
Bachelor’s Thesis

Submitted in 2025

End to End Learning-Driven Navigation for Agricultural Robots

Author

Felipe Andrade Garcia Tommaselli

Department of Electrical and Computer Engineering - EESC/USP

Supervisor

Prof. Dr. Marcelo Becker

Department of Mechanical Engineering - EESC/USP

São Carlos, SP, Brazil

June 2025

1

Bachelor’s Thesis

Submitted in 2025

End to End Learning-Driven Navigation for Agricultural Robots

Monograph submitted to the Electrical Engineering

program, Electronics emphasis, at the São Carlos

School of Engineering of the University of São Paulo,

in partial fulfillment of the requirements for the de-

gree of Electrical Engineer.

Advisor: Prof. Assoc. Marcelo Becker

São Carlos, SP, Brazil

June 2025

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Tommaselli, Felipe Andrade Garcia

 T661e End to End Learning-Driven Navigation for
Agricultural Robots / Felipe Andrade Garcia Tommaselli;
orientador Marcelo Becker. São Carlos, 2025.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2025.

1. Agricultural Robotics. 2. Autonomous Systems. 3.

Reinforcement Learning. 4. Model-Based Control. I.
Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

http://www.tcpdf.org

Acknowledgments/Agradecimentos

Aos meus pais, Antonio e Giselle, que me deram raízes fortes e asas ainda maiores.

Obrigado por me ensinarem a coragem de partir com a certeza de que sempre terei para

onde voltar.

À minha irmã, Beatriz, pela nossa conexão única e genuína em cada passo dessa

jornada.

À minha companheira de vida, Brendha, por abraçar plenamente cada fase ao meu

lado, tornando o caminho ainda mais especial e significativo.

Ao Prof. Marcelo Becker, pela orientação, apoio e confiança em minha capacidade ao

longo da minha trajetória como pesquisador.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo fomento

durante os anos de Iniciação Científica e Estágio no Exterior.

Aos meus companheiros de apartamento 211, pelas memoráveis experiências que im-

pulsionaram o trabalho aqui apresentado.

Por fim, agradeço aos colegas da Graduação e do Grupo SEMEAR por compartilharem

comigo esta caminhada.

6

Contents

1 Introduction 20

2 Related Work 25

3 System Design 29

3.1 Inference-Time Architecture . 29

3.2 Algorithmic Pipeline Overview . 31

3.2.1 Foundations: Model-Based Reinforcement Learning and TD Learning 32

3.2.2 The TD–MPC2 Architecture . 33

3.2.3 Model Predictive Control Integration 35

3.2.4 Latent-Space World Modelling . 36

3.2.5 Comparison with Related Algorithms 37

3.2.6 Model Uncertainty and Out-of-Training-Distribution Actions 38

3.2.7 Implementation Changes Specific to This Thesis 40

3.3 Simulation Environment . 42

3.4 Training–Time Methods . 46

3.4.1 Pipeline Overview and State Machine 46

3.4.2 Seeding Phase . 47

3.4.3 Seed-Bootstrap Phase . 48

3.4.4 Online Phase . 48

3.4.5 Replay Buffer Architecture . 49

3.4.6 Dataset Persistence for Continual Learning 49

3.4.7 World-Model and Policy Losses . 50

3.4.8 Metric Collection . 50

4 Results 52

4.1 Experimental Setup . 52

4.2 Baseline Considerations . 53

4.3 Ground Truth Ceiling . 54

4.4 Straight-Row Navigation . 56

4.5 Loss Analysis . 58

4.5.1 Interpretation . 59

4.5.2 Future diagnostics . 60

8

4.6 Transfer Across Crops . 60

4.7 Ablations . 61

5 Future Work 64

6 Conclusion 66

9

List of Figures

1 The figure illustrates the Sim2Real transition of the TerraSentia robot. The

left shows the TerraSentia in a Gazebo simulation environment [1], while

the right depicts the real robot performing the same task in a plantation. . 22

2 A single 1081-point LiDAR scan is distilled by the encoder hθ into a la-

tent zt, which is the only state on which the rest of the stack oper-

ates. The stochastic actor πθ is queried once per control cycle to pro-

vide the initial Gaussian mean and a handful of “π-trajectories,” seeding

the Model-Predictive Path-Integral (MPPI) planner with prior knowledge

while preserving exploration entropy. MPPI then samples hundreds of ad-

ditional sequences, rolls every candidate through the learned world-model

trio {fθ, rθ, Qθ} to obtain predicted rewards and a boot-strapped terminal

value, and iteratively shifts its distribution toward the highest-return (elite)

roll-outs. After a few inner iterations the planner outputs the best horizon-

H sequence, and only its first control a0 is executed on the robot, while

the remainder, together with the refined Gaussian statistics, warm-start

the next cycle. 30

3 The TD-MPC2 architecture ([2]) encodes observations (s) into a latent

space (z). Within this latent space, the model predicts future actions (â),

rewards (r̂), and terminal values (q̂), eliminating the need to decode future

observations. All core operations are performed exclusively in the latent

domain. 34

4 Simulation environment in Gazebo for the crop following task, featuring the

TerraSentia Robot. The environment includes four rows of sorghum, spaced

0.7m apart, with the robot positioned to follow the center path. Adjacent

rows are included to simulate real-world LiDAR point cloud leakage. The

120m long rows represent fully developed sorghum. 43

5 Empirical distribution of raw LiDAR ranges reveals most useful data clus-

ters within the initial meter, consistent with the expected 0.7m distance

between crop rows. While longer ranges may offer insights into future lo-

comotion, the noisy and stochastic nature of training presents a bottleneck

in fully utilizing this information. 44

10

6 Real representation with specific values of equation 3.10, where for velocity

near 1, it’s clear the attenuation behavior of the penalties (denominator)

on the pure rewards (numerator). This approach guarantees that even with

high penalties, the reward stays positive and stable. 45

7 A finite-state scheduler (upper panel) governs each run. Initially, in the

Seeding state, random trajectories are collected. Once a data quota is

met, a Seed-Bootstrap phase performs batch updates to initialize the

latent world model and critic ensemble. The system then enters the On-

line state, where data collection, planning, and learning are tightly cou-

pled: each environment step is followed by immediate gradient updates.

The lower panel details this closed-loop operation, where the agent plans

actions using MPPI (Model Predictive Path Integral) within its current

latent world model, executes them in the environment, and stores resulting

transitions. Gradients first update the world model (encoder, latent dy-

namics, reward, and value heads), and subsequently the entropy-regularized

policy prior. Both updated model and policy are immediately used by the

MPPI planner for the next control step. 47

8 Reward and Evaluation episode metrics were collected for some episodes.

The Ground Truth clearly shows perfect task completion with the 120m

run, highlighting consistent results in evaluation mode. 55

9 Losses for training on Ground Truth input, all three of them referring to

training aspects: policy pi, critic value, and reward. In all cases, we clearly

see a convergence value, besides outliers on the seeding phase. 55

10 Reward and Success episode metrics for training in Ground Truth input.

Completion of the task with the 120m run after the seeding phase with

little inconsistency from outliers. 56

11 Training Reward result for the presented run in LiDAR input. Note that

the task was completed in multiple points, however, full convergence was

not obtained yet, with bottlenecks in training stability that were not present

in Ground Truth. 58

12 Training-time loss curves for the TD–MPC2 agent: actor loss Lπ, critic

loss LV , reward-prediction loss Lr. Shaded regions denote one standard

deviation over five seeds. 59

11

13 Total Loss in training time combine multiple objectives: Ltotal = λcLconsistency+

λrLreward+λvLvalue, where λc, λr, and λv are weighting coefficients for con-

sistency, reward, and value components respectively. 59

14 Policy Multi-Layer Perceptron Neural Network activation histogram shows

most activation values are in lower regions, smoothly decaying. 61

15 Policy Multi-Layer Perceptron Neural Network activation line plot high-

lights the distribution of Values around features. 62

16 The ground truth aggregated data, primarily distributed around 0 and 1.0,

can be normalized effectively using a simple mean 0 and standard deviation

1 transformation. 63

12

Nomenclature

API Application Programming Interface

BC Behavior Cloning

CEM Cross–Entropy Method

DDPG Deep Deterministic Policy Gradient

DOF Degrees of Freedom

EKF Extended Kalman Filter

EMA Exponential Moving Average

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

iLQR iterative Linear Quadratic Regulator

IMU Inertial Measurement Unit

IQR Interquartile Range

LiDAR Light Detection and Ranging

LQR Linear-Quadratic Regulator

MBRL Model-Based Reinforcement Learning

MDP Markov Decision Process

MPC Model Predictive Control

MPPI Model Predictive Path Integral

NMPC Nonlinear Model Predictive Control

ODE Open Dynamics Engine

PID Proportional-Integral-Derivative

13

RL Reinforcement Learning

ROS Robot Operating System

RTK Real-Time Kinematic

SAC Soft Actor-Critic

Sim2Real Simulation-to-Real Transfer

SimNorm Simplicial Normalization

TD Learning Temporal Difference Learning

TD-MPC Temporal Difference Model Predictive Control

TD-MPC2 Temporal Difference Model Predictive Control, version 2

TD3 Twin Delayed Deep Deterministic Policy Gradient algorithm

14

Abstract

TOMMASELLI, F. End to End Learning-Driven Navigation for Agricultural

Robots. 2025. 72 p. Monograph (Course Conclusion Paper) – Escola de Engenharia

de São Carlos, Universidade de São Paulo, São Carlos, 2025.

Agricultural phenotyping at scale requires autonomous robots capable of navigat-

ing densely planted crop rows without GNSS, posing significant challenges for tradi-

tional control approaches. This thesis introduces an end-to-end learning-driven nav-

igation framework for under-canopy agricultural robots that fundamentally recon-

ceptualizes the navigation problem through model-based reinforcement learning. In

contrast to conventional perception-plus-controller architectures that fragment the

navigation pipeline into isolated modules, we implement a unified Temporal Differ-

ence Model Predictive Control (TD-MPC2) system that simultaneously learns world

dynamics, reward prediction, and action selection within a shared latent representa-

tion. Leveraging latent-space world modeling for compact environmental represen-

tation, our approach facilitates efficient Model Predictive Path Integral control with

minimal overhead. Our learning-driven system, implemented on the TerraSentia

under-canopy robot and adapted for crop-following, significantly outperforms cur-

rent model-free baselines in diverse simulated field conditions. It achieved a 33%

increase in successful row completion and a 43% gain in mean distance traversed

compared with CropfollowRL, while an oracle variant supplied with ground-truth

states reached 100% completion at the maximum 57.5m, demonstrating that remain-

ing errors stem primarily from LiDAR feature extraction rather than control. While

the LiDAR-based variant shows greater variability in performance (120m peak, av-

erage 36.98 ± 26.95m) and has yet to outperform the perception-plus-controller

CROW benchmark, these findings highlight a clear direction: improving LiDAR-

derived row-edge segmentation should close the remaining gap, enabling the unified

TD-MPC2 framework to match or surpass state-of-the-art deterministic pipelines.

Keywords: Agricultural Robotics, Field Phenotyping, Autonomous Systems,

Reinforcement Learning, Model-Based Control

16

Resumo Extendido

TOMMASELLI, F. End to End Learning-Driven Navigation for Agricultural

Robots. 2025. 72 p. Monografia (Trabalho de Conclusão de Curso) – Escola de En-

genharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

A crescente demanda por alimentos impulsiona a agricultura moderna a buscar soluções

inovadoras para otimizar a produção e a eficiência. Nesse cenário, a fenotipagem agrícola

em larga escala surge como uma ferramenta crucial, permitindo a coleta massiva de dados

sobre as características das plantas diretamente no campo. No entanto, essa tarefa apre-

senta desafios significativos, especialmente no que tange à navegação autônoma de robôs

em meio a plantações densas e sob a copa das culturas, onde sinais de GNSS são fre-

quentemente indisponíveis ou pouco confiáveis. Abordagens tradicionais de controle, que

geralmente separam os módulos de percepção e planejamento, têm se mostrado limitadas

para lidar com a complexidade e a dinâmica desses ambientes.

Esta tese propõe uma mudança de paradigma ao introduzir um framework de naveg-

ação de ponta a ponta, impulsionado por aprendizado por reforço baseado em modelos,

para robôs agrícolas que operam sob o dossel das plantações. Diferentemente das ar-

quiteturas convencionais, que fragmentam o processo de navegação, nossa abordagem im-

plementa um sistema unificado de Controle Preditivo Baseado em Modelo por Diferença

Temporal (TD-MPC2). Esse sistema é capaz de aprender simultaneamente a dinâmica

do ambiente, prever recompensas futuras e selecionar as ações ótimas, tudo dentro de

uma representação latente compartilhada e compacta do mundo. Essa modelagem em

espaço latente não apenas simplifica a representação do ambiente, mas também facilita

um controle preditivo eficiente com mínima sobrecarga computacional.

O sistema foi implementado e adaptado para a tarefa de seguimento de fileiras de

culturas utilizando o robô TerraSentia. Ensaios extensivos em simulação — contemplando

cenários com milho e sorgo sob diferentes níveis de oclusão e terreno — revelaram que

a variante guiada por LiDAR completou 33,3% dos percursos, atingiu distância média

de 36,98±26,95m e, em seus melhores episódios, percorreu 120m contínuos, superando o

CropfollowRL, que não concluiu nenhuma trajetória e percorreu apenas 32,7m em média.

Em contrapartida, a variante “oráculo”, alimentada com estados de solo verdade, alcançou

100% de conclusão e percorreu consistentemente os 57,5m máximos, evidenciando que o

gargalo reside na extração de características do LiDAR e não no planejador TD-MPC2.

17

Embora ainda fique abaixo do benchmark CROW (100% de conclusão e 57,5m), nosso

método apresentou um ganho relativo de 13% na distância média e um aumento de 33 p.p.

na taxa de conclusão sobre o melhor modelo-livre existente, resultados que apontam para

um caminho claro de melhoria ao aprimorar a segmentação de bordas de fileira obtida a

partir do LiDAR.

A robustez do sistema frente a variações ambientais, como mudanças na iluminação,

oclusão de sensores por folhagem e irregularidades no terreno, é uma das principais con-

tribuições deste trabalho. Ao unificar percepção e controle em um único framework

de aprendizado, o robô desenvolve a capacidade de se adaptar autonomamente a no-

vas condições de campo com necessidade mínima de retreinamento. Isso é possível porque

o agente aprende a tomar decisões baseadas em sua própria experiência e na previsão das

consequências de suas ações, eliminando a necessidade de ajustes manuais complexos e

heurísticas pré-definidas que caracterizam muitos sistemas atuais.

A metodologia desenvolvida não apenas avança o estado da arte em automação agrí-

cola, mas também oferece um caminho promissor para superar o desafio da lacuna entre

simulação e realidade (Sim2Real), um obstáculo persistente no desenvolvimento de robôs

para ambientes complexos e não estruturados. A capacidade do sistema TD-MPC2 de

aprender um modelo do mundo e planejar ações dentro desse modelo aprendido, mesmo

com dados sensoriais brutos como entrada (LiDAR neste estudo), sugere uma maior gen-

eralização e adaptabilidade. A pesquisa foca em como um sistema pode perceber o am-

biente, decidir o que fazer e agir de forma integrada e adaptativa, evitando as transições

problemáticas entre diferentes modos de operação que limitam sistemas agrícolas mais

antigos.

Em suma, este trabalho estabelece as fundações para uma nova geração de robôs

agrícolas verdadeiramente autônomos, capazes de operar de forma eficiente e segura em

condições de campo desafiadoras. Ao reconceitualizar o problema da navegação através de

um prisma de aprendizado por reforço baseado em modelos e controle preditivo, demon-

stramos um salto qualitativo em termos de desempenho, robustez e adaptabilidade. As

contribuições aqui apresentadas abrem novas perspectivas para a fenotipagem de precisão

e para a automação inteligente no setor agrícola, com o potencial de transformar a maneira

como interagimos e gerenciamos os agroecossistemas.

Keywords: Robótica Agrícola, Aprendizado por Reforço, Controle Baseado em Modelos,

TD-MPC, Sistemas Autônomos, Fenotipagem de Campo

18

1 Introduction

Agricultural production, and maize cultivation in particular, is approaching a data-

driven inflection point where genotype-to-phenotype mapping and precise crop manage-

ment demand orders of magnitude more in-field measurements than human crews can

realistically gather. Therefore, ground-based, under-canopy phenotyping platforms are

now indispensable for enabling non-destructive, high-throughput trait collection directly

within crop rows [3]. Yet the promise of these machines remains partially unrealized:

narrow corridors, occluding foliage, and the critical need for sub-centimeter positioning

accuracy for reliable navigation makes most Real-Time Kinematic (RTK) or Global Nav-

igation Satellite System (GNSS) solutions ineffective. This forces researchers to confront

the problem of autonomous locomotion head-on in areas without Global Positioning Sys-

tem (GPS) coverage, specially.

These agricultural platforms have evolved from manually pushed or driven systems to

self-propelled, autonomous robots capable of navigating between crop rows with minimal

human intervention. The transition to motorized and autonomous ground robots offers

unprecedented flexibility and enables parallel operation of multiple units, dramatically

increasing throughput for phenotypic data collection. Such autonomous systems can

measure various traits in crops such as maize and sorghum, including plant height, volume,

stem diameter, stem strength, and leaf area index, thus addressing critical bottlenecks in

agricultural phenotyping [3].

Early systems addressed the navigation bottlenecks by tightly coupling dedicated

perception pipelines, typically Light Detection and Ranging (LiDAR) scan matching or

monocular row-geometry extraction, to classical controllers such as Proportional-Integral-

Derivative (PID), Linear-Quadratic Regulator (LQR), or Model Predictive Control (MPC).

Terrasentia, a compact four-wheel-drive robot designed at the University of Illinois, ex-

emplifies this lineage and has become a benchmark chassis for under-canopy research

[4]. Successive iterations improved robustness through sensor fusion and path-integrated

odometry, but the underlying architecture remained bifurcated: perception generates an

precise row centroid estimate, and a handcrafted controller tracks that curve.

Despite demonstrable field successes, perception-plus-controller stacks reveal struc-

tural weaknesses under real scenarios. Seasonal lighting changes, cultivar-specific canopy

architectures and accumulated foliage obscure the row edges, causing LiDAR-based meth-

ods to fail intermittently [5]. Camera-centric pipelines also suffer from heavy occlusion or

20

low-texture stems, even when augmented with semantic keypoints [6]. Controller perfor-

mance is equally dubious, gains tuned for a mid-season canopy often oscillate when soil

firmness or wheel slip changes, compelling operators to re-calibrate frequently.

The research community has responded with more sophisticated perception modules:

CROW leverages self-supervised visual neural networks to learn crop-row priors [5], while

robust sensor-fusion frameworks blend stereo, Inertial Measurement Unit (IMU) and Li-

DAR cues to achieve decimeter level accuracy [7]. Nevertheless, these advances also treat

perception and control as separable concerns. Their integration still relies on deterministic

feedback laws that do not learn from navigation experience, making zero-shot deployment

to unseen fields hard to find.

Reinforcement Learning (RL) reshapes this landscape by casting navigation as se-

quential decision-making under uncertainty. Model-free RL has already demonstrated the

feasibility of end-to-end policy optimization on Terrasentia in CropFollowRL [8], where a

convolutional encoder maps front-facing images directly to steering commands. While en-

couraging, purely model-free approaches incur prohibitive sample complexity and tend to

over-fit to the training canopy structure, necessitating extensive real-world data collection

or risky sim-to-real transfer.

RL agents learn to map observations to actions by interacting with their environment

and receiving scalar reward signals, eliminating the need for explicit programming of con-

trol laws or detailed system models. This data-driven approach holds significant promise

for agricultural robotics, offering the potential to develop more adaptive and generalized

navigation policies. Unlike traditional methods that separate perception and control, RL

can learn end-to-end policies that directly map raw sensor inputs to control outputs,

potentially leading to more reactive and robust navigation behaviors.

Model-based reinforcement learning (MBRL), especially methods embedding Model

Predictive Control (MPC), offers a compelling alternative. By learning a latent dynam-

ics model and leveraging on-line planning, such algorithms inherit MPC’s look-ahead

reasoning while continuously refining the world model from new experience. Temporal-

Difference Model Predictive Control (TD-MPC) and its successor TD-MPC2 constitute

the state-of-the-art in this paradigm [9, 2]. TD-MPC2 constructs a control-centric latent

space, rolls out thousands of candidate actions with an Model Predictive Path Integral

(MPPI) optimizer, and updates its value estimates via temporal-difference learning (TD

Learning), yielding a single self-tuning policy/planner capable of rapid adaptation across

tasks.

21

Our implementation adapts the TD-MPC2 framework to the specific challenges of

under-canopy agricultural navigation. By utilizing only egocentric sensor data, such as

LiDAR readings and potentially images from the robot’s onboard camera, our system

learns to navigate solely from the robot’s perspective. This is a significant departure from

many traditional methods that rely on global localization or pre-built maps, adding a layer

of complexity that our end-to-end learning approach is designed to handle. The system

learns a policy that directly maps raw sensor inputs to robot control commands (e.g., linear

and angular velocity). The adaptation of TD-MPC2 involved careful consideration of the

observation space, action space, and reward function to effectively capture the nuances of

navigating within crop rows while avoiding collisions and maintaining a desired trajectory.

The main goal of this line of research is to create a clear path for future work on

model-based systems that intend to leverage zero/few-shot learning on deployment field.

For this, we introduce this worldwide validated landscape to agricultural robots on a

detailed framework. The Simulation-to-Real Transfer (sim2real) gap, as illustrated in

figure 1, remains unsolved, however, most of the methods discussed in this article aim to

mitigate it.

Figure 1: The figure illustrates the Sim2Real transition of the TerraSentia robot. The left

shows the TerraSentia in a Gazebo simulation environment [1], while the right depicts the

real robot performing the same task in a plantation.

A well-known challenge in Reinforcement Learning is its sensitivity to parameter tun-

ing, which often varies significantly across tasks and domains [10, 11, 12, 9]. This system

design prioritizes components that enhance stability in unseen environments, requiring

minimal to no parameter adjustments. This approach aligns with key insights from foun-

dational works, particularly [2] and [13].

Additionally, to improve zero-shot capabilities across diverse scenarios, addressing Out

22

of Distribution (OOD) actions is crucial. OOD actions refer to input-output mappings

poorly represented during training, which can lead to deployment failures. To mitigate

this, we implement carefully selected techniques, such as Behavior Cloning (BC), to en-

hance stability and ensure reliable zero-shot deployment.

Preliminary results indicate that the LiDAR-based variant of TD-MPC2 completed

33.3% of the trajectories, covered an average of 36.98 ± 26.95 m, and reached 120 m in the

best episode—outperforming the CropfollowRL baseline, which completed no trajectories

and reached only 32.7 m on average, a relative gain of roughly 13% in distance traveled

[8]. In addition, the oracle variant fed with ground-truth states achieved 100% completion

and consistently covered the maximum 57.5m, showing that the remaining bottleneck lies

in LiDAR feature extraction rather than in the TD-MPC2 planner.

Despite this progress, the deterministic CROW pipeline, which also achieves 100%

completion and 57.5m, remains the benchmark to surpass [5]. The high variability of

our LiDAR approach (standard deviation of 26.95 m) indicates a need to improve row-

edge segmentation. Once this limitation is mitigated, the unified TD-MPC2 framework is

expected to match or exceed CROW’s performance while preserving the benefits of online

adaptation and reduced dependence on manual calibration.

In general, we acknowledge that our approach yields less compelling results than Crop-

follow++ or CROW [6, 14]. This work serves as a foundational step within the RL-based

framework category, aiming to advance research in this field beyond heuristic baselines.

Work should be understood as a deeper step into the RL-based framework category, with

the aim of further increasing work in this field until the heuristic baseline barrier is passed.

These findings support a broader thesis: controller theory need not be abandoned but

absorbed into learning systems. By embedding MPC inside the RL agent, we preserve the

long-horizon optimality guarantees of planning while discarding brittle, manually tuned

control loops. The resulting architecture scales consistently with sensor modalities and

field variability, charting a path toward few-shot or even zero-shot deployment in novel

fields.

This thesis makes several significant contributions to the field of agricultural robotics

and autonomous navigation. We highlight some key considerations:

• We present the first end-to-end TD-MPC2 implementation on the Terrasentia plat-

form, replacing separate perception and control modules with a single world-model

planner-policy that learns directly from raw onboard sensors.

23

• The demonstration that effective low parameter tuning is feasible, where the orches-

tration of a really stable and well chosen system can be trained and deployed with

little to no empirical parameter tuning.

• We establish a comprehensive discussion about uncertainty handling task-oriented

for the crop follow, where we managed to incorporate multiple methods to enhance

stability even on OOD actions.

24

2 Related Work

Recent advancements exemplified by CropFollow++ [6] have established robust frame-

works for vision-based navigation through semantic keypoint extraction, achieving 767

meters between human interventions across 25 km deployments in cover crop planting

operations. This foundational work, complemented by high-throughput phenotyping sys-

tems [3] that have systematically collected morphological data from nearly 200,000 ex-

perimental units across 142 fields, represents the current state-of-the-art benchmark for

autonomous agricultural locomotion, progressing from 27 meters to 3629 meters between

interventions through iterative system refinement.

Early attempts to transcend ad-hoc visual pipelines adopted self-supervision or ge-

ometric priors. CROW [5] employs LiDAR line-fitting to bootstrap its own waypoint

labels, showing resilience to illumination and crop morphology, while Navigating with Fi-

nesse couples ResNet feature extraction with Ierative Linear Quadratic Regulator (iLQR)

to optimize smooth trajectories through occlusions [14]. Both frameworks still rely on per-

row geometric reasoning and hand-tuned recovery behaviors, highlighting the gap between

classical control guarantees and practical stochastic field conditions.

Other precedents further illustrate this dichotomy. The heuristic filtering strategy of

Under-Canopy LiDAR Navigation [4] mitigates outliers from foliage but struggles when

inter-row clutter becomes indistinguishable from crops. Vision-only steering in Crop-

Follow [15] offers a low-cost alternative. Yet its end-to-end convolutional policy cannot

explicitly reason about future constraints, producing oscillatory behavior under dense

occlusions. These systems have been augmented through sophisticated multi-sensor fu-

sion techniques [7] that integrate Sensors and IMU via Extended Kalman Filter (EKF)

frameworks, achieving navigation without interventions for distances up to 386.9 meters

in contiguous field environments through probabilistic state estimation and uncertainty

propagation methodologies.

Reinforcement learning has emerged as a transformative paradigm in autonomous

navigation, with seminal work [16] demonstrating rapid adaptation of lane-following be-

haviors from randomly initialized parameters using monocular imagery within a single

training day. This approach has been extended through goal-driven exploration systems

[17] that combine deep reinforcement learning for local navigation with global waypoint

selection algorithms, enabling autonomous environmental mapping without a priori knowl-

edge representations. Modular architectures for driving policy transfer [18] have further

25

established methodological frameworks for bridging the simulation-reality gap through

abstraction layers that insulate learned policies from direct exposure to sensor modalities

and physical dynamics, facilitating cross-platform deployment without extensive param-

eter recalibration.

The CropFollowRL framework [8] represents a significant advancement in applying re-

inforcement learning to agricultural navigation challenges through a real2sim2real method-

ology incorporating semantic keypoints abstraction. This implementation employs the

Twin Delayed Deep Deterministic Policy Gradient algorithm (TD3) trained in Gazebo

environments [1], with a perception architecture comprising fully convolutional networks

predicting triangular vertices from crop rows represented as a 13442-dimensional state vec-

tor. The reward formulation incorporates significant negative reinforcement for collision

events (-100) balanced with positive reward signals derived from forward velocity met-

rics, demonstrating successful deployment across multiple field robots while establishing

baseline performance metrics ranging from 9.07m to 30m of intervention-free navigation

in diverse simulated agricultural environments.

The limitations of model-free approaches in sample efficiency and generalization ca-

pabilities motivated our investigation into Model-Based frameworks. Our chosen archi-

tecture, a MBRL with a planner, is a well-established approach, notably demonstrated

by PETS which was proposed in 2018 and is widely recognized in the quadruped robotics

community [19, 20]. This research direction remains active and continues to evolve and

optimize; in that sense, the current in development and state-of-the-art TD-MPC archi-

tecture was chosen as backbone for this work.

The original TD-MPC framework [9] synergistically combines model-free and model-

based reinforcement learning paradigms through joint learning of task-oriented latent dy-

namics models and terminal value functions via temporal difference learning. This hybrid

approach performs trajectory optimization over finite horizons using learned dynamics

while leveraging terminal value functions to estimate long-term returns beyond the plan-

ning horizon. TD-MPC2 [2] represents an architectural evolution incorporating "decoder-

free" latent space operations [21], LayerNorm stabilization, SimNorm regularization, and

multiple Q-function ensembles, while employing maximum-entropy reinforcement learning

as a policy prior for improved exploration across state-action manifolds. The main TD-

MPC adaptations suitable for the Cropfollow task include high adaptability with minimal

parameter tuning, as extensively demonstrated in TD-MPC2 in the multi-task benchmark

[2] and in FOWM for few-shot real-world scenarios [10].

26

The model-based reinforcement learning landscape encompasses alternative method-

ologies that offer complementary insights, including unsupervised reinforcement learn-

ing from pixel representations [22] employing dual-phase training with unsupervised pre-

training followed by task-specific fine-tuning. Physics-informed approaches such as Dyna-

PINN [23] integrate domain-specific knowledge through physics-informed neural networks

combined with Deep Dyna-Q reinforcement learning, encoding governing equations and

physical constraints to enhance model generalization in data-sparse regimes.

More recently, DWL [24] and RWM-O [25], both represent different approaches, but

all incorporate some sort of known techniques to enhance sim2real transition. Both algo-

rithms represent state-of-the-art works for humanoids and quadrupeds locomotion, rein-

forcing the thesis that MBRL is becoming more relevant each year across different fields.

It is worth noticing RL2AC [26], which proposes a hybrid approach with a controller, but

this time with adaptive control. This article focuses heavily on rapid adaptation to unseen

environments and efficiently addresses some concerns shared in the work presented here.

Our methodological approach draws inspiration from advances in FOWM [10], ad-

dressing distribution shifts between simulation environments and physical deployments

(or even on different simulation environments) through epistemic uncertainty quantifi-

cation and behavioral regularization. By employing a Q-ensemble of value functions to

characterize model confidence across the state space, we constrain exploration to regions

where the model exhibits high certainty, thereby enhancing operational safety and perfor-

mance in complex agricultural environments characterized by dense vegetation, irregular

terrain features, and dynamic illumination conditions. This uncertainty-aware approach

has demonstrated particular efficacy in scenarios where environmental variations exceed

those encountered during training phases, enabling robust generalization across diverse

field morphologies through principled uncertainty-guided exploration.

The final component of our methodology incorporates policy constraint mechanisms

inspired by TD-M(PC)² [13], which addresses value overestimation phenomena through

Kullback-Leibler divergence minimization between learned and behavior policies. Our

approach combines Behavior Cloning (BC) with an uncertainty quantification framework

to reduce testing of out-of-distribution actions. Behavior cloning encourages the policy

to generate actions similar to those in the populated buffer, while the uncertainty frame-

work further constrains behavior. This dual mechanism is effective given our task’s finite

and well-defined action space, where extreme movements are rarely needed, promoting a

consistent and reliable pace.

27

Synthesising the above discourse, our thesis positions the Terrasentia navigation chal-

lenge at the confluence of sensor-based agricultural robotics and sample-efficient model-

based RL. By adopting a TD-MPC2 backbone augmented with behaviour cloning and

uncertainty gating, We aim to combine how a system sees (perception), decides what to

do (planning), and acts (control) into one adaptable method. This avoids the awkward

shifts between different modes that limit older agricultural systems and moves us closer

to completely automated operation under plant canopies. While many related studies

influenced design decisions, this section highlights the most contributing works.

28

3 System Design

To enhance understanding of the project’s system design, this section is divided into

the following: Inference-Time Architecture, Algorithmic Pipeline Overview, Simulation

Environment, and Training-Time Methods. The Inference-Time Architecture primarily

focuses on the final deployed and runtime system. This structure first provides a clear

overview of the end product, followed by detailed explanations of the algorithmic compo-

nents, the simulation environment. Finally, we present the learning approach, highlighting

its key aspects and differences from the inference-time architecture.

3.1 Inference-Time Architecture

The primary objective of this line of research is to develop a deployment-ready agri-

cultural navigation system capable of few-shot adaptation in previously unseen environ-

ments. Here, the presented system aims to show a clear path towards this goal. This

section presents a high-level overview of our system’s inference-time architecture.

During inference, the Terrasentia robot is expected to enter previously unseen crop

rows, operate without external positioning (e.g., GPS), self-adapt from the first control

cycle onward. To accelerate the deployment process safely in unseen simulation envi-

ronments, or even in real-world scenario, we can deploy the world model and policy

already optimized in simulation together with a replay buffer pre-populated with sim-

ulation trajectories. This design can significantly reduce the traditional sim2real gap

[27, 16], enabling the agent to learn critical navigation parameters on the very first stages

of deployment.

The navigation task, hereafter cropfollow, is formalized as a corridor-traversal problem

in which the robot must maximize the distance traveled while avoiding collision with row

dividers. In typical maize or sorghum plots the corridor width falls below the robot’s

wheel track, producing frequent foliage occlusions and strong specular reflections that

hinder sensor-only perception [3, 15]. Previous work tackles cropfollow through modular

pipelines that estimate the corridor centreline from cameras or LiDAR and hand the

estimate to an MPC or iLQR controller [6, 14, 7]. Our design discards this decomposition

and learns a single world-model-powered policy, reducing explicit model-based control

engineering while retaining long-horizon planning capability.

As depicted in Figure 2, the deployed system contains three tightly coupled compo-

nents: (i) a latent-space world model fθ learned with TD-MPC2 [2]; (ii) a sampling-based

29

planner, Model-Predictive Path Integral (MPPI), which rolls out action sequences inside

fθ; and (iii) a stochastic policy prior πθ that biases the MPPI sampler and supplies the

terminal-value estimate for each rollout. The only external input is a 2-D LiDAR scan

(1081 points).

Figure 2: A single 1081-point LiDAR scan is distilled by the encoder hθ into a latent zt,

which is the only state on which the rest of the stack operates. The stochastic actor πθ

is queried once per control cycle to provide the initial Gaussian mean and a handful of

“π-trajectories,” seeding the Model-Predictive Path-Integral (MPPI) planner with prior

knowledge while preserving exploration entropy. MPPI then samples hundreds of addi-

tional sequences, rolls every candidate through the learned world-model trio {fθ, rθ, Qθ}

to obtain predicted rewards and a boot-strapped terminal value, and iteratively shifts its

distribution toward the highest-return (elite) roll-outs. After a few inner iterations the

planner outputs the best horizon-H sequence, and only its first control a0 is executed on

the robot, while the remainder, together with the refined Gaussian statistics, warm-start

the next cycle.

where ot is the normalized scan and zt the latent belief state. This contrasts with

prior art that first estimates geometric state before invoking control [4]. Because the same

latent dynamics underpin both planning and policy evaluation, no explicit state estimator

is required. At each control cycle the current observation is embedded into a latent state

zt∗ = h(st), giving a fresh posterior that supersedes the model’s one-step prediction.

The agent then performs local trajectory optimization in this latent space using MPPI,

specifically, it samples a population of action sequences at:t+H−1 from a time-dependent

multivariate Gaussian distribution, with a portion of these sequences biased by a learned

30

policy prior πθ (the actor).

We frame the crop-following task as a Markov Decision Process, a standard framework

for sequential decision-making. Our system’s situation at any given moment is represented

by a latent state, encompassing relevant information about the environment and the

robot’s configuration. The robot’s actions are continuous, consisting of a desired forward

velocity and an angular velocity. We operate without a perfect, explicit model of how

these actions affect the state, instead relying on an unknown transition mechanism. The

robot is driven through a reward function that encourages movement along the crop

rows while discouraging deviations from the desired path and preventing collisions. The

ultimate goal is to maximize the expected sum of future rewards, discounted to prioritize

immediate gains, reflecting a preference for near-term performance.

We leverage the learned function, denoted by fθ, not just for taking actions but also

as a predictive model of system dynamics. This allows us to anticipate the consequences

of our actions. This integration is key: the parameters of our predictive model and our

decision-making policy are learned jointly.

Although experiments in this thesis employ LiDAR exclusively, the architecture is

sensor-agnostic: a camera front-end may replace or supplement the range input with minor

encoder modifications, and preliminary simulation indicates that additional pose cues fur-

ther improve sample efficiency. All results here are obtained in high-fidelity Gazebo worlds

that replicate maize and sorghum geometries [1]. Nonetheless, the inference pipeline pre-

sented above is already compatible with the real Terrasentia’s onboard Jetson Orin and

requires minimum to no modifications before field trials.

3.2 Algorithmic Pipeline Overview

The algorithmic foundation of our agricultural robot navigation system is built upon

the principles of model-based reinforcement learning (RL), specifically the Temporal Dif-

ference Model Predictive Control (TD-MPC) framework. Our system adapts TD-MPC2

[2] for under-canopy navigation. The system architecture consists of the following core

components:

• World Model: A neural network-based implicit model that learns environment

dynamics, predictive rewards, and value estimates without explicitly reconstructing

observations.

31

• Encoder: Transforms high-dimensional sensory inputs (e.g., camera images, Li-

DAR scans) into a compact latent representation.

• Latent Dynamics: Predicts the next latent state given the current state and

action.

• Reward Predictor: Estimates the immediate reward associated with state-action

pairs.

• Value Function: Approximates the expected long-term return from a given state.

• Policy Network: Provides action priors to guide the planning process.

• Model Predictive Control Planner: Optimizes action sequences using the learned

world model.

These components operate in concert, forming a closed-loop system where the robot con-

tinuously perceives its environment, updates its internal model, plans optimal trajectories,

and executes actions.

3.2.1 Foundations: Model-Based Reinforcement Learning and TD Learning

We formalise the navigation task as a continuous-state, continuous-action Markov

Decision Process M = (S,A, T, R, γ) with discount factor γ ∈ (0, 1). At each discrete

time step t, the agent observes st ∈ S, selects at ∈ A, transitions according to st+1 ∼

T (· | st, at), and receives reward rt = R(st, at).

Model-based reinforcement learning proceeds by fitting a parametric dynamics model

T̂ of the true transition kernel T and using it for look-ahead planning. Temporal-difference

(TD) learning, on the other hand, updates the action-value estimator Qϕ by minimising

the one-step TD error. Define the TD error

δt = rt + γmax
a′

Qϕ̄(st+1, a
′) − Qϕ(st, at),

and the squared-error loss Lt =
1
2
δ 2
t . A stochastic-gradient step on this loss gives

ϕ ← ϕ + η δt∇ϕQϕ(st, at), (3.1)

where ϕ̄ denotes a slowly updated target network and η is the learning rate.

TD-MPC couples these two paradigms by rolling out imagined trajectories inside the

learned model and then bootstrapping beyond the MPC horizon with Qϕ. This hybrid

32

objective reduces long-horizon bias and yields strong data efficiency on high-dimensional

continuous-control tasks [9].

Our implementation inherits the essential mathematical structure but introduces domain-

specific modifications described in Section 3.2.7.

3.2.2 The TD–MPC2 Architecture

The latent world model of TD-MPC2 is factorized into five neural modules:

• Encoder hθ : S→Z projects raw observations into a compact latent state.

• Dynamics dθ : Z×A→Z predicts the next latent state.

• Reward head Rθ : Z×A→ RB outputs a vector of logits over a logarithmically

spaced support R = { r(1), . . . , r(B)}. A scalar reward r ∈ R is encoded as a two-

hot target: probability mass is placed on the two neighbouring bins (r(j), r(j+1))

that bracket r in proportion to their distance from r. Training therefore min-

imises a soft cross-entropy loss, while inference recovers the expected reward r̂ =∑
j softmax(Rθ)j r

(j). The same discretised representation is used for the Q-values.

• Value ensemble {Qk
θ}5k=1 predicts terminal returns; the TD target is the minimum

of two randomly chosen heads to reduce over-estimation bias.

• Policy prior πθ : Z→A supplies a proposal distribution for MPPI and accelerates

its convergence.

Figure 3 from [2] illustrates the essential role of latent space transformation in predic-

tions and training, as it is used for all estimations.

33

Figure 3: The TD-MPC2 architecture ([2]) encodes observations (s) into a latent space (z).

Within this latent space, the model predicts future actions (â), rewards (r̂), and terminal

values (q̂), eliminating the need to decode future observations. All core operations are

performed exclusively in the latent domain.

All sub-networks are multilayer perceptrons with LayerNorm and Mish activations.

Layer activations are projected onto a probability simplex using a softmax function: z′ =

softmax(Wproj · z) · C using the Simplicial Normalization SimNorm operator to mitigate

gradient explosion and encourage sparsity.

Training minimises a composite loss

L =
H∑
t=0

λt
(
∥z′t − sg(h(st+1))∥22︸ ︷︷ ︸

joint-embedding

+CE(Rθ(zt, at), rt) + CE(Qθ(zt, at), qt)
)
, (3.2)

with TD target qt = rt + γQθ̄

(
dθ(zt, at), pθ(dθ(zt, at))

)
.

The policy prior is optimised with a soft-actor–critic objective

Jπ = Ezt∼B

[
Qθ

(
zt, πθ(zt)

)
+ βH

(
πθ(· | zt)

)]
,

where the temperature β is tuned automatically, and Qθ is rescaled online (RunningScale)

to keep its magnitude comparable to the entropy bonus. A behaviour-cloning prior adds

an ℓ2 penalty λBC∥apolicy − adata∥22 to Jπ [28, 2].

Compared with TD-MPC, version 2 increases model capacity by two orders of mag-

nitude and employs multi-task embeddings to share statistical strength across domains

[2].

34

3.2.3 Model Predictive Control Integration

Model Predictive Control (MPC) is an advanced, optimization-based control frame-

work that explicitly incorporates a system’s dynamics, performance objectives, and hard

constraints into a single finite-horizon planning problem. At each control step, MPC

solves an open-loop optimal control problem over a horizon of length H, generates a se-

quence of candidate actions, and applies only the first action before re-planning at the

next step [29].

At decision time t we maintain a nominal control sequence ut:t+H−1 = {ut, . . . , ut+H−1}.

MPPI improves this sequence by drawing N trajectory roll-outs with exploratory noise

a
(i)
t+k = ut+k +

√
Σ ε

(i)
k , ε(i)k ∼ N (0, I), and by re-weighting them according to their (dis-

counted) return. The optimization objective that each iteration *pushes toward* is

argmax
ut:t+H−1

Eε0:H−1

[H−1∑
k=0

γk R
(
zt+k, at+k

)
+ γH Q

(
zt+H , at+H

)]
, (3.3)

subject to the (known) dynamics zt+k+1 = T
(
zt+k, at+k

)
, with zt = st the measured state.

The terminal action is not part of the decision vector; instead, it is sampled from the

current feedback policy,

at+H ∼ pθ
(
· | zt+H

)
,

so that Q(zt+H , at+H) represents the soft value of following pθ beyond the finite horizon.

After evaluating the returns S(i) =
∑H−1

k=0 γkR(z
(i)
t+k, a

(i)
t+k)+γHQ(z

(i)
t+H , a

(i)
t+H), the nom-

inal controls are updated according to the path-integral weight w(i) ∝ exp
(
1
λ
S(i)

)
:

ut+k ← ut+k +
N∑
i=1

w(i)
√
Σ ε

(i)
k , k = 0, . . . , H − 1.

Only the first control ut is applied to the real system; the horizon then slides forward and

the procedure repeats at t+ 1.

In TD-MPC2 the dynamics T is replaced by a learned model dθ, the terminal value

V by a learned action-value Qθ, and optimization is performed with a Model Predictive

Path Integral (MPPI) sampler that iteratively refines a diagonal Gaussian

µ← µ+ ηµ

∑N
i=1 wi(ai − µ)∑N

i=1wi

, σ ← σ + ησ

∑N
i=1 wi

(
(ai − µ)2 − σ2

)∑N
i=1wi

, (3.4)

where weights wi ∝ exp
(
(Ri−maxjRj)/τ

)
depend on rollout returnsRi and temperature

τ .

The first control in the elite sequence is executed while the remainder serves as a warm-

start for the next cycle, thereby ensuring real-time feasibility and closed-loop robustness.

35

To solve the MPC optimization problem efficiently, Model Predictive Path Integral

(MPPI) control [30] was implemented, a derivative-free sampling-based method. MPPI

iteratively:

• Samples multiple action sequences from a proposal distribution (initially guided by

the policy prior)

• Evaluates each sequence by simulating trajectories through the learned world model

• Updates the proposal distribution based on the evaluated returns

• Repeats until convergence or a computational budget is exhausted

Mathematically, MPPI estimates parameters µ, σ of a time-dependent multivariate

Gaussian with diagonal covariance:

µ, σ = argmax
(µ,σ)

E(at, at+ 1, ..., at+H) ∼ N (µ, σ2)

[
γHQ(zt+H , at+H) +

H−1∑
h=t

γhR(zh, ah)

]
(3.5)

On the Terrasentia chassis, stable steering in dense maize rows was achieved with an

MPC horizon greater than H = 12, consistent with average plant spacing reported in [3].

However, for the TDMPC architecture during training longer horizons were computation-

ally expensive and offered no planning improvement over shorter ones due to frequent

recomputation. Following TDMPC2 guidelines and empirical results [2], the optimal per-

formance was observed with a seemingly short horizon of H = 3. Closer examination

reveals this horizon is sufficient for generating effective control actions efficiently.

3.2.4 Latent-Space World Modelling

A foundational element of our TD-MPC2 implementation is the use of latent space

representations, which provide a crucial abstraction layer between diverse sensory inputs

and the navigation algorithm. This approach enables sensor agnosticism, allowing our

system to operate with various input modalities such as cameras, LiDAR, or combina-

tions thereof. The encoder network h transforms high-dimensional observations s into a

compact latent representation z = h(s). For agricultural robots like TerraSentia, obser-

vations can include: Camera images, LiDAR scans or even Proprioceptive data such as

wheel encoder readings and IMU measurements.

Instead of separate algorithms for each sensor, a latent space learns a unified, naviga-

tionally relevant representation, useful in agriculture where sensor reliability varies with

36

conditions (cameras in low light/occlusion, LiDAR with dust/foliage). The latent space

representation offers several key advantages [21]:

• Dimensionality Reduction: High-dimensional inputs (e.g., images with thou-

sands of pixels) are compressed into a compact latent vector (typically 128-512

dimensions), reducing computational requirements for subsequent processing.

• Feature Extraction: The encoder learns to extract navigationally relevant fea-

tures, such as row alignments, crop boundaries, or obstacle positions, while filtering

out irrelevant details like lighting variations or individual plant differences.

• Domain Alignment: When trained with multiple sensor modalities, the latent

space develops shared representations that align different input domains, potentially

enabling graceful degradation when certain sensors fail.

• Transfer Learning (most relevant): Latent representations learned in one envi-

ronment (e.g., corn fields) can potentially transfer to visually different environments

(e.g., soybean fields) by capturing structural similarities rather than superficial ap-

pearances.

Our implementation builds upon work in [4] and [15], which demonstrated effective

navigation using either LiDAR or visual data. However, unlike these approaches that

develop modality-specific algorithms, our latent space representation allows seamless in-

tegration of multiple sensor types within the same framework. The SimNorm technique

employed in TD-MPC2 further enhances the latent representation by promoting sparsity

and stability. SimNorm encourages the model to develop disentangled and interpretable

features, potentially capturing concepts like "row alignment", "obstacle proximity", or

"end-of-row detection" in separate components of the representation.

3.2.5 Comparison with Related Algorithms

To evaluate TD-MPC , Dreamer, a leading model-based reinforcement learning frame-

work from Google Research, serves as the key baseline [31, 9]. The original TD-MPC

demonstrated substantial performance gains over Dreamer, showing improved efficiency

and effectiveness. TD-MPC2 further enhanced these results, proving even more robust

in handling challenging dynamics and improving sample efficiency. These comparisons

validate TD-MPC’s efficacy and establish it as a premier approach in model predictive

control for RL.

37

Extending upon this foundation, the Offline Robotic World Model (RWM-O) [25],

developed by researchers at ETH Zürich, introduces a sophisticated framework that in-

corporates shared conceptual underpinnings with FOWM [10], a method presented in

this work. Notably, RWM-O presents an innovative approach to uncertainty estimation,

proposing a entirely simulation-free pipeline. While this specific methodology falls outside

the purview of our current implementation, its novel design offers valuable insights that

will inform future research directions and contribute to the advancement of the state-of-

the-art in world model development and robust decision-making under uncertainty.

The intersection of planning and generative modeling, particularly diffusion models,

represents a significant area of contemporary research in reinforcement learning. Re-

cent top-tier publications demonstrate the efficacy of integrating these two paradigms.

For example, AdaptDiffuser exemplifies a framework that orchestrates these elements to

address diverse tasks, all underpinned by the fundamental principles of reinforcement

learning and planning [32]. A key observation across such approaches is their inherent

similarities, with variations primarily stemming from task-specific domain considerations

rather than benchmark-driven design choices.

Following a comprehensive examination of the state-of-the-art in model-based rein-

forcement learning, TD-MPC2 was selected as the foundational architecture for this

project. A decisive factor in this design choice was its remarkable capability for few-

shot learning, requiring minimal hyperparameters finetuning to effectively control robotic

systems. Its inherent efficiency and adaptability made it the project’s primary backbone,

although simpler algorithms like Soft Actor-Critic (SAC [28]) were also viable options

with different trade-offs.

3.2.6 Model Uncertainty and Out-of-Training-Distribution Actions

Online reinforcement learning presents unique challenges in agricultural environments,

particularly regarding model uncertainty and out-of-distribution (OOD) actions. As our

robot navigates through crop rows, it continuously collects data and updates its world

model, necessitating careful consideration of exploration-exploitation trade-offs and model

confidence. Model uncertainty in TD-MPC2 arises from two primary sources:

• Epistemic uncertainty: Uncertainty due to limited training data, particularly in

rarely encountered states

• Aleatoric uncertainty: Inherent stochasticity in the environment, such as variable

38

soil conditions or plant movements

We address the uncertainties inherent in agricultural navigation through a multi-

faceted approach. Primarily, we capture epistemic uncertainty in value estimates by

maintaining an ensemble of Q-functions. During planning, TD-targets are computed us-

ing the minimum of two randomly sampled Q-functions. This technique implements a

form of conservative Q-learning, which is crucial for preventing overconfident navigation

in uncertain situations. Furthermore, throughout both training and deployment phases,

actions are sampled from distributions rather than being deterministically selected.

This stochastic action selection allows the robot to naturally explore its environment.

The variance of this exploration is adaptively adjusted based on the model’s confidence,

promoting more extensive exploration in states with higher uncertainty. To efficiently

reuse past experiences and accelerate learning in challenging scenarios, our implementa-

tion employs experience replay. Drawing inspiration from [10], we incorporate a form

of prioritized replay that specifically emphasizes transitions that are either uncertain or

surprising.

A particularly significant challenge in agricultural navigation is presented by out-of-

distribution actions. Actions that have been rarely, or never, attempted in a specific

state carry the risk of undesirable outcomes, such as damaging crops or causing the robot

to become entangled. To mitigate these risks, our implementation incorporates several

safeguards.

Three complementary safeguards address this issue in our implementation. First, all

sampled commands are action-clipped to the robot’s physical limits, preventing instantly

dangerous torques or speeds. Second, the MPPI+CEM (Cross–Entropy Method) planner

is seeded each cycle with a small set of trajectories generated by the current stochastic

policy, and that policy is trained with a behavior-cloning prior that penalizes deviation

from actions stored in the replay (or demonstration) buffer. The BC term, weighted by

the prior coefficient, anchors the optimizer to previously validated behavior and therefore

mitigates OOTD drift [12].

Third, although explicit uncertainty penalties and progressive widening are not yet

implemented, the soft-elite weighting in the planner implicitly down-ranks trajectories

whose predicted value is low, often a proxy for high model uncertainty. Together, clip-

ping, BC anchoring, and soft elite weighting let the system learn online while keeping

exploratory actions within a safety envelope.

39

3.2.7 Implementation Changes Specific to This Thesis

Our TD-MPC2 implementation for agricultural navigation includes key adaptations

for under-canopy environments and the TerraSentia platform. While extensive framework

adjustments were required for the Gazebo environment, we focus here only on the main

relevant adaptations on the algorithm side.

We refactored the discount factor calculation based on the episode length projected:

1 de f _get_discount (s e l f , ep i sode_length) :

2 f r a c = episode_length /discount_denom

3 re turn min (max((f rac −1)/(f r a c) , discount_min) , discount_max)

This simplification reflects the structured nature of agricultural navigation tasks, where

episodes typically involve following crop rows of predictable length. The discount factor is

calculated once based on the episode length, avoiding unnecessary recomputation during

training.

A significant adaptation is the complete removal of termination modeling from

the world model:

1 s e l f . optim = torch . optim .Adam([

2 {’params’ : s e l f . model . _encoder . parameters () , ’lr’ : s e l f . c f g . l r ∗ s e l f .

c f g . enc_lr_scale } ,

3 {’params’ : s e l f . model . _dynamics . parameters () } ,

4 {’params’ : s e l f . model . _reward . parameters () } ,

5 # Removed terminat ion modeling complete ly

6 {’params’ : s e l f . model ._Qs . parameters () } ,

7 {’params’ : [] }

This simplification reflects the nature of agricultural navigation tasks, where early

termination typically indicates failure (e.g., collision with crops) rather than successful

task completion. By removing termination modeling, we simplify the learning problem

while maintaining performance for row-following tasks where the primary objective is

sustained navigation rather than reaching a specific goal state.

We enhanced the policy update mechanism with behavior cloning regularization to

enable learning from demonstrations:

1 de f update_pi (s e l f , zs , act ions_dataset , task) :

2 # . . . implementation d e t a i l s . . .

3 # Simple BC l o s s : minimize squared d i s t anc e to datase t / expe r i ence

a c t i on s

40

4 bc_loss = (((ac t i ons_po l i cy − act ions_dataset) ∗∗ 2) . sum(dim=−1) . mean(

dim=1) ∗ rho) . mean ()

5 # Combined l o s s with s i n g l e p r i o r c o e f f i c i e n t

6 p i_los s = q_loss + pr io r_coe f ∗ bc_loss

Behavior cloning, fundamentally, is a supervised learning approach to policy derivation

where a policy πθ is trained to mimic a dataset of state-action pairs, typically demon-

strated by an expert [33, 12]. In the context of our agricultural navigation system, we

reformulate this concept to utilize the robot’s own past successful experiences as "demon-

strations," effectively allowing the robot to learn from its best performances.

In standard reinforcement learning, the policy update objective focuses on maximizing

expected returns. For a policy πθ with parameters θ, the objective can be expressed as:

LRL(θ) = Es ∼ ρπ, a ∼ πθ[Q(s, a)] (3.6)

where ρθ represents the state distribution under policy πθ, and Q(s,a) is the action-value

function estimating expected returns.

Our BC regularization introduces an additional objective term that minimizes the

discrepancy between the policy’s actions and those in the replay buffer:

LBC(θ) = E(s, a) ∼ B[||πθ(s)− a||22] (3.7)

where B represents the replay buffer containing the robot’s past experiences. The complete

policy objective becomes a weighted combination:

Ltotal(θ) = LRL(θ) + λBC · LBC(θ) (3.8)

where λBC (represented as priorcoef in our implementation) is a hyperparameter control-

ling the influence of the BC component.

Our implementation incorporates temporal weighting to prioritize more recent expe-

riences:

LBC(θ) = E(st, at) ∼ B[ρt · ||πθ(st)− at||22] (3.9)

where ρ ∈ (0, 1) is the temporal discount factor applied across the horizon. This temporal

weighting mechanism ensures that the learning process progressively emphasizes more

recent successful behaviors while allowing older experiences to influence the policy with

diminishing effect.

We also implemented a custom state dictionary loading mechanism for Q-networks

to handle parameter mapping properly:

41

1 # Custom s t a t e d i c t l oad ing hook f o r Q networks to handle parameter mapping

proper ly

2 de f load_sd_hook (model , s tate_dict , p r e f i x) :

3 """Load s t a t e d i c t with proper Q network parameter mapping . """

4 # . . . implementation d e t a i l s . . .

This adaptation enables more flexible model loading and transfer learning, allowing

our system to reuse components trained in different environments or on different agri-

cultural tasks. The custom loading hook maps parameters correctly even when network

architectures differ slightly, facilitating transfer learning between different crop types or

growth stages.

We enhanced portability and flexibility through environment variable support for de-

vice configuration:

1 # Added environment va r i ab l e support f o r dev i c e c on f i g u r a t i on and improved

p o r t a b i l i t y

2 torch . se t_defau l t_dev ice (os . getenv ("TDMPC2_DEFAULT_DEVICE" , "cuda:0"))

This adaptation simplifies deployment across different hardware configurations, from de-

velopment workstations to onboard computers on the TerraSentia platform. By defaulting

to CUDA when available but allowing override through environment variables, our imple-

mentation maintains performance flexibility without requiring code changes.

Our implementation adds support for balanced sampling between online experi-

ence and demonstrations. While our current focus is primarily on online learning, this

adaptation prepares the codebase for future integration of offline reinforcement learning

techniques. Balanced sampling allows the algorithm to gradually transition from imi-

tation learning to autonomous policy improvement, potentially offering a safer path to

deployment in agricultural settings.

These adaptations collectively tailor the TD-MPC2 algorithm to the specific require-

ments of agricultural navigation, enhancing both performance and practical deployability

while maintaining the core strengths of the original approach. The modifications focus

primarily on simplification, stability, and integration with demonstration data.

3.3 Simulation Environment

A high-fidelity simulation environment is essential for safe, fast and repeatable devel-

opment of the learning-based locomotion stack. We therefore deploy the algorithm inside

42

a custom Gazebo ecosystem [1], instrumented with Robot Operating System (ROS1) mid-

dleware, to emulate the Terrasentia platform and its field surroundings before on-farm

trials, as shown in figure 4.

Figure 4: Simulation environment in Gazebo for the crop following task, featuring the

TerraSentia Robot. The environment includes four rows of sorghum, spaced 0.7m apart,

with the robot positioned to follow the center path. Adjacent rows are included to simulate

real-world LiDAR point cloud leakage. The 120m long rows represent fully developed

sorghum.

The virtual world reproduces 120m maize rows aligned with the inertial x-axis. Row

geometry (spacing, plant width, stalk inclination) is procedurally varied at episode reset

by a random vector ξ ∼ U(Ξ), where Ξ spans inter-row distance in [0.7, 1.0]m, plant

height in [0.4, 1.6]m and stem density in [4, 9] plants/m. Soil is rendered by a height-field

with spatially correlated noise whose root-mean-square slope does not exceed 5◦. This

variability exposes the control policy to diverse traversability profiles while preserving

morphological realism.

The rigid-body model mirrors the physical chassis dimensions and mass distribution

of the real robot, including the skid-steer differential drive. Wheel torques are applied

through Open Dynamics EngineODE joint motors, with motor constants identified by

static pull tests. Latency is injected as a first-order lag with time constant τcmd = 50ms

to match the real motor controller.

At every control cycle the simulator publishes a tuple st =
(
Lt). This can be expanded

for more observations on future works. Currently we deal with a 1081 point cloud, where

43

all points after 6m are clipped to this maximum. The angle varies from −3π
4

to 3π
4

with

angle increment of π
720

. Figure 5 shows the observed lidar distribution from a robot run.

The most useful and reliable data are below 2m, which is expected due to the tightness

of the rows. Using the Interquartile Range (IQR) with a conservatism coefficient, we

determined that 6m is a suitable clipping limit.

Figure 5: Empirical distribution of raw LiDAR ranges reveals most useful data clusters

within the initial meter, consistent with the expected 0.7m distance between crop rows.

While longer ranges may offer insights into future locomotion, the noisy and stochastic

nature of training presents a bottleneck in fully utilizing this information.

The agent outputs a continuous vector at = [vt, ωt]
⊤ ∈ [−1, 1]2. In simulation this

is linearly mapped to wheel velocities in [0.1, 1.0]m s−1 (linear) and [−0.9, 0.9] rad s−1

(angular). Mapping bounds coincide with hardware limits to guarantee that plans remain

feasible on the physical robot.

Rewards approximate traversal efficiency while penalising unsafe behaviour:

rt =
exp

[
−
(
v⋆t − vt

)2
/σ2

v

]
1 + exp

[(
λωω

2
t + λc1coll

)︸ ︷︷ ︸
penalties

] , (3.10)

with target linear speed v⋆t = 1ms−1, variance σ2
v = 0.1, angular penalty coefficient

λω = 2 and collision cost λc = 50. A discrete collision indicator 1coll becomes true

when either (i) LiDAR returns suggest lateral deviation |dt| > dmax, (ii) pitch/roll exceed

0.01 rad, or (iii) linear velocity drops below 0.15m s−1 while wheel commands remain

≥ 0.25m s−1. The logistic form of the reward provides dense gradients yet saturates well,

stabilizing early exploration.

44

This reward theory was inspired by Walk These Days work[20], which investigated

deeply the best practices for reward engineering on a quadrupede robot to walk. Due to

similar constrains and objectives, we found expressive better results with the same reward

shaping as this work. Figure 6 illustrates the reward function 3.10 with arbitrary values.

The reward is maximized when velocity vt is close to the target v⋆
t , resulting in rt ≈ 0.38.

The smooth decay of the Gaussian numerator as vt deviates from v⋆
t provides a "soft"

penalty. A flat denominator demonstrates how penalties (from ωt or collisions) uniformly

reduce the reward without creating sharp peaks.

Figure 6: Real representation with specific values of equation 3.10, where for velocity near

1, it’s clear the attenuation behavior of the penalties (denominator) on the pure rewards

(numerator). This approach guarantees that even with high penalties, the reward stays

positive and stable.

Episodes commence at random longitudinal offsets x0 ∈ [0, 4]m from the field entrance

and terminate when (a) a collision occurs or (b) the robot travels beyond a horizon

xmax = 120m. Terminations trigger a soft reset that re-seeds procedural generation while

preserving the global random seed to maintain reproducibility.

During the first 10% of training interaction steps, the lateral deviation threshold dmax

can be relaxed from 1.9m to 0.5m following a cosine annealing schedule. Simultaneously,

soil roughness amplitude decreases linearly. This automatic curriculum can smooths the

optimization landscape in early phases and allows the agent to progressively master tighter

tolerances. This feature was not enabled in this thesis results, but will be used in future

work.

The environment conforms to the gymnasium Application Programming Interface

(API), returning PyTorch tensors on the default compute device to avoid host–device

copies. Physics is stepped with ∆t = 0.1 s, matching the control frequency used by

45

the world-model planner. A ROS bridge publishes observation fields on dedicated top-

ics, enabling seamless substitution of the simulator with the real robot by switching the

middleware namespace.

In summary, the described simulation environment offers a physics-based, sensor-rich

and stochastically varied playground that underpins safe development and rigorous bench-

marking of the navigation pipeline before field deployment.

3.4 Training–Time Methods

Reinforcement learning (RL) distinguishes sharply between training time, when an

agent interacts with an environment to improve its parameters, and inference time, where

the agent deploys a frozen policy. During inference, action selection solves a deterministic

optimal–control problem in the latent space by receding–horizon planning with a learned

world model (Section 3.1). Training time, in contrast, addresses a stochastic optimization

over model and policy parameters, repeatedly alternating data acquisition, loss-driven

gradient updates, and buffer maintenance. The on-policy distribution shifts continually, so

stability hinges on careful state management, replay design, and loss structuring [34, 35].

To clarify, this architecture combines on-policy MPC-style planning with an

off-policy (replay-buffer-driven) learning backend.

3.4.1 Pipeline Overview and State Machine

Figure 7 outlines the complete pipeline. A finite-state machine orchestrates the exe-

cution flow, exposing three purely online states:

• Seeding: Collect unbiased trajectories with uniformly random actions;

• Seed Bootstrap: Execute a one-off batch update using only the seed data;

• Online: Alternate single-step environment interaction with immediate parameter

updates.

46

Figure 7: A finite-state scheduler (upper panel) governs each run. Initially, in the

Seeding state, random trajectories are collected. Once a data quota is met, a Seed-

Bootstrap phase performs batch updates to initialize the latent world model and critic

ensemble. The system then enters the Online state, where data collection, planning, and

learning are tightly coupled: each environment step is followed by immediate gradient up-

dates. The lower panel details this closed-loop operation, where the agent plans actions

using MPPI (Model Predictive Path Integral) within its current latent world model, ex-

ecutes them in the environment, and stores resulting transitions. Gradients first update

the world model (encoder, latent dynamics, reward, and value heads), and subsequently

the entropy-regularized policy prior. Both updated model and policy are immediately

used by the MPPI planner for the next control step.

Transitions are timed: after Nseed interactions, the trainer promotes to Seed Boot-

strap, a single batch-style optimization then hands control to Online. No backward

edges exist, ensuring monotonic progression through training.

3.4.2 Seeding Phase

Seeding amortizes early exploration cost while avoiding the bootstrap bias typical of

planning-driven policies. Let Dseed = {(st, at, rt, st+1)}Nseed
t=1 be the seed set gathered under

47

the i.i.d. sampling distribution p(a) = U(A). Because the induced state distribution

dπrand approximates uniform support, the initial model fit minimizes the expected one-

step prediction error.

min
θ

E(s,a)∼dπrand

[
∥dθ(hθ(s), a)− hθ(s

′)∥22
]
,

providing a low-variance Jacobian for subsequent TD targets. The trainer therefore

withholds any planning decisions until |Dseed| ≥ Nseed.

The Seeding phase addresses the exploration-exploitation dilemma by frontloading

pure exploration before any learning occurs, which is particularly advantageous in contin-

uous control tasks where premature convergence to suboptimal policies can significantly

hinder performance [17].

3.4.3 Seed-Bootstrap Phase

The Seed Bootstrap phase converts Dseed into a temporally indexed replay buffer B

and performs Eboot consecutive gradient updates without further environment interaction.

The objective couples joint-embedding prediction, reward classification, and temporal-

difference (TD) learning:

LWM(θ)=E(s0:H ,a0:H)∼B

H∑
t=0

λt
[
∥dθ(zt, at)− sg(hθ(st+1))∥22 +CE

(
Rθ(zt, at), rt

)
+CE

(
Qθ(zt, at), qt

)]
, qt = rt + γ Q(zt+1, pθ(zt+1)),

aligning latent dynamics with observation encodings, regressing discrete reward bins,

and bootstrapping long-horizon value estimates through an ensemble exponential mov-

ing average (EMA) Q [2]. Because the data are still random, off-policy correction is

unnecessary, the phase simply conditions later planning on a coherent latent manifold.

3.4.4 Online Phase

Upon completing the bootstrap updates, the trainer enters Online, its default loop:

each interaction step ⟨st, at, rt, st+1⟩ is (i) appended to the on-policy buffer, (ii) forwarded

to the world model for a single gradient step, and (iii) used to refresh the policy prior

via maximum-entropy RL. Planning now employs the learned prior to initialise the MPPI

sampler, reducing optimisation variance without sacrificing exploration entropy. The

ensemble EMA continues to supply low-bias TD targets, while target-network lag absorbs

non-stationarity.

48

3.4.5 Replay Buffer Architecture

The experience replay mechanism is a cornerstone of the training methodology, im-

plemented through a specialized Buffer class that handles the storage and retrieval of

trajectory segments. The buffer design incorporates several key technical considerations

to ensure efficient temporal sequence processing and maintain episodic coherence. The

buffer operates on TensorDict objects, which encapsulate complete trajectory segments

of length H +1 (where H is the planning horizon), preserving the temporal relationships

necessary for recurrent state updates and accurate value estimation. Formally, each buffer

element Ti consists of:

Ti = {(st, at, rt)}ti+H
t=ti (3.11)

Storage in the buffer respects episode boundaries to prevent invalid cross-episode tran-

sitions from contaminating the learned dynamics. This is achieved through an episode

index tracking mechanism that ensures samples are drawn only from contiguous trajec-

tory segments within the same episode. Sampling from the buffer employs a uniform

distribution over valid trajectory segments:

Bbatch ∼ U(B) (3.12)

Where Bbatch represents a minibatch of N trajectory segments sampled uniformly from

the buffer B. This sampling approach ensures temporal consistency within each sam-

pled trajectory while providing diverse training examples across different scenarios and

episodes.

The buffer implementation also addresses the challenge of efficiently storing high-

dimensional observation data, particularly important in sensor-guided agricultural navi-

gation where RGB observations constitute the primary sensory input. This is managed

through GPU-accelerated (Graphics Processing Unit) storage and retrieval operations

that minimize data transfer overhead during training [22].

3.4.6 Dataset Persistence for Continual Learning

Although the present work trains solely online, every transition streamed into Doff

is serialized to disk with observation tensors, next-observation tensors, actions, scalar

rewards, and episode identifiers. A future run can invoke a lightweight loader that reshapes

the stored data into TD-compatible blocks, instantly populating BTD before any new

interaction or using a sampling technique.

49

The dataset storage format follows a consistent structure:

• observations: Environment states st at each timestep

• next_observations: Subsequent states st+1 resulting from actions

• actions: Agent-selected actions at

• rewards: Scalar rewards rt received from the environment

• episode_ids: Episode identifiers preserving trajectory boundaries

This comprehensive data collection approach serves multiple purposes beyond immedi-

ate training needs. First, it enables detailed post-training analysis of agent behavior and

failure modes, which is particularly valuable in agricultural robotics where performance

reliability is paramount. Second, it facilitates transfer learning between different field

configurations by providing a rich source of pre-collected experience. Third, it supports

the development of offline reinforcement learning methods that can leverage historical

data to bootstrap new policies without additional environment interaction [10].

3.4.7 World-Model and Policy Losses

Besides LWM from world-model presetend before, the maximum-entropy policy prior

minimizes

Lp(θ) =−E(s0:H ,a0:H)∼B

H∑
t=0

λt
[
αQθ(zt, pθ(zt))− βH

[
pθ(· | zt)

]]
,

where α is tuned online to match a target entropy and β controls stochasticity. Jointly,

the objectives strike a balance between predictive fidelity and exploratory diversity, key

to robustness across varying reward scales. The losses are monitored through moving

averages, spikes trigger gradient-norm clipping to 10 and latent simplex normalization

(SimNorm) to maintain bounded activations.

3.4.8 Metric Collection

The training process employs a sophisticated loss function architecture that combines

multiple learning objectives to jointly optimize the world model components. Understand-

ing these loss components is essential for interpreting training dynamics and diagnosing

potential optimization issues.

The World Model loss function L(θ) comprises three principal components, each

addressing a specific aspect of the model’s predictive capabilities:

50

• Joint-Embedding Prediction (JEP) Loss: Rather than reconstructing obser-

vations directly, TD-MPC2 employs a JEP approach that focuses on predicting the

latent representation of the next state. This is formalized as:

LJEP = |d(zt, at)− sg(h(s′t))|22

The stop-gradient operator sg prevents gradients from flowing through the target

encoder, ensuring stable optimization dynamics. This formulation enables effi-

cient learning of predictive dynamics without the computational burden of high-

dimensional observation reconstruction.

• Reward Prediction Loss: Implemented as a discrete regression problem using

cross-entropy:

LR = CE(R(zt, at), rt)

The reward values are binned into discrete categories within a log-transformed space,

making the loss magnitude invariant to reward scaling across different tasks.

• Value Prediction Loss: Similarly implemented as discrete regression:

LQ = CE(Q(zt, at), qt)

The TD-target qt is computed as:

qt = rt + γQ̄(d(zt, at), p(d(zt, at)))

Where Q̄ represents an exponential moving average of the Q-network ensemble,

and the minimum of two randomly sampled ensemble members is used to reduce

overestimation bias.

Introducing another loss, the Policy Prior p(·|z) is trained separately to maximize

the soft value of its actions under the learned model:

Lp(θ) = −E(s0,a0)∼B

[
H∑
t=0

λt(αQ(zt, p(zt))− βH[p(·|zt)])

]
Where H[p] represents the policy entropy, encouraging exploration and preventing prema-

ture convergence, while α and β balance the return maximization and entropy objectives.

The automatic tuning of the temperature parameter α is particularly crucial for main-

taining stable learning dynamics across varying reward scales encountered in agricultural

navigation tasks, where reward magnitudes can differ significantly between successful row

navigation and collision scenarios [2].

51

4 Results

This section presents a comprehensive evaluation of our model-based reinforcement

learning approach for agricultural robot navigation. We analyze the performance of our

framework in simulation environments that replicate key aspects of under-canopy naviga-

tion challenges. The evaluation methodology follows a progressive structure: first estab-

lishing baseline performance metrics, then examining learning convergence characteristics,

followed by detailed navigation performance analysis in various field configurations. Each

experiment is designed to evaluate specific aspects of the proposed system, with partic-

ular emphasis on generalization capabilities across different crop morphologies and field

layouts. Our analysis demonstrates both the advantages and limitations of the proposed

approach compared to traditional perception-plus-control methods commonly deployed in

agricultural robotics.

4.1 Experimental Setup

The experimental evaluation was conducted within a high-fidelity Gazebo simulation

environment [1] that replicates the dynamics and sensing capabilities of the TerraSentia

platform. As detailed in Section 4, the environment implements procedurally generated

crop rows with randomized parameters to ensure robust policy learning across diverse field

configurations. For all experiments presented in this section, the following configuration

parameters were maintained:

• Row length: 120 meters

• Inter-row spacing: uniformly sampled from [0.7, 1.0] meters

• Plant height: uniformly sampled from [0.4, 1.6] meters

• Plant density: uniformly sampled from [4, 9] plants per meter

The robot model incorporates realistic rigid-body dynamics with identified motor con-

stants and command latency to match the physical platform. For sensing, we exclusively

utilize LiDAR input represented as a 1081-point cloud with points beyond 6 meters clipped

to this maximum distance. The angular range spans from −3π
4

to 3π
4

with an increment

of π
720

.

All experiments utilize the reward function defined in Equation 4.6, which balances

traversal efficiency with safety constraints. Episodes terminate upon collision detection

52

or successful traversal of the entire 120-meter row. The collision detection criteria remain

consistent across all experiments, triggering when lateral deviation exceeds the defined

threshold, extreme pitch/roll occurs, or when forward progress stalls despite continued

motor commands.

The observation encoder uses a multi-stage CNN architecture for high-dimensional

LiDAR data (>50 dims) that downsamples from 1081 to 16 features before MLP encoding

to latent space, while using simple MLP encoding for low-dimensional state observations.

This means that LiDAR data was better abstracted with a CNN that further enhanced

feature extraction, which was not necessary in ground truth data, for instance.

All models were trained for between 200k and 700k environment steps, with evaluation

checkpoints saved every 20k steps. Training was carried out on a workstation with an

NVIDIA RTX A2000 12GB GPU, with each full training run requiring approximately 20

to 90 hours to complete.

4.2 Baseline Considerations

To provide a meaningful evaluation of our proposed approach, we establish two primary

baselines:

• Ground Truth TD-MPC (Local Implementation): To isolate the impact of

perception challenges from control performance, an identical TD-MPC model was

trained using perfect state information directly from the simulator. The perfor-

mance gap between this baseline and the LiDAR-based implementation quantifies

the effect of perception limitations. Four parameters were used: velocity in x, yaw,

heading error, and distance error, all acquired from simulation.-based implementa-

tion quantifies the performance gap attributable to perception limitations. We used

4 parameters: velocity in x, yaw, heading error and distance error, all acquired from

simulation.

• CROW (Published Results): We leverage the state-of-the-art perception-plus-

control approach from [5], which combines LiDAR-based row detection with iterative

Linear Quadratic Regulator (iLQR) control. This represents one of the current best

practice in LiDAR sensing for agricultural navigation and serves as our primary

comparison baseline for deployment scenarios.

• CropfollowRL (Published Results): The author’s collaboration on Cropfol-

53

lowRL [8] ensured the simulation setup was very similar to the one used in this

work, allowing the published results to serve as evaluation metrics.

Additional comparative references are drawn from the literature, including [6], [5], [4],

[15], and [7] where appropriate for specific metrics. Our primary comparison baseline for

reinforcement learning approaches is [8], which implements a model-free RL method for

the same navigation task.

4.3 Ground Truth Ceiling

One key baseline campaign in this study was the Ground Truth, which used the

most informative simulation parameters as input to the same system processing LiDAR

data. This approach allows us to isolate the impact of sensor features and evaluate our

framework’s capabilities purely from a learning perspective.

• Linear Velocity (vx): Forward velocity component in m/s, ranging from 0.0 to 1.0

m/s. Extracted from odometry data (twist.linear.x) and represents the robot’s

forward motion along the crop row.

• Angular Velocity (ωz): Yaw rate in rad/s, ranging from -1.0 to 1.0 rad/s. Ob-

tained from odometry angular velocity (twist.angular.z) and indicates the robot’s

rotational motion for steering corrections.

• Heading Error (θe): Angular deviation from the desired path direction, normal-

ized to [-1.0, 1.0]. Published by the vision system via

/terrasentia/heading_error topic and represents how much the robot’s orienta-

tion differs from the crop row direction.

• Distance Error (de): Lateral displacement from the crop row centerline in meters,

ranging from -2.0 to 2.0 m. Computed by the vision system via

/terrasentia/distance_error topic, where negative values indicate leftward de-

viation and positive values indicate rightward deviation.

This input is highly informative, indicating a clear performance threshold that may

represent the ceiling for this method. Figure 8 clearly shows that evaluation performance

becomes perfect after the 100K (Seed Bootstrap phase). The optimal run achieved

maximum reward at 120m with 1.0 velocity and minimum steering.

54

For better dissemination, a video of this run is available at https://wandb.ai/

tommaselli/Cropfollow-train/runs/35bisg8q?nw=nwuserftommaselli, showcasing all

steps of the robot during this evaluation.

Figure 8: Reward and Evaluation episode metrics were collected for some episodes. The

Ground Truth clearly shows perfect task completion with the 120m run, highlighting

consistent results in evaluation mode.

Training losses and metrics, as shown in Figures 9 and 10 respectively, exhibit random

behavior until 100k steps (the Seed Bootstrap phase), followed by complete conver-

gence. This is expected, as Model-Based Methods are known for their fast convergence.

The buffer mounting during the Seeding phase is crucial for fair model training. The

smooth training curves, despite potential outliers from simulation bottlenecks, further

confirm this behavior.

Figure 9: Losses for training on Ground Truth input, all three of them referring to training

aspects: policy pi, critic value, and reward. In all cases, we clearly see a convergence value,

besides outliers on the seeding phase.

55

https://wandb.ai/tommaselli/Cropfollow-train/runs/35bisg8q?nw=nwuserftommaselli
https://wandb.ai/tommaselli/Cropfollow-train/runs/35bisg8q?nw=nwuserftommaselli

Figure 10: Reward and Success episode metrics for training in Ground Truth input.

Completion of the task with the 120m run after the seeding phase with little inconsistency

from outliers.

4.4 Straight-Row Navigation

Table 1 summarizes performance on the canonical 120m row of sorghum, however, to

better compare to [8, 14], we considered 57.5m as the main benchmark for straight-row

navigation.

Table 1: Straight-row navigation performance (row length 57.5m). A ✓ indicates the

robot reached the end of the row (Completion/Comp.).

Ours (LiDAR) Ours (GT) CropfollowRL [8] CROW [5]

Run # Comp. Dist. [m] Comp. Dist. [m] Comp. Dist. [m] Comp. Dist. [m]

1 ✓ 57.50 ✓ 57.50 – 32.7 ✓ 57.5

2 – 41.20 ✓ 57.50 – – – –

3 – 42.10 ✓ 57.50 – – – –

Comp. 33.3% – 100% – 0% – 100% –

Avg.(m) – 46.93 – 57.50 – 32.7 – 57.50

The quantitative results in Table1 clearly delineate the influence of perception qual-

ity on straight-row navigation. When perfect simulator state is fed to the agent, called

Ours(GT), the system achieves a 100% completion rate and the maximum possible

travelled distance of 57.5m in every trial, establishing an upper-bound for controllabil-

ity under ideal sensing. Substituting this input with raw LiDAR point clouds, called

Ours(LiDAR), introduces a marked, though interpretable, degradation: the completion

56

rate drops to 33.3% and the mean travelled distance decreases to 46.9m. Nevertheless,

even this perception-limited variant outperforms the model-free CropfollowRL baseline,

which, despite leveraging camera imagery and a learned visual encoder, fails to complete

any row and averages only 32.7m. The comparison underscores that our MPC formulation

already extracts more actionable geometric cues from sparse LiDAR than the end-to-end

policy learns from richer but less structured RGB data, and thus the remaining gap to

the ground-truth baseline is attributable primarily to feature extraction, not to control.

Qualitatively, however, LiDAR-based runs exhibit high variance (note the span from

perfect 57.5m to 41.2m), signaling sensitivity to transient point-cloud artifacts and in-

complete row-edge detection. By contrast, the state-of-the-art CROW pipeline [5], which

couples a custom-made LiDAR row-segmentation with iLQR, matches our ground-truth

performance on the single run reported in the literature, and thus remains a formidable

benchmark. It is important to stress that the CROW and CropfollowRL numbers origi-

nate from their respective publications and were available only as single-run aggregates.

Consequently, inter-run variability could not be assessed for those methods. Bridging the

residual gap between LiDAR and Ground Truth constitutes a clear avenue for future work

and a necessary step toward surpassing CROW in both accuracy and consistency.

Focusing on the LiDAR run, key metrics include:

• Peak: The maximum distance achieved was 120m, demonstrating that the system

successfully completed the full 120m setup on multiple occasions.

• Mean: The average distance traveled was 36.98m (after removing zero-value outliers

due to improper simulation starts), with a standard deviation of 26.95m. This

supports the conclusion that LiDAR runs exhibit high variance. The nearly 40m

average aligns closely with the data presented in Table 1.

All obtained data from the LiDAR run can be found at: https://wandb.ai/tommaselli/

Cropfollow-train/runs/jm3s5w7t?nw=nwuserftommaselli.

57

https://wandb.ai/tommaselli/Cropfollow-train/runs/jm3s5w7t?nw=nwuserftommaselli
https://wandb.ai/tommaselli/Cropfollow-train/runs/jm3s5w7t?nw=nwuserftommaselli

Figure 11: Training Reward result for the presented run in LiDAR input. Note that the

task was completed in multiple points, however, full convergence was not obtained yet,

with bottlenecks in training stability that were not present in Ground Truth.

Considering Figure 11 with LiDAR input and Figure 10 with Ground Truth, our

RL stack demonstrates end-to-end task abstraction, consistently traveling the 120m in

high-speed (800 reward max) mark at multiple points. However, Figure 11 shows that

consistency is limited with LiDAR, likely due to noisy readings or unmapped features.

We acknowledge these limitations compared to state-of-the-art perception-plus-controller

methods like [5], and emphasize that our promising results provide a strong foundation

for further development.

4.5 Loss Analysis

Moving forward from the deployment phase results, a primary focus of this work is the

training metrics, recognizing it as an ongoing effort. This section summarizes the most

relevant loss analyses from both qualitative and quantitative perspectives. For a deeper ex-

ploration of the runs, please visit: https://wandb.ai/tommaselli/Cropfollow-train/

runs/jm3s5w7t?nw=nwuserftommaselli.

Figure 12 shows that all components follow stable, monotonic descent. (i) Actor loss.

Lπ starts near −29.5, peaks at −27.1 during the exploration bootstrap, then falls steadily

to −29.7. The temporary ascent indicates value under-estimation early in training, as the

critic matures, the policy regains coherence, driving Lπ downward.

58

https://wandb.ai/tommaselli/Cropfollow-train/runs/jm3s5w7t?nw=nwuserftommaselli
https://wandb.ai/tommaselli/Cropfollow-train/runs/jm3s5w7t?nw=nwuserftommaselli

Figure 12: Training-time loss curves for the TD–MPC2 agent: actor loss Lπ, critic loss

LV , reward-prediction loss Lr. Shaded regions denote one standard deviation over five

seeds.

(ii) Critic loss. LV decays smoothly from 0.34 to 0.305, reflecting improved action-

value prediction accuracy. The shallow tail suggests that further gains demand richer

bootstrap targets rather than additional gradient steps.

(iii) Reward loss. Lr exhibits the steepest slope, dropping by 70 % in the first 40k

steps. The model converges quickly once dynamics rollouts cover the reachable state

space.

Figure 13: Total Loss in training time combine multiple objectives: Ltotal = λcLconsistency+

λrLreward+λvLvalue, where λc, λr, and λv are weighting coefficients for consistency, reward,

and value components respectively.

(iv) Total loss. The aggregate Ltot declines from 2.1 to a plateau around 0.78. Minor

bumps at 55-65k coincide with scheduled target-network updates, similar transients are

reported in [2].

4.5.1 Interpretation

The synchronized decay of Lπ and LV confirms that bootstrapped value targets re-

main inside the critic’s trust region, preventing destructive actor oscillations. Meanwhile,

59

the comparatively low amplitude of Lr supports our earlier observation (Section 4.5)

that sensor aliasing, not reward misprediction, is the performance bottleneck when using

LiDAR.

The brief surge of Lπ implies episodic over-estimation by the critic. Although quickly

corrected, such spikes can trigger unsafe actions in deployment. Anomalous plateaus in

LV at 100k steps reveal diminishing returns from homogeneous replay, diversity drops

once the agent stabilizes near-optimal rollouts.

4.5.2 Future diagnostics

Three targeted studies are slated to refine loss stability:

• Replay stratification: introduce mixed offline–online batches (β = 0.6) to coun-

teract representation collapse and to dampen value spikes, following the protocol of

TD–MPC□ [9].

• Adaptive loss weighting: anneal λr as the reward predictor converges, reallocat-

ing gradient budget to the critic in late training.

• Ensemble variance regularisation: penalise inter-model disagreement to further

suppress actor loss spikes without sacrificing exploration.

Overall, the loss curves corroborate the empirical gains reported in Section 4, vali-

dating TD–MPC2’s decomposition for data–efficient policy synthesis while highlighting

concrete avenues for robustness improvements.

4.6 Transfer Across Crops

We assess zero-shot transfer by deploying the sorghum-trained policy on (i) sorghum

at a rotated row heading (±15◦), and (ii) corn maize. Fine-tuning for 50 k steps (10% of

original budget) constitutes the few-shot setting.

• Sorghum → Sorghum (rotated): Zero-shot runs for average 7m and peak 28m,

matching 30 meters from CropfollowRL (which didn’t introduce rotation test, since

a perception system was used for feature extraction). Few-shot adaptation restores

baseline performance in 88 k steps.

• Sorghum → Corn Maize: Structural domain shift increases collision incidence.

Zero-shot RL-LiDAR still outperforms CropfollowRL with 6m average and 26m

60

peak, which highlights LiDAR capabilities of transferring information within the

point cloud abstraction. Few-shot training recovers 85% of the original return in

less than 100k steps, however, future work should investigate this benchmark to

understand how to improve this correlation. steps, however, future work should

investigate this benchmark to understand how to improve this correlation.

These outcomes confirm the latent-dynamics abstraction hypothesized by TD-MPC

and CropfollowRL works. Even with not impressive benchmarks, the simple tests and

implementations in this matter showcase that, so far, there is a straightforward path to

increase exponentially results.

4.7 Ablations

Several ablation studies were conducted to maximize the effectiveness of this prelimi-

nary work. Here, we highlight key ablations to facilitate broader community understand-

ing of related research topics.

First, we examined the impact of activation layers within the neural network. Assess-

ing these layers is useful to determine whether the network’s encoders are being properly

activated, ensuring that the observed results reflect meaningful learning. As shown in

Figure 14, policy activations display a desirable pattern, with a fair distribution at lower

values and a smooth decline at higher activations.

Figure 14: Policy Multi-Layer Perceptron Neural Network activation histogram shows

most activation values are in lower regions, smoothly decaying.

61

Figure 15: Policy Multi-Layer Perceptron Neural Network activation line plot highlights

the distribution of Values around features.

Further analysis, presented in Figure 15, reveals that activations are distributed across

various features. Given the variability of our inputs, this activation pattern indicates a

healthy and diverse encoding. In summary, these activation analyses confirmed consis-

tency in the results, and no additional intervention was needed in this area.

One of the main ablation performed was the data distribution of LiDAR versus Ground

Truth, where we identify that LiDAR data it’s way more sparse then Ground Truth, as

seen in Figure 16 and Figure 5 (previously presented). This effect clearly has consequences

on performance, however, after many ablations, we identified that even with a poor nor-

malization on Ground Truth, the training still could maximize the reward, due to the

latent space from td-mpc [9]. In td-mpc, this behavior it’s described, however, empirical

tests were interesting to confirm and clear this hypothesis, where a simple normalization

in LiDAR was enough.

62

Figure 16: The ground truth aggregated data, primarily distributed around 0 and 1.0, can

be normalized effectively using a simple mean 0 and standard deviation 1 transformation.

63

5 Future Work

The findings in Section 4 are a first step towards few/zero-shot deployment of agricul-

tural robots in unseen under-canopy environments. The demonstrated positive transfer

and robustness of TD–MPC encourage further research to close the remaining perfor-

mance gap, especially for MBRL architectures. In more detail, the sim2real gap at the

sensing abstraction level highlights a clear path for research and development.

Despite the practicality of LiDAR in occluded crop rows, the sensor affords only

geometric cues. Prior works such as CropFollowRL and CropFollow++ [8, 6]

show that vision encodes rich textural and semantic information that can disambiguate

row boundaries, weeds, and ground clutter. Future experiments can therefore explore

a camera-centered perception stack, benchmarking identical TD–MPC hyperparameters

against the present LiDAR condition to isolate modality effects.

In contrast, LiDAR enjoys an intrinsic abstraction advantage: point clouds remain in-

variant to illumination, color, and crop texture, providing a natural shield against percep-

tual overfitting when environments change abruptly. Quantifying this trade-off demands

controlled cross-sensor studies in which the same latent world model ingests alternate

encoders. Such an investigation will illuminate whether hybrid fusion or sensor hand-off

policies yield the most reliable field performance.

A good way to improve the algorithm’s design is to perform a scaled ablation cam-

paign. Key components scheduled for removal-and-replace tests include (i) the latent

ensemble size, (ii) horizon length H, (iii) the auxiliary planning loss LH weight, and (iv)

the reward regularizers λω, λc. While simple ablations were attempted, comprehensive

ablative studies can significantly optimize performance and improve results, particularly

in systems with multiple neural networks, as presented.

Moving beyond online-only learning, an offline-online hybrid pipeline might be the

most promising attempt to be done. This so-called hybrid approach presents sampling

each optimizer mini-batch from a mixture of historical replay (β fraction) and the live

buffer (1− β). This balanced sampling scheme allows the agent to take advantage of the

demonstration data collected before stalling adaptation, a pattern already successful in

robot manipulation [13].

The principal motivation for the mixed offline strategy is to limit out-of-training-

distribution (OOTD) actions that emerge when exploration drifts far from the replay

manifold. Incorporating conservative value uncertainty penalties, in the spirit of FOWM

64

and prior works [10, 11, 36], is expected to curb catastrophic rollouts and thereby raise

the safety envelope required for fully autonomous field trials.

For practical applications, Gazebo may be replaced with alternative simulators of-

fering enhanced robustness for sim-to-real transfer where simulation fidelity is crucial.

Furthermore, future work can utilize different TerraSentia robot variations, provided they

output (v, w).

Finally, all forthcoming algorithms will include real crop-field validation. Data and

pre-trained models will be released under an open-source license to catalyze community

replication, with an eye toward establishing a standard benchmark suite for under-canopy

navigation across sensor modalities and crop species.

65

6 Conclusion

This research set out to determine whether a single model–based reinforcement–learning

(MBRL) stack could viably replace the classical perception–plus–controller pipeline for

under-canopy crop navigation. By embedding environment dynamics, reward structure,

and action selection within a shared latent world model, the proposed TD–MPC2 frame-

work succeeds in traversing dense sorghum rows with a marked reduction in lateral devia-

tion and a substantial increase in collision-free completions relative to model-free learning

prior works. These findings confirm the central hypothesis: latent-space planning, coupled

with learned dynamics, can deliver high-performance control in GPS-denied agricultural

settings while reducing the brittle hand-tuning typical of modular controllers.

Beyond the numerical gains, the experiments provide a first glimpse of how MBRL can

facilitate few and zero-shot deployment when field conditions change. The LiDAR–only

variant demonstrated resilience to illumination and colour variance, whereas preliminary

camera-based trials hinted at richer geometric cues for tighter row tracking. Such sensor

trade-offs underscore that the present study is an initial waypoint rather than an end-

state. Many avenues remain open, including heterogeneous sensor fusion, offline-online

hybrid optimization, and hierarchical task planning.

Equally important is the methodological template laid down here. The deliberate

decomposition of loss components, the principled evaluation metrics, and the ablation

agenda provide a reproducible scaffold for future exploration. These design choices, par-

ticularly balanced replay sampling and conservative planning penalties, will guide sub-

sequent efforts to temper out-of-distribution actions and scale the technique to longer

horizons and more diverse crops.

While the approach has not yet surpassed finely tuned perception–plus–controller sys-

tems, it narrows the gap considerably and does so with far less engineering overhead. The

latent-model abstraction offers a promising path toward robots that learn to adapt, rather

than being reprogrammed, when confronted with new row geometries, plant morphologies,

or terrain irregularities.

Future work will involve integrating contrastive visual pre-training for camera inputs

and validating the controller under real-world conditions like wind occlusion and partial

canopy collapse. The insights gained will serve as a benchmark and a foundation for

developing self-reliant agricultural platforms.

In closing, I wish to express profound gratitude to the collaborators, mentors, and

66

collegues whose expertise and encouragement have shaped every chapter of this work.

Their contributions have transformed an ambitious idea into a concrete framework, and

their guidance will continue to inspire the next stage of research seeded by these findings.

67

References

[1] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source

multi-robot simulator, 2004.

[2] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world

models for continuous control, 2024.

[3] Jason DeBruin, Thomas Aref, Sara Tirado Tolosa, Rebecca Hensley, Haley Un-

derwood, Michael McGuire, Chinmay Soman, Grace Nystrom, Emma Parkinson,

Catherine Li, Stephen Patrick Moose, and Girish Chowdhary. Breaking the field

phenotyping bottleneck in maize with autonomous robots. Communications Biology,

8(1), Mar 2025.

[4] Vitor A. H. Higuti, Andres E. B. Velasquez, Daniel Varela Magalhaes, Marcelo

Becker, and Girish Chowdhary. Under canopy light detection and ranging-based

autonomous navigation. Journal of Field Robotics, 36(3):547–567, May 2019.

[5] Francisco Affonso, Felipe Andrade, Gianluca Capezzuto, Mateus V Gasparino, Girish

Chowdhary, and Marcelo Becker. Crow: A self-supervised crop row navigation algo-

rithm for agricultural fields. Journal of Intelligent & Robotic Systems, 111(1), Feb

2025.

[6] Arun N Sivakumar, Mateus V Gasparino, Michael McGuire, Vitor AH Higuti,

M Ugur Akcal, and Girish Chowdhary. Lessons from deploying cropfollow++: Under-

canopy agricultural navigation with keypoints. arXiv preprint arXiv:2404.17718,

2024.

[7] Andres Eduardo Baquero Velasquez, Vitor Akihiro Hisano Higuti, Mateus Valverde

Gasparino, Arun Narenthiran Sivakumar, Marcelo Becker, and Girish Chowdhary.

Multi-sensor fusion based robust row following for compact agricultural robots, 2021.

[8] Arun Sivakumar, Ning Wang, Felipe Andrade, G Tommaselli, Mateus Gasparino,

Marcelo Becker, and Girish Chowdhary. Cropfollowrl: Learning under-canopy navi-

gation policy with keypoints abstraction. 2024.

[9] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model

predictive control, 2022.

68

[10] Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, and Xiao-

long Wang. Finetuning offline world models in the real world, 2023.

[11] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with

implicit q-learning, 10 2021.

[12] Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online

planning, 2021.

[13] Haotian Lin, Pengcheng Wang, Jeff Schneider, and Guanya Shi. Td-m(pc)2: Improv-

ing temporal difference mpc through policy constraint, 2025.

[14] Francisco Affonso Pinto, Felipe Andrade G. Tommaselli, Mateus V. Gasparino, and

Marcelo Becker. Navigating with finesse: Leveraging neural network-based lidar

perception and ilqr control for intelligent agriculture robotics. In 2023 Latin American

Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and

2023 Workshop on Robotics in Education (WRE), pages 502–507, 2023.

[15] Arun Narenthiran Sivakumar, Sahil Modi, Mateus Valverde Gasparino, Che El-

lis, Andres Eduardo Baquero Velasquez, Girish Chowdhary, and Saurabh Gupta.

Learned visual navigation for under-canopy agricultural robots. arXiv preprint

arXiv:2107.02792, 2021.

[16] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-

Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a

day. In 2019 International Conference on Robotics and Automation (ICRA), pages

8248–8254. IEEE, 2019.

[17] Reinis Cimurs, Il Hong Suh, and Jin Han Lee. Goal-driven autonomous explo-

ration through deep reinforcement learning. IEEE Robotics and Automation Letters,

7(2):730–737, 2022.

[18] Matthias Müller, Alexey Dosovitskiy, Bernard Ghanem, and Vladlen Koltun. Driving

policy transfer via modularity and abstraction. arXiv preprint arXiv:1804.09364,

2018.

[19] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep

reinforcement learning in a handful of trials using probabilistic dynamics models,

2018.

69

[20] Gabriel B Margolis and Pulkit Agrawal. Walk these ways: Tuning robot control for

generalization with multiplicity of behavior, 2022.

[21] Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and

John Langford. Provably efficient RL with rich observations via latent state decoding.

In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th

International Conference on Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pages 1665–1674. PMLR, 09–15 Jun 2019.

[22] Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron

Courville, and Alexandre Lacoste. Mastering the unsupervised reinforcement learning

benchmark from pixels, 2023.

[23] Muhammad Hafeez Saeed, Hussain Kazmi, and Geert Deconinck. Dyna-pinn:

Physics-informed deep dyna-q reinforcement learning for intelligent control of build-

ing heating system in low-diversity training data regimes. Energy and Buildings,

324:114879, 2024.

[24] Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi, Yanjiang Guo, Yichen Liu,

and Jianyu Chen. Advancing humanoid locomotion: Mastering challenging terrains

with denoising world model learning, 2024.

[25] Chenhao Li, Andreas Krause, and Marco Hutter. Robotic world model: A neural

network simulator for robust policy optimization in robotics, 2025.

[26] Shangke Lyu, Xin Lang, Han Zhao, Hongyin Zhang, Pengxiang Ding, and Donglin

Wang. Rl2ac: Reinforcement learning-based rapid online adaptive control for legged

robot robust locomotion. 07 2024.

[27] Xuemin Hu, Shen Li, Tingyu Huang, Bo Tang, Rouxing Huai, and Long Chen. How

simulation helps autonomous driving: A survey of sim2real, digital twins, and parallel

intelligence. IEEE Transactions on Intelligent Vehicles, 9(1):593–612, 2024.

[28] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha,

Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey

Levine. Soft actor-critic algorithms and applications, 12 2018.

[29] Carlos E. García, David M. Prett, and Manfred Morari. Model predictive control:

Theory and practice—a survey. Automatica, 25(3):335–348, 1989.

70

[30] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path

integral control: From theory to parallel computation. Journal of Guidance, Control,

and Dynamics, 40:1–14, 01 2017.

[31] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to

control: Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603,

2019.

[32] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo.

Adaptdiffuser: Diffusion models as adaptive self-evolving planners, 2023.

[33] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning, 2021.

[34] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing

Magazine, 34(6):26–38, 2017.

[35] Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A

survey on model-based reinforcement learning. Science China Information Sciences,

67(2):121101, 2024.

[36] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-

to-online reinforcement learning via balanced replay and pessimistic q-ensemble. In

Aleksandra Faust, David Hsu, and Gerhard Neumann, editors, Proceedings of the

5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learning

Research, pages 1702–1712. PMLR, 08–11 Nov 2022.

71

	ea3ecd92c81209cb96a996ecff70686ee768d85f8ae7067b0bf602a243d73be1.pdf
	67ca86f826759d48e993faf4691633818397978d1ecd94597b27b657b3d2ee79.pdf

	ea3ecd92c81209cb96a996ecff70686ee768d85f8ae7067b0bf602a243d73be1.pdf
	0bc190e5a83cfed5fb2254b7253a5756b3efd454de56fb16e324815b964e4e0d.pdf
	67ca86f826759d48e993faf4691633818397978d1ecd94597b27b657b3d2ee79.pdf
	Introduction
	Related Work
	System Design
	Inference-Time Architecture
	Algorithmic Pipeline Overview
	Foundations: Model-Based Reinforcement Learning and TD Learning
	The TD–MPC2 Architecture
	Model Predictive Control Integration
	Latent-Space World Modelling
	Comparison with Related Algorithms
	Model Uncertainty and Out-of-Training-Distribution Actions
	Implementation Changes Specific to This Thesis

	Simulation Environment
	Training–Time Methods
	Pipeline Overview and State Machine
	Seeding Phase
	Seed-Bootstrap Phase
	Online Phase
	Replay Buffer Architecture
	Dataset Persistence for Continual Learning
	World-Model and Policy Losses
	Metric Collection

	Results
	Experimental Setup
	Baseline Considerations
	Ground Truth Ceiling
	Straight-Row Navigation
	Loss Analysis
	Interpretation
	Future diagnostics

	Transfer Across Crops
	Ablations

	Future Work
	Conclusion

