
tipo de imagem que foram treinadas e o treinamento de todas as redes durou algumas
horas com tempos variando de 1h19m35s a 38h23m37s. Considerando o número de imagens
limitado e os baixos tempos de treino, a técnica de transfer learning apresenta acurácias
altas mostrando assim um alto desempenho.

5.5.2 Tempos de treinamento

No gráfico da figura 11 são apresentados os tempos de treinamento de cada rede.
Fica evidente uma relação entre a complexidade da rede e o tempo necessário para o seu
treinamento, com as redes com mais camadas sempre apresentando resultados mais lentos.
A ResNet18 ainda apresenta resultados mais rápidos que a GoogLeNet, contrariando o
esperado pela figura 9, mas reforçando a ideia de que menos camadas aceleram o processo
de treinamento. Outro ponto a ser ressaltado é a mudança que ocorre nos treinamentos
com tipos diferentes de imagem. Imagens da região periocular esquerda ou direita possuem
tempos de treino similares pois possuem conjuntos de teste com o mesmo número de
amostras.
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Figura 11: Tempo de processamento na etapa de treinamento para as quatro redes consi-
deradas, por ensaio

Fonte: Autor (2019)

Ao juntar as duas regiões perioculares em um mesmo subconjunto de treinamento, a
quantidade de dados dobra, aumentando o tempo deste processo. Pode-se também observar
que as imagens de rosto inteiro obtiveram um tempo de treinamento muito próximo àquelas
das regiões perioculares recortadas. Observa-se assim que a maior complexidade nas imagens
do rosto inteiro não eleva o tempo de treinamento e que aumentar o número de imagens
no subconjunto de treinamento tem um impacto muito mais significativo.

5.5.3 Região periocular

Os resultados mostram que as acurácias dos experimentos feitos com o rosto inteiro
são maiores que as acurácias dos experimentos feitos com regiões perioculares. Entretanto,
comparando os resultados para redes treinadas e testadas com o mesmo tipo de imagem,
percebe-se que a diferença de acurácias é pequena. A tabela 17 mostra as diferenças entre
acurácias do rosto inteiro e acurácias de regiões perioculares, treinadas e testadas com o
mesmo tipo de imagem, em cada rede.
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Tabela 17: Diferenças de acurácia da região periocular e do rosto inteiro

Região periocular:
Esquerda Direita Ambas Médias

AlexNet 0,0355 0,0350 0,0184 0,0296
GoogLeNet 0,0255 0,0144 0,0018 0,0139
ResNet18 0,0219 0,0285 0,0109 0,0204
ResNet50 0,0247 0,0053 0,0047 0,0116

Fonte: Autor (2019)

Os resultados mostram que as médias das diferenças de acurácias ficam entre 1% e
3%. Considerando os tempos de treinamento similares mostrados na figura 11 e as baixas
diferenças de acurácia evidencias na tabela 17 é possível concluir que não há uma perda
significativa na escolha da região periocular ao invés do rosto inteiro. Assim, a escolha de
uma região ou outra depende de outros fatores como facilidade de disfarce e estabilidade
da região.

5.5.4 Olhos invertidos

As imagens das regiões perioculares esquerda e direita foram invertidas e utilizadas
na avaliação de desempenho das redes. Isso foi adotado porque, nas técnicas de image
augmentation utilizadas para aumentar a quantidade de imagens de treinamento de CNNs,
a inversão (flip) de imagens é uma das opções. Desta forma, pretende-se avaliar se é
possível usar apenas imagens de uma das regiões perioculares e aumentar os dados para se
fazer a identificação de ambas. Para que esta forma de aumento de dados seja possível,
é necessário que ambas as regiões perioculares tenham características similares, porem
invertidas. Assim, a intenção deste trabalho foi avaliar a similaridade das características
dos olhos opostos, verificando se é possível utilizar um olho para o treinamento e o olho
oposto invertido no teste. O Tipo de Teste da figura 12 pode ser detalhado como:

• Mesmo Olho: médias das acurácias obtidas pelas 4 redes avaliadas quando o treina-
mento e o teste são realizados com imagens de olhos da mesma região da face, ou
seja, treinamento e teste com apenas imagens de olhos esquerdos e treinamento e
teste com apenas imagens de olhos direitos.

• Olho Oposto: médias das acurácias obtidas pelas 4 redes avaliadas quando o trei-
namento e o teste são realizados com imagens de olhos de regiões opostas da face,
ou seja, treinamento com apenas imagens de olhos esquerdos e teste com imagens
de olhos direitos, e treinamento com apenas imagens de olhos direitos e teste com
imagens de olhos esquerdos.
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• Mesmo Olho Invertido: médias das acurácias obtidas pelas 4 redes avaliadas quando
o treinamento é realizado com imagens de olhos de uma região da face e o teste é
realizado com imagens de olhos desta mesma região mas invertido por software, ou
seja, treinamento com apenas imagens de olhos esquerdos e teste com imagens de
olhos esquerdos invertidos e treinamento com imagens de olhos direitos e teste com
apenas imagens de olhos direitos invertidos (flip).

• Olho Oposto Invertido: médias das acurácias obtidas pelas 4 redes avaliadas quando
o treinamento é realizado com imagens de olhos de uma região da face e o teste é
realizado com imagens de olhos da outra região mas invertido por software, ou seja,
treinamento com apenas imagens de olhos esquerdos e teste com imagens de olhos
direitos invertidos e treinamento com imagens de olhos direitos e teste com apenas
imagens de olhos esquerdos invertidos (flip).

Para montar o gráfico da figura 12 foram feitas as médias para cada item acima.
Dessa forma o item "mesmo olho"terá o valor obtido do treinamento e teste de imagens
do olho esquerdo somado ou valor do treinamento e teste de imagens do olho direito,
divido por dois. Neste gráfico é possível observar que os resultados mostram baixos níveis
de acerto, entre 38% e 55%, em todas as redes quando esta é treinada com imagens de
um olho e o teste é realizado com imagens do outro olho invertido. Resultados ainda
mostraram níveis de acurácia média entre 79% e 89% para treinamento com um olho e
teste com o mesmo olho invertido.
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Figura 12: Acurácia média, por CNN, relativa ao mesmo olho, olho oposto, mesmo olho
invertido e olho oposto invertido

Fonte: Autor (2019)

Estes resultados mostram que as características de cada olho são individuais e
vão além da rotação da imagem. Este fato fica evidente nos altos valores de acerto para
classificação do mesmo olho, porém invertido, e dos baixos valores de acerto para o olho
oposto, também invertido. Os resultados mostram ainda valores levemente mais altos de
acerto com resultados obtidos com o olho oposto invertido em relação ao olho oposto
sem inversão. Isso mostra que, apesar de um olho esquerdo invertido "parecer"um olho
direito, a rede não o classifica corretamente quando for treinada com olhos de apenas
uma região da face, e receber na fase de teste olhos da outra região da face, invertido
ou não. Testar olhos invertidos em redes treinadas com olhos diretos causa apenas um
pequeno ganho de acurácia em relação ao teste direto com olhos opostos esquerdo/direito
ou direito/esquerdo.
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6 CONCLUSÃO

Reconhecimento biométrico de pessoas é uma área de estudo que vem se desen-
volvendo muito por conta da crescente busca por formas de identificação mais seguras.
Recentemente, as Redes Neurais Convolucionais (Convolutional Neural Networks – CNN)
surgiram como o novo estado-da-arte para reconhecimento de padrões, exemplificado
por resultados notáveis na classificação de imagens, detecção e segmentação. A chave
para seu sucesso é a capacidade de alavancar grandes conjuntos de dados rotulados para
aprender cada vez mais transformações complexas da entrada e capturar invariâncias. No
entanto, em algumas aplicações, como no reconhecimento biométrico, a quantidade de
imagens rotuladas necessárias para treinar uma CNN "do zero", nem sempre está disponível.
As CNNs treinadas em grandes conjuntos de dados geram extratores de características
polivalentes e transferíveis para outros domínios. A transferência de domínio em CNNs
geralmente é conseguida utilizando-se como características a saída de uma camada da
rede profunda e totalmente conectada. Com o uso de transfer learning, CNNs podem ser
rapidamente implementadas e facilmente adaptadas para aplicações em outros domínios,
como no caso de reconhecimento biométrico periocular.

O objetivo geral deste trabalho foi o de avaliar o desempenho de CNNs previamente
treinadas em grandes bases de dados, fazendo-se um ajuste fino para o reconhecimento da
região periocular de faces humanas, utilizando-se a técnica de transfer learning. Como no
caso de bases de dados pequenas, prevê-se sempre o uso do aumento de dados visando
melhorar o desempenho da rede, os experimentos propostos neste trabalho visaram avaliar
também se a inversão (flip) de imagens de olhos de uma região da face (esquerda ou direita)
pode ser usada com boa acurácia no reconhecimento de olhos de outra região da face
(direita ou esquerda). Os resultados mostraram que olho esquerdo (ou direito) invertido
não é reconhecido como seu oposto, ou seja, se uma rede foi treinada com periocular
esquerda a CNN falha em reconhecer perioculares direitas invertidas, e vice-versa. No
entanto, as CNNs avaliadas demonstraram bom desempenho de reconhecimento quando
um olho invertido é testado em uma rede treinada com olhos do mesmo lado da face.
Ou seja, as redes acertam mais de 90% das imagens quando treinadas com ambos os
olhos e sem inversão. Mas, acertam entre 80% e 90% das imagens quando treinadas com
perioculares do mesmo lado das imagens de teste invertidas, ou seja, reconhece bem olho
direito (ou esquerdo) invertido se treinada com imagens do mesmo tipo sem inversão.

Foi também analisado o desempenho da utilização da região periocular para se fazer
a biometria, comparando redes treinadas com rosto inteiro e com a região periocular. Os
resultados evidenciam que usar a região periocular não diminui significativamente a acurácia
das redes, com perdas médias entre 1% e 3%, mostrando que esta tem características
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discriminativas suficientes para o reconhecimento biométrico. Considerando vantagens
como a estabilidade da região e facilidade de aquisição de imagens, conclui-se que a região
periocular é uma alternativa viável ao uso da face inteira.

6.1 Sugestões para trabalhos futuros

Parte deste trabalho se dedicou a analise de algoritmos treinados com imagens de
um olho, e testadas com o olho oposto invertido. Apesar dos valores obtidos mostrarem
que cada olho possui características discriminativas distintas, ainda não foi descartado
completamente a hipótese de uma melhora no desempenho da CNN utilizando aumento
de dados com inversão das imagens. Desta forma, trabalhos futuros poderiam analisar
mais a fundo como as diversas formas de aumento de dados interferem no reconhecimento
da região periocular.
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APÊNDICE A – ALGORITMO PARA DIVISÃO DOS GRUPOS

1 f unc t i on f l i pandd iv701515
2 c l e a r a l l ;
3

4

5 Dir = d i r ( ’C:\ Users \Convidado\Desktop\ Lah i r i \Base\Olhos \3Canais \
Esq ’ ) ;

6 NumCat = sum ( [ Dir (~ ismember ({ Dir . name} ,{ ’ . ’ , ’ . . ’ }) ) . i s d i r ] )
7

8 f o r i = 0 :NumCat − 1
9 i

10 iPasta = s p r i n t f ( ’%d ’ , i ) ;
11 i f i <100
12 iPasta = s p r i n t f ( ’0%d ’ , i ) ;
13 end
14 i f i <10
15 iPasta = s p r i n t f ( ’00%d ’ , i ) ;
16 end
17 s t r = [ ’C:\ Users \Convidado\Desktop\ Lah i r i \Base\Olhos \3Canais

\Esq\ ’ iPasta ] ;
18 Dir = d i r ( [ s t r ’ /∗ . jpg ’ ] ) ;
19 NumFotos = numel ( Dir ) ;
20 j l im70 = round (0 . 7∗NumFotos ) − 1 ;
21 j l im85 = round (0 . 85∗NumFotos ) − 1 ;
22 f o r j = 0 :NumFotos − 1
23

24 iFoto = s p r i n t f ( ’%d ’ , j ) ;
25

26 c l e a r f l i p f t ;
27 c l e a r Data ;
28

29 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\Olhos \3
Canais \Esq\ ’ iPasta ’ \p ’ iPasta ’ f ’ iFoto ’E . jpg ’ ] ;

30

31 Data = imread ( s t r f t ) ;
32 f l i p f t = f l i p (Data , 2 ) ;
33
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34 i f j<j l im70
35

36 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais70\Esq\ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;

37 imwrite (Data , s t r f t ) ;
38

39 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais70\ Esq f l i p \ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;

40 imwrite ( f l i p f t , s t r f t ) ;
41

42 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais70\Ambos\ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;

43 imwrite (Data , s t r f t ) ;
44

45 e l s e i f j>j l im85
46

47 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais15v\Esq\ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;

48 imwrite (Data , s t r f t ) ;
49

50 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais15v\ Esq f l i p \ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;

51 imwrite ( f l i p f t , s t r f t ) ;
52

53 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais15v\Ambos\ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;

54 imwrite (Data , s t r f t ) ;
55 e l s e
56

57

58 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais15t \Esq\ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;
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59 imwrite (Data , s t r f t ) ;
60

61 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais15t \ E sq f l i p \ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;

62 imwrite ( f l i p f t , s t r f t ) ;
63

64 s t r f t = [ ’C: \ Users \Convidado\Desktop\ Lah i r i \Base\
Olhos \3Canais15t \Ambos\ ’ iPasta ’ \p ’ iPasta ’ f ’
iFoto ’E. jpg ’ ] ;

65 imwrite (Data , s t r f t ) ;
66

67 end
68

69 end
70 end
71

72 end
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APÊNDICE B – ALGORITMO DE TRANSFER LEARNING DA ALEXNET

1 f unc t i on AlexNet
2

3 %Carregando as imagens
4

5 imdsTrain = imageDatastore ( ’C:\ Users \Convidado\Desktop\ Lah i r i \
Base\Olhos \3Canais70\Ambos ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

6 imdsTrainof = imageDatastore ( ’C: \ Users \Convidado\Desktop\ Lah i r i \
Base\Olhos \3Canais15t \Ambos ’ , ’ I n c ludeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

7

8 imdsValidationA = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Ambos ’ , ’ I n c ludeSub fo ld e r s ’ , true ,
’ LabelSource ’ , ’ fo ldernames ’ ) ;

9 imdsVal idationE = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Esq ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

10 imdsValidationD = imageDatastore ( ’C: \ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

11 imdsVal idat ionEf = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\ Esq f l i p ’ , ’ I n c l udeSub fo ld e r s ’ ,
true , ’ LabelSource ’ , ’ fo ldernames ’ ) ;

12 imdsVal idat ionDf = imageDatastore ( ’C: \ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\ D i r f l i p ’ , ’ I n c ludeSub fo ld e r s ’ ,
true , ’ LabelSource ’ , ’ fo ldernames ’ ) ;

13

14

15 %Carregando a AlexNet
16 net = a l exne t ;
17

18 %Parametros para a rede
19 i nputS i z e = net . Layers (1 ) . InputS i ze ;
20 numClasses = numel ( c a t e g o r i e s ( imdsTrain . Labe ls ) ) ;
21

22 %Adaptacao da AlexNet para o problema e s c o l h i d o
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23 l aye r saux = net . Layers ( 1 : end−3) ;
24 l a y e r s = [
25 l aye r saux
26 fu l lyConnectedLayer ( numClasses , ’WeightLearnRateFactor ’ ,20 , ’

BiasLearnRateFactor ’ , 20)
27 softmaxLayer
28 c l a s s i f i c a t i o n L a y e r ] ;
29

30 %Redimensionamento das imagens
31

32 augimdsTrain = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) , imdsTrain ,
’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

33

34 augimdsTrainof = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsTrainof , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

35

36 augimdsValidationA = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationA , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

37 augimdsValidationE = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationE , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

38 augimdsValidationD = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationD , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

39 augimdsVal idat ionEf = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsVal idat ionEf , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

40 augimdsVal idationDf = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationDf , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

41

42 %Setando as Opcoes de tre inamento
43 opt ions = tra in ingOpt ions ( ’ sgdm ’ , . . .
44 ’ MiniBatchSize ’ ,10 , . . .
45 ’MaxEpochs ’ , 6 , . . .
46 ’ I n i t i a lL ea rnRat e ’ ,1 e−4, . . .
47 ’ Val idat ionData ’ , augimdsTrainof , . . .
48 ’ Val idat ionFrequency ’ ,3 , . . .
49 ’ Va l ida t i onPat i ence ’ , In f , . . .
50 ’ Verbose ’ , f a l s e , . . .
51 ’ P lo t s ’ , ’ t r a in ing−prog r e s s ’ ) ;
52

53
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54 %Treinamento
55 netTrans f e r = trainNetwork ( augimdsTrain , l aye r s , opt ions ) ;
56

57

58 %A c u r c i a s
59 [ YPredA , scoresA ] = c l a s s i f y ( netTrans fer , augimdsValidationA ) ;
60

61 YValidationA = imdsValidationA . Labe ls ;
62 accuracyA = mean(YPredA == YValidationA )
63

64 [ YPredE , scoresE ] = c l a s s i f y ( netTrans fer , augimdsValidationE ) ;
65

66 YValidationE = imdsVal idationE . Labels ;
67 accuracyE = mean(YPredE == YValidationE )
68

69 [ YPredD , scoresD ] = c l a s s i f y ( netTrans fer , augimdsValidationD ) ;
70

71 YValidationD = imdsValidationD . Labels ;
72 accuracyD = mean(YPredD == YValidationD )
73

74 [ YPredEf , s c o r e sE f ] = c l a s s i f y ( netTrans fer , augimdsVal idat ionEf ) ;
75

76 YValidationEf = imdsVal idat ionEf . Labels ;
77 accuracyEf = mean(YPredEf == YValidationEf )
78

79 [ YPredDf , s co re sDf ] = c l a s s i f y ( netTrans fer , augimdsVal idationDf ) ;
80

81 YValidationDf = imdsValidationD . Labe ls ;
82 accuracyDf = mean(YPredDf == YValidationDf )
83 end
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APÊNDICE C – ALGORITMO DE TRANSFER LEARNING DA GOOGLENET

1 f unc t i on GoogleNet
2

3

4 %Carregando as imagens
5 imdsTrain = imageDatastore ( ’C:\ Users \Convidado\Desktop\ Lah i r i \

Base\Olhos \3Canais70\Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

6 imdsTrainof = imageDatastore ( ’C: \ Users \Convidado\Desktop\ Lah i r i \
Base\Olhos \3Canais15t \Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

7

8 imdsValidationA = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Ambos ’ , ’ I n c ludeSub fo ld e r s ’ , true ,
’ LabelSource ’ , ’ fo ldernames ’ ) ;

9 imdsVal idationE = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Esq ’ , ’ I n c ludeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

10 imdsValidationD = imageDatastore ( ’C: \ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

11 imdsVal idat ionEf = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\ Esq f l i p ’ , ’ I n c l udeSub fo ld e r s ’ ,
true , ’ LabelSource ’ , ’ fo ldernames ’ ) ;

12 imdsVal idat ionDf = imageDatastore ( ’C: \ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\ D i r f l i p ’ , ’ I n c ludeSub fo ld e r s ’ ,
true , ’ LabelSource ’ , ’ fo ldernames ’ ) ;

13

14 %Carregando a GoogLeNet
15 net = goog l ene t ;
16

17 %Parametros para a rede
18 i nputS i z e = net . Layers (1 ) . InputS i ze ;
19 numClasses = numel ( c a t e g o r i e s ( imdsTrain . Labe ls ) ) ;
20

21 %Adaptacao da GoogleNet para o problema e s c o l h i d o
22 l g raph = layerGraph ( net ) ;
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23 l g raph = removeLayers ( lgraph , { ’ l o s s3−c l a s s i f i e r ’ , ’ prob ’ , ’ output
’ }) ;

24 newLayers = [
25 fu l lyConnectedLayer ( numClasses , ’Name ’ , ’ f c ’ , ’

WeightLearnRateFactor ’ ,20 , ’ BiasLearnRateFactor ’ ,20)
26 softmaxLayer ( ’Name ’ , ’ softmax ’ )
27 c l a s s i f i c a t i o n L a y e r ( ’Name ’ , ’ c l a s s ou tput ’ ) ] ;
28 l g raph = addLayers ( lgraph , newLayers ) ;
29 l g raph = connectLayers ( lgraph , ’ pool5−drop_7x7_s1 ’ , ’ f c ’ ) ;
30

31 %Redimensionamento das imagens
32 augimdsTrain = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) , imdsTrain ,

’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;
33 augimdsTrainof = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,

imdsTrainof , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;
34

35 augimdsValidationA = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationA , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

36 augimdsValidationE = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationE , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

37 augimdsValidationD = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationD , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

38 augimdsVal idat ionEf = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsVal idat ionEf , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

39 augimdsVal idationDf = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationDf , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

40

41 %Setando as Opcoes de tre inamento
42 opt ions = tra in ingOpt ions ( ’ sgdm ’ , . . .
43 ’ MiniBatchSize ’ ,10 , . . .
44 ’MaxEpochs ’ , 6 , . . .
45 ’ I n i t i a lL ea rnRat e ’ ,1 e−4, . . .
46 ’ Val idat ionData ’ , augimdsTrainof , . . .
47 ’ Val idat ionFrequency ’ ,3 , . . .
48 ’ Va l ida t i onPat i ence ’ , In f , . . .
49 ’ Verbose ’ , f a l s e , . . .
50 ’ P lo t s ’ , ’ t r a in ing−prog r e s s ’ ) ;
51

52 %Treinamento
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53 netTrans f e r = trainNetwork ( augimdsTrain , lgraph , opt ions ) ;
54

55 %A c u r c i a s
56 [ YPredA , scoresA ] = c l a s s i f y ( netTrans fer , augimdsValidationA ) ;
57

58 YValidationA = imdsValidationA . Labe ls ;
59 accuracyA = mean(YPredA == YValidationA )
60

61 [ YPredE , scoresE ] = c l a s s i f y ( netTrans fer , augimdsValidationE ) ;
62

63 YValidationE = imdsVal idationE . Labels ;
64 accuracyE = mean(YPredE == YValidationE )
65

66 [ YPredD , scoresD ] = c l a s s i f y ( netTrans fer , augimdsValidationD ) ;
67

68 YValidationD = imdsValidationD . Labels ;
69 accuracyD = mean(YPredD == YValidationD )
70

71 [ YPredEf , s c o r e sE f ] = c l a s s i f y ( netTrans fer , augimdsVal idat ionEf ) ;
72

73 YValidationEf = imdsVal idat ionEf . Labels ;
74 accuracyEf = mean(YPredEf == YValidationEf )
75

76 [ YPredDf , s co re sDf ] = c l a s s i f y ( netTrans fer , augimdsVal idationDf ) ;
77

78 YValidationDf = imdsValidationD . Labels ;
79 accuracyDf = mean(YPredDf == YValidationDf )
80

81 end
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APÊNDICE D – ALGORITMO DE TRANSFER LEARNING DA RESNET18

1 f unc t i on ResNet18
2

3

4 %Carregando as imagens
5 imdsTrain = imageDatastore ( ’C:\ Users \Convidado\Desktop\ Lah i r i \

Base\Olhos \3Canais70\Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

6 imdsTrainof = imageDatastore ( ’C: \ Users \Convidado\Desktop\ Lah i r i \
Base\Olhos \3Canais15t \Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

7

8 imdsValidationA = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Ambos ’ , ’ I n c ludeSub fo ld e r s ’ , true ,
’ LabelSource ’ , ’ fo ldernames ’ ) ;

9 imdsVal idationE = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Esq ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

10 imdsValidationD = imageDatastore ( ’C: \ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

11 imdsVal idat ionEf = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\ Esq f l i p ’ , ’ I n c l udeSub fo ld e r s ’ ,
true , ’ LabelSource ’ , ’ fo ldernames ’ ) ;

12 imdsVal idat ionDf = imageDatastore ( ’C: \ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\ D i r f l i p ’ , ’ I n c ludeSub fo ld e r s ’ ,
true , ’ LabelSource ’ , ’ fo ldernames ’ ) ;

13

14 %Carregando a ResNet18
15 net = re sne t18 ;
16

17 %Parametros para a rede
18 i nputS i z e = net . Layers (1 ) . InputS i ze ;
19 numClasses = numel ( c a t e g o r i e s ( imdsTrain . Labe ls ) ) ;
20

21 %Adaptacao da ResNet18 para o problema e s c o l h i d o
22 l g raph = layerGraph ( net ) ;
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23 l g raph = removeLayers ( lgraph , { ’ f c1000 ’ , ’ prob ’ , ’
C l a s s i f i c a t i o nLay e r_p r ed i c t i o n s ’ }) ;

24 newLayers = [
25 fu l lyConnectedLayer ( numClasses , ’Name ’ , ’ f c ’ , ’

WeightLearnRateFactor ’ ,20 , ’ BiasLearnRateFactor ’ ,20)
26 softmaxLayer ( ’Name ’ , ’ smax ’ )
27 c l a s s i f i c a t i o n L a y e r ( ’Name ’ , ’ c l a s s ou tput ’ ) ] ;
28 l g raph = addLayers ( lgraph , newLayers ) ;
29 l g raph = connectLayers ( lgraph , ’ pool5 ’ , ’ f c ’ ) ;
30

31 %Redimensionamento das imagens
32

33 augimdsTrain = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) , imdsTrain ,
’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

34 augimdsTrainof = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsTrainof , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

35

36 augimdsValidationA = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationA , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

37 augimdsValidationE = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationE , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

38 augimdsValidationD = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationD , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

39 augimdsVal idat ionEf = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsVal idat ionEf , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

40 augimdsVal idationDf = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationDf , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

41

42 %Setando as Opcoes de tre inamento
43 opt ions = tra in ingOpt ions ( ’ sgdm ’ , . . .
44 ’ MiniBatchSize ’ ,10 , . . .
45 ’MaxEpochs ’ , 6 , . . .
46 ’ I n i t i a lL ea rnRat e ’ ,1 e−4, . . .
47 ’ Val idat ionData ’ , augimdsTrainof , . . .
48 ’ Val idat ionFrequency ’ ,3 , . . .
49 ’ Va l ida t i onPat i ence ’ , In f , . . .
50 ’ Verbose ’ , f a l s e , . . .
51 ’ P lo t s ’ , ’ t r a in ing−prog r e s s ’ ) ;
52
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53 %Treinamento
54 netTrans f e r = trainNetwork ( augimdsTrain , lgraph , opt ions ) ;
55

56 %A c u r c i a s
57 [ YPredA , scoresA ] = c l a s s i f y ( netTrans fer , augimdsValidationA ) ;
58

59 YValidationA = imdsValidationA . Labe ls ;
60 accuracyA = mean(YPredA == YValidationA )
61

62 [ YPredE , scoresE ] = c l a s s i f y ( netTrans fer , augimdsValidationE ) ;
63

64 YValidationE = imdsVal idationE . Labels ;
65 accuracyE = mean(YPredE == YValidationE )
66

67 [ YPredD , scoresD ] = c l a s s i f y ( netTrans fer , augimdsValidationD ) ;
68

69 YValidationD = imdsValidationD . Labels ;
70 accuracyD = mean(YPredD == YValidationD )
71

72 [ YPredEf , s c o r e sE f ] = c l a s s i f y ( netTrans fer , augimdsVal idat ionEf ) ;
73

74 YValidationEf = imdsVal idat ionEf . Labels ;
75 accuracyEf = mean(YPredEf == YValidationEf )
76

77 [ YPredDf , s co re sDf ] = c l a s s i f y ( netTrans fer , augimdsVal idationDf ) ;
78

79 YValidationDf = imdsValidationD . Labe ls ;
80 accuracyDf = mean(YPredDf == YValidationDf )
81

82 end
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APÊNDICE E – ALGORITMO DE TRANSFER LEARNING DA RESNET50

1 f unc t i on ResNet50
2

3

4 %Carregando as imagens
5 imdsTrain = imageDatastore ( ’C:\ Users \Convidado\Desktop\ Lah i r i \

Base\Olhos \3Canais70\Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

6 imdsTrainof = imageDatastore ( ’C: \ Users \Convidado\Desktop\ Lah i r i \
Base\Olhos \3Canais15t \Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

7

8 imdsValidationA = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Ambos ’ , ’ I n c ludeSub fo ld e r s ’ , true ,
’ LabelSource ’ , ’ fo ldernames ’ ) ;

9 imdsVal idationE = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Esq ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

10 imdsValidationD = imageDatastore ( ’C: \ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\Dir ’ , ’ I n c l udeSub fo ld e r s ’ , true , ’
LabelSource ’ , ’ fo ldernames ’ ) ;

11 imdsVal idat ionEf = imageDatastore ( ’C:\ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\ Esq f l i p ’ , ’ I n c l udeSub fo ld e r s ’ ,
true , ’ LabelSource ’ , ’ fo ldernames ’ ) ;

12 imdsVal idat ionDf = imageDatastore ( ’C: \ Users \Convidado\Desktop\
Lah i r i \Base\Olhos \3Canais15v\ D i r f l i p ’ , ’ I n c ludeSub fo ld e r s ’ ,
true , ’ LabelSource ’ , ’ fo ldernames ’ ) ;

13

14 %Carregando a ResNet50
15 net = re sne t50 ;
16

17 %Parametros para a rede
18 i nputS i z e = net . Layers (1 ) . InputS i ze ;
19 numClasses = numel ( c a t e g o r i e s ( imdsTrain . Labe ls ) ) ;
20

21 %Adaptacao da ResNet50 para o problema e s c o l h i d o
22 l g raph = layerGraph ( net ) ;
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23 l g raph = removeLayers ( lgraph , { ’ f c1000 ’ , ’ fc1000_softmax ’ , ’
C l a s s i f i c a t i onLaye r_ f c1000 ’ }) ;

24 newLayers = [
25 fu l lyConnectedLayer ( numClasses , ’Name ’ , ’ f c ’ , ’

WeightLearnRateFactor ’ ,20 , ’ BiasLearnRateFactor ’ ,20)
26 softmaxLayer ( ’Name ’ , ’ smax ’ )
27 c l a s s i f i c a t i o n L a y e r ( ’Name ’ , ’ c l a s s ou tput ’ ) ] ;
28 l g raph = addLayers ( lgraph , newLayers ) ;
29 l g raph = connectLayers ( lgraph , ’ avg_pool ’ , ’ f c ’ ) ;
30

31 %Redimensionamento das imagens
32

33 augimdsTrain = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) , imdsTrain ,
’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

34 augimdsTrainof = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsTrainof , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

35

36 augimdsValidationA = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationA , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

37 augimdsValidationE = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationE , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

38 augimdsValidationD = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationD , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

39 augimdsVal idat ionEf = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsVal idat ionEf , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

40 augimdsVal idationDf = augmentedImageDatastore ( inputS i z e ( 1 : 2 ) ,
imdsValidationDf , ’ Co lo rPreproce s s ing ’ , ’ gray2rgb ’ ) ;

41

42 %Setando as Opcoes de tre inamento
43 opt ions = tra in ingOpt ions ( ’ sgdm ’ , . . .
44 ’ MiniBatchSize ’ ,10 , . . .
45 ’MaxEpochs ’ , 6 , . . .
46 ’ I n i t i a lL ea rnRat e ’ ,1 e−4, . . .
47 ’ Val idat ionData ’ , augimdsTrainof , . . .
48 ’ Val idat ionFrequency ’ ,3 , . . .
49 ’ Va l ida t i onPat i ence ’ , In f , . . .
50 ’ Verbose ’ , f a l s e , . . .
51 ’ P lo t s ’ , ’ t r a in ing−prog r e s s ’ ) ;
52
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53 %Treinamento
54 netTrans f e r = trainNetwork ( augimdsTrain , lgraph , opt ions ) ;
55

56 %A c u r c i a s
57 [ YPredA , scoresA ] = c l a s s i f y ( netTrans fer , augimdsValidationA ) ;
58

59 YValidationA = imdsValidationA . Labe ls ;
60 accuracyA = mean(YPredA == YValidationA )
61

62 [ YPredE , scoresE ] = c l a s s i f y ( netTrans fer , augimdsValidationE ) ;
63

64 YValidationE = imdsVal idationE . Labels ;
65 accuracyE = mean(YPredE == YValidationE )
66

67 [ YPredD , scoresD ] = c l a s s i f y ( netTrans fer , augimdsValidationD ) ;
68

69 YValidationD = imdsValidationD . Labels ;
70 accuracyD = mean(YPredD == YValidationD )
71

72 [ YPredEf , s c o r e sE f ] = c l a s s i f y ( netTrans fer , augimdsVal idat ionEf ) ;
73

74 YValidationEf = imdsVal idat ionEf . Labels ;
75 accuracyEf = mean(YPredEf == YValidationEf )
76

77 [ YPredDf , s co re sDf ] = c l a s s i f y ( netTrans fer , augimdsVal idationDf ) ;
78

79 YValidationDf = imdsValidationD . Labe ls ;
80 accuracyDf = mean(YPredDf == YValidationDf )
81

82 end


