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estrutura de catalogação da publicação de acordo com a AACR2:
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Aluno: Caio Domiciano Pires dos Santos

Tı́tulo: Grupoides de Lie

Data: 1o Semestre de 2025

BANCA EXAMINADORA

Ivan Struchiner - IME-USP (Orientador)

Luca Accornero - IME-USP (Coorientador)

Cristian Ortiz - IME-USP

Clarice Netto - IME-USP



Aos meus pais Vania e Antonio Carlos

e aos meus avós Izilda, Rubens, Maria Rosa e Fidélis,

por cuidarem de mim e por sempre me motivarem a sonhar.
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You’re going to fail a lot before things work out.

Even though you’ll probably fail over and over

and over again, you have to try every time.

You can’t quit because you’re afraid you might fail.

– Zuko, Avatar: The Last Airbender [27]



RESUMO

DOM. PIRES, C. Grupoides de Lie. 2025. 64 p. Monografia (Bacharelado em Matemática) – Insti-

tuto de Matemática e Estatı́stica, Universidade de São Paulo, São Paulo, 1o Semestre de 2025.

O trabalho se centra no estudo da teoria geral de Grupoides de Lie, que é uma ferramenta

importante para o estudo de simetrias em variedades. Estas estruturas de certa forma genera-

lizam o conceito de Grupo, muito utilizado na compreensão de simetrias de um espaço, mas se

aplicam em contextos mais gerais que carecem dessa simetria.

Nesta monografia, passeamos por diversos conceitos da teoria de Grupoides de Lie, desde

sua construção algébrica/categórica, passando pela estrutura envolvida nos objetos que rodeiam

os grupoides de Lie e até o estudo de Algebroide de Lie de Grupoides de Lie e transitividade de

Grupoides. A escrita tem como objetivo tornar o assunto acessı́vel e autocontido, de modo que

há a listagem de diversos resultados da teoria de Variedades Suaves utilizados para completude.

As referências principais deste trabalho foram [14], [23] e [17], e a originalidade está contida na

escolha da apresentação dos tópicos e na demonstração de certos resultados que não necessaria-

mente estão nas obras referidas.

Palavras-chave: Grupoides de Lie. Grupo de bisseções. Transitividade de Grupoides. Algebroi-

des de Lie.



ABSTRACT

DOM. PIRES, C. Lie groupoids. 2025. 64 p. Monografia (Bacharelado em Matemática) – Instituto

de Matemática e Estatı́stica, Universidade de São Paulo, São Paulo, 1o Semestre de 2025.

This work focuses on the study of the general theory of Lie Groupoids, an important tool

for investigating symmetries on manifolds. These structures, in a certain sense, generalize the

concept of a Group—widely used in understanding the symmetries of a space—but apply to

more general contexts that may lack such symmetry.

In this monograph, we explore various concepts from Lie groupoid theory, ranging from their

algebraic/categorical construction, through the structures involved in the objects surrounding

Lie groupoids, and up to the study of the Lie Algebroid of Lie Groupoids and the transitivity

of Groupoids. The writing aims to make the subject accessible and self-contained; accordingly,

several results from the theory of Smooth Manifolds used for completeness are listed. The main

references for this work were [14], [23] and [17], and its originality lies in the chosen presentation

of the topics and in the proof of certain results that are not necessarily found in the referenced

works.

Keywords: Lie Groupoids. Group of bisections. Groupoid transitivity. Lie Algebroids.
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Introdução

Da teoria de Grupos, trazemos uma noção de simetria que corresponde a analisar o grupo de

automorfismos de um certo objeto geométrico. Apesar disso servir muito bem para caracterizar

diversos tipos de simetrias (em geral, de estruturas homogêneas), muitos objetos apresentam o

que reconhecemos intuitivamente como simetrias, mas apresentam poucos ou nenhum automor-

fismo não trivial. É por conta dessa brecha que os grupos não enxergam que essa monografia

tem razão de existir. Vejamos agora, através de um exemplo, o que falta nos grupos para eles

perceberem mais simetrias e qual é o objeto correto para se analisar simetrias locais de objetos

geométricos.

Consideremos uma malha retangular em R2 com retângulos de tamanho 2× 1. Essa malha

pode ser representada por

X = H ∪V, em que H = R×Z, V = 2Z×R

Cada componente conexa de R2 − X será chamada de azulejo. Aqui, então, estamos nos depa-

rando com uma parede infinita. A pergunta que a teoria de Grupos faria é: qual o grupo de

automorfismos dessa malha? Note que as transformações que deixam a malha invariante for-

mam um subgrupo do grupo de movimentos rı́gidos do plano Eucl(R2) e são completamente

descritas por:

i ) Translações: (x, y) 7−→ (x + 2m, y + n), m, n ∈ Z

ii ) Reflexões nas retas da malha: (x, y) 7−→ (x, n− y) e (x, y) 7−→ (2m− x, y), m, n ∈ Z

iii ) Reflexões nas mediatrizes da malha: (x, y) 7−→ (x, n
2 − y) e (x, y) 7−→ (m− x, y), m, n ∈ Z

Na verdade, há mais transformações do que as listadas (como rotação de 180, reflexões deslizan-

tes, etc.), mas que podem ser geradas a partir dessas. Assim, a resposta para a pergunta é que o

grupo de automorfismos da malha é o grupo gerado por essas transformações, que em particu-

lar tem infinitos elementos. Note que o mesmo grupo de simetrias iria surgir se trocássemos a
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malha apenas pelos vértices dela, o que já parece entranho, uma vez que são objetos nitidamente

distintos. Mais estranho ainda se nos restringirmos a um domı́nio R = [0, 2m] × [0, n] finito

do, como uma parede com azulejos: a quantidade de simetrias descritas pela teoria de grupos

cai vertiginosamente, restando apenas 4 elementos (mesmo grupo de automorfismos que de um

retângulo, apesar de que, intuitivamente, uma parede com azulejos pareça ter mais simetrias

que uma parede lisa). Esse fenômeno aponta que os grupos de simetria não estão captando a

informação de simetria interna/local dos azulejos, nem mesmo as suas repetições ao longo do

domı́nio.

Logo, vamos construir a noção que irá capturar aquilo que os grupos de automorfismos não

enxergam. Considere o grupoide de simetrias locais de R

Gloc
.
= {(γ, x) ∈ Eucl(R2)× R : γ(x) ∈ R e ∃U ⊆ R2 aberto t.q. x ∈ U, γ(U ∩ Pi) ⊆ Pi, ∀i},

em que P1 = R∩ X, P2 = R−P1, P3 = R2− R. Esse conjunto de pares de movimentos rı́gidos

do plano e pontos de B é tal que, para cada ponto x ∈ R, as transformações que podem ser

aplicadas a ele são aquelas que

1. mapeiam x em outro ponto também em R;

2. mapeiam cada ponto uma vizinhança aberta de x em um ponto correspondente que tem a

mesma natureza do ponto original.

Por natureza do ponto entende-se uma das três partes em que dividiu-se o plano, sendo elas:

P1 a malha interceptando R (ou o rejunte da parede); P2 o interior dos azulejos da parede; e

P3 o exterior da parede. Dessa maneira, a condição 2. está dizendo que, se um ponto y em

uma vizinhança aberta U de x (suficientemente pequena) está na parte Pi do plano, então os

movimentos rı́gidos que podemos considerar em Gloc com esse ponto base são aqueles que, além

de mandarem x em um ponto de R, também mandam y para um ponto na mesma parte Pi

que estava antes. Por exemplo, se y estava no interior de um azulejo, as transformações com

base em x a serem consideradas são aquelas que mandam y para dentro de um azulejo. Esse

conjunto é interessante pois podemos operar com os seus elementos através de uma espécie de

multiplicação: dados dois elementos (η, y) e (γ, x) em Gloc, definimos a multiplicação entre eles

por

(η, y) · (γ, x) .
= (η ◦ γ, x),

mas apenas se y = γ(x). Podemos pensar esses elementos como flechas que levam pontos base

e uma pequena vizinhança deles para outros cantos do domı́nio R. O que essa condição para

2



Introdução

a operação está dizendo é o que já está claro: só é possı́vel multiplicar elementos se o primeiro

deles terminar aonde o próximo começar. Além dessa condição, a multiplicação em Gloc possui

as seguintes propriedades:

i ) Ela é associativa, ou seja, se
(
(µ, z) · (η, y)

)
· (γ, x) ou (µ, z) ·

(
(η, y) · (γ, x)

)
estiverem defi-

nidas, então a outra também estará e elas serão iguais;

ii ) Para cada elemento (γ, x) ∈ Gloc, existem elementos identidade à direita 1x
.
= (idR2 , x) e à

esquerda 1γ(x)
.
= (idR2 , γ(x)), de modo que 1γ(x) · (γ, x) = (γ, x) = (γ x) · 1x;

iii ) Toda flecha (γ, x) admite uma flecha inversa
(
γ−1, γ(x)

)
tal que (γ, x) ·

(
γ−1, γ(x)

)
= 1γ(x)

e
(
γ−1, γ(x)

)
· (γ, x) = 1x.

Esse conjunto, segundo a definição que daremos no Capı́tulo 1, é um grupoide (como suge-

rimos no nome) e terá muitas propriedades. Por ora, basta entender dois conceitos relacionados

a ele. Dois pontos de R estarão na mesma órbita se existir uma flecha que leva um ponto a outro.

Note que se x ∈ Pi e y ∈ Pj, com i ̸= j, então com certeza x e y não estão na mesma órbita. Além

disso, definimos a isotropia de x ∈ R como o conjunto das flechas que começam e terminam em x.

Veremos adiante que a isotropia forma um grupo. Esses dois conceitos nos permitem catalogar

os pontos de R de duas maneiras: as órbitas nos dizem quais pontos são parecidos entre si, con-

siderando uma vizinhança ao redor deles. Já as isotropias nos dizem, fixado um ponto, quais são

as transformações que o mantém parado. Pensando nas flechas como simetrias do nosso objeto

retangular, estamos no caminho de identificar suas simetrias locais.

Analisando bem o objeto que temos em mãos, podemos calcular exatamente quais são todas

as suas órbitas e isotropias. Note que pontos em uma mesma órbita terão a mesma isotropia, uma

vez que pontos na mesma órbita são ”parecidos”. Assim, está listado abaixo a caracterização

completa das simetrias de R com base nessas duas ferramentas, que pode ser visualizado na

figura 1.

Órbitas

O1 = interior dos azulejos

O2 = rejunte/arestas internas dos azulejos

O3 = vértices dos azulejos

O4 = rejunte/arestas no bordo de R

O5 = vértices em ”T”no bordo de R

O6 = vértices dos cantos de R

Isotropias

G1 = O(2)

G2 = Z2 ×Z2

G3 = D4

G4 = Z2

G5 = Z2

G6 = Z2

Isso é impressionante, ainda mais comparado ao resultado obtido pela análise através de

3



Figura 1: Retângulo com a malha (parede com azulejos), com os grupos de isotropia de um elemento de cada
órbita destacado por uma figura que possui o mesmo grupo de automorfismos.

grupos. Se quisermos ir além e restringir nosso grupoide a apenas os pontos de vértice de R,

obtemos um objeto finito, cujos pontos estão relacionados através das órbitas e, sobre cada ponto,

sabemos dizer quais são as suas simetrias! Acabamos de colocar uma estrutura geométrica em

um objeto finito.

Neste ponto, espero ter convencido o leitor de que vale a pena estudar e buscar entender

os grupoides e seus limites. Este exemplo foi tirado do artigo [21], no qual há várias outras

aplicações de grupoides, inclusive na Análise, e serve como pontapé inicial para o estudo que

prosseguirá nas demais páginas desta monografia. Um seminário sobre esta monografia foi apre-

sentado pelo autor e se encontra gravado no seguinte link: Apresentação da disciplina MAT0148.

Para facilitar a leitura, deixo aqui um esclarecimento sobre o conteúdo dos capı́tulos subse-

quentes. O Capı́tulo 1 tem caráter introdutório e aborda a parte algébrica e categórica da teoria

de Grupoides de Lie. Nele, os passos são muito detalhados para garantir a compreensão do leitor

no fundamento da teoria. Para facilitar a transição desse contexto abstrato para o de Grupoides

de Lie (grupoides com estrutura de variedade suave), há o Capı́tulo 2. O intuito dele é ser expo-

sitivo, apontando conceitos e resultados da teoria de Variedades suaves, Grupos e Álgebras de

Lie e Fibrados pertinentes à teoria de Grupoides de Lie. Enfim, no Capı́tulo 3 se culmina tudo o

que foi desenvolvido até então com o estudo de Grupoides de Lie, com resultados acerca da es-

trutura desses objetos, assim como uma análise minuciosa de 3 principais modelos portotı́picos:

grupoides transitivos, totalmente intransitivos e de ação.

A teoria de Grupoides de Lie é uma ferramenta extremamente poderosa em Geometria Di-

ferencial. A tı́tulo de curiosidade, algumas das áreas que utilizam esses objetos são a teoria de

Folheações e estruturas transversais, a teoria de Lie e problemas de integrabilidade, estruturas

de Dirac (em que os algebroides de Courant são objeto central), as teorias de Orbifolds e Stacks

4
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Introdução

diferenciáveis, assim como o notável estudo de G-estruturas e na Fı́sica Matemática, com as teo-

rias de Calibre. As referências [16], [14], [13], [23], [24], [25] e [26] contém alguns desses usos de

Grupoides de Lie, que não serão abordados neste trabalho.
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Capı́tulo 1

Grupoides abstratos

“It turns out that the symmetry, and

hence much of the structure, of such

objects can be characterized algebraically

if we use groupoids and not just groups.”

A. Weinstein [21]

Antes de compreender os grupoides de Lie, é preciso se familiarizar com a noção de gru-

poides abstratos, entender como eles se comportam e como manuseá-los algebricamente. Assim,

neste capı́tulo serão introduzidos todos os conceitos iniciais da teoria que depois serão levados

ao contexto diferenciável, a saber: as definições de grupoide abstrato, grupos de isotropia e

órbitas, transitividade de grupoides, que serão ilustrados com diversos exemplos; as proprieda-

des de alguns objetos que permeiam os grupoides; e, por fim, construções a partir da noção de

grupoide, sendo elas categóricas (morfismos, subgrupoides, pull-back) ou especı́fica dos grupoi-

des, como o importante grupo de bisseções.

1.1 Grupoides, Fibras, Isotropias e Órbitas

Definição 1.1. Um Grupoide (abstrato) é uma categoria (pequena) em que todo morfismo é um

isomorfismo. De maneira mais explı́cita, é um par (G, M) em que os conjuntos G (de flechas) e

M (de objetos) são munidos dos seguintes mapas estruturais:

• Os mapas (ou projeções) de saı́da (source) e término (target)

s, t : G −→ M

são sobrejetores e associam cada flecha g ∈ G ao seu elemento de saı́da s(g) e término t(g).
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1.1. GRUPOIDES, FIBRAS, ISOTROPIAS E ÓRBITAS

Escrevemos

y
g←−− x

para indicar que s(g) = x e t(g) = y. A partir desses mapas, definimos a âncora do gru-

poide como sendo o mapa

t× s : G ∋ g 7−→ (t(g), s(g)) ∈ M×M

• O mapa de multiplicação

m : G(2) −→ G

definido no conjunto G2 = {(g, h) ∈ G × G : s(g) = t(h)} das flechas componı́veis e dado

por (g, h) 7−→ m(g, h) .
= g · h .

= gh.

• O mapa (ou seção) unidade

u : M −→ G

associa x ∈ M à flecha unidade/identidade 1x ∈ G em x.

• O mapa inversão

i : G −→ G

associa g a sua inversa i(g) = g−1.

Tais mapas satisfazem:

• Lei da multiplicação: t(m(g, h)) = t(g) e s(m(g, h)) = s(h), ∀(g, h) ∈ G(2),

x
g←− y h←− z =⇒ x

gh←− z

• Lei da associatividade: m(g, m(h, k)) = m(m(g, h), k), ∀g, h, k ∈ G componı́veis,

x
g←− y h←− z k←− w =⇒ g(hk) = (gh)k

• Lei das unidades: ∀x ∈ M, ∃u(x) .
= 1x ∈ G tal que s(1x) = t(1x) = x, i.e.,

x 1x←− x, e ∀g ∈ G, 1s(g)g = g1t(g) = g

8



CAPÍTULO 1. GRUPOIDES ABSTRATOS

• Lei das inversas: ∀g ∈ G, ∃i(g) .
= g−1 tal que s(g−1) = t(g), t(g−1) = s(g), i.e.,

x
g←− y =⇒ y

g−1

←−− x, e gg−1 = 1x = 1t(g), g−1g = 1y = 1s(g)

Dizemos que G é um grupoide sobre M e denotamos por G ⇒ M. As duas setas de G para M

representam os dois mapas de projeção s e t.

Observação 1.2. De maneira geral, para falarmos melhor em associatividade, definimos

G(k) = {(g1, . . . , gk) ∈ Gk : s(gi) = t(gi+1), i = 1, 2, . . . , k}

como o conjunto das k-flexas componı́veis.

Observação 1.3. Tanto as flechas identidade 1x ∈ G quanto as inversas g−1 ∈ G respectivas a

cada flecha g ∈ G são únicas. De fato,

• Se 1x, 1′x ∈ G são identidades em x, então pela Lei das unidades, 1x = 1x1′x = 1′x;

• Se k, h ∈ G são inversas de g ∈ G, então pela Lei das inversas, k = k1t(g) = kgh = 1s(g)h = h.

Definição 1.4. Seja G ⇒ M um grupoide. Dado x ∈ M, chamamos os conjuntos s−1(x) e t−1(x)

de s-fibra sobre x e t-fibra sobre x, respectivamente. A isotropia em x é definida por

Gx = s−1(x) ∩ t−1(x) ⊆ G

Ainda, definimos a órbita de x como sendo

Ox = {t(g) : g ∈ s−1(x)} ⊆ M

Note que o grupoide G pode ser escrito como união disjunta tanto das s-fibras quanto das

t-fibras, ou seja, G =
⊔

y∈M
s−1(y) =

⊔
x∈M

t−1(x).

Observação 1.5. Uma relação de equivalência em um conjunto M pode ser vista como um sub-

conjunto R de M×M satisfazendo o seguinte:

• Reflexividade:

(x, x) ∈ R, ∀x ∈ M;

• Simetria:

(y, x) ∈ R =⇒ (x, y) ∈ R, ∀x, y ∈ M;
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• Transitividade:

(z, y) ∈ R, (y, x) ∈ R =⇒ (z, x) ∈ R, ∀x, y, z ∈ M.

Assim, uma relação de equivalência em M corresponde a uma decomposição de M na união

disjunta de subconjuntos de M, a saber, suas classes de equivalência. Reciprocamente, uma

decomposição de M em subconjuntos disjuntos determina uma única relação de equivalência

em M, de modo que os subconjuntos correspondem às classes de equivalência da relação.

De maneira análoga, uma função ϕ : M −→ N define uma relação de equivalência R(ϕ) cujas

classes de equivalência são os conjuntos de nı́vel de ϕ, isto é:

y ∼ x ⇐⇒ (y, x) ∈ R(ϕ) ⇐⇒ ϕ(y) = ϕ(x), ∀x, y ∈ M.

Reciprocamente, dada uma relação R em M, denotemos por M/R o conjunto das classes de

equivalência e por πR : M −→ M/R, x 7−→ [x]R a projeção. Logo, toda relação de equivalência

é da forma R = R(πR).

Proposição 1.6. Seja G ⇒ M um grupoide. Então,

i ) As isotropias Gx são grupos, para todo x ∈ M;

ii ) A relação x ∼G y ⇐⇒ t−1(x) ∩ s−1(y) ̸= ∅ é de equivalência;

iii ) A órbita Ox é a classe de equivalência de x ∈ G pela relação ∼G e, assim,

M/G .
= M/ ∼G= {Ox : x ∈ M}.

Esse quociente é chamado de espaço de órbitas de G.

Demonstração. Dado x ∈ M, para todo g, h, k ∈ Gx, como s(g) = t(h) e s(h) = t(k), então

g(hk) = (gh)k, pela Lei da associatividade. Pela Lei das unidades, existe 1x ∈ Gx ⊆ G tal que

g1x = g = 1xg. Ainda, pela Lei das inversas, existe i(g) = g−1 ∈ Gx tal que

gg−1 = 1t(g) = 1x = 1s(g) = g−1g

Logo, (i) está provado. Agora, sobre a relação definida, note que pela Lei das unidades, dado

x ∈ M, existe 1x ∈ G, de modo que 1x ∈ Gx =⇒ s−1(x) ∩ t−1(x) ̸= ∅ =⇒ x ∼G x. Se

x ∼G y, então existe g ∈ G tal que t(g) = x e s(g) = y. Então a Lei das inversas garante que

existe g−1 ∈ t−1(y) ∩ s−1(x) =⇒ y ∼G x. Por fim, se x ∼G y e y ∼G z, então existem g, h ∈ G
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tais que t(g) = x, s(g) = y = t(h), s(h) = z. Pela Lei da multiplicação, existe gh ∈ G tal que

gh ∈ t−1(x) ∩ s−1(z) e, portanto, x ∼G z, o que termina a prova de (ii). O item (iii) segue

imediatamente de (ii) ■

Definição 1.7. Seja G ⇒ M um grupoide. Dizemos que G é transitivo se Ox = M, ∀x ∈ M. Por

outro lado, G é dito totalmente intransitivo se Ox = {x}, ∀x ∈ M.

Definição 1.8. Seja G ⇒ M um grupoide. Se s = t, dizemos que G é um fibrado de grupos (abstrato)

sobre M.

Proposição 1.9. Seja G ⇒ M um grupoide sobre M. Então,

i ) G é transitivo se, e somente se, a âncora do grupoide é sobrejetora;

ii ) G é totalmente intransitivo se, e somente se, é um fibrado de grupos.

Demonstração. i ) Ox = M, ∀x ∈ M ⇐⇒ ∀x ∈ M, ∀y ∈ M, ∃g ∈ s−1(x) tal que t(g) = y ⇐⇒

∀x, y ∈ M, ∃g ∈ s−1(x) tal que (t× s)(g) = (y, x) ⇐⇒ (t× s) é sobrejetora;

ii ) Ox = {x}, ∀x ∈ M ⇐⇒ ∀x ∈ M, ∀g ∈ s−1(x), t(g) = x ⇐⇒ ∀g ∈ G, s(g) = t(g) ■

Observação 1.10. Considerando a âncora do grupoide, temos a seguinte regra geral

∆M ⊆ Im(t, s) ⊆ M×M,

em que as igualdade à esquerda e à direita configuram os casos totalmente intransitivo e transi-

tivo, respectivamente.

1.2 Primeiros exemplos

Neste ponto, podemos começar a apresentar alguns exemplos de grupoides abstratos.

Exemplo 1.11. Se M é um conjunto unitário {∗}, a definição de grupoide se reduz à de grupo.

Assim, grupos são grupoides com base trivial. Isso já aponta a dimensão da generalização que

está sendo desenvolvida.

Note também que todo grupoide dessa forma é trivialmente transitivo, uma vez que a órbita

do único ponto a se considerar é todo o conjunto de flexas.

Exemplo 1.12. No extremo oposto do exemplo 1.11 está a identificação de M como um grupoide

sobre si mesmo. Explicitamente, seja M um conjunto e considere G .
= M, s = t = idM e a

multiplicação definida em ∆M dada por

m(x, x) = x, ∀x ∈ M,

11
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de modo que 1x = x e x−1 = x. Assim, M ⇒ M é um grupoide. Note que ele é totalmente

intransitivo, uma vez que sobre cada ponto x só há a flexa 1x.

Os exemplos acima são casos extremos das definições feitas até aqui. A seguir, introduzire-

mos alguns exemplos que nos acompanharão pela teoria e que servirão para nos acostumarmos

com as noções já introduzidas.

Exemplo 1.13. Seja M um conjunto e defina G .
= M×M, s = pr2, t = pr1 e multiplicação dada

por

m((z, y), (y, x)) .
= (z, x), ∀x, y, z ∈ M.

Por simplicidade, denotamos a multiplicação por m((z, y), (y, x)) = (z, y)(y, x). Assim, temos

que 1x = (x, x) e i((y, x)) = (y, x)−1 = (x, y). Este grupoide é chamado de grupoide do par,

denotado por Pair(M), é transitivo e tem isotropias triviais.

Exemplo 1.14. Sejam M, N conjuntos e ϕ : M −→ N uma função. Considerando G .
= R(ϕ),

como em 1.5, com s = pr2|R(ϕ), t = pr1|R(ϕ) e multiplicação dada por

(z, y)(y, x) .
= (z, x), ∀x, y, z ∈ M com ϕ(x) = ϕ(y) = ϕ(z),

de modo que novamente 1x = (x, x) e (y, x)−1 = (x, y). Assim, esse grupoide possui grupos de

isotropia triviais e órbitas não triviais. Esse exemplo generaliza os dois anteriores: se M = N e

ϕ = id, obtemos 1.12, enquanto se N se reduzir a um ponto, obtemos 1.13.

Exemplo 1.15. Sejam M um conjunto e G um grupo. Defina G .
= M × G e s = t = prM com

multiplicação dada por

(x, g)(x, h) = (x, gh), ∀x ∈ M, g, h ∈ G.

Então, temos que 1x = (x, 1G) e (x, g)−1 = (x, g−1), em que 1G ∈ G é o elemento neutro (identi-

dade) do grupo. Note que as órbitas desse grupoide são triviais e, então, o grupoide é totalmente

intransitivo. Além disso, as isotropias são todas isomorfas ao grupo G.

Exemplo 1.16. Novamente, sejam M um conjunto e G um grupo. Consideremos agora G .
=

M× G×M com s = pr3, t = pr1 e multiplicação dada por

(z, h, y)(y, g, x) = (z, hg, x), ∀x, y, z ∈ M, g, h ∈ G,

de modo que 1x = (x, 1G, x) e (y, h, x)−1 = (x, h−1, y). Este grupoide é chamado de grupoide

trivial. Assim como o anterior, os grupos de isotropia desse grupoide são todos isomorfos ao
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grupo G. De fato, dado x ∈ M,

s−1(x) ∩ t−1(x) = pr−1
3 (x) ∩ pr−1

1 (x) = {(x, g, x) ∈ G : g ∈ G} ∼= G

Ainda, a órbita para qualquer ponto é total, porque fixado x ∈ M e dado y ∈ M, a flecha

(y, 1G, x) ∈ s−1(x), em particular, é tal que t((y, 1G, x)) = y. Logo, esse grupoide é também

transitivo.

Exemplo 1.17. Sejam M, N conjuntos, G um grupo e ϕ : M −→ N uma função. Defina

G(ϕ, G)
.
= {(y, g, x) ∈ M× G×M : ϕ(y) = ϕ(x)},

com s = pr3|G(ϕ,G), t = pr1|G(ϕ,G) e multiplicação dada por

(z, h, y)(y, g, x) = (z, hg, x), ∀x, y, z ∈ M, ϕ(x) = ϕ(y) = ϕ(z), g, h ∈ G,

de modo que 1x = (x, e, x) e (y, g, x)−1 = (x, g−1, y). Note que as órbitas são não triviais e que

as isotropias estão novamente fixas e iguais ao grupo G. Similarmente ao exemplo 1.14, este

exemplo generaliza os dois anteriores: obtemos 1.15 ao tomarmos M = N e ϕ = id, assim como

recuperamos 1.16 se reduzirmos N a um único ponto.

Exemplo 1.18. Sejam M um conjunto e G um grupo que age (à esquerda) em M, isto é,

G×M −→ M, (g, x) 7−→ g · x = gx

com as seguintes propriedades:

h · (g · x) = hg · x, 1G · x = x, ∀x ∈ M, g, h ∈ G.

Assim, considere G .
= G×M com s(g, x) = x, t(g, x) = g · x e multiplicação dada por

(h, g · x)(g, x) = (hg, x), x ∈ M, g, h ∈ G,

de modo que 1x = (e, x) e (g, x)−1 = (g−1, g · x). Este grupoide é chamado de grupoide de ação e

denotado por G .
= G ⋉ M. Note que as noções de órbita e isotropia do grupoide correspondem

com as noções usuais para ações de grupos. De fato,

Ox = {t(g, y) ∈ M : (g, y) ∈ s−1(x)} = {t(g, x) ∈ M} = {g · x ∈ M};
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Gx = s−1(x) ∩ t−1(x) = {(g, x) ∈ G ⋉ M : g · x = x} ∼= {g ∈ G : g · x = x}.

Mais exemplos surgirão no Capı́tulo 3 quando mais estrutura for adicionada aos grupoides.

Agora que já temos uma boa ideia do que são grupoides e como eles se comportam, vamos na

direção de entender que propriedades eles tem e quais construções podemos obter a partir deles.

1.3 Ação da isotropia nas fibras

Aproveitando a aparição de ações de grupos, vejamos alguns resultados sobre a ação das iso-

tropias nas fibras de grupoides abstratos, que auxiliarão no entendimento da estrutura desses

novos objetos.

Lema 1.19. Seja G ⇒ M um grupoide. Então, para cada x ∈ M, o grupo de isotropia Gx age em s−1(x)

(à direita) livremente. Analogamente, Gx age em t−1(x) (à esquerda) livremente.

Demonstração. A ação Gx œ s−1(x) é dada por

s−1(x)×t Gx −→ s−1(x), (e, g) 7−→ e · g = m(e, g),

em que s−1(x)×t Gx
.
= {(e, g) ∈ s−1(x)× Gx : s(e) = t(g)}. Esse mapa é, de fato, uma ação à

direita, pois, para todo g, h ∈ Gx, e ∈ s−1(x),

• (e · g) · h = m(e · g, h) = m(m(e, g), h) = m(e, m(g, h)) = m(e, gh) = e · (gh);

• e ∈ s−1(x) =⇒ e · 1x = m(e, 1x) = e.

Resta ver que a ação é livre. Seja e ∈ s−1(x) e g, h ∈ Gx tais que e · g = e · h. Assim,

e · g = e · h =⇒ m(e, g) = m(e, h) =⇒ m(e−1, m(e, g)) = m(e−1, m(e, h))

=⇒ m(m(e−1, e), g) = m(m(e−1, e), h) =⇒ m(m(1x, g) = m(1x, h)

=⇒ g = h.

Analogamente, a função

Gx ×s t−1(x) −→ t−1(x), (g, e) 7−→ g · e = m(g, e),

em que Gx ×s t−1(x) .
=

{
(g, e) ∈ Gx × t−1(x) : s(g) = t(e)

}
, define uma ação livre à direita

Gx

œ t−1(x). ■
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Lema 1.20. Sejam G ⇒ M um grupoide e x ∈ M. Então,

Ox ∼=
s−1(x)
Gx

.

Demonstração. Considere a função t|s−1(x) : s−1(x) −→ M. Note que, na verdade, a imagem

dessa função é t(s−1(x)) = Ox, de modo que podemos escrever t|s−1(x) : s−1(x) −→ Ox, com

e 7−→ t(e), ∀e ∈ s−1(x). Queremos estabelecer o isomorfismo passando-se ao quociente, como

no diagrama abaixo:

s−1(x) Ox

s−1(x)
Gx

t

π ∼=

Assim, defina

T :
s−1(x)
Gx

−→ Ox

[e] 7−→ t(e)

Vejamos que T está bem-definida. Dados e1, e2 ∈ s−1(x) tais que [e1] = [e2], então existe g ∈ Gx

tal que e1 = e2 · g. Logo,

T([e1]) = t(e1) = t(e2 · g) = t(m(e2, g)) = t(e2) = T([e2])

Agora, dados e1, e2 ∈ s−1(x) tais que T([e1]) = T([e2]), então temos que s(e1) = s(e2) = x e

t(e1) = t(e2). Logo,

e1 = m(1t(e1), e1) = m(m(e2, e−1
2 ), e1) = m(e2, m(e−1

2 , e1)) = m(e2, e−1
2 e1︸ ︷︷ ︸
∈Gx

) = e2 · (e−1
2 e1)⇒ [e1] = [e2].

Segue que T é injetora. Ainda, T é sobrejetora: dado y ∈ Ox = t(s−1(x)), existe e ∈ s−1(x)

tal que t(e) = y. Então, e ∈ s−1(x) é tal que

T([e]) = t(e) = y.

Portanto, T é bijeção e conclui-se que Ox ∼=
s−1(x)
Gx

. ■

Esses Lemas serão fundamentais para alguns resultado estruturais de grupoides de Lie no

Capı́tulo 3.
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1.4 Construções Categóricas

Nesta seção, faremos uma abordagem categórica da teoria de grupoides, explorando três concei-

tos importantes desse ponto de vista: morfismos, subcategorias e pull-back.

1.4.1 Morfismos

Do ponto de vista categórico, é importante entender como os grupoides se relacionam uns com

os outros de maneira a preservar suas estruturas, e isso é feito através de morfismos. Como

grupoides são categorias, um morfismo G −→ H entre dois grupoides é um funtor: para cada

flexa e cada objeto de G, associa-se uma flecha e um objeto de H, de modo que essa associação

seja compatı́vel com os diversos mapas estruturais de ambos os grupoides.

Definição 1.21. Sejam G ⇒ M e H ⇒ N grupoides (abstratos). Um morfismo (ou homomorfismo

de grupoides) entre G ⇒ M e H ⇒ N é um par (F , f ) de apliacações F : G −→ H e f : M −→ N

que são compatı́veis com os mapas estruturais. Mais explicitamente, isso se traduz nas seguintes

condições:

i ) Se y
g←− x em G, então f (y)

F (g)←−− f (x) emH;

ii ) Se g, h ∈ G são componı́veis, então F (gh) = F (g)F (h);

iii ) Se x ∈ M, então F (1x) = 1 f (x);

iv ) Se y
g←− x, então F (g−1) = F (g)−1.

A condição (i) pode ser entendida pela comutatividade dos seguintes diagramas:

G H G H

M N M N

sG

F

sH tG

F

tH

f f

Por simplicidade, dizemos que F é um morfismo de grupoides sobre f ou que F recobre f .

Se M = N e f é a identidade, dizemos que F é um morfismo estrito.

Observação 1.22. Note que a equação da condição (ii) faz sentido pela condição (i), pois

(g, h) ∈ G(2) =⇒ sG(g) = tG(h) =⇒ sH(F (g)) = f (sG(g)) = f (tG(h)) = tH(F (h))

=⇒ (F (g),F (h)) ∈ H(2).
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Mais ainda, a condição (iv) segue das anteriores, uma vez que se y
g←− x, então x

g−1

←−− y,

f (y)
F (g)←−− f (x) e f (y)

F (g−1)←−−−− f (x), de modo que

F (g−1)F (g) = F (g−1g) = F (1x) = 1 f (x),

F (g)F (g−1) = F (gg−1) = F (1y) = 1 f (y).

Definição 1.23. Um morfismo (F , f ) : (G ⇒ M) −→ (H⇒ N) entre grupoides é um isomorfismo

se ambos os mapas F e f forem bijetores. Já um morfismo (F , f ) : (G ⇒ M) −→ (G ⇒ M) é

dito um automorfismo.

Exemplo 1.24. Seja G um grupoide sobre M. Então, a âncora t× s : G −→ M×M é um homo-

morfismo estrito de G ⇒ M no grupoide do par M×M ⇒ M. De fato, tomando f = id, temos

que

i ) Se y
g←− x em G, então (t× s)(g) = (y, x) =⇒ pr1(y, x) = y

(y,x)←−− x = pr2(y, x) emH.

ii ) Se (g, h) ∈ G(2), então

(t× s)(g) ◦ (t× s)(h) = (t(g), s(g))(t(h), s(h)) = (t(g), s(h)) = (t(gh), s(gh)) = (t× s)(gh).

iii ) Se x ∈ M, então (t× s)(1Gx ) = (t(1Gx ), s(1Gx )) = (x, x) = 1M×M
x .

Com isso, concluı́-se que a âncora é um homomorfismo estrito entre esses grupoides.

1.4.2 Subgrupoides

Exploremos, agora, mais uma noção categórica: as “sub-coisas”.

Definição 1.25. Um grupoide (abstrato)H⇒ N é dito um subgrupoide (abstrato) de um grupoide

G ⇒ M se existem mapas de inclusão ι̃ : H ↪→ G e ι : N ↪→ M tais que o par (ι̃, ι) é um

homomorfismo de grupoides. Se N = M e ι = id, dizemos que H ⇒ N é subgrupoide amplo de

G ⇒ M.

Observação 1.26. Em geral, identificamos H com a sua imagem ι̃(H) e N com a sua imagem

ι(N). Desse modo, consideramosH como subconjunto de G e N como subconjunto de M.

Por outro lado, se G ⇒ M é um grupoide, H é um subconjunto de G e N um subconjunto de

M, com

s(H) = t(H) = N e 1x ∈ H, ∀x ∈ N,

17
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e tal queH é fechado para multiplicação e inversão do grupoide G, ou seja,

h2h1 ∈ H, ∀(h2, h1) ∈ H(2) e h−1 ∈ H, ∀h ∈ H,

então H ⇒ N será um subgrupoide de G ⇒ M, com os mapas estruturais de H sendo as

restrições dos mapas de G para H (para H(2), no caso da multiplicação). A menos de isomorfis-

mos estritos, todos os subgrupoides de G ⇒ M são construı́dos dessa maneira.

Definição 1.27. Seja G ⇒ M um grupoide (abstrato) e seja N ⊆ M. Então, definimos a restrição

de G a N como o subgrupoide G|N ⇒ N, com mapas s|G|N , t|G|N , m|G|(2)N
, u|N , i|G|N , em que

G|N
.
= s−1(N) ∩ t−1(N).

Observação 1.28. Essa restrição de grupoides é regida por uma propriedade universal: se H ⇒

N é um subgrupoide não amplo de G ⇒ M, entãoH é subgrupoide amplo da restrição G|N ⇒ N.

Escrito de outra forma, a restrição G|N ⇒ N é o menor subgrupoide com a propriedade de que

H⇒ N é seu subgrupoide amplo.

Exemplo 1.29. Sejam M, N conjuntos. Para cada ϕ : M −→ N função, retomando o exemplo 1.14,

o grupoide G = R(ϕ) é subgrupoide amplo do grupoide do par M×M de 1.13. Reciprocamente,

qualquer subgrupoide amplo de M×M é obtido através de um função ϕ : M −→ N.

Exemplo 1.30. Sejam M, N conjuntos, G um grupo e ϕ; M −→ N um função. Assim, o grupoide

G = G(ϕ, G) apresentado em 1.17 é subgrupoide amplo do grupoide trivial M × G × M do

exemplo 1.16.

Exemplo 1.31. Seja M um conjunto, G um grupo agindo em M à esquerda e H um subgrupo

de G agindo também à esquerda em M por restrição. Assim, o grupoide de ação H ⋉ M é

um subgrupoide amplo do grupoide de ação G ⋉ M do exemplo 1.18. Note também que cada

órbita do grupoide se decompõe na união disjunta de órbitas do subgrupoide. Na literatura, esse

fenômeno é chamado de quebra de simetria.

1.4.3 Pull-back

Outra construção importante para obter-se grupoides a partir de outros grupoides é o pull-back

por um mapa entre os espaços base. Seja G um grupoide sobre M. Se φ : N −→ M é uma função

qualquer, consideremos o seguinte conjunto:

φ∗G .
= {(y, g, x) ∈ N × G × N : φ(y) = t(g), φ(x) = s(g)}

18
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Consideremos também os mapas

t∗ .
= tφ∗G

.
= pr1|φ∗G : φ∗G ⊆ N×G ×N −→ N, s∗ .

= sφ∗G
.
= pr3|φ∗G : φ∗G ⊆ N×G ×N −→ N

e φ̃
.
= pr2|φ∗G : φ∗G ⊆ N × G × N −→ G.

Assim, os diagramas abaixo comutam:

φ∗G G φ∗G G

N M N M

s∗

φ̃

s t∗

φ̃

t

φ φ

A maneira que se define o conjunto φ∗G é para que esses diagramas comutem. Ainda, temos

(φ∗G)(2) =
{(

(y2, g2, x2), (y1, g1, x1)
)
∈ φ∗G : x2 = y1

}
.

Mas note que

(
(y2, g2, x2), (y1, g1, x1)

)
∈ φ∗G =⇒ s(g2) = φ(x2) = φ(y1) = t(g1) =⇒ (g2, g1) ∈ G(2),

e então podemos definir a multiplicação em φ∗G por

(y2, g2, x2)(y1, g1, x1) = (y2, g2g1, x1),
(
(y2, g2, x2), (y1, g1, x1)

)
∈ (φ∗G)(2).

Logo, φ∗G é um grupoide sobre N com projeções s∗, t∗ ao definirmos

1x
.
= (x, 1φ(x), x), ∀x ∈ N,

(y, g, x)−1 .
= (x, g−1, y) ∀(y, g, x) ∈ φ∗G.

Mais ainda, nesse contexto, o par (φ̃, φ) é um morfismo de grupoides.

Definição 1.32. Seja G um grupoide sobre M, N um conjunto e φ : N −→ M uma função. O

pull-back de G para N via φ é o grupoide φ∗G sobre N com mapas estruturais explicitados na

discussão acima. Ainda, o morfismo φ̃ que recobre φ é dito o levantamento canônico de φ.

Apesar de incompleta, a maneira mais intuitiva de visualizar o pull-back é notar que as fibras

de grupoide original e do pull-back são iguais entre si, de modo que a mudança do espaço base
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significa apenas um reetiquetamento dessas fibras: ∀xo, yo ∈ N,

(s∗)−1(xo) =
{
(y, g, x) ∈ φ∗G : s∗

(
(y, g, x)

)
= xo

}
=

{
(y, g, xo) ∈ φ∗G

}
mas então s(g) = φ(xo)

∼=
{

g ∈ G : s(g) = φ(xo)
}
= s−1(φ(xo)

)
,

(t∗)−1(yo) =
{
(y, g, x) ∈ φ∗G : t∗

(
(y, g, x)

)
= yo

}
=

{
(yo, g, x) ∈ φ∗G

}
mas então t(g) = φ(yo)

∼=
{

g ∈ G : t(g) = φ(yo)
}
= t−1(φ(yo)

)
.

Consequentemente, as isotropias também são identificadas: (φ∗G)x ∼= Gφ(x), para todo x ∈ N.

Observação 1.33. O pull-back de grupoides é caracterizado por uma propriedade universal: dado

um morfismo (F , f ) não estrito de um grupoide G ⇒ M em outro grupoideH⇒ N, existe uma

fatorização única de F dada pela composição de um homomorfismo estrito Fs de G ⇒ M no

pull-back de H ⇒ N para M via f , seguido do levantamento canônico de f . Isso está expresso

nos seguintes diagramas comutativos:

G f ∗H H G f ∗H H

M M N M M N

sG

F

Fs f̃

s∗ sH

F

tG

Fs f̃

t∗ tH

idM f idM f

em que Fs é dado por

Fs(g) =
(
tG , f (g), sG

)
, ∀g ∈ G.

1.5 Ação de grupoides em fibrados

Grupoides, assim como grupos, são passı́veis de agir em objetos. Se, por um lado, grupos agem

em conjuntos, grupoides agem em fibrados.

Definição 1.34. Um fibrado (abstrato) é uma tripla (E, M, π), em que E e M são conjuntos deno-

minados espaço total e espaço base do fibrado, e π : E −→ M um mapa sobrejetor chamado de

projeção do fibrado.

Por abuso de linguagem, diremos que E é um fibrado (abstrato) sobre M com projeção π, ou

ainda que E π−→ M é um fibrado (abstrato).

Definição 1.35. Uma ação (à esquerda) de um grupoide G ⇒ M em um fibrado E π−→ M com
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mesmo espaço base é uma aplicação

G ×s E −→ E

(g, e) 7−→ g · e

em que G ×s E denota o produto fibrado de G e E sobre M, com relação à projeção s, dado por

G ×s E .
=

{
(g, e) ∈ G × E : s(g) = π(e)

}
,

tal que:

i ) g · Es(g) = Et(g), ∀g ∈ G;

ii ) h · (g · e) = (hg) · e, ∀h, g ∈ G(2), e ∈ Es(g);

iii ) 1x · e = e, ∀e ∈ Ex.

Observação 1.36. As três condições acima pordem ser interpretadas como:

i ) A translação por qualquer elemento g ∈ G (definida apenas na fibra Es(g)) leva a fibra de E

sobre s(g) na fibra de E sobre t(g);

ii ) A composição das translações por dois elementos de G é igual à translação pelo produto

destes dois elementos;

iii ) A translação pela unidade é a identidade.

Assim, a translação por qualquer elemento g ∈ G é um isomorfismo da fibra de E sobre s(g) na

fibra de E sobre t(g), cuja inversa é dada pela translação por g−1 ∈ G. Esse fato já foi usado

implicitamente na condição (i) ao escrevermos g · Es(g) = Et(g) ao invés de g · Es(g) ⊆ Et(g).

Desse modo, podemos retomar e generalizar o exemplo 1.18:

Exemplo 1.37. Seja G um grupoide sobre M que age em um fibrado E sobre M à esquerda.

Considere G̃ .
= G ×s E com

s̃(g, e) = e, t̃(g, e) = g · e, ∀g,∈ G, e ∈ E,

e multiplicação dada por

(h, g · e)(g, e) = (hg, e), ∀g, h ∈ G, e ∈ E.
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Nesse contexto, 1e = (1π(e), e) e (g, e)−1 = (g−1, g · e). Logo, o grupoide G̃ ⇒ E é denominado o

grupoide de ação e denotado por G̃ ⋉ E.

Observação 1.38. Tudo o que foi feito nessa subseção diz respeito a ações à esquerda e tem um

análogo para ações à direita, tomando cuidado com os pontos base nas fibras.

1.6 Bisseções

Para finalizar esta introdução à teoria de grupoides, resta apresentar a noção de bisseção, que

mostrará que ainda há um grupo subjacente em torno de um grupoide.

Definição 1.39. Seja E um fibrado (abstrato) sobre M com projeção π . Uma seção de M é um

mapa σ : M −→ E que é uma inversa à direita de π, i.e., σ : M −→ E é tal que

π
(
σ(x)

)
= x = idM(x), ∀x ∈ M.

Uma seção de um fibrado E é então uma escolha de σ(x) em cada fibra de E, de modo que a

condição exigida significa apenas que a seção em um ponto x deve cair sobre x. Isso generaliza a

noção de gráfico de uma função. Vale notar que a imagem da seção está em bijeção com o espaço

base M, como se vê no figura 1.1.

Observação 1.40. Na definição 1.1 de grupoide, chamamos o mapa unidade u : M −→ G

também de seção unidade. Esse mapa é uma seção de G no sentido apresentado na definição

acima com respeito às projeções s e t.

Um grupoide pode ser visto como um fibrado tanto com projeção s quanto com projeção t.

Assim, convém introduzir uma noção de seção no contexto de grupoides que, de certa maneira,

capture a informação de ambas as projeções.

Definição 1.41. Seja G um grupoide sobre M. Uma bisseção de G é um mapa b : M −→ G tal que

s ◦ b = idM e t ◦ b : M −→ M é uma bijeção. Em outras palavras, uma bisseção é uma seção de M

com respeito à projeção s tal que t ◦ b : M −→ M é uma bijeção.

Observação 1.42. Note que a seção unidade do grupoide G ⇒ M é também uma bisseção, uma

vez que

s ◦ u = idM = t ◦ u.
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Figura 1.1: Visualização da seção s de um fibrado E sobre M (fonte: Wikipedia)

1.6.1 Estrutura de Grupo

Com essa noção em mente, gostarı́amos de introduzir uma multiplicação entre bisseções que

resultasse em uma bisseção. Dadas duas bisseções b1, b2 : M −→ G, poderı́amos, ingenuamente,

definir a multiplicação delas duas como sendo simplesmente

(b1 • b2)(x) = m
(
b1(x), b2(x)

)
= b1(x)b2(x).

Mas isso não estaria bem-definido, uma vez que não há informação garantindo que b1(x) e b2(x)

são componı́veis, para todo x ∈ M. Isto é, para que essa multiplicação faça sentido, é preciso

que

s
(
b1(x)

)
= t

(
b2(x)

)
, ∀x ∈ M,

o que não necessariamente está garantido. Mas note que, como b1 e b2 são bisseções, sabemos

que (s ◦ b1)(x) = x e (s ◦ b2)(x) = x, para todo x ∈ M. Desse modo, olhando para a última

equação destacada e sabendo da impossibilidade de obter informação sobre o término de b2(x),

definimos o produto de duas bisseções por

(b1 • b2)(x) .
= m

(
b1
(
(t ◦ b2)(x)

)
, b2(x)

)
= b1

(
(t ◦ b2)(x)

)
b2(x), ∀x ∈ M.
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Agora, esta operação está bem-definida por construção, uma vez que

s
(

b1
(
(t ◦ b2)(x)

))
= s ◦ b1︸ ︷︷ ︸

idM

(
(t ◦ b2)(x)

)
= (t ◦ b2)(x), ∀x ∈ M.

Mais ainda, este produto define uma bisseção. De fato, para todo x ∈ M

(
s ◦ (b1 • b2)

)
(x) = s

(
b1
(
(t ◦ b2)(x)

)
b2(x)

)
= s

(
b2(x)

)
= (s ◦ b2)︸ ︷︷ ︸

idM

(x) = x, e

(
t ◦ (b1 • b2)

)
(x) = t

(
b1
(
(t ◦ b2)(x)

)
b2(x)

)
= t

(
b1
(
(t ◦ b2)(x)

))
=

(
(t ◦ b1)︸ ︷︷ ︸

bijeção

◦ (t ◦ b2)︸ ︷︷ ︸
bijeção

)
(x),

o que implica que t ◦ (b1 • b2) é bijeção, como composta de bijeções.

Definição 1.43. Seja G ⇒ M um grupoide. Denotemos por Γ(G) (ou por Bis(G)) o conjunto de

todas as bisseções de G.

Proposição 1.44. Seja G ⇒ M um grupoide e considere Γ(G) com a multiplicação de bisseções dado por

(b1 • b2)(x) .
= b1

(
(t ◦ b2)(x)

)
b2(x), ∀b1, b2 ∈ Γ(G), ∀x ∈ M.

Então, Γ(G) é um grupo mco respeito a esse produto.

Demonstração. Sejam b, b1, b2, b3 : M −→ G bisseções quaisquer. Assim, para a associatividade,

∀x ∈ M, por um lado temos que:

(
(b1 • b2) • b3

)
(x) =

(
b1 • b2

)(
(t ◦ b3)(x)

)
b3(x)

=

(
b1

((
t ◦ b2

)(
(t ◦ b3)(x)

))
b2

(
(t ◦ b3)(x)

))
b3(x).

Por outro, temos:

(
b1 • (b2 • b3)

)
(x) = b1

((
t ◦ (b2 • b3)

)
(x)

)
(b2 • b3)(x)

= b1

(
t ◦

(
b2
(
(t ◦ b3)(x)

)
b3(x)

))(
b2
(
(t ◦ b3)(x)

)
b3(x)

)
= b1

(
t ◦

(
b2
(
(t ◦ b3)(x)

)))(
b2
(
(t ◦ b3)(x)

)
b3(x)

)
(⋆)
=

(
b1

((
t ◦ b2

)(
(t ◦ b3)(x)

))
b2

(
(t ◦ b3)(x)

))
b3(x),

em que em (⋆) utiliza-se a Lei da associatividade do grupoide. Agora, note que a seção unidade do
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grupoide é a unidade desse produto. De fato, ∀x ∈ M,

(b • u)(x) = b
(
(t ◦ u︸︷︷︸

idM

)(x)
)
u(x) = b(x)1x = b(x),

(u • b)(x) = u
(
(t ◦ b)(x)

)
b(x) = 1t(b(x))b(x) = b(x).

Por fim, resta deduzir a inversa de uma bisseção. Se b2 fosse a inversa de b1, então, para todo

x ∈ M, 
b1
(
(t ◦ b2)(x)

)
b2(x) .

= (b1 • b2)(x) = u(x) = 1x

b2
(
(t ◦ b1)(x)

)
b1(x) .

= (b2 • b1)(x) = u(x) = 1x

Multiplicando à esquerda ambos os membros da primeira equação pela inversa de b1
(
(t ◦ b2)(x)

)
,

obtemos:

b2(x) = b1
(
(t ◦ b2)(x)

)−1

Agora, como t ◦ b1 : M −→ M é bijeção, tal mapa admite uma inversa. Logo, aplicando a

segunda equação para (t ◦ b1)
−1(x) ∈ M e tomando a projeção t, temos que

b2(x)b1
(
(t ◦ b1)

−1(x)
)
= 1(t◦b1)−1(x) =⇒ (t ◦ b2)(x) = t

(
b2(x)

)
= t(1(t◦b1)−1(x)) = (t ◦ b1)

−1(x).

Dessa forma, concluı́mos que b2(x) = b1
(
(t ◦ b2)(x)

)−1
= b1

(
(t ◦ b1)

−1(x)
)−1. Assim, dada

b : M −→ G bisseção, defina

b−1 : M −→ G

x 7−→ b−1(x) .
= b

(
(t ◦ b)−1(x)

)−1
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Verifiquemos que ela é a inversa de b com respeito à multiplicação em Γ(G):

(b • b−1)(x) = b
(
(t ◦ b−1)(x)

)
b−1(x) = b

(
t
(

b
(
(t ◦ b)−1(x)

)−1
))

b
(
(t ◦ b)−1(x)

)−1

= b
(

s
(

b
(
(t ◦ b)−1(x)

)))
b
(
(t ◦ b)−1(x)

)−1

= b
((

s ◦ b
)︸ ︷︷ ︸

idM

(
(t ◦ b)−1(x)

))
b
(
(t ◦ b)−1(x)

)−1

= b
(
(t ◦ b)−1(x)

)
b
(
(t ◦ b)−1(x)

)−1
= 1x = u(x),

(b−1 • b)(x) = b−1((t ◦ b)(x)
)
b(x) = b

((
t ◦ b

)−1(
(t ◦ b)(x)

))−1
b(x)

= b
(
(t ◦ b)−1 ◦ (t ◦ b)︸ ︷︷ ︸

idM

(x)
)−1b(x)

= b(x)−1b(x) = 1x = u(x).

Portanto, Γ(G) é um grupo. ■

Observação 1.45. O grupo de bisseções Γ(G) vem com um homomorfismo de grupos natural

Φ : Γ(G) −→ Bij(M)

b 7−→ t ◦ b

De fato, se b1, b2 : M −→ G são bisseções, então, para todo x ∈ M,

Φ(b1 • b2)(x) = t ◦ (b1 • b2)(x) = t ◦
(

b1
(
(t ◦ b2)(x)

)
b2(x)

)
= t ◦

(
b1
(
(t ◦ b2)(x)

))
=

(
(t ◦ b1) ◦ (t ◦ b2)

)
(x) =

(
Φ(b1) ◦Φ(b2)

)
(x).

1.6.2 Outro modelo para bisseções

Outra maneira, talvez mais geométrica, de enxergar bisseções é como certos subconjuntos do

espaço total do grupoide. A proposição a seguir apresenta essa visão.

Teorema 1.46. O conjunto Γ(G) das bisseções de um grupoide G ⇒ M está em correspondência 1 para 1

com os subconjuntos B ⊆ G tais que s|B, t|B : B −→ M são bijeções.

Demonstração. Dada uma bisseção b : M −→ G, considere B .
= b(M) ⊆ G. Sejam g, h ∈ B tais
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que s|B(g) = s|B(h). Assim, existem x, y ∈ M tais que g = b(x), h = b(y). Logo,

x = (s ◦ b)(x) = s|B
(
b(x)

)
= s|B(g) = s|B(h) = sB

(
b(y)

)
= (s ◦ b)(y) = y

=⇒ g = b(x) = b(y) = h

Mais ainda, se x ∈ M é elemento qualquer do espaço base, então b(x) ∈ B ⊆ G é tal que

s|B
(
b(x)

)
= (s ◦ b)(x) = x. Portanto, s|B : B −→ M é bijetora. De maneira semelhante, se g, h ∈

B são tais que t|B(g) = t|B(h), então novamente existem x, y ∈ M tais que g = b(x), h = b(y), de

modo que

t|B(g) = t|B(h) =⇒ t|B
(
b(x)

)
= t|B

(
b(y)

)
=⇒ (t ◦ b)(x) = (t ◦ b)(y).

Como (t ◦ b) : M −→ M é um mapa bijetor, então x = y, o que implica que g = b(x) = b(y) = h.

Ademais, dado x ∈ M qualquer, a bijetividade de (t ◦ b) garante que existe um ponto y ∈ M

tal que (t ◦ b)(y) = x e, consequentemente, existe b(y) ∈ B tal que t|B
(
b(y)

)
= x. Portanto,

t|B : B −→ M também é bijeção.

Por outro lado, dado um subconjunto B ⊆ G de modo que s|B, t|B : B ⊆ G −→ M são

bijeções, considere b .
= s|−1

B : M −→ B ⊆ G. Assim, ∀x ∈ M, temos:

(s ◦ b)(x) = s
(
b(x)

)
= s

(
s|−1

B (x)︸ ︷︷ ︸
∈B

)
= s|B

(
s|−1

B (x)
)
= idM(x).

Ainda, note que para a projeção t,

(t ◦ b)(x) = t
(
b(x)

)
= t

(
s|−1

B (x)︸ ︷︷ ︸
∈B

)
= t|B

(
s|−1

B (x)
)
= (t|B ◦ s|−1

B )(x),

∀x ∈ M, o que implica que (t ◦ b) : M −→ M é bijeção, como composta das bijeções t|B e s|B.

Note ainda que B = b(M). Portanto, a correspondência está estabelecida. ■

Nesse modelo, a estrutura de grupo é dada pela multiplicação

B1 • B2 = mG
(
(B1 × B2) ∩ G(2)

)
,

em que mG : G(2) −→ G é a multiplicação no grupoide G ⇒ M. Isso significa que o produto

B1 • B2 consiste no subconjunto de todas as multiplicações g1g2 de elementos componı́veis com

gi ∈ Bi, para i = 1, 2. Essa multiplicação é compatı́vel com a multiplicação do modelo anterior

com respeito à correspondência estabelecida acima. De fato, dadas duas bisseções b1, b2 : M −→
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G, sua multiplicação é dada por

(b1 • b2)(x) = b1
(
(t ◦ b2)(x)

)
b2(x), ∀x ∈ M.

Logo, tomando B1
.
= b1(M) e B2

.
= b2(M), temos claramente que

(b1 • b2)(M) =
{

b1
(
(t ◦ b2)(x)︸ ︷︷ ︸
∈B1

)
b2(x)︸ ︷︷ ︸
∈B2

∈ G : x ∈ M
}

=
{

g1g2 ∈ G : g1 ∈ B1, g2 ∈ B2, (g1, g2) ∈ G(2)
}
= mG

(
(B1 × B2) ∩ G(2)

)
,

em que a componibilidade segue de como foi definido a multiplicação das bisseções no primeiro

modelo. Com isso, segue que o conjunto das bisseções dadas como subconjuntos do espaço total

do grupoide é também um grupo, cujo elemento unidade é o espaço base M = u(G) e cuja

inversa é dada por B−1 .
= iG(B).

Observação 1.47. Este modelo de bisseção como subconjuntos tem a vantagem de ter operações

mais simétricas.

Exemplo 1.48. Dado um grupo G e enxergando-o como um grupoide sobre um ponto G ⇒ {∗},

uma bisseção é simplesmente um elemento de G e Γ(G) = G.

Exemplo 1.49. Dado um fibrado de grupos (abstrato) E π−→ M e exergando-o como um grupoide

E ⇒ M com projeções iguais a π, uma bisseção nada mais é do que uma seção.

Exemplo 1.50. Dado um conjunto M e enxergando-o como um grupoide sobre si mesmo M ⇒

M, a única bisseção existente é a unidade u : M −→ M.

Observação 1.51. O grupo de bisseções Γ(G), nesse modelo, também vem com um homomor-

fismo de grupos natural

Φ : Γ(G) −→ Bij(M)

B 7−→ t|B ◦ (s|B)−1.

Com isso posto, finalizamos a introdução ao reino dos grupoides abstratos e estamos prontos

para adicionar estruturas a eles.
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Capı́tulo 2

A Linguagem da Geometria

“L’algébre n’est qu’une géométrie écrite,

la géométrie n’est qu’une algèbre

figurée.”

Sophie Germain [28]

A Geometria Diferencial moderna está fundamentada na noção de Variedade Diferenciável.

A fim de transpor as noções abstratas de grupoides para estudarmos grupoides ”geométricos”(que

são compatı́veis com objetos geométricos), neste capı́tulo apresentaremos uma visão geral dos

principais resultados dessa teoria que serão utilizados no capı́tulo seguinte. Apenas alguns dos

resultados serão provados, enquanto referências para consulta serão deixadas para os outros.

2.1 Variedades suaves

A noção de Variedade suave é de extrema importância em Matemática desde antes de sua

formalização, aparecendo como o espaço-tempo em relatividade geral, domı́nios de EDO’s, espaços

de fase em mecânica. A definição moderna usada atualmente é devida a H. Whitney em seu ar-

tigo [19] e pode ser encontrada em [3], [1], [2] e [4], assim como as noções adjacentes de espaço

tangente à uma variedade, função suave entre variedades e a diferencial de uma tal função. Com

essas noções em mente, apresentemos um primeiro Teorema fundamental da teoria.

Teorema 2.1 (Teorema da Função Inversa). Sejam f : M −→ N um mapa suave entre variedades

suaves, p ∈ M e q .
= f (p). Se d fp : Tp M −→ TqN é um isomorfismo, então existe um aberto U ∋ p tal

que f (U) ∋ q é aberto em N e f |U : U −→ f (U) é um difeomorfismo.

Em outras palavras, esse teorema garante que uma função entre variedades é um difeomor-

fismo local em torno de um ponto p ∈ M se, e somente se, sua diferencial em p for um isomor-
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fismo.

Definição 2.2. Seja f : M −→ N função suave entre variedades. O posto de f em p ∈ M é o posto

de d fp : Tp M −→ Tf (p)N. Uma função suave cujo posto é o mesmo em todo ponto p ∈ M é dita

de posto constante. Uma função suave é chamada de imersão (ou, respectivamente, submersão) em

p ∈ M se d fp : Tp M −→ Tf (p)N é injetora (respect., sobrejetora). A função será dita uma imersão

(respect., submersão) se o for em todo ponto. Se f : M −→ N for uma imersão e também um

homeomorfismo sobre sua imagem, diremos que f é um mergulho.

Com essas noções sobre mapas entre variedades, temos os seguintes Teoremas:

Teorema 2.3 (Forma Local das submersões). Sejam M, N variedades suaves de dimensões n + k e k,

respectivamente. Se f : M −→ N é uma submersão em p ∈ M, então existem coordenadas locais de M e

N tais que a expressão local de f em p é a projeção canônica de Rn+k em Rk.

Teorema 2.4 (Teorema do Conjunto de Nı́vel para posto constante). Seja f : M −→ N função

suave entre variedades de posto constante igual a r. Então, f−1(q) é uma subvariedade propriamente

mergulhada de M de codimensão r, ∀q ∈ N.

As demonstrações de todos os Teoremas acima podem ser encontrada em [3] e [1]. O próximo

resultados acerca de submersões está demonstrado em [1].

Proposição 2.5. Seja π : M −→ N uma submersão. Então, todo ponto de M está na imagem de uma

seção local suave de π. Mais ainda, se a submersão for sobrejetora, então π é um mapa quociente, e então,

se F : M −→ Z for um mapa suave entre variedades constante nas fibras de π, então existe um único

mapa suave F̃ : N −→ Z tal que F̃ ◦ π = F.

Outro conceito fundamental para Variedades é o de partição da unidade, que permite tornar

argumentos locais em globais.

Definição 2.6. Seja M uma variedade suave. Uma partição da unidade em M é uma coleção {ρi}i

de funções suaves em M tais que:

i ) ρi(p) ⩾ 0, ∀p ∈ M, ∀i;

ii ) A coleção de suportes {supp(ρi)}i é localmente finita;

iii ) ∑
i

ρi(p) = 1, ∀p ∈ M (tal soma é, na verdade, finita por (ii)).

Se {Uα}α é uma cobertura por abertos de M, dizemos que a partição da unidade {ρi}i é subordi-

nada a {Uα}α se, para todo i, existir α tal que supp(ρi) ⊆ Uα.
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Teorema 2.7. Se M é uma variedade suave e {Uα}α é uma cobertura por abertos de M, então existe uma

partição da unidade subordinada a {Uα}α.

Este teorema também está demonstrado em [3] e [1]. Para finalizar essa seção, introduziremos

as métricas Riemannianas:

Definição 2.8. Seja M uma variedade suave. Uma métrica Riemanianna g em M é uma famı́lia

de produtos internos nos espaços tangentes de M que varia suavemente pelos pontos de M.

Explicitamente, g associa a cada ponto p ∈ M uma forma bilinear simétrica positiva definida em

Tp M

gp : Tp M× Tp M −→ R,

de modo que o mapa M ∋ p 7−→ gp(Xp, Yp) ∈ R é suave.

Usando partições da unidade, prova-se que

Teorema 2.9. Toda variedade suave admite uma métrica Riemanianna.

Uma demonstração disso está em [6].

2.2 Grupos de Lie

Aqui, veremos o que são os grupos de Lie e algumas de suas propriedades importantes para

o estudo de grupoides de Lie. Os livros [3] e [1] cobrem os aspectos básicos da teoria. Uma

abordagem muito completa sobre grupos e álgebras de Lie é a apresentada em [7]. Em [2], a

teoria de grupos de Lie também é desenvolvida, chegando até o estudo de espaços homogêneos.

Definição 2.10. Um Grupo de Lie é uma variedade suave com uma estrutura de grupo tal que

a multiplicação do grupo é suave. Isso implica diretamente que o mapa de inversão do grupo

também é suave.

Definição 2.11. Sejam G um grupo de Lie e M uma variedade. Uma ação à direita de G em M é

um mapa suave

m : M× G −→ M

denotado por m(x, g) = x · g que satisfaz:

(
(x) · h

)
· g = x · (hg), x · e = x, ∀g, h ∈ G, x ∈ M,

em que e ∈ G é a identidade do grupo. Ainda, uma ação (à direita) do grupo de Lie G em M é

dita
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i ) livre se x · g = x · h =⇒ g = h, para algum x ∈ M;

ii ) própria se o mapa (x, g) 7−→ (x, x · g) é próprio, ou seja, se a pré-imagem de um compacto

do contradomı́nio pelo mapa é um compacto do domı́nio.

O próximo Teorema está demonstrado em [7] e em [8] e é muito importante para a teoria de

fibrados principais.

Teorema 2.12. Se um grupo de Lie G age livre e propriamente em uma variedade M, então o quociente

M/G admite uma única estrutura suave tal que o mapa quociente π : M −→ M/G é uma submersão.

2.3 Álgebras de Lie

Discutamos, rapidamente, a construção da álgebra de Lie de um grupo de Lie, que será reto-

mada ao fim do Capı́tulo 3 para servir de inspiração para a construção do algebroide de Lie do

grupoide.

Definição 2.13. Uma Álgebra de Lie consiste em um espaço vetorial g munido de um produto

(colchete) [·, ·] : g× g −→ g que satisfaz as seguintes propriedades:

i ) [·, ·] é bilinear;

ii ) [X, Y] = −[Y, X], para X, Y ∈ g;

iii ) [·, ·] satisfaz a identidade de Jacobi:
[
X, [Y, Z]

]
=

[
[X, Y]Z

]
+

[
Y, [X, Z]

]
, ∀X, Y, Z ∈ g.

Como um espaço vetorial, a álgebra de Lie de um grupo de Lie G é definida como

g
.
= TeG.

O colchete definido nesse espaço será definido através de campos vetoriais invariantes à direita

da seguinte maneira: todo g ∈ G age em G por translação à esquerda Lg. Um campo vetorial é

dito invariante à direita se for invariante pela translação Rg, para todo g ∈ G, ou seja,

d(Rg)h(Xh) = Xhg.

Um campo vetorial desse gênero é completamente determinado pelo seu valor na identidade

e ∈ G, uma vez que essa condição implica que

Xg = d(Rg)eXe.
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Reciprocamente, cada X ∈ g tem uma única extensão a um campo vetorial invariante à direita.

O colchete de Lie de campos invariantes à direita é invariante à direita. Isso segue de:

Lema 2.14. Seja f : M −→ N suave, Xi ∈ X(M), Yi ∈ X(N) tais que d f (Xi) = Yi, i = 1, 2. Se

p ∈ M, então, para p ∈ M,

d f [X1, X2]p = [Y1, Y2] f (p).

Demonstração. Se X ∈ X(M), o push-forward de X por f é tal que f∗X ◦ f = d f ◦ X, em que

f∗X ∈ N. Assim, identificando o espaço de campos em M com o de derivações

X(M) ∼= {g : C∞(M) −→ C∞(M)},

se g ∈ C∞(M), então

f∗[X1, X2] f (p)(g) = [X1, X2]p(g ◦ f ) = X1 p
(
X2(g ◦ f )

)
− X2 p

(
X1(g ◦ f )

)
= X1 p

(
f∗X2(g) ◦ f

)
− X2 p

(
f∗X1(g) ◦ f

)
= f∗X1

(
f∗X2(g) ◦ f

)
f (p) − f∗X2

(
f∗X1(g) ◦ f

)
f (p)

= [ f∗X1, f∗X2] f (p)(g)

Logo,

f∗[X1, X2] f (p) = [ f∗X1, f∗X2] f (p) =⇒ d f [X1, X2]p = [d f X1, d f X2] f (p) = [Y1, Y2] f (p).

■

Usa-se essa invariância para definir o colchete em g, impondo a condição de

[X, Y]R = [XR, YR]

Observação 2.15. Usando campos invariantes à esquerda, obterı́amos o colchete oposto ao que

obtivemos acima, isto é, avaliado na identidade, obterı́amos o vetor oposto. Isso resultaria em

mudanças de sinais em fórmulas envolvendo o colchete.

Por fim, apresentemos apenas mais dois conceitos relacionados a álgebras de Lie.

Definição 2.16. Um morfismo de álgebras de Lie (g, [·, ·]) e (g′, [·, ·]′) é uma função linear f : g −→

g′ tal que

f ([X, Y]) = [ f (X), f (Y)]′, ∀X, Y ∈ g.

33



2.4. FIBRADOS

Com a noção de morfismo, podemos conectar uma álgebra de Lie g de um grupo de Lie G

com a álgebra de Lie dos campos de vetores em M por meio de ações infinitesimais.

Definição 2.17. Uma ação infinitesimal de uma álgebra de Lie g em uma variedade M é um mor-

fismo de álgebras de Lie

a : g −→ X(M)

2.4 Fibrados

Para encerrar o capı́tulo, apresentaremos o básico da teoria de fibrados em Geometria Diferen-

cial. Para se aprofundar nesse assunto, algumas referências são [10] e [8], que também abordam

a teoria de conexões em fibrados.

Definição 2.18. Um fibrado vetorial (real) de dimensão r é uma tripla (E, π, M) em que E e M são

uma variedades suave e π : E −→ M é um mapa sobrejetor tal que, para cada ∈ M, π−1(x) .
= Ex

tem uma estrutura de espaço vetorial (real) de dimensão r com a seguinte condição de triviali-

dade local: para cada xo ∈ M, existe um aberto U ∋ xo e um difeomorfismo

h : E|U
.
= π−1(U) −→ U ×Rr

tal que h manda cada fibra Ex para {x} ×Rr por meio de um isomorfismo de espaços vetoriais,

identificando {x} ×Rr com Rr.

Observação 2.19. Fibrados vetoriais complexos são definidos de maneira similar, trocando R por

C, mas tem um comportamento bem diferente dos primos reais. Esse tipo de objeto concerne a

Geometria Algébrica.

Definição 2.20. Seja E π−→ M um fibrado vetorial. Uma seção de E é um mapa suave σ : M −→ E

tal que π ◦ σ = idM. Denotamos o espaço das seções suaves por Γ(E). Dado um aberto U ⊆ M,

o espaço de seções locais Γ(E|U) consiste nas seções cujo domı́nio é U.

Outras operações importantes com fibrados vetoriais podem ser encontradas em [8], com

destaque para a soma direta, que aparecerá em uma demonstração à frente.

Lema 2.21. Todo fibrado vetorial E π−→ Mn admite uma métrica Riemanianna compatı́vel

Demonstração. Tome uma cobertura localmente finita {Ui}i de M de modo a trivializar o fi-

brado, i.e., E|Ui
∼= Ui ×Rr. Assim, existe um produto interno gi em E|Ui dado por

gi
(
vp, wp

)
= ⟨v, w⟩, ∀p ∈ Ui,
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em que ⟨·, ·⟩ é o produto interno usual de Rr. Seja {ρi}i partição da unidade subordinada a

{Ui}i. Logo, como os produtos internos gi são induzidos do produto interno euclideano, então

uma conta simples mostra que

g(p) .
= ∑

i
ρi(p)gi(p)

define uma métrica Riemanianna em E. ■

Para o próximo resultado, indicamos a referência [5] para o entendimento de sequências

curtas exatas de fibrados vetoriais e também para uma demonstração diferente da que será apre-

sentada aqui.

Teorema 2.22. Toda uma sequência curta exata de fibrados vetoriais 0 −→ K i−→ E
p−→ F −→ 0 cinde,

ou seja, para toda sequência dessa forma, existe uma cisão.

Demonstração. Seja g uma métrica Riemanianna em E como no Lema acima. Assim, a cada

x ∈ M, g dá um produto interno em Ex. Agora, note que, como a sequência é curta exata, o mapa

i : K −→ M é injetor, p : E −→ F é sobrejetor e Im(i) = Ker(p). Logo, considerando Im(i) ⊆ E,

defina H .
=

(
Im(i)

)⊥ o fibrado vetorial tal que Hx
.
=

(
Im(i)

)⊥
x , em que a ortogonalidade é dada

pelo produto interno na fibra. Dessa forma, vemos que

E ∼= Im(i)⊕ H.

Mais ainda, identificando K ∼= Im(i) e notando que, como Im(i) = Ker(p) e p : E −→ F é

sobrejetor, podemos identificar F ∼= H, obtemos a seguinte cisão:

E ∼= K⊕ F.

■

Agora, daremos uma breve introdução aos fibrados principais:

Definição 2.23. Seja M uma variedade suave e G um grupo de Lie. Um G-fibrado principal sobre

M consiste em uma variedade P munida de uma ação à direita de G

P× G −→ P, (p, g) 7−→ pg,

e um mapa sobrejetor

π : P −→ M
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G-equivariante, isto é, π(pg) = π(p), ∀p ∈ P, g ∈ G, que satisfaz a seguinte condição: para cada

xo ∈ M, existe um aberto U ∋ xo e um difeomorfismo Ψ : PU
.
= π−1(U) −→ U × G que mapeia

cada fibra π−1(x) para a fibra {x} × G e que é G-equivariante. Nesse caso, a ação à direita de G

em U × G é no segundo fator: (x, a)g = (x, ag).

O Teorema 2.12 garante a seguinte equivalência para fibrados principais.

Proposição 2.24. Uma ação de um grupo de Lie G em uma variedade P é parte da estrutura de um fibrado

principal se, e somente se, a ação é livre e própria. Assim sendo, a variedade base é difeomorfa a M = P/G

munida da única estrutura que faz o mapa quociente πcan : P −→ M ser uma submersão, e a projeção do

fibrado principal é a própria πcan.

Com isso, estamos prontos para voltar os olhos para os grupoides com estrutura diferenciável.
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Capı́tulo 3

Grupoides de Lie

“The greatest illusion of this world is the

illusion of separation. Things you think

are separate and different are actually one

and the same.”

Guru Pathik, Avatar: The Last Airbender[27]

Neste capı́tulo, coração dessa monografia, é apresentada a base da teoria geral de grupoides

de Lie, isto é, grupoides com uma estrutura diferenciável. Diversos resultados apresentados no

Capı́tulo 1 serão retomados, aprofundados e utilizados para o desenvolvimento dessa teoria. Ao

longo das próximas seções, teremos uma pitada de grupoides topológicos, muito presentes nos

trabalhos de Ronald Brown, como [12], entenderemos a noção de bisseção para o caso Lie, assim

como as bisseções locais, e serão apresentadas a estrutura de grupoides de Lie, exemplos novos

e importantı́ssimos para o prosseguimento dos estudos na área, um resultado sobre grupoides

transitivos e sua ligação com os fibrados principais, e a construção do algebroide de Lie de um

grupoide de Lie.

3.1 Uma breve menção aos grupoides topológicos

Definição 3.1. Um Grupoide topológico é um grupoide G ⇒ M cujos conjuntos de flechas G (espaço

total) e de objetos M (espaço base) são espaços topológicos, cujos mapas estruturais s, t, u, m, i são

todos contı́nuos e tais que s e t são mapas abertos.

Observação 3.2. Observe que em um grupoide topológico todas as s-fibras e as t-fibras são

espaços topológicos, os grupos de isotropia Gx = s−1(x) ∩ t−1(x) são grupos topológicos (com a

restrição da multiplicação do grupoide), as órbitas Ox = t(s−1(x)) são subespaços topológicos
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de M e o conjunto de órbitas M/G tem topologia quociente induzida.

A combinação de condições exigidas nessa definição torna a estrutura do grupoide ainda

mais rı́gida, como é apresentado na seguinte

Proposição 3.3. Seja G um grupoide topológico sobre M. Então, o mapa unidade u : M −→ G é um

mergulho topológico, i.e., é um homeomorfismo sobre sua imagem (munido da topologia relativa) e o mapa

inversão i : G −→ G é um homeomorfismo.

Demonstração. Já sabemos que u : M −→ G é contı́nuo e sobrejetor sobre sua imagem. A

injetividade pode ser verificada rapidamente: se x, y ∈ M são tais que u(x) = u(y), então

1x = 1y =⇒ s(1x) = s(1y) =⇒ x = y.

Assim, vendo o mapa unidade como u : M −→ u(M), existe uma inversa u−1 : u(M) −→ M

para ele. Seja V ⊆ M um aberto e considere s−1(V) = {g ∈ G : s(g) ∈ V} ⊆ G. Como

s : G −→ M é contı́nuo, então s−1(V) é aberto em G. Logo,

(u−1)−1(V) = u(V) = {u(x) ∈ G : x ∈ V} = s−1(V) ∩ u(M).

Então, (u−1)−1(V) é aberto na topologia relativa do subspaço u(M) e, portanto, u−1 : u(M) −→

M é contı́nua. Segue que u : M −→ G é mergulho topológico.

Para i : G −→ G, basta notar que este mapa é inversa de si mesmo:

(i ◦ i)(g) = i(g−1) = g = idG(g).

Logo, como é contı́nuo e tem inversa contı́nua, i : G −→ G é homeomorfismo. ■

Vários dos exemplos de grupoides apresentados na seção 1.2 podem ser trazidos para o caso

topológico, em geral exigindo que a base do grupoide seja um espaço topológico e que os gru-

pos, presentes em algumas construções, sejam grupos topológicos. Faremos uma retomada mais

detalhada dos exemplos já apresentados para o caso diferenciável. Por ora, vamos nos ater a

um exemplo significativo para a teoria topológica de grupoides ou, mais amplamente, para a

topologia algébrica: o Grupoide Fundamental.

Exemplo 3.4. Seja M um espaço topológico. Defina G .
= C([0, 1], M)/ Hom([0, 1]), isto é, G é

o espaço dos caminhos contı́nuos em M a menos de reparametrização. Mais explicitamente, G

é o quociente do conjuntos de todas as curvas contı́nuas da forma γ : [0, 1] −→ M pela ação

do grupo de homeomorfismos do intervalo [0, 1] que fixam as extremidades (levam 0 em 0 e
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1 em 1), com s([γ]) = γ(0), t([γ]) = γ(1) e multiplicação dada pela concatenação de curvas

[γ2] ∗ [γ1]
.
= [γ2 ∗ γ1], em que

(γ2 ∗ γ1)(t) =


γ1(t) , 0 ⩽ t ⩽ 1

2

γ2(2t− 1) , 1
2 ⩽ t ⩽ 1

,

de modo que a unidade é dada pelos caminhos constantes, i.e., 1x = [cx(t)], com cx(t) = x, e

a inversão é dada por [γ]−1 .
= [γ−1], em que γ−1(t) = γ(1− t). Este grupoide é nitidamente

topológico e é chamado de grupoide de caminhos de M.

Exemplo 3.5. Seja M um espaço topológico. Defina G como o espaço das classes de homotopia

contı́nua de caminhos contı́nuos em M, relativa às extremidades, com as mesmas operações do

exemplo anterior. Note que as isotropias desse grupoide correspondem ao grupo fundamental

do respectivo ponto, i.e.,

Gx = π1(M, x), ∀x ∈ M.

Assim, esse grupoide topológico é chamado de grupoide fundamental de M e denotado por Π1(M).

3.2 Passagem para o caso diferenciável

Definição 3.6. Um Grupoide de Lie é um grupoide G ⇒ M cujos conjuntos de flechas G (espaço

total) e de objetos M (espaço base) são variedades suaves, cujos mapas estruturais s, t, u, m, i são

todos suaves e tais que s e t são submersões sobrejetoras.

Observação 3.7. A última condição da definição acima garante que s−1(x) e t−1(x) são varieda-

des e que G(2) é subvariedade de G × G, pelo Teorema do Valor Regular. A suavidade de m é para

ser entendida com respeito à estrutura suave de G(2).

Observação 3.8. A partir de agora, todas as variedades apresentadas serão Hausdorff e segundo

contáveis. Uma possı́vel excessão é o espaço total de um grupoide de Lie G, que pode ser não-

Hausdorff, mas mantendo as fibras de suas projeções e o espaço base M como variedades Haus-

dorff e segundo contáveis. Grupoides de Lie não-Hausdorff são muito comuns na teoria de

folheações, que não será muito abordada neste texto. Uma referência para esse tópico é [16].

Com o novo ambiente em mente, é interessante trazer algumas das propriedades e construções

feitas no Capı́tulo 1 para cá.

Definição 3.9. Sejam G ⇒ M e H ⇒ N grupoides de Lie. Um morfismo entre esses grupoides

de Lie é um morfismo (F , f ) (no sentido abstrato) cujas componentes são suaves. Em outras
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palavras, um morfismo entre grupoides de Lie é um funtor suave nas flechas e objetos/unidades.

Definição 3.10. Seja G ⇒ M um grupoide de Lie. Um grupoide de Lie H ⇒ N é dito um

subgrupoide de Lie de G se é um subgrupoide (no sentido abstrato) tal que

ι̃ : H −→ G e ι : N −→ M

são imersões suaves. Um subgrupoide de Lie é dito amplo se for amplo no sentido abstrato.

3.2.1 Exemplos

Neste momento, estamos prontos para retomar os exemplos apresentados na seção 1.2 e ir além

para dar novos exemplos relevantes para a teoria diferenciável. Nos exemplos que generalizam

o que foi feito no Capı́tulo 1, evitaremos a repetição de explicitar detalhadamente todos os mapas

estruturais. As asserções sobre as isotropias, órbitas e transitividade dos grupoides apresentados

até aqui continuam válidas.

Exemplo 3.11. Se M é reduzido a uma variedade unitária {∗}, então a definição de grupoide de

Lie se reduz à de grupo de Lie. Assim, todo grupo de Lie G é um grupoide de Lie com base

trivial G ⇒ {∗}. Temos que Gx = G e Ox = {∗}.

Exemplo 3.12. No extremo oposto do exemplo anterior, toda variedade M pode ser vista como

um grupoide de Lie sobre si mesma M ⇒ M. Neste caso, as projeções são ambas iguais à

identidade, todos os elementos são unidades e a multiplicação é trivial, como em 1.12. Note que

Mx = {x} e Ox = {x} .

Exemplo 3.13. Seja M uma variedade e defina

Pair(M)
.
= M×M ⇒ M,

com s = pr2, t = pr1 e (z, y)(y, x) = (z, x). Note que Pair(M)x = {(x, x)} e Ox = M. Este

grupoide de Lie é chamado de grupoide do par.

Exemplo 3.14. Seja G × M −→ M uma ação suave (à esquerda) de um grupo de Lie G em

uma variedade M e considere o grupoide de Lie G = G ⋉ M ⇒ M, com os mapas idênticos aos

definidos no exemplo 1.18. Este grupoide de Lie é chamado de grupoide de ação e, como observado

anteriormente, tem as noções de isotropia e órbitas compatı́veis com essas mesmas noções para

ações de grupos de Lie. Note que um jeito equivalente de definı́-lo é como subgrupoide do

produto direto dos grupoides G ⇒ {∗} e Pair(M) ⇒ M.
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Exemplo 3.15. Seja E π−→ M um fibrado vetorial. Tomando s = t = π, podemos ver E ⇒ M como

um grupoide de Lie, em que a multiplicação se dá pela soma nas fibras. Em x ∈ M, a isotropia é

Ex
.
= π−1(x) e a órbita é Ox = {x}.

Vejamos agora alguns novos exemplos, particulares do ambiente suave.

Exemplo 3.16. Seja E π−→ M um fibrado vetorial. Considere o conjunto

GL(E) .
=

{
(y, T, x) ∈ M× L(Ex, Ey)×M : T é isomorfismo

}
munido dos mapas s = pr3, t = pr1 e multiplicação definida da mesma forma que para o gru-

poide trivial do exemplo 1.16. Assim, G = GL(E) é o grupoide linear geral associado ao fibrado

E π−→ M. Note que GL(E)x = GL(Ex) (como grupo linear geral associado ao espaço vetorial Ex)

e Ox = M.

Exemplo 3.17. Seja π : M −→ N uma submersão sobrejetora entre duas variedades. Assim,

defina

G = M×N M =
{
(x, y) ∈ M×M : π(x) = π(y)

}
.

Enxerguemos tal conjunto como um grupoide de Lie com projeções s = t = π, de modo que o

resto da estrutura de grupoide vem para tornar G = M×N M um subgrupoide de Lie de Pair(M)

ou, equivalentemente, para tornar o mapa natural M×N M −→ Pair(M) um morfismo de gru-

poides de Lie. Note que os grupos de isotropia são triviais Gx = {(x, x)}, como no grupoide dos

pares, e as órbitas também:

Ox = t
(
s−1(x)

)
= π

(
π−1(x)

)
= {x}.

3.2.2 Bisseções globais e locais

Para um grupoide abstrato G ⇒ M, vimos que uma bisseção de G é uma seção b : M −→ G

tal que t ◦ b : M −→ M é uma bijeção. Para grupoides de Lie, a definição só pede a mais uma

regularidade compatı́vel com a estrutura suave.

Definição 3.18. Seja G um grupoide de Lie sobre M. Uma bisseção (global) de G é uma seção

suuave b : M −→ G de s tal que t ◦ b : M −→ M é um difeomorfismo. Denotemos por Γ(G) ou

Bis(G) o conjunto de todas as bisseções do grupoide de Lie G.

Refazendo exatamente as mesmas deduções e demonstrações feitas no seção 1.6.1 (trocando

“bijeção” por “difeomorfismo”), pode-se munir Γ(G) com a estrutura de grupo dada pela multiplicação

(b1 • b2)(x) .
= b1

(
(t ◦ b2)(x)

)
b2(x), ∀b1, b2 ∈ Γ(G), ∀x ∈ M,
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em que a identidade do grupo é a seção unidade do grupoide u : M −→ G e a inversa de uma

bisseção b ∈ Γ(G), com respeito à essa estrutura, é dada por

b−1(x) .
= b

(
(t ◦ b)−1(x)

)−1, ∀x ∈ M.

Note que dessa forma, o produto de duas bisseções suaves é uma bisseção suave.

Observação 3.19. O modelo apresentado na seção 1.6.2 passa para o caso Lie com a hipótese das

bisseções, como subconjuntos, serem também subvariedades de G, com a propriedade de s e t

serem difeomorfismos quando restritos a essa subvariedade. Assim, vale também o resultado

1.46, que estabelece a correspondência entre os modelos, e a multiplicação dada por

B1 • B2 = mG
(
(B1 × B2) ∩ G(2)

)
, ∀B1, B2 ∈ Γ(G)

está bem-definida, uma vez que, pela correspondência, existe uma bisseção b : M −→ G (que

é, em particular, uma seção) tal que b(M) = B1 • B2, de modo que B1 • B2 é subvariedade. A

identidade do grupo é novamente M e a inversa de B ∈ Γ(G) é dada por B−1 = iG(B).

Observação 3.20. De modo análoga ao que foi feito nas obsevações 1.45 e 1.51, mostra-se que,

independentemente do modelo, Γ(G) vem com um homomorfismo natural

Φ : Γ(G) −→ Diff(M)

b 7−→ t ◦ b

B 7−→ t|B ◦ (s|B)−1.

Mais que isso, o grupo de bisseções tem três ações naturais em G (adotaremos, de agora em

diante, o modelo de bisseções como seções):

• Multiplicação à esquerda: Lb(g) .
= b

(
t(g)

)
g, ∀b ∈ Γ(G), ∀g ∈ G;

• Multiplicação à direita: Rb(g) .
= g

(
b
(
s(g)

))−1
, ∀b ∈ Γ(G), ∀g ∈ G;

• Ação adjunta: Adb(g) .
= (Lb ◦ Rb)(g) = (Rb ◦ Lb)g, ∀b ∈ Γ(G), ∀g ∈ G.

A última igualdade do terceiro item segue do seguinte:

(Lb ◦ Rb)(g) = Lb

(
g
(

b
(
s(g)

))−1
)
= b ◦ t

(
g
(

b
(
s(g)

))−1
)

g
(

b
(
s(g)

))−1
= b

(
t(g)

)
g
(

b
(
s(g)

))−1
,

(Rb ◦ Lb)(g) = Rb

(
b
(
t(g)

)
g
)
= b

(
t(g)

)
g
(

b ◦ s
(

b
(
t(g)

)
g
))−1

= b
(
t(g)

)
g
(

b
(
s(g)

))−1
.
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Note, por fim, que

s ◦ Lb = s, t ◦ Lb = t ◦ b ◦ t, s ◦ Rb = t ◦ b ◦ s, t ◦ Rb = t.

Exemplo 3.21. Seja um grupo de Lie G ⇒ {∗} visto como um grupoide. Uma bisseção nada

mais é do que um elemento de G, de modo que Γ(G) = G como grupos.

Exemplo 3.22. Seja M uma variedade vista como um grupoide de Lie sobre si mesma. Neste

caso, a única bisseção existente é a identidade, o faz com que Γ(M) seja unitário.

Exemplo 3.23. Seja Pair(M) ⇒ M o grupoide do par. Aqui, uma bisseção de Pair(M) é um

difeomorfismo de M: Γ
(
Pair(M)

) ∼= Diff(M).

Exemplo 3.24. Seja G um grupo de Lie que age em uma variedade M. Uma bisseção do grupoide

de ação G⋉ M ⇒ M é um mapa x 7−→
(

g(x), x
)

suave tal que x 7−→ g(x) · x é um difeomorfismo.

Exemplo 3.25. Seja E π−→ M um fibrado vetorial visto como um grupoide E ⇒ M. Assim, uma

bisseção desse grupoide é o mesmo que uma seção. De modo mais geral, isso é verdade para

qualquer fibrado de grupos de Lie, que veremos adiante no exemplo 3.40.

Em geral, não existe uma bisseção (global) passando por uma flecha g ∈ G, mas veremos

adiante que podemos garantir a existência local de uma bisseção que passa pela flecha escolhida.

Definição 3.26. Seja G ⇒ M um grupoide de Lie. Uma bisseção local de G é uma seção local

b : U −→ G de s, em que U ⊆ M é aberto, tal que t ◦ b : U −→ M é um mergulho aberto, isto é,

t ◦ b : U −→ V ⊆ M é um difeomorfismo entre abertos de M.

Observação 3.27. Uma bisseção local b : U −→ M age localmente em G pelas mesmas ações

descritas para bisseções globais:

• Multiplicação à esquerda: Lb : t−1(U) −→ t−1((t ◦ b)(U)
)
;

• Multiplicação à direita: Rb : s−1(U) −→ s−1((t ◦ b)(U)
)
;

• Ação adjunta: Adb : s−1(U) ∩ t−1(U) −→ G.

Proposição 3.28. Seja G um grupoide de Lie sobre M. Então, para todo g ∈ G, existe uma bisseção local

b : V −→ G tal que g ∈ b(V).

Demonstração. Escrevendo m = dim(M) ⩽ dim(G) = n, dado g ∈ G, existem cartas (φ, U) de

G e (ψ, V) de M, com φ(g) = 0 ∈ Rn, s(U) ⊆ V e ψ
(
s(g)

)
= 0 ∈ Rm e tais que

(ψ ◦ s)(g1, ..., gm, gm+1, ..., gn) = (g1, ..., gm),
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pela Forma local das submersões. Tome
{

∂gi|g
}n

i=1 e
{

∂xj|s(g)
}n

j=1 bases de TgG e Ts(g)M, res-

pectivamente. Assim, temos que Ker(ds)g = span
{

∂gi|g : m + 1 ⩽ i ⩽ n
}

. Logo, como

dimKer(ds)g = dimKer(dt)g, existe W ⊆ TgG de modo que

W ⊕Ker(ds)g = TgG = W ⊕Ker(dt)g.

Dessa forma, podemos escrever W =
{

v+ Av : v ∈ Ker(ds)g
}

, de modo que a transformação A :

Ker(ds)g −→ (Ker(ds)g
)⊥ é linear. Assim, ao identificarmos Rn com TgG através de ei ↔ ∂gi|g,

existe ε > 0 tal que, para |x| < ε, x + Ax ∈ φ(U), o que permite considerarmos ψ(V) + Aψ(V) =

φ(U). Logo, o mapa

bo : ψ(V) −→ φ(U)

x 7−→ x + Ax

nos permite definir b = φ−1 ◦ bo ◦ ψ : V −→ G tal que s ◦ b = idV , dbs(g)(Ts(g)M) = W e

bo(0) = 0 = φ(g), de modo que (b ◦ s)(g) = g. Disso, segue que d(t ◦ b)s(g) é isomorfismo e,

pelo Teorema da Função Inversa, existe vizinhança Vo de s(g) tal que (t ◦ b)|Vo : Vo −→ (t ◦ b)(Vo)

é difeomorfismo. ■

3.3 Estruturas dos grupoides de Lie

Antes de apresentar e explorar mais exemplos de grupoides de Lie, faremos uma pausa para

compreender o que uma estrutura diferenciável em um grupoide impõe nos demais objetos que

o rodeiam. Comecemos traduzindo o resultado da Proposição 3.3 para o caso Lie:

Teorema 3.29. Seja G um grupoide de Lie sobre M. Então, o mapa unidade u : M −→ G é um mergulho

suave e o mapa inversão i : G −→ G é um difeomorfismo.

Demonstração. De 3.3, sabemos que u : M −→ G é um mergulho topológico. Ainda, como

s ◦ u = idM, pela Regra da Cadeia,

ds1x ◦ dux = dsu(x) ◦ dux = d(s ◦ u)x = d(idM)x = idTx M

Como idTx M é bijetora e ds1x é sobrejetora (s é submersão), segue que dux é injetora, ∀x ∈ M, o

que implica que u : M −→ G é imersão injetora. Portanto, é um mergulho suave.

Analogamente ao caso contı́nuo, o mapa inversão i : G −→ G é inversa de si próprio e é

suave, então é um difeomorfismo. Outra maneira de ver isso seria utilizando o Teorema da Função
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CAPÍTULO 3. GRUPOIDES DE LIE

Implı́cita. ■

Observação 3.30. A Proposição acima respalda a identificação M ∼= u(M), que poderá aparecer

ao longo do texto. Isso significa identificar x ∈ M com 1x ∈ u(M).

Os próximos Teoremas a serem apresentados garantem que os grupos de isotropia são grupos

de Lie e dependem do seguinte

Lema 3.31. Seja G ⇒ M um grupoide de Lie. Então, o mapa tx
.
= t|s−1(x) : s−1(x) −→ M tem posto

constante.

Demonstração. Dados g1, g2 ∈ s−1(x), defina h = g1g−1
2 ∈ G. Assim, pela Proposição 3.28,

∃b : U −→ G bisseção local tal que (b ◦ s)(h) = h. Isso implica que

h = b
(
s(h)

)
= b

(
s(g−1

2 )
)
= (b ◦ t)(g2).

Assim, tomando V .
= (t ◦ b)(U), o difeomorfismo Lb|s−1(x) : t−1(U)∩ s−1(x) −→ t−1(V)∩ s−1(x)

mapeia g2 em g1. De fato,

Lb(g2) = b
(
t(g2)

)
g2 = (b ◦ t)(g2)g2 = hg2 = g1.

Além disso, ∀g ∈ t−1(U) ∩ s−1(x), temos a comutatividade do seguinte diagrama:

t−1(U) ∩ s−1(x) t−1(U) ∩ s−1(x)

U V

Lb|s−1(x)

tx tx

t◦b

(tx ◦ Lb)(g) = tx
(
(b ◦ t)(g)g

)
= t

(
(b ◦ t)(g)

)
= (t ◦ b ◦ t)(g) = (t ◦ b ◦ tx)(g)

=⇒ d(tx ◦ Lb)|g2 = d
(
(t ◦ b) ◦ tx)

)
|g2 =⇒ d(tx)g1 ◦ d(Lb)g2︸ ︷︷ ︸

isomorfismo

= d(t ◦ b)t(g2)︸ ︷︷ ︸
isomorfismo

◦d(tx)g2

=⇒ rank
(
d(tx)g1

)
= rank

(
d(tx)g2

)
Portanto, tx : s−1(x) −→ M tem posto constante. ■

Teorema 3.32. Seja G um grupoide de Lie sobre M. Então, t−1(y) ∩ s−1(x) ⊆ G é uma subvariedade

mergulhada e fechada, se x e y estão na mesma órbita.
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Demonstração. Sabemos que s, t são submersões, então, em particular, s−1(x) é subvariedade

mergulhada e fechada de G. Pelo Lema 3.31, tx : s−1(x) −→ M tem posto constante, então

t−1(y) ∩ s−1(x) = (t|s−1(x))
−1(y) = (tx)

−1(y)

é subvariedade mergulhada e fechada de s−1(x). A asserção inicial desta demonstração agora

implica que t−1(y) ∩ s−1(x) é subvariedade mergulhada e fechada de G. ■

Corolário 3.33. Seja G um grupoide de Lie sobre M. Então, as isotropias Gx são grupos de Lie, para todo

x ∈ M.

Demonstração. Tomando x = y no Teorema 3.32, temos diretamente que Gx = s−1(x) ∩ t−1(x)

é subvariedade mergulhada e fechada de G. Como a multiplicação e a inversão em Gx são

restrições das operações do grupoide (que são suaves em G), segue que Gx também herda a

suavidade das operações de G, tornando-se então um grupo de Lie. ■

Proposição 3.34. Sejam G ⇒ M,H ⇒ N grupoides de Lie F : G −→ H um morfismo de grupoides de

Lie sobre f : M −→ N. Então, as restrições

F|x : Gx −→ H f (x)

são morfismos de grupos de Lie.

Demonstração. A suavidade da restrição descende da suavidade de F , uma vez que Gx e H f (x)

são grupos de Lie mergulhados e fechados. Basta verificar que F|x é morfismo de grupos, mas

isso segue pois F é morfismo dos grupoides G eH:

F|x(g2g1) = F (g2g1) = F (g2)F (g1) = F|x(g2)F|x(g1), ∀g1, g2 ∈ Gx.

■

Lema 3.35. Seja G ⇒ M um grupoide de Lie. Então, para cada x ∈ M, o grupo de isotropia Gx age em

s−1(x) (à esquerda) propriamente.

Demonstração. Mostremos que o mapa

Φ : s−1(x)× Gx −→ s−1(x)× s−1(x)

(g, h) 7−→ (g, gh)
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é próprio. Seja K ⊆ s−1(x)× s−1(x) compacto e
(
(gn, hn)

)
n ⊆ Φ−1(K) sequência tal que

Φ
(
(gn, hn)

)
= (gn, gnhn) −→ (g, k).

Note que a continuidade dos mapas i : G −→ G e m : G(2) −→ G do grupoide permite as

seguintes passagens:

(gn, gnhn) −→ (g, k) =⇒ gn −→ g, gnhn −→ k =⇒ g−1
n −→ g−1, gnhn −→ k

=⇒ hn = g−1
n gnhn −→ g−1k .

= h

Portanto, (gn, hn) −→ (g, g−1k) = (g, h), o que termina a demonstração. ■

Corolário 3.36. Seja G ⇒ M um grupoide de Lie. Então, tx
.
= t|s−1(x) : s−1(x) −→ Ox é um Gx-fibrado

principal.

Demonstração. Segue da ação de Gx sobre s−1(x) ser livre e própria (Lemas 1.19 e 3.35). ■

Agora que sabemos um pouco mais sobre as isotropias, nada mais justo que entendermos a

estrutura das órbitas.

Teorema 3.37. Seja G ⇒ M um grupoide de Lie. Então, as órbitas Ox ⊆ M são subvariedades imersas.

Demonstração. Do Lema 1.20, temos que Ox ∼=
s−1(x)
Gx

. Como Gx é grupo de Lie, s−1(x) é sub-

variedade mergulhada de G e Gx age em s−1(x) de maneira livre e própria (Lemas 1.19 e 3.35),

segue de [ref Cap2] que Ox é subvariedade de M. Agora, analisemos os seguintes diagramas

nitidamente comutativos, em que ι denota o mapa de inclusão dos devidos espaços:

s−1(x) G Ts−1(x) TG

Ox M TOx TM

t

ι|s−1(x)

t dt

d(ι|s−1(x))

dt

ι|Ox d(ι|Ox )

Note que a comutatividade se traduz nas expressões

ι|Ox ◦ t = t ◦ ιs−1(x), d(ι|Ox) ◦ dt = dt ◦ d(ι|s−1(x)).

Dado y ∈ Ox, seja v ∈ Ker(dιy : TyOx −→ Ty M), i.e., v ∈ TyOx tal que dι|Ox(v) = 0. Assim,

existe w ∈ Ts−1(x) tal que v = dt(w). Logo,

0 = d(ι|Ox)(v) =
(
d(ι|Ox) ◦ dt

)
(w) =

(
dt ◦ d(ι|s−1(x))

)
(w) = dt(w) = v.

Portanto, dιy : TyOx −→ Ty M é injetora, para todo y ∈ Ox, tornando ι|Ox uma imersão. ■
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Observação 3.38. Na verdade, as órbitas são também subvariedades iniciais, isto é, se f : N −→

M é suave e f (N) ⊆ Ox, então a correstrição f̄ : N −→ Ox pode ser escrita da forma π ◦ u ◦ f ,

que é claramente suave.

Resumindo os resultados que obtivemos até o momento, temos o seguinte

Teorema 3.39. (Teorema Estrutural dos Grupoides de Lie)

Seja G um grupoide de Lie sobre M. Então, para qualquer x ∈ M, tem-se que:

i ) A seção unidade u : M −→ G é um mergulho;

ii ) O mapa de inversão i : G −→ G é um difeomorfismo;

iii ) Os grupos de isotropia Gx são Grupos de Lie;

iv ) A correstrição tx
.
= t|s−1(x) : s−1(x) −→ Ox ⊆ M é um Gx-fibrado principal;

v ) As órbitas Ox são subvariedades imersas iniciais de M.

3.4 Mais exemplos

Exemplo 3.40. Um fibrado de grupos de Lie (Lie group bundle) π : Q −→ M é tal que

∀x ∈ M, ∃Ux ⊆ M tal que Q|Ux
∼= Ux × G,

em que G é um grupo de Lie. Em particular, todo fibrado vetorial é um Lie group bundle ao

considerarmos a estrutura aditiva nas fibras. Desse modo, Q ⇒ M é um grupoide, com s = t = π

e multiplicação dada por

m(g1, g2) = g ⇐⇒ π(g1) = π(g2) = π(g), g1g2 = g.

Observação 3.41. Na direção contrária do apresentado acima, todo grupoide de Lie cujas projeções

são iguais (s = t) define uma famı́lia de grupos de Lie: uma submersão sobrejetora com estru-

tura de grupo nas fibras de modo que a multiplicação na fibra depende suavemente do ponto

base. Em geral, isso não é um Lie group bundle uma vez que não precisam ser trivializações locais.

Na verdade, os grupos para fibras diferentes não precisam nem ser isomorfos como grupos de

Lie, ou mesmo como variedades. Denominamos esse caso de bundle of Lie groups.1

1Aqui, demos preferência a manter a terminologia em inglês para não haver confusões numa possı́vel tradução.
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Exemplo 3.42. Dada uma variedade M, consideremos o grupoide fundamental de M, visto como

grupoide topológico no exemplo 3.5, mas agora no contexto suave:

Π(M) =
{
[γ] : γ : [0, 1] −→ M é suave

}
,

em que [γ] é a classe de homotopia da curva γ, relativa às extremidades. Provemos que Π(M) é

um grupoide de Lie sobre M com projeções

s
(
[γ]

)
= γ(0), t

(
[γ]

)
= γ(1),

e multiplicação dada por [γ] ∗ [η] .
= [γ ∗ η], definida para curvas tais que γ(0) = η(1).

Em primeiro lugar, vejamos que Π(M) é uma variedade suave. Seja π : M̃ → M o recobri-

mento universal de M. considere a aplicação

F : M̃× M̃ −→ Π(M)

( p̃, q̃) 7−→ [π(γ)]

em que γ : [0, 1] −→ M̃ é curva ligando p̃ à q̃. γ é única a menos de homotopia de caminhos e,

logo, está bem-definida. Note que, se f ∈ Aut(π), π ◦ f = π e então F é equivariante pela ação

diagonal de Aut(π) em M̃× M̃. De fato,

F( f ( p̃), f (q̃)) = F( p̃, q̃),

Mais do que isso,

F( p̃1, q̃1) = F( p̃2, q̃2) =⇒ π( p̃1) = π( p̃2) e π(q̃1) = π(q̃2)

=⇒ ∃ f , g ∈ Aut(π) tais que f ( p̃1) = p̃2 e g(q̃1) = q̃2,

de modo que

F( p̃1, q̃1) = F( p̃2, q̃2) ⇐⇒ ( p̃2, q̃2) = ( f ( p̃1), f (q̃1)).

Assim,

F( p̃1, q̃1) = F( p̃2, q̃2) = F( f ( p̃1), g(q̃1)) = F( p̃1, f−1g(q̃1))

e portanto [π(γ)] = [π(η)], onde γ : p̃1 → q̃1, η : p̃1 → f−1g(q̃2). Agora, γ é um levantamento

de π(γ) por π começando em p̃1, e η um levantamento de π(η) por π começando em p̃1, e

portanto [γ] = [η]. Em particular, f−1g(q̃1) = q̃1 e portanto f = g. Mais ainda, F induz uma
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bijeção:

F̃ :
M̃× M̃
Aut(π)

−→ Π(M).

Como a ação de Aut(π) em M̃ é livre e própria, a ação diagonal também o é. Portanto, o quo-

ciente herda uma estrutura de variedade suave de dimensão 2 dim M, e F̄ é um difeomorfismo.

Assim, Π(M) torna-se uma variedade.

Para verificar que s e t são submersões suaves, fixe um ponto [(x, y)] ∈ Π(M). Escolha

seções locais σ : U → M̃ e β : V → M̃ de π em torno de π(x) e π(y), respectivamente, com

x ∈ σ(U), y ∈ β(V). Podemos supor que U e V são domı́nios de trivialização do recobrimento.

As aplicações

U ∋ z 7−→ [(σ(z), y)] ∈ Π(M), V ∋ z 7→ [(x, β(z))] ∈ Π(M)

são seções locais suaves para s e t, respectivamente. Logo, s e t são submersões.

Agora, resta ver que os mapas estruturais são suaves.

• Projeções de saı́da e término: como s ◦ F̃ = π ◦ pr2, t ◦ F̃ = π ◦ pr1, e π é suave, segue que

s e t são suaves.

• Multiplicação: é dada por [(x, y)] · [(y, z)] = [(x, z)] = [pr1(x, y), pr2(y, z)], que é clara-

mente suave.

• Seção unidade: é dada por u(p) = [(σ(p), σ(p))], com σ seção local de π. Logo, u é suave.

• Mapa de inversão: é dado por ι([(x, y)]) = [(y, x)] = [pr2(x, y), pr1(x, y)], que também é

suave.

Portanto, Π(M) ⇒ M é um grupoide de Lie.

Exemplo 3.43. 2 Tomando M = S1, o recobrimento universal é π : R −→ S1. Neste caso:

Π(S1) ∼=
R×R

Z
∼= S1 ×R, um cilindro (!),

em que a ação de Z é por translação diagonal: n · (x, y) = (x + n, y + n). Geometricamente, um

ponto (p, q) ∈ S1 ×R corresponde à classe do caminho que inicia em p, dá a parte inteira de
q

2π
voltas completas e percorre um arco adicional de comprimento q mod 2π. O grupo de isotropia

2Esse exemplo foi-me apresentado pela minha amiga e colega de estudo de grupoides Nicole Lavinia, a quem
devo agradecer por enriquecer minha compreensão acerca dos grupoides por meio de um exemplo que é passı́vel de
ser desenhado. Além disso, ela também me apresentou esse jeito de introduzir o grupoide de Gauge como sequência
natural da construção do grupoide Fundamental.
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em um ponto z ∈ S1 é isomorfo a π1(S
1, z) ∼= Z. Além disso, a restrição tz : {z} ×R −→ S1 é

um Z-fibrado principal, isomorfo ao recobrimento universal R→ S1.

Inspirado no exemplo 3.42, podemos definir o Grupoide de Gauge:

Exemplo 3.44. Seja G um grupo de Lie e π : P −→ M um G-fibrado principal. Assim, note que

o diagrama

Pair(P)
Pair(P)

G

P Mπ

representa um morfismo de grupoides de Lie,em que o quociente é pela ação diagonal de G (o

quociente será variedade pois a ação é livre e própria). De fato, isso segue do seguinte

Lema 3.45. Nas condições acima, a ação diagonal do grupo de Lie G em Pair(P) é compatı́vel com a

estrutura do grupoide, isto é, os mapas s, t, u, i, m são todos G-equivariantes.

Demonstração. Seja z, y, x ∈ P e g ∈ G. Assim,

s
(
(y, x) · g

)
= s

(
(y · g, x · g)

)
= x · g = s

(
(y, x)

)
· g

t
(
(y, x) · g

)
= t

(
(y · g, x · g)

)
= y · g = t

(
(y, x)

)
· g

u(x · g) = 1x·g = (x · g, x · g) = (x, x) · g = u(x) · g

i
(
(y, x) · g

)
= i

(
(y · g, x · g)

)
= (x · g, y · g) = (x, y) · g = i(y, x) · g

m
(
(z, y) · g, (y, x) · g

)
= m

(
(z · g, y · g), (y · g, x · g)

)
= (z · g, x · g) = (z, x) · g = m

(
(z, y), (y, x)

)
· g

■

Logo,
Pair(P)

G
tem estrutura de grupoide de Lie tal que Pair(P) −→ Pair(P)

G
é um morfismo.

Definimos, então,

G(P) .
=

Pair(P)
G

⇒ M

Os mapas estruturais são dados por:

s([p, q]) = π(q), t([p, q]) = π(p), [p′, q′] · [p, q] = [p′, q] quando π(q′) = π(p).

Alternativamente, podemos descrevê-lo como:

G(P) = {(y, φ, x) | x, y ∈ M, φ : Px → Py G-equivariante},
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Neste modelo, os mapas ficam sendo análogos aos de um grupoide trivial (exemplo 1.16):

s(y, φ, x) = x, t(y, φ, x) = y, (z, ψ, y)(y, φ, x) = (z, ψ ◦ φ, x).

Este é o Grupoide de Gauge, e a sua importância para a teoria ficará clara na próxima seção. Ve-

jamos quem é o seu grupo de bisseções. Considerando o segundo modelo, notamos que uma

bisseção de G(P) é uma seção da forma

b : M −→ G(P), b(x) = (y(x), φx, x), φx : Px −→ Py é G-equivariante e x 7−→ y(x) difeo.

Note que podemos omitir x na tripla que define a bisseção. Assim, na verdade podemos identi-

ficar b(x) =
(
y(x), φx, x

) ∼= (
y(x), φx

)
. Dessa forma, construimos um mapa

Φ : P −→ P,

dado por Φ(p) = φπ(p)(p) que é, por construção, G-equivariante e que levanta o mapa x 7−→

y(x). Na verdade, a G-equivariância de Φ o torna um automorfismo de fibrados principais, o

que termina a análise com a conclusão de que o grupo de bisseções do grupoide de Gauge é

o espaço de automorfismos do fibrado principal P. Reciprocamente, se tivermos Φ : P −→ P

automorfismo de fibrados principais que levanta um mapa f , então

b : x 7−→
(

f (x), Φ|π−1(x), x
)

é a bisseção.

3.5 Transitividade

No Capı́tulo 1, definimos em 1.7 o que significa um grupoide ser transitivo ou totalmente intran-

sitivo. Nesta seção, vamos estudar a noção de transitividade em grupoides de Lie e enxergá-la

em nossos exemplos.

A Proposição 1.9 nos oferece uma caracterização para transitividade. A partir dela, temos o

seguinte

Exemplo 3.46. Todo Lie group bundle é um grupoide totalmente intransitivo. Mais ainda, bundles

of Lie groups também o são e, na verdade, há uma correspondência 1 para 1 entre bundle of Lie

groups e grupoides de Lie totalmente intransitivos.

Alguns exemplos de grupoides transitivos estão listados abaixo:
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Exemplo 3.47. O grupoide do par Pair ⇒ M é transitivo.

Exemplo 3.48. Dado um grupoide de Lie G ⇒ M e uma órbita qualquer ι : O −→ M, a restrição

GO
.
=

{
(g, y, x) ∈ G × Pair(O) : t(g) = y, s(g) = x

}
é claramente transitiva. Aqui, a restrição tem estrutura de grupoide dada como subgrupoide de

G × Pair(O). Note também que GO é naturalmente imerso em G e G é a união disjunta dessas

imersões.

Exemplo 3.49. Dada uma ação de um grupo de Lie G em M, o grupoide de ação G ⋉ M ⇒ M é

transitivo se, e somente se, a ação do grupo de Lie em M for transitiva.

Exemplo 3.50. O grupoide fundamental Π(M) ⇒ M é transitivo se, e somente se, M for conexa.

Exemplo 3.51. Dado um G-fibrado principal P π−→ M, o seu grupoide de Gauge G(P) é transitivo.

Veremos agora que o último exemplo é universal, i.e., caracteriza os demais grupoides tran-

sitivos. Para isso, precisaremos do seguinte

Lema 3.52. Seja G ⇒ M um grupoide de Lie transitivo. Então, (t, s) : G −→ M é uma submersão

sobrejetora.

Demonstração. Já vimos na Proposição 1.9 que (t, s) : G −→ M é sobrejetora. Agora, note que

as restrições

tx : s−1(x) −→ M, sy : t−1(y) −→ M

são submersões sobrejetoras uma vez que Ox = Oy = M. Seja g ∈ t−1(y) ∩ s−1(x) e (v, w) ∈

Ty M⊕ Tx M. Assim,

d(tx)g : Tgs−1(x) −→ Ty M sobrejetora =⇒ ∃v′ ∈ Tgs−1(x) = Ker dsg t.q. d(tx)gv′ = dtgv′ = v,

d(sy)g : Tgt−1(y) −→ Ty M sobrejetora =⇒ ∃w′ ∈ Tgt−1(y) = Ker dtg t.q. d(sy)gw′ = dsgw′ = w.

Logo, v′ + w′ ∈g G é tal que

d(t, s)g(v′ + w′) =
(
dtg(v′ + w′), dsg(v′ + w′)

)
= (v, w).

Portanto, d(t, s)g é sobrejetora, para todo g ∈ t−1(y)∩ s−1(x), então (t, s) : G −→ M é submersão.

■
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Teorema 3.53. Seja G um grupoide de Lie transitivo sobre uma variedade M. Então, G é isomorfo ao

grupoide de Gauge de algum G-fibrado principal P −→ M. Essa identificação depende da escolha de

ponto base.

Demonstração. Seja xo ∈ M e considere G .
= Gxo . Sabemos pelo Teorema 3.39 que Oxo ⊆ M é

subvariedade inicial e imersa de M, mas Oxo = M, pois G é transitivo. Logo, a estrutura suave

da órbita coincide com a estrutura suave de M. Ainda por 3.39,

π
.
= txo : P .

= s−1(xo) −→ Oxo = M

é um G-fibrado principal. Agora, identifiquemos G com G(P). Definimos

F : G −→ G(P) =
Pair(P)

G

g 7−→ [gh, h]

com h ∈ t−1(s(g)
)
∩ P, e

F−1 : G(P) −→ G

[h, k] 7−→ hk−1

Note que F não depende de h ∈ t−1(s(g)
)
∩ P e que ambos os mapas são morfismos de grupoides

abstratos e inversos um do outro. Ainda, como (h, k) 7−→ hk−1 restrita a s−1(xo)2 é suave, então

F−1 é suave. Mais do que isso, pelo Lema 3.52, (t, s) é submersão sobrejetora, de modo que,

fixado go ∈ G, ∃σ : U ⊆ M×M −→ G seção local de (t, s) com (s(go), xo) ∈ U. Assim,

φ(g) =
[

gσ
(
s(g), xo

)
, σ

(
s(g), xo

)]
ao redor de go, o que implica a suavidade.

■

O que esse resultado está dizendo é que há uma correspondência 1 para 1 entre fibrados

principais e grupoides transitivos.

 Fibrados

Principais

 ←→

 Grupoides

Transitivos


Como a teoria de fibrados principais é muito rica e abre portas para outras áreas de interesse em

Geometria Diferencial, como a teoria de G-estruturas, essa correspondência incita o questiona-
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mente de se é possı́vel abordar tópicos de estudo que utilizam fibrados principais por meio de

grupoides transitivos, e quais generalizações seriam possı́veis a partir disso. Isso é assunto atual

de pesquisa em Geometria Abstrata e uma referência para tal assunto é o recente artigo [26].

3.6 Algebroide de Lie do Grupoide de Lie

Agora, construiremos o algebroide de Lie de um grupoide. Note, primeiramente, que diferente-

mente do caso de grupos e álgebras de Lie, agora temos uma unidade para cada ponto do espaço

base. Assim, esperamos que o algebroide de Lie do grupoide seja um fibrado vetorial sobre M.

Além disso, a multiplicação á direita está definida apenas nas s-fibras, de modo que, para falar-

mos sobre campos invariantes à direita em G, devemos nos restringir aos campos tangentes às

s-fibras, isto é, a seções de

TsG = Ker ds ⊆ TG.

Inspirado no que foi feito na seção 2.3, definimos o algebroide de Lie de um grupoide G ⇒ M como

o fibrado vetorial A = Lie(G) .
= TsG|M = u∗TsG cujas fibras em x ∈ M coincidem com o espaço

tangente à unidade 1x de s−1(x) (porque escolhemos fazer a construção para campos invariantes

à direita). O colchete de A será na verdade um colchete nas seções Γ(A). Identifiquemos Γ(A)

com o espaço de campos invariantes à direita em G. Para isso, note que a fibra de TsG em uma

flecha h ∈ s−1(y) é dada por Ts
hG

.
= Ths−1(y), de modo que, para todo g ∈ t−1(y), a diferencial

da multiplicação à direita por g induz um mapa

dRg : Ts
hG −→ Ts

hgG.

Logo, podemos descrever o espaço dos campos invariantes à direita em G:

Xs
inv(G) =

{
X ∈ Γ(TsG) : Xhg = dRg(Xh), ∀(h, g) ∈ G(2).

Lema 3.54. [Xs
inv(G),Xs

inv(G)] ⊆ Xs
inv(G).

Demonstração. Precisamos primeiro checar que [Γ(TsG), Γ(TsG)] permanece s-vertical (ds(X) =

0), i.e., [Γ(TsG), Γ(TsG)] ⊆ Γ(TsG). Note que

X ∈ Γ(TsG) = Γ(Ker ds) =⇒ Xg ∈ Ts
gG, ∀g ∈ G =⇒ ds(Xg) = 0.
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Se X, Y ∈ Γ(TsG), então ds(Xg) = 0 = ds(Yg), ∀g ∈ G. Logo, pelo Lema 2.14,

ds[X, Y]g = [ds(X), ds(Y)]s(g) = 0 =⇒ [X, Y] ∈ TsG.

Agora, se X, Y ∈ Xs
inv(G), então, para todo (h, g) ∈ G(2), Xhg = dRgXh, Yhg = dRgYh e

dRg
(
[X, Y]h

)
= dRg[X, Y]h = [dRgX, dRgY]Rg(h) = [dRgX, dRgY]hg = [X, Y]hg

■

Agora, dado σ ∈ Γ(A), então σ̃g = dRg(σt(g)) define um campo invariante à direita. De fato,

dRg(σ̃h) = dRg
(
dRh(σt(h))

)
= dRhg(σt(hg)) = σ̃hg.

Reciprocamente, dado um campo X ∈ Xs
inv(G), notamos que a invariância dada pela equação

Xg = dRg(X1t(g)
)

nos permite determinar X pelos seus valores nas unidades u(M) ∼= M, de modo que definindo

σ
.
= X|M ∈ Γ(A), temos que X = σ̃. Portanto, estabelecemos a identificação

Γ(A)←→ Xs
inv(G)

σ 7−→ σ̃

Ainda, Xs
inv(G) é subálgebra de Lie de da álgebra X(G) dos campos de vetores em G com o col-

chete usual de campos. Isso segue pelo Lema anterior, ou seja, o colchete de campos se restringe

a campos invariantes à direita. Assim,

Definição 3.55. O colchete de Lie no algebroide A = Lie(G) é o colchete de Lie em Γ(G) advindo

do colchete em Xs
inv(G) pelo isomorfismo descrito acima. O colchete em Γ(A) é unicamente

determinado pela expressão

[̃σ, σ′]A = [σ̃, σ̃′]

A última peça para a estrutura do algebroide A é a seguinte:

Definição 3.56. A âncora de A é o mapa de fibrado

ρA
.
= dt|A : A −→ TM.
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A próxima definição resume o que foi discutido até aqui.

Definição 3.57. O Algebroide de Lie do Grupoide de Lie G é o fibrado vetorial A = Lie(G) .
= TsG|M

munido do colchete [·, ·]A em Γ(A) e da âncora ρA : A −→ TM.

Veremos agora que o colchete e a âncora do algebroide se relacionam por uma identidade do

tipo Leibniz.

Proposição 3.58. Seja A o algebroide de Lie do grupoide G. Então, para todos σ, σ′ ∈ Γ(A) e f ∈

C∞(M),

[σ, f σ′] = f [σ, σ′] + Lρ(σ)( f )σ′.

Demonstração. Note que

f̃ σ′g = dRg( f σ′t(g)) = ( f ◦ t)dRg(σ
′
t(g)) = ( f ◦ t)σ̃′g.

Logo,

˜[σ, f σ′]A = [σ̃, f̃ σ′] = [σ̃, ( f ◦ t)σ̃′] = ( f ◦ t)[σ̃, σ̃′] + Lσ̃( f ◦ t)σ̃′.

Se g ∈ G, então

Lσ̃( f ◦ t)(g) = d( f ◦ t)gσ̃(g) = d ft(g) ◦ dt1t(g)

(
σ
(
t(g)

))
= d ft(g) ◦ dtg

(
σ̃(g)

)
= Lρ(σ)( f )

(
t(g)

)
=⇒ [σ, f σ′] = f [σ, σ′] + Lρ(σ)( f )σ′.

■

Observação 3.59. A escolha por desenvolver a estrutura do algebroide a partir de campos inva-

riantes à direita não tem nenhuma grande vantagem. O Teorema a seguir apresenta a relação

entre outros possı́veis modelos de fibrados para o algebroide (não discutiremos a estrutura do

algebroide).

Teorema 3.60. Seja u : G −→ M a seção unidade do grupoide G. Então, adotado a notação TG|M
.
=

u∗TG,

TtG|M ∼= TsG|M ∼=
TG|M
TM

.
= νG(M).

Demonstração. O primeiro isomorfismo sai pelo seguinte diagrama:
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TtG|M TtG|M TsG TsG|M

M G G M

di|u∗TtG

di

u i
u

Agora, considere a seguinte sequência curta exata de fibrados vetoriais:

0 −→ TM
du
↪−→ TG|M

τ−→ TG|M
TM

−→ 0

Pela exatidão da sequência, sabemos que Im(u∗) = Ker(τ). Assim, pelo Teorema 2.22, existe

uma cisão da sequência, que pelo Teorema ??, pode ser entendido como a identificação

TG|M ∼= du(TM)⊕ TG|M
TM

Por outro lado, temos outra sequência curta exata que cinde canonicamente por du : TM −→

TG|M:

0 −→ TsG|M ↪→ TG|M
ds−→ TM −→ 0

A cisão dessa sequência nos garante que

TG|M ∼= du(TM)⊕ TsG|M

Logo, concluı́mos que TsG|M ∼= TG|M
TM = νG(M) e esta identificação pode ser feita pelo mapa

TG|M
TM ∋ [v] 7−→ pr2(v) ∈ TsG|M. ■

Agora, daremos exemplos do cálculo de algebroides de alguns dos grupoides que estudamos.

Um procedimento ingênuo, mas natural, para realizar esse cálculo, é seguir os seguintes passos:

1) Entender o fibrado Ker ds ↪→ TG e restringı́-lo a M;

2) Entender o mapa dt : TG −→ TM e depois restringı́-lo à âncora dt|Ker ds|M ;

3) Já com o algebroide A .
= Ker ds|M, entender Γ(A), entender como passar de um elemento

desse conjunto a um campo invariante de G e, por fim, definir o colchete pela regra [α, β]|x =

[αR, βR]|x

Exemplo 3.61. Para o grupoide do par Pair(M) ⇒ M, sabemos que s−1(x) ∼= M. Para entender

o fibrado envolvido, note que

ds : TPair(M) =
{
(vx, vy) : vx ∈ Tx M, vy ∈ Ty M

}
−→ TM, (vx, vy) 7−→ vy
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Logo, Ker ds =
{
(vx, 0y) : vx ∈ Tx M

}
, e então

Lie(Pair(M)) = Ker ds|M
{
(vx, 0x) : vx ∈ Tx M

} ∼= TM.

Já a âncora é dada por ρ : dt|Ker ds|M : Ker ds|M ∼= TM −→ TM. Mas

dt : (vx, vy) 7−→ vx e, em particular, dt : (vx, 0x) 7−→ vx.

Assim, ρ = idTM. Por fim, Note que Γ(A) = Γ(TM) = X(M), de modo que α ∈ X(M) implica

α : M ∋ p 7−→ α(p) ∈ Tp M suave. Então, dado α ∈ Γ(A), temos que, para g = (g1, g2) ∈

Pair(M),

Rg : Ts−1(g1) ∋ (x, y) 7−→ (x, y)(g1, g2) = (x, g2), dRg : Ker ds = Ts−1(g1) ∋ (vx, 0y) 7−→ (vx, 0g2),

de modo que αR(g) = dRg ◦ α(t(g)) = dRg ◦ vt(g) = vt(g) após identificação, e, portanto,

[α, β]A|x = [αR, βR]|x = [α, β]X(M)|x.

Exemplo 3.62. Para o caso de Lie group bundles π : Q −→ M, temos que s = t = π, então

ds = dt = dπ. Logo Ker ds = Ker dπ, de modo que o fibrado é dado por

Ker ds|M = Ker dπ|M −→ M.

Note que dt = dπ : TQ −→ TM, e então ρ = dt|Ker ds|M = dπ|Ker dπ|M = 0 é o mapa nulo. Agora,

Γ(A) = Γ(Ker dπ|M) Assim, se α ∈ Γ(A), então

α(p) ∈ T1p π−1(p) = Lie
(
π−1(p)

)
,

em que π−1(p) é um grupo de Lie, ou seja, α(p) está na respectiva álgebra de Lie. Logo,

Rg : s−1(t(g)
)
= π−1(π(g)

)
−→ s−1(s(g)

)
= π−1(π(g)

)
é apenas a translação do grupo de Lie. Portanto,

[α, β]|t(g)(g) .
= [αR, βR]|t(g)(g) =

[
dRg ◦ α

(
t(g)

)
, dRg ◦ β

(
t(g)

)]
= dRg[α, β]t(g).

Exemplo 3.63. Vejamos agora o grupoide de ação G = G ⋉ M ⇒ M. Lembre que s = pr2 : G −→
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M, então ds = d(pr2) : TG −→ TM é tal que ds(vg, vx) = vx. Logo,

Ker ds =
{
(vg, 0x) ∈ TG : vg ∈ TgG, 0x ∈ TxM

} ∼= pr∗2TG ∼= TG×M,

e então

Ker ds|M =
{
(vu(x), 0x) = ve, 0x) : x ∈ M

} ∼= g×M.

Como t : (g, x) 7−→ g · x, então dt(vg, vx) ∈ TM e a âncora

ρ = dt|Ker ds|M : Ker ds|M −→ TM, ρ(ve, 0x) = dt(ve, 0x) ∈ TM

é a ação infinitesimal associada à ação do grupo de Lie. Assim, como A = g×M, seções são da

forma

σ : M −→ g×M, x 7−→ (v(x), x),

e então Γ(A) ∼= Diff(M, g) e o colchete é dado pela expressão

[α, β]|x = [α(x), β(x)]g + Lρ(α(x))β|x −Lρ(β(x))α|x.

Note que para seções da forma α : x 7−→ (a, x) e β : x 7−→ (b, x), com a, b ∈ g independentes

de x ∈ M, o colchete se torna o colchete da álgebra de Lie g, de modo que a expressão acima é a

única extensão do colchete a todas as seções que satisfazem Leibniz.

Exemplo 3.64. Por fim, calculemos o algebroide do grupoide de Gauge G(P) =
Pair(P)

G
. Nesse

caso, seguir os passos listados não ajudará muito. Já sabemos, pela observação feita ao o in-

troduzirmos no exemplo 3.44, que este grupoide tem uma estrutura herdada do grupoide do

par.

Pair(P)
Pair(P)

G

P Mπ

Logo, podemos passar do fibrado do grupoide do par para o do de Gauge, de modo que

Ts
u(P)Pair(P) −→ Ts

u(M)

(
Pair(P)

G

)
∼=

Ts
u(P)Pair(P)

G
=⇒ TP −→ TP

G
= Lie

(
G(P)

G

)

e o fibrado que será o algebroide do grupoide de Gauge é
TP
G

. Devido a isso, podemos identificar

seções com campos invariantes. Note também que
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TP TP

TP
G

TM

pr

id

dπ

ρ

de modo que ρ
(
[v]

)
= dπ(v), que está bem definido. Já o colchete para elementos α ∈ Γ(TP/G) ∼=

XG−inv(P) é da forma

[α, β] = [Xα, Xβ] ∈ XG−inv(P).

Com isso, encerra-se a apresentação dos tópicos estudados. Não poderia finalizar este texto

sem antes citar um conhecimento profundo que me acompanhou por toda esta jornada e que de

certo modo a justifica:

”It is important to draw wisdom from many different places. If we take it from only one place, it

becomes rigid and stale. Understanding others, the other elements, and the other nations, will help you

to become whole.”

- Iroh, Avatar: The Last Airbender [27]
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