
Abordagens de aprendizado de máquina na seleção
de genótipos de maracujazeiro amarelo resistentes

ao CABMV

Deurimar Herênio Gonçalves Júnior
Monografia - MBA em Inteligência Artificial e Big Data

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ____________________

Deurimar Herênio Gonçalves Júnior

Abordagens de aprendizado de máquina na seleção de
genótipos de maracujazeiro amarelo resistentes ao

CABMV

Monografia apresentada ao Departamento
de Ciências de Computação do
Instituto de Ciências Matemáticas
e de Computação, Universidade de São
Paulo - ICMC/USP, como parte dos
requisitos para obtenção do título de
Especialista em Inteligência Artificial e
Big Data.

Área de concentração: Inteligência
Artificial

Orientador: Prof. Dr. Ricardo Cerri

Versão original

São Carlos
2025

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO PARA
FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi, ICMC/USP, com os
dados fornecidos pelo(a) autor(a)

Gonçalves Júnior, Deurimar Herênio
S856m Abordagens de aprendizado de máquina na seleção de ge-

nótipos de maracujazeiro amarelo resistentes ao CABMV /
Deurimar Herênio Gonçalves Júnior ; orientador Ricardo
Cerri. – São Carlos, 2025.

103 p. : il. (algumas color.) ; 30 cm.

Monografia (MBA em Inteligência Artificial e Big Data) –
Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, 2025.

1. LaTeX. 2. abnTeX. 3. Classe USPSC. 4. Editoração de
texto. 5. Normalização da documentação. 6. Tese. 7. Disserta-
ção. 8. Documentos (elaboração). 9. Documentos eletrônicos.
I. Cerri, Ricardo, orient. II. Título.

Deurimar Herênio Gonçalves Júnior

Abordagens de aprendizado de máquina na seleção de
genótipos de maracujazeiro amarelo resistentes ao

CABMV

Monograph presented to the
Departamento de Ciências de
Computação do Instituto de Ciências
Matemáticas e de Computação,
Universidade de São Paulo - ICMC/USP,
as part of the requirements for obtaining
the title of Specialist in Artificial
Intelligence and Big Data.

Concentration area: Artificial Intelligence

Advisor: Prof. Dr. Ricardo Cerri

Original version

São Carlos
2025

RESUMO

Gonçalves Júnior, D. H. Abordagens de aprendizado de máquina na
seleção de genótipos de maracujazeiro amarelo resistentes ao CABMV.
2025. 103p. Monografia (MBA em Inteligência Artificial e Big Data) - Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos,
2025.

A investigação conduzida neste estudo focou na aplicação de algoritmos de apren-
dizado de máquina para a seleção de genótipos de maracujazeiro amarelo com
resistência ao cowpea aphid-borne mosaic virus (CABMV), um dos principais
entraves à produtividade dessa cultura. O objetivo central consistiu em desenvolver
uma metodologia eficaz para classificar genótipos quanto à resistência e produtivi-
dade, empregando um conjunto de dados composto por 87 genótipos avaliados em
condições de campo. A metodologia adotada integrou etapas de aprendizado não
supervisionado, utilizando o algoritmo K-Means para agrupamento dos genótipos,
seguidas de aprendizado supervisionado com a aplicação de diversos algoritmos, in-
cluindo Regressão Logística, Árvore de Decisão, Random Forest, Gradient Boosting,
AdaBoost, SVM, KNN, Redes Neurais Artificiais (RNA) e Naive Bayes. A avaliação
dos modelos foi realizada com base em métricas consolidadas, tais como acurácia,
precisão, recall e F1-Score. Os resultados obtidos evidenciaram um desempenho
notável de múltiplos algoritmos, com ênfase no Naive Bayes, que atingiu 100%
em todas as métricas analisadas. Algoritmos como Regressão Logística, Árvore de
Decisão, Random Forest, Gradient Boosting, SVM e RNA apresentaram desem-
penho consistente, alcançando acurácia de 94%. Por sua vez, AdaBoost e KNN
registraram acurácias de 88% e 89%, respectivamente. Entre as variáveis analisadas,
a área abaixo da curva de progresso da doença (AACPD), o número de frutos e o
rendimento de polpa emergiram como fatores determinantes para a classificação.
Conclui-se, portanto, que os algoritmos de aprendizado de máquina constituem uma
ferramenta robusta e precisa para otimizar programas de melhoramento genético,
viabilizando a seleção eficiente de genótipos resistentes e produtivos.

Palavras-chave: Algoritmo supervisionado; Inteligência artificial; Melhoramento

genético; Naive Bayes.

ABSTRACT

Gonçalves Júnior, D. H. Machine learning approaches in the selection of
yellow passion fruit genotypes resistant to CABMV. 2025. 103p.
Monograph (MBA in Artificial Intelligence and Big Data) - Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2025.

The investigation conducted in this study focused on the application of machine
learning algorithms for the selection of yellow passion fruit genotypes resistant
to cowpea aphid-borne mosaic virus (CABMV), one of the main obstacles to
the productivity of this crop. The central objective was to develop an effective
methodology for classifying genotypes in terms of resistance and productivity,
using a dataset composed of 87 genotypes evaluated under field conditions. The
adopted methodology integrated unsupervised learning steps, employing the K-
Means algorithm for genotype clustering, followed by supervised learning with the
application of various algorithms, including Logistic Regression, Decision Tree,
Random Forest, Gradient Boosting, AdaBoost, SVM, KNN, Artificial Neural
Networks (ANN), and Naive Bayes. Model evaluation was conducted based on
established metrics, such as accuracy, precision, recall, and F1-Score. The results
demonstrated remarkable performance across multiple algorithms, with Naive Bayes
standing out by achieving 100% in all analyzed metrics. Algorithms such as Logistic
Regression, Decision Tree, Random Forest, Gradient Boosting, SVM, and ANN
showed consistent performance, reaching an accuracy of 94%. Meanwhile, AdaBoost
and KNN achieved accuracies of 88% and 89%, respectively. Among the analyzed
variables, the area under the disease progress curve (AUDPC), the number of fruits,
and pulp yield emerged as determining factors for classification. It is concluded,
therefore, that machine learning algorithms constitute a robust and precise tool
for optimizing genetic improvement programs, enabling the efficient selection of
resistant and productive genotypes.

Keywords: Supervised algorithms; Artificial Intelligence; Genetic breeding; Naive
Bayes.

LISTA DE FIGURAS

Figura 1 – Estágios de desenvolvimento do modelo. 47

Figura 2 – Curva do cotovelo mostrando a inércia em função do número de
clusters para o algoritmo K-Means. 58

Figura 3 – Gráfico do Índice de Silhouette Score para diferentes números
de clusters (k). 60

Figura 4 – Índice Calinski-Harabasz para diferentes números de clusters (k)
(1 a 10). 61

Figura 5 – Clusters gerados pelo algoritmo K-Means. 63

Figura 6 – Desempenho dos Algoritmos de Classificação. AdaBoost (Adap-
tive Boosting); SVM (Support Vector Machine); KNN (K-Nearest
Neighbors); RNA MLP (Redes Neurais Artificiais - Multilayer
Perceptron); GaussianNB (Gaussian Naive Bayes). 76

Figura 7 – Matrizes de Confusão dos Algoritmos de classificação. AdaBo-
ost (Adaptive Boosting); SVM (Support Vector Machine); KNN
(K-Nearest Neighbors); RNA MLP (Redes Neurais Artificiais -
Multilayer Perceptron); GaussianNB (Gaussian Naive Bayes). . 79

Figura 8 – Curvas ROC para o RNA MLP (A) e o GaussianNB (B). 81

Figura 9 – Curvas de aprendizado para o RNA MLP (A) e o GaussianNB
(B). 83

Figura 10 – Gráficos de distribuição (KDE - Kernel Density Estimation)
para diferentes características do conjunto de dados. AACPDM
(Área Abaixo da Curva de Progresso da Doença), NF (Número
de Frutos), PT (Peso Total dos Frutos), Comp (Comprimento
Médio do Fruto), Diam (Diâmetro do Fruto), Ind_form (Índice
de Formato do Fruto), PF (Peso de Fruto), PPB (Peso da Polpa
por Fruto), RP (Rendimento de Polpa), EC (Espessura da Casca)
e BRIX (Teor de Sólidos Solúveis Totais). 85

Figura 11 – Análise da importância das variáveis para a classificação de ge-
nótipos. (A) Diferença entre as médias das classes para cada
variável, ordenadas em ordem decrescente de importância. (B)
Importância das variáveis calculada por permutação, ordenadas
em ordem decrescente de importância. (C) Correlação de Spear-
man entre os postos das variáveis, representada em um heatmap.
AACPDM (Área Abaixo da Curva de Progresso da Doença),
NF (Número de Frutos), PT (Peso Total dos Frutos), Comp
(Comprimento Médio do Fruto), Diam (Diâmetro do Fruto),
Ind_form (Índice de Formato do Fruto), PF (Peso de Fruto),
PPB (Peso da Polpa por Fruto), RP (Rendimento de Polpa), EC
(Espessura da Casca) e BRIX (Teor de Sólidos Solúveis Totais). 89

Figura 12 – Heatmap de correlação de Spearman entre variáveis preditoras
e classes alvo. Valores positivos (azul) indicam associação com
a classe "Resistente e Produtivo", enquanto correlações negati-
vas (vermelho) relacionam-se com "Suscetível e não Produtivo".
AACPDM (Área Abaixo da Curva de Progresso da Doença),
NF (Número de Frutos), PT (Peso Total dos Frutos), Comp
(Comprimento Médio do Fruto), Diam (Diâmetro do Fruto),
Ind_form (Índice de Formato do Fruto), PF (Peso de Fruto),
PPB (Peso da Polpa por Fruto), RP (Rendimento de Polpa), EC
(Espessura da Casca) e BRIX (Teor de Sólidos Solúveis Totais). 91

LISTA DE TABELAS

Tabela 1 – Divisão dos dados em conjuntos de treino e teste 47
Tabela 2 – Hiperparâmetros testados para cada algoritmo de classificação1. 48
Tabela 3 – Resumo dos Algoritmos de Classificação em Aprendizado de

Máquina e Suas Principais Funções 51
Tabela 4 – Resultados da inércia para diferentes números de clusters no

método do cotovelo. 57
Tabela 5 – Índice de Silhouette Score para diferentes valores de k. 59
Tabela 6 – Índice de Calinski-Harabasz para diferentes valores de k. 61
Tabela 7 – Melhores Parâmetros de Cada Algoritmo. AdaBoost (Adaptive

Boosting); SVM (Support Vector Machine); KNNK (K-Nearest
Neighbors); RNA MLP (Redes Neurais Artificiais - Multilayer
Perceptron); GaussianNB (Gaussian Naive Bayes). 67

SUMÁRIO

1 INTRODUÇÃO . 19

2 FUNDAMENTAÇÃO TEÓRICA 21
2.1 Análise de dados no melhoramento vegetal 21
2.2 Aprendizado de máquina . 21
2.2.1 Aprendizado não supervisionado 23
2.2.2 Aprendizado supervisionado . 23
2.2.2.1 Regressão Logística . 24
2.2.2.2 Árvore de Decisão . 25
2.2.2.3 Random Forest . 26
2.2.2.4 Gradient Boosting . 28
2.2.2.5 AdaBoost (Adaptive Boosting) . 30
2.2.2.6 Support Vector Machine (SVM) 32
2.2.2.7 K-Nearest Neighbors (KNN) . 34
2.2.2.8 Redes Neurais Artificiais (MLP) 36
2.2.2.9 Naive Bayes (GaussianNB) . 36
2.2.2.9.1 Teorema de Bayes e Suposição de Independência 36
2.3 Aprendizado de máquina no melhoramento de plantas 38

3 MATERIAIS E MÉTODOS 41
3.1 Conjuntos de Dados . 41
3.2 Normalização dos dados . 41
3.3 Análise de cluster . 42
3.3.1 Agrupamento com K-means . 42
3.3.2 Determinação do número de ótimo clusters 43
3.3.2.1 Método do cotovelo (Elbow) . 43
3.3.2.2 Método da silhueta (Silhouette Score) 44
3.3.2.3 Índice Calinski-Harabasz . 44
3.3.3 Avaliação da Estabilidade dos Clusters 46
3.3.3.1 Índice de Rand Ajustado (ARI) . 46

3.4 Avaliação de algoritmos de classificação 46
3.4.1 Ler os dados . 46
3.4.2 Pré-processamento dos dados . 47
3.4.3 Ajuste dos hiperparâmetros usando GridSearchCV 47
3.4.4 Salvar os Hiperparâmetros ótimos 50
3.4.5 Construção dos modelos usando os hiperparâmetros ótimos 50
3.5 Avaliação do desempenho dos modelos 50
3.5.1 Acurácia . 51
3.5.2 Precisão e Recall . 52
3.5.3 F1-Score . 52
3.5.4 Matriz de Confusão . 52
3.5.5 Curva ROC e AUC . 52
3.5.6 Curva de Aprendizado . 53
3.6 Análises Posteriores à Seleção do Modelo 53
3.6.1 Distribuição das Features por Classe 53
3.6.2 Importância das Variáveis . 54
3.6.3 Seleção de Features com Base no Desempenho 55
3.7 Ferramentas e Configuração do Ambiente 56

4 RESULTADOS E DISCUSSÃO 57
4.1 Análise de cluster . 57
4.1.1 Determinação do Número de Clusters Ótimo 57
4.1.1.1 Método do cotovelo (Elbow) . 57
4.1.1.2 Método da silhueta (Silhouette Score) 58
4.1.1.3 Índice Calinski-Harabasz . 60
4.1.2 Agrupamento com K-means . 62
4.1.3 Avaliação da Estabilidade dos Clusters 65
4.1.3.0.1 Índice de Rand Ajustado (ARI) . 65
4.2 Avaliação de algoritmos de classificação 66
4.2.1 Ajuste dos hiperparâmetros usando GridSearchCV 66
4.2.1.1 Regressão Logística . 66
4.2.1.2 Árvore de Decisão . 68
4.2.1.3 Random Forest . 68

4.2.1.4 Gradient Boosting . 69
4.2.1.5 AdaBoost (Adaptive Boosting) . 70
4.2.1.6 Máquina de Vetores de Suporte (SVM) 71
4.2.1.7 K-Vizinhos Mais Próximos (KNN) 71
4.2.1.8 Redes Neurais Artificiais (RNA - Multilayer Perceptron) 72
4.2.1.9 Naive Bayes Gaussian (GaussianNB) 73
4.2.2 Desempenho dos algoritmos de classificação 74
4.2.2.1 Acurácia, precisão, recall e F1-score 74
4.2.2.2 Análise das Matrizes de Confusão 78
4.2.2.3 Análise das Curvas ROC . 81
4.2.2.4 Análise das Curvas de Aprendizado 82
4.2.3 Análises pós seleção do algoritmo ótimo 84
4.2.3.1 Distribuição das features por classe 84
4.2.3.2 Importância das variáveis . 88
4.2.3.3 Correlação com o target . 90
4.2.3.4 Seleção de features com base no desempenho 92

5 CONCLUSÕES . 95

Referências . 97

19

1 INTRODUÇÃO

A inteligência artificial (IA) é um campo em rápida evolução que envolve o
desenvolvimento de algoritmos e programas de computador que podem aprender e
tomar decisões com base em dados. Os sistemas de IA são projetados para imitar
funções cognitivas humanas, como percepção, raciocínio, aprendizado e resolução
de problemas, a fim de executar tarefas que, de outra forma, exigiriam intervenção
humana (JACKSON, 2019).

Existem muitas abordagens diferentes para IA, incluindo sistemas baseados
em regras, árvores de decisão e redes neurais. Esses sistemas são usados em uma
ampla gama de aplicações, desde assistentes virtuais e chatbots até carros autônomos
e ferramentas de diagnóstico médico. A IA também é usada em pesquisa científica,
análise de negócios e segurança cibernética (LEE; PAN; HSIEH, 2022; HORVITZ;
BREESE; HENRION, 1988; DING et al., 2013; DAS et al., 2015).

Apesar do tremendo potencial da IA, também há preocupações sobre seu
impacto na sociedade, como deslocamento de empregos, viés na tomada de decisões
e violações de privacidade. À medida que a tecnologia de IA continua a evoluir, é
importante considerar essas implicações éticas e sociais e desenvolver estratégias
para o desenvolvimento e implantação responsáveis de IA (MAKRIDAKIS, 2017).

O aprendizado de máquina é um subcampo da inteligência artificial que
envolve o treinamento de máquinas para aprender com dados e melhorar seu
desempenho em uma tarefa específica sem ser explicitamente programado. É
um campo em rápido crescimento que está mudando a forma como interagimos
com a tecnologia e levou a grandes avanços em áreas como visão computacional,
processamento de linguagem natural e sistemas autônomos. Os algoritmos de
aprendizado de máquina são usados em uma ampla variedade de aplicações, desde
recomendações personalizadas em plataformas de mídia social até detecção de
fraude em bancos e finanças. Com a crescente disponibilidade de dados e avanços
no poder computacional, o aprendizado de máquina está pronto para continuar
impulsionando a inovação e transformando as indústrias nos próximos anos (DAS

20

et al., 2015).

O aprendizado de máquina vem sendo usado na agricultura para melhorar o
rendimento das colheitas, reduzir o desperdício e aumentar a eficiência nas operações
agrícolas. Ao analisar grandes quantidades de dados de padrões climáticos, condições
do solo e crescimento das culturas, os algoritmos de aprendizado de máquina podem
fornecer informações e previsões valiosas para ajudar os agricultores a tomar
melhores decisões (JHA et al., 2019; SOOD; SHARMA; BHARDWAJ, 2022).

Uma das principais aplicações do aprendizado de máquina na agricultura
é a agricultura de precisão. Isso envolve o uso de sensores e outras ferramentas
de coleta de dados para monitorar culturas e condições do solo em tempo real e,
em seguida, usar algoritmos de aprendizado de máquina para analisar os dados e
fazer recomendações para irrigação, aplicação de fertilizantes e manejo de pragas.
Isso pode levar a uma economia significativa de custos para os agricultores, bem
como ao aumento do rendimento das colheitas e à redução do impacto ambiental
(MEGETO et al., 2020).

O aprendizado de máquina também vem sendo amplamente utilizado no
campo da genética e o melhoramento de plantas. Ao analisar os dados genéticos
das culturas, os algoritmos de aprendizado de máquina podem identificar carac-
terísticas associadas a características desejáveis, como resistência a doenças ou
alto rendimento. Isso pode ajudar os melhoristas a desenvolver novas cultivares
mais adequadas a diferentes condições de cultivo e ambientes. No geral, o uso de
aprendizado de máquina na agricultura tem o potencial de transformar o setor,
fornecendo soluções mais precisas e baseadas em dados para alguns dos maiores
desafios enfrentados pelos agricultores atualmente (DIJK, 2021).

21

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Análise de dados no melhoramento vegetal

O uso de estatísticas é útil em todos os campos de estudo, incluindo agri-
cultura e ciências biológicas. As estatísticas são um instrumento crucial para
todas as formas de pesquisa. A validade do resultado experimental depende do
processo preciso de coleta, análise e interpretação dos dados. Portanto, os mé-
todos estatísticos têm uma utilidade significativa para os melhoristas de plantas
principalmente para obter um resumo descritivo da amostra, fornecer um meio
de inferência e realizar comparações. (OTT; LONGNECKER, 2015; RESENDE
MARCOS DEON VILELA, 2007; ACQUAAH, 2012).

2.2 Aprendizado de máquina

O aprendizado de máquina é um campo da inteligência artificial que se
concentra no desenvolvimento de algoritmos e modelos que permitem que os compu-
tadores aprendam com os dados sem serem explicitamente programados. Tornou-se
uma das áreas de crescimento mais rápido da ciência da computação, com aplicações
em uma ampla gama de setores, incluindo saúde, finanças, transporte, entreteni-
mento e agricultura (DIJK, 2021). Existem três tipos principais de aprendizado de
máquina: aprendizado supervisionado, aprendizado não supervisionado, aprendi-
zado semi-supervisionado, aprendizado por reforço, transdução e Learning to learn
(DIJK, 2021).

O aprendizado de máquina tem uma ampla gama de aplicações em vários
setores. Aqui estão alguns dos mais comuns. Na saúde, os algoritmos de aprendizado
de máquina podem ser usados para analisar imagens médicas, como raios-X e exames
de ressonância magnética, para identificar padrões e anomalias que podem ser
difíceis de serem detectados por um radiologista humano. Eles também podem
ser usados para desenvolver modelos preditivos que podem ajudar os médicos a
diagnosticar doenças mais cedo e fornecer opções de tratamento mais personalizadas
(NAYYAR; GADHAVI; ZAMAN, 2021).

22

Na esfera das finanças, o aprendizado de máquina pode ser usado para
identificar padrões em dados financeiros, como preços de ações e tendências de
mercado, para tomar melhores decisões de investimento. Também pode ser usado
para detectar fraudes e identificar riscos em solicitações de empréstimos (AHMED
et al., 2022). Ou exemplo de aplicação do AM é na área de transporte no geral,
carros autônomos dependem fortemente de algoritmos de aprendizado de máquina
para interpretar dados de sensores e tomar decisões sobre direção. O aprendizado
de máquina também pode ser usado para otimizar rotas e horários de transporte,
reduzindo o congestionamento e melhorando a eficiência (MOUJAHID et al., 2018).

Os algoritmos de aprendizado de máquina são também amplamente usados
âmbito do entretenimento para desenvolver recomendações personalizadas para
filmes, programas de TV e música com base nas preferências e comportamentos
anteriores de um usuário. Eles também podem ser usados para criar experiências de
jogo mais realistas e imersivas (LYTVYN et al., 2019). No contexto da agricultura,
o aprendizado de máquina tem uma diversidade de aplicações,tais como o manejo
de culturas, previsão de produtividade, detecção de doenças, detecção de ervas
daninhas, qualidade da cultura, reconhecimento de espécies, gestão da água e
manejo do solo, dentre outras várias (LIAKOS et al., 2018).

Embora o aprendizado de máquina tenha um enorme potencial, também há
desafios significativos a serem superados. Um dos maiores desafios é a necessidade
de dados de alta qualidade. Os algoritmos de aprendizado de máquina são tão
bons quanto os dados nos quais são treinados, por isso é crucial garantir que os
dados sejam precisos, imparciais e representativos. Outro desafio é a complexidade
de alguns modelos de aprendizado de máquina. O aprendizado profundo, um
subcampo do aprendizado de máquina que envolve o treinamento de redes neurais
artificiais, pode ser particularmente desafiador de implementar e interpretar (DAS
et al., 2015). Por fim, há considerações éticas e legais a serem consideradas ao
implementar o aprendizado de máquina. É essencial garantir que os algoritmos
sejam justos, transparentes e não discriminatórios de forma alguma (NASTESKI,
2017).

23

2.2.1 Aprendizado não supervisionado

No aprendizado não supervisionado o algoritmo é treinado em dados não
rotulados, o que significa que a saída desejada não é fornecida para cada entrada.
O algoritmo aprende a identificar padrões e relacionamentos dentro dos dados, sem
nenhum conhecimento prévio de qual deve ser a saída. Existem dois tipos principais
de aprendizado não supervisionado: agrupamento ou do inglês clustering e redução
de dimensionalidade (DIJK, 2021).

O clustering é usado para agrupar pontos de dados semelhantes com base em
suas características. O objetivo do agrupamento é encontrar padrões e estruturas
nos dados que não são imediatamente aparentes. A redução de dimensionalidade
é usada para simplificar dados complexos, reduzindo o número de variáveis. O
objetivo da redução de dimensionalidade é reter as informações mais importantes
enquanto descarta os dados menos relevantes (DIJK, 2021).

Dentre as numerosas aplicações do aprendizado não supervisionado, pode-se
citar: detecção de anomalias, segmentação de mercado, análise de imagem e vídeo,
sistemas de Recomendação, entre outras. Todavia, a falta de dados rotulados é um
desafio presente a ser superado. Sem uma ideia clara de qual deve ser a saída, pode
ser difícil avaliar o desempenho do algoritmo. Outro obstáculo é a complexidade dos
algoritmos que exigem mais recursos computacionais e conhecimento especializado
(QI; LUO, 2022).

2.2.2 Aprendizado supervisionado

O aprendizado supervisionado é um ramo do aprendizado de máquina no
qual um algoritmo é treinado em um conjunto rotulado de dados, o que significa
que a saída desejada é fornecida para cada entrada. O algoritmo aprende a fazer
previsões ou decisões com base nesses dados de treinamento, e o objetivo é prever
com precisão a saída de novas entradas invisíveis (DIJK, 2021). Existem dois tipos
principais de aprendizado supervisionado: regressão e classificação (DIJK, 2021).

A regressão é usada quando a variável de saída é contínua, como prever o
preço de uma casa com base em seu tamanho e localização. O objetivo da regressão
é aprender uma função que mapeia as variáveis de entrada para um valor de saída

24

contínuo (NASTESKI, 2017). Já os algoritmos de classificação mapeiam o espaço
de entrada em classes predefinidas. Existem muitas alternativas para representar
classificadores, por exemplo, Máquina de Vetores de Suporte (Support Vectors
Machine — SVM, do inglês), árvores de decisão, funções algébricas, etc., e podem
ser aplicados, por exemplo, na previsão se um e-mail é spam ou não. Ao lado da
regressão e estimativa de probabilidade, a classificação é um dos modelos mais
estudados, possivelmente de maior relevância prática. Os benefícios potenciais do
progresso na classificação são imensos, pois a técnica tem grande impacto em outras
áreas, tanto dentro da Mineração de Dados quanto em suas aplicações (NASTESKI,
2017).

O aprendizado supervisionado tem uma ampla gama de aplicações em
vários setores. Algoritmos de aprendizado supervisionado podem ser usados para
tarefas como análise de sentimento, classificação de texto e tradução automática,
área conhecida como processamento de linguagem natural (JURAFSKY; MARTIN,
2023). Na análise de imagem e vídeo pode ser usado para identificar objetos, pessoas
e atividades em imagens e vídeos (JIANG; GRADUS; ROSELLINI, 2020).

O aprendizado supervisionado pode ser usado também para detectar ati-
vidades fraudulentas, como fraude de cartão de crédito ou fraude de seguro; em
sistemas de recomendação personalizadas para produtos, serviços e conteúdo com
base nas preferências e comportamentos anteriores do usuário (JIANG; GRADUS;
ROSELLINI, 2020). Ainda que o aprendizado supervisionado tenha muitos benefí-
cios, também existem alguns desafios a serem superados. Um dos maiores desafios
é a necessidade de dados rotulados de alta qualidade. Criar um conjunto de dados
grande, diverso e representativo pode ser demorado e caro (QI; LUO, 2022).

2.2.2.1 Regressão Logística

A Regressão Logística é uma técnica de classificação que tem como objetivo
modelar a probabilidade de uma amostra ser associada a uma determinada classe.
Para isso, utiliza uma função logística que transforma as variáveis preditoras
em probabilidades. O algoritmo calcula a probabilidade P (y = 1|x), ou seja, a
probabilidade de uma amostra x pertencer à classe 1 (genótipos resistentes ao
CABMV e produtivos), utilizando a seguinte equação logística:

25

P (y = 1|x) = 1
1 + e−(β0+β1x1+β2x2+···+βnxn) , (2.1)

onde: β0 é o termo de interceptação (bias), β1, β2, . . . , βn são os coeficientes associ-
ados às variáveis preditoras x1, x2, . . . , xn, e é a base do logaritmo natural.

A função logística converte uma combinação linear das variáveis preditoras
em um valor que varia entre 0 e 1, interpretado como a probabilidade de a amostra
pertencer à classe 1. Para realizar a classificação, utiliza-se um limiar de 0,5: se
P (y = 1|x) ≥ 0, 5, a amostra é considerada como resistente e produtiva; caso
contrário, é classificada como suscetível e não produtiva.

2.2.2.2 Árvore de Decisão

A Árvore de Decisão é um algoritmo de classificação que segue uma estrutura
hierárquica de decisões baseada em regras do tipo "se-então", onde cada nó interno
representa um teste sobre um atributo, cada ramo representa o resultado desse
teste, e cada nó folha representa um rótulo de classe (BREIMAN et al., 1984). O
algoritmo constrói a árvore de forma recursiva, selecionando em cada nó o atributo
que melhor divide os dados em subconjuntos homogêneos em relação à classe.

Para determinar a melhor divisão em cada nó, o algoritmo utiliza medidas
de impureza, sendo as mais comuns o índice de Gini e a Entropia. O índice de Gini
é calculado como:

Gini(t) = 1−
c∑

j=1
p(j|t)2 (2.2)

onde p(j|t) é a proporção de amostras que pertencem à classe j no nó t, e c

é o número total de classes.

A Entropia, por sua vez, é calculada como:

Entropia(t) = −
c∑

j=1
p(j|t) log2 p(j|t) (2.3)

Para cada possível divisão, calcula-se o ganho de informação, que é a redução
na impureza resultante da divisão:

26

Ganho(t, a) = I(t)−
∑

v∈values(a)

|tv|
|t|

I(tv) (2.4)

onde I(t) é a medida de impureza (Gini ou Entropia) no nó t, values(a)
são os possíveis valores do atributo a, |tv| é o número de amostras no subconjunto
tv, e |t| é o número total de amostras no nó t.

O crescimento da árvore é controlado por parâmetros como profundidade
máxima (max_depth), número mínimo de amostras para divisão (min_samples_-
split) e número mínimo de amostras em nós folha (min_samples_leaf). No presente
estudo, esses parâmetros foram otimizados usando o GridSearchCV. A classificação
de uma amostra x é feita percorrendo a árvore desde o nó raiz até um nó folha,
seguindo as regras de decisão associadas a cada nó. A classe predita é a classe
majoritária no nó folha correspondente.

2.2.2.3 Random Forest

O algoritmo Random Forest (Floresta Aleatória) é um método de aprendi-
zado de máquina que utiliza um conjunto de árvores de decisão para melhorar a
precisão e a robustez do modelo (BREIMAN, 2001a). Cada árvore na floresta é
treinada em um subconjunto aleatório dos dados de treinamento, com amostragem
com reposição (técnica chamada bootstrap), e utiliza um subconjunto aleatório
de características para fazer as divisões nos nós. Esse processo reduz o risco de
overfitting e aumenta a capacidade de generalização do modelo (LIAW; WIENER,
2002). A construção de uma Floresta Aleatória pode ser dividida em três etapas
principais:

1. Amostragem com Bootstrap: Para cada árvore, um subconjunto dos
dados de treinamento é amostrado com reposição. Isso implica que algumas
amostras podem ser selecionadas mais de uma vez, enquanto outras podem
ser ignoradas. Esse subconjunto é utilizado para treinar a árvore, o que ajuda
a criar diversidade dentro da floresta.

2. Seleção Aleatória de Features: Durante a construção de cada árvore, em
cada nó de divisão, apenas um subconjunto aleatório das características é

27

considerado para encontrar a melhor divisão. O tamanho desse subconjunto é
controlado pelo hiperparâmetro max_features. Essa seleção aleatória ajuda a
reduzir a correlação entre as árvores, aumentando a robustez e a capacidade
de generalização do modelo.

3. Agregação de Resultados: Após o treinamento das árvores, a previsão final
é obtida pela agregação dos resultados individuais. No caso de classificação,
a classe predita é determinada pela votação majoritária das árvores. Essa
agregação ajuda a diminuir o viés e a variância do modelo, tornando a previsão
mais precisa e estável.

A qualidade de um nó I(t) em uma árvore de decisão é avaliada utilizando
métricas como o índice de Gini (Equação 2.2) ou a Entropia (Equação 2.3), que
ajudam a mensurar a "impureza"dos dados naquele ponto. A divisão ideal para
cada nó é determinada pelo ganho de informação (Equação 2.4), que refere-se
à diminuição da impureza após a divisão dos dados. Quanto maior o ganho de
informação, melhor será a separação dos dados e a qualidade da árvore gerada.

Dentre os principais hiperparâmetros ajustados, um dos mais relevantes é o
n_estimators, que define quantas árvores compõem a floresta. Embora o aumento
no número de árvores possa melhorar a precisão do modelo, ele também eleva o
custo computacional, pois mais árvores exigem maior tempo de processamento
e consumo de memória. Outro fator importante é o max_depth, que limita a
profundidade de cada árvore. Essa restrição é fundamental para evitar que o modelo
se torne excessivamente complexo, o que poderia resultar em overfitting, além de
contribuir para uma maior capacidade de generalização do modelo.

Além disso, os hiperparâmetros min_samples_split e min_samples_-
leaf têm um impacto direto na estrutura das árvores. O primeiro determina o
número mínimo de amostras necessário para que um nó interno seja dividido,
enquanto o segundo especifica a quantidade mínima de amostras exigidas para
um nó folha. Ambos os parâmetros são essenciais para controlar o crescimento
das árvores, evitando que divisões excessivas levem a modelos excessivamente
específicos, o que prejudica a generalização. Por fim, o parâmetro bootstrap define
se a amostragem com reposição será utilizada durante o treinamento de cada árvore.

28

Esse método é fundamental para garantir a diversidade das árvores, uma vez que
permite que cada uma seja treinada em um subconjunto distinto dos dados.

A predição final do modelo Random Forest para uma amostra x é deter-
minada pela combinação das previsões feitas por cada árvore do conjunto. Em
problemas de classificação, a classe atribuída à amostra é definida pela votação
majoritária das árvores, conforme ilustrado na Equação (2.5):

ŷ(x) = majority vote
(
{ht(x)}T

t=1

)
, (2.5)

onde ht(x) representa a predição da t-ésima árvore, e T é o número total
de árvores no ensemble. Para problemas de regressão, a predição final é calculada
como a média das predições das árvores, conforme mostrado na Equação (2.6):

ŷ(x) = 1
T

T∑
t=1

ht(x). (2.6)

A robustez do Random Forest decorre da diversidade entre as árvores, que é
garantida pela amostragem aleatória dos dados e das features durante o treinamento.
Essa diversidade reduz a correlação entre as árvores, o que melhora significativa-
mente a capacidade de generalização do modelo (BREIMAN, 2001a).desempenho
possível para a tarefa em questão.

2.2.2.4 Gradient Boosting

O algoritmo Gradient Boosting é uma técnica de aprendizado de máquina
baseada em ensemble, que combina múltiplos modelos fracos (geralmente árvores de
decisão) de forma sequencial para criar um modelo forte. Diferentemente do Random
Forest, que treina árvores de forma independente, o Gradient Boosting treina cada
árvore para corrigir os erros das árvores anteriores, utilizando o gradiente de uma
função de perda para guiar o processo de aprendizado (FRIEDMAN, 2001). Essa
abordagem iterativa permite que o modelo capture padrões complexos nos dados,
melhorando sua precisão e capacidade de generalização.

O Gradient Boosting funciona minimizando uma função de perda L(y, F (x)),
onde y são os valores reais e F (x) são as predições do modelo. Em cada iteração

29

m, o algoritmo ajusta uma nova árvore hm(x) para aproximar o gradiente negativo
da função de perda em relação às predições atuais Fm−1(x). A predição do modelo
é então atualizada conforme a Equação (2.7):

Fm(x) = Fm−1(x) + ν · hm(x), (2.7)

onde ν é a taxa de aprendizado (learning rate), um hiperparâmetro que
controla a contribuição de cada árvore ao modelo final. Um valor menor de ν

geralmente resulta em um modelo mais preciso, mas requer mais iterações para
convergir.

A função de perda mais comum para problemas de regressão é o erro
quadrático médio (MSE), dado por:

L(y, F (x)) = 1
2(y − F (x))2. (2.8)

Para problemas de classificação binária, a função de perda logística é fre-
quentemente utilizada:

L(y, F (x)) = − [y log(p) + (1− y) log(1− p)] , (2.9)

onde p = σ(F (x)) é a probabilidade predita, e σ é a função sigmoide.

O crescimento das árvores no Gradient Boosting é controlado por hiperparâ-
metros como a profundidade máxima (max_depth), o número mínimo de amostras
para divisão (min_samples_split) e o número mínimo de amostras em nós folha
(min_samples_leaf). Os principais hiperparâmetros testados incluem:

• n_estimators: Número de árvores no ensemble. Um número maior de árvores
geralmente melhora a precisão, mas aumenta o custo computacional.

• learning_rate: Taxa de aprendizado, que controla a contribuição de cada
árvore ao modelo final.

• max_depth: Profundidade máxima de cada árvore. Controla a complexidade
do modelo, evitando overfitting.

30

• min_samples_split: Número mínimo de amostras necessárias para dividir
um nó interno.

• min_samples_leaf : Número mínimo de amostras necessárias em um nó
folha.

A predição final do Gradient Boosting para uma amostra x é dada pela
soma ponderada das predições de todas as árvores, conforme a Equação (2.10):

FM(x) = F0(x) + ν
M∑

m=1
hm(x), (2.10)

onde F0(x) é a predição inicial (geralmente a média dos valores de y para
regressão ou o log-odds para classificação), M é o número total de árvores, e hm(x)
é a predição da m-ésima árvore.

A robustez do Gradient Boosting vem de sua capacidade de ajustar iterati-
vamente os erros residuais do modelo, o que permite capturar relações complexas
nos dados.

2.2.2.5 AdaBoost (Adaptive Boosting)

O método AdaBoost (do inglês Adaptive Boosting) é uma abordagem de
aprendizado de máquina que utiliza a técnica de ensemble para aprimorar a precisão
das previsões. Ele funciona combinando diversos modelos simples, frequentemente
chamados de "classificadores fracos", para formar um modelo final mais robusto.
Ao contrário de outras estratégias de ensemble, como Random Forest ou Gradient
Boosting, o AdaBoost ajusta os pesos das observações durante o processo de
treinamento, priorizando aquelas que foram mal classificadas nas etapas anteriores.
Dessa forma, o algoritmo direciona sua atenção para os casos mais desafiadores,
refinando sua capacidade de generalização a cada iteração (FREUND; SCHAPIRE,
1997).

No início do processo, o AdaBoost atribui pesos idênticos a todas as ob-
servações do conjunto de treinamento. A cada iteração t, um classificador fraco
ht(x) é ajustado com o objetivo de reduzir ao máximo o erro ponderado ϵt, que é
calculado da seguinte forma:

31

ϵt =
N∑

i=1
w

(t)
i · I(yi ̸= ht(xi)), (2.11)

onde w
(t)
i é o peso da i-ésima amostra na iteração t, yi é o rótulo verdadeiro

da amostra, ht(xi) é a predição do aprendiz fraco, e I(·) é a função indicadora que
retorna 1 se a condição for verdadeira e 0 caso contrário.

Após o ajuste do classificador fraco, o peso αt correspondente a ele é
determinado com base no erro ponderado ϵt, conforme a Equação (2.12):

αt = 1
2 ln

(1− ϵt

ϵt

)
. (2.12)

O valor (ou peso) de αt define o quanto o classificador fraco ht(x) influencia
o modelo final. Classificadores que cometem menos erros recebem um peso maior,
enquanto aqueles com desempenho inferior têm sua contribuição reduzida.

Posteriormente, os pesos das observações são recalculados para a iteração
seguinte t + 1, priorizando as amostras que foram classificadas de forma incorreta.
A fórmula para a atualização dos pesos é dada pela Equação (2.13):

w
(t+1)
i = w

(t)
i · exp (−αt · yi · ht(xi)) , (2.13)

onde yi · ht(xi) é positivo se a classificação estiver correta e negativo caso
contrário. Após a atualização, os pesos são normalizados para garantir que somem
1.

A previsão final do AdaBoost para uma observação x é calculada por meio
da soma ponderada das previsões individuais de todos os classificadores fracos,
conforme expresso na Equação (2.14):

H(x) = sign
(

T∑
t=1

αt · ht(x)
)

, (2.14)

onde T é o número total de aprendizes fracos, αt é o peso do t-ésimo aprendiz,
e ht(x) é a predição do t-ésimo aprendiz. A função sign(·) retorna a classe predita
com base no sinal da soma ponderada.

32

O desempenho do AdaBoost depende de vários hiperparâmetros, como
a quantidade de classificadores fracos (n_estimators), a taxa de aprendizado
(learning_rate) e o método escolhido para atualizar os pesos (algorithm). Os
principais hiperparâmetros incluem o número de classificadores fracos no ensemble
(n_estimators), para o qual foram testados os valores 50, 100, 200 e 300. Um
número maior de classificadores tende a melhorar a acurácia, mas também eleva o
custo computacional.

A taxa de aprendizado (learning_rate), que define o impacto de cada classi-
ficador no modelo final, foi testada com os valores 0.01, 0.1, 0.5 e 1. Taxas menores
demandam mais classificadores para alcançar a convergência, mas podem levar a
modelos mais refinados. Por fim, o método utilizado para ajustar os pesos (algo-
rithm) foi o SAMME (Stagewise Additive Modeling using a Multi-class Exponential
loss function), que é apropriado para tarefas de classificação envolvendo múltiplas
classes.

A robustez do AdaBoost está diretamente relacionada à sua habilidade de
concentrar-se nas observações mais desafiadoras, ajustando de forma iterativa os
pesos das amostras e integrando as previsões de diversos classificadores fracos.

2.2.2.6 Support Vector Machine (SVM)

O algoritmo Support Vector Machine (SVM) tem como objetivo identificar
um hiperplano ideal que divide as classes no espaço de características, maximizando
a distância entre os pontos mais próximos de cada classe, denominados vetores de
suporte (CORTES; VAPNIK, 1995). Essa característica torna o SVM especialmente
eficiente em problemas de alta dimensionalidade e em situações onde a separação
entre as classes não é linear. No contexto de classificação binária, o SVM procura
determinar um hiperplano descrito por:

w · x + b = 0, (2.15)

onde w é o vetor de pesos, x é o vetor de características da amostra, e b é
o termo de viés. O objetivo é maximizar a margem M , que é a distância entre o

33

hiperplano e os vetores de suporte mais próximos de cada classe. A margem é dada
por:

M = 2
∥w∥

, (2.16)

onde ∥w∥ é a norma do vetor de pesos. Para maximizar a margem, o SVM
resolve o seguinte problema de otimização quadrática:

min
w,b

1
2∥w∥

2 sujeito a yi(w · xi + b) ≥ 1 ∀i, (2.17)

onde yi é o rótulo da classe (+1 ou −1) da i-ésima amostra, e xi é o vetor
de características correspondente.

Em casos onde os dados não são linearmente separáveis, o SVM utiliza uma
técnica chamada kernel trick, que mapeia os dados para um espaço de maior dimen-
sionalidade onde a separação linear é possível (CORTES; VAPNIK, 1995). A função
de kernel K(xi, xj) calcula o produto interno entre os vetores de características no
espaço transformado. As funções de kernel mais comuns incluem o kernel linear,
definido por:

K(xi, xj) = xi · xj, (2.18)

que é adequado para dados linearmente separáveis e não realiza nenhuma
transformação não linear (SCHÖLKOPF; SMOLA, 2002). O kernel polinomial,
dado por:

K(xi, xj) = (γ · xi · xj + r)d, (2.19)

que mapeia os dados para um espaço de características polinomiais, onde
γ controla a influência de cada amostra, r é um termo de interceptação, e d é o
grau do polinômio. Esse kernel é útil para capturar relações não lineares de grau d

(VAPNIK, 1998). O kernel radial basis function (RBF), definido por:

34

K(xi, xj) = exp
(
−γ∥xi − xj∥2

)
, (2.20)

é uma das funções de kernel mais utilizadas e é adequado para dados com
estruturas complexas e não lineares, onde γ controla a influência de cada amostra
no espaço transformado (SCHÖLKOPF; SMOLA, 2002). Por fim, o kernel sigmoide,
dado por:

K(xi, xj) = tanh(γ · xi · xj + r), (2.21)

é semelhante à função de ativação sigmoide usada em redes neurais, onde γ

controla a influência de cada amostra, e r é um termo de interceptação. Esse kernel
pode ser útil para capturar relações não lineares em certos casos (VAPNIK, 1998).

O desempenho do SVM é diretamente impactado por hiperparâmetros como
o parâmetro de regularização C, que define o equilíbrio entre a maximização da
margem e a redução do erro de classificação, e o parâmetro γ, utilizado em kernels
como RBF, polinomial e sigmoide (CORTES; VAPNIK, 1995).

2.2.2.7 K-Nearest Neighbors (KNN)

O algoritmo K-Nearest Neighbors (KNN) é uma técnica simples e eficiente
que armazena todos os exemplos conhecidos e classifica novos dados com base em
sua similaridade com os registros existentes (COVER; HART, 1967). A seleção
adequada dos hiperparâmetros desse algoritmo é fundamental para garantir seu
bom desempenho. O primeiro hiperparâmetro, n_neighbors, define o número de
vizinhos (k) que serão utilizados para classificar um novo ponto. Valores muito
pequenos de k podem tornar o modelo suscetível a ruídos, enquanto valores muito
altos podem resultar em fronteiras de decisão excessivamente suavizadas (ZHANG,
2016a).

O segundo hiperparâmetro, weights, controla a contribuição dos vizinhos
na classificação: com a opção uniform, todos os vizinhos têm o mesmo peso,
enquanto com distance, os vizinhos mais próximos exercem maior influência na
decisão (ALTMAN, 1992). Por último, o hiperparâmetro metric define a métrica

35

de distância usada para calcular a proximidade entre os pontos. Entre as métricas
testadas estão a distância euclidiana, que mede a distância "em linha reta"entre dois
pontos, a distância de Manhattan, que considera a soma das diferenças absolutas
entre as coordenadas, e a distância de Minkowski, uma generalização das duas
anteriores (DEZA; DEZA, 2012).

O KNN classifica os dados de entrada com base nos rótulos dos K vizinhos
mais próximos, a partir do conjunto de treinamento {xi, yi}. Para isso, é calculada a
distância entre a amostra de treinamento e a amostra de teste, ambas representadas
como vetores binários de dimensão (L + R), sendo xu o ponto de entrada e xi cada
ponto do conjunto de treinamento. A métrica de distância utilizada (euclidiana,
Manhattan ou Minkowski) define como essa proximidade é medida. A seguir, são
apresentadas as fórmulas para cada uma dessas métricas:

• Distância Euclidiana:

d(xu, xi) =
√√√√ n∑

j=1
(xu,j − xi,j)2 (2.22)

onde n é o número de dimensões dos vetores xu e xi (DEZA; DEZA, 2012).

• Distância de Manhattan:

d(xu, xi) =
n∑

j=1
|xu,j − xi,j| (2.23)

que corresponde à soma das diferenças absolutas entre as coordenadas dos
pontos (DEZA; DEZA, 2012).

• Distância de Minkowski:

d(xu, xi) =
 n∑

j=1
|xu,j − xi,j|p

1/p

(2.24)

onde p é um parâmetro que define a ordem da distância. Para p = 1, a
distância de Minkowski equivale à distância de Manhattan, e para p = 2,
equivale à distância euclidiana (DEZA; DEZA, 2012).

36

O rótulo de categoria de xu foi atribuído com base na maioria dos votos dos
rótulos de categoria de seus k-vizinhos mais próximos (KNN) (SUN; ZHAO, 2015):

yu = arg max
yj

k∑
i=1

δ(xi, yj), (2.25)

onde δ(xi, yj) ∈ {0, 1} indica se xi pertence a yj.

2.2.2.8 Redes Neurais Artificiais (MLP)

As Redes Neurais Artificiais (RNA), especialmente as Multilayer Perceptrons
(MLP), são modelos de aprendizado de máquina que empregam múltiplas camadas
de neurônios artificiais para capturar relações complexas e não lineares nos dados
(HAYKIN, 1999). As funções de ativação testadas foram logistic, tanh e ReLU,
definidas respectivamente por:

f(z) = 1
1 + e−z

(logística), (2.26)

f(z) = tanh(z) (tangente hiperbólica), (2.27)

f(z) = max(0, z) (ReLU). (2.28)

2.2.2.9 Naive Bayes (GaussianNB)

O algoritmo Naive Bayes (GaussianNB) é um método de classificação pro-
babilístico baseado no teorema de Bayes, que assume independência condicional
entre as características dadas as classes (MITCHELL, 1997). Apesar dessa suposi-
ção simplificadora, o GaussianNB é eficaz em muitos problemas de classificação,
especialmente quando o número de características é grande ou quando os dados
são esparsos.

2.2.2.9.1 Teorema de Bayes e Suposição de Independência

O teorema de Bayes é a base do algoritmo Naive Bayes e é dado por:

37

P (y|X) = P (X|y) · P (y)
P (X) , (2.29)

onde: - P (y|X) é a probabilidade posterior da classe y dado o vetor de
características X, - P (X|y) é a verossimilhança das características X dado a classe
y, - P (y) é a probabilidade a priori da classe y, - P (X) é a probabilidade marginal
das características X.

A suposição de independência condicional do Naive Bayes assume que as
características X1, X2, . . . , Xn são independentes entre si dado a classe y. Isso
permite que a verossimilhança P (X|y) seja fatorada como:

P (X|y) =
n∏

i=1
P (Xi|y). (2.30)

Essa suposição simplifica o cálculo da probabilidade posterior, tornando o
algoritmo computacionalmente eficiente.

No caso do GaussianNB, assume-se que as características contínuas seguem
uma distribuição normal (Gaussiana) para cada classe. A probabilidade P (Xi|y) é
calculada utilizando a função de densidade de probabilidade da distribuição normal:

P (Xi|y) = 1√
2πσ2

y

exp
(
−(Xi − µy)2

2σ2
y

)
, (2.31)

onde: - µy é a média da característica Xi para a classe y, - σ2
y é a variância

da característica Xi para a classe y.

Para evitar problemas numéricos quando uma característica tem variância
zero em uma classe, o GaussianNB utiliza um parâmetro de suavização chamado
var_smoothing. Esse parâmetro adiciona uma pequena constante à variância, ga-
rantindo que ela nunca seja zero. A variância suavizada é calculada como:

σ2
y ← σ2

y + var_smoothing. (2.32)

38

2.3 Aprendizado de máquina no melhoramento de plantas

A população mundial está projetada para exceder nove bilhões de pessoas até
2050, o que exigirá melhorias significativas na produção das principais culturas que
contribuem para a segurança alimentar global, portanto aumentar a produtividade é
o principal objetivo da maioria dos programas de melhoramento de plantas (DUBEY
et al., 2019). No melhoramento vegetal, no entanto, aferir características como o
rendimento, que é influenciado por uma combinação de características quantitativas
e qualitativas, em grandes populações, é oneroso, demorado e trabalhoso (XIONG
et al., 2018; CAI et al., 2016).

Os métodos clássicos de melhoramento de plantas incluem principalmente
avaliação e classificação da diversidade genética, análise de componentes de ren-
dimento (seleção indireta de genótipos superiores), análise de estabilidade da
produtividade (interação genótipo × ambiente), tolerância a estresses bióticos e
abióticos e programas de melhoramento de híbrido (NIAZIAN; NIEDBAłA, 2020).
Aliado ao melhoramento clássico, as ferramentas de biotecnologia visam o desen-
volvimento da área, tornando o processo mais rápido, preciso e eficiente (ADLAK
et al., 2019). Em geral, as abordagens relacionadas à biotecnologia amplamente
adotadas no processo de melhoramento de plantas podem ser divididas em cul-
tura de tecidos, engenharia genética, marcadores moleculares e análises de DNA
(FALEIRO; ANDRADE SOLANGE ROCHA MONTEIRO; Fábio Bueno dos Reis
Junior, 2011).

No processo de melhoramento são gerados os chamados “big datas”, pro-
venientes de dados fenotípicos dos mais diverso, sequência de moléculas, dados
de pedigree, análise de imagens etc (NIAZIAN; NIEDBAłA, 2020). Técnicas es-
tatísticas clássicas têm sido aplicadas para analisar e interpretar os resultados
oriundos desses dados, todavia, tais técnicas, incluindo as baseadas em regressão,
geralmente são limitadas em sua capacidade de analisar dados de alta dimensão
e não conseguem capturar relações complexas e multivariadas entre as variáveis,
que frequentemente apresentam propriedades não lineares e não determinísticas e
estão inextricavelmente ligadas aos sistemas biológicos das plantas e fontes externas
(DIJK, 2021; NIAZIAN; NIEDBAłA, 2020; WEI et al., 2020; HESAMI et al., 2019).

39

Os algoritmos de aprendizado de máquina vem chamando a atenção de
pesquisadores na otimização de métodos de melhoramento baseados em modelos
que podem melhorar a eficiência do processo (HESAMI et al., 2020). Uma das
redes neurais artificiais (RNAs) mais comuns, o multilayer perceptron (MLP) (PAL;
MITRA, 1992) tem sido amplamente utilizado para modelar e prever caracterís-
ticas complexas, como rendimento, em diferentes programas de melhoramento
(INOCENTE; GARBUGLIO; RUAS, 2022; SANDHU et al., 2021b). As chamadas
máquinas de vetores de suporte (SVMs) são conhecidas como um dos algoritmos de
aprendizado de máquina poderosos e fáceis de usar que podem reconhecer padrões
e comportamento de relacionamentos não lineares (AURIA; MORO, 2008; SU et
al., 2017). Além de MLP e SVM, a Random Forest (RF) (BREIMAN, 2001a) é
outro método de modelagem de dados com uma fase de treinamento computacional
eficiente e precisão de generalização muito alta que tem sido amplamente utilizada
no melhoramento de plantas (ANSARIFAR; AKHAVIZADEGAN; WANG, 2020;
ACHARJEE et al., 2016; SARKAR et al., 2015). Abaixo são descritos com detalhes
alguns dos algoritmos de aprendizado de máquina utilizados no melhoramento
vegetal.

41

3 MATERIAIS E MÉTODOS

3.1 Conjuntos de Dados

O conjunto de dados é proveniente de um experimento de campo que incluiu
87 genótipos de três famílias de irmãos completos resultantes do cruzamento (re-
combinação) entre indivíduos da primeira geração de retrocruzamento do programa
de melhoramento de maracujazeiro da Universidade Estadual do Norte Fluminense
Darcy Ribeiro (UENF). O experimento foi realizado entre em março de 2018 e a
junho de 2019. Os atributos avaliados foram: resistência ao CABMV, formato do
fruto, cor da casca, cor da polpa, número total de frutos por plantas, peso total de
frutos, diâmetro longitudinal médio do fruto, diâmetro transversal médio do fruto,
índice de formato médio do fruto, massa média do fruto, massa média da polpa,
rendimento médio de polpa, espessura média da casca e Teor de sólidos solúveis
totais médio (BRIX).

3.2 Normalização dos dados

A normalização dos dados é o processo de ajustar os valores de cada
atributo para uma faixa específica, como de -1 a 1 ou de 0 a 1. Esse procedimento
é essencial para evitar que atributos com escalas de valores maiores influenciem de
maneira desproporcional o desempenho de algoritmos de aprendizado de máquina
(GOLDSCHMIDT, 2015).

Neste trabalho, utilizou-se a normalização por desvio padrão, também
conhecida como Z-Score, uma técnica amplamente utilizada para padronizar dados.
Essa abordagem ajusta os valores de cada atributo no conjunto de dados de forma
que a média seja 0 e o desvio padrão seja igual a 1 (GOLDSCHMIDT, 2015).

A Equação seguinte descreve o processo de normalização:

Z = x− µ

σ
(3.1)

onde x é o valor individual da variável, µ é a média da variável no conjunto de

42

dados e σ é o desvio padrão da variável no conjunto de dados.

3.3 Análise de cluster

3.3.1 Agrupamento com K-means

O algoritmo K-Means foi utilizado para agrupar os genótipos. O algoritmo
K-means é uma técnica de aprendizado não supervisionado, baseado em partições,
ele busca dividir os dados em k clusters, com o objetivo de minimizar a soma das
distâncias quadráticas entre os pontos e os centros de cada cluster. O K-means
é um dos algoritmos de particionamento de clustering mais amplamente usados
(IKOTUN et al., 2023).

O algoritmo K-means agrupa dados com características semelhantes em
um mesmo cluster, enquanto dados com características distintas são alocados em
clusters diferentes, garantindo que os elementos de um cluster apresentem pouca
variação entre si. A proximidade entre dois objetos é determinada pela distância
entre eles. Da mesma forma, a proximidade de um dado a um cluster específico
é avaliada com base na distância entre esse dado e o centro do cluster. A menor
distância entre um dado e o centro de um cluster define a qual cluster ele pertence
(GOLDSCHMIDT, 2015). O cálculo da distância entre os dados e os centroides de
cada cluster é realizado utilizando a fórmula da distância euclidiana, descrita a
seguir:

d(x, y) =
√√√√ n∑

i=1
(xi − yi)2 (3.2)

onde xi é o primeiro ponto e yi é o segundo ponto. As etapas para executar
as áreas do Algoritmo de Agrupamento K-Means são as seguintes:

1. Determinar o valor de K como o número de clusters.

2. Selecionar K do conjunto de dados X como o centroide.

3. Alocar todos os dados para o centroide com métrica de distância usando a
Equação 3.2.

43

4. Recalcular o centroide C com base nos dados que seguem cada cluster. Repetir.

3.3.2 Determinação do número de ótimo clusters

Um dos desafios na utilização do do K-means é que ele requer que o número
de clusters seja pré-especificado antes que o algoritmo seja aplicado (KUMARSA-
GAR; SHARMA, 2014) e que esse número escolhido seja validado de alguma forma.
A validação de clusters por meio de medidas internas é uma abordagem utilizada
para avaliar se os clusters foram formados corretamente. Dois fatores principais
são considerados nessa análise: a coesão, que mede o quão compactos estão os
dados dentro de um cluster, e a separação, que avalia o quão distintos os clusters
estão uns dos outros (SAPUTRA; SAPUTRA; OSWARI, 2020). Para determinar o
número ideal de clusters k, foram aplicados dois métodos, o Método do cotovelo ou
método de (Elbow) e o Silhouette Score, e para todos eles foram avaliados de 1 a
10 clusters.

3.3.2.1 Método do cotovelo (Elbow)

O Método do Cotovelo (ou Elbow Method, em inglês) é uma das técnicas
mais utilizadas para definir o número ideal de clusters k ao aplicar o algoritmo
K-Means, ele é usado para medir a coesão de clusters, avaliando quão semelhantes
os dados dentro de um mesmo cluster são. Esse método busca identificar o valor
de k que oferece a melhor solução para o agrupamento, equilibrando a qualidade
dos clusters com a complexidade do modelo.

O K-Means é um algoritmo de agrupamento baseado em partições que
tem como objetivo dividir um conjunto de dados em k clusters, de modo que os
dados dentro de cada cluster sejam o mais homogêneos possível. O algoritmo busca
minimizar a soma das distâncias quadráticas entre os pontos de dados e os centros
de seus respectivos clusters. O critério utilizado para avaliar o agrupamento é a
inércia, que é calculada pela soma das distâncias quadráticas entre todos os pontos
de dados e seus centros de cluster.

Matematicamente, a inércia Wk para um dado número de clusters k é dada

44

por:

Wk =
k∑

i=1

∑
xj∈Ci

∥xj − µi∥2 (3.3)

Onde: k é o número de clusters, Ci é o conjunto de pontos atribuídos ao
cluster i, xj é o ponto de dados, µi é o centroide do cluster i, ∥xj−µi∥2 é a distância
quadrática entre o ponto xj e o centroide µi. No presente trabalho foram avaliados
10 possíveis clusters.

3.3.2.2 Método da silhueta (Silhouette Score)

O Método Silhouette usa um coeficiente de silhueta que combina separação e
coesão. O coeficiente de silhueta é determinado pela divisão da medida de separação
pela medida de coesão e subtraindo esse valor por 1 se a medida de separação
for maior que a medida de coesão ou por 1 subtraído pelo valor da medida de
coesão dividido pela medida de separação se a coesão for maior que a separação.
Quanto maior o coeficiente de silhueta, melhor o cluster é (SAPUTRA; SAPUTRA;
OSWARI, 2020).

s =

1− medida de coesão
medida de separação , se coesão < separação

medida de separação
medida de coesão − 1, se coesão > separação

(3.4)

O Método Silhouette propõe a construção de um gráfico onde o eixo Y
representa o coeficiente Silhouette e o eixo X representa o valor de K. O valor de K
ideal é aquele que corresponde ao maior valor do coeficiente Silhouette, que indica
a melhor separação e coesão entre os clusters formados (SAPUTRA; SAPUTRA;
OSWARI, 2020).

3.3.2.3 Índice Calinski-Harabasz

Foi também empregado para a validação quantitativa da capacidade do
algoritmo de K-means em capturar os grupos inerentes aos dados o índice de
Calinski-Harabasz, também conhecido como Critério da Razão da Variância. O
índice de Calinski-Harabasz se baseia na razão entre a dispersão entre os clusters (o
quão separados os clusters estão uns dos outros) e a dispersão dentro dos clusters

45

(o quão compactos os pontos estão dentro de cada cluster) (U, 2002). As etapas
para calcular o índice são descritas a seguir:

1. Passo 1: Calcular a soma dos quadrados entre grupos (BGSS), a qual é uma
medida que calcula a soma ponderada do quadrado das distâncias entre os
centroides de cada cluster e o centroide geral do conjunto de dados. A fórmula
para o cálculo é:

BGSS =
k∑

i=1
ni · ∥ci − c∥2 (3.5)

onde k é o número de clusters, ni é a quantidade de pontos no cluster i, ci é
o centroide do cluster i, c é o centroide geral do conjunto de dados, ∥ci − c∥2

representa o quadrado da distância entre o centroide do cluster i e o centroide
geral.

2. Passo 2: Calcular a soma dos quadrados dentro do grupo (WGSS), que é
usada para medir a soma do quadrado das distâncias entre cada observação
e o centroide do cluster ao qual pertence. Para cada cluster k, o WGSSk é
calculado da seguinte forma:

WGSSk =
∑

x∈Ck

∥x− ck∥2 (3.6)

em que Ck representa o conjunto de observações no cluster k, x é uma
observação pertencente ao cluster k, ck é o centroide do cluster k, ∥x− ck∥2

é o quadrado da distância entre a observação x e o centroide ck.

3. Passo 3: Calcular o índice Calinski-Harabasz de acordo com a seguinte
equação:

CH = BGSS/(k − 1)
WGSS/(n− k) (3.7)

onde CH é o índice Calinski-Harabasz, BGSS é a soma dos quadrados entre
grupos, WGSS é a soma dos quadrados dentro dos grupos, k é o número de
clusters, n é o número total de observações. Esse índice tende a valores mais
altos quando os clusters são bem separados e compactos, o que indica uma
melhor qualidade do agrupamento.

46

3.3.3 Avaliação da Estabilidade dos Clusters

3.3.3.1 Índice de Rand Ajustado (ARI)

O Índice de Rand Ajustado (ARI) é uma métrica que mede a similaridade
entre duas atribuições de clusters, comparando os pares de pontos que estão no
mesmo cluster ou em clusters diferentes. Ele é uma versão ajustada do Índice
de Rand, que corrige o efeito do acaso, garantindo que valores próximos de zero
indiquem uma concordância aleatória entre os agrupamentos (HUBERT; ARABIE,
1985).

O ARI é calculado da seguinte forma:

ARI = Índice de Rand− Índice de Rand Esperado
Índice de Rand Máximo− Índice de Rand Esperado

(3.8)

onde Índice de Rand é a proporção de pares de pontos que estão no mesmo
cluster em ambas as atribuições, Índice de Rand Esperado é o valor esperado do
Índice de Rand sob uma distribuição aleatória e Índice de Rand Máximo é o valor
máximo que o Índice de Rand pode assumir.

O ARI varia entre -1 e 1, onde 1 indica que as duas atribuições de clusters
são idênticas, 0 indica que a concordância entre as atribuições é aleatória e -1 indica
que as atribuições são completamente diferentes.

3.4 Avaliação de algoritmos de classificação

O fluxo de trabalho para o desenvolvimento dos modelos de classificação foi
dividido em seis etapas sequenciais, conforme ilustrado de forma esquemática na
Figura 1. Cada uma dessas etapas é descrita em detalhes nas seções a seguir.

3.4.1 Ler os dados

Nessa etapa, realizou-se a leitura dos dados armazenados em um arquivo
com extensão CSV, que foram então convertidos para uma estrutura do tipo
dataframe. Esse formato facilitou o processamento e a manipulação dos dados nas
etapas seguintes. Os atributos presentes nesse conjunto de dados incluíam: ID,

47

Figura 1 – Estágios de desenvolvimento do modelo.

Prog, Rep, Parc, Arv, AACPDM, formato, cor_casca, cor_polpa, NF, PT, Comp,
Diam, ind_form, PF, PPB, RP, EC e BRIX.

3.4.2 Pré-processamento dos dados

Nessa fase, verificou-se se as linhas de dados possuíam duplicatas ou valores
nulos em suas colunas. Em seguida, os dados foram normalizados para reduzir a
redundância e garantir a consistência e a confiabilidade das informações. Foram
utilizadas apenas as variáveis quantitativas no modelo, excluindo-se as variáveis
categóricas, como formato, cor_casca e cor_polpa, bem como as colunas relacio-
nadas às informações do experimento, como Prog, Rep, Parc e Arv. Além disso,
para assegurar resultados de avaliação precisos, os dados foram divididos em três
conjuntos: treino e teste, seguindo proporções previamente definidas e apresentadas
na Tabela 1.

Tabela 1 – Divisão dos dados em conjuntos de treino e teste

Tipo de dados Percentagem Quantidade de dados
Treino 80% 69
Teste 20% 18
Total 100% 87

3.4.3 Ajuste dos hiperparâmetros usando GridSearchCV

Nessa etapa, o ajuste de hiperparâmetros teve como objetivo identificar os
valores que maximizavam o desempenho do modelo. Para isso, utilizou-se a técnica
de Grid Search Cross-Validation (GridSearchCV), conforme descrito por Siji George
C. G. e B. Sumathi (2020). Essa ferramenta, disponível no módulo scikit-learn,

48

permitiu otimizar os hiperparâmetros de forma automática e sistemática, avaliando
múltiplas combinações de parâmetros e selecionando aquelas que proporcionavam
os melhores resultados em termos de acurácia, precisão, recall e F1-score.

Além disso, o GridSearchCV possibilitou a validação simultânea de diferentes
modelos, garantindo que o ajuste fosse realizado de maneira robusta e confiável.
Informações específicas sobre os hiperparâmetros testados para cada algoritmo de
classificação podem ser encontradas na Tabela 2, enquanto detalhes adicionais sobre
cada hiperparâmetro estão disponíveis na documentação oficial de cada algoritmo.

Tabela 2 – Hiperparâmetros testados para cada algoritmo
de classificação1.

Algoritmo Hiperparâmetros Testados

Random Forest

• n_estimators: 50, 100, 200, 300, 500
• max_depth: None, 10, 20, 30
• min_samples_split: 2, 5, 10, 15
• min_samples_leaf : 1, 2, 4
• bootstrap: True, False

Gradient Boosting

• n_estimators: 50, 100, 200, 300
• learning_rate: 0.01, 0.05, 0.1, 0.2
• max_depth: 3, 5, 7, 10
• min_samples_split: 2, 5, 10
• min_samples_leaf : 1, 2, 4

49

Tabela 2 – Continuação

Algoritmo Hiperparâmetros Testados

AdaBoost

• n_estimators: 50, 100, 200, 300
• learning_rate: 0.01, 0.1, 0.5, 1
• algorithm: SAMME

SVM

• C : 0.01, 0.1, 1, 10, 100
• kernel: linear, rbf, poly, sigmoid
• gamma: scale, auto, 0.1, 1, 10

KNN

• n_neighbors: 3, 5, 7, 9, 11, 15
• weights: uniform, distance
• metric: euclidean, manhattan, minkowski

Redes Neurais (MLP)

• hidden_layer_sizes: (50,), (100,), (50, 50), (100, 50),
(100, 100)

• activation: logistic, tanh, relu
• solver : sgd, adam
• alpha: 0.0001, 0.001, 0.01
• learning_rate: constant, adaptive
• learning_rate_init: 0.001, 0.01, 0.1
• batch_size: 32, 64, 128

50

Tabela 2 – Continuação

Algoritmo Hiperparâmetros Testados

GaussianNB

• var_smoothing: 1e-9, 1e-8, 1e-7, 1e-6, 1e-5

3.4.4 Salvar os Hiperparâmetros ótimos

Após o ajuste dos hiperparâmetros, identificou-se as configurações que
proporcionavam o melhor desempenho para os modelos em desenvolvimento. Esses
parâmetros foram armazenados, o que permitiu simplificar e reproduzir de forma
eficiente o processo de avaliação dos modelos.

3.4.5 Construção dos modelos usando os hiperparâmetros ótimos

Nessa etapa, cada modelo foi construído utilizando os hiperparâmetros
ótimos encontrados na etapa do GridSearchCV. Foram testados e avaliados oito
algoritmos de classificação: Regressão Logística, Árvore de Decisão, Random Forest,
Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
Redes Neurais Artificiais (MLP) e Naive Bayes (GaussianNB). Em seguida, cada
modelo foi treinado para ajustar os dados, separando-os em características (features)
e rótulos de classe (labels) identificadas na fase de clusterização do projeto. Esse
processo foi executado por meio do comando model.fit(), que realizou o treinamento
do modelo com os dados fornecidos. A metodologia de cada algoritmo de classificação
é detalhada na Tabela 3

3.5 Avaliação do desempenho dos modelos

A avaliação do desempenho dos modelos foi conduzida utilizando métricas
de classificação amplamente reconhecidas, como acurácia, precisão, recall, F1-
score, matriz de confusão e curva ROC. Essas métricas proporcionam uma análise
1 AdaBoost (Adaptive Boosting), SVM (Support Vector Machine), KNN (K-Nearest

Neighbors), MLP (Multi-Layer Perceptron), GaussianNB (Gaussian Naive Bayes).

51

Tabela 3 – Resumo dos Algoritmos de Classificação em Aprendizado de Máquina e
Suas Principais Funções

Algoritmo Função Principal
Regressão Logís-
tica

Classificação binária através de modelagem proba-
bilística usando função logística

Árvore de Deci-
são

Classificação baseada em regras hierárquicas
usando medidas de impureza (Gini/Entropia)

Random Forest Ensemble de árvores de decisão com bootstrap e
seleção aleatória de features para maior robustez

Gradient Boos-
ting

Ensemble sequencial que corrige erros residuais
anteriores usando gradiente da função de perda

AdaBoost Combinação adaptativa de classificadores fracos
com ajuste iterativo de pesos das amostras

SVM Classificação através de hiperplanos ótimos com
maximização de margens e kernel trick

KNN Classificação baseada na similaridade direta com
os k vizinhos mais próximos

MLP (Redes
Neurais)

Modelagem de relações não-lineares complexas atra-
vés de múltiplas camadas de neurônios artificiais

Naive Bayes Classificação probabilística baseada no teorema de
Bayes com suposição de independência condicional

abrangente do desempenho dos algoritmos, considerando tanto a capacidade de
previsão correta quanto a robustez em relação a falsos positivos e falsos negativos
(HAND, 2006).

3.5.1 Acurácia

A acurácia é a métrica mais utilizada para avaliar modelos de classificação
e representa a proporção de previsões corretas em relação ao total de previsões
realizadas. A fórmula da acurácia é definida por:

Acurácia = Número de previsões corretas
Número total de previsões . (3.9)

52

3.5.2 Precisão e Recall

A precisão mede a proporção de previsões positivas que são de fato corretas,
enquanto o recall avalia a proporção de casos positivos reais que foram identificados
corretamente pelo modelo. As fórmulas para precisão e recall são, respectivamente:

Precisão = VP
VP + FP , (3.10)

Recall = VP
VP + FN , (3.11)

onde VP são os verdadeiros positivos, FP são os falsos positivos e FN são
os falsos negativos.

3.5.3 F1-Score

O F1-score é a média harmônica entre precisão e recall, sendo uma métrica
útil quando há um desequilíbrio entre as classes. A fórmula do F1-score é dada por:

F1-score = 2 · Precisão · Recall
Precisão + Recall . (3.12)

3.5.4 Matriz de Confusão

A matriz de confusão é uma tabela que compara as previsões do modelo
com os valores reais, permitindo uma análise detalhada dos erros de classificação.
Ela é composta por quatro elementos principais: verdadeiros positivos (VP), falsos
positivos (FP), verdadeiros negativos (VN) e falsos negativos (FN). A matriz de
confusão é visualizada utilizando a função ConfusionMatrixDisplay da biblioteca
scikit-learn, com cores que facilitam a interpretação dos resultados.

3.5.5 Curva ROC e AUC

A curva ROC (Receiver Operating Characteristic) é uma representação
gráfica que relaciona a taxa de verdadeiros positivos (TPR) com a taxa de falsos
positivos (FPR) para diversos limiares de classificação (FAWCETT, 2006). A área
sob a curva ROC (AUC) é uma métrica que resume o desempenho do modelo

53

em um único valor, onde um AUC igual a 1 indica um modelo perfeito, e um
AUC de 0.5 sugere um modelo com desempenho equivalente a uma classificação
aleatória (HANLEY; MCNEIL, 1982). A Curva ROC é construída com base nas
probabilidades preditas pelo modelo, e a AUC é calculada por:

AUC =
∫ 1

0
TPR(FPR) dFPR. (3.13)

3.5.6 Curva de Aprendizado

A curva de aprendizado é uma ferramenta útil para diagnosticar problemas
de overfitting ou underfitting. Ela mostra a evolução da acurácia no conjunto de
treinamento e no conjunto de validação em função do tamanho do conjunto de
treinamento. A curva de aprendizado é gerada utilizando a função learning_curve
da biblioteca scikit-learn, que divide o conjunto de dados em diferentes tamanhos e
calcula a acurácia média para cada tamanho.

A Curva ROC e AUC, bem como a Curva de Aprendizado, foram aplicados
exclusivamente aos algoritmos de Redes Neurais Artificiais (RNA) e Naive Bayes.

3.6 Análises Posteriores à Seleção do Modelo

Após a seleção do modelo, foram conduzidas análises complementares para
avaliar o desempenho e a importância das variáveis, além de compreender a dis-
tribuição dos dados e a relação entre as features e o target. Essas análises são
fundamentais para validar a robustez do modelo, identificar as variáveis mais rele-
vantes e garantir que o modelo generalize adequadamente para novos dados. As
etapas realizadas incluíram a visualização da distribuição das features, o cálculo da
importância das variáveis, a análise de correlação e a seleção de features com base
no desempenho.

3.6.1 Distribuição das Features por Classe

Para compreender como as features se distribuem em relação às classes,
foram gerados gráficos de densidade (KDE - Kernel Density Estimation) para cada

54

feature, separando os dados por classe. A densidade de probabilidade é calculada
pela função:

f(x) = 1
nh

n∑
i=1

K
(

x− xi

h

)
, (3.14)

onde K é a função kernel (Gaussiana, por padrão), xi são os pontos de
dados, n é o número de pontos e h é a largura de banda. Essa análise permite
verificar se as features apresentam distribuições distintas para cada classe, o que
pode indicar sua capacidade de discriminar entre as diferentes categorias.

3.6.2 Importância das Variáveis

A importância das variáveis foi avaliada utilizando três métodos comple-
mentares, cada um com uma abordagem específica:

1. Diferença das Médias: Para cada feature, foi calculada a diferença
absoluta entre as médias das classes:

Diferença das Médias = |µ1 − µ0| , (3.15)

onde µ1 e µ0 são as médias das features para as classes 1 e 0, respectivamente.
Essa métrica é útil para identificar features cujos valores médios diferem signi-
ficativamente entre as classes, sugerindo que elas podem ser relevantes para a
classificação.

2. Importância por Permutação: A importância por permutação foi cal-
culada utilizando a função permutation_importance da biblioteca scikit-learn
(PEDREGOSA et al., 2011). Essa técnica mede a queda no desempenho do modelo
quando os valores de uma feature são permutados, indicando sua relevância para a
classificação:

Importância por Permutação = 1
n

n∑
i=1

(Acurácia Original− Acurácia com Permutação) .

(3.16)
Esse método é robusto, pois avalia a contribuição de cada feature diretamente no
desempenho do modelo, sendo menos sensível a relações não lineares ou interações
entre as features.

55

3. Correlação com o Target: A correlação entre cada feature e o target
foi calculada utilizando o método de Pearson:

Correlação = Cov(X, y)
σXσy

, (3.17)

onde Cov(X, y) é a covariância entre a feature e o target, e σX e σy são os desvios
padrão de X e y, respectivamente. A correlação mede a relação linear entre as fea-
tures e o target, sendo útil para identificar features que variam de forma consistente
com a variável dependente.

3.6.3 Seleção de Features com Base no Desempenho

A seleção de features é uma etapa crucial no desenvolvimento de modelos de
machine learning, podendo ser realizada tanto no pré-processamento quanto após a
modelagem, dependendo do objetivo. No pré-processamento, a seleção de features
é feita para reduzir a dimensionalidade dos dados, eliminar features irrelevantes ou
redundantes, e melhorar a eficiência computacional.

A seleção de features também pode ser realizada após a modelagem, com
o objetivo de avaliar a importância das features no contexto do modelo treinado.
Métodos como a importância por permutação ou análise de coeficientes (em modelos
lineares) permitem entender como o modelo utiliza as features para fazer previsões.
Essa abordagem é particularmente útil para validar a seleção inicial de features e
identificar aquelas que, apesar de parecerem importantes no pré-processamento,
não contribuem significativamente para o modelo final. Além disso, a análise pós-
modelagem pode revelar interações entre features que não são capturadas durante
o pré-processamento.

Para selecionar as features mais relevantes, foi utilizada a técnica SelectKBest
da biblioteca scikit-learn, que seleciona as k features com maior pontuação es-
tatística. A pontuação foi calculada utilizando o teste F de ANOVA:

F = Variância entre Grupos
Variância dentro dos Grupos (3.18)

O teste F de ANOVA avalia a capacidade de uma feature em discriminar entre
as classes, comparando a variância entre as médias das classes com a variância dentro

56

de cada classe. Features com valores de F mais altos indicam maior capacidade de
separar as classes e, portanto, são selecionadas para compor o conjunto final de
features (PEDREGOSA et al., 2011).

3.7 Ferramentas e Configuração do Ambiente

Os gráficos e imagens apresentados neste trabalho foram gerados utilizando
as bibliotecas matplotlib e seaborn em Python.

Os experimentos foram realizados em um notebook ACER Nitro 5 AN515-
57-520Y, equipado com um processador Intel Core i5-11400H (11ª geração), com 6
núcleos, 12 threads, frequência base de 2.7 GHz e turbo de até 4.5 GHz. O sistema
conta com 16 GB de memória RAM DDR4, operando a 3200 MHz, e uma placa de
vídeo NVIDIA GeForce GTX 3050, com 4 GB de memória dedicada GDDR6. O
armazenamento é feito em um SSD de 512 GB NVMe PCIe, e o sistema operacional
utilizado é o Windows 11 Home, 64 bits. O ambiente de desenvolvimento consistiu
no Visual Studio Code (VSCode) com Python 3.13.1, permitindo a execução
eficiente dos modelos e a geração de visualizações de alta qualidade para análise
dos resultados.

57

4 RESULTADOS E DISCUSSÃO

4.1 Análise de cluster

4.1.1 Determinação do Número de Clusters Ótimo

4.1.1.1 Método do cotovelo (Elbow)

A seguir, são apresentados os resultados da inércia obtidos durante a aplica-
ção do algoritmo K-Means para diferentes números de clusters, conforme a tabela
4.

Tabela 4 – Resultados da inércia para diferentes números de clusters no método
do cotovelo.

Número de Clusters Inércia
1 957,0
2 768,91
3 672,30
4 644,97
5 535,12
6 497,83
7 463,48
8 409,06
9 380,09
10 360,52

Esses valores mostram a diminuição da inércia conforme o número de clusters
aumenta, o que é esperado, uma vez que a inércia é uma medida que reflete a
dispersão das amostras dentro dos clusters. A inércia tende a diminuir à medida
que mais clusters são adicionados, mas o método do cotovelo busca identificar o
ponto onde essa diminuição começa a desacelerar, indicando o número ideal de
clusters.

A Figura 2 mostra o comportamento da inércia em relação ao número de
clusters. Pode-se observar que À medida que o número de clusters aumenta, a
inércia (ou variância dentro dos clusters) diminui. Isso acontece porque, com mais

58

clusters, os pontos de dados tendem a ficar mais próximos dos seus respectivos
centroides.

Figura 2 – Curva do cotovelo mostrando a inércia em função do número de clusters
para o algoritmo K-Means.

A determinação do número ideal de clusters por meio do método do coto-
velo é frequentemente considerada uma tarefa subjetiva, uma vez que se baseia
em uma interpretação visual (NAINGGOLAN et al., 2019). A ausência de uma
métrica objetiva para identificar com precisão o ponto exato do cotovelo limita a
confiabilidade desse método em algumas situaçes.

Embora o método do cotovelo seja útil quando o ponto de inflexão é evidente
no gráfico, sua aplicação em casos onde a curva é menos pronunciada ou apresenta
múltiplos "cotovelos"pode gerar ambiguidade na escolha do número de clusters. A
figura 2, por exemplo, ilustra uma situação em que a identificação do ponto ideal
torna-se desafiadora, demandando o emprego de outras técnicas complementares.

4.1.1.2 Método da silhueta (Silhouette Score)

O maior valor do Índice de Silhueta para k = 2, com um score de 0,2081,
indicando que a melhor estrutura de agrupamento, entre os valores testados (de

59

2 a 10), é alcançada com dois clusters (Tabela 5). Para k = 4, há uma queda
acentuada no índice (0,1016), sugerindo que a divisão dos dados em quatro clusters
resulta em agrupamentos de qualidade inferior, possivelmente devido à sobreposição
significativa entre os clusters ou à falta de coesão interna. Entre k = 5 e k = 10,
o Índice de Silhueta oscila, com valores variando entre 0,1189 e 0,1654, sem se
aproximar do pico observado em k = 2. O aumento discreto nos valores de k = 9
(0,1654) e k = 10 (0,1636) pode sugerir alguma estrutura adicional, mas a divisão
em dois clusters continua sendo a mais indicada, com melhores resultados.

Tabela 5 – Índice de Silhouette Score para diferentes valores de k.

Número de Clusters (k) Silhouette Score
2 0.2081
3 0.1978
4 0.1016
5 0.1451
6 0.1234
7 0.1189
8 0.1390
9 0.1654
10 0.1636

O Índice de Silhueta avalia a proximidade de um objeto com seu próprio
cluster em comparação com outros clusters. Valores próximos de +1 indicam que
os objetos estão bem agrupados, valores perto de 0 sugerem que estão próximos
da fronteira entre clusters, e valores próximos de -1 indicam que o objeto pode ter
sido atribuído ao cluster errado.

No seu caso, o valor de 0,2081 para k = 2 indica que, embora haja alguma
sobreposição entre os clusters (já que não está próximo de 1), a divisão em dois
grupos ainda representa melhor a estrutura dos dados dentro das opções testadas.
A queda para 0,1016 em k = 4 sugere um agrupamento de baixa qualidade, com
significativa sobreposição entre os clusters. Os valores variando entre 0,1189 e 0,1654
para k = 5 a k = 10 indicam agrupamentos intermediários, mas consistentemente
inferiores à divisão em dois clusters.

Em conclusão, a análise das tabelas e figuras apresenta uma forte evidência
de que a melhor escolha para o número de clusters é k = 2. O Índice de Silhueta

60

atinge seu valor máximo nesse ponto, indicando a melhor combinação de coesão
interna e separação entre os clusters. Embora haja pequenas flutuações nos valores
para k > 2, nenhum valor supera o resultado obtido para k = 2.

Figura 3 – Gráfico do Índice de Silhouette Score para diferentes números de clusters
(k).

4.1.1.3 Índice Calinski-Harabasz

Os resultados apontam que o número ideal de clusters, segundo o índice de
Calinski-Harabasz, é k = 2 (Tabela 6). Isso indica que os dados se organizam de
maneira mais eficiente em dois grupos bem definidos. O valor elevado do índice
para k = 2 (20,79) reflete uma boa separação entre os clusters, demonstrada por
uma alta soma dos quadrados entre grupos (BGSS), e uma forte coesão dentro de
cada cluster, evidenciada por uma baixa soma dos quadrados dentro dos grupos
(WGSS).

Para valores maiores de k, como k = 3 ou k = 4, houve uma redução
nos valores do índice, indicando que a introdução de mais clusters não melhora a
qualidade do agrupamento (Figura4). Na verdade, isso pode levar a uma diminuição
na separação entre os clusters ou a uma piora na coesão interna. Esses resultados

61

Tabela 6 – Índice de Calinski-Harabasz para diferentes valores de k.

Número de Clusters (k) Calinski-Harabasz Score
2 20.7926
3 17.7861
4 13.3850
5 16.1621
6 14.9422
7 14.1977
8 15.1174
9 14.7990
10 14.1549

sugerem que forçar o agrupamento em mais clusters do que o necessário gera divisões
artificiais nos dados ou clusters com sobreposição significativa, comprometendo a
qualidade do modelo.

Figura 4 – Índice Calinski-Harabasz para diferentes números de clusters (k) (1 a
10).

A análise das métricas de avaliação de clustering indica uma forte concor-
dância em torno de k = 2. Tanto o índice de Calinski-Harabasz quanto o Silhouette
Score apontam para esse número como o ideal para a divisão dos dados. O Calinski-

62

Harabasz atinge seu valor máximo em k = 2, indicando uma boa separação entre
os clusters e alta coesão interna. O Silhouette Score também é mais alto para k = 2
(0,208), sugerindo que os pontos estão bem agrupados dentro de seus respectivos
clusters e que há uma distinção clara entre os grupos. Embora o valor de 0,208 não
seja excepcionalmente alto, ele ainda é o melhor entre os valores analisados e está
alinhado com o resultado do Calinski-Harabasz.

Por outro lado, para valores de k > 2, enquanto o índice de Calinski-Harabasz
mostra uma queda consistente, o Silhouette Score apresenta algumas flutuações,
com um pequeno aumento para k = 9. No entanto, esses valores permanecem
abaixo do score obtido para k = 2. Essa pequena discrepância pode ocorrer porque
as duas métricas avaliam aspectos diferentes do agrupamento. O Calinski-Harabasz
se concentra na razão entre a variância entre e dentro dos clusters (CALINSKI;
HARABASZ, 1974), enquanto o Silhouette Score mede a similaridade de um ponto
com seu próprio cluster em comparação com o cluster mais próximo (ROUSSEEUW,
1987). Em conjunto, a forte concordância em torno de k = 2 oferece uma evidência
robusta de que os dados são melhor agrupados em dois clusters, e as flutuações
observadas em valores maiores de k sugerem que, embora haja algum ajuste em
termos de clusters adicionais, a estrutura geral dos dados favorece claramente a
divisão em dois grupos.

4.1.2 Agrupamento com K-means

A figura 5 mostra os resultados do algoritmo de agrupamento K-Means,
aplicado com dois clusters a um conjunto de dados quantitativos sobre qualidade e
produtividade dos frutos e resistência de genótipos de maracujazeiro ao CABMV.
No gráfico, as cores indicam os dois grupos formados, permitindo observar tanto as
distribuições individuais das variáveis quanto suas inter-relações. Essa visualização
facilita a análise de como as características avaliadas se organizam nos clusters,
oferecendo percepções sobre o desempenho produtivo e a resistência dos genótipos
ao vírus, o que é crucial para inferências no contexto do melhoramento genético.

A distribuição das variáveis revela informações significativas sobre os genó-
tipos em cada cluster. A área abaixo da curva de progresso da doença (AACPDM),
que é fundamental para avaliar a resistência, mostra uma clara distinção entre os

63

clusters. Os genótipos do grupo resistente, localizados em um cluster, apresentam
valores baixos de AACPDM, o que indica uma progressão mais lenta da doença ao
longo do tempo. Por outro lado, o cluster com genótipos mais suscetíveis concentra
valores mais altos de AACPDM, refletindo uma maior severidade da doença. Essa
separação é crucial, pois genótipos mais resistentes são preferidos em programas de
melhoramento genético, como evidenciado por estudos anteriores sobre resistência
a viroses em Passiflora edulis (GONÇALVES et al., 2021; VIDAL et al., 2021).

Figura 5 – Clusters gerados pelo algoritmo K-Means.

64

Além da resistência, as variáveis produtivas, como número de frutos (NF),
produção total (PT), peso do fruto (PF) e rendimento de polpa (RP), também
exibem padrões de distribuição que favorecem os genótipos resistentes. No cluster
resistente, essas variáveis apresentam valores consistentemente mais altos, o que
sugere que genótipos com menor severidade da doença foram agrupados com os
genótipos de maior capacidade produtiva. A produção total, por exemplo, mostra
uma correlação positiva com o número de frutos, indicando que o aumento da
resistência não só reduz os danos causados pelo CABMV, mas também melhora o
potencial produtivo. Esses resultados corroboram achados de estudos anteriores
que indicam que a resistência a patógenos em maracujazeiros está frequentemente
associada a uma maior produtividade e melhor qualidade dos frutos (GOMES et
al., 2022).

A relação entre as variáveis também revela padrões significativos. O peso
do fruto (PF) está fortemente associado ao comprimento (Comp) e ao diâmetro
do fruto (Diam), com genótipos que apresentam frutos maiores concentrados
no cluster mais resistente. Essa associação indica que o tamanho do fruto, uma
característica frequentemente valorizada no mercado, pode ser influenciado pela
resistência ao CABMV. Além disso, o rendimento de polpa (RP), uma variável
de grande importância econômica, é superior no grupo resistente, reforçando a
conexão entre resistência e características de qualidade. Por outro lado, variáveis
como o teor de sólidos solúveis totais (BRIX) apresentam maior sobreposição entre
os clusters, sugerindo que, embora essas características sejam importantes para o
mercado consumidor, elas podem não estar diretamente relacionadas à resistência
ou à produtividade. Isso pode ser influenciado por fatores genéticos específicos ou
condições ambientais, como observado por Gomes et al. 2022.

A distribuição das variáveis também revela padrões de variabilidade interna
dentro dos clusters. A espessura da casca (EC), que pode impactar a durabilidade
e o transporte dos frutos, apresenta uma maior variabilidade entre os genótipos do
cluster resistente. Essa variação pode ser aproveitada no programa de melhoramento,
permitindo a seleção de genótipos que atendam tanto às exigências de resistência
quanto às preferências do mercado consumidor. Da mesma forma, o índice de
formato (ind_form), que indica o quão arredondado é o fruto, mostra uma ampla

65

distribuição em ambos os clusters, sem uma distinção clara entre eles. Isso destaca
a complexidade de características morfológicas como o formato do fruto, que podem
ser influenciadas por uma combinação de fatores genéticos e ambientais.

A análise das relações entre as variáveis destaca o papel crucial da resistência
ao CABMV na determinação do desempenho produtivo. Genótipos mais resistentes
não só apresentam menor severidade da doença, mas também se destacam em termos
de desempenho produtivo e qualidade comercial. Esse padrão é consistente com
os observados de Gomes et al. 2022, que ressaltaram a importância da resistência
em programas de melhoramento de maracujazeiros como um fator integrador entre
produtividade e viabilidade. No entanto, algumas variáveis apresentam interações
mais complexas. O teor de sólidos solúveis totais, por exemplo, é uma característica
influenciada tanto por fatores genéticos quanto ambientais, como evidenciado por
Chavarría-Perez et al. 2020, podendo exibir variabilidade significativa até mesmo
entre genótipos altamente resistentes.

4.1.3 Avaliação da Estabilidade dos Clusters

4.1.3.0.1 Índice de Rand Ajustado (ARI)

O Índice de Rand Ajustado (ARI) foi utilizado para avaliar a consistência
dos clusters formados. O valor médio obtido para o ARI foi de 0,42 ± 0,30 para
dois clusters. O valor médio de 0,42 sugere uma moderada consistência entre os
clusters formados em diferentes execuções. Isso indica que, embora haja uma certa
concordância entre os agrupamentos, eles não são totalmente idênticos. A presença
de um desvio padrão de 0,30 reforça essa interpretação, mostrando que há uma
variação significativa nos resultados entre as execuções.

A moderada consistência observada pode ser atribuída a vários fatores como
sensibilidade do K-means à inicialização, onde o algoritmo K-means é conhecido
por ser sensível à escolha inicial dos centróides, o que pode levar a resultados
diferentes em execuções distintas (KAUFMAN; ROUSSEEUW, 2009); estrutura
dos dados, ou seja, se os dados não possuem uma estrutura clara de clusters, o
algoritmo pode gerar agrupamentos inconsistentes; e número de clusters, em que o
número de clusters escolhido pode não ser o ideal, levando a uma sobreposição ou

66

má definição dos grupos. Todavia, os resultados para o número ideal de clusters
mostraram que dois é o mais adequado de clusters entre 2 e 10 avaliados. Além
disso, a avaliação visual dos clusters formados evidencia na prática a divisão bem
clara dos genótipos resistentes ao CABMV e com características produtivas ideais.

4.2 Avaliação de algoritmos de classificação

4.2.1 Ajuste dos hiperparâmetros usando GridSearchCV

A Tabela 7 apresenta os melhores hiperparâmetros encontrados para cada
modelo, destacando as configurações que maximizaram o desempenho de cada
algoritmo.

4.2.1.1 Regressão Logística

A Regressão Logística, um dos métodos mais tradicionais para problemas
de classificação binária, foi configurada com os hiperparâmetros ótimos C=1.0,
penalty=’l2’ e solver=’lbfgs’, conforme selecionados pelo GridSearchCV e
apresentados na Tabela 7. O parâmetro C=1.0, que controla a intensidade da
regularização, desempenha um papel fundamental no equilíbrio entre a capacidade
do modelo de se ajustar aos dados de treinamento e a necessidade de evitar
overfitting. Valores menores de C aumentam a regularização, o que pode ser benéfico
em conjuntos de dados com alto risco de overfitting, enquanto valores maiores
permitem um ajuste mais flexível aos dados (PEDREGOSA et al., 2011). Neste
estudo, C=1.0 demonstrou ser o valor ideal para manter um bom desempenho sem
comprometer a generalização do modelo, conforme validado pelo GridSearchCV.

A escolha da penalidade l2, também conhecida como regularização Ridge,
é responsável por assegurar a estabilidade do modelo. Essa penalidade adiciona
uma restrição proporcional ao quadrado dos coeficientes do modelo ao custo de
otimização, resultando em coeficientes menores e mais distribuídos. Isso não apenas
ajuda a evitar overfitting, mas também melhora a generalização do modelo, especi-
almente em conjuntos de dados onde a multicolinearidade (alta correlação entre
variáveis preditoras) pode ser um problema (HASTIE; TIBSHIRANI; FRIEDMAN,
2009). O GridSearchCV confirmou que a penalidade l2 é a mais adequada para

67

Tabela 7 – Melhores Parâmetros de Cada Algoritmo. AdaBoost (Adaptive Boosting);
SVM (Support Vector Machine); KNNK (K-Nearest Neighbors); RNA
MLP (Redes Neurais Artificiais - Multilayer Perceptron); GaussianNB
(Gaussian Naive Bayes).

Algoritmo Melhores Parâmetros

Regressão Logística {’C’: 1.0, ’penalty’: ’l2’, ’solver’: ’lbfgs’}

Árvore de Decisão
{’criterion’: ’entropy’, ’max_depth’: None,
’min_samples_leaf’: 1, ’min_samples_split’: 2,
’splitter’: ’best’}

Random Forest
{’bootstrap’: True, ’max_depth’: None,
’min_samples_leaf’: 1, ’min_samples_split’: 2,
’n_estimators’: 200}

Gradient Boosting
{’learning_rate’: 0.05, ’max_depth’: 3,
’min_samples_leaf’: 4, ’min_samples_split’: 2,
’n_estimators’: 200}

AdaBoost {’algorithm’: ’SAMME’, ’learning_rate’: 0.5,
’n_estimators’: 50}

SVM {’C’: 1, ’gamma’: ’scale’,
’kernel’: ’sigmoid’}

KNN {’metric’: ’euclidean’, ’n_neighbors’: 5,
’weights’: ’uniform’}

RNA (MLP)

{’activation’: ’tanh’, ’alpha’: 0.0001,
’batch_size’: 32, ’hidden_layer_sizes’: (50,),
’learning_rate’: ’constant’,
’learning_rate_init’: 0.1, ’solver’: ’adam’}

Naive Bayes (GaussianNB) {’var_smoothing’: 1e-09}

o conjunto de dados em questão, garantindo um equilíbrio entre viés e variância
(JAMES et al., 2013).

Por fim, o solver lbfgs (Limited-memory Broyden–Fletcher–Goldfarb–Shanno)
traz eficiência em problemas de classificação com conjuntos de dados de tamanho
moderado, o que é importante no presente trabalho. Esse algoritmo é particular-
mente adequado para problemas com regularização l2, como no caso deste estudo, e
é conhecido por sua convergência rápida e uso eficiente de memória (PEDREGOSA
et al., 2011).

68

4.2.1.2 Árvore de Decisão

Os hiperparâmetros ótimos selecionados pelo GridSearchCV para o al-
goritmo de Árvore de Decisão foram: {’criterion’: ’entropy’, ’max_depth’:
None, ’min_samples_leaf’: 1, ’min_samples_split’: 2, ’splitter’: ’best’},
conforme detalhado na Tabela 7. O critério entropy foi escolhido para avaliar a
qualidade das divisões na árvore, sendo uma métrica que mede a impureza dos
nós com base na distribuição das classes. Esse critério é especialmente útil em
problemas de classificação onde a separação entre classes não é linear, como no
caso da seleção de genótipos resistentes ao CABMV e produtivos (BREIMAN et
al., 1984).

O parâmetro max_depth foi definido como None, o que permite que a
árvore cresça até que todas as folhas sejam puras ou até que outras condições de
parada sejam atingidas. Isso pode resultar em uma árvore mais complexa, mas,
combinado com min_samples_leaf = 1 e min_samples_split = 2, garante que a
árvore capture padrões detalhados nos dados sem restrições excessivas. O splitter
definido como best assegura que, em cada divisão, o algoritmo escolha a melhor
característica para maximizar a pureza dos nós resultantes (PEDREGOSA et al.,
2011).

Essa configuração de hiperparâmetros resultou em um modelo de Árvore
de Decisão altamente adaptável, capaz de capturar relações complexas entre as
variáveis preditoras e a resistência ao CABMV. No entanto, é fundamental mo-
nitorar o risco de overfitting, especialmente em conjuntos de dados menores, o
que ocorre nesse caso, onde a árvore pode se ajustar excessivamente aos dados
de treinamento. A combinação desses parâmetros reflete um equilíbrio entre a
capacidade de modelagem e a generalização, essencial para aplicações práticas em
melhoramento genético necessárias no presente estudo (GONçALVES et al., 2021).

4.2.1.3 Random Forest

Os hiperparâmetros ótimos selecionados pelo GridSearchCV para o al-
goritmo de Random Forest foram: {’bootstrap’: True, ’max_depth’: None,
’min_samples_leaf’: 1, ’min_samples_split’: 2, ’n_estimators’: 200}, con-
forme apresentado na Tabela 7. O parâmetro n_estimators = 200 indica que o

69

modelo foi configurado com 200 árvores no ensemble, o que geralmente melhora
a precisão e a robustez do modelo, reduzindo a variância e o risco de overfitting
(BREIMAN, 2001b). A técnica de bootstrap = True garante que cada árvore seja
treinada em um subconjunto aleatório dos dados, aumentando a diversidade do
ensemble e, consequentemente, sua capacidade de generalização.

O parâmetro max_depth = None permite que as árvores individuais cresçam
até que todas as folhas sejam puras ou até que outras condições de parada sejam
atingidas. Isso, combinado com min_samples_leaf = 1 e min_samples_split
= 2, resulta em árvores profundas e complexas, capazes de capturar padrões
detalhados nos dados. No entanto, a natureza do Random Forest, que combina
múltiplas árvores, ajuda a reduzir o risco de overfitting que poderia surgir com
árvores individuais muito complexas (PEDREGOSA et al., 2011). Essa configuração
de hiperparâmetros resultou em um modelo de Random Forest altamente eficaz, com
alta acurácia e capacidade de generalização, conforme evidenciado pelos resultados
apresentados na Tabela 7.

4.2.1.4 Gradient Boosting

Os hiperparâmetros ótimos selecionados pelo GridSearchCV para o algo-
ritmo de Gradient Boosting foram: {’learning_rate’: 0.05, ’max_depth’: 3,
’min_samples_leaf’: 4, ’min_samples_split’: 2, ’n_estimators’: 200}, con-
forme detalhado na Tabela 7. A taxa de aprendizado (learning_rate = 0.05) foi
ajustada para um valor relativamente baixo, o que permite que o modelo aprenda
de forma mais gradual e precisa, reduzindo o risco de sobreajuste enquanto mantém
uma boa capacidade de generalização (FRIEDMAN, 2001). Esse valor, combinado
com n_estimators = 200, garante que o modelo tenha um número suficiente de
iterações para capturar padrões complexos nos dados sem comprometer a eficiência
computacional.

O parâmetro max_depth = 3 limita a profundidade das árvores individuais,
criando modelos mais simples e interpretáveis, enquanto min_samples_leaf = 4 e
min_samples_split = 2 controlam o crescimento das árvores, evitando divisões
excessivas que poderiam levar a folhas com poucas amostras. Essa configuração
equilibra a complexidade do modelo com a necessidade de evitar overfitting, especial-

70

mente em conjuntos de dados com características multivariadas, como os utilizados
neste estudo (PEDREGOSA et al., 2011). A escolha desses hiperparâmetros reflete
uma estratégia cuidadosa para otimizar o desempenho do Gradient Boosting em
tarefas de classificação. Além disso, a combinação de uma taxa de aprendizado
moderada com um número elevado de estimadores permite que o modelo refine
suas previsões de forma iterativa, resultando em uma performance superior em
comparação com métodos mais simples.

4.2.1.5 AdaBoost (Adaptive Boosting)

Os hiperparâmetros ótimos selecionados pelo GridSearchCV para o al-
goritmo de AdaBoost foram: {’algorithm’: ’SAMME’, ’learning_rate’: 0.5,
’n_estimators’: 50}, conforme apresentado na Tabela 7. O uso do algoritmo
SAMME (Stagewise Additive Modeling using a Multi-class Exponential loss function) é
especialmente adequado para problemas de classificação multiclasse, como a seleção
de genótipos resistentes ao CABMV e produtivos, pois permite que o modelo
ajuste iterativamente os pesos das amostras mal classificadas, priorizando aquelas
que são mais difíceis de prever (FREUND; SCHAPIRE, 1997). Essa abordagem
iterativa é reforçada pelo learning_rate = 0.5, que controla a contribuição de
cada classificador fraco ao modelo final. Um valor moderado como 0.5 garante
que o modelo aprenda de forma eficiente, sem ser excessivamente conservador ou
agressivo em suas atualizações.

O número de estimadores (n_estimators = 50) foi ajustado para um valor
relativamente baixo, o que sugere que o AdaBoost conseguiu alcançar um bom
desempenho com um número limitado de iterações. Isso pode ser atribuído à eficácia
do SAMME em combinar classificadores fracos de forma a maximizar a precisão global
do modelo. A interação entre o learning_rate e o n_estimators é crucial: um
learning_rate mais alto permite que cada classificador contribua de forma mais
significativa, reduzindo a necessidade de um grande número de estimadores para
alcançar a convergência (ZHU et al., 2009).

Essa configuração de hiperparâmetros resultou em um modelo de AdaBoost
que equilibra eficiência computacional e capacidade de generalização. O uso de
um learning_rate moderado e um número reduzido de estimadores indica que

71

o modelo é capaz de capturar padrões importantes nos dados sem se tornar
excessivamente complexo.

4.2.1.6 Máquina de Vetores de Suporte (SVM)

Os hiperparâmetros ótimos selecionados pelo GridSearchCV para o algo-
ritmo de Support Vector Machine (SVM) foram: {’C’: 1, ’gamma’: ’scale’,
’kernel’: ’sigmoid’}, conforme detalhado na Tabela 7. O parâmetro C = 1 de-
fine um equilíbrio entre a maximização da margem de separação e a minimização
do erro de classificação. Um valor intermediário como 1 sugere que o modelo não
é excessivamente restritivo, permitindo uma margem de separação flexível que se
adapta bem a dados com ruídos ou sobreposição entre classes (CORTES; VAPNIK,
1995).

O kernel sigmoid foi escolhido para mapear os dados para um espaço de
maior dimensionalidade, onde a separação entre classes pode ser mais clara. Esse
kernel é particularmente útil quando a relação entre as variáveis preditoras e a
variável alvo não é linear, mas ainda pode ser capturada por uma função de ativação
sigmoide. A escolha de gamma = ’scale’ garante que o parâmetro de escala do
kernel seja ajustado automaticamente com base na variância dos dados, o que ajuda
a evitar problemas de overfitting ou underfitting (PEDREGOSA et al., 2011).

A combinação desses hiperparâmetros resulta em um modelo de SVM que é
ao mesmo tempo robusto e eficiente. O kernel sigmoide, aliado a um valor moderado
de C, permite que o modelo capture relações complexas entre as variáveis preditoras
e os genótipos resistentes ao CABMV e produtivos, enquanto o ajuste automático
de gamma garante que o modelo generalize bem para novos dados.

4.2.1.7 K-Vizinhos Mais Próximos (KNN)

Os hiperparâmetros ótimos selecionados pelo GridSearchCV para o algo-
ritmo de K-Nearest Neighbors (KNN) foram: {’metric’: ’euclidean’, ’n_-
neighbors’: 5, ’weights’: ’uniform’}, conforme apresentado na Tabela 7. A
métrica euclidean calcula a distância entre os pontos de dados, sendo uma das
medidas mais comuns e eficazes para problemas de classificação (COVER; HART,
1967).

72

O parâmetro n_neighbors = 5 indica que o modelo considera os cinco
vizinhos mais próximos para realizar a classificação. Geralmente esse valor é es-
colhido para um equilíbrio entre a sensibilidade a ruídos (que pode ocorrer com
valores menores de n_neighbors) e a perda de detalhes locais (que pode ocorrer
com valores maiores). Além disso, a configuração weights = ’uniform’ atribui o
mesmo peso a todos os vizinhos, o que simplifica o processo de classificação e evita
que pontos muito próximos, mas potencialmente ruidosos, tenham uma influência
desproporcional no resultado (ZHANG, 2016a).

A combinação desses hiperparâmetros resulta em um modelo de KNN
que é simples, mas eficaz. A métrica euclidiana garante que as distâncias sejam
calculadas de forma consistente, enquanto a escolha de n_neighbors = 5 e weights
= ’uniform’ assegura que o modelo seja robusto a variações locais nos dados.

4.2.1.8 Redes Neurais Artificiais (RNA - Multilayer Perceptron)

Os hiperparâmetros ótimos selecionados pelo GridSearchCV para o al-
goritmo de Redes Neurais Artificiais (MLP) foram: {’activation’: ’tanh’,
’alpha’: 0.0001, ’batch_size’: 32, ’hidden_layer_sizes’: (50,), ’learning_-
rate’: ’constant’, ’learning_rate_init’: 0.1, ’solver’: ’adam’}, con-
forme detalhado na Tabela 7. A função de ativação tanh (tangente hiperbólica) foi
introduz uma não linearidade ao modelo, permitindo que a rede capture relações
complexas entre as variáveis preditoras. Essa função é particularmente eficaz em
problemas onde os dados apresentam padrões não lineares, pois mapeia as entradas
para um intervalo entre -1 e 1, o que ajuda a evitar problemas de saturação que
podem ocorrer com outras funções de ativação, como a sigmoide (HAYKIN, 1999).

O parâmetro alpha = 0.0001 controla a regularização L2, adicionando
uma penalidade aos pesos da rede para evitar overfitting. Um valor tão baixo
indica que a regularização é suave, permitindo que o modelo mantenha uma alta
capacidade de aprendizado sem se tornar excessivamente complexo. Essa escolha é
especialmente importante em redes neurais, onde a flexibilidade do modelo pode
levar a ajustes excessivos aos dados de treinamento. A combinação de alpha
com o tamanho da camada oculta hidden_layer_sizes = (50,) resulta em uma
arquitetura balanceada, com uma única camada de 50 neurônios, suficiente para

73

capturar padrões relevantes sem aumentar desnecessariamente a complexidade
computacional (PEDREGOSA et al., 2011).

O uso do solver adam (Adaptive Moment Estimation) pode ser considerada
uma escolha estratégica, pois combina as vantagens do método de momentum e do
RMSprop, adaptando a taxa de aprendizado para cada parâmetro da rede. Isso
resulta em uma convergência mais rápida e estável, especialmente em conjuntos de
dados de tamanho moderado. A taxa de aprendizado inicial learning_rate_init
= 0.1 é relativamente alta, o que permite que o modelo faça ajustes significativos
nos pesos durante as primeiras iterações, enquanto o learning_rate = ’constant’
garante que essa taxa permaneça fixa ao longo do treinamento, evitando flutuações
que poderiam prejudicar a estabilidade do modelo (KINGMA; BA, 2014).

O tamanho do lote (batch_size = 32) foi ajustado para um valor interme-
diário, o que equilibra a eficiência computacional e a precisão do gradiente. Um
lote menor permite atualizações mais frequentes dos pesos, mas pode aumentar a
variância do gradiente, enquanto um lote maior reduz a variância, mas pode tornar
o treinamento mais lento. A escolha de 32 é um compromisso que se mostrou eficaz
para o conjunto de dados em questão, permitindo que o modelo generalize bem sem
sacrificar o desempenho computacional (GOODFELLOW; BENGIO; COURVILLE,
2016).

Essa configuração de hiperparâmetros resulta em um modelo de MLP que é
ao mesmo tempo poderoso e eficiente. A combinação da função de ativação tanh, a
regularização suave com alpha = 0.0001, e o uso do solver adam com uma taxa de
aprendizado constante cria uma rede neural capaz de aprender padrões complexos
sem se tornar excessivamente sensível a ruídos ou sobreajuste. Essa abordagem é
particularmente útil em problemas onde a relação entre as variáveis preditoras e a
variável alvo é altamente não linear, mas ainda requer um modelo que generalize
bem para novos dados.

4.2.1.9 Naive Bayes Gaussian (GaussianNB)

O hiperparâmetro ótimo selecionado pelo GridSearchCV para o algoritmo
de Naive Bayes Gaussiano foi: {’var_smoothing’: 1e-09}, conforme detalhado
na Tabela 7. O parâmetro var_smoothing é uma técnica crucial no GaussianNB,

74

pois adiciona uma pequena constante às variâncias das características durante o
cálculo das probabilidades condicionais. Isso evita problemas numéricos que podem
surgir quando uma característica tem variância zero em uma classe, o que tornaria
a probabilidade indefinida. Um valor tão baixo como 1e-09 indica que o modelo
está priorizando a precisão das estimativas de probabilidade, sem adicionar ruído
excessivo aos dados (MITCHELL, 1997).

A escolha de var_smoothing = 1e-09 reflete um equilíbrio delicado entre
a estabilidade numérica e a fidelidade aos dados originais. Valores muito altos de
var_smoothing podem suavizar excessivamente as distribuições de probabilidade,
resultando em um modelo menos sensível às nuances dos dados. Por outro lado,
valores muito baixos podem levar a instabilidades numéricas, especialmente em
características com variâncias próximas de zero. O valor selecionado pelo GridSear-
chCV sugere que o modelo consegue manter uma alta precisão nas estimativas de
probabilidade, sem comprometer a robustez do algoritmo (PEDREGOSA et al.,
2011).

A combinação desses elementos resulta em um modelo de Naive Bayes
Gaussiano que é ao mesmo tempo simples e eficaz. A suavização de variância
com var_smoothing = 1e-09 garante que o modelo seja numericamente estável,
enquanto a suposição de independência condicional permite que ele faça previsões
rápidas e eficientes. Essa configuração é especialmente adequada para problemas
de classificação onde a simplicidade e a velocidade do modelo são tão importantes
quanto sua precisão, como em análise de dados biológicos (ZHANG, 2004a).

4.2.2 Desempenho dos algoritmos de classificação

4.2.2.1 Acurácia, precisão, recall e F1-score

Os algoritmos de aprendizado de máquina utilizados neste estudo apresen-
taram desempenho variado nas métricas de avaliação, incluindo acurácia, precisão,
recall e F1-score. Esses resultados são apresentados na Figura 6.

O Naive Bayes (GaussianNB) destacou-se como o algoritmo de melhor de-
sempenho, atingindo acurácia, precisão, recall e F1-score perfeitos, todos com valor
1.0. Esses resultados excepcionais podem ser atribuídos à suposição de independên-

75

cia condicional entre as variáveis, que mostrou-se adequada para este conjunto de
dados (ZHANG, 2004b). Além disso, a utilização do parâmetro de suavização de
variância (var_smoothing) garantiu a estabilidade numérica do modelo, mesmo em
cenários com variâncias muito pequenas (MURPHY, 2012).

Os algoritmos de Regressão Logística, Árvore de Decisão, Random Forest,
Gradient Boosting e Redes Neurais Artificiais (RNA) apresentaram desempenho
semelhante, com acurácia e F1-scores de 0.94. Essa uniformidade sugere que o
conjunto de dados possui uma estrutura bem definida e características adequadas
para classificação, permitindo que modelos diversos atinjam alta precisão (BREI-
MAN, 2001b; FRIEDMAN; HASTIE; TIBSHIRANI, 2001). Modelos baseados em
ensemble, como Random Forest e Gradient Boosting, são reconhecidos por sua
robustez e capacidade de lidar com dados não-lineares, enquanto Redes Neurais
Artificiais destacam-se pela flexibilidade em capturar padrões complexos (LECUN;
BENGIO; HINTON, 2015).

O Support Vector Machine (SVM) apresentou resultados competitivos, com
acurácia de 0.94, precisão de 0.93, recall de 1.0 e F1-score de 0.96. Esses valores
refletem a capacidade do SVM de identificar classes positivas com alta sensibilidade,
mesmo em conjuntos de dados de alta dimensionalidade, devido à sua abordagem
de maximização de margens (VAPNIK, 1998). Esse desempenho confirma a eficácia
do SVM em cenários onde os dados são bem separados, mas com algumas variações
na precisão.

76

Figura 6 – Desempenho dos Algoritmos de Classificação. AdaBoost (Adaptive Boosting); SVM (Support Vector
Machine); KNN (K-Nearest Neighbors); RNA MLP (Redes Neurais Artificiais - Multilayer Perceptron);
GaussianNB (Gaussian Naive Bayes).

77

Por outro lado, o AdaBoost e o K-Nearest Neighbors (KNN) apresentaram
desempenhos ligeiramente inferiores. O AdaBoost alcançou acurácia de 0.88 e recall
perfeito de 1.0, mas precisou sacrificar a precisão (0.86), resultando em um F1-score
de 0.93. Esse padrão reflete a característica do AdaBoost de priorizar a correção de
erros em classificações anteriores, o que pode levar ao aumento de falsos positivos
em alguns cenários (FREUND; SCHAPIRE, 1997). Já o KNN demonstrou acurácia
de 0.89 e F1-score de 0.88. Apesar de apresentar um desempenho equilibrado entre
precisão e recall, o KNN mostrou-se limitado pela sensibilidade à escolha do número
de vizinhos (k=5) e à métrica de distância utilizada (ALTMAN, 1992).

A análise das métricas de avaliação revelou que, com exceção do AdaBoost
e do KNN, todos os algoritmos alcançaram acurácia elevada, variando entre 0.94
e 1.0. Isso reflete tanto a qualidade do conjunto de dados quanto a eficácia das
técnicas de pré-processamento, como padronização e seleção de variáveis. O Naive
Bayes, com precisão perfeita, destacou-se pela capacidade de minimizar falsos
positivos, enquanto o recall foi perfeito para o Naive Bayes, SVM e AdaBoost,
evidenciando sua eficácia em capturar todos os casos positivos. Por fim, o F1-score
foi consistentemente elevado, com destaque para o Naive Bayes (1.0) e o SVM
(0.96), enquanto o KNN apresentou o menor F1-score (0.88), refletindo desafios
relacionados à sua sensibilidade e precisão.

Os resultados gerais indicam que o Naive Bayes foi o mais eficiente no
conjunto de dados avaliado, enquanto Random Forest e Gradient Boosting se
mostraram alternativas robustas com excelente equilíbrio entre simplicidade e
desempenho. Além disso, um estudo recente teve como objetivo comparar a eficácia
de diferentes algoritmos de aprendizado de máquina na discriminação de variedades
e linhas de batata com base em dados espectroscópicos de fluorescência. Nesse
contexto, o algoritmo Naive Bayes destacou-se ao alcançar uma acurácia média
de 95%, evidenciando sua eficácia em aplicações agrícolas. A análise da matriz de
confusão revelou que todas as amostras da variedade Sante e da linha S 716 foram
corretamente classificadas, ressaltando a capacidade do algoritmo em identificar
características distintivas entre as amostras. Esses resultados corroboram a ideia
de que o Naive Bayes é uma ferramenta poderosa para a classificação de cultivares,
especialmente em cenários onde a complexidade dos dados pode ser um desafio.

78

A combinação de sua simplicidade e robustez torna-o uma escolha valiosa para
aplicações práticas na agricultura, onde a precisão na identificação de variedades
é crucial para o melhoramento genético e a produção eficiente. (SLAVOVA et al.,
2022b).

No geral, os resultadosindicam que o Naive Bayes foi o algoritmo mais
eficiente no conjunto avaliado, enquanto Random Forest e Gradient Boosting
apresentaram bom equilíbrio entre simplicidade e desempenho. Em um estudo
recente, o Naive Bayes obteve 95% de acurácia na classificação de variedades de
batata com dados espectroscópicos, destacando-se por identificar corretamente
todas as amostras das variedades analisadas (SLAVOVA et al., 2022b).

4.2.2.2 Análise das Matrizes de Confusão

As matrizes de confusão para os diferentes algoritmos de classificação são
apresentadas na Figura 7. Essas matrizes fornecem uma visão detalhada do desem-
penho de cada modelo, permitindo a análise de verdadeiros positivos (VP), falsos
positivos (FP), verdadeiros negativos (VN) e falsos negativos (FN). A Regressão
Logística, Árvore de Decisão, Random Forest, Gradient Boosting, SVM e Redes
Neurais Artificiais (RNA) apresentaram matrizes de confusão idênticas, com 4
verdadeiros negativos, 1 falso positivo, 0 falsos negativos e 13 verdadeiros positivos.
Esse padrão indica que esses algoritmos foram altamente eficazes na classificação
dos genótipos resistentes ao CABMV e produtivos, com uma taxa de acerto de 94%
e uma taxa de falsos positivos de aproximadamente 6%. A consistência desses resul-
tados reforça a robustez desses métodos para a tarefa em questão, especialmente
quando combinados com técnicas de pré-processamento e ajuste de hiperparâmetros
(PEDREGOSA et al., 2011).

79

Figura 7 – Matrizes de Confusão dos Algoritmos de classificação. AdaBoost (Adaptive Boosting); SVM (Support Vector
Machine); KNN (K-Nearest Neighbors); RNA MLP (Redes Neurais Artificiais - Multilayer Perceptron);
GaussianNB (Gaussian Naive Bayes).

80

O algoritmo AdaBoost apresentou uma matriz de confusão com 2 verdadeiros
negativos, 3 falsos positivos, 0 falsos negativos e 13 verdadeiros positivos. Esse
resultado reflete um desempenho ligeiramente inferior em comparação com os outros
algoritmos, com uma taxa de falsos positivos de 60%. Esse comportamento pode
ser atribuído à natureza iterativa do AdaBoost, que, ao priorizar a correção de
erros em classificações anteriores, pode levar a um ajuste excessivo (overfitting) em
certos cenários (FREUND; SCHAPIRE, 1997). Apesar disso, a ausência de falsos
negativos indica que o modelo foi capaz de identificar todos os casos positivos, o
que pode ser crucial em aplicações onde a detecção de todos os genótipos resistentes
é prioritária.

O K-Nearest Neighbors (KNN) apresentou uma matriz de confusão com 3
verdadeiros negativos, 2 falsos positivos, 0 falsos negativos e 13 verdadeiros positivos.
Esse resultado reflete uma taxa de falsos positivos de 40%, o que é superior à
maioria dos outros algoritmos. A sensibilidade do KNN à escolha do número de
vizinhos (k) e à métrica de distância utilizada pode explicar esse desempenho.
No presente estudo, o valor ótimo de k foi determinado como 5, o que pode não
ser suficiente para capturar completamente a complexidade dos dados (ZHANG,
2016b). Apesar disso, a ausência de falsos negativos e a alta taxa de verdadeiros
positivos indicam que o KNN ainda é uma técnica viável para a classificação de
genótipos resistentes.

O algoritmo Naive Bayes (GaussianNB) destacou-se com uma matriz de
confusão perfeita, com 5 verdadeiros negativos, 0 falsos positivos, 0 falsos negativos e
13 verdadeiros positivos. Esse resultado excepcional confirma o desempenho superior
do Naive Bayes em comparação com os outros algoritmos, alcançando uma taxa de
acerto de 100%. A suposição de independência condicional entre as características,
combinada com a aplicação de suavização de variância (var_smoothing), mostrou-se
altamente eficaz para o conjunto de dados em questão (MITCHELL, 1997). Esse
desempenho reforça a utilidade do Naive Bayes em problemas de classificação onde
as suposições do modelo são válidas e os dados seguem uma distribuição Gaussiana.

Em síntese, a análise das matrizes de confusão confirma que a maioria dos
algoritmos testados é capaz de classificar eficientemente os genótipos de maracuja-
zeiro resistentes ao CABMV, com destaque para o Naive Bayes, que apresentou

81

um desempenho perfeito. A escolha do algoritmo ideal deve considerar não apenas
as métricas de desempenho, mas também a interpretabilidade do modelo e a ca-
pacidade de generalização para novos dados. A análise desses resultados reforça a
importância da aplicação de técnicas de aprendizado de máquina no melhoramento
genético de plantas, oferecendo ferramentas poderosas para a seleção de genótipos
com características desejáveis (DIJK, 2021).

4.2.2.3 Análise das Curvas ROC

As curvas ROC (Receiver Operating Characteristic) para o RNA MLP
(Figura 8A) e o GaussianNB (Figura 8B) são apresentadas na Figura 8. Ambas as
curvas demonstram um desempenho excepcional, com uma área sob a curva (AUC)
de 1.00, indicando uma capacidade perfeita de discriminação entre as classes positiva
(genótipos resistentes ao CABMV) e negativa (genótipos suscetíveis). Esse resultado
confirma a eficácia desses algoritmos na tarefa de classificação, destacando-se como
ferramentas poderosas para o melhoramento genético de plantas.

Figura 8 – Curvas ROC para o RNA MLP (A) e o GaussianNB (B).

Na Figura 8A, a curva ROC para o RNA MLP mostra uma taxa de
verdadeiros positivos (TPR) de 1.0 e uma taxa de falsos positivos (FPR) de
0.0 no ponto ideal, indicando que o modelo foi capaz de classificar corretamente
todos os casos positivos sem gerar falsos positivos. Esse desempenho reflete a

82

capacidade das redes neurais de capturar relações complexas e não lineares nos
dados, especialmente quando combinadas com técnicas de pré-processamento e
ajuste de hiperparâmetros (HAYKIN, 1999). A arquitetura do MLP, com múltiplas
camadas ocultas e funções de ativação não lineares, mostrou-se altamente eficaz
para a tarefa em questão, reforçando a utilidade desse método em problemas de
classificação de alta dimensionalidade.

A curva ROC ilustrada na Figura 8B, referente ao classificador GaussianNB,
exibe um desempenho ideal, com taxa de verdadeiros positivos (TPR) igual a 1.0 e
taxa de falsos positivos (FPR) nula. Tal excelência pode ser explicada pela validade
das premissas subjacentes ao modelo, particularmente a independência condicional
entre as variáveis preditoras e a adequação da distribuição Gaussiana aos dados
analisados (MITCHELL, 1997). A implementação de suavização de variância (var_-
smoothing) desempenhou um papel crucial na estabilização numérica do modelo,
assegurando sua robustez e confiabilidade. A superioridade do GaussianNB em
relação a outros métodos de classificação sublinha a necessidade de alinhar as
características intrínsecas dos dados com as premissas teóricas dos algoritmos,
destacando a relevância de uma seleção criteriosa de técnicas de aprendizado de
máquina.

Em síntese, as curvas ROC confirmam que tanto o RNA MLP quanto o
GaussianNB são altamente eficazes na classificação de genótipos de maracujazeiro
resistentes ao CABMV. A escolha entre esses algoritmos deve considerar não apenas
o desempenho, mas também a complexidade do modelo, a interpretabilidade e a
capacidade de generalização para novos dados. A análise desses resultados reforça a
importância da aplicação de técnicas de aprendizado de máquina no melhoramento
genético de plantas, oferecendo ferramentas poderosas para a seleção de genótipos
com características desejáveis (DIJK, 2021).

4.2.2.4 Análise das Curvas de Aprendizado

As curvas de aprendizado ilustradas na Figura 9, correspondentes ao modelo
de Rede Neural Artificial Multilayer Perceptron (MLP) (Figura 9A) e ao classifica-
dor GaussianNB (Figura 9B), oferecem uma análise detalhada do comportamento
dos modelos em relação ao volume de dados de treinamento. Tais curvas permitem

83

diagnosticar potenciais problemas, como sobreajuste (overfitting) ou subajuste
(underfitting), ao avaliar a evolução da acurácia em função do aumento do conjunto
de treinamento. Em ambos os casos, observa-se uma progressão positiva na pre-
cisão dos modelos à medida que mais dados são incorporados, evidenciando uma
capacidade consistente de aprendizado e adaptação às características do conjunto
analisado.

Figura 9 – Curvas de aprendizado para o RNA MLP (A) e o GaussianNB (B).

Na Figura 9A, a curva de aprendizado referente ao modelo de Rede Neural
Artificial Multilayer Perceptron (RNA MLP) demonstra que as métricas de acurácia,
tanto no treinamento quanto na validação, aproximam-se de 1.0 à medida que o
volume de dados de treinamento aumenta. Esse padrão sugere uma generalização
eficiente do modelo, sem indícios claros de sobreajuste (overfitting). A convergência
das curvas de treinamento e validação evidencia a capacidade do RNA MLP
de identificar padrões intrincados nos dados, mantendo ao mesmo tempo uma
performance consistente em conjuntos não vistos (HAYKIN, 1999). Esse desempenho
ressalta a adequação das redes neurais para problemas de classificação, especialmente
quando associadas a estratégias de regularização e otimização de hiperparâmetros.

Por sua vez, na Figura 9B, a curva de aprendizado do classificador Gaus-
sianNB também exibe uma convergência entre as acurácias de treinamento e
validação, ambas alcançando valores próximos a 1.0. Esse resultado destaca a

84

robustez do modelo, que, apesar de basear-se em premissas simplificadoras, como
a independência condicional entre variáveis, mostrou-se altamente eficaz para o
conjunto de dados analisado (MITCHELL, 1997). A ausência de sobreajuste ou
subajuste (underfitting) indica que o GaussianNB está bem calibrado e apresenta
uma capacidade satisfatória de generalização. Além disso, a rápida convergência
das curvas sugere que esse modelo demanda uma quantidade menor de dados para
atingir desempenho ótimo, contrastando com abordagens mais complexas, como o
RNA MLP.

Em resumo, as curvas de aprendizado corroboram a eficácia tanto do RNA
MLP quanto do GaussianNB na tarefa de aprendizado a partir dos dados, sem
evidências de sobreajuste ou subajuste. A seleção entre esses métodos deve levar
em conta não apenas a performance alcançada, mas também fatores como a com-
plexidade do modelo, sua interpretabilidade e o volume de dados disponível. Esses
achados reforçam a relevância da aplicação de técnicas de aprendizado de má-
quina no contexto do melhoramento genético vegetal, proporcionando ferramentas
robustas para a identificação de genótipos com características agronomicamente
vantajosas (DIJK, 2021).

4.2.3 Análises pós seleção do algoritmo ótimo

4.2.3.1 Distribuição das features por classe

Os gráficos de densidade (Kernel Density Estimation - KDE) das diversas
características do conjunto de dados estão representados na Figura 10. Esses gráficos
possibilitam uma avaliação detalhada da distribuição de cada variável, segmentando
os dados conforme as classes de interesse (genótipos resistentes e produtivos, e
suscetíveis ao CABMV e não produtivos). A análise dessas distribuições oferece
informações cruciais sobre o potencial discriminativo de cada feature, permitindo
identificar quais atributos contribuem de forma mais significativa para a distinção
entre as classes. Essa abordagem é fundamental para compreender a relevância das
variáveis no processo de classificação e para orientar a seleção de características
mais informativas.

85

Figura 10 – Gráficos de distribuição (KDE - Kernel Density Estimation) para diferentes características do conjunto
de dados. AACPDM (Área Abaixo da Curva de Progresso da Doença), NF (Número de Frutos), PT
(Peso Total dos Frutos), Comp (Comprimento Médio do Fruto), Diam (Diâmetro do Fruto), Ind_form
(Índice de Formato do Fruto), PF (Peso de Fruto), PPB (Peso da Polpa por Fruto), RP (Rendimento de
Polpa), EC (Espessura da Casca) e BRIX (Teor de Sólidos Solúveis Totais).

86

A variável AACPDM exibe uma sobreposição quase completa entre as dis-
tribuições das duas classes, com padrões de densidade bastante semelhantes. Esse
comportamento sugere que, isoladamente, a AACPDM possui um poder discrimi-
nativo limitado para distinguir entre os genótipos. Sua utilidade na classificação
provavelmente depende da combinação com outras variáveis mais informativas
(GONçALVES et al., 2021).

O Número de Frutos (NF) e o Peso Total dos Frutos (PT) revelam padrões
distintos entre as classes (Classe 0 e Classe 1). Ambas as características apresentam
distribuições bem separadas, com sobreposição insignificante, indicando um poder
discriminativo individual moderado a alto. Essa separação sugere que NF e PT
são metricamente relevantes para diferenciar genótipos resistentes (Classe 0) e
suscetíveis (Classe 1). Apesar da eficácia individual, a combinação dessas variáveis
com outras características produtivas pode aprimorar ainda mais a robustez de
modelos de classificação, especialmente em abordagens multivariadas.

O Comprimento do Fruto (Comp) apresenta distribuições claramente separa-
das, com sobreposição mínima entre as classes, indicando alto poder discriminativo
para diferenciar os grupos. Essa separação sugere que o Comp é uma caracterís-
tica morfológica crítica na identificação de genótipos. Por outro lado, o Diâmetro
(Diam) exibe uma separação moderada, com sobreposição limitada, apontando
para um poder discriminativo individual relevante, porém menos pronunciado
em comparação ao Comp. Apesar das diferenças na robustez individual, ambas
as variáveis demonstram potencial para contribuir em modelos de classificação.
Essas características podem ser particularmente úteis quando associadas a outras
variáveis relacionadas ao tamanho e formato do fruto, ampliando sua eficácia na
classificação (VIDAL et al., 2021; GOMES et al., 2022).

O Índice de Formato do Fruto (Ind_form) apresenta distribuições com
sobreposição entre as classes (Classe 0 e Classe 1), indicando um baixo poder
discriminativo individual. As curvas de densidade mostram padrões quase super-
postos na maior parte do intervalo de valores (-4 a 4), com diferenças sutis nas
extremidades. Apesar da limitação individual, essa variável pode adquirir relevância
quando combinada com atributos morfológicos complementares, como comprimento
ou diâmetro do fruto.

87

O Peso do Fruto (PF) e o Peso da Polpa por Fruto (PPB) mostram compor-
tamentos distintos: enquanto o PF apresenta diferenças perceptíveis entre as classes,
sugerindo um poder discriminativo moderado, o PPB exibe uma sobreposição
significativa, indicando uma capacidade limitada de distinção. No entanto, ambas
as características podem ser úteis quando integradas a outras variáveis relacionadas
ao peso e à qualidade do fruto.

O Rendimento de Polpa (RP) apresenta distribuições com sobreposição
quase completa entre as classes (Classe 0 e Classe 1), indicando um baixo poder
discriminativo individual. Essa característica, embora pouco útil isoladamente,
pode contribuir em análises multivariadas que integram variáveis produtivas (como
Peso Total de Frutos ou Número de Frutos), identificando padrões indiretos.

Em contraste, a Espessura da Casca (EC) exibe separação clara entre as
classes, com sobreposição mínima nas curvas de densidade, revelando um alto
poder discriminativo. Essa distinção sugere que a EC está diretamente associada
a características físicas dos frutos que influenciam na resistência ao CABMV e
afetam a produtividade, como a capacidade de proteção contra danos mecânicos
ou infecções causadas pelo vetor do vírus. Por fim, o Teor de Sólidos Solúveis
Totais (BRIX) exibe clara separação entre as classes (Classe 0 e Classe 1), com
sobreposição mínima nas curvas de densidade, indicando alto poder discriminativo.

Em síntese, a análise das distribuições das variáveis revela que características
como Comprimento do Fruto (Comp), Espessura da Casca (EC) e Teor de Sólidos
Solúveis Totais (BRIX) apresentam alto poder discriminativo, com separação clara
entre as classes e sobreposição mínima. Essas variáveis são particularmente relevan-
tes para a classificação de genótipos resistentes e suscetíveis, além de produtivos e
não produtivos, destacando-se como atributos críticos em modelos preditivos.

Por outro lado, Número de Frutos (NF) e Peso Total dos Frutos (PT) também
exibem poder discriminativo moderado a alto, com distribuições bem separadas
e sobreposição limitada, reforçando sua utilidade na distinção entre classes. Já
o Diâmetro do Fruto (Diam) apresenta separação moderada, com sobreposição
parcial, indicando um desempenho individual relevante, porém menos robusto que
Comp, EC e BRIX.

88

Em contraste, características como AACPDM, Índice de Formato do Fruto
(Ind_form), Peso da Polpa por Fruto (PPB) e Rendimento de Polpa (RP) demons-
tram baixo poder discriminativo individual, com sobreposição significativa ou quase
completa entre as classes. No entanto, essas variáveis podem ganhar relevância
quando combinadas com outras características complementares.

Por exemplo, AACPDM e Ind_form podem ser integradas a atributos mor-
fológicos (como Comp e Diam) para capturar padrões indiretos de resistência. PPB
e RP podem ser associadas a variáveis produtivas (como NF e PT) para aprimorar
análises de qualidade e produtividade. A integração estratégica dessas variáveis,
aliada à seleção criteriosa das mais informativas, é fundamental para desenvolver
modelos de classificação robustos, capazes de capturar padrões complexos associados
à resistência ao vírus e à produtividade. Essa abordagem multivariada maximiza
a precisão das predições, tornando-se essencial para avanços no melhoramento
genético de plantas (DIJK, 2021).

4.2.3.2 Importância das variáveis

A avaliação da relevância das variáveis foi realizada através de duas meto-
dologias integradas: análise comparativa das médias entre classes e mensuração da
importância por meio de permutação. Tais estratégias possibilitaram a detecção dos
atributos mais significativos para a discriminação de genótipos com resistência ao
CABMV e produtivos, conforme demonstrado na Figura 11. A primeira abordagem
baseou-se na comparação estatística das médias, enquanto a segunda empregou a
permutação para quantificar a contribuição relativa de cada variável, garantindo
uma análise robusta e multidimensional.

89

Figura 11 – Análise da importância das variáveis para a classificação de genótipos. (A) Diferença entre as médias
das classes para cada variável, ordenadas em ordem decrescente de importância. (B) Importância das
variáveis calculada por permutação, ordenadas em ordem decrescente de importância. (C) Correlação de
Spearman entre os postos das variáveis, representada em um heatmap. AACPDM (Área Abaixo da Curva
de Progresso da Doença), NF (Número de Frutos), PT (Peso Total dos Frutos), Comp (Comprimento
Médio do Fruto), Diam (Diâmetro do Fruto), Ind_form (Índice de Formato do Fruto), PF (Peso de
Fruto), PPB (Peso da Polpa por Fruto), RP (Rendimento de Polpa), EC (Espessura da Casca) e BRIX
(Teor de Sólidos Solúveis Totais).

90

• Diferença entre médias: A magnitude das diferenças observadas entre
as médias das classes destacou o peso do fruto (PF) como a variável mais
discriminatória (1.513), seguida pelo diâmetro (Diam, 1.405) e pelo peso total
(PT, 1.250). Tais achados indicam que atributos morfométricos e produtivos
apresentam uma correlação significativa com a resistência ao vírus, alinhando-
se com evidências documentadas em investigações prévias sobre fenotipagem
em Passiflora (SANDHU et al., 2021a).

• Importância por permutação: A abordagem baseada em permutações
reafirmou a importância do PF (0.150) e do Diam (0.133), mas atribuiu maior
ênfase ao número de frutos (NF, 0.122) em relação ao método de diferenças
médias. Essa inconsistência pode ser explicada pela capacidade do modelo em
capturar interações não-lineares, as quais não são explicitamente identificadas
em análises univariadas (SLAVOVA et al., 2022a).

A alta correlação de postos de Spearman (ρ = 0.96) entre as metodologias
empregadas (Figura 11C) demonstra uma consistência notável na identificação
das características consideradas críticas, especialmente para o peso do fruto (PF),
diâmetro (Diam) e peso total (PT). Essa convergência entre abordagens reforça a
confiabilidade das variáveis selecionadas, estando em sintonia com avanços recentes
em seleção assistida por técnicas de aprendizado de máquina (DIJK, 2021). No
entanto, a divergência observada para o número de frutos (NF), que ocupou o 4o

posto em um método e o 3o em outro, evidencia a necessidade de integrar múltiplas
estratégias analíticas para abranger distintas dimensões da relevância das variáveis.

4.2.3.3 Correlação com o target

A análise de correlação entre as variáveis preditoras e a classe alvo revelou
padrões distintos conforme apresentado na Seção 12. Observou-se que o índice de
formato do fruto (ind_form) e a área abaixo da curva de progresso da doença
(AACPDM) apresentaram correlações positivas fracas (0,132 e 0,080 respectiva-
mente), enquanto características morfométricas como peso do fruto (PF), peso
total (PT) e diâmetro (Diam) demonstraram correlações negativas moderadas a
fortes (-0,680 a -0,566). Esses resultados sugerem que genótipos classificados como

91

"Resistente e Produtivo"tendem a apresentar frutos com menores dimensões físicas,
padrão consistente com observações prévias em estudos de seleção indireta para
resistência a viroses (SANDHU et al., 2021b).

Figura 12 – Heatmap de correlação de Spearman entre variáveis preditoras e clas-
ses alvo. Valores positivos (azul) indicam associação com a classe
"Resistente e Produtivo", enquanto correlações negativas (vermelho)
relacionam-se com "Suscetível e não Produtivo". AACPDM (Área
Abaixo da Curva de Progresso da Doença), NF (Número de Frutos),
PT (Peso Total dos Frutos), Comp (Comprimento Médio do Fruto),
Diam (Diâmetro do Fruto), Ind_form (Índice de Formato do Fruto),
PF (Peso de Fruto), PPB (Peso da Polpa por Fruto), RP (Rendimento
de Polpa), EC (Espessura da Casca) e BRIX (Teor de Sólidos Solúveis
Totais).

A forte correlação negativa do PF (-0,680) com o target indica que aumentos
no peso médio do fruto estão associados à suscetibilidade ao CABMV e menor
produtividade. Esse fenômeno pode ser explicado pelo compromisso energético entre
alocação de recursos para defesa fitossanitária e desenvolvimento de estruturas re-
produtivas, conforme documentado em estudos de trade-off fisiológico em Passiflora

92

spp. (GONçALVES et al., 2021). Contudo, ressalta-se que correlações univariadas
não capturam interações sinérgicas entre características, limitação amplamente
discutida em abordagens de seleção assistida por machine learning (SLAVOVA et
al., 2022b).

A Figura 12C evidencia alta consistência (ρ = 0, 96) entre os postos de
importância das variáveis obtidos por diferentes metodologias, corroborando a
robustez das associações identificadas. Nota-se que o teor de sólidos solúveis (BRIX)
apresentou correlação negativa moderada (-0,336), sugerindo que genótipos resisten-
tes possuem menor concentração de açúcares. Esse achado contraria expectativas
convencionais sobre qualidade comercial, exigindo análise crítica entre objetivos de
melhoramento para resistência e preferências de mercado (LIAKOS et al., 2018).

Apesar do valor descritivo das correlações lineares, destaca-se que métodos
multivariados e análises de importância baseadas em permutação são necessários
para capturar relações não-lineares entre características (DIJK, 2021). A seleção
exclusiva com base em correlações unidimensionais pode negligenciar sinergias entre
atributos morfoagronômicos, conforme demonstrado em estudos comparativos com
ensembles de aprendizado profundo (SANDHU et al., 2021b).

4.2.3.4 Seleção de features com base no desempenho

A análise univariada por ANOVA F-test (α = 0, 05) identificou como
preditores mais relevantes, em ordem decrescente de importância: Número de Fruto,
Peso Total de Frutos, Diâmetro do Fruto, Peso do Fruto e Espessura da Casca.
Essa hierarquia revela predominância de características morfométricas associadas à
produtividade, padrão consistente com estudos em culturas perenes submetidas a
estresse biótico (WANG; MOGHIMI; ZHANG, 2023). A exclusão da AACPDM
reforça sua baixa discriminância no modelo selecionado. A seleção arbitrária de 5
variáveis, correspondendo a 45% do conjunto original.

A exclusão da Área Abaixo da Curva de Progresso da Doença (AACPDM)
durante a seleção de variáveis, apesar de a única variável responsáel pela avaliação de
resistência, revela limitações inerentes à classificação exata dos genótipos resistentes.
Propõe-se a conversão da AACPDM em variáveis binárias (resistente/suscetível)
por meio de limiarização pela mediana populacional, estratégia que reduziria

93

a sensibilidade a flutuações experimentais e permitiria adaptação contextual a
diferentes populações (RIBEIRO; AMORIM, 2023).

95

5 CONCLUSÃO

A análise de clustering com o algoritmo K-means permitiu identificar dois
grupos principais de genótipos de maracujazeiro: um associado à resistência ao
CABMV e alta produtividade, e outro vinculado à suscetibilidade ao vírus e menor
desempenho agronômico. A convergência entre os métodos do cotovelo, silhueta e
Calinski-Harabasz na definição de k = 2 como número ótimo de clusters reforçou
a consistência da segmentação, apesar da subjetividade inerente ao método do
cotovelo. A estabilidade moderada dos clusters (ARI = 0, 42 ± 0, 30) refletiu a
sensibilidade do algoritmo à inicialização, porém a clara separação visual entre
grupos validou sua relevância biológica.

Na avaliação de algoritmos de classificação, o GaussianNB destacou-se com
acurácia, precisão, recall e F1-score perfeitos (1, 0), evidenciando sua adequação às
premissas de independência condicional e distribuição Gaussiana dos dados. Modelos
ensemble como Random Forest e Gradient Boosting, além de redes neurais (RNA
MLP), também apresentaram alto desempenho (acurácia 0, 94), demonstrando
robustez na captura de relações não lineares. O SVM mostrou-se ideal para cenários
onde a identificação de todos os genótipos resistentes é prioritária, mesmo com
custo de falsos positivos. A análise de importância das variáveis destacou o peso do
fruto (PF), diâmetro (Diam) e número de frutos (NF) como atributos-chave para a
classificação, enquanto a AACPDM, embora crítica para avaliação de resistência in
vivo, mostrou baixo poder discriminativo isoladamente, reforçando a necessidade
de abordagens multivariadas.

As curvas ROC (AUC = 1, 0) e de aprendizado (acurácia convergente para
1, 0) confirmaram a capacidade dos modelos em generalizar padrões complexos, sem
indícios de overfitting. A correlação negativa entre características morfométricas
(ex.: PF, Diam) e a classe resistente (ρ ≈ −0, 68) sugeriu um dilema fisiológico
entre alocação de recursos para defesa e desenvolvimento de frutos, implicando em
desafios para programas de melhoramento que busquem conciliar produtividade e
resistência. A integração de técnicas de aprendizado de máquina, como a seleção
de *features* por permutação e a análise de distribuições multivariadas, provou-se

96

essencial para desvendar interações entre fenótipos, oferecendo ferramentas precisas
para a seleção assistida de genótipos.

O presente estudo demonstrou que a combinação de clustering e classificação
supervisionada pode otimizar a seleção de genótipos superiores, reduzindo custos e
tempo em programas de melhoramento. A identificação de genótipos resistentes ao
CABMV com alta produtividade (ex.: grupo com NF ≈ 25, PT ≈ 4, 5 kg) oferece
material genético promissor para cultivos comerciais ou otimização do programa
de melhoramento. A superioridade do GaussianNB, aliada à eficiência de modelos
interpretáveis como Árvores de Decisão, posiciona essas técnicas como ferramentas
acessíveis para laboratórios com recursos computacionais limitados, democratizando
o uso de inteligência artificial na agricultura. Por fim, o estudo reforça a importância
da fenotipagem precisa e da integração de dados multidisciplinares para avanços
no melhoramento de plantas frente a desafios fitossanitários emergentes e graves.

97

REFERÊNCIAS

ACHARJEE, A. et al. Integration of multi-omics data for prediction of phenotypic
traits using random forest. v. 17, n. S5, p. 180, 2016.

ACQUAAH, G. Principles of Plant Genetics and Breeding. 1. ed. [S.l.: s.n.]:
Wiley, 2012.

ADLAK, T. et al. Biotechnology: An Advanced Tool for Crop Improvement. p.
1–11, 2019.

AHMED, S. et al. Artificial intelligence and machine learning in finance: A
bibliometric review. v. 61, p. 101646, 2022.

ALTMAN, N. S. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, v. 46, n. 3, p. 175–185, 1992.

ANSARIFAR, J.; AKHAVIZADEGAN, F.; WANG, L. Performance prediction of
crosses in plant breeding through genotype by environment interactions. v. 10,
n. 1, p. 11533, 2020.

AURIA, L.; MORO, R. A. Support Vector Machines (SVM) as a Technique for
Solvency Analysis. p. 1–16, 2008.

BREIMAN, L. Random Forests. v. 45, n. 1, p. 5–32, 2001.

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001.

BREIMAN, L. et al. Classification and Regression Trees. New York: CRC
Press, 1984. ISBN 9780412048418.

C, S. G.; B Sumathi. Grid search tuning of hyperparameters in random forest
classifier for customer feedback sentiment prediction. Int. J. Adv. Comput. Sci.
Appl., v. 11, n. 9, 2020.

CAI, G. et al. Genetic dissection of plant architecture and yield-related traits in
Brassica napus. v. 6, n. 1, p. 21625, 2016.

CALINSKI, T.; HARABASZ, J. A dendrite method for cluster analysis. Commun.
Stat. Theory Methods, Informa UK Limited, v. 3, n. 1, p. 1–27, 1974.

CHAVARRÍA-PEREZ, L. M. et al. Improving yield and fruit quality traits in
sweet passion fruit: Evidence for genotype by environment interaction and selection
of promising genotypes. PLoS One, v. 15, n. 5, p. e0232818, maio 2020.

98

CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20,
n. 3, p. 273–297, 1995.

COVER, T.; HART, P. Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory, v. 13, n. 1, p. 21–27, 1967.

DAS, S. et al. Applications of Artificial Intelligence in Machine Learning: Review
and Prospect. v. 115, n. 9, p. 31–41, 2015.

DEZA, M.; DEZA, E. Encyclopedia of Distances. 2. ed. Berlin, Germany:
Springer, 2012.

DIJK, A. D. J. van. Machine learning in plant science and plant breeding. v. 24,
n. 1, p. 101890, 2021.

DING, S. et al. Evolutionary artificial neural networks: A review. v. 39, n. 3, p.
251–260, 2013.

DUBEY, A. et al. Growing more with less: Breeding and developing drought
resilient soybean to improve food security. v. 105, p. 425–437, 2019.

FALEIRO, F. G.; ANDRADE SOLANGE ROCHA MONTEIRO, p. u.; Fábio
Bueno dos Reis Junior. Biotecnologia: Estado Da Arte e Aplicações Na
Agropecuária. 1. ed. [S.l.: s.n.]: Editora Embrapa, 2011. ISBN 978-85-7075-059-4.

FAWCETT, T. An introduction to roc analysis. Pattern Recognition Letters,
v. 27, n. 8, p. 861–874, 2006.

FREUND, Y.; SCHAPIRE, R. E. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, v. 55, n. 1, p. 119–139, 1997.

FRIEDMAN, J.; HASTIE, T.; TIBSHIRANI, R. The elements of statistical
learning. Springer series in statistics, v. 1, n. 10, p. 337–387, 2001.

FRIEDMAN, J. H. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, v. 29, n. 5, p. 1189–1232, 2001.

GOLDSCHMIDT, R. Data Mining. second. [S.l.: s.n.]: Grupo GEN„ 2015.
(E-Book).

GOMES, F. R. et al. Evaluation of production and fruit quality of a yellow passion
fruit cultivar infected with the cowpea aphid-borne mosaic virus. Rev. Bras.
Frutic., FapUNIFESP (SciELO), v. 44, n. 3, 2022.

99

GONÇALVES, D. H. et al. Prospecting on passiflora backcross families:
implications for breeding aiming at CABMV resistance. Euphytica, Springer
Science and Business Media LLC, v. 217, n. 4, abr. 2021.

GONçALVES, D. H. et al. Prospecting on passiflora backcross families: implications
for breeding aiming at cabmv resistance. Euphytica, v. 217, n. 4, p. 1–12, 2021.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.: s.n.]:
MIT Press, 2016.

HAND, D. J. Classifier technology and the illusion of progress. Statistical
Science, v. 21, n. 1, p. 1–14, 2006.

HANLEY, J. A.; MCNEIL, B. J. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, v. 143, n. 1, p. 29–36, 1982.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. [S.l.: s.n.]: Springer,
2009.

HAYKIN, S. Neural Networks: A Comprehensive Foundation. [S.l.: s.n.]:
Prentice Hall, 1999.

HESAMI, M. et al. Application of Adaptive Neuro-Fuzzy Inference System-Non-
dominated Sorting Genetic Algorithm-II (ANFIS-NSGAII) for Modeling and
Optimizing Somatic Embryogenesis of Chrysanthemum. v. 10, p. 869, 2019.

HESAMI, M. et al. Development of support vector machine-based model and
comparative analysis with artificial neural network for modeling the plant tissue
culture procedures: Effect of plant growth regulators on somatic embryogenesis of
chrysanthemum, as a case study. v. 16, n. 1, p. 112, 2020.

HORVITZ, E. J.; BREESE, J. S.; HENRION, M. Decision theory in expert
systems and artificial intelligence. v. 2, n. 3, p. 247–302, 1988.

HUBERT, L.; ARABIE, P. Comparing partitions. Journal of Classification,
v. 2, n. 1, p. 193–218, 1985.

IKOTUN, A. M. et al. K-means clustering algorithms: A comprehensive review,
variants analysis, and advances in the era of big data. Inf. Sci. (Ny), Elsevier
BV, v. 622, p. 178–210, 2023.

INOCENTE, G.; GARBUGLIO, D. D.; RUAS, P. M. Multilayer perceptron
applied to genotypes classification in diallel studies. v. 79, n. 3, p. e20200365, 2022.

100

JACKSON, P. C. Introduction to Artificial Intelligence: Third Edition.
[S.l.: s.n.]: Courier Dover Publications, 2019. ISBN 978-0-486-84307-0.

JAMES, G. et al. An Introduction to Statistical Learning. [S.l.: s.n.]:
Springer, 2013. v. 112.

JHA, K. et al. A comprehensive review on automation in agriculture using artificial
intelligence. v. 2, p. 1–12, 2019.

JIANG, T.; GRADUS, J. L.; ROSELLINI, A. J. Supervised Machine Learning: A
Brief Primer. v. 51, n. 5, p. 675–687, 2020.

JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing. Third
edition draft. [S.l.: s.n.]: Stanford University, 2023.

KAUFMAN, L.; ROUSSEEUW, P. J. Finding groups in data: An
introduction to cluster analysis. [S.l.: s.n.]: John Wiley & Sons, 2009.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

KUMARSAGAR, H.; SHARMA, V. Error evaluation on K- means and hierarchical
clustering with effect of distance functions for iris dataset. Int. J. Comput.
Appl., Foundation of Computer Science, v. 86, n. 16, p. 1–5, 2014.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, n. 7553,
p. 436–444, 2015.

LEE, C. T.; PAN, L.-Y.; HSIEH, S. H. Artificial intelligent chatbots as brand
promoters: A two-stage structural equation modeling-artificial neural network
approach. v. 32, n. 4, p. 1329–1356, 2022.

LIAKOS, K. et al. Machine Learning in Agriculture: A Review. v. 18, n. 8, p. 2674,
2018.

LIAW, A.; WIENER, M. Classification and regression by randomforest. R News,
v. 2, n. 3, p. 18–22, 2002.

LYTVYN, V. et al. Design of a recommendation system based on collaborative
filtering and machine learning considering personal needs of the user. v. 4, p. 6–28,
2019.

MAKRIDAKIS, S. The forthcoming Artificial Intelligence (AI) revolution: Its
impact on society and firms. v. 90, p. 46–60, 2017.

101

MEGETO, G. A. S. et al. Artificial intelligence applications in the agriculture 4.0.
v. 51, n. 5, p. 1–8, 2020.

MITCHELL, T. M. Machine Learning. [S.l.: s.n.]: McGraw-Hill, 1997.

MOUJAHID, A. et al. Machine Learning Techniques in ADAS: A Review.
In: 2018 International Conference on Advances in Computing and
Communication Engineering (ICACCE). [S.l.: s.n.]: IEEE, 2018. p. 235–242.

MURPHY, K. P. Machine learning: a probabilistic perspective. [S.l.: s.n.]:
MIT press, 2012.

NAINGGOLAN, R. et al. Improved the performance of the k-means cluster using
the sum of squared error (SSE) optimized by using the elbow method. J. Phys.
Conf. Ser., v. 1361, n. 1, p. 012015, 2019.

NASTESKI, V. An overview of the supervised machine learning methods. v. 4, p.
51–62, 2017.

NAYYAR, A.; GADHAVI, L.; ZAMAN, N. Machine learning in healthcare:
Review, opportunities and challenges. In: Machine Learning and the Internet
of Medical Things in Healthcare. [S.l.: s.n.]: Elsevier, 2021. p. 23–45.

NIAZIAN, M.; NIEDBAłA, G. Machine Learning for Plant Breeding and
Biotechnology. v. 10, n. 10, p. 436, 2020.

OTT, R. L.; LONGNECKER, M. T. An Introduction to Statistical Methods
and Data Analysis. 7. ed. [S.l.: s.n.]: Cengage Learning, 2015.

PAL, S.; MITRA, S. Multilayer perceptron, fuzzy sets, and classification. v. 3, n. 5,
p. 683–697, 1992.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, v. 12, p. 2825–2830, 2011.

QI, G.-J.; LUO, J. Small Data Challenges in Big Data Era: A Survey of Recent
Progress on Unsupervised and Semi-Supervised Methods. v. 44, n. 4, p. 2168–2187,
2022.

RESENDE MARCOS DEON VILELA, p. u. Matemática e Estatística Na
Análise de Experimentos e No Melhoramento Genético. 1. ed. [S.l.: s.n.]:
Editora UFV, 2007.

RIBEIRO, L. F.; AMORIM, E. P. Adaptive thresholding for disease resistance
phenotyping. Plant Methods, v. 19, n. 1, p. 1–15, 2023.

102

ROUSSEEUW, P. J. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math., Elsevier BV, v. 20, p.
53–65, 1987.

SANDHU, K. et al. Deep learning for predicting complex traits in spring wheat
breeding program. Frontiers in Plant Science, v. 11, 2021.

SANDHU, K. S. et al. Deep Learning for Predicting Complex Traits in Spring
Wheat Breeding Program. v. 11, 2021.

SAPUTRA, D. M.; SAPUTRA, D.; OSWARI, L. D. Effect of distance metrics in
determining k-value in k-means clustering using elbow and silhouette method. In:
Proceedings of the Sriwijaya International Conference on Information
Technology and Its Applications (SICONIAN 2019). Paris, France: Atlantis
Press, 2020.

SARKAR, R. K. et al. Evaluation of random forest regression for prediction of
breeding value from genomewide SNPs. v. 94, n. 2, p. 187–192, 2015.

SCHÖLKOPF, B.; SMOLA, A. J. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. [S.l.: s.n.]: MIT
Press, 2002.

SLAVOVA, V. et al. A comparative evaluation of machine learning algorithms for
potato variety discrimination. European Food Research and Technology,
v. 248, p. 1765–1775, 2022.

SLAVOVA, V. et al. A comparative evaluation of bayes, functions, trees, meta,
rules and lazy machine learning algorithms for the discrimination of different
breeding lines and varieties of potato based on spectroscopic data. Eur. Food
Res. Technol., v. 248, n. 7, p. 1765–1775, 2022.

SOOD, A.; SHARMA, R. K.; BHARDWAJ, A. K. Artificial intelligence research
in agriculture: A review. v. 46, n. 6, p. 1054–1075, 2022.

SU, Q. et al. Prediction of the aquatic toxicity of aromatic compounds to
tetrahymena pyriformis through support vector regression. v. 8, n. 30, p.
49359–49369, 2017.

SUN, J.; ZHAO, H. The application of sparse estimation of covariance matrix to
quadratic discriminant analysis. BMC Bioinformatics, v. 16, n. 1, p. 48, 2015.

U, S. B. M. Performance evaluation of some clustering algorithms and validity
indices. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, v. 24, n. 12, p. 1650–1654, 2002.

103

VAPNIK, V. Statistical Learning Theory. [S.l.: s.n.]: Wiley-Interscience, 1998.

VIDAL, R. F. et al. Research article evaluation of resistance to Cowpea aphid-borne
mosaic virus in passion fruit backcrosses for recurrent selection and development
of resistant cultivars. Genet. Mol. Res., Genetics and Molecular Research, v. 20,
n. 1, 2021.

WANG, Q.; MOGHIMI, A.; ZHANG, C. Morphometric predictors of biotic stress
resistance in perennial crops. Frontiers in Plant Science, v. 14, p. 1120456,
2023.

WEI, M. C. F. et al. Carrot Yield Mapping: A Precision Agriculture Approach
Based on Machine Learning. v. 1, n. 2, p. 229–241, 2020.

XIONG, Q. et al. Response to Nitrogen Deficiency and Compensation on
Physiological Characteristics, Yield Formation, and Nitrogen Utilization of Rice.
v. 9, p. 1075, 2018.

ZHANG, H. The optimality of naive bayes. American Association for Artificial
Intelligence, v. 1, n. 2, p. 3, 2004.

ZHANG, H. Theoretical analysis of Naive Bayes. Proceedings of the ICML,
2004.

ZHANG, Z. Introduction to machine learning: k-nearest neighbors. Annals of
Translational Medicine: Home, v. 4, n. 11, p. 218, 2016.

ZHANG, Z. Introduction to machine learning: k-nearest neighbors. Annals of
Translational Medicine, v. 4, n. 11, 2016.

ZHU, J. et al. Multi-class adaboost. Statistics and Its Interface, v. 2, n. 3, p.
349–360, 2009.

	Folha de rosto com carimbo
	Folha de rosto adicional
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Sumário
	Introdução
	Fundamentação Teórica
	Análise de dados no melhoramento vegetal
	Aprendizado de máquina
	Aprendizado não supervisionado
	Aprendizado supervisionado
	Regressão Logística
	Árvore de Decisão
	Random Forest
	Gradient Boosting
	AdaBoost (Adaptive Boosting)
	Support Vector Machine (SVM)
	K-Nearest Neighbors (KNN)
	Redes Neurais Artificiais (MLP)
	Naive Bayes (GaussianNB)
	Teorema de Bayes e Suposição de Independência

	Aprendizado de máquina no melhoramento de plantas

	Materiais e Métodos
	Conjuntos de Dados
	Normalização dos dados
	Análise de cluster
	Agrupamento com K-means
	Determinação do número de ótimo clusters
	Método do cotovelo (Elbow)
	Método da silhueta (Silhouette Score)
	Índice Calinski-Harabasz

	Avaliação da Estabilidade dos Clusters
	Índice de Rand Ajustado (ARI)

	Avaliação de algoritmos de classificação
	Ler os dados
	Pré-processamento dos dados
	Ajuste dos hiperparâmetros usando GridSearchCV
	Salvar os Hiperparâmetros ótimos
	Construção dos modelos usando os hiperparâmetros ótimos

	Avaliação do desempenho dos modelos
	Acurácia
	Precisão e Recall
	F1-Score
	Matriz de Confusão
	Curva ROC e AUC
	Curva de Aprendizado

	Análises Posteriores à Seleção do Modelo
	Distribuição das Features por Classe
	Importância das Variáveis
	Seleção de Features com Base no Desempenho

	Ferramentas e Configuração do Ambiente

	Resultados e Discussão
	Análise de cluster
	Determinação do Número de Clusters Ótimo
	Método do cotovelo (Elbow)
	Método da silhueta (Silhouette Score)
	Índice Calinski-Harabasz

	Agrupamento com K-means
	Avaliação da Estabilidade dos Clusters
	Índice de Rand Ajustado (ARI)

	Avaliação de algoritmos de classificação
	Ajuste dos hiperparâmetros usando GridSearchCV
	Regressão Logística
	Árvore de Decisão
	Random Forest
	Gradient Boosting
	AdaBoost (Adaptive Boosting)
	Máquina de Vetores de Suporte (SVM)
	K-Vizinhos Mais Próximos (KNN)
	Redes Neurais Artificiais (RNA - Multilayer Perceptron)
	Naive Bayes Gaussian (GaussianNB)

	Desempenho dos algoritmos de classificação
	Acurácia, precisão, recall e F1-score
	Análise das Matrizes de Confusão
	Análise das Curvas ROC
	Análise das Curvas de Aprendizado

	Análises pós seleção do algoritmo ótimo
	Distribuição das features por classe
	Importância das variáveis
	Correlação com o target
	Seleção de features com base no desempenho

	Conclusões
	Referências

