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RESUMO

Gongalves Junior, D. H. Abordagens de aprendizado de maquina na
selecao de gendtipos de maracujazeiro amarelo resistentes ao CABMYV.
2025. 103p. Monografia (MBA em Inteligéncia Artificial e Big Data) - Instituto de
Ciéncias Matematicas e de Computacgao, Universidade de Sao Paulo, Sao Carlos,
2025.

A investigagao conduzida neste estudo focou na aplicagao de algoritmos de apren-
dizado de maquina para a selecao de gendtipos de maracujazeiro amarelo com
resisténcia ao cowpea aphid-borne mosaic virus (CABMV), um dos principais
entraves a produtividade dessa cultura. O objetivo central consistiu em desenvolver
uma metodologia eficaz para classificar genétipos quanto a resisténcia e produtivi-
dade, empregando um conjunto de dados composto por 87 gendtipos avaliados em
condicoes de campo. A metodologia adotada integrou etapas de aprendizado nao
supervisionado, utilizando o algoritmo K-Means para agrupamento dos gendtipos,
seguidas de aprendizado supervisionado com a aplicacao de diversos algoritmos, in-
cluindo Regressao Logistica, Arvore de Decisao, Random Forest, Gradient Boosting,
AdaBoost, SVM, KNN, Redes Neurais Artificiais (RNA) e Naive Bayes. A avaliagao
dos modelos foi realizada com base em métricas consolidadas, tais como acuracia,
precisao, recall e F1-Score. Os resultados obtidos evidenciaram um desempenho
notdvel de multiplos algoritmos, com énfase no Naive Bayes, que atingiu 100%
em todas as métricas analisadas. Algoritmos como Regressdo Logistica, Arvore de
Decisao, Random Forest, Gradient Boosting, SVM e RNA apresentaram desem-
penho consistente, alcancando acurécia de 94%. Por sua vez, AdaBoost e KNN
registraram acuracias de 88% e 89%, respectivamente. Entre as varidveis analisadas,
a area abaixo da curva de progresso da doenga (AACPD), o nimero de frutos e o
rendimento de polpa emergiram como fatores determinantes para a classificacgao.
Conclui-se, portanto, que os algoritmos de aprendizado de maquina constituem uma
ferramenta robusta e precisa para otimizar programas de melhoramento genético,

viabilizando a selecao eficiente de gendtipos resistentes e produtivos.

Palavras-chave: Algoritmo supervisionado; Inteligéncia artificial; Melhoramento



genético; Naive Bayes.



ABSTRACT

Gongalves Junior, D. H. Machine learning approaches in the selection of
yellow passion fruit genotypes resistant to CABMV. 2025. 103p.
Monograph (MBA in Artificial Intelligence and Big Data) - Instituto de Ciéncias
Matematicas e de Computacao, Universidade de Sao Paulo, Sao Carlos, 2025.

The investigation conducted in this study focused on the application of machine
learning algorithms for the selection of yellow passion fruit genotypes resistant
to cowpea aphid-borne mosaic virus (CABMV), one of the main obstacles to
the productivity of this crop. The central objective was to develop an effective
methodology for classifying genotypes in terms of resistance and productivity,
using a dataset composed of 87 genotypes evaluated under field conditions. The
adopted methodology integrated unsupervised learning steps, employing the K-
Means algorithm for genotype clustering, followed by supervised learning with the
application of various algorithms, including Logistic Regression, Decision Tree,
Random Forest, Gradient Boosting, AdaBoost, SVM, KNN, Artificial Neural
Networks (ANN), and Naive Bayes. Model evaluation was conducted based on
established metrics, such as accuracy, precision, recall, and F1-Score. The results
demonstrated remarkable performance across multiple algorithms, with Naive Bayes
standing out by achieving 100% in all analyzed metrics. Algorithms such as Logistic
Regression, Decision Tree, Random Forest, Gradient Boosting, SVM, and ANN
showed consistent performance, reaching an accuracy of 94%. Meanwhile, AdaBoost
and KNN achieved accuracies of 88% and 89%, respectively. Among the analyzed
variables, the area under the disease progress curve (AUDPC), the number of fruits,
and pulp yield emerged as determining factors for classification. It is concluded,
therefore, that machine learning algorithms constitute a robust and precise tool
for optimizing genetic improvement programs, enabling the efficient selection of

resistant and productive genotypes.

Keywords: Supervised algorithms; Artificial Intelligence; Genetic breeding; Naive

Bayes.
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1 INTRODUCAO

A inteligéncia artificial (IA) é um campo em rapida evolugao que envolve o
desenvolvimento de algoritmos e programas de computador que podem aprender e
tomar decisdes com base em dados. Os sistemas de [A sdo projetados para imitar
fungdes cognitivas humanas, como percepcao, raciocinio, aprendizado e resolugao
de problemas, a fim de executar tarefas que, de outra forma, exigiriam intervencao

humana (JACKSON, 2019).

Existem muitas abordagens diferentes para IA, incluindo sistemas baseados
em regras, arvores de decisao e redes neurais. Esses sistemas sao usados em uma
ampla gama de aplicacoes, desde assistentes virtuais e chatbots até carros auténomos
e ferramentas de diagnostico médico. A TA também é usada em pesquisa cientifica,
analise de negocios e seguranca cibernética (LEE; PAN; HSIEH, 2022; HORVITZ;
BREESE; HENRION;, 1988; DING et al., 2013; DAS et al., 2015).

Apesar do tremendo potencial da TA, também h&a preocupacgoes sobre seu
impacto na sociedade, como deslocamento de empregos, viés na tomada de decisoes
e violagdes de privacidade. A medida que a tecnologia de IA continua a evoluir, ¢
importante considerar essas implicagoes éticas e sociais e desenvolver estratégias

para o desenvolvimento e implantagio responsaveis de IA (MAKRIDAKIS, 2017).

O aprendizado de maquina é um subcampo da inteligéncia artificial que
envolve o treinamento de maquinas para aprender com dados e melhorar seu
desempenho em uma tarefa especifica sem ser explicitamente programado. E
um campo em rapido crescimento que estd mudando a forma como interagimos
com a tecnologia e levou a grandes avangos em areas como visao computacional,
processamento de linguagem natural e sistemas autoénomos. Os algoritmos de
aprendizado de maquina sdo usados em uma ampla variedade de aplicagoes, desde
recomendacoes personalizadas em plataformas de midia social até deteccao de
fraude em bancos e finangas. Com a crescente disponibilidade de dados e avancos
no poder computacional, o aprendizado de maquina esta pronto para continuar

impulsionando a inovagao e transformando as industrias nos préximos anos (DAS
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et al., 2015).

O aprendizado de maquina vem sendo usado na agricultura para melhorar o
rendimento das colheitas, reduzir o desperdicio e aumentar a eficiéncia nas operagoes
agricolas. Ao analisar grandes quantidades de dados de padroes climaticos, condi¢oes
do solo e crescimento das culturas, os algoritmos de aprendizado de maquina podem

fornecer informagoes e previsdes valiosas para ajudar os agricultores a tomar

melhores decisoes (JHA et al., 2019; SOOD; SHARMA; BHARDWAJ, 2022).

Uma das principais aplicagoes do aprendizado de méquina na agricultura
é a agricultura de precisao. Isso envolve o uso de sensores e outras ferramentas
de coleta de dados para monitorar culturas e condigoes do solo em tempo real e,
em seguida, usar algoritmos de aprendizado de méaquina para analisar os dados e
fazer recomendacgoes para irrigacao, aplicacao de fertilizantes e manejo de pragas.
Isso pode levar a uma economia significativa de custos para os agricultores, bem
como ao aumento do rendimento das colheitas e a reducao do impacto ambiental
(MEGETO et al., 2020).

O aprendizado de maquina também vem sendo amplamente utilizado no
campo da genética e o melhoramento de plantas. Ao analisar os dados genéticos
das culturas, os algoritmos de aprendizado de méquina podem identificar carac-
teristicas associadas a caracteristicas desejaveis, como resisténcia a doengas ou
alto rendimento. Isso pode ajudar os melhoristas a desenvolver novas cultivares
mais adequadas a diferentes condi¢oes de cultivo e ambientes. No geral, o uso de
aprendizado de maquina na agricultura tem o potencial de transformar o setor,
fornecendo soluc¢des mais precisas e baseadas em dados para alguns dos maiores

desafios enfrentados pelos agricultores atualmente (DIJK, 2021).
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2 FUNDAMENTACAO TEORICA

2.1 Analise de dados no melhoramento vegetal

O uso de estatisticas é util em todos os campos de estudo, incluindo agri-
cultura e ciéncias biolégicas. As estatisticas sdo um instrumento crucial para
todas as formas de pesquisa. A validade do resultado experimental depende do
processo preciso de coleta, analise e interpretacao dos dados. Portanto, os mé-
todos estatisticos tém uma utilidade significativa para os melhoristas de plantas
principalmente para obter um resumo descritivo da amostra, fornecer um meio
de inferéncia e realizar comparagoes. (OTT; LONGNECKER, 2015; RESENDE
MARCOS DEON VILELA, 2007; ACQUAAH, 2012).

2.2 Aprendizado de maquina

O aprendizado de maquina é um campo da inteligéncia artificial que se
concentra no desenvolvimento de algoritmos e modelos que permitem que os compu-
tadores aprendam com os dados sem serem explicitamente programados. Tornou-se
uma das areas de crescimento mais rapido da ciéncia da computagao, com aplica¢oes
em uma ampla gama de setores, incluindo satude, financas, transporte, entreteni-
mento e agricultura (DIJK, 2021). Existem trés tipos principais de aprendizado de
maquina: aprendizado supervisionado, aprendizado nao supervisionado, aprendi-

zado semi-supervisionado, aprendizado por reforco, transducao e Learning to learn

(DLJK, 2021).

O aprendizado de maquina tem uma ampla gama de aplica¢bes em varios
setores. Aqui estao alguns dos mais comuns. Na saide, os algoritmos de aprendizado
de maquina podem ser usados para analisar imagens médicas, como raios-X e exames
de ressonancia magnética, para identificar padroes e anomalias que podem ser
dificeis de serem detectados por um radiologista humano. Eles também podem
ser usados para desenvolver modelos preditivos que podem ajudar os médicos a

diagnosticar doengas mais cedo e fornecer opgoes de tratamento mais personalizadas

(NAYYAR; GADHAVT; ZAMAN, 2021).
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Na esfera das finangas, o aprendizado de méaquina pode ser usado para
identificar padroes em dados financeiros, como precos de acoes e tendéncias de
mercado, para tomar melhores decisoes de investimento. Também pode ser usado
para detectar fraudes e identificar riscos em solicitagoes de empréstimos (AHMED
et al., 2022). Ou exemplo de aplicagdo do AM é na drea de transporte no geral,
carros autonomos dependem fortemente de algoritmos de aprendizado de maquina
para interpretar dados de sensores e tomar decisoes sobre dire¢ao. O aprendizado
de maquina também pode ser usado para otimizar rotas e horarios de transporte,

reduzindo o congestionamento e melhorando a eficiéncia (MOUJAHID et al., 2018).

Os algoritmos de aprendizado de maquina sao também amplamente usados
ambito do entretenimento para desenvolver recomendacgoes personalizadas para
filmes, programas de TV e miusica com base nas preferéncias e comportamentos
anteriores de um usuario. Eles também podem ser usados para criar experiéncias de
jogo mais realistas e imersivas (LYTVYN et al., 2019). No contexto da agricultura,
o aprendizado de maquina tem uma diversidade de aplicagoes,tais como o manejo
de culturas, previsao de produtividade, deteccao de doencas, deteccao de ervas
daninhas, qualidade da cultura, reconhecimento de espécies, gestao da agua e
manejo do solo, dentre outras varias (LIAKOS et al., 2018).

Embora o aprendizado de maquina tenha um enorme potencial, também ha
desafios significativos a serem superados. Um dos maiores desafios é a necessidade
de dados de alta qualidade. Os algoritmos de aprendizado de méaquina sao tao
bons quanto os dados nos quais sao treinados, por isso é crucial garantir que os
dados sejam precisos, imparciais e representativos. Outro desafio é a complexidade
de alguns modelos de aprendizado de maquina. O aprendizado profundo, um
subcampo do aprendizado de maquina que envolve o treinamento de redes neurais
artificiais, pode ser particularmente desafiador de implementar e interpretar (DAS
et al., 2015). Por fim, ha consideragdes éticas e legais a serem consideradas ao
implementar o aprendizado de maquina. E essencial garantir que os algoritmos
sejam justos, transparentes e nao discriminatérios de forma alguma (NASTESKI,
2017).
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2.2.1 Aprendizado ndo supervisionado

No aprendizado nao supervisionado o algoritmo ¢é treinado em dados nao
rotulados, o que significa que a saida desejada nao é fornecida para cada entrada.
O algoritmo aprende a identificar padroes e relacionamentos dentro dos dados, sem
nenhum conhecimento prévio de qual deve ser a saida. Existem dois tipos principais
de aprendizado nao supervisionado: agrupamento ou do inglés clustering e reducao
de dimensionalidade (DIJK, 2021).

O clustering é usado para agrupar pontos de dados semelhantes com base em
suas caracteristicas. O objetivo do agrupamento ¢é encontrar padroes e estruturas
nos dados que nao sao imediatamente aparentes. A reducao de dimensionalidade
é usada para simplificar dados complexos, reduzindo o nimero de varidveis. O
objetivo da reducao de dimensionalidade é reter as informagoes mais importantes

enquanto descarta os dados menos relevantes (DIJK, 2021).

Dentre as numerosas aplicagoes do aprendizado nao supervisionado, pode-se
citar: deteccao de anomalias, segmentacao de mercado, andlise de imagem e video,
sistemas de Recomendacao, entre outras. Todavia, a falta de dados rotulados é um
desafio presente a ser superado. Sem uma ideia clara de qual deve ser a saida, pode
ser dificil avaliar o desempenho do algoritmo. Outro obstaculo é a complexidade dos

algoritmos que exigem mais recursos computacionais e conhecimento especializado
(QL; LUO, 2022).

2.2.2 Aprendizado supervisionado

O aprendizado supervisionado é um ramo do aprendizado de maquina no
qual um algoritmo ¢ treinado em um conjunto rotulado de dados, o que significa
que a saida desejada é fornecida para cada entrada. O algoritmo aprende a fazer
previsoes ou decisoes com base nesses dados de treinamento, e o objetivo é prever
com precisao a saida de novas entradas invisiveis (DIJK, 2021). Existem dois tipos

principais de aprendizado supervisionado: regressao e classificacao (DIJK, 2021).

A regressao é usada quando a variavel de saida é continua, como prever o
preco de uma casa com base em seu tamanho e localizacao. O objetivo da regressao

é aprender uma funcao que mapeia as variaveis de entrada para um valor de saida
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continuo (NASTESKI, 2017). J& os algoritmos de classificagdo mapeiam o espago
de entrada em classes predefinidas. Existem muitas alternativas para representar
classificadores, por exemplo, Maquina de Vetores de Suporte (Support Vectors
Machine — SVM, do inglés), arvores de decisao, fungoes algébricas, etc., e podem
ser aplicados, por exemplo, na previsao se um e-mail é spam ou nao. Ao lado da
regressao e estimativa de probabilidade, a classificagdo é um dos modelos mais
estudados, possivelmente de maior relevancia pratica. Os beneficios potenciais do
progresso na classificacao sao imensos, pois a técnica tem grande impacto em outras
areas, tanto dentro da Mineragao de Dados quanto em suas aplicagoes (NASTESKI,
2017).

O aprendizado supervisionado tem uma ampla gama de aplicagoes em
varios setores. Algoritmos de aprendizado supervisionado podem ser usados para
tarefas como analise de sentimento, classificacdo de texto e tradugao automatica,
drea conhecida como processamento de linguagem natural (JURAFSKY; MARTIN,
2023). Na analise de imagem e video pode ser usado para identificar objetos, pessoas
e atividades em imagens e videos (JIANG; GRADUS; ROSELLINI, 2020).

O aprendizado supervisionado pode ser usado também para detectar ati-
vidades fraudulentas, como fraude de cartao de crédito ou fraude de seguro; em
sistemas de recomendacao personalizadas para produtos, servigos e conteido com
base nas preferéncias e comportamentos anteriores do usuario (JIANG; GRADUS;
ROSELLINI, 2020). Ainda que o aprendizado supervisionado tenha muitos benefi-
cios, também existem alguns desafios a serem superados. Um dos maiores desafios
é a necessidade de dados rotulados de alta qualidade. Criar um conjunto de dados

grande, diverso e representativo pode ser demorado e caro (QI; LUO, 2022).

2.2.2.1 Regressao Logistica

A Regressao Logistica é uma técnica de classificagdo que tem como objetivo
modelar a probabilidade de uma amostra ser associada a uma determinada classe.
Para isso, utiliza uma fungao logistica que transforma as varidveis preditoras
em probabilidades. O algoritmo calcula a probabilidade P(y = 1|z), ou seja, a
probabilidade de uma amostra x pertencer a classe 1 (gendtipos resistentes ao

CABMYV e produtivos), utilizando a seguinte equagao logistica:
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1
P<y - 1’1:) - 1 4+ = Bot+Brzi+Pezat+Bnn)’ (21>
onde: f3y é o termo de interceptagao (bias), 81, 5a, ..., fn sd0 os coeficientes associ-
ados as variaveis preditoras x1,xs,...,Z,, € é a base do logaritmo natural.

A funcao logistica converte uma combinagao linear das variaveis preditoras
em um valor que varia entre 0 e 1, interpretado como a probabilidade de a amostra
pertencer a classe 1. Para realizar a classificacao, utiliza-se um limiar de 0,5: se
P(y = 1|z) > 0,5, a amostra é considerada como resistente e produtiva; caso

contrério, ¢ classificada como suscetivel e nao produtiva.

2.2.2.2 Arvore de Decisao

A Arvore de Decisdo é um algoritmo de classificacido que segue uma estrutura
hierarquica de decisdes baseada em regras do tipo "se-entao", onde cada né interno
representa um teste sobre um atributo, cada ramo representa o resultado desse
teste, e cada né folha representa um rétulo de classe (BREIMAN et al., 1984). O
algoritmo constroéi a arvore de forma recursiva, selecionando em cada né o atributo

que melhor divide os dados em subconjuntos homogéneos em relagao a classe.

Para determinar a melhor divisao em cada né, o algoritmo utiliza medidas
de impureza, sendo as mais comuns o indice de Gini e a Entropia. O indice de Gini

é calculado como:

C

Gini(t) = 1 - p(jle)? (2.2)

Jj=1

onde p(j|t) é a proporgao de amostras que pertencem a classe j noné ¢, e ¢

é o numero total de classes.

A Entropia, por sua vez, é calculada como:

Entropia(t) = — Y p(jlt)log, p(j) (2.3

j=1

Para cada possivel divisao, calcula-se o ganho de informacao, que é a redugao

na impureza resultante da divisao:
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Ganho(t,a) =I1(t)— > I(t,) (2.4)

vEvalues(a)
onde [(t) é a medida de impureza (Gini ou Entropia) no né t, values(a)
sdo os possiveis valores do atributo a, |t,| é o nimero de amostras no subconjunto

ty, € [t| é o nimero total de amostras no no t.

O crescimento da arvore é controlado por parametros como profundidade
méxima (maz_depth), nimero minimo de amostras para divisao (min_samples_ -
split) e nimero minimo de amostras em nés folha (min__samples_leaf). No presente
estudo, esses parametros foram otimizados usando o GridSearchCV. A classificacao
de uma amostra x é feita percorrendo a arvore desde o né raiz até um né folha,
seguindo as regras de decisdo associadas a cada né. A classe predita é a classe

majoritaria no no6 folha correspondente.

2.2.2.3 Random Forest

O algoritmo Random Forest (Floresta Aleatéria) ¢ um método de aprendi-
zado de maquina que utiliza um conjunto de arvores de decisao para melhorar a
precisao e a robustez do modelo (BREIMAN, 2001a). Cada arvore na floresta é
treinada em um subconjunto aleatério dos dados de treinamento, com amostragem
com reposigao (técnica chamada bootstrap), e utiliza um subconjunto aleatério
de caracteristicas para fazer as divisoes nos nos. Esse processo reduz o risco de
overfitting e aumenta a capacidade de generalizagdo do modelo (LIAW; WIENER,
2002). A construcao de uma Floresta Aleatéria pode ser dividida em trés etapas

principais:

1. Amostragem com Bootstrap: Para cada arvore, um subconjunto dos
dados de treinamento é amostrado com reposigao. Isso implica que algumas
amostras podem ser selecionadas mais de uma vez, enquanto outras podem
ser ignoradas. Esse subconjunto ¢ utilizado para treinar a arvore, o que ajuda

a criar diversidade dentro da floresta.

2. Selecao Aleatéria de Features: Durante a construcao de cada arvore, em

cada n6 de divisao, apenas um subconjunto aleatério das caracteristicas é



27

considerado para encontrar a melhor divisao. O tamanho desse subconjunto é
controlado pelo hiperparametro max_ features. Essa selecao aleatoria ajuda a
reduzir a correlacao entre as arvores, aumentando a robustez e a capacidade

de generalizacao do modelo.

3. Agregacao de Resultados: Apos o treinamento das arvores, a previsao final
é obtida pela agregacao dos resultados individuais. No caso de classificagao,
a classe predita é determinada pela votagao majoritaria das arvores. Essa
agregacao ajuda a diminuir o viés e a variancia do modelo, tornando a previsao

mais precisa e estavel.

A qualidade de um né I(t) em uma arvore de decisdo é avaliada utilizando
métricas como o indice de Gini (Equagao 2.2) ou a Entropia (Equagao 2.3), que
ajudam a mensurar a "impureza'dos dados naquele ponto. A divisao ideal para
cada né é determinada pelo ganho de informacao (Equacao 2.4), que refere-se
a diminuicao da impureza apés a divisao dos dados. Quanto maior o ganho de

informagao, melhor serd a separacao dos dados e a qualidade da arvore gerada.

Dentre os principais hiperparametros ajustados, um dos mais relevantes é o
n__estimators, que define quantas arvores compoem a floresta. Embora o aumento
no numero de arvores possa melhorar a precisao do modelo, ele também eleva o
custo computacional, pois mais arvores exigem maior tempo de processamento
e consumo de memoria. Outro fator importante é o max__depth, que limita a
profundidade de cada arvore. Essa restricao é fundamental para evitar que o modelo
se torne excessivamente complexo, o que poderia resultar em overfitting, além de

contribuir para uma maior capacidade de generalizagao do modelo.

Além disso, os hiperparametros min__samples__split e min__samples_ -
leaf tém um impacto direto na estrutura das arvores. O primeiro determina o
nimero minimo de amostras necessario para que um né interno seja dividido,
enquanto o segundo especifica a quantidade minima de amostras exigidas para
um né folha. Ambos os parametros sao essenciais para controlar o crescimento
das arvores, evitando que divisoes excessivas levem a modelos excessivamente
especificos, o que prejudica a generalizacao. Por fim, o parametro bootstrap define

se a amostragem com reposicao serd utilizada durante o treinamento de cada arvore.
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Esse método é fundamental para garantir a diversidade das arvores, uma vez que

permite que cada uma seja treinada em um subconjunto distinto dos dados.

A predicao final do modelo Random Forest para uma amostra = é deter-
minada pela combinacao das previsoes feitas por cada arvore do conjunto. Em
problemas de classificacao, a classe atribuida a amostra é definida pela votagao

majoritaria das arvores, conforme ilustrado na Equacao (2.5):

g(x) = majority vote ({ht(x)}thl) , (2.5)

onde h;(x) representa a predigao da t-ésima arvore, e T é o nimero total
de arvores no ensemble. Para problemas de regressao, a predicao final é calculada

como a média das predigoes das arvores, conforme mostrado na Equagao (2.6):

i) = 3 (o) (2.6

A robustez do Random Forest decorre da diversidade entre as arvores, que é
garantida pela amostragem aleatéria dos dados e das features durante o treinamento.
Essa diversidade reduz a correlagdo entre as arvores, o que melhora significativa-
mente a capacidade de generalizagdo do modelo (BREIMAN, 2001a).desempenho

possivel para a tarefa em questao.

2.2.2.4  Gradient Boosting

O algoritmo Gradient Boosting é uma técnica de aprendizado de maquina
baseada em ensemble, que combina miltiplos modelos fracos (geralmente drvores de
decisao) de forma sequencial para criar um modelo forte. Diferentemente do Random
Forest, que treina arvores de forma independente, o Gradient Boosting treina cada
arvore para corrigir os erros das arvores anteriores, utilizando o gradiente de uma
funcao de perda para guiar o processo de aprendizado (FRIEDMAN;, 2001). Essa
abordagem iterativa permite que o modelo capture padroes complexos nos dados,

melhorando sua precisao e capacidade de generalizagao.

O Gradient Boosting funciona minimizando uma funcéo de perda L(y, F(x)),

onde y sdo os valores reais e F'(x) sdo as predigoes do modelo. Em cada iteracao



29

m, o algoritmo ajusta uma nova arvore h,,(z) para aproximar o gradiente negativo
da fungdo de perda em relagao as predigoes atuais F,_1(x). A predicdo do modelo

é entao atualizada conforme a Equagao (2.7):

Fo(x) = Fpn1(x) +v - hy(x), (2.7)

onde v é a taxa de aprendizado (learning rate), um hiperparametro que
controla a contribuicao de cada arvore ao modelo final. Um valor menor de v
geralmente resulta em um modelo mais preciso, mas requer mais iteracoes para

convergir.

A fungdo de perda mais comum para problemas de regressdo é o erro

quadrético médio (MSE), dado por:

1

L(y, F(x)) = 5(y = F(x))" (2.8)

Para problemas de classificagao binaria, a funcao de perda logistica é fre-

quentemente utilizada:

L(y, F(z)) = — [ylog(p) + (1 — y) log(1 — p)], (2.9)
onde p = o(F(z)) é a probabilidade predita, e o é a funcao sigmoide.

O crescimento das arvores no Gradient Boosting é controlado por hiperpara-
metros como a profundidade méxima (max_depth), o nimero minimo de amostras
para divisao (min__samples_split) e o nimero minimo de amostras em nds folha

(min__samples_leaf). Os principais hiperparametros testados incluem:
e n__estimators: Numero de arvores no ensemble. Um niimero maior de arvores
geralmente melhora a precisdo, mas aumenta o custo computacional.

e learning_rate: Taxa de aprendizado, que controla a contribuicao de cada

arvore ao modelo final.

« max__depth: Profundidade maxima de cada arvore. Controla a complexidade

do modelo, evitando overfitting.
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e« min_ samples_ split: Nimero minimo de amostras necessarias para dividir

um no interno.

« min_ samples_ leaf: Nimero minimo de amostras necessarias em um né

folha.

A predicao final do Gradient Boosting para uma amostra x é dada pela

soma ponderada das predigoes de todas as drvores, conforme a Equagao (2.10):

Fu(z) = Fo(z) +v > hip(z), (2.10)

m=1
onde Fy(x) é a predigdo inicial (geralmente a média dos valores de y para
regressao ou o log-odds para classificagdo), M é o ntimero total de arvores, e h,,(z)

é a predicao da m-ésima arvore.

A robustez do Gradient Boosting vem de sua capacidade de ajustar iterati-
vamente os erros residuais do modelo, o que permite capturar relagoes complexas

nos dados.

2.2.2.5 AdaBoost (Adaptive Boosting)

O método AdaBoost (do inglés Adaptive Boosting) é uma abordagem de
aprendizado de maquina que utiliza a técnica de ensemble para aprimorar a precisao
das previsoes. Ele funciona combinando diversos modelos simples, frequentemente
chamados de "classificadores fracos", para formar um modelo final mais robusto.
Ao contrario de outras estratégias de ensemble, como Random Forest ou Gradient
Boosting, o AdaBoost ajusta os pesos das observagoes durante o processo de
treinamento, priorizando aquelas que foram mal classificadas nas etapas anteriores.
Dessa forma, o algoritmo direciona sua atenc¢ao para os casos mais desafiadores,
refinando sua capacidade de generalizagao a cada iteracaio (FREUND; SCHAPIRE,
1997).

No inicio do processo, o AdaBoost atribui pesos idénticos a todas as ob-
servagoes do conjunto de treinamento. A cada iteragao ¢, um classificador fraco
hi(z) é ajustado com o objetivo de reduzir ao maximo o erro ponderado €;, que é

calculado da seguinte forma:
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N
o= S ul” Tl # b)), 2.11)

onde w§t) é o peso da i-ésima amostra na iteracao t, y; é o rotulo verdadeiro
da amostra, hy(z;) é a predi¢do do aprendiz fraco, e I(-) é a funcao indicadora que

retorna 1 se a condic¢ao for verdadeira e 0 caso contrario.

Apébs o ajuste do classificador fraco, o peso «; correspondente a ele é

determinado com base no erro ponderado ¢, conforme a Equacao (2.12):

at:;m(l_et). (2.12)

€t

O valor (ou peso) de oy define o quanto o classificador fraco h.(z) influencia
o modelo final. Classificadores que cometem menos erros recebem um peso maior,

enquanto aqueles com desempenho inferior tém sua contribuicao reduzida.

Posteriormente, os pesos das observagoes sao recalculados para a iteragao
seguinte t 4 1, priorizando as amostras que foram classificadas de forma incorreta.

A férmula para a atualizagao dos pesos é dada pela Equacao (2.13):

W™ = w® - exp (= - i - ho(xs)) | (2.13)

onde y; - hy(z;) é positivo se a classificagao estiver correta e negativo caso

contrario. Apés a atualizacdo, os pesos sao normalizados para garantir que somem

1.

A previsao final do AdaBoost para uma observacao = é calculada por meio
da soma ponderada das previsoes individuais de todos os classificadores fracos,

conforme expresso na Equagao (2.14):

H(z) = sign (i a - ht(:c)> , (2.14)

t=1
onde T' é o niimero total de aprendizes fracos, a; é o peso do t-ésimo aprendiz,
e hy(z) é a predigao do t-ésimo aprendiz. A fungao sign(-) retorna a classe predita

com base no sinal da soma ponderada.
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O desempenho do AdaBoost depende de varios hiperparametros, como
a quantidade de classificadores fracos (n__estimators), a taxa de aprendizado
(learning_rate) e o método escolhido para atualizar os pesos (algorithm). Os
principais hiperparametros incluem o ntimero de classificadores fracos no ensemble
(n__estimators), para o qual foram testados os valores 50, 100, 200 e 300. Um
numero maior de classificadores tende a melhorar a acuracia, mas também eleva o

custo computacional.

A taxa de aprendizado (learning_rate), que define o impacto de cada classi-
ficador no modelo final, foi testada com os valores 0.01, 0.1, 0.5 e 1. Taxas menores
demandam mais classificadores para alcangar a convergéncia, mas podem levar a
modelos mais refinados. Por fim, o método utilizado para ajustar os pesos (algo-
rithm) foi o SAMME (Stagewise Additive Modeling using a Multi-class Exponential
loss function), que é apropriado para tarefas de classificagdo envolvendo multiplas

classes.

A robustez do AdaBoost esta diretamente relacionada a sua habilidade de
concentrar-se nas observagoes mais desafiadoras, ajustando de forma iterativa os

pesos das amostras e integrando as previsoes de diversos classificadores fracos.

2.2.2.6  Support Vector Machine (SVM)

O algoritmo Support Vector Machine (SVM) tem como objetivo identificar
um hiperplano ideal que divide as classes no espago de caracteristicas, maximizando
a distancia entre os pontos mais proximos de cada classe, denominados vetores de
suporte (CORTES; VAPNIK, 1995). Essa caracteristica torna o SVM especialmente
eficiente em problemas de alta dimensionalidade e em situac¢ées onde a separagao
entre as classes nao ¢ linear. No contexto de classificacao binaria, o SVM procura

determinar um hiperplano descrito por:

w-x+b=0, (2.15)

onde w é o vetor de pesos, x é o vetor de caracteristicas da amostra, e b é

o termo de viés. O objetivo é maximizar a margem M, que é a distancia entre o
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hiperplano e os vetores de suporte mais proximos de cada classe. A margem é dada

por:

M=, (2.16)

onde ||w|| é a norma do vetor de pesos. Para maximizar a margem, o SVM

resolve o seguinte problema de otimizagao quadratica:

1
migl §||w]|2 sujeito a  y;(w-xz; +b) > 1 Vi, (2.17)
onde y; é o rétulo da classe (+1 ou —1) da i-ésima amostra, e x; é o vetor

de caracteristicas correspondente.

Em casos onde os dados nao sao linearmente separaveis, o SVM utiliza uma
técnica chamada kernel trick, que mapeia os dados para um espaco de maior dimen-
sionalidade onde a separagao linear é possivel (CORTES; VAPNIK, 1995). A fungao
de kernel K(z;,z;) calcula o produto interno entre os vetores de caracteristicas no
espago transformado. As fungoes de kernel mais comuns incluem o kernel linear,

definido por:

K(in,iﬁj) =T; " l'j, (218)

que é adequado para dados linearmente separaveis e nao realiza nenhuma
transformacao nao linear (SCHOLKOPF; SMOLA, 2002). O kernel polinomial,
dado por:

K(zi,xj) = (v @ -z + r)e, (2.19)

que mapeia os dados para um espago de caracteristicas polinomiais, onde
v controla a influéncia de cada amostra, r é um termo de interceptacao, e d é o
grau do polinémio. Esse kernel é titil para capturar relacdes nao lineares de grau d

(VAPNIK, 1998). O kernel radial basis function (RBF), definido por:
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K(z;,xj) = exp (—7||a:i — xj||2) , (2.20)

¢ uma das funcoes de kernel mais utilizadas e é adequado para dados com
estruturas complexas e nao lineares, onde v controla a influéncia de cada amostra
no espaco transformado (SCHOLKOPF; SMOLA, 2002). Por fim, o kernel sigmoide,
dado por:

K(z;,z;) = tanh(y - x; - z; +r), (2.21)

é semelhante a fungdo de ativagdo sigmoide usada em redes neurais, onde
controla a influéncia de cada amostra, e ¢ um termo de interceptacao. Esse kernel

pode ser 1til para capturar relagoes nao lineares em certos casos (VAPNIK, 1998).

O desempenho do SVM ¢ diretamente impactado por hiperpardmetros como
o parametro de regularizacao C', que define o equilibrio entre a maximizacao da
margem e a reducao do erro de classificagdo, e o pardmetro ~, utilizado em kernels
como RBF, polinomial e sigmoide (CORTES; VAPNIK, 1995).

2.2.2.7 K-Nearest Neighbors (KNN)

O algoritmo K-Nearest Neighbors (KNN) é uma técnica simples e eficiente
que armazena todos os exemplos conhecidos e classifica novos dados com base em
sua similaridade com os registros existentes (COVER; HART, 1967). A selecao
adequada dos hiperparametros desse algoritmo é fundamental para garantir seu
bom desempenho. O primeiro hiperparametro, n_ neighbors, define o nimero de
vizinhos (k) que serao utilizados para classificar um novo ponto. Valores muito
pequenos de k£ podem tornar o modelo suscetivel a ruidos, enquanto valores muito
altos podem resultar em fronteiras de decisdo excessivamente suavizadas (ZHANG,
2016a).

O segundo hiperparametro, weights, controla a contribui¢ao dos vizinhos
na classificagdo: com a opcao uniform, todos os vizinhos tém o mesmo peso,
enquanto com distance, os vizinhos mais proximos exercem maior influéncia na

decisao (ALTMAN;, 1992). Por dltimo, o hiperpardmetro metric define a métrica
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de distancia usada para calcular a proximidade entre os pontos. Entre as métricas
testadas estao a distancia euclidiana, que mede a distancia "em linha reta'entre dois
pontos, a distancia de Manhattan, que considera a soma das diferencas absolutas

entre as coordenadas, e a distancia de Minkowski, uma generalizacao das duas

anteriores (DEZA; DEZA, 2012).

O KNN classifica os dados de entrada com base nos rotulos dos K vizinhos
mais proximos, a partir do conjunto de treinamento {x;, y;}. Para isso, é calculada a
distancia entre a amostra de treinamento e a amostra de teste, ambas representadas
como vetores binarios de dimensao (L + R), sendo x,, o ponto de entrada e z; cada
ponto do conjunto de treinamento. A métrica de distancia utilizada (euclidiana,
Manhattan ou Minkowski) define como essa proximidade é medida. A seguir, sao

apresentadas as formulas para cada uma dessas métricas:

« Distancia Euclidiana:

d(xy, x;) = JZ Ty — Tij)? (2.22)

onde n é o numero de dimensoes dos vetores z,, e x; (DEZA; DEZA, 2012).

« Distancia de Manhattan:
d(xy, x;) Z |Ty,; — i ] (2.23)

que corresponde a soma das diferencas absolutas entre as coordenadas dos
pontos (DEZA; DEZA, 2012).

« Distancia de Minkowski:

n 1/p
d(.ﬁlﬁu, .lel) = (Z |~Tu,j — $i7j’p) (224)
j=1
onde p é um parametro que define a ordem da distancia. Para p = 1, a
distancia de Minkowski equivale a distancia de Manhattan, e para p = 2,
equivale a distancia euclidiana (DEZA; DEZA, 2012).
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O roétulo de categoria de x,, foi atribuido com base na maioria dos votos dos
rotulos de categoria de seus k-vizinhos mais préximos (KNN) (SUN; ZHAO, 2015):

k
yu = argmax 3 (s, y;), (2.25)

i=1

onde §(x;,y;) € {0,1} indica se x; pertence a y;.

2.2.2.8 Redes Neurais Artificiais (MLP)

As Redes Neurais Artificiais (RNA), especialmente as Multilayer Perceptrons
(MLP), sdo modelos de aprendizado de maquina que empregam miltiplas camadas
de neuronios artificiais para capturar relagbes complexas e nao lineares nos dados
(HAYKIN, 1999). As fungoes de ativagao testadas foram logistic, tanh e ReL U,

definidas respectivamente por:

fe) = +16_Z (logistica), (2.26)
f(z) = tanh(z) (tangente hiperbdlica), (2.27)
f(z) =max(0,2z) (ReLU). (2.28)

2.2.2.9 Naive Bayes (GaussianNB)

O algoritmo Naive Bayes (GaussianNB) é um método de classificagao pro-
babilistico baseado no teorema de Bayes, que assume independéncia condicional
entre as caracteristicas dadas as classes (MITCHELL, 1997). Apesar dessa suposi-
cao simplificadora, o GaussianNB ¢ eficaz em muitos problemas de classificacao,
especialmente quando o nimero de caracteristicas é grande ou quando os dados

SA0 esparsos.

2.2.2.9.1 Teorema de Bayes e Suposicao de Independéncia

O teorema de Bayes é a base do algoritmo Naive Bayes e é dado por:
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P(Xly) - P(y)

P(y|X) = PX)

(2.29)

onde: - P(y|X) é a probabilidade posterior da classe y dado o vetor de
caracteristicas X, - P(X|y) ¢ a verossimilhanca das caracteristicas X dado a classe
y, - P(y) é a probabilidade a priori da classe y, - P(X) é a probabilidade marginal

das caracteristicas X.

A suposicao de independéncia condicional do Naive Bayes assume que as
caracteristicas X1, Xs,..., X, sao independentes entre si dado a classe y. Isso

permite que a verossimilhanga P(X|y) seja fatorada como:

n

P(X|y) = [I P(Xily). (2.30)

i=1

Essa suposicao simplifica o calculo da probabilidade posterior, tornando o

algoritmo computacionalmente eficiente.

No caso do GaussianNB, assume-se que as caracteristicas continuas seguem
uma distribui¢ao normal (Gaussiana) para cada classe. A probabilidade P(X;|y) é

calculada utilizando a fun¢ao de densidade de probabilidade da distribui¢cao normal:

(Xi — ﬂy)2

! ( ) (2.31)
= exp | — , :
\/2mo2 207

onde: - p, € a média da caracteristica X; para a classe y, - 05 ¢ a variancia

da caracteristica X; para a classe y.

Para evitar problemas numéricos quando uma caracteristica tem variancia
zero em uma classe, o GaussianNB utiliza um parametro de suavizacao chamado
var_smoothing. Esse parametro adiciona uma pequena constante a variancia, ga-

rantindo que ela nunca seja zero. A variancia suavizada é calculada como:

0, 4 0, + var_smoothing. (2.32)
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2.3 Aprendizado de maquina no melhoramento de plantas

A populagao mundial esta projetada para exceder nove bilhdes de pessoas até
2050, o que exigira melhorias significativas na producao das principais culturas que
contribuem para a seguranca alimentar global, portanto aumentar a produtividade é
o principal objetivo da maioria dos programas de melhoramento de plantas (DUBEY
et al., 2019). No melhoramento vegetal, no entanto, aferir caracteristicas como o
rendimento, que ¢é influenciado por uma combinacao de caracteristicas quantitativas
e qualitativas, em grandes populagoes, é oneroso, demorado e trabalhoso (XIONG
et al., 2018; CAI et al., 2016).

Os métodos classicos de melhoramento de plantas incluem principalmente
avaliacao e classificacdo da diversidade genética, andlise de componentes de ren-
dimento (selegdo indireta de gendtipos superiores), andlise de estabilidade da
produtividade (interagdo genétipo x ambiente), tolerdncia a estresses bidticos e
abidticos e programas de melhoramento de hibrido (NIAZIAN; NIEDBAA, 2020).
Aliado ao melhoramento clédssico, as ferramentas de biotecnologia visam o desen-
volvimento da &rea, tornando o processo mais rapido, preciso e eficiente (ADLAK
et al., 2019). Em geral, as abordagens relacionadas a biotecnologia amplamente
adotadas no processo de melhoramento de plantas podem ser divididas em cul-
tura de tecidos, engenharia genética, marcadores moleculares e analises de DNA
(FALEIRO; ANDRADE SOLANGE ROCHA MONTEIRO; Fébio Bueno dos Reis
Junior, 2011).

No processo de melhoramento sao gerados os chamados “big datas”, pro-
venientes de dados fenotipicos dos mais diverso, sequéncia de moléculas, dados
de pedigree, andlise de imagens etc (NITAZIAN; NIEDBAA, 2020). Técnicas es-
tatisticas classicas tém sido aplicadas para analisar e interpretar os resultados
oriundos desses dados, todavia, tais técnicas, incluindo as baseadas em regressao,
geralmente sao limitadas em sua capacidade de analisar dados de alta dimensao
e nao conseguem capturar relagoes complexas e multivariadas entre as variaveis,
que frequentemente apresentam propriedades nao lineares e nao deterministicas e

estao inextricavelmente ligadas aos sistemas biologicos das plantas e fontes externas

(DIJK, 2021; NIAZIAN; NIEDBALIA, 2020; WEI et al., 2020; HESAMI et al., 2019).



39

Os algoritmos de aprendizado de maquina vem chamando a atencao de
pesquisadores na otimizacao de métodos de melhoramento baseados em modelos
que podem melhorar a eficiéncia do processo (HESAMI et al., 2020). Uma das
redes neurais artificiais (RNAs) mais comuns, o multilayer perceptron (MLP) (PAL;
MITRA, 1992) tem sido amplamente utilizado para modelar e prever caracteris-
ticas complexas, como rendimento, em diferentes programas de melhoramento
(INOCENTE; GARBUGLIO; RUAS, 2022; SANDHU et al., 2021b). As chamadas
maquinas de vetores de suporte (SVMs) sdo conhecidas como um dos algoritmos de
aprendizado de maquina poderosos e faceis de usar que podem reconhecer padroes
e comportamento de relacionamentos nao lineares (AURIA; MORO, 2008; SU et
al., 2017). Além de MLP e SVM, a Random Forest (RF) (BREIMAN, 2001a) é
outro método de modelagem de dados com uma fase de treinamento computacional
eficiente e precisao de generalizacdo muito alta que tem sido amplamente utilizada
no melhoramento de plantas (ANSARIFAR; AKHAVIZADEGAN; WANG, 2020;
ACHARJEE et al., 2016; SARKAR et al., 2015). Abaixo sao descritos com detalhes
alguns dos algoritmos de aprendizado de maquina utilizados no melhoramento

vegetal.
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3 MATERIAIS E METODOS

3.1 Conjuntos de Dados

O conjunto de dados é proveniente de um experimento de campo que incluiu
87 genoétipos de trés familias de irmaos completos resultantes do cruzamento (re-
combinagao) entre individuos da primeira geracao de retrocruzamento do programa
de melhoramento de maracujazeiro da Universidade Estadual do Norte Fluminense
Darcy Ribeiro (UENF). O experimento foi realizado entre em margo de 2018 e a
junho de 2019. Os atributos avaliados foram: resisténcia ao CABMV, formato do
fruto, cor da casca, cor da polpa, nimero total de frutos por plantas, peso total de
frutos, didmetro longitudinal médio do fruto, didmetro transversal médio do fruto,
indice de formato médio do fruto, massa média do fruto, massa média da polpa,
rendimento médio de polpa, espessura média da casca e Teor de sélidos soluveis
totais médio (BRIX).

3.2 Normalizacao dos dados

A normalizacdo dos dados é o processo de ajustar os valores de cada
atributo para uma faixa especifica, como de -1 a 1 ou de 0 a 1. Esse procedimento
é essencial para evitar que atributos com escalas de valores maiores influenciem de
maneira desproporcional o desempenho de algoritmos de aprendizado de maquina
(GOLDSCHMIDT, 2015).

Neste trabalho, utilizou-se a normalizagao por desvio padrao, também
conhecida como Z-Score, uma técnica amplamente utilizada para padronizar dados.
Essa abordagem ajusta os valores de cada atributo no conjunto de dados de forma
que a média seja 0 e o desvio padrao seja igual a 1 (GOLDSCHMIDT, 2015).

A Equagao seguinte descreve o processo de normalizagao:

z=""F1 (3.1)

onde z é o valor individual da variavel, u ¢ a média da varidvel no conjunto de
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dados e o ¢é o desvio padrao da variavel no conjunto de dados.

3.3 Anadlise de cluster
3.3.1 Agrupamento com K-means

O algoritmo K-Means foi utilizado para agrupar os gendétipos. O algoritmo
K-means é uma técnica de aprendizado nao supervisionado, baseado em partigoes,
ele busca dividir os dados em £ clusters, com o objetivo de minimizar a soma das
distancias quadraticas entre os pontos e os centros de cada cluster. O K-means
¢ um dos algoritmos de particionamento de clustering mais amplamente usados
(IKOTUN et al., 2023).

O algoritmo K-means agrupa dados com caracteristicas semelhantes em
um mesmo cluster, enquanto dados com caracteristicas distintas sao alocados em
clusters diferentes, garantindo que os elementos de um cluster apresentem pouca
variacao entre si. A proximidade entre dois objetos é determinada pela distancia
entre eles. Da mesma forma, a proximidade de um dado a um cluster especifico
¢é avaliada com base na distancia entre esse dado e o centro do cluster. A menor
distancia entre um dado e o centro de um cluster define a qual cluster ele pertence
(GOLDSCHMIDT, 2015). O céalculo da distancia entre os dados e os centroides de
cada cluster é realizado utilizando a férmula da distancia euclidiana, descrita a

seguir:

da,y) = |3 ( — y)? (3.2)

i=1

onde z° é o primeiro ponto e y* é o segundo ponto. As etapas para executar

as areas do Algoritmo de Agrupamento K-Means sdo as seguintes:

1. Determinar o valor de K como o nimero de clusters.
2. Selecionar K do conjunto de dados X como o centroide.

3. Alocar todos os dados para o centroide com métrica de distdncia usando a

Equagao 3.2.
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4. Recalcular o centroide C' com base nos dados que seguem cada cluster. Repetir.

3.3.2 Determinacao do numero de 6timo clusters

Um dos desafios na utilizagdo do do K-means é que ele requer que o niimero
de clusters seja pré-especificado antes que o algoritmo seja aplicado (KUMARSA-
GAR; SHARMA, 2014) e que esse nimero escolhido seja validado de alguma forma.
A validacao de clusters por meio de medidas internas é uma abordagem utilizada
para avaliar se os clusters foram formados corretamente. Dois fatores principais
sao considerados nessa analise: a coesao, que mede o quao compactos estao os
dados dentro de um cluster, e a separagao, que avalia o quao distintos os clusters
estao uns dos outros (SAPUTRA; SAPUTRA; OSWARI, 2020). Para determinar o
numero ideal de clusters &, foram aplicados dois métodos, o Método do cotovelo ou
método de (Elbow) e o Silhouette Score, e para todos eles foram avaliados de 1 a

10 clusters.

3.3.2.1 Método do cotovelo (Elbow)

O Método do Cotovelo (ou Elbow Method, em inglés) é uma das técnicas
mais utilizadas para definir o niimero ideal de clusters k ao aplicar o algoritmo
K-Means, ele é usado para medir a coesao de clusters, avaliando quao semelhantes
os dados dentro de um mesmo cluster sao. Esse método busca identificar o valor
de k que oferece a melhor solugao para o agrupamento, equilibrando a qualidade

dos clusters com a complexidade do modelo.

O K-Means ¢ um algoritmo de agrupamento baseado em parti¢cdes que
tem como objetivo dividir um conjunto de dados em k£ clusters, de modo que os
dados dentro de cada cluster sejam o mais homogéneos possivel. O algoritmo busca
minimizar a soma das distdncias quadraticas entre os pontos de dados e os centros
de seus respectivos clusters. O critério utilizado para avaliar o agrupamento ¢ a
inércia, que é calculada pela soma das distancias quadraticas entre todos os pontos

de dados e seus centros de cluster.

Matematicamente, a inércia Wj para um dado nimero de clusters k£ ¢ dada
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por:
k

2

We=2> > llj— pill (3.3)
=1 ; eC;

Onde: k é o numero de clusters, C; é o conjunto de pontos atribuidos ao

cluster 4, z; é o ponto de dados, p; é o centroide do cluster 4, ||z; — u;||* é a distancia

quadrética entre o ponto z; e o centroide p;. No presente trabalho foram avaliados

10 possiveis clusters.

3.3.2.2 Método da silhueta (Silhouette Score)

O Método Silhouette usa um coeficiente de silhueta que combina separacao e
coesao. O coeficiente de silhueta é determinado pela divisdo da medida de separacao
pela medida de coesao e subtraindo esse valor por 1 se a medida de separagao
for maior que a medida de coesao ou por 1 subtraido pelo valor da medida de
coesao dividido pela medida de separacao se a coesao for maior que a separacao.
Quanto maior o coeficiente de silhueta, melhor o cluster é (SAPUTRA; SAPUTRA;
OSWARI, 2020).

medida de coesao ~ ~
. | — e e s, 5€ C0esA0 < separagio (3.4
m;‘fg%:ilzefoaggjo — 1, se coesao > separacao

O Método Silhouette propoe a construcao de um grafico onde o eixo Y
representa o coeficiente Silhouette e o eixo X representa o valor de K. O valor de K
ideal é aquele que corresponde ao maior valor do coeficiente Silhouette, que indica
a melhor separacao e coesao entre os clusters formados (SAPUTRA; SAPUTRA,;
OSWARI, 2020).

3.3.2.3 Indice Calinski-Harabasz

Foi também empregado para a validagao quantitativa da capacidade do
algoritmo de K-means em capturar os grupos inerentes aos dados o indice de
Calinski-Harabasz, também conhecido como Critério da Razao da Variancia. O
indice de Calinski-Harabasz se baseia na razao entre a dispersao entre os clusters (o

quao separados os clusters estao uns dos outros) e a dispersao dentro dos clusters
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(o quao compactos os pontos estao dentro de cada cluster) (U, 2002). As etapas

para calcular o indice sao descritas a seguir:

1. Passo 1: Calcular a soma dos quadrados entre grupos (BGSS), a qual é uma
medida que calcula a soma ponderada do quadrado das distancias entre os
centroides de cada cluster e o centroide geral do conjunto de dados. A férmula

para o calculo é:

k
BGSS = "n;-|lc;— c|]? (3.5)
i=1

onde k é o nimero de clusters, n; é a quantidade de pontos no cluster i, ¢; é
o centroide do cluster i, ¢ ¢ o centroide geral do conjunto de dados, ||c; — ¢||?
representa o quadrado da distancia entre o centroide do cluster ¢ e o centroide

geral.

2. Passo 2: Calcular a soma dos quadrados dentro do grupo (WGSS), que é
usada para medir a soma do quadrado das distancias entre cada observacao
e o centroide do cluster ao qual pertence. Para cada cluster k, o WGSS,, é

calculado da seguinte forma:

WGSSk = Z ||ZL’ — Ck||2 (36)

zeCly,
em que C} representa o conjunto de observacoes no cluster k, xr é uma
observacio pertencente ao cluster k, ¢, é o centroide do cluster k, ||x — ci||?

é o quadrado da distancia entre a observacao x e o centroide c.

3. Passo 3: Calcular o indice Calinski-Harabasz de acordo com a seguinte

equagao:
_ BGSS/(k—-1)
~ WGSS/(n — k)

onde C'H ¢ o indice Calinski-Harabasz, BG'SS' é a soma dos quadrados entre

CH (3.7)

grupos, WGS'S é a soma dos quadrados dentro dos grupos, k é o niimero de
clusters, n é o nimero total de observagoes. Esse indice tende a valores mais
altos quando os clusters sao bem separados e compactos, o que indica uma

melhor qualidade do agrupamento.
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3.3.3 Avaliacao da Estabilidade dos Clusters
3.3.3.1 Indice de Rand Ajustado (ARI)

O Indice de Rand Ajustado (ARI) é uma métrica que mede a similaridade
entre duas atribuigoes de clusters, comparando os pares de pontos que estao no
mesmo cluster ou em clusters diferentes. Ele é uma versdo ajustada do Indice
de Rand, que corrige o efeito do acaso, garantindo que valores préximos de zero
indiquem uma concordancia aleatéria entre os agrupamentos (HUBERT; ARABIE,
1985).

O ARI é calculado da seguinte forma:

Indice de Rand — Indice de Rand Esperado
Indice de Rand Maximo — Indice de Rand Esperado

ARI = (3.8)

onde Indice de Rand é a proporcéo de pares de pontos que estdo no mesmo
cluster em ambas as atribuigoes, Indice de Rand Esperado é o valor esperado do
Indice de Rand sob uma distribuicdo aleatéria e Indice de Rand Méximo é o valor

maximo que o Indice de Rand pode assumir.

O ARI varia entre -1 e 1, onde 1 indica que as duas atribuigoes de clusters
sao idénticas, 0 indica que a concordéancia entre as atribuicoes é aleatoria e -1 indica

que as atribui¢oes sao completamente diferentes.

3.4 Avaliacao de algoritmos de classificacao

O fluxo de trabalho para o desenvolvimento dos modelos de classificagao foi
dividido em seis etapas sequenciais, conforme ilustrado de forma esquematica na

Figura 1. Cada uma dessas etapas é descrita em detalhes nas se¢oes a seguir.

3.4.1 Ler os dados

Nessa etapa, realizou-se a leitura dos dados armazenados em um arquivo
com extensao CSV, que foram entao convertidos para uma estrutura do tipo
dataframe. Esse formato facilitou o processamento e a manipulacao dos dados nas

etapas seguintes. Os atributos presentes nesse conjunto de dados inclufam: ID,
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Ajuste dos Construgao do o o
2 q A Salvar os Avaligdo do
Pré-processamento hiperparametros . A modelo usando os
Ler os dados Hiperparametros B A desempenho do
dos dados usando it hiperparametros modelo
GridSearchCV otimos

Figura 1 — Estagios de desenvolvimento do modelo.

Prog, Rep, Parc, Arv, AACPDM, formato, cor_casca, cor_polpa, NF, PT, Comp,
Diam, ind_form, PF, PPB, RP, EC e BRIX.

3.4.2 Pré-processamento dos dados

Nessa fase, verificou-se se as linhas de dados possuiam duplicatas ou valores
nulos em suas colunas. Em seguida, os dados foram normalizados para reduzir a
redundancia e garantir a consisténcia e a confiabilidade das informagoes. Foram
utilizadas apenas as variaveis quantitativas no modelo, excluindo-se as variaveis
categodricas, como formato, cor_casca e cor_polpa, bem como as colunas relacio-
nadas as informagoes do experimento, como Prog, Rep, Parc e Arv. Além disso,
para assegurar resultados de avaliagao precisos, os dados foram divididos em trés
conjuntos: treino e teste, seguindo proporgoes previamente definidas e apresentadas
na Tabela 1.

Tabela 1 — Divisao dos dados em conjuntos de treino e teste

Tipo de dados Percentagem Quantidade de dados

Treino 80% 69
Teste 20% 18
Total 100% &7

3.4.3 Ajuste dos hiperparametros usando GridSearchCV

Nessa etapa, o ajuste de hiperparametros teve como objetivo identificar os
valores que maximizavam o desempenho do modelo. Para isso, utilizou-se a técnica
de Grid Search Cross-Validation (GridSearchCV), conforme descrito por Siji George

C. G. e B. Sumathi (2020). Essa ferramenta, disponivel no médulo scikit-learn,
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permitiu otimizar os hiperparametros de forma automatica e sistematica, avaliando
multiplas combinagoes de parametros e selecionando aquelas que proporcionavam

os melhores resultados em termos de acuracia, precisao, recall e F1-score.

Além disso, o GridSearchCV possibilitou a validagao simultanea de diferentes
modelos, garantindo que o ajuste fosse realizado de maneira robusta e confiavel.
Informagoes especificas sobre os hiperparametros testados para cada algoritmo de
classificacdo podem ser encontradas na Tabela 2, enquanto detalhes adicionais sobre

cada hiperpardmetro estao disponiveis na documentagao oficial de cada algoritmo.

Tabela 2 — Hiperparametros testados para cada algoritmo

de classificacao®.

Algoritmo Hiperparametros Testados

Random Forest

e n__estimators: 50, 100, 200, 300, 500
o maz__depth: None, 10, 20, 30

o min_samples split: 2, 5, 10, 15

o min_samples leaf: 1, 2, 4

o bootstrap: True, False

Gradient Boosting

e n__estimators: 50, 100, 200, 300
o learning rate: 0.01, 0.05, 0.1, 0.2
e max_depth: 3,5, 7, 10

e min_samples_split: 2, 5, 10

o min_samples leaf: 1, 2, 4
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Tabela 2 — Continuacao

Algoritmo Hiperparametros Testados
AdaBoost
e n__estimators: 50, 100, 200, 300
e learning rate: 0.01, 0.1, 0.5, 1
o algorithm: SAMME
SVM
e (:0.01,0.1, 1, 10, 100
o kernel: linear, rbf, poly, sigmoid
e gamma: scale, auto, 0.1, 1, 10
KNN

n_ neighbors: 3,5, 7,9, 11, 15
weights: uniform, distance

metric: euclidean, manhattan, minkowski

Redes Neurais (MLP)

hidden_ layer sizes: (50,), (100,), (50, 50), (100, 50),
(100, 100)

activation: logistic, tanh, relu

solver: sgd, adam

alpha: 0.0001, 0.001, 0.01

learning rate: constant, adaptive

learning rate_init: 0.001, 0.01, 0.1

batch__size: 32, 64, 128
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Tabela 2 — Continuagao

Algoritmo Hiperparametros Testados

GaussianNB

e wvar_smoothing: 1e-9, 1e-8, 1e-7, 1e-6, le-b

3.4.4 Salvar os Hiperparametros 6timos

Apés o ajuste dos hiperparametros, identificou-se as configuracées que
proporcionavam o melhor desempenho para os modelos em desenvolvimento. Esses
parametros foram armazenados, o que permitiu simplificar e reproduzir de forma

eficiente o processo de avaliagdo dos modelos.

3.4.5 Construcao dos modelos usando os hiperparametros 6timos

Nessa etapa, cada modelo foi construido utilizando os hiperparametros
6timos encontrados na etapa do GridSearchCV. Foram testados e avaliados oito
algoritmos de classificacao: Regressao Logistica, Arvore de Decisdao, Random Forest,
Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
Redes Neurais Artificiais (MLP) e Naive Bayes (GaussianNB). Em seguida, cada
modelo foi treinado para ajustar os dados, separando-os em caracteristicas (features)
e rétulos de classe (labels) identificadas na fase de clusterizacao do projeto. Esse
processo foi executado por meio do comando model.fit(), que realizou o treinamento
do modelo com os dados fornecidos. A metodologia de cada algoritmo de classificacao
¢ detalhada na Tabela 3

3.5 Avaliacdo do desempenho dos modelos

A avaliacao do desempenho dos modelos foi conduzida utilizando métricas
de classificagdo amplamente reconhecidas, como acuracia, precisao, recall, F1-

score, matriz de confusdo e curva ROC. Essas métricas proporcionam uma analise

1 AdaBoost (Adaptive Boosting), SVM (Support Vector Machine), KNN (K-Nearest
Neighbors), MLP (Multi-Layer Perceptron), GaussianNB (Gaussian Naive Bayes).
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Suas Principais Fungoes

Algoritmo

Funcao Principal

Regressao Logis-
tica

Classificacao binaria através de modelagem proba-
bilistica usando funcao logistica

Arvore de Deci-
Sao

Classificacdo baseada em regras hierarquicas
usando medidas de impureza (Gini/Entropia)

Random Forest

Ensemble de arvores de decisao com bootstrap e
selecao aleatoria de features para maior robustez

Gradient Boos-

Ensemble sequencial que corrige erros residuais

ting anteriores usando gradiente da fungao de perda

AdaBoost Combinagao adaptativa de classificadores fracos
com ajuste iterativo de pesos das amostras

SVM Classificacao através de hiperplanos 6timos com
maximizacao de margens e kernel trick

KNN Classificacao baseada na similaridade direta com
os k vizinhos mais proximos

MLP (Redes Modelagem de relagoes nao-lineares complexas atra-

Neurais) vés de multiplas camadas de neurdnios artificiais

Naive Bayes

Classificagao probabilistica baseada no teorema de
Bayes com suposi¢ao de independéncia condicional

Tabela 3 — Resumo dos Algoritmos de Classificacdo em Aprendizado de Maquina e

abrangente do desempenho dos algoritmos, considerando tanto a capacidade de

previsao correta quanto a robustez em relagao a falsos positivos e falsos negativos

(HAND, 2006).

3.5.1 Acurécia

A acuracia é a métrica mais utilizada para avaliar modelos de classificagao
e representa a proporcao de previsoes corretas em relacao ao total de previsoes

realizadas. A férmula da acuracia é definida por:

Numero de previsoes corretas

Acuracia = — —
Ntumero total de previsoes
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3.5.2 Precisdo e Recall

A precisdo mede a proporcao de previsoes positivas que sao de fato corretas,
enquanto o recall avalia a propor¢ao de casos positivos reais que foram identificados

corretamente pelo modelo. As féormulas para precisao e recall sdo, respectivamente:

VP

Precisao = VP L TP’ (3.10)
VP
l=——— 11
Reca VP LN (3.11)

onde VP sao os verdadeiros positivos, FP sao os falsos positivos e FN sao

os falsos negativos.

3.5.3 F1-Score

O Fl-score é a média harmonica entre precisao e recall, sendo uma métrica

util quando ha um desequilibrio entre as classes. A férmula do Fl-score é dada por:

Precisao - Recall
F1- =2. ) 3.12
PeOTe Precisao + Recall ( )

3.5.4 Matriz de Confusao

A matriz de confusdo é uma tabela que compara as previsoes do modelo
com os valores reais, permitindo uma analise detalhada dos erros de classificagao.
Ela é composta por quatro elementos principais: verdadeiros positivos (VP), falsos
positivos (FP), verdadeiros negativos (VN) e falsos negativos (FN). A matriz de
confusao é visualizada utilizando a funcao ConfusionMatrizDisplay da biblioteca

scikit-learn, com cores que facilitam a interpretagao dos resultados.

3.5.5 Curva ROC e AUC

A curva ROC (Receiver Operating Characteristic) é uma representagao
grafica que relaciona a taxa de verdadeiros positivos (TPR) com a taxa de falsos
positivos (FPR) para diversos limiares de classificagio (FAWCETT, 2006). A area

sob a curva ROC (AUC) é uma métrica que resume o desempenho do modelo
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em um unico valor, onde um AUC igual a 1 indica um modelo perfeito, e um
AUC de 0.5 sugere um modelo com desempenho equivalente a uma classificagao
aleatéria (HANLEY; MCNEIL, 1982). A Curva ROC é construida com base nas
probabilidades preditas pelo modelo, e a AUC é calculada por:

1
AUC = / TPR(FPR) dFPR. (3.13)
0

3.5.6 Curva de Aprendizado

A curva de aprendizado é uma ferramenta ttil para diagnosticar problemas
de overfitting ou underfitting. Ela mostra a evolugao da acuracia no conjunto de
treinamento e no conjunto de validagao em fun¢ao do tamanho do conjunto de
treinamento. A curva de aprendizado é gerada utilizando a fungao learning curve
da biblioteca scikit-learn, que divide o conjunto de dados em diferentes tamanhos e

calcula a acurdcia média para cada tamanho.

A Curva ROC e AUC, bem como a Curva de Aprendizado, foram aplicados

exclusivamente aos algoritmos de Redes Neurais Artificiais (RNA) e Naive Bayes.

3.6 Andlises Posteriores a Selecao do Modelo

Apoés a selecao do modelo, foram conduzidas andlises complementares para
avaliar o desempenho e a importancia das variaveis, além de compreender a dis-
tribuicdo dos dados e a relacdo entre as features e o target. Essas andlises sao
fundamentais para validar a robustez do modelo, identificar as variaveis mais rele-
vantes e garantir que o modelo generalize adequadamente para novos dados. As
etapas realizadas incluiram a visualizacao da distribuicao das features, o célculo da
importancia das variaveis, a analise de correlagao e a selecao de features com base

no desempenho.

3.6.1 Distribuicao das Features por Classe

Para compreender como as features se distribuem em relagao as classes,

foram gerados gréficos de densidade (KDE - Kernel Density Estimation) para cada
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feature, separando os dados por classe. A densidade de probabilidade é calculada

pela funcao:

f(z) = nlh ;K(x;x) (3.14)

)

onde K é a funcgao kernel (Gaussiana, por padrao), z; sdo os pontos de
dados, n é o nimero de pontos e h é a largura de banda. Essa andalise permite
verificar se as features apresentam distribuigoes distintas para cada classe, o que

pode indicar sua capacidade de discriminar entre as diferentes categorias.

3.6.2 Importancia das Variaveis

A importancia das variaveis foi avaliada utilizando trés métodos comple-

mentares, cada um com uma abordagem especifica:

1. Diferenca das Médias: Para cada feature, foi calculada a diferenca

absoluta entre as médias das classes:
Diferenga das Médias = |1 — pol (3.15)

onde p; e po sdo as médias das features para as classes 1 e 0, respectivamente.
Essa métrica é tutil para identificar features cujos valores médios diferem signi-
ficativamente entre as classes, sugerindo que elas podem ser relevantes para a

classificagao.

2. Importancia por Permutacao: A importancia por permutacao foi cal-
culada utilizando a fun¢ao permutation_importance da biblioteca scikit-learn
(PEDREGOSA et al., 2011). Essa técnica mede a queda no desempenho do modelo
quando os valores de uma feature sdo permutados, indicando sua relevancia para a
classificacao:

Importancia por Permutacao = — Z (Acurécia Original — Acurdcia com Permutacao) .

i=1

(3.16)

Esse método é robusto, pois avalia a contribuicao de cada feature diretamente no
desempenho do modelo, sendo menos sensivel a relagoes nao lineares ou interagoes

entre as features.
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3. Correlagao com o Target: A correlagao entre cada feature e o target
foi calculada utilizando o método de Pearson:
Cov(X,y)

Ox0y

Correlacao = (3.17)

onde Cov(X,y) é a covariancia entre a feature e o target, e ox e 0, sdo os desvios
padrao de X e y, respectivamente. A correlagao mede a relagao linear entre as fea-
tures e o target, sendo 1til para identificar features que variam de forma consistente

com a variavel dependente.

3.6.3 Selecao de Features com Base no Desempenho

A selecao de features é uma etapa crucial no desenvolvimento de modelos de
machine learning, podendo ser realizada tanto no pré-processamento quanto apods a
modelagem, dependendo do objetivo. No pré-processamento, a selegdo de features
é feita para reduzir a dimensionalidade dos dados, eliminar features irrelevantes ou

redundantes, e melhorar a eficiéncia computacional.

A selecao de features também pode ser realizada apés a modelagem, com
o objetivo de avaliar a importancia das features no contexto do modelo treinado.
Métodos como a importancia por permutacao ou analise de coeficientes (em modelos
lineares) permitem entender como o modelo utiliza as features para fazer previsoes.
Essa abordagem ¢ particularmente 1til para validar a sele¢ao inicial de features e
identificar aquelas que, apesar de parecerem importantes no pré-processamento,
nao contribuem significativamente para o modelo final. Além disso, a analise pos-
modelagem pode revelar interagoes entre features que nao sao capturadas durante

0 pré-processamento.

Para selecionar as features mais relevantes, foi utilizada a técnica SelectKBest
da biblioteca scikit-learn, que seleciona as k features com maior pontuagao es-
tatistica. A pontuacao foi calculada utilizando o teste F de ANOVA:

Variancia entre Grupos

F (3.18)

Variancia dentro dos Grupos

O teste F de ANOVA avalia a capacidade de uma feature em discriminar entre

as classes, comparando a variancia entre as médias das classes com a variancia dentro
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de cada classe. Features com valores de F' mais altos indicam maior capacidade de
separar as classes e, portanto, sao selecionadas para compor o conjunto final de
features (PEDREGOSA et al., 2011).

3.7 Ferramentas e Configuracdo do Ambiente

Os graficos e imagens apresentados neste trabalho foram gerados utilizando

as bibliotecas matplotlib e seaborn em Python.

Os experimentos foram realizados em um notebook ACER Nitro 5 AN515-
57-520Y, equipado com um processador Intel Core i5-11400H (112 geragao), com 6
ntucleos, 12 threads, frequéncia base de 2.7 GHz e turbo de até 4.5 GHz. O sistema
conta com 16 GB de memoria RAM DDR4, operando a 3200 MHz, e uma placa de
video NVIDIA GeForce GTX 3050, com 4 GB de memoria dedicada GDDR6. O
armazenamento é feito em um SSD de 512 GB NVMe PCle, e o sistema operacional
utilizado é o Windows 11 Home, 64 bits. O ambiente de desenvolvimento consistiu
no Visual Studio Code (VSCode) com Python 3.13.1, permitindo a execugao
eficiente dos modelos e a geracao de visualizagoes de alta qualidade para analise

dos resultados.
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4 RESULTADOS E DISCUSSAO

4.1 Analise de cluster

4.1.1 Determinacio do Ntumero de Clusters Otimo

4.1.1.1 Método do cotovelo (Elbow)

A seguir, s@o apresentados os resultados da inércia obtidos durante a aplica-

¢do do algoritmo K-Means para diferentes ntimeros de clusters, conforme a tabela
4.

Tabela 4 — Resultados da inércia para diferentes nimeros de clusters no método
do cotovelo.

Numero de Clusters Inércia
957,0

768,91
672,30
644,97
535,12
497,83
463,48
409,06
380,09
360,52
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Esses valores mostram a diminuicao da inércia conforme o niimero de clusters
aumenta, o que ¢é esperado, uma vez que a inércia ¢ uma medida que reflete a
dispersao das amostras dentro dos clusters. A inércia tende a diminuir a medida
que mais clusters sao adicionados, mas o método do cotovelo busca identificar o
ponto onde essa diminui¢do comeca a desacelerar, indicando o niimero ideal de

clusters.

A Figura 2 mostra o comportamento da inércia em relagdo ao nimero de
clusters. Pode-se observar que A medida que o nimero de clusters aumenta, a

inércia (ou varincia dentro dos clusters) diminui. Isso acontece porque, com mais
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clusters, os pontos de dados tendem a ficar mais proximos dos seus respectivos

centroides.

Método do Cotovelo

200 +

800 4

700 A

Inércia

600

500 -

400 +

2 4 6 8 10
Nuamero de clusters

Figura 2 — Curva do cotovelo mostrando a inércia em fungdo do ntimero de clusters
para o algoritmo K-Means.

A determinacao do nimero ideal de clusters por meio do método do coto-
velo é frequentemente considerada uma tarefa subjetiva, uma vez que se baseia
em uma interpretacao visual (NAINGGOLAN et al., 2019). A auséncia de uma
métrica objetiva para identificar com precisao o ponto exato do cotovelo limita a

confiabilidade desse método em algumas situages.

Embora o método do cotovelo seja 1til quando o ponto de inflexao ¢é evidente
no grafico, sua aplicacdo em casos onde a curva é menos pronunciada ou apresenta
multiplos "cotovelos'pode gerar ambiguidade na escolha do ntimero de clusters. A
figura 2, por exemplo, ilustra uma situacao em que a identificagao do ponto ideal

torna-se desafiadora, demandando o emprego de outras técnicas complementares.

4.1.1.2 Método da silhueta (Silhouette Score)

O maior valor do Indice de Silhueta para k = 2, com um score de 0,2081,

indicando que a melhor estrutura de agrupamento, entre os valores testados (de
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2 a 10), é alcangada com dois clusters (Tabela 5). Para k = 4, hd uma queda
acentuada no indice (0,1016), sugerindo que a divisdo dos dados em quatro clusters
resulta em agrupamentos de qualidade inferior, possivelmente devido a sobreposicao
significativa entre os clusters ou a falta de coesao interna. Entre k =5 e k = 10,
o Indice de Silhueta oscila, com valores variando entre 0,1189 e 0,1654, sem se
aproximar do pico observado em k = 2. O aumento discreto nos valores de k = 9
(0,1654) e k =10 (0,1636) pode sugerir alguma estrutura adicional, mas a divisao

em dois clusters continua sendo a mais indicada, com melhores resultados.

Tabela 5 — Indice de Silhouette Score para diferentes valores de k.

Numero de Clusters (k) Silhouette Score
0.2081
0.1978
0.1016
0.1451
0.1234
0.1189
0.1390
0.1654
0.1636
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O Indice de Silhueta avalia a proximidade de um objeto com seu préprio
cluster em comparagao com outros clusters. Valores préximos de +1 indicam que
0s objetos estao bem agrupados, valores perto de 0 sugerem que estao proximos
da fronteira entre clusters, e valores préximos de -1 indicam que o objeto pode ter

sido atribuido ao cluster errado.

No seu caso, o valor de 0,2081 para k = 2 indica que, embora haja alguma
sobreposi¢ao entre os clusters (ja que nao estd proximo de 1), a divisdo em dois
grupos ainda representa melhor a estrutura dos dados dentro das opgoes testadas.
A queda para 0,1016 em k = 4 sugere um agrupamento de baixa qualidade, com
significativa sobreposicao entre os clusters. Os valores variando entre 0,1189 e 0,1654
para k =5 a k = 10 indicam agrupamentos intermediarios, mas consistentemente

inferiores a divisao em dois clusters.

Em conclusao, a anélise das tabelas e figuras apresenta uma forte evidéncia

de que a melhor escolha para o nimero de clusters é k£ = 2. O Indice de Silhueta
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atinge seu valor maximo nesse ponto, indicando a melhor combinacao de coesao
interna e separacao entre os clusters. Embora haja pequenas flutuagoes nos valores

para k > 2, nenhum valor supera o resultado obtido para k = 2.

indice de Silhueta para diferentes valores de k

0.20 7

0.18

0.16

0.14

indice de silhueta

0.12 A

0.10 A

2 3 4 5 6 7 8 9 10
Numero de clusters

Figura 3 — Gréfico do Indice de Silhouette Score para diferentes niimeros de clusters

(K)-

4.1.1.3 Indice Calinski-Harabasz

Os resultados apontam que o nimero ideal de clusters, segundo o indice de
Calinski-Harabasz, é k = 2 (Tabela 6). Isso indica que os dados se organizam de
maneira mais eficiente em dois grupos bem definidos. O valor elevado do indice
para k = 2 (20,79) reflete uma boa separagao entre os clusters, demonstrada por
uma alta soma dos quadrados entre grupos (BGSS), e uma forte coesao dentro de

cada cluster, evidenciada por uma baixa soma dos quadrados dentro dos grupos
(WGSS).

Para valores maiores de k, como k = 3 ou k = 4, houve uma reducao
nos valores do indice, indicando que a introducao de mais clusters nao melhora a
qualidade do agrupamento (Figura4). Na verdade, isso pode levar a uma diminuigao

na separagao entre os clusters ou a uma piora na coesao interna. Esses resultados
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Tabela 6 — Indice de Calinski-Harabasz para diferentes valores de k.

Numero de Clusters (k) Calinski-Harabasz Score
20.7926
17.7861
13.3850
16.1621
14.9422
14.1977
15.1174
14.7990
14.1549
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sugerem que forgar o agrupamento em mais clusters do que o necessario gera divisoes
artificiais nos dados ou clusters com sobreposicao significativa, comprometendo a

qualidade do modelo.

20

15 4

10 1

indice de Calinski-Harabasz

1 2 3 4 5 6 7 8 9 10
Numero de Clusters (k)

Figura 4 — Indice Calinski-Harabasz para diferentes niimeros de clusters (k) (1 a
10).

A anélise das métricas de avaliacao de clustering indica uma forte concor-
dancia em torno de k = 2. Tanto o indice de Calinski-Harabasz quanto o Silhouette

Score apontam para esse nimero como o ideal para a divisao dos dados. O Calinski-
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Harabasz atinge seu valor maximo em k£ = 2, indicando uma boa separagao entre
os clusters e alta coesdo interna. O Silhouette Score também é mais alto para k = 2
(0,208), sugerindo que os pontos estao bem agrupados dentro de seus respectivos
clusters e que ha uma distingao clara entre os grupos. Embora o valor de 0,208 nao
seja excepcionalmente alto, ele ainda é o melhor entre os valores analisados e esta

alinhado com o resultado do Calinski-Harabasz.

Por outro lado, para valores de k > 2, enquanto o indice de Calinski-Harabasz
mostra uma queda consistente, o Silhouette Score apresenta algumas flutuagoes,
com um pequeno aumento para k = 9. No entanto, esses valores permanecem
abaixo do score obtido para k = 2. Essa pequena discrepancia pode ocorrer porque
as duas métricas avaliam aspectos diferentes do agrupamento. O Calinski-Harabasz
se concentra na razao entre a varidncia entre e dentro dos clusters (CALINSKI;
HARABASZ, 1974), enquanto o Silhouette Score mede a similaridade de um ponto
com seu proprio cluster em comparagao com o cluster mais proximo (ROUSSEEUW,
1987). Em conjunto, a forte concordéncia em torno de k = 2 oferece uma evidéncia
robusta de que os dados sao melhor agrupados em dois clusters, e as flutuagoes
observadas em valores maiores de k sugerem que, embora haja algum ajuste em
termos de clusters adicionais, a estrutura geral dos dados favorece claramente a

divisao em dois grupos.

4.1.2 Agrupamento com K-means

A figura 5 mostra os resultados do algoritmo de agrupamento K-Means,
aplicado com dois clusters a um conjunto de dados quantitativos sobre qualidade e
produtividade dos frutos e resisténcia de genétipos de maracujazeiro ao CABMV.
No grafico, as cores indicam os dois grupos formados, permitindo observar tanto as
distribuicoes individuais das variaveis quanto suas inter-relagoes. Essa visualizacao
facilita a analise de como as caracteristicas avaliadas se organizam nos clusters,
oferecendo percepgoes sobre o desempenho produtivo e a resisténcia dos gendtipos

ao virus, o que é crucial para inferéncias no contexto do melhoramento genético.

A distribuicao das variaveis revela informacoes significativas sobre os geno-
tipos em cada cluster. A drea abaixo da curva de progresso da doenca (AACPDM),

que é fundamental para avaliar a resisténcia, mostra uma clara distin¢do entre os
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clusters. Os gendtipos do grupo resistente, localizados em um cluster, apresentam
valores baixos de AACPDM, o que indica uma progressao mais lenta da doenca ao
longo do tempo. Por outro lado, o cluster com gendtipos mais suscetiveis concentra
valores mais altos de AACPDM, refletindo uma maior severidade da doenca. Essa
separacao é crucial, pois gendtipos mais resistentes sao preferidos em programas de
melhoramento genético, como evidenciado por estudos anteriores sobre resisténcia
a viroses em Passiflora edulis (GONCALVES et al., 2021; VIDAL et al., 2021).

o s o0 1w R R R T T S T T % % @
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Figura 5 — Clusters gerados pelo algoritmo K-Means.
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Além da resisténcia, as varidveis produtivas, como nimero de frutos (NF),
producao total (PT), peso do fruto (PF) e rendimento de polpa (RP), também
exibem padroes de distribuicao que favorecem os gendtipos resistentes. No cluster
resistente, essas variaveis apresentam valores consistentemente mais altos, o que
sugere que genotipos com menor severidade da doenca foram agrupados com os
genotipos de maior capacidade produtiva. A producao total, por exemplo, mostra
uma correlagdo positiva com o nimero de frutos, indicando que o aumento da
resisténcia nao s6 reduz os danos causados pelo CABMV, mas também melhora o
potencial produtivo. Esses resultados corroboram achados de estudos anteriores
que indicam que a resisténcia a patogenos em maracujazeiros esta frequentemente
associada a uma maior produtividade e melhor qualidade dos frutos (GOMES et
al., 2022).

A relagao entre as varidveis também revela padroes significativos. O peso
do fruto (PF) esta fortemente associado ao comprimento (Comp) e ao didmetro
do fruto (Diam), com gendtipos que apresentam frutos maiores concentrados
no cluster mais resistente. Essa associacao indica que o tamanho do fruto, uma
caracteristica frequentemente valorizada no mercado, pode ser influenciado pela
resisténcia ao CABMV. Além disso, o rendimento de polpa (RP), uma varidvel
de grande importancia econdémica, é superior no grupo resistente, reforcando a
conexao entre resisténcia e caracteristicas de qualidade. Por outro lado, variaveis
como o teor de sélidos soluveis totais (BRIX) apresentam maior sobreposi¢ao entre
os clusters, sugerindo que, embora essas caracteristicas sejam importantes para o
mercado consumidor, elas podem nao estar diretamente relacionadas a resisténcia
ou a produtividade. Isso pode ser influenciado por fatores genéticos especificos ou

condi¢oes ambientais, como observado por Gomes et al. 2022.

A distribuicao das variaveis também revela padroes de variabilidade interna
dentro dos clusters. A espessura da casca (EC), que pode impactar a durabilidade
e o transporte dos frutos, apresenta uma maior variabilidade entre os genotipos do
cluster resistente. Essa variacao pode ser aproveitada no programa de melhoramento,
permitindo a selecao de genoétipos que atendam tanto as exigéncias de resisténcia
quanto as preferéncias do mercado consumidor. Da mesma forma, o indice de

formato (ind_ form), que indica o quao arredondado é o fruto, mostra uma ampla
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distribuicao em ambos os clusters, sem uma distin¢ao clara entre eles. Isso destaca
a complexidade de caracteristicas morfologicas como o formato do fruto, que podem

ser influenciadas por uma combinacao de fatores genéticos e ambientais.

A andlise das relagbes entre as variaveis destaca o papel crucial da resisténcia
ao CABMYV na determinacao do desempenho produtivo. Gendtipos mais resistentes
nao s6 apresentam menor severidade da doencga, mas também se destacam em termos
de desempenho produtivo e qualidade comercial. Esse padrao é consistente com
os observados de Gomes et al. 2022, que ressaltaram a importancia da resisténcia
em programas de melhoramento de maracujazeiros como um fator integrador entre
produtividade e viabilidade. No entanto, algumas variaveis apresentam interagoes
mais complexas. O teor de sélidos soluveis totais, por exemplo, é uma caracteristica
influenciada tanto por fatores genéticos quanto ambientais, como evidenciado por
Chavarria-Perez et al. 2020, podendo exibir variabilidade significativa até mesmo

entre gendtipos altamente resistentes.

4.1.3 Avaliacao da Estabilidade dos Clusters
4.1.3.0.1 TIndice de Rand Ajustado (ARI)

O Indice de Rand Ajustado (ARI) foi utilizado para avaliar a consisténcia
dos clusters formados. O valor médio obtido para o ARI foi de 0,42 + 0,30 para
dois clusters. O valor médio de 0,42 sugere uma moderada consisténcia entre os
clusters formados em diferentes execugoes. Isso indica que, embora haja uma certa
concordancia entre os agrupamentos, eles nao sdo totalmente idénticos. A presenca
de um desvio padrao de 0,30 reforga essa interpretacao, mostrando que hé uma

variacao significativa nos resultados entre as execugoes.

A moderada consisténcia observada pode ser atribuida a varios fatores como
sensibilidade do K-means a inicializacao, onde o algoritmo K-means ¢ conhecido
por ser sensivel a escolha inicial dos centrdides, o que pode levar a resultados
diferentes em execugoes distintas (KAUFMAN; ROUSSEEUW, 2009); estrutura
dos dados, ou seja, se os dados nao possuem uma estrutura clara de clusters, o
algoritmo pode gerar agrupamentos inconsistentes; e nimero de clusters, em que o

nimero de clusters escolhido pode nao ser o ideal, levando a uma sobreposi¢ao ou
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ma definicao dos grupos. Todavia, os resultados para o niimero ideal de clusters
mostraram que dois é o mais adequado de clusters entre 2 e 10 avaliados. Além
disso, a avaliagao visual dos clusters formados evidencia na pratica a divisdo bem

clara dos genotipos resistentes ao CABMV e com caracteristicas produtivas ideais.

4.2 Avaliacao de algoritmos de classificacao
4.2.1 Ajuste dos hiperparametros usando GridSearchCV

A Tabela 7 apresenta os melhores hiperparametros encontrados para cada
modelo, destacando as configuragbes que maximizaram o desempenho de cada

algoritmo.

4.2.1.1 Regressao Logistica

A Regressao Logistica, um dos métodos mais tradicionais para problemas
de classificacdo binaria, foi configurada com os hiperparametros 6timos C=1.0,
penalty=’12’ e solver=’1lbfgs’, conforme selecionados pelo GridSearchCV e
apresentados na Tabela 7. O parametro C=1.0, que controla a intensidade da
regularizacao, desempenha um papel fundamental no equilibrio entre a capacidade
do modelo de se ajustar aos dados de treinamento e a necessidade de evitar
overfitting. Valores menores de C aumentam a regularizacao, o que pode ser benéfico
em conjuntos de dados com alto risco de overfitting, enquanto valores maiores
permitem um ajuste mais flexivel aos dados (PEDREGOSA et al., 2011). Neste
estudo, C=1.0 demonstrou ser o valor ideal para manter um bom desempenho sem

comprometer a generalizacao do modelo, conforme validado pelo GridSearchCV.

A escolha da penalidade 12, também conhecida como regularizagao Ridge,
¢é responsavel por assegurar a estabilidade do modelo. Essa penalidade adiciona
uma restricao proporcional ao quadrado dos coeficientes do modelo ao custo de
otimizacao, resultando em coeficientes menores e mais distribuidos. Isso nao apenas
ajuda a evitar overfitting, mas também melhora a generalizacdo do modelo, especi-
almente em conjuntos de dados onde a multicolinearidade (alta correlagao entre
varidveis preditoras) pode ser um problema (HASTIE; TIBSHIRANT; FRIEDMAN,
2009). O GridSearchCV confirmou que a penalidade 12 é a mais adequada para
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Tabela 7 — Melhores Pardmetros de Cada Algoritmo. AdaBoost (Adaptive Boosting);
SVM (Support Vector Machine); KNNK (K-Nearest Neighbors); RNA
MLP (Redes Neurais Artificiais - Multilayer Perceptron); GaussianNB
(Gaussian Naive Bayes).

Algoritmo Melhores Parametros

Regressao Logistica {’C’: 1.0, 'penalty’: ’12’; ’solver’: "1bfgs’}
{’criterion’: 'entropy’, 'max_depth’: None,

Arvore de Decisao 'min__samples_leaf’: 1, 'min_samples_ split’: 2,

'splitter’: "best’}

{’bootstrap’: True, 'max_ depth’: None,
Random Forest 'min_ samples_leaf’: 1, 'min_ samples split’: 2,

'n__estimators’: 200}

{learning_ rate’: 0.05, 'max_depth’: 3,
Gradient Boosting 'min_ samples_ leaf’: 4, 'min_ samples_ split™: 2,
'n__estimators’ 200}

{’algorithm’: '’SAMME’, ’learning_ rate’: 0.5,

AdaBoost 'n__estimators’ 50}
{’C’: 1, 'gamma’: ’scale’,
SVM ’kernel’: 'sigmoid’}
KNN ;{ m.etrl(i: 7eu§:hdea7n , 'n_ neighbors’: 5,
weights’: "uniform’}
{’activation’: "tanh’, ’alpha’: 0.0001,
RNA (MLP) ’batch_sme . 3,2,, hldden_,layer_smes : (50,),
learning_ rate’: 'constant’,
‘learning_ rate_init’: 0.1, ’solver’: ’adam’}
Naive Bayes (GaussianNB) {’var__smoothing’: 1e-09}

o conjunto de dados em questao, garantindo um equilibrio entre viés e variancia

(JAMES et al., 2013).

Por fim, o solver 1bfgs (Limited-memory Broyden—Fletcher—Goldfarb—Shanno)
traz eficiéncia em problemas de classificagao com conjuntos de dados de tamanho
moderado, o que ¢ importante no presente trabalho. Esse algoritmo ¢é particular-
mente adequado para problemas com regularizagdo 12, como no caso deste estudo, e
é conhecido por sua convergéncia rapida e uso eficiente de memoria (PEDREGOSA
et al., 2011).
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4.2.1.2 Arvore de Decisio

Os hiperparametros 6timos selecionados pelo GridSearchCV para o al-
goritmo de Arvore de Decisdo foram: {’criterion’: ’entropy’, ’max_depth’:
None, ’min_samples_leaf’: 1, ’min_samples_split’: 2, ’splitter’: ’best’},
conforme detalhado na Tabela 7. O critério entropy foi escolhido para avaliar a
qualidade das divisdoes na arvore, sendo uma métrica que mede a impureza dos
no6s com base na distribuicao das classes. Esse critério é especialmente tutil em
problemas de classificagao onde a separacao entre classes nao é linear, como no
caso da selegao de genétipos resistentes ao CABMV e produtivos (BREIMAN et
al., 1984).

O parametro max_depth foi definido como None, o que permite que a
arvore cresca até que todas as folhas sejam puras ou até que outras condigoes de
parada sejam atingidas. Isso pode resultar em uma arvore mais complexa, mas,
combinado com min_samples_leaf = 1emin_samples_split = 2, garante que a
arvore capture padroes detalhados nos dados sem restrigdes excessivas. O splitter
definido como best assegura que, em cada divisao, o algoritmo escolha a melhor
caracteristica para maximizar a pureza dos nds resultantes (PEDREGOSA et al.,
2011).

Essa configuracdo de hiperpardmetros resultou em um modelo de Arvore
de Decisao altamente adaptavel, capaz de capturar relacbes complexas entre as
variaveis preditoras e a resisténcia ao CABMV. No entanto, ¢ fundamental mo-
nitorar o risco de overfitting, especialmente em conjuntos de dados menores, o
que ocorre nesse caso, onde a arvore pode se ajustar excessivamente aos dados
de treinamento. A combinacao desses parametros reflete um equilibrio entre a
capacidade de modelagem e a generalizacao, essencial para aplicagdes praticas em

melhoramento genético necessarias no presente estudo (GONGALVES et al., 2021).

4.2.1.3 Random Forest

Os hiperparametros 6timos selecionados pelo GridSearchCV para o al-
goritmo de Random Forest foram: {’bootstrap’: True, ’max_depth’: None,
'min_samples_leaf’: 1, ’min_samples_split’: 2, ’n_estimators’: 200}, con-

forme apresentado na Tabela 7. O pardmetro n_estimators = 200 indica que o
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modelo foi configurado com 200 arvores no ensemble, o que geralmente melhora
a precisao e a robustez do modelo, reduzindo a variancia e o risco de overfitting
(BREIMAN, 2001b). A técnica de bootstrap = True garante que cada arvore seja
treinada em um subconjunto aleatorio dos dados, aumentando a diversidade do

ensemble e, consequentemente, sua capacidade de generalizagao.

O parametro max_depth = None permite que as arvores individuais crescam
até que todas as folhas sejam puras ou até que outras condi¢oes de parada sejam
atingidas. Isso, combinado com min_samples_leaf = 1 e min_samples_split
= 2, resulta em arvores profundas e complexas, capazes de capturar padroes
detalhados nos dados. No entanto, a natureza do Random Forest, que combina
miultiplas arvores, ajuda a reduzir o risco de overfitting que poderia surgir com
arvores individuais muito complexas (PEDREGOSA et al., 2011). Essa configuragao
de hiperparametros resultou em um modelo de Random Forest altamente eficaz, com
alta acurdcia e capacidade de generalizacao, conforme evidenciado pelos resultados

apresentados na Tabela 7.

4.2.1.4 Gradient Boosting

Os hiperparametros 6timos selecionados pelo GridSearchCV para o algo-
ritmo de Gradient Boosting foram: {’learning rate’: 0.05, ’max_depth’: 3,
'min_samples_leaf’: 4, ’min_samples_split’: 2, ’n_estimators’: 200}, con-
forme detalhado na Tabela 7. A taxa de aprendizado (learning_rate = 0.05) foi
ajustada para um valor relativamente baixo, o que permite que o modelo aprenda
de forma mais gradual e precisa, reduzindo o risco de sobreajuste enquanto mantém
uma boa capacidade de generalizacgdo (FRIEDMAN, 2001). Esse valor, combinado
com n_estimators = 200, garante que o modelo tenha um ntimero suficiente de
iteracoes para capturar padroes complexos nos dados sem comprometer a eficiéncia

computacional.

O parametro max_depth = 3 limita a profundidade das arvores individuais,
criando modelos mais simples e interpretaveis, enquanto min_samples_leaf = 4 e
min_samples_split = 2 controlam o crescimento das arvores, evitando divisoes
excessivas que poderiam levar a folhas com poucas amostras. Essa configuragao

equilibra a complexidade do modelo com a necessidade de evitar overfitting, especial-
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mente em conjuntos de dados com caracteristicas multivariadas, como os utilizados
neste estudo (PEDREGOSA et al., 2011). A escolha desses hiperparametros reflete
uma estratégia cuidadosa para otimizar o desempenho do Gradient Boosting em
tarefas de classificacdo. Além disso, a combinacao de uma taxa de aprendizado
moderada com um nimero elevado de estimadores permite que o modelo refine
suas previsoes de forma iterativa, resultando em uma performance superior em

compara¢ao com métodos mais simples.

4.2.1.5 AdaBoost (Adaptive Boosting)

Os hiperpardametros 6timos selecionados pelo GridSearchCV para o al-
goritmo de AdaBoost foram: {’algorithm’: ’SAMME’, ’learning rate’: 0.5,
'n_estimators’: 50}, conforme apresentado na Tabela 7. O uso do algoritmo
SAMME (Stagewise Additive Modeling using a Multi-class Exponential loss function) é
especialmente adequado para problemas de classificagao multiclasse, como a sele¢ao
de gendtipos resistentes ao CABMV e produtivos, pois permite que o modelo
ajuste iterativamente os pesos das amostras mal classificadas, priorizando aquelas
que sao mais dificeis de prever (FREUND; SCHAPIRE, 1997). Essa abordagem
iterativa é reforcada pelo learning rate = 0.5, que controla a contribuicao de
cada classificador fraco ao modelo final. Um valor moderado como 0.5 garante
que o modelo aprenda de forma eficiente, sem ser excessivamente conservador ou

agressivo em suas atualizagoes.

O ntmero de estimadores (n_estimators = 50) foi ajustado para um valor
relativamente baixo, o que sugere que o AdaBoost conseguiu alcangar um bom
desempenho com um nimero limitado de iteragoes. Isso pode ser atribuido a eficacia
do SAMME em combinar classificadores fracos de forma a maximizar a precisao global
do modelo. A interacdo entre o learning rate e o n_estimators é crucial: um
learning rate mais alto permite que cada classificador contribua de forma mais
significativa, reduzindo a necessidade de um grande ntimero de estimadores para

alcangar a convergéncia (ZHU et al., 2009).

Essa configuracao de hiperparametros resultou em um modelo de AdaBoost
que equilibra eficiéncia computacional e capacidade de generalizacao. O uso de

um learning_rate moderado e um numero reduzido de estimadores indica que
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o modelo é capaz de capturar padroes importantes nos dados sem se tornar

excessivamente complexo.

4.2.1.6 MaAquina de Vetores de Suporte (SVM)

Os hiperparametros 6timos selecionados pelo GridSearchCV para o algo-
ritmo de Support Vector Machine (SVM) foram: {°C’: 1, ’gamma’: ’scale’,
’kernel’: ’sigmoid’}, conforme detalhado na Tabela 7. O parametro C = 1 de-
fine um equilibrio entre a maximizacao da margem de separacao e a minimizagao
do erro de classificacao. Um valor intermediario como 1 sugere que o modelo nao
é excessivamente restritivo, permitindo uma margem de separacao flexivel que se
adapta bem a dados com ruidos ou sobreposicao entre classes (CORTES; VAPNIK,
1995).

O kernel sigmoid foi escolhido para mapear os dados para um espago de
maior dimensionalidade, onde a separagao entre classes pode ser mais clara. Esse
kernel é particularmente 1til quando a relacao entre as variaveis preditoras e a
variavel alvo ndo é linear, mas ainda pode ser capturada por uma funcao de ativagao
sigmoide. A escolha de gamma = ’scale’ garante que o parametro de escala do
kernel seja ajustado automaticamente com base na variancia dos dados, o que ajuda
a evitar problemas de overfitting ou underfitting (PEDREGOSA et al., 2011).

A combinagao desses hiperparametros resulta em um modelo de SVM que é
a0 mesmo tempo robusto e eficiente. O kernel sigmoide, aliado a um valor moderado
de C, permite que o modelo capture relacoes complexas entre as variaveis preditoras
e os gendtipos resistentes ao CABMV e produtivos, enquanto o ajuste automéatico

de gamma garante que o modelo generalize bem para novos dados.

4.2.1.7 K-Vizinhos Mais Proximos (KNN)

Os hiperparametros 6timos selecionados pelo GridSearchCV para o algo-
ritmo de K-Nearest Neighbors (KNN) foram: {’metric’: ’euclidean’, ’n_-
neighbors’: 5, ’weights’: ’uniform’}, conforme apresentado na Tabela 7. A
métrica euclidean calcula a distancia entre os pontos de dados, sendo uma das
medidas mais comuns e eficazes para problemas de classificagdo (COVER; HART,
1967).
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O pardmetro n_neighbors = 5 indica que o modelo considera os cinco
vizinhos mais préximos para realizar a classificacdo. Geralmente esse valor é es-
colhido para um equilibrio entre a sensibilidade a ruidos (que pode ocorrer com
valores menores de n_neighbors) e a perda de detalhes locais (que pode ocorrer
com valores maiores). Além disso, a configuracdo weights = ’uniform’ atribui o
mesmo peso a todos os vizinhos, o que simplifica o processo de classificagao e evita
que pontos muito préximos, mas potencialmente ruidosos, tenham uma influéncia
desproporcional no resultado (ZHANG, 2016a).

A combinacao desses hiperparametros resulta em um modelo de KNN
que é simples, mas eficaz. A métrica euclidiana garante que as distancias sejam
calculadas de forma consistente, enquanto a escolha de n_neighbors = 5eweights

= ’uniform’ assegura que o modelo seja robusto a variagoes locais nos dados.

4.2.1.8 Redes Neurais Artificiais (RNA - Multilayer Perceptron)

Os hiperparametros 6timos selecionados pelo GridSearchCV para o al-
goritmo de Redes Neurais Artificiais (MLP) foram: {’activation’: ’tanh’,
’alpha’: 0.0001, ’batch_size’: 32, ’hidden_layer_sizes’: (50,), ’learning -
rate’: ’constant’, ’learning rate_init’: 0.1, ’solver’: ’adam’}, con-
forme detalhado na Tabela 7. A fungdo de ativagdo tanh (tangente hiperbdlica) foi
introduz uma nao linearidade ao modelo, permitindo que a rede capture relagoes
complexas entre as variaveis preditoras. Essa func¢ao é particularmente eficaz em
problemas onde os dados apresentam padrdes nao lineares, pois mapeia as entradas
para um intervalo entre -1 e 1, o que ajuda a evitar problemas de saturagao que

podem ocorrer com outras fungoes de ativagao, como a sigmoide (HAYKIN, 1999).

O pardmetro alpha = 0.0001 controla a regularizacao L2, adicionando
uma penalidade aos pesos da rede para evitar overfitting. Um valor tao baixo
indica que a regularizacao é suave, permitindo que o modelo mantenha uma alta
capacidade de aprendizado sem se tornar excessivamente complexo. Essa escolha é
especialmente importante em redes neurais, onde a flexibilidade do modelo pode
levar a ajustes excessivos aos dados de treinamento. A combinacao de alpha
com o tamanho da camada oculta hidden_layer_sizes = (50,) resulta em uma

arquitetura balanceada, com uma tnica camada de 50 neurdnios, suficiente para
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capturar padroes relevantes sem aumentar desnecessariamente a complexidade

computacional (PEDREGOSA et al., 2011).

O uso do solver adam (Adaptive Moment Estimation) pode ser considerada
uma escolha estratégica, pois combina as vantagens do método de momentum e do
RMSprop, adaptando a taxa de aprendizado para cada pardmetro da rede. Isso
resulta em uma convergéncia mais rapida e estavel, especialmente em conjuntos de
dados de tamanho moderado. A taxa de aprendizado inicial learning rate_init
= 0.1 é relativamente alta, o que permite que o modelo faga ajustes significativos
nos pesos durante as primeiras iteragoes, enquanto o learning rate = ’constant’
garante que essa taxa permaneca fixa ao longo do treinamento, evitando flutuacoes
que poderiam prejudicar a estabilidade do modelo (KINGMA; BA, 2014).

O tamanho do lote (batch_size = 32) foi ajustado para um valor interme-
didrio, o que equilibra a eficiéncia computacional e a precisao do gradiente. Um
lote menor permite atualizagoes mais frequentes dos pesos, mas pode aumentar a
variancia do gradiente, enquanto um lote maior reduz a variancia, mas pode tornar
o treinamento mais lento. A escolha de 32 é um compromisso que se mostrou eficaz
para o conjunto de dados em questao, permitindo que o modelo generalize bem sem
sacrificar o desempenho computacional (GOODFELLOW; BENGIO; COURVILLE,
2016).

Essa configuragao de hiperparametros resulta em um modelo de MLP que é
a0 mesmo tempo poderoso e eficiente. A combinacao da fungdo de ativacao tanh, a
regularizacao suave com alpha = 0.0001, e o uso do solver adam com uma taxa de
aprendizado constante cria uma rede neural capaz de aprender padrdes complexos
sem se tornar excessivamente sensivel a ruidos ou sobreajuste. Essa abordagem é
particularmente 1til em problemas onde a relagao entre as variaveis preditoras e a
variavel alvo é altamente nao linear, mas ainda requer um modelo que generalize

bem para novos dados.

4.2.1.9 Naive Bayes Gaussian (GaussianNB)

O hiperparametro 6timo selecionado pelo GridSearchCV para o algoritmo
de Naive Bayes Gaussiano foi: {’var_smoothing’: 1e-09}, conforme detalhado

na Tabela 7. O parametro var_smoothing ¢ uma técnica crucial no GaussianNB,
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pois adiciona uma pequena constante as variancias das caracteristicas durante o
calculo das probabilidades condicionais. Isso evita problemas numéricos que podem
surgir quando uma caracteristica tem variancia zero em uma classe, o que tornaria
a probabilidade indefinida. Um valor tao baixo como 1e-09 indica que o modelo

esta priorizando a precisao das estimativas de probabilidade, sem adicionar ruido
excessivo aos dados (MITCHELL, 1997).

A escolha de var_smoothing = 1e-09 reflete um equilibrio delicado entre
a estabilidade numérica e a fidelidade aos dados originais. Valores muito altos de
var_smoothing podem suavizar excessivamente as distribui¢oes de probabilidade,
resultando em um modelo menos sensivel as nuances dos dados. Por outro lado,
valores muito baixos podem levar a instabilidades numéricas, especialmente em
caracteristicas com variancias proximas de zero. O valor selecionado pelo GridSear-
chC'V sugere que o modelo consegue manter uma alta precisao nas estimativas de
probabilidade, sem comprometer a robustez do algoritmo (PEDREGOSA et al.,
2011).

A combinagao desses elementos resulta em um modelo de Naive Bayes
Gaussiano que é ao mesmo tempo simples e eficaz. A suavizacdo de variancia
com var_smoothing = 1e-09 garante que o modelo seja numericamente estavel,
enquanto a suposicao de independéncia condicional permite que ele faca previsoes
rapidas e eficientes. Essa configuracao é especialmente adequada para problemas
de classificagao onde a simplicidade e a velocidade do modelo sao tao importantes

quanto sua precisdo, como em anélise de dados biol6gicos (ZHANG, 2004a).

4.2.2 Desempenho dos algoritmos de classificacao

4.2.2.1 Acurécia, precisao, recall e Fl-score

Os algoritmos de aprendizado de maquina utilizados neste estudo apresen-
taram desempenho variado nas métricas de avaliacao, incluindo acuracia, precisao,

recall e Fl-score. Esses resultados sao apresentados na Figura 6.

O Naive Bayes (GaussianNB) destacou-se como o algoritmo de melhor de-
sempenho, atingindo acuracia, precisao, recall e F1-score perfeitos, todos com valor

1.0. Esses resultados excepcionais podem ser atribuidos a suposi¢ao de independén-
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cia condicional entre as variaveis, que mostrou-se adequada para este conjunto de
dados (ZHANG, 2004b). Além disso, a utilizacao do pardmetro de suavizagao de
variancia (var_smoothing) garantiu a estabilidade numérica do modelo, mesmo em

cendrios com variancias muito pequenas (MURPHY, 2012).

Os algoritmos de Regressio Logistica, Arvore de Decisdo, Random Forest,
Gradient Boosting e Redes Neurais Artificiais (RNA) apresentaram desempenho
semelhante, com acuracia e Fl-scores de 0.94. Essa uniformidade sugere que o
conjunto de dados possui uma estrutura bem definida e caracteristicas adequadas
para classifica¢do, permitindo que modelos diversos atinjam alta precisao (BREI-
MAN, 2001b; FRIEDMAN; HASTIE; TIBSHIRANI, 2001). Modelos baseados em
ensemble, como Random Forest e Gradient Boosting, sao reconhecidos por sua
robustez e capacidade de lidar com dados nao-lineares, enquanto Redes Neurais

Artificiais destacam-se pela flexibilidade em capturar padroes complexos (LECUN;
BENGIO; HINTON, 2015).

O Support Vector Machine (SVM) apresentou resultados competitivos, com
acuracia de 0.94, precisao de 0.93, recall de 1.0 e Fl-score de 0.96. Esses valores
refletem a capacidade do SVM de identificar classes positivas com alta sensibilidade,
mesmo em conjuntos de dados de alta dimensionalidade, devido a sua abordagem
de maximizagao de margens (VAPNIK, 1998). Esse desempenho confirma a eficicia
do SVM em cenarios onde os dados sdo bem separados, mas com algumas variagoes

na precisao.
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Por outro lado, o AdaBoost e o K-Nearest Neighbors (KNN) apresentaram
desempenhos ligeiramente inferiores. O AdaBoost alcangou acuracia de 0.88 e recall
perfeito de 1.0, mas precisou sacrificar a precisao (0.86), resultando em um F1-score
de 0.93. Esse padrao reflete a caracteristica do AdaBoost de priorizar a corre¢ao de
erros em classificacbes anteriores, o que pode levar ao aumento de falsos positivos
em alguns cendrios (FREUND; SCHAPIRE, 1997). J4 o KNN demonstrou acuracia
de 0.89 e Fl-score de 0.88. Apesar de apresentar um desempenho equilibrado entre
precisao e recall, o KNN mostrou-se limitado pela sensibilidade a escolha do ntimero
de vizinhos (k=5) e a métrica de distancia utilizada (ALTMAN, 1992).

A andlise das métricas de avaliacao revelou que, com excecao do AdaBoost
e do KNN, todos os algoritmos alcangaram acuracia elevada, variando entre 0.94
e 1.0. Isso reflete tanto a qualidade do conjunto de dados quanto a eficacia das
técnicas de pré-processamento, como padronizacao e selecdo de variaveis. O Naive
Bayes, com precisao perfeita, destacou-se pela capacidade de minimizar falsos
positivos, enquanto o recall foi perfeito para o Naive Bayes, SVM e AdaBoost,
evidenciando sua eficacia em capturar todos os casos positivos. Por fim, o F1-score
foi consistentemente elevado, com destaque para o Naive Bayes (1.0) e o SVM
(0.96), enquanto o KNN apresentou o menor Fl-score (0.88), refletindo desafios

relacionados a sua sensibilidade e precisao.

Os resultados gerais indicam que o Naive Bayes foi o mais eficiente no
conjunto de dados avaliado, enquanto Random Forest e Gradient Boosting se
mostraram alternativas robustas com excelente equilibrio entre simplicidade e
desempenho. Além disso, um estudo recente teve como objetivo comparar a eficacia
de diferentes algoritmos de aprendizado de maquina na discriminagao de variedades
e linhas de batata com base em dados espectroscépicos de fluorescéncia. Nesse
contexto, o algoritmo Naive Bayes destacou-se ao alcangar uma acuracia média
de 95%, evidenciando sua eficdcia em aplicacoes agricolas. A andlise da matriz de
confusao revelou que todas as amostras da variedade Sante e da linha S 716 foram
corretamente classificadas, ressaltando a capacidade do algoritmo em identificar
caracteristicas distintivas entre as amostras. Esses resultados corroboram a ideia
de que o Naive Bayes é uma ferramenta poderosa para a classificacao de cultivares,

especialmente em cenarios onde a complexidade dos dados pode ser um desafio.



78

A combinacao de sua simplicidade e robustez torna-o uma escolha valiosa para
aplicagbes praticas na agricultura, onde a precisao na identificacao de variedades
é crucial para o melhoramento genético e a produgao eficiente. (SLAVOVA et al.,
2022b).

No geral, os resultadosindicam que o Naive Bayes foi o algoritmo mais
eficiente no conjunto avaliado, enquanto Random Forest e Gradient Boosting
apresentaram bom equilibrio entre simplicidade e desempenho. Em um estudo
recente, o Naive Bayes obteve 95% de acuracia na classificacao de variedades de
batata com dados espectroscopicos, destacando-se por identificar corretamente
todas as amostras das variedades analisadas (SLAVOVA et al., 2022b).

4.2.2.2 Anédlise das Matrizes de Confusao

As matrizes de confusado para os diferentes algoritmos de classificagao sao
apresentadas na Figura 7. Essas matrizes fornecem uma visao detalhada do desem-
penho de cada modelo, permitindo a andlise de verdadeiros positivos (VP), falsos
positivos (FP), verdadeiros negativos (VN) e falsos negativos (FN). A Regressao
Logistica, Arvore de Decisdao, Random Forest, Gradient Boosting, SVM e Redes
Neurais Artificiais (RNA) apresentaram matrizes de confusao idénticas, com 4
verdadeiros negativos, 1 falso positivo, 0 falsos negativos e 13 verdadeiros positivos.
Esse padrao indica que esses algoritmos foram altamente eficazes na classificagao
dos genotipos resistentes ao CABMV e produtivos, com uma taxa de acerto de 94%
e uma taxa de falsos positivos de aproximadamente 6%. A consisténcia desses resul-
tados reforca a robustez desses métodos para a tarefa em questao, especialmente
quando combinados com técnicas de pré-processamento e ajuste de hiperparametros
(PEDREGOSA et al., 2011).
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O algoritmo AdaBoost apresentou uma matriz de confusao com 2 verdadeiros
negativos, 3 falsos positivos, 0 falsos negativos e 13 verdadeiros positivos. Esse
resultado reflete um desempenho ligeiramente inferior em comparacao com os outros
algoritmos, com uma taxa de falsos positivos de 60%. Esse comportamento pode
ser atribuido a natureza iterativa do AdaBoost, que, ao priorizar a correcao de
erros em classificagbes anteriores, pode levar a um ajuste excessivo (overfitting) em
certos cendrios (FREUND; SCHAPIRE, 1997). Apesar disso, a auséncia de falsos
negativos indica que o modelo foi capaz de identificar todos os casos positivos, o
que pode ser crucial em aplicagoes onde a deteccao de todos os gendtipos resistentes
é prioritaria.

O K-Nearest Neighbors (KNN) apresentou uma matriz de confusdo com 3
verdadeiros negativos, 2 falsos positivos, 0 falsos negativos e 13 verdadeiros positivos.
Esse resultado reflete uma taxa de falsos positivos de 40%, o que é superior a
maioria dos outros algoritmos. A sensibilidade do KNN a escolha do ntimero de
vizinhos (k) e & métrica de distancia utilizada pode explicar esse desempenho.
No presente estudo, o valor 6timo de k foi determinado como 5, o que pode nao
ser suficiente para capturar completamente a complexidade dos dados (ZHANG,
2016b). Apesar disso, a auséncia de falsos negativos e a alta taxa de verdadeiros
positivos indicam que o KNN ainda é uma técnica viavel para a classificacao de

gendtipos resistentes.

O algoritmo Naive Bayes (GaussianNB) destacou-se com uma matriz de
confusao perfeita, com 5 verdadeiros negativos, 0 falsos positivos, 0 falsos negativos e
13 verdadeiros positivos. Esse resultado excepcional confirma o desempenho superior
do Naive Bayes em comparac¢ao com os outros algoritmos, alcangando uma taxa de
acerto de 100%. A suposicao de independéncia condicional entre as caracteristicas,
combinada com a aplicagao de suavizagao de varidncia (var_smoothing), mostrou-se
altamente eficaz para o conjunto de dados em questao (MITCHELL, 1997). Esse
desempenho reforca a utilidade do Naive Bayes em problemas de classificacdo onde

as suposigoes do modelo sao validas e os dados seguem uma distribuigao Gaussiana.

Em sintese, a andlise das matrizes de confusao confirma que a maioria dos
algoritmos testados é capaz de classificar eficientemente os genétipos de maracuja-

zeiro resistentes ao CABMYV, com destaque para o Naive Bayes, que apresentou



81

um desempenho perfeito. A escolha do algoritmo ideal deve considerar ndo apenas
as métricas de desempenho, mas também a interpretabilidade do modelo e a ca-
pacidade de generalizacao para novos dados. A analise desses resultados reforca a
importancia da aplicagdo de técnicas de aprendizado de maquina no melhoramento
genético de plantas, oferecendo ferramentas poderosas para a selecdo de gendtipos

com caracteristicas desejaveis (DIJK, 2021).

4.2.2.3 Andlise das Curvas ROC

As curvas ROC (Receiver Operating Characteristic) para o RNA MLP
(Figura 8A) e o GaussianNB (Figura 8B) sao apresentadas na Figura 8. Ambas as
curvas demonstram um desempenho excepcional, com uma éarea sob a curva (AUC)
de 1.00, indicando uma capacidade perfeita de discriminacao entre as classes positiva
(gendtipos resistentes ao CABMV) e negativa (gendtipos suscetiveis). Esse resultado
confirma a eficacia desses algoritmos na tarefa de classificacao, destacando-se como

ferramentas poderosas para o melhoramento genético de plantas.
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Figura 8 — Curvas ROC para o RNA MLP (A) ¢ o GaussianNB (B).

Na Figura 8A, a curva ROC para o RNA MLP mostra uma taxa de
verdadeiros positivos (TPR) de 1.0 e uma taxa de falsos positivos (FPR) de
0.0 no ponto ideal, indicando que o modelo foi capaz de classificar corretamente

todos os casos positivos sem gerar falsos positivos. Esse desempenho reflete a
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capacidade das redes neurais de capturar relagoes complexas e nao lineares nos
dados, especialmente quando combinadas com técnicas de pré-processamento e
ajuste de hiperparametros (HAYKIN, 1999). A arquitetura do MLP, com multiplas
camadas ocultas e funcgoes de ativagao nao lineares, mostrou-se altamente eficaz
para a tarefa em questao, reforcando a utilidade desse método em problemas de

classificacao de alta dimensionalidade.

A curva ROC ilustrada na Figura 8B, referente ao classificador GaussianNB,
exibe um desempenho ideal, com taxa de verdadeiros positivos (TPR) igual a 1.0 e
taxa de falsos positivos (FPR) nula. Tal exceléncia pode ser explicada pela validade
das premissas subjacentes ao modelo, particularmente a independéncia condicional
entre as variaveis preditoras e a adequacao da distribuicdo Gaussiana aos dados
analisados (MITCHELL, 1997). A implementacao de suavizacao de variancia (var_ -
smoothing) desempenhou um papel crucial na estabiliza¢do numérica do modelo,
assegurando sua robustez e confiabilidade. A superioridade do GaussianNB em
relagdo a outros métodos de classificacao sublinha a necessidade de alinhar as
caracteristicas intrinsecas dos dados com as premissas tedricas dos algoritmos,
destacando a relevancia de uma selecao criteriosa de técnicas de aprendizado de

maquina.

Em sintese, as curvas ROC confirmam que tanto o RNA MLP quanto o
GaussianNB sao altamente eficazes na classificacao de gendétipos de maracujazeiro
resistentes ao CABMV. A escolha entre esses algoritmos deve considerar nao apenas
o desempenho, mas também a complexidade do modelo, a interpretabilidade e a
capacidade de generalizacao para novos dados. A andlise desses resultados reforga a
importancia da aplicagdo de técnicas de aprendizado de maquina no melhoramento
genético de plantas, oferecendo ferramentas poderosas para a selecao de genotipos

com caracteristicas desejaveis (DIJK, 2021).

4.2.2.4 Analise das Curvas de Aprendizado

As curvas de aprendizado ilustradas na Figura 9, correspondentes ao modelo
de Rede Neural Artificial Multilayer Perceptron (MLP) (Figura 9A) e ao classifica-
dor GaussianNB (Figura 9B), oferecem uma anélise detalhada do comportamento

dos modelos em relagao ao volume de dados de treinamento. Tais curvas permitem
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diagnosticar potenciais problemas, como sobreajuste (overfitting) ou subajuste
(underfitting), ao avaliar a evolugao da acurdcia em fun¢ao do aumento do conjunto
de treinamento. Em ambos os casos, observa-se uma progressao positiva na pre-
cisao dos modelos a medida que mais dados sao incorporados, evidenciando uma
capacidade consistente de aprendizado e adaptagao as caracteristicas do conjunto

analisado.
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Figura 9 — Curvas de aprendizado para o RNA MLP (A) e o GaussianNB (B).

Na Figura 9A, a curva de aprendizado referente ao modelo de Rede Neural
Artificial Multilayer Perceptron (RNA MLP) demonstra que as métricas de acuracia,
tanto no treinamento quanto na validacao, aproximam-se de 1.0 a medida que o
volume de dados de treinamento aumenta. Esse padrao sugere uma generalizacao
eficiente do modelo, sem indicios claros de sobreajuste (overfitting). A convergéncia
das curvas de treinamento e validagdo evidencia a capacidade do RNA MLP
de identificar padroes intrincados nos dados, mantendo ao mesmo tempo uma
performance consistente em conjuntos nao vistos (HAYKIN, 1999). Esse desempenho
ressalta a adequacao das redes neurais para problemas de classificagao, especialmente

quando associadas a estratégias de regularizacao e otimizacao de hiperparametros.

Por sua vez, na Figura 9B, a curva de aprendizado do classificador Gaus-
sianNB também exibe uma convergéncia entre as acuracias de treinamento e

validacao, ambas alcancando valores proximos a 1.0. Esse resultado destaca a
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robustez do modelo, que, apesar de basear-se em premissas simplificadoras, como
a independéncia condicional entre variaveis, mostrou-se altamente eficaz para o
conjunto de dados analisado (MITCHELL, 1997). A auséncia de sobreajuste ou
subajuste (underfitting) indica que o GaussianNB estd bem calibrado e apresenta
uma capacidade satisfatoria de generalizacao. Além disso, a rapida convergéncia
das curvas sugere que esse modelo demanda uma quantidade menor de dados para

atingir desempenho 6timo, contrastando com abordagens mais complexas, como o

RNA MLP.

Em resumo, as curvas de aprendizado corroboram a eficacia tanto do RNA
MLP quanto do GaussianNB na tarefa de aprendizado a partir dos dados, sem
evidéncias de sobreajuste ou subajuste. A selecao entre esses métodos deve levar
em conta nao apenas a performance alcancada, mas também fatores como a com-
plexidade do modelo, sua interpretabilidade e o volume de dados disponivel. Esses
achados reforcam a relevancia da aplicacdo de técnicas de aprendizado de ma-
quina no contexto do melhoramento genético vegetal, proporcionando ferramentas
robustas para a identificacdo de gendtipos com caracteristicas agronomicamente

vantajosas (DIJK, 2021).

4.2.3 Anaélises po6s selecao do algoritmo 6timo

4.2.3.1 Distribuicao das features por classe

Os graficos de densidade (Kernel Density Estimation - KDE) das diversas
caracteristicas do conjunto de dados estao representados na Figura 10. Esses graficos
possibilitam uma avaliacao detalhada da distribuicao de cada variavel, segmentando
os dados conforme as classes de interesse (gendtipos resistentes e produtivos, e
suscetiveis ao CABMV e nao produtivos). A andlise dessas distribuigoes oferece
informagoes cruciais sobre o potencial discriminativo de cada feature, permitindo
identificar quais atributos contribuem de forma mais significativa para a distingao
entre as classes. Essa abordagem é fundamental para compreender a relevancia das
variaveis no processo de classificacdo e para orientar a selecao de caracteristicas

mais informativas.
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A varidvel AACPDM exibe uma sobreposicao quase completa entre as dis-
tribuicoes das duas classes, com padroes de densidade bastante semelhantes. Esse
comportamento sugere que, isoladamente, a AACPDM possui um poder discrimi-
nativo limitado para distinguir entre os genétipos. Sua utilidade na classificagao
provavelmente depende da combinagao com outras varidveis mais informativas

(GONGALVES et al., 2021).

O Numero de Frutos (NF) e o Peso Total dos Frutos (PT) revelam padroes
distintos entre as classes (Classe 0 e Classe 1). Ambas as caracteristicas apresentam
distribui¢oes bem separadas, com sobreposicao insignificante, indicando um poder
discriminativo individual moderado a alto. Essa separacao sugere que NF e PT
sdo metricamente relevantes para diferenciar genétipos resistentes (Classe 0) e
suscetiveis (Classe 1). Apesar da eficdcia individual, a combinagao dessas variaveis
com outras caracteristicas produtivas pode aprimorar ainda mais a robustez de

modelos de classificacao, especialmente em abordagens multivariadas.

O Comprimento do Fruto (Comp) apresenta distribui¢oes claramente separa-
das, com sobreposicao minima entre as classes, indicando alto poder discriminativo
para diferenciar os grupos. Essa separacao sugere que o Comp é uma caracteris-
tica morfolégica critica na identificagao de genodtipos. Por outro lado, o Diametro
(Diam) exibe uma separagao moderada, com sobreposigao limitada, apontando
para um poder discriminativo individual relevante, porém menos pronunciado
em comparagao ao Comp. Apesar das diferengas na robustez individual, ambas
as variaveis demonstram potencial para contribuir em modelos de classificacao.
Essas caracteristicas podem ser particularmente tteis quando associadas a outras
variaveis relacionadas ao tamanho e formato do fruto, ampliando sua eficacia na
classificagdo (VIDAL et al., 2021; GOMES et al., 2022).

O Indice de Formato do Fruto (Ind_form) apresenta distribuicées com
sobreposicao entre as classes (Classe 0 e Classe 1), indicando um baixo poder
discriminativo individual. As curvas de densidade mostram padroes quase super-
postos na maior parte do intervalo de valores (-4 a 4), com diferengas sutis nas
extremidades. Apesar da limitacao individual, essa variavel pode adquirir relevancia
quando combinada com atributos morfolégicos complementares, como comprimento

ou didmetro do fruto.
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O Peso do Fruto (PF) e o Peso da Polpa por Fruto (PPB) mostram compor-
tamentos distintos: enquanto o PF apresenta diferencas perceptiveis entre as classes,
sugerindo um poder discriminativo moderado, o PPB exibe uma sobreposicao
significativa, indicando uma capacidade limitada de distin¢do. No entanto, ambas
as caracteristicas podem ser uteis quando integradas a outras variaveis relacionadas

ao peso e a qualidade do fruto.

O Rendimento de Polpa (RP) apresenta distribui¢bes com sobreposigao
quase completa entre as classes (Classe 0 e Classe 1), indicando um baixo poder
discriminativo individual. Essa caracteristica, embora pouco ttil isoladamente,
pode contribuir em anélises multivariadas que integram variaveis produtivas (como

Peso Total de Frutos ou Nimero de Frutos), identificando padrées indiretos.

Em contraste, a Espessura da Casca (EC) exibe separacao clara entre as
classes, com sobreposicao minima nas curvas de densidade, revelando um alto
poder discriminativo. Essa distingao sugere que a EC esta diretamente associada
a caracteristicas fisicas dos frutos que influenciam na resisténcia ao CABMYV e
afetam a produtividade, como a capacidade de prote¢ao contra danos mecanicos
ou infeccoes causadas pelo vetor do virus. Por fim, o Teor de Sélidos Soluveis
Totais (BRIX) exibe clara separagao entre as classes (Classe 0 e Classe 1), com

sobreposicao minima nas curvas de densidade, indicando alto poder discriminativo.

Em sintese, a analise das distribui¢oes das variaveis revela que caracteristicas
como Comprimento do Fruto (Comp), Espessura da Casca (EC) e Teor de Sélidos
Soltveis Totais (BRIX) apresentam alto poder discriminativo, com separagio clara
entre as classes e sobreposicao minima. Essas varidveis sao particularmente relevan-
tes para a classificacao de genotipos resistentes e suscetiveis, além de produtivos e

nao produtivos, destacando-se como atributos criticos em modelos preditivos.

Por outro lado, Ntimero de Frutos (NF) e Peso Total dos Frutos (PT) também
exibem poder discriminativo moderado a alto, com distribuigoes bem separadas
e sobreposicao limitada, reforcando sua utilidade na distingao entre classes. Ja
o Diametro do Fruto (Diam) apresenta separagdo moderada, com sobreposi¢ao

parcial, indicando um desempenho individual relevante, porém menos robusto que
Comp, EC e BRIX.
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Em contraste, caracteristicas como AACPDM, Indice de Formato do Fruto
(Ind_ form), Peso da Polpa por Fruto (PPB) e Rendimento de Polpa (RP) demons-
tram baixo poder discriminativo individual, com sobreposicao significativa ou quase
completa entre as classes. No entanto, essas variaveis podem ganhar relevancia

quando combinadas com outras caracteristicas complementares.

Por exemplo, AACPDM e Ind_ form podem ser integradas a atributos mor-
fologicos (como Comp e Diam) para capturar padroes indiretos de resisténcia. PPB
e RP podem ser associadas a varidveis produtivas (como NF e PT) para aprimorar
andlises de qualidade e produtividade. A integragao estratégica dessas variaveis,
aliada a selecao criteriosa das mais informativas, é fundamental para desenvolver
modelos de classificacio robustos, capazes de capturar padroes complexos associados
a resisténcia ao virus e a produtividade. Essa abordagem multivariada maximiza
a precisao das predi¢oes, tornando-se essencial para avangos no melhoramento
genético de plantas (DIJK, 2021).

4.2.3.2 Importancia das variaveis

A avaliacdo da relevancia das variaveis foi realizada através de duas meto-
dologias integradas: analise comparativa das médias entre classes e mensuragao da
importancia por meio de permutacao. Tais estratégias possibilitaram a detecc¢ao dos
atributos mais significativos para a discriminagdo de gendtipos com resisténcia ao
CABMYV e produtivos, conforme demonstrado na Figura 11. A primeira abordagem
baseou-se na comparacao estatistica das médias, enquanto a segunda empregou a
permutacao para quantificar a contribuicao relativa de cada variavel, garantindo

uma analise robusta e multidimensional.
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Figura 11 — Anadlise da importancia das varidveis para a classificacdo de gendtipos. (A) Diferenga entre as médias
das classes para cada variavel, ordenadas em ordem decrescente de importancia. (B) Importancia das
varigveis calculada por permutacdo, ordenadas em ordem decrescente de importancia. (C) Correlagdo de
Spearman entre os postos das varidveis, representada em um heatmap. AACPDM (Area Abaixo da Curva
de Progresso da Doenga), NF (Nimero de Frutos), PT (Peso Total dos Frutos), Comp (Comprimento
Médio do Fruto), Diam (Didmetro do Fruto), Ind_form (Indice de Formato do Fruto), PF (Peso de
Fruto), PPB (Peso da Polpa por Fruto), RP (Rendimento de Polpa), EC (Espessura da Casca) e BRIX
(Teor de Sdlidos Soluveis Totais).
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o Diferenca entre médias: A magnitude das diferencas observadas entre
as médias das classes destacou o peso do fruto (PF) como a varidvel mais
discriminatéria (1.513), seguida pelo didmetro (Diam, 1.405) e pelo peso total
(PT, 1.250). Tais achados indicam que atributos morfométricos e produtivos
apresentam uma correlacdo significativa com a resisténcia ao virus, alinhando-
se com evidéncias documentadas em investigagoes prévias sobre fenotipagem
em Passiflora (SANDHU et al., 2021a).

« Importancia por permutacao: A abordagem baseada em permutagoes
reafirmou a importancia do PF (0.150) e do Diam (0.133), mas atribuiu maior
énfase ao nimero de frutos (NF, 0.122) em relagdo ao método de diferencas
médias. Essa inconsisténcia pode ser explicada pela capacidade do modelo em
capturar interagoes nao-lineares, as quais nao sao explicitamente identificadas
em andlises univariadas (SLAVOVA et al., 2022a).

A alta correlacao de postos de Spearman (p = 0.96) entre as metodologias
empregadas (Figura 11C) demonstra uma consisténcia notavel na identificagao
das caracteristicas consideradas criticas, especialmente para o peso do fruto (PF),
didmetro (Diam) e peso total (PT). Essa convergéncia entre abordagens reforga a
confiabilidade das variaveis selecionadas, estando em sintonia com avangos recentes
em selegao assistida por técnicas de aprendizado de maquina (DIJK, 2021). No
entanto, a divergéncia observada para o nimero de frutos (NF), que ocupou o 4°
posto em um método e o 3° em outro, evidencia a necessidade de integrar multiplas

estratégias analiticas para abranger distintas dimensoes da relevancia das variaveis.

4.2.3.3 Correlagao com o target

A anadlise de correlagao entre as variaveis preditoras e a classe alvo revelou
padrdes distintos conforme apresentado na Se¢ao 12. Observou-se que o indice de
formato do fruto (ind_form) e a area abaixo da curva de progresso da doenga
(AACPDM) apresentaram correlagoes positivas fracas (0,132 e 0,080 respectiva-
mente), enquanto caracteristicas morfométricas como peso do fruto (PF), peso
total (PT) e didmetro (Diam) demonstraram correlagoes negativas moderadas a

fortes (0,680 a -0,566). Esses resultados sugerem que genétipos classificados como
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"Resistente e Produtivo'tendem a apresentar frutos com menores dimensoes fisicas,

padrao consistente com observacoes prévias em estudos de sele¢ao indireta para
resisténcia a viroses (SANDHU et al., 2021b).

ind_form

AACPDM

RP

BRIX

Comp

EC

Variaveis

NF

Diam

PT

PF

e
|:| 0.0130

-0.3361 |

-0.4238 l

-0.4421 \

-0.4967 l

-0.5339 |

-0.5659 |

-0.6 0.4 -0.2 0.0 0.2
Coeficiente de Correlagao

Figura 12 — Heatmap de correlagdo de Spearman entre variaveis preditoras e clas-

ses alvo. Valores positivos (azul) indicam associagdo com a classe
"Resistente e Produtivo", enquanto correlagoes negativas (vermelho)
relacionam-se com "Suscetivel ¢ nio Produtivo'. AACPDM (Area
Abaixo da Curva de Progresso da Doenga), NF (Nimero de Frutos),
PT (Peso Total dos Frutos), Comp (Comprimento Médio do Fruto),
Diam (Diémetro do Fruto), Ind_form (Indice de Formato do Fruto),
PF (Peso de Fruto), PPB (Peso da Polpa por Fruto), RP (Rendimento
de Polpa), EC (Espessura da Casca) e BRIX (Teor de Sélidos Soliveis
Totais).

A forte correlagao negativa do PF (-0,680) com o target indica que aumentos

no peso médio do fruto estao associados a suscetibilidade ao CABMYV e menor

produtividade. Esse fendmeno pode ser explicado pelo compromisso energético entre

alocacao de recursos para defesa fitossanitaria e desenvolvimento de estruturas re-

produtivas, conforme documentado em estudos de trade-off fisiolégico em Passifiora
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spp. (GONGALVES et al., 2021). Contudo, ressalta-se que correlagoes univariadas
nao capturam interacoes sinérgicas entre caracteristicas, limitacdo amplamente
discutida em abordagens de selegao assistida por machine learning (SLAVOVA et
al., 2022b).

A Figura 12C evidencia alta consisténcia (p = 0,96) entre os postos de
importancia das variaveis obtidos por diferentes metodologias, corroborando a
robustez das associagoes identificadas. Nota-se que o teor de sélidos soluveis (BRIX)
apresentou correlagao negativa moderada (-0,336), sugerindo que genétipos resisten-
tes possuem menor concentragao de agicares. Esse achado contraria expectativas
convencionais sobre qualidade comercial, exigindo andlise critica entre objetivos de

melhoramento para resisténcia e preferéncias de mercado (LIAKOS et al., 2018).

Apesar do valor descritivo das correlacoes lineares, destaca-se que métodos
multivariados e andlises de importancia baseadas em permutagao sao necessarios
para capturar relagoes nao-lineares entre caracteristicas (DIJK, 2021). A selecao
exclusiva com base em correlagdes unidimensionais pode negligenciar sinergias entre
atributos morfoagronémicos, conforme demonstrado em estudos comparativos com
ensembles de aprendizado profundo (SANDHU et al., 2021b).

4.2.3.4 Selecao de features com base no desempenho

A andlise univariada por ANOVA F-test (« = 0,05) identificou como
preditores mais relevantes, em ordem decrescente de importancia: Nimero de Fruto,
Peso Total de Frutos, Diametro do Fruto, Peso do Fruto e Espessura da Casca.
Essa hierarquia revela predominancia de caracteristicas morfométricas associadas a
produtividade, padrao consistente com estudos em culturas perenes submetidas a
estresse bidtico (WANG; MOGHIMI; ZHANG, 2023). A exclusao da AACPDM
reforga sua baixa discrimindncia no modelo selecionado. A sele¢ao arbitraria de 5

variaveis, correspondendo a 45% do conjunto original.

A exclusdo da Area Abaixo da Curva de Progresso da Doenca (AACPDM)
durante a selecao de variaveis, apesar de a tinica variavel responséel pela avaliacao de
resisténcia, revela limitagoes inerentes a classificagao exata dos gendétipos resistentes.
Propoe-se a conversao da AACPDM em varidveis bindrias (resistente/suscetivel)

por meio de limiarizacao pela mediana populacional, estratégia que reduziria
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a sensibilidade a flutuagoes experimentais e permitiria adaptacao contextual a

diferentes populagdes (RIBEIRO; AMORIM, 2023).
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5 CONCLUSAO

A andlise de clustering com o algoritmo K-means permitiu identificar dois
grupos principais de gendtipos de maracujazeiro: um associado a resisténcia ao
CABMYV e alta produtividade, e outro vinculado a suscetibilidade ao virus e menor
desempenho agronomico. A convergéncia entre os métodos do cotovelo, silhueta e
Calinski-Harabasz na definicao de k = 2 como ntimero 6timo de clusters reforgou
a consisténcia da segmentacao, apesar da subjetividade inerente ao método do
cotovelo. A estabilidade moderada dos clusters (ARI = 0,42 £ 0,30) refletiu a
sensibilidade do algoritmo & inicializagao, porém a clara separagao visual entre

grupos validou sua relevancia bioldgica.

Na avaliacao de algoritmos de classificacao, o GaussianNB destacou-se com
acurdcia, precisdo, recall e Fl-score perfeitos (1,0), evidenciando sua adequacao as
premissas de independéncia condicional e distribuicao Gaussiana dos dados. Modelos
ensemble como Random Forest e Gradient Boosting, além de redes neurais (RNA
MLP), também apresentaram alto desempenho (acuracia 0,94), demonstrando
robustez na captura de rela¢oes nao lineares. O SVM mostrou-se ideal para cenarios
onde a identificacao de todos os gendtipos resistentes é prioritaria, mesmo com
custo de falsos positivos. A andlise de importancia das variaveis destacou o peso do
fruto (PF), didmetro (Diam) e nimero de frutos (NF) como atributos-chave para a
classificagao, enquanto a AACPDM, embora critica para avaliagdo de resisténcia in
vivo, mostrou baixo poder discriminativo isoladamente, reforcando a necessidade

de abordagens multivariadas.

As curvas ROC (AUC = 1,0) e de aprendizado (acuracia convergente para
1,0) confirmaram a capacidade dos modelos em generalizar padroes complexos, sem
indicios de overfitting. A correlacao negativa entre caracteristicas morfométricas
(ex.: PF, Diam) e a classe resistente (p ~ —0,68) sugeriu um dilema fisiolégico
entre alocagao de recursos para defesa e desenvolvimento de frutos, implicando em
desafios para programas de melhoramento que busquem conciliar produtividade e
resisténcia. A integracao de técnicas de aprendizado de maquina, como a selecao

de *features* por permutacao e a andlise de distribuicoes multivariadas, provou-se
)
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essencial para desvendar interacoes entre fenétipos, oferecendo ferramentas precisas

para a selecao assistida de genotipos.

O presente estudo demonstrou que a combinagao de clustering e classificacao
supervisionada pode otimizar a selegao de genotipos superiores, reduzindo custos e
tempo em programas de melhoramento. A identificacdo de genotipos resistentes ao
CABMYV com alta produtividade (ex.: grupo com NF = 25, PT = 4,5 kg) oferece
material genético promissor para cultivos comerciais ou otimizagao do programa
de melhoramento. A superioridade do GaussianNB, aliada a eficiéncia de modelos
interpretaveis como Arvores de Decisao, posiciona essas técnicas como ferramentas
acessiveis para laboratérios com recursos computacionais limitados, democratizando
o uso de inteligéncia artificial na agricultura. Por fim, o estudo reforca a importancia
da fenotipagem precisa e da integracao de dados multidisciplinares para avancgos

no melhoramento de plantas frente a desafios fitossanitarios emergentes e graves.
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