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You're going to fail a lot before things work out.
Even though you’ll probably fail over and over

and over again, you have to try every time.

You can't quit because you're afraid you might fail.

— Zuko, Avatar: The Last Airbender [27]



RESUMO

DoM. PIRES, C. Grupoides de Lie. 2025. 64 p. Monografia (Bacharelado em Matematica) — Insti-

tuto de Matematica e Estatistica, Universidade de Sdo Paulo, Sdo Paulo, 1° Semestre de 2025.

O trabalho se centra no estudo da teoria geral de Grupoides de Lie, que é uma ferramenta
importante para o estudo de simetrias em variedades. Estas estruturas de certa forma genera-
lizam o conceito de Grupo, muito utilizado na compreensdo de simetrias de um espago, mas se
aplicam em contextos mais gerais que carecem dessa simetria.

Nesta monografia, passeamos por diversos conceitos da teoria de Grupoides de Lie, desde
sua construcao algébrica/categdrica, passando pela estrutura envolvida nos objetos que rodeiam
os grupoides de Lie e até o estudo de Algebroide de Lie de Grupoides de Lie e transitividade de
Grupoides. A escrita tem como objetivo tornar o assunto acessivel e autocontido, de modo que
ha a listagem de diversos resultados da teoria de Variedades Suaves utilizados para completude.
As referéncias principais deste trabalho foram [14], [23] e [17], e a originalidade esta contida na
escolha da apresentagdo dos tépicos e na demonstragdo de certos resultados que ndo necessaria-

mente estdo nas obras referidas.

Palavras-chave: Grupoides de Lie. Grupo de bissec¢oes. Transitividade de Grupoides. Algebroi-

des de Lie.



ABSTRACT

DoM. PIRES, C. Lie groupoids. 2025. 64 p. Monografia (Bacharelado em Matematica) — Instituto

de Matematica e Estatistica, Universidade de Sdo Paulo, Sdo Paulo, 12 Semestre de 2025.

This work focuses on the study of the general theory of Lie Groupoids, an important tool
for investigating symmetries on manifolds. These structures, in a certain sense, generalize the
concept of a Group—widely used in understanding the symmetries of a space—but apply to
more general contexts that may lack such symmetry.

In this monograph, we explore various concepts from Lie groupoid theory, ranging from their
algebraic/categorical construction, through the structures involved in the objects surrounding
Lie groupoids, and up to the study of the Lie Algebroid of Lie Groupoids and the transitivity
of Groupoids. The writing aims to make the subject accessible and self-contained; accordingly,
several results from the theory of Smooth Manifolds used for completeness are listed. The main
references for this work were [14], [23] and [17], and its originality lies in the chosen presentation
of the topics and in the proof of certain results that are not necessarily found in the referenced

works.

Keywords: Lie Groupoids. Group of bisections. Groupoid transitivity. Lie Algebroids.
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Introducao

Da teoria de Grupos, trazemos uma nogao de simetria que corresponde a analisar o grupo de
automorfismos de um certo objeto geométrico. Apesar disso servir muito bem para caracterizar
diversos tipos de simetrias (em geral, de estruturas homogéneas), muitos objetos apresentam o
que reconhecemos intuitivamente como simetrias, mas apresentam poucos ou nenhum automor-
fismo ndo trivial. E por conta dessa brecha que os grupos nao enxergam que essa monografia
tem razdo de existir. Vejamos agora, através de um exemplo, o que falta nos grupos para eles
perceberem mais simetrias e qual é o objeto correto para se analisar simetrias locais de objetos
geométricos.

Consideremos uma malha retangular em R? com retangulos de tamanho 2 x 1. Essa malha

pode ser representada por
X=HUV,emque H=RxZ,V=27Z xR

Cada componente conexa de R? — X serd chamada de azulejo. Aqui, entdo, estamos nos depa-
rando com uma parede infinita. A pergunta que a teoria de Grupos faria é: qual o grupo de
automorfismos dessa malha? Note que as transformagdes que deixam a malha invariante for-
mam um subgrupo do grupo de movimentos rigidos do plano Eucl(R?) e sdo completamente

descritas por:

i) Translacoes: (x,y) — (x+2m,y+n), mn € Z

ii ) Reflexdes nas retas da malha: (x,y) — (x,n —y) e (x,y) — 2m —x,y), mn € Z

iii) Reflexes nas mediatrizes da malha: (x,y) — (x,5 —y) e (x,y) — (m—x,y), mn € Z
Na verdade, hd mais transformagdes do que as listadas (como rotacdo de 180, reflexdes deslizan-
tes, etc.), mas que podem ser geradas a partir dessas. Assim, a resposta para a pergunta é que o
grupo de automorfismos da malha é o grupo gerado por essas transformagdes, que em particu-

lar tem infinitos elementos. Note que o mesmo grupo de simetrias iria surgir se trocdssemos a
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malha apenas pelos vértices dela, o que ja parece entranho, uma vez que sdo objetos nitidamente
distintos. Mais estranho ainda se nos restringirmos a um dominio R = [0,2m] x [0,#n] finito
do, como uma parede com azulejos: a quantidade de simetrias descritas pela teoria de grupos
cai vertiginosamente, restando apenas 4 elementos (mesmo grupo de automorfismos que de um
retangulo, apesar de que, intuitivamente, uma parede com azulejos pareca ter mais simetrias
que uma parede lisa). Esse fendmeno aponta que os grupos de simetria ndo estdo captando a
informacado de simetria interna/local dos azulejos, nem mesmo as suas repeti¢des ao longo do
dominio.

Logo, vamos construir a nogdo que ird capturar aquilo que os grupos de automorfismos nao

enxergam. Considere o grupoide de simetrias locais de R
Groc = {(7,x) € Eucl(R?) x R: y(x) € R e IU C R? aberto t.q. x € U,v(UNP;) C P;,Vi},

emqueP; =RNX, Po=R—-P, P3= R? — R. Esse conjunto de pares de movimentos rigidos
do plano e pontos de B é tal que, para cada ponto x € R, as transformagdes que podem ser

aplicadas a ele sdo aquelas que
1. mapeiam x em outro ponto também em R;

2. mapeiam cada ponto uma vizinhanga aberta de x em um ponto correspondente que tem a

mesma natureza do ponto original.

Por natureza do ponto entende-se uma das trés partes em que dividiu-se o plano, sendo elas:
P1 a malha interceptando R (ou o rejunte da parede); P, o interior dos azulejos da parede; e
P53 o exterior da parede. Dessa maneira, a condigdo 2. estd dizendo que, se um ponto y em
uma vizinhanga aberta U de x (suficientemente pequena) estd na parte P; do plano, entdo os
movimentos rigidos que podemos considerar em Gj,. com esse ponto base sdo aqueles que, além
de mandarem x em um ponto de R, também mandam y para um ponto na mesma parte P;
que estava antes. Por exemplo, se y estava no interior de um azulejo, as transformagdes com
base em x a serem consideradas sdo aquelas que mandam y para dentro de um azulejo. Esse
conjunto é interessante pois podemos operar com os seus elementos através de uma espécie de
multiplicagdo: dados dois elementos (7, y) e (1, x) em Gj,, definimos a multiplicacdo entre eles
por

(m,y) - (1,x) = (o7,x),

mas apenas se ¥ = y(x). Podemos pensar esses elementos como flechas que levam pontos base

e uma pequena vizinhanga deles para outros cantos do dominio R. O que essa condigdo para
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Introducao

a operacdo estd dizendo é o que ja esta claro: s6 é possivel multiplicar elementos se o primeiro
deles terminar aonde o préximo comegar. Além dessa condi¢do, a multiplicagdo em Gj,. possui

as seguintes propriedades:

i) Ela é associativa, ou seja, se ((1,z) - (,y)) - (7, %) ou (u,z) - ((,y) - (7, x)) estiverem defi-

nidas, entdo a outra também estaré e elas serdo iguais;

ii ) Para cada elemento (7, x) € Gj,, existem elementos identidade a direita 1, = (idg2, x) e &

esquerda 1,,(,) = (idge, 7(x)), de modo que 1,y - (7,%) = (7,x) = (v x) - 1;

iii ) Toda flecha (7, x) admite uma flecha inversa (71, (x)) tal que (7,x) - (771, 7(x)) = 1,

e (v L) (1,x) = 1.

Esse conjunto, segundo a definicdo que daremos no Capitulo 1, é um grupoide (como suge-
rimos no nome) e terd muitas propriedades. Por ora, basta entender dois conceitos relacionados
a ele. Dois pontos de R estardo na mesma drbita se existir uma flecha que leva um ponto a outro.
Note quese x € P;ey € P;, comi # j, entdo com certeza x e y ndo estdo na mesma Orbita. Além
disso, definimos a isotropia de x € R como o conjunto das flechas que comecam e terminam em x.
Veremos adiante que a isotropia forma um grupo. Esses dois conceitos nos permitem catalogar
os pontos de R de duas maneiras: as 6rbitas nos dizem quais pontos sdo parecidos entre si, con-
siderando uma vizinhanga ao redor deles. Ja as isotropias nos dizem, fixado um ponto, quais sdo
as transformagdes que o mantém parado. Pensando nas flechas como simetrias do nosso objeto
retangular, estamos no caminho de identificar suas simetrias locais.

Analisando bem o objeto que temos em maos, podemos calcular exatamente quais sdo todas
as suas Orbitas e isotropias. Note que pontos em uma mesma 6rbita terdo a mesma isotropia, uma
vez que pontos na mesma Orbita sdo “parecidos”. Assim, estd listado abaixo a caracterizagdo

completa das simetrias de R com base nessas duas ferramentas, que pode ser visualizado na

tigura 1.
Orbitas Isotropias
O; = interior dos azulejos G1 = 0(2)
O, = rejunte/arestas internas dos azulejos Gr =7y X Zo
O3 = vértices dos azulejos Gz = Dy
Oy = rejunte/arestas no bordo de R Gy =275
Os5 = vértices em "T”no bordo de R Gs =75
Q¢ = vértices dos cantos de R Ge = 2>

Isso é impressionante, ainda mais comparado ao resultado obtido pela anélise através de
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Figura 1: Retangulo com a malha (parede com azulejos), com os grupos de isotropia de um elemento de cada
orbita destacado por uma figura que possui o mesmo grupo de automorfismos.

grupos. Se quisermos ir além e restringir nosso grupoide a apenas os pontos de vértice de R,
obtemos um objeto finito, cujos pontos estdo relacionados através das 6rbitas e, sobre cada ponto,
sabemos dizer quais sdo as suas simetrias! Acabamos de colocar uma estrutura geométrica em
um objeto finito.

Neste ponto, espero ter convencido o leitor de que vale a pena estudar e buscar entender
os grupoides e seus limites. Este exemplo foi tirado do artigo [21], no qual ha vérias outras
aplicagdes de grupoides, inclusive na Andlise, e serve como pontapé inicial para o estudo que
prosseguira nas demais paginas desta monografia. Um semindrio sobre esta monografia foi apre-
sentado pelo autor e se encontra gravado no seguinte link: Apresentacdo da disciplina MAT0148.

Para facilitar a leitura, deixo aqui um esclarecimento sobre o contetido dos capitulos subse-
quentes. O Capitulo 1 tem carater introdutério e aborda a parte algébrica e categoérica da teoria
de Grupoides de Lie. Nele, os passos sdo muito detalhados para garantir a compreensao do leitor
no fundamento da teoria. Para facilitar a transi¢do desse contexto abstrato para o de Grupoides
de Lie (grupoides com estrutura de variedade suave), ha o Capitulo 2. O intuito dele é ser expo-
sitivo, apontando conceitos e resultados da teoria de Variedades suaves, Grupos e Algebras de
Lie e Fibrados pertinentes a teoria de Grupoides de Lie. Enfim, no Capitulo 3 se culmina tudo o
que foi desenvolvido até entdo com o estudo de Grupoides de Lie, com resultados acerca da es-
trutura desses objetos, assim como uma anélise minuciosa de 3 principais modelos portotipicos:
grupoides transitivos, totalmente intransitivos e de agdo.

A teoria de Grupoides de Lie é uma ferramenta extremamente poderosa em Geometria Di-
ferencial. A titulo de curiosidade, algumas das dreas que utilizam esses objetos sdo a teoria de
Folheagdes e estruturas transversais, a teoria de Lie e problemas de integrabilidade, estruturas

de Dirac (em que os algebroides de Courant sdo objeto central), as teorias de Orbifolds e Stacks
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diferencidveis, assim como o notéavel estudo de G-estruturas e na Fisica Matematica, com as teo-
rias de Calibre. As referéncias [16], [14], [13], [23], [24], [25] e [26] contém alguns desses usos de

Grupoides de Lie, que ndo serdo abordados neste trabalho.






Capitulo 1

Grupoides abstratos

“It turns out that the symmetry, and
hence much of the structure, of such
objects can be characterized algebraically

if we use groupoids and not just groups.”

A. Weinstein [21]

Antes de compreender os grupoides de Lie, é preciso se familiarizar com a nogao de gru-
poides abstratos, entender como eles se comportam e como manusea-los algebricamente. Assim,
neste capitulo serdo introduzidos todos os conceitos iniciais da teoria que depois serdo levados
ao contexto diferencidvel, a saber: as defini¢des de grupoide abstrato, grupos de isotropia e
oOrbitas, transitividade de grupoides, que serdo ilustrados com diversos exemplos; as proprieda-
des de alguns objetos que permeiam os grupoides; e, por fim, construgdes a partir da nogao de
grupoide, sendo elas categodricas (morfismos, subgrupoides, pull-back) ou especifica dos grupoi-

des, como o importante grupo de bissecdes.

1.1 Grupoides, Fibras, Isotropias e Orbitas

Defini¢ao 1.1. Um Grupoide (abstrato) é uma categoria (pequena) em que todo morfismo é um
isomorfismo. De maneira mais explicita, é um par (G, M) em que os conjuntos G (de flechas) e

M (de objetos) sao munidos dos seguintes mapas estruturais:

o Os mapas (ou projegdes) de saida (source) e término (target)
s,t:G — M

sdo sobrejetores e associam cada flecha ¢ € G ao seu elemento de saida s(g) e término #(g).
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1.1. GRUPOIDES, FIBRAS, ISOTROPIAS E ORBITAS

Escrevemos

y i x

para indicar que s(g) = x e t(g) = y. A partir desses mapas, definimos a dncora do gru-

poide como sendo o mapa

txs:G>3g+—>(tg),s(g) e Mx M

. O mapa de multiplicagio

m:G% — g

definido no conjunto G, = {(g,h) € G x G : s(g) = t(h)} das flechas componiveis e dado
por (g, h) — m(g,h) =g-h = gh.

. O mapa (ou secdo) unidade

u:M—g

associa x € M a flecha unidade/identidade 1, € G em x.

. O mapa inversio
i:g—g

associa g a sua inversai(g) = g1

Tais mapas satisfazem:

. Lei da multiplicacdo:  t(m(g,h)) = t(g) es(m(g, h)) =s(h), V(g h) € G@,

g h gh
XYy z=—>x< 2

J Lei da associatividade: ~ m(g, m(h,k)) = m(m(g,h), k), Vg, hk € G componiveis,

xéy&z&wﬁg(kk):(gh)k

o Lei das unidades: Vx € M,3u(x) =1, € G talque s(1y) =t(1y) = x, i.e,

1x

X< Xx, e Vg €qg, 1s(g)g = glt(g) =g

8



CAPITULO 1. GRUPOIDES ABSTRATOS

o Leidasinversas: Vg€ G,3i(g) =g ! talque s(g7!) =t(g), t(g™!) =s(g), ie.,

g g ! _ _
X<—YyYy=y<—2x, e g9 1:1X:1t(g)/ g 1gzlyzls(g)

Dizemos que G é um grupoide sobre M e denotamos por G = M. As duas setas de G para M
representam os dois mapas de projegdo s e t.
Observagdo 1.2. De maneira geral, para falarmos melhor em associatividade, definimos
G0 ={(g1,---,8) € G*:5(8i) =t(gin1), i =1,2,...,k}
como o conjunto das k-flexas componiveis.

Observagao 1.3. Tanto as flechas identidade 1, € G quanto as inversas ¢~! € G respectivas a

cada flecha ¢ € G sdo tnicas. De fato,
e Se 1,1, € G sdo identidades em x, entdo pela Lei das unidades, 1, = 1,1, = 1;
* Sek,h € G sdo inversas de g € G, entédo pela Lei das inversas, k = klyq) = kgh = 1o )h = h.

Defini¢do 1.4. Seja G = M um grupoide. Dado x € M, chamamos os conjuntos s~ !(x) e t 1(x)

de s-fibra sobre x e t-fibra sobre x, respectivamente. A isotropia em x é definida por
Gy = s’l(x) N t’l(x) cg
Ainda, definimos a érbita de x como sendo
Or={tg):ges (¥} M

Note que o grupoide G pode ser escrito como unido disjunta tanto das s-fibras quanto das

t-fibras, ouseja, G = || s '(y) = L t (%)
yeM xeM

Observacgdo 1.5. Uma relagdo de equivaléncia em um conjunto M pode ser vista como um sub-

conjunto R de M x M satisfazendo o seguinte:

e Reflexividade:

(x,x) €R, VxeM;

e Simetria:

(y,x) e R= (x,y) €R, VYx,y e M;

9



1.1. GRUPOIDES, FIBRAS, ISOTROPIAS E ORBITAS

¢ Transitividade:

(z,y) €R, (y,x) € R= (z,x) €R, Vx,y,z€ M.

Assim, uma relagdo de equivaléncia em M corresponde a uma decomposi¢cdo de M na unido
disjunta de subconjuntos de M, a saber, suas classes de equivaléncia. Reciprocamente, uma
decomposi¢do de M em subconjuntos disjuntos determina uma tnica relacdo de equivaléncia
em M, de modo que os subconjuntos correspondem as classes de equivaléncia da relagdo.

De maneira analoga, uma funcdo ¢ : M — N define uma relagdo de equivaléncia R(¢) cujas

classes de equivaléncia sdo os conjuntos de nivel de ¢, isto é:
y~x = (1,x) €R(P) = ¢(y) = ¢(x), YxyeM

Reciprocamente, dada uma relagdo R em M, denotemos por M/R o conjunto das classes de
equivaléncia e por tg : M — M/R, x — [x]r a proje¢do. Logo, toda relagdo de equivaléncia

é da forma R = R(7tR).
Proposicao 1.6. Seja G = M um grupoide. Entdo,
i) As isotropias Gy sdo grupos, para todo x € M;
ii) Arelagio x ~gy <= t 1(x)Ns~(y) # @ é de equivaléncia;

iii ) A 6rbita Oy é a classe de equivaléncia de x € G pela relacio ~¢ e, assim,
M/G =M/ ~g= {0y :x € M}.

Esse quociente é chamado de espago de érbitas de G.

Demonstracdo. Dado x € M, para todo g,h,k € Gy, como s(g) = t(h) e s(h) = t(k), entdo
g(hk) = (gh)k, pela Lei da associatividade. Pela Lei das unidades, existe 1, € G, C G tal que
¢l = ¢ = 1,8. Ainda, pela Lei das inversas, existe i(g) = g~ ! € G, tal que

88 =Ly =li=1ly=g"g

Logo, (i) estd provado. Agora, sobre a relacdo definida, note que pela Lei das unidades, dado
x € M, existe 1, € G, de modo que 1, € Gy = s ' (x)Nt(x) # @ = x ~g x. Se
x ~¢ Yy, entdo existe § € G tal que t(g) = x e s(g) = y. Entdo a Lei das inversas garante que

existe g7t € t71(y) Ns~(x) = y ~g x. Por fim, se x ~g y ey ~g z, entdo existem g, h € G
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CAPITULO 1. GRUPOIDES ABSTRATOS

tais que #(g) = x,5(g) = y = t(h),s(h) = z. Pela Lei da multiplicacio, existe gh € G tal que
gh € t71(x) Ns7!(z) e, portanto, x ~g z, 0 que termina a prova de (ii). O item (iii) segue

imediatamente de (ii) [ |

Defini¢do 1.7. Seja G = M um grupoide. Dizemos que §G é transitivo se O, = M, Vx € M. Por

outro lado, G é dito totalmente intransitivo se Oy = {x}, Vx € M.

Defini¢ao 1.8. Seja G = M um grupoide. Se s = ¢, dizemos que G é um fibrado de grupos (abstrato)
sobre M.

Proposicao 1.9. Seja G = M um grupoide sobre M. Entdo,
i) G é transitivo se, e somente se, a dncora do grupoide é sobrejetora;
ii) G é totalmente intransitivo se, e somente se, é um fibrado de grupos.

Demonstragdo. i) Ox = M,Vx € M < Vx € M,Vy € M,3g € s (x) talquet(g) =y <
Vx,y € M,3g € s~ !(x) tal que (¢t x s)(g) = (y,x) <= (t x s) é sobrejetora;
i) Oy ={x},Vx e M < Vxe M, Vg es1(x),tg) =x < VgeqG,6s(g) =t{g) |

Observacao 1.10. Considerando a ancora do grupoide, temos a seguinte regra geral
Ay C Im(t,s) C M x M,

em que as igualdade a esquerda e a direita configuram os casos totalmente intransitivo e transi-

tivo, respectivamente.

1.2 Primeiros exemplos

Neste ponto, podemos comegar a apresentar alguns exemplos de grupoides abstratos.

Exemplo 1.11. Se M é um conjunto unitério {*}, a definicdo de grupoide se reduz a de grupo.
Assim, grupos sdo grupoides com base trivial. Isso ja aponta a dimensdo da generalizacdo que
estd sendo desenvolvida.

Note também que todo grupoide dessa forma é trivialmente transitivo, uma vez que a érbita

do tinico ponto a se considerar é todo o conjunto de flexas.

Exemplo 1.12. No extremo oposto do exemplo 1.11 estd a identificagdo de M como um grupoide
sobre si mesmo. Explicitamente, seja M um conjunto e considere G = M, s =t = idy ea

multiplicacdo definida em Ay dada por
m(x,x) =x, VxéeM,
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1

de modo que 1, = x e x~ = x. Assim, M == M é um grupoide. Note que ele é totalmente

intransitivo, uma vez que sobre cada ponto x s6 hd a flexa 1,.

Os exemplos acima sdo casos extremos das definicdes feitas até aqui. A seguir, introduzire-
mos alguns exemplos que nos acompanhardo pela teoria e que servirdo para nos acostumarmos

com as nogdes ja introduzidas.
Exemplo 1.13. Seja M um conjunto e defina G = M x M, s = pr,, t = pr; e multiplicacdo dada
por

m((z,y),(y,x)) = (z,x), Vx,y,z¢€ M.

Por simplicidade, denotamos a multiplica¢do por m((z,v), (y,x)) = (z,y)(y,x). Assim, temos
que 1, = (x,x) ei((y,x)) = (y,x)~! = (x,y). Este grupoide é chamado de grupoide do par,

denotado por Pair(M), é transitivo e tem isotropias triviais.

Exemplo 1.14. Sejam M, N conjuntos e ¢ : M — N uma funcdo. Considerando G = R(¢),

como em 1.5, com s = pr,|g(¢), t = pry[r(y) € multiplicagdo dada por

(zy)(y,x) = (%), Vxy,ze Mcom¢(x) =¢(y) = ¢(2),

de modo que novamente 1, = (x,x) e (y,x) "' = (x,y). Assim, esse grupoide possui grupos de
isotropia triviais e drbitas ndo triviais. Esse exemplo generaliza os dois anteriores: se M = N e

¢ = id, obtemos 1.12, enquanto se N se reduzir a um ponto, obtemos 1.13.

Exemplo 1.15. Sejam M um conjunto e G um grupo. Defina G = M x Ges = t = pr,, com

multiplicagdo dada por
(x’g)(x’h) - (x’gh>/ vx € M/g/h S G

Entéo, temos que 1, = (x,1g) e (x,¢) ' = (x,¢7 '), em que 15 € G é o elemento neutro (identi-
dade) do grupo. Note que as érbitas desse grupoide sdo triviais e, entdo, o grupoide é totalmente

intransitivo. Além disso, as isotropias sdo todas isomorfas ao grupo G.

Exemplo 1.16. Novamente, sejam M um conjunto e G um grupo. Consideremos agora § =

M x G x M com s = pr,, t = pr; e multiplicagdo dada por
(z,h,y)(y, g x) = (z,hg,x), Vxy,z€ Mg hegG,

de modo que 1, = (x,1g,x) e (y,h,x)~! = (x,h~},y). Este grupoide é chamado de grupoide

trivial. Assim como o anterior, os grupos de isotropia desse grupoide sdo todos isomorfos ao
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CAPITULO 1. GRUPOIDES ABSTRATOS

grupo G. De fato, dado x € M,
s_l(x) N t_l(x) = prgl(x) ﬂprl_l(x) ={(x,g,x)€G:3€G} =G

Ainda, a 6rbita para qualquer ponto é total, porque fixado x € M e dado y € M, a flecha
(y,16,x) € s !(x), em particular, é tal que #((y,1g,x)) = y. Logo, esse grupoide é também

transitivo.

Exemplo 1.17. Sejam M, N conjuntos, G um grupo e ¢ : M — N uma funcado. Defina

G(¢,G)={(y,gx) E MxGxM:¢(y) =¢(x)},

com s = pr3|g(4,6), t = Prylg(g,c) € multiplicacdo dada por

(2 hy)(y, 8 %) = (z,hg,x), Yxy,ze M, ¢(x)=9¢(y) = ¢(2),8h G,

de modo que 1, = (x,e,x) e (y,4,x) "' = (x,¢71,y). Note que as 6rbitas sdo ndo triviais e que
as isotropias estdo novamente fixas e iguais ao grupo G. Similarmente ao exemplo 1.14, este
exemplo generaliza os dois anteriores: obtemos 1.15 ao tomarmos M = N e ¢ = id, assim como

recuperamos 1.16 se reduzirmos N a um tnico ponto.

Exemplo 1.18. Sejam M um conjunto e G um grupo que age (a esquerda) em M, isto é,
GxM—M, (gx)—g-x=2gx
com as seguintes propriedades:
h-(g-x)=hg-x, lg-x=x, VxeM,gheG.
Assim, considere G = G x M com s(g, x) = x, t(g, x) = g - x e multiplicacdo dada por
(h,g-x)(g,x) = (hg,x), x€M,ghegG,

de modo que 1, = (¢,x) e (g,x)"! = (¢!, ¢ - x). Este grupoide é chamado de grupoide de agiio e
denotado por G = G x M. Note que as nog¢des de 6rbita e isotropia do grupoide correspondem

com as nogdes usuais para agdes de grupos. De fato,

Or={tgy) e M: (gy) €5 (x)} = {t(g,x) e M} = {g-x € M};
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Ge=s1x)Nt W (x)={(gx) ECGxM:g-x=x}=2{geG:g-x=x}.

Mais exemplos surgirdo no Capitulo 3 quando mais estrutura for adicionada aos grupoides.
Agora que ja temos uma boa ideia do que sdo grupoides e como eles se comportam, vamos na

direcdo de entender que propriedades eles tem e quais construgdes podemos obter a partir deles.

1.3 Acdo da isotropia nas fibras

Aproveitando a apari¢do de a¢des de grupos, vejamos alguns resultados sobre a a¢do das iso-
tropias nas fibras de grupoides abstratos, que auxiliardo no entendimento da estrutura desses

novos objetos.

Lema 1.19. Seja G = M um grupoide. Entio, para cada x € M, o grupo de isotropia G, age em s~ (x)

(a direita) livremente. Analogamente, Gy age em t~1(x) (& esquerda) livremente.
Demonstragdo. A agdo GO s '(x) é dada por
sTHx) %t Gy —> s H(x), (e,g) ——e-g=nmleg),

em que s (x) X Gy = {(e,g) € s 1(x) X Gy : s(e) = t(g)}. Esse mapa ¢é, de fato, uma agio a

direita, pois, para todo ¢, € Gy,e € s71(x),

* (e-g)-h=mle-gh)=m(meg)h) =mem(gh)) =megh) =e-(gh);

eecsi(x)=e 1, =m(e1,) =e.
Resta ver que a acdo ¢ livre. Sejae € s7!(x) e g, h € Gy tais que e - ¢ = ¢ - h. Assim,

e-g=¢e-h=m(e,g) =m(e,h) = m(e ', m(e,g)) = m(e !, m(e,h))
= m(m(e ',e),g) =m(m(e,e),h) = m(m(1y,g) = m(1y,h)

—g=nh
Analogamente, a fun¢do
Gy Xs t‘l(x) — t_l(x), (g,e) —> g-e=m(g,e),

em que Gy X5t 1(x) = {(ge) € Gy xt71(x) : s(g) = t(e)}, define uma acdo livre a direita
gx C t_l(X). |
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Lema 1.20. Sejam G = M um grupoide e x € M. Entio,

s1(x)

Gx

(I)xg

Demonstragdo. Considere a fungao ¢| s1(x) - s 1(x) — M. Note que, na verdade, a imagem
dessa fungéo é t(s~!(x)) = O, de modo que podemos escrever Hs1(x) s71(x) — Oy, com
e — t(e),Ve € s71(x). Queremos estabelecer o isomorfismo passando-se ao quociente, como

no diagrama abaixo:

Ox
Assim, defina
s~ (x)
T: (@)
Ox *
le] —— t(e)
Vejamos que T estd bem-definida. Dados e1,e; € s~1(x) tais que [e1] = [ez], entdo existe g € Gy

tal quee; = e> - g. Logo,

T([ea]) = t(er) = t(er- &) = t(m(e, 8)) = t(e2) = T([ea])

Agora, dados e1,e; € s71(x) tais que T([e1]) = T([ez]), entdo temos que s(e;) = s(e2) = x e

t(e1) = t(e2). Logo,

e = m(Lye,y,e1) = m(m(ez,ez’l),q) = m(ez,m(ez’l,el)) = m(ey, ez’lel) =e- (ez’lel) = [e1] = [ea].
~
S
Segue que T é injetora. Ainda, T é sobrejetora: dadoy € O, = t(s71(x)), existe e € s71(x)

tal que t(e) = y. Entdo, e € s~ '(x) é tal que

L)
=g "

Portanto, T é bijegdo e conclui-se que Oy

Esses Lemas serdo fundamentais para alguns resultado estruturais de grupoides de Lie no

Capitulo 3.
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1.4 Construcoes Categoricas

Nesta se¢do, faremos uma abordagem categoérica da teoria de grupoides, explorando trés concei-

tos importantes desse ponto de vista: morfismos, subcategorias e pull-back.

1.4.1 Morfismos

Do ponto de vista categdrico, é importante entender como os grupoides se relacionam uns com
os outros de maneira a preservar suas estruturas, e isso é feito através de morfismos. Como
grupoides sdo categorias, um morfismo G — H entre dois grupoides é um funtor: para cada
flexa e cada objeto de G, associa-se uma flecha e um objeto de H, de modo que essa associagao

seja compativel com os diversos mapas estruturais de ambos os grupoides.

Defini¢do 1.21. Sejam G == M e H = N grupoides (abstratos). Um morfismo (ou homomorfismo
de grupoides) entre G = M e H == N é um par (F, f) de apliacagdbes F : G — He f: M — N
que sdo compativeis com os mapas estruturais. Mais explicitamente, isso se traduz nas seguintes

condigdes:

i) Sey < xem G, entdo f(y) &f(x) em H;

~—

ii) Se g,h € G sdo componiveis, entdo F(gh) = F(g)F (h);

iii) Sex € M, entdo F(1y) = 1g(y);

iv) Sey & x, entdo F(g 1) = F(g) L

A condigdo (i) pode ser entendida pela comutatividade dos seguintes diagramas:

G L H G L n
o b |
MT>N MT>N

Por simplicidade, dizemos que F é um morfismo de grupoides sobre f ou que F recobre f.

Se M = N e f é aidentidade, dizemos que F é um morfismo estrito.

Observacdo 1.22. Note que a equagdo da condigdo (ii) faz sentido pela condigéo (i), pois

(1) € 6 = sg(g) = tg(h) = sy(F(g)) = f(5g(8)) = fltg(h)) = ty(F(h))
— (F(g), F(h)) e HP.
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—1
. . .. . . 8 ~ g
Mais ainda, a condicgdo (iv) segue das anteriores, uma vez que se y < x, entdo x <— y,

F) 22 fxye fy) £8L £(x), de modo que

F(gHF(g) =F(g'g) = F1y) = L5,
F(@)F(g ") =F(gg™") = F(1y) =gy

Defini¢do 1.23. Um morfismo (F, f) : (G == M) — (H = N) entre grupoides é um isomorfismo
se ambos os mapas F e f forem bijetores. J4& um morfismo (F,f) : (G = M) — (G = M) é

dito um automorfismo.

Exemplo 1.24. Seja G um grupoide sobre M. Entdo, a dncorat xs : G — M x M é um homo-
morfismo estrito de G = M no grupoide do par M x M = M. De fato, tomando f = id, temos

que
i) Sey & xem G, entdo (txs)(g) =(y,x)=pr;(y,x) =y &y pr,(y, x) em H.

ii) Se (g, h) € G, entdo

(Exs)(g)o(txs)(h) = (£(g),5(8))(t(h),s(h)) = (£(g),5(h))

(t(gh),s(gh)) = (txs)(gh).

iii) Se x € M, entdo (t x s)(19) = (£(19),5(19)) = (x,x) = 1M*xM,

Com isso, conclui-se que a dncora é um homomorfismo estrito entre esses grupoides.

1.4.2 Subgrupoides

Exploremos, agora, mais uma nogdo categorica: as “sub-coisas”.

Defini¢ao 1.25. Um grupoide (abstrato) H = N é dito um subgrupoide (abstrato) de um grupoide
G = M se existem mapas de inclusdo 7 : H — G e : N — M tais que o par ([,1) é um
homomorfismo de grupoides. Se N = M e 1 = id, dizemos que H = N é subgrupoide amplo de

g= M.

Observagio 1.26. Em geral, identificamos H com a sua imagem 7({) e N com a sua imagem
(N). Desse modo, consideramos H como subconjunto de G e N como subconjunto de M.

Por outro lado, se G == M é um grupoide, H é um subconjunto de G e N um subconjunto de
M, com

s(H)y=t(H)=N e 1,€H, Vxe€N,
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e tal que H é fechado para multiplicacdo e inversdo do grupoide G, ou seja,
hohi e H, Y(hy,h)eM? e hleH, VheH,

entdo H = N sera um subgrupoide de G = M, com os mapas estruturais de H sendo as
restricdes dos mapas de G para H (para H(?), no caso da multiplicagio). A menos de isomorfis-

mos estritos, todos os subgrupoides de G = M sdo construidos dessa maneira.

Definicido 1.27. Seja G = M um grupoide (abstrato) e seja N C M. Entdo, definimos a restrigio

de G a N como o subgrupoide G|y = N, com mapas s|g|,, t]g‘N,m|g‘<z),u\N,i\g|N, em que
N
Gln = s 1(N) Nt Y(N).

Observacao 1.28. Essa restri¢do de grupoides é regida por uma propriedade universal: se H =
N é um subgrupoide ndo amplo de G =% M, entdo H é subgrupoide amplo da restricdo G|y = N.
Escrito de outra forma, a restri¢do G|y = N é o menor subgrupoide com a propriedade de que

H = N é seu subgrupoide amplo.

Exemplo 1.29. Sejam M, N conjuntos. Para cada ¢ : M — N funcgao, retomando o exemplo 1.14,
o grupoide G = R(¢) é subgrupoide amplo do grupoide do par M x M de 1.13. Reciprocamente,

qualquer subgrupoide amplo de M x M é obtido através de um funcdo ¢ : M — N.

Exemplo 1.30. Sejam M, N conjuntos, G um grupo e ¢; M — N um funcdo. Assim, o grupoide
G = G(¢,G) apresentado em 1.17 é subgrupoide amplo do grupoide trivial M x G x M do
exemplo 1.16.

Exemplo 1.31. Seja M um conjunto, G um grupo agindo em M a esquerda e H um subgrupo
de G agindo também a esquerda em M por restri¢do. Assim, o grupoide de agdo H x M é
um subgrupoide amplo do grupoide de agdo G x M do exemplo 1.18. Note também que cada
Orbita do grupoide se decompde na unido disjunta de 6rbitas do subgrupoide. Na literatura, esse

fendmeno é chamado de quebra de simetria.

1.4.3 Pull-back

Outra construgdo importante para obter-se grupoides a partir de outros grupoides é o pull-back
por um mapa entre os espagos base. Seja G um grupoide sobre M. Se ¢ : N — M é uma fungdo

qualquer, consideremos o seguinte conjunto:

¢ G={(y,8x) ENXGXxN:9(y)=1tg) ¢(x)=s(g)}
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Consideremos também os mapas
t* =tpg =prileig: @G CNXGXN — N, 5" =555 =pr3)pg: "G CNXGXN— N

e P=prlyg: G CNXGXN-—G.

Assim, os diagramas abaixo comutam:

¢~ g ¢~ g
A O R [
N—>M N—7>M

A maneira que se define o conjunto ¢*G é para que esses diagramas comutem. Ainda, temos

(9°G)® = {((yzrgerZ)/ (y1,81,%1)) € 9*G 122 = yl}.

Mas note que

((v2,82,%2), (y1,81, 1)) € 9*G = 5(g2) = 9(x2) = p(y1) = t(g1) = (g2.81) € G,
e entdo podemos definir a multiplicagdo em ¢*G por
(v2,82,%2) (y1,81,11) = (v2, 8281, %1),  ((v2,82,%2), (1,81, 1)) € (¢°G) 2.
Logo, ¢*G é um grupoide sobre N com proje¢des s*,t* ao definirmos

1, = (x,lq,(x),x), Vx € N,

(v,8x) ' =(x,gy) V(ygx) €¢*G.

Mais ainda, nesse contexto, o par (@, ¢) é um morfismo de grupoides.

Defini¢ao 1.32. Seja G um grupoide sobre M, N um conjunto e ¢ : N — M uma funcdo. O
pull-back de G para N via ¢ é o grupoide ¢*G sobre N com mapas estruturais explicitados na

discussdo acima. Ainda, o morfismo ¢ que recobre ¢ é dito o levantamento candnico de ¢.

Apesar de incompleta, a maneira mais intuitiva de visualizar o pull-back é notar que as fibras

de grupoide original e do pull-back sdo iguais entre si, de modo que a mudanga do espacgo base
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significa apenas um reetiquetamento dessas fibras: Vx,,y, € N,

(s) 7' (xo) = {(1.8,%) € 9°G :5"((,8,%)) = %o} = {(1,8, %) € ¢"G} masentdo s(g) = ¢(xo)
o {g €G:s(g) = (p(xo)} = 5_1(4’(%))'

() (vo) = {(,8,%) € G : ' ((4,8,%) =yo} = {(40,8,%) € 9"} masentdo t(g) = ¢(vo)
~{geG:tg) =oWo)} =t (o))

Consequentemente, as isotropias também sao identificadas: (¢*G)x = G, (x), para todo x € N.

Observacgao 1.33. O pull-back de grupoides é caracterizado por uma propriedade universal: dado
um morfismo (F, f) ndo estrito de um grupoide G = M em outro grupoide H = N, existe uma
fatorizacdo tnica de F dada pela composi¢cdo de um homomorfismo estrito 5 de G = M no
pull-back de H = N para M via f, seguido do levantamento canonico de f. Isso estd expresso

nos seguintes diagramas comutativos:

F F
TN N

G fH s H G~ fH s H

o] [+ T

M— M —— N M——+M—— N

em que J; é dado por

Fs(8) = (tg, f(8),5¢), Vgeg.

1.5 Acdo de grupoides em fibrados

Grupoides, assim como grupos, sdo passiveis de agir em objetos. Se, por um lado, grupos agem

em conjuntos, grupoides agem em fibrados.

Defini¢do 1.34. Um fibrado (abstrato) é uma tripla (E, M, 7t), em que E e M sdo conjuntos deno-
minados espago total e espaco base do fibrado, e r : E — M um mapa sobrejetor chamado de

projecio do fibrado.

Por abuso de linguagem, diremos que E é um fibrado (abstrato) sobre M com projegao 7, ou

ainda que E 2, M é um fibrado (abstrato).

Defini¢do 1.35. Uma aciio (2 esquerda) de um grupoide G = M em um fibrado E > M com
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CAPITULO 1. GRUPOIDES ABSTRATOS

mesmo espago base é uma aplicacdo

GxsE— E

(g,e) —> g-e
em que G X, E denota o produto fibrado de G e E sobre M, com relagdo a projecao s, dado por
GxsE={(ge) €GxE:s(g)=mle)},

tal que:
i) 8 Esg) = By V8EG
i) h-(g-e) = (hg)-e, VhgecG?,ec Es(q);
iii) 1,-e=e, Ve¢€ E,.
Observagao 1.36. As trés condi¢des acima pordem ser interpretadas como:

i) A translagdo por qualquer elemento ¢ € ¢ (definida apenas na fibra E(,)) leva a fibra de E

sobre s(g) na fibra de E sobre t(g);

ii) A composi¢do das translagdes por dois elementos de G é igual a translacdo pelo produto

destes dois elementos;
iii ) A translagdo pela unidade é a identidade.

Assim, a translagdo por qualquer elemento ¢ € G é um isomorfismo da fibra de E sobre s(g) na
fibra de E sobre t(g), cuja inversa é dada pela translagdo por g~! € G. Esse fato ja foi usado

implicitamente na condigdo (i) ao escrevermos g - Ego) = Ey () a0 invés de g - Eg) C Ey(g)-
Desse modo, podemos retomar e generalizar o exemplo 1.18:

Exemplo 1.37. Seja G um grupoide sobre M que age em um fibrado E sobre M a esquerda.

Considere G = G X s E com

s(g,e)=e, t(ge)=g-e, Vg €G,eceE,
e multiplicagdo dada por

(h,g-e)(g,e) = (hg,e), Vg heG,eceE.
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Nesse contexto, 1, = (171(8),6) e(g,e)' = (¢!, ¢-e). Logo, o grupoide G = E é denominado o
grupoide de agiio e denotado por G x E.

Observagdo 1.38. Tudo o que foi feito nessa subsecdo diz respeito a agdes a esquerda e tem um

analogo para acdes a direita, tomando cuidado com os pontos base nas fibras.

1.6 Bissecoes

Para finalizar esta introdugdo a teoria de grupoides, resta apresentar a nogdo de bissegio, que

mostrard que ainda hd um grupo subjacente em torno de um grupoide.

Definigao 1.39. Seja E um fibrado (abstrato) sobre M com proje¢do 7 . Uma segio de M é um

mapa ¢ : M — E que é uma inversa a direita de 77, i.e., 0 : M — E é tal que
n(o(x)) =x=idu(x), Vxe M.

Uma secdo de um fibrado E é entdo uma escolha de o(x) em cada fibra de E, de modo que a
condicdo exigida significa apenas que a se¢do em um ponto x deve cair sobre x. Isso generaliza a
nogao de grafico de uma fungdo. Vale notar que a imagem da se¢do estd em bijecdo com o espago

base M, como se vé no figura 1.1.

Observacao 1.40. Na definicdo 1.1 de grupoide, chamamos o mapa unidade u : M — §
também de segdo unidade. Esse mapa é uma se¢do de G no sentido apresentado na definicao

acima com respeito as projecoes s e t.

Um grupoide pode ser visto como um fibrado tanto com proje¢do s quanto com projecao t.
Assim, convém introduzir uma nogdo de se¢do no contexto de grupoides que, de certa maneira,

capture a informacdo de ambas as projegdes.

Defini¢ao 1.41. Seja G um grupoide sobre M. Uma bisse¢cio de G é um mapa b : M — G tal que
sob=idyetob: M — M é uma bijegdo. Em outras palavras, uma bisse¢do é uma secdo de M

com respeito a projecdo s tal que t o b : M —> M é uma bijecéo.

Observacao 1.42. Note que a se¢do unidade do grupoide G = M é também uma bisse¢do, uma
vez que

sou=1idy =tou.
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CAPITULO 1. GRUPOIDES ABSTRATOS

Figura 1.1: Visualizacdo da segdo s de um fibrado E sobre M (fonte: Wikipedia)

1.6.1 Estrutura de Grupo

Com essa no¢do em mente, gostariamos de introduzir uma multiplicacdo entre bisse¢des que
resultasse em uma bisse¢do. Dadas duas bissec¢oes by, b, : M — G, poderfamos, ingenuamente,

definir a multiplicacdo delas duas como sendo simplesmente

(by @ by)(x) = m(b1(x),ba(x)) = by (x)ba(x).

Mas isso ndo estaria bem-definido, uma vez que ndo hé informagao garantindo que by (x) e bp(x)
sdo componiveis, para todo x € M. Isto é, para que essa multiplicacdo faga sentido, é preciso
que

s(bi(x)) =t(ba(x)), VxeM,

0 que ndo necessariamente estd garantido. Mas note que, como b; e b, sdo bisse¢des, sabemos
que (soby)(x) = xe (soby)(x) = x, para todo x € M. Desse modo, olhando para a ultima
equacdo destacada e sabendo da impossibilidade de obter informagdo sobre o término de by(x),

definimos o produto de duas bisse¢des por

(by @ by)(x) = m(bl((to bz)(x)),bQ(x)> = by ((tob)(x))ba(x), Vxe M.

23



1.6. BISSECOES

Agora, esta operacado esta bem-definida por construgdo, uma vez que

s(bi((tob)(x))) =50 by((tob)(x)) = (toba)(x), Vre M.
id

Mais ainda, este produto define uma bisse¢ao. De fato, para todo x € M

(so (by e by))(x) = s(bl((tObz)(x))bz(x)) =s(by(x)) = (soby)(x) =x, e
idy

(Fo (b1 9 b2)) (x) = £(br ((Fo b2) (1)) ba(x) ) = £(br (o b2) (x)) ) = (o br) o (to b)) (),
bijecdo bijecado

o que implica que f o (b; @ by) é bijecdo, como composta de bijecoes.
q plica q ] P J

Defini¢do 1.43. Seja G == M um grupoide. Denotemos por I'(G) (ou por Bis(G)) o conjunto de

todas as bissec¢des de G.

Proposicao 1.44. Seja G = M um grupoide e considere T'(G) com a multiplicagio de bissecbes dado por
(b1 @by)(x) =bi((toby)(x))ba(x), Vbi,b €T(G),Vx € M.

Entdo, T'(G) é um grupo mco respeito a esse produto.

Demonstragdo. Sejam b, by, by, b3 : M — G bissec¢des quaisquer. Assim, para a associatividade,

Vx € M, por um lado temos que:

((b] [ bz) [ bg) (X) = (bl [ bz) ((t o bg)(X))b3(X)

_ (bl((tobz)((tob3)(x)))b2((tob3)(x))>b3(x).

Por outro, temos:

(b1 ® (b2053)) (x) = by ( (£ (b2 0 b3)) (x) ) (b2 0 b3) (x)

b (10 (Ba((t0bs) (0)3)) ) (ba((t 0 3) ()2
= tn (10 (bal(r0 b)) ) ) (b2 (1 b)) )

D (b1 (to ) (0 b3) ) )2 (0 3) ) ),

em que em (*) utiliza-se a Lei da associatividade do grupoide. Agora, note que a se¢do unidade do
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grupoide é a unidade desse produto. De fato, Vx € M,

(beu)(x) =b((ton)(x))u(x) =b(x)lx = b(x),
idp

(ueb)(x) = u((tob)(x))b(x) = Lyp(x)b(x) = b(x).

Por fim, resta deduzir a inversa de uma bisse¢do. Se b, fosse a inversa de by, entdo, para todo
xeM,
b1((tob)(x))ba(x) = (b1 @ by)(x) = u(x) =1,

by((toby)(x))bi(x) = (breby)(x) = u(x) =1,

Multiplicando a esquerda ambos os membros da primeira equagéo pela inversa de by ((t o by)(x)),
obtemos:

ba(x) = by ((£o by)(x)) "

Agora, como tob; : M — M é bijecdo, tal mapa admite uma inversa. Logo, aplicando a

segunda equagéo para (t o b;)~!(x) € M e tomando a projecio ¢, temos que

by (x)b1 ((to b1) (%)) = L(sopy)1(x) = (F0b2)(x) = t(b2(x)) = t(L(sopy)-1(x) = (Fob1) " ().

-1

Dessa forma, concluimos que by(x) = by ((toby)(x)) = bi((to bl)_l(x))fl. Assim, dada

b: M — G bisse¢do, defina

bl M — g

x — bMx) = b((tob) 1 (x))
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Verifiquemos que ela é a inversa de b com respeito a multiplicagdo em I'(G):

/-\

b((tob ) (x))b™ (x):b(t(b((tob)_l(x))_1>)b((t0b)_l(x))_l
b<s to ))))b((tob)l(x))—l

b)”
b((SOb) ((0b)1(x)) )b((tob) H(x)) "

— b((tob)* ())b((tob) (x)) " =1, = u(x),
(b~ e b)(x) = b1 ((tob)(x))b(x) = b((to b) ' ((to b)(x))>_1b(x)
=b((tob) o (tob)(x)) 'b(x)

idy

=b(x)"b(x) = 1, = u(x).

Portanto, I'(G) é um grupo. [ |

Observagio 1.45. O grupo de bisse¢des I'(G) vem com um homomorfismo de grupos natural

®:T(G) — Bij(M)

b——tob

De fato, se by, b, : M — § sdo bisse¢des, entdo, para todo x € M,

(by o b2)(x) = to (by @ b2) (x) = to (b ((£0 b2) (x))ba(x) ) = to (ma((t02) (1))
= ((toby) o (toby))(x) = (®(by) 0 ®(by)) (x).

1.6.2 Outro modelo para bisse¢des

Outra maneira, talvez mais geométrica, de enxergar bisse¢des é como certos subconjuntos do

espago total do grupoide. A proposicdo a seguir apresenta essa visao.

Teorema 1.46. O conjunto I'(G) das bissecdes de um grupoide G = M estd em correspondéncia 1 para 1

com os subconjuntos B C G tais que s|p, t|p : B — M sio bijecdes.

Demonstragdo. Dada uma bissecdo b : M — G, considere B = b(M) C G. Sejam g, h € B tais

26
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que s|p(g) = s|p(h). Assim, existem x,y € M tais que § = b(x),h = b(y). Logo,

x = (sob)(x) =s|p(b(x)) = s|a(g) = s|a(h) = s5(b(y))

— g =b(x) = b(y) = h

(s0b)(y) =y

Mais ainda, se x € M é elemento qualquer do espago base, entdo b(x) € B C G é tal que
s|g(b(x)) = (sob)(x) = x. Portanto, s|z : B— M é bijetora. De maneira semelhante, se g,/ €
B sdo tais que t|p(g) = t|p(h), entdo novamente existem x,y € M tais que ¢ = b(x),h = b(y), de

modo que

tp(8) = tls(h) = tl5(b(x)) = t[s(b(y)) = (tob)(x) = (tob)(y).

Como (tob) : M — M é um mapa bijetor, entdo x = y, o que implica que ¢ = b(x) = b(y) = h.
Ademais, dado x € M qualquer, a bijetividade de (t o b) garante que existe um ponto y € M
tal que (fob)(y) = x e, consequentemente, existe b(y) € B tal que t|g(b(y)) = x. Portanto,
t|p : B — M também é bije¢do.

Por outro lado, dado um subconjunto B C G de modo que s|g,t|p : B C G — M séo

bije¢des, considere b = s]gl :M — B C G. Assim, Vx € M, temos:

(sob)(x) =s(b(x)) = s(ig\lf(xd)) = sl (s (x)) = idm(x).
€B

Ainda, note que para a projecdo t,

(Fob)(x) = t(b(x)) = t(sls" (x)) = tla(sl5" (x)) = (Hzosls")(x),

~—
€B

Vx € M, o que implica que (fob) : M — M é bijecdo, como composta das bije¢des t| € s|p.
Note ainda que B = b(M). Portanto, a correspondéncia esté estabelecida. [
Nesse modelo, a estrutura de grupo é dada pela multiplicacdo

By e By = mg((By x B,) nGg®?),

em que mg : G® — G é a multiplicacdo no grupoide G = M. Isso significa que o produto
By e B, consiste no subconjunto de todas as multiplicacdes g1¢> de elementos componiveis com
gi € B;, parai = 1,2. Essa multiplicagdo é compativel com a multiplicagdo do modelo anterior

com respeito a correspondéncia estabelecida acima. De fato, dadas duas bisse¢des by, b, : M —
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G, sua multiplicacdo é dada por
(b1 eby)(x) =by((toby)(x))ba(x), Vxe M.
Logo, tomando B; = b1(M) e By = by(M), temos claramente que

(by @ by) (M) = {bl((tobz)(x))w €g:xeM|
€B; €B,

= {glgz €G:81€B1,8 € By, (81,8) € g(z)} =mg((B1 x By)NG?),

em que a componibilidade segue de como foi definido a multiplicacdo das bisse¢des no primeiro
modelo. Com isso, segue que o conjunto das bisse¢des dadas como subconjuntos do espago total
do grupoide é também um grupo, cujo elemento unidade é o espago base M = u(G) e cuja

inversa é dada por B~! = ig(B).

Observacgao 1.47. Este modelo de bisse¢cdo como subconjuntos tem a vantagem de ter operagdes

mais simétricas.

Exemplo 1.48. Dado um grupo G e enxergando-o como um grupoide sobre um ponto G = {x*},

uma bissecdo é simplesmente um elemento de GeI'(G) = G.

Exemplo 1.49. Dado um fibrado de grupos (abstrato) E - M e exergando-o como um grupoide

E = M com projegdes iguais a 71, uma bisse¢do nada mais é do que uma secao.

Exemplo 1.50. Dado um conjunto M e enxergando-o como um grupoide sobre si mesmo M =

M, a tnica bissec¢do existente é a unidade u : M — M.

Observacdo 1.51. O grupo de bisse¢des I'(G), nesse modelo, também vem com um homomor-

fismo de grupos natural

@ : T(G) — Bij(M)

B+ tlpo (S‘B)fl.

Com isso posto, finalizamos a introdugao ao reino dos grupoides abstratos e estamos prontos

para adicionar estruturas a eles.
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Capitulo 2

A Linguagem da Geometria

“L’algébre n’est qu'une géométrie écrite,
PSP , 5
la géométrie n’est qu’une algebre

figurée.”

Sophie Germain [28]

A Geometria Diferencial moderna estd fundamentada na nog¢do de Variedade Diferenciavel.
A fim de transpor as nogdes abstratas de grupoides para estudarmos grupoides “geométricos”(que
sdo compativeis com objetos geométricos), neste capitulo apresentaremos uma visdo geral dos
principais resultados dessa teoria que serdo utilizados no capitulo seguinte. Apenas alguns dos

resultados serdo provados, enquanto referéncias para consulta serdo deixadas para os outros.

2.1 Variedades suaves

A nocdo de Variedade suave é de extrema importdncia em Matemética desde antes de sua
formalizagdo, aparecendo como o espago-tempo em relatividade geral, dominios de EDO’s, espacos
de fase em mecénica. A definicdo moderna usada atualmente é devida a H. Whitney em seu ar-
tigo [19] e pode ser encontrada em [3], [1], [2] e [4], assim como as nog¢des adjacentes de espago
tangente a uma variedade, fungdo suave entre variedades e a diferencial de uma tal fun¢do. Com

essas no¢des em mente, apresentemos um primeiro Teorema fundamental da teoria.

Teorema 2.1 (Teorema da Fungdo Inversa). Sejam f : M — N um mapa suave entre variedades
suaves, p € Meq = f(p). Sedf, : T,M — T;N é um isomorfismo, entio existe um aberto U > p tal
que f(U) > qéabertoem N e f|y : U — f(U) é um difeomorfismo.

Em outras palavras, esse teorema garante que uma funcao entre variedades é um difeomor-

fismo local em torno de um ponto p € M se, e somente se, sua diferencial em p for um isomor-
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fismo.

Definicdo 2.2. Seja f : M — N funcdo suave entre variedades. O posto de f em p € M é o posto
dedfp : TyM — T(,)N. Uma fungdo suave cujo posto € o mesmo em todo ponto p € M é dita
de posto constante. Uma funcdo suave é chamada de imersdo (ou, respectivamente, submersio) em
p € Msedf,: T,M — Tf,)N € injetora (respect., sobrejetora). A fungdo serd dita uma imersio
(respect., submersio) se o for em todo ponto. Se f : M — N for uma imersao e também um

homeomorfismo sobre sua imagem, diremos que f é um mergulho.
Com essas nogdes sobre mapas entre variedades, temos os seguintes Teoremas:

Teorema 2.3 (Forma Local das submersdes). Sejam M, N variedades suaves de dimensoes n + k e k,
respectivamente. Se f : M — N é uma submersdo em p € M, entdo existem coordenadas locais de M e

N tais que a expressio local de f em p é a projecdo canonica de R"** em R¥.

Teorema 2.4 (Teorema do Conjunto de Nivel para posto constante). Seja f : M — N fungio
suave entre variedades de posto constante igual a r. Entdo, f~'(q) é uma subvariedade propriamente

mergulhada de M de codimensio r, Vq € N.

As demonstragdes de todos os Teoremas acima podem ser encontrada em [3] e [1]. O préximo

resultados acerca de submersdes estd demonstrado em [1].

Proposigao 2.5. Seja w : M — N uma submersdo. Entdo, todo ponto de M estd na imagem de uma
secdo local suave de 7t. Mais ainda, se a submersdo for sobrejetora, entdo 7t é um mapa quociente, e entdo,
se F : M — Z for um mapa suave entre variedades constante nas fibras de 7t, entdo existe um tinico

mapa suave F: N — Z tal que For = F.

Outro conceito fundamental para Variedades é o de particio da unidade, que permite tornar

argumentos locais em globais.

Defini¢do 2.6. Seja M uma variedade suave. Uma particio da unidade em M é uma colegdo {p;};

de fungdes suaves em M tais que:
i) pi(p) =0,Vp € M,Vi;
ii) A colegdo de suportes {supp(p;)}; é localmente finita;
iii) ) _pi(p) =1,Yp € M (tal soma ¢, na verdade, finita por (ii)).
i

Se {U, }, € uma cobertura por abertos de M, dizemos que a parti¢do da unidade {p; }; é subordi-

nada a {U, }, se, para todo i, existir a tal que supp(p;) C U,.
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Teorema 2.7. Se M é uma variedade suave e {Uy }, é uma cobertura por abertos de M, entdo existe uma

particio da unidade subordinada a {U, },.

Este teorema também estd demonstrado em [3] e [1]. Para finalizar essa se¢ao, introduziremos

as métricas Riemannianas:

Definicao 2.8. Seja M uma variedade suave. Uma métrica Riemanianna ¢ em M é uma familia
de produtos internos nos espacos tangentes de M que varia suavemente pelos pontos de M.
Explicitamente, ¢ associa a cada ponto p € M uma forma bilinear simétrica positiva definida em
»M
gy TyMx T,M — R,
de modo que o mapa M > p — g,(X;,Y,) € R é suave.
Usando parti¢des da unidade, prova-se que

Teorema 2.9. Toda variedade suave admite uma métrica Riemanianna.

Uma demonstragao disso estd em [6].

2.2 Grupos de Lie

Aqui, veremos o que sdo os grupos de Lie e algumas de suas propriedades importantes para
o estudo de grupoides de Lie. Os livros [3] e [1] cobrem os aspectos bésicos da teoria. Uma
abordagem muito completa sobre grupos e algebras de Lie é a apresentada em [7]. Em [2], a

teoria de grupos de Lie também ¢é desenvolvida, chegando até o estudo de espagos homogéneos.

Defini¢ao 2.10. Um Grupo de Lie é uma variedade suave com uma estrutura de grupo tal que
a multiplicacdo do grupo é suave. Isso implica diretamente que o mapa de inversdo do grupo

também é suave.

Defini¢ao 2.11. Sejam G um grupo de Lie e M uma variedade. Uma agdo a direita de G em M é
um mapa suave

m:MxG-—M
denotado por m(x,g) = x - g que satisfaz:
((x)-h)-g=x-(hg), x-e=x, Vg he G xeM,

em que e € G é aidentidade do grupo. Ainda, uma agdo (a direita) do grupo de Lie G em M é

dita
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i) livresex-g=x-h = g = h,paraalgum x € M;

ii ) prépria se o mapa (x,g) — (x,x - §) é proprio, ou seja, se a pré-imagem de um compacto

do contradominio pelo mapa é um compacto do dominio.

O préximo Teorema estd demonstrado em [7] e em [8] e é muito importante para a teoria de

fibrados principais.

Teorema 2.12. Se um grupo de Lie G age livre e propriamente em uma variedade M, entdo o quociente

M/ G admite uma tinica estrutura suave tal que o mapa quociente 7w : M — M/ G é uma submersao.

2.3 Algebras de Lie

Discutamos, rapidamente, a construgdo da dlgebra de Lie de um grupo de Lie, que serd reto-
mada ao fim do Capitulo 3 para servir de inspiracdo para a construcao do algebroide de Lie do

grupoide.

Definigdo 2.13. Uma Algebra de Lie consiste em um espaco vetorial g munido de um produto

(colchete) [+, -] : g X g — g que satisfaz as seguintes propriedades:
i) [, -] ébilinear;
ii) [X,Y]=—[Y,X], paraX,Y € g;
iii) [+, -] satisfaz a identidade de Jacobi: [X, [Y, Z]] = [[X,Y]Z] + [Y,[X, Z]],VX,Y,Z € g.

Como um espago vetorial, a dlgebra de Lie de um grupo de Lie G é definida como
g =T.G.

O colchete definido nesse espago serd definido através de campos vetoriais invariantes a direita
da seguinte maneira: todo ¢ € G age em G por translagdo a esquerda L;. Um campo vetorial é

dito invariante a direita se for invariante pela translacdo Ry, para todo g € G, ou seja,
d(Rg)n(Xn) = Xng-

Um campo vetorial desse género é completamente determinado pelo seu valor na identidade

e € G, uma vez que essa condi¢do implica que
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Reciprocamente, cada X € g tem uma tnica extensdo a um campo vetorial invariante a direita.

O colchete de Lie de campos invariantes a direita é invariante a direita. Isso segue de:

Lema 2.14. Seja f : M — N suave, X; € X(M), Y; € X(N) tais que df(X;) = Y;, i = 1,2. Se
p € M, entio, para p € M,
df[X1, Xa]p = [Y1, Y2l f(p)-

Demonstragdo. Se X € X(M), o push-forward de X por f é tal que f,X o f = df o X, em que

f«X € N. Assim, identificando o espago de campos em M com o de derivagdes
X(M) = {g: C*(M) — CZ(M)},
se ¢ € C®(M), entdo

fel X1, Xo]p(p) () = [X1, Xalp(g 0 f) = X1p(Xa(g o f)) — X2p(Xa(g o f))
= X1, (feX2(8) o f) — X2p (feX1(g) © f)
= f*Xl (f*Xz(g) of)f(p) _f*XZ(f*Xl(g> of)f(p)

= [f: X1, fiXal () (9)

Logo,

[l X1, Xal gy = [ Xa, f Xal 5y = df [Xa, Xolp = [Af X1, df Xo]f(p) = Y1, Yol f(p)-

Usa-se essa invaridncia para definir o colchete em g, impondo a condigdo de
(X, Y]* = [X%, Y]

Observacgao 2.15. Usando campos invariantes a esquerda, obteriamos o colchete oposto ao que
obtivemos acima, isto é, avaliado na identidade, obteriamos o vetor oposto. Isso resultaria em

mudangas de sinais em férmulas envolvendo o colchete.
Por fim, apresentemos apenas mais dois conceitos relacionados a algebras de Lie.

Defini¢do 2.16. Um morfismo de algebras de Lie (g, [-,-]) e (¢/, [, -]) ¢ uma fungéo linear f : g —>
¢’ tal que
fAX YD) = [F(X), f(V)), VX, Y €eq.
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Com a nogdo de morfismo, podemos conectar uma algebra de Lie g de um grupo de Lie G

com a algebra de Lie dos campos de vetores em M por meio de agoes infinitesimais.

Defini¢do 2.17. Uma agdo infinitesimal de uma algebra de Lie g em uma variedade M é um mor-
fismo de algebras de Lie

a:g— X(M)

2.4 Fibrados

Para encerrar o capitulo, apresentaremos o bésico da teoria de fibrados em Geometria Diferen-
cial. Para se aprofundar nesse assunto, algumas referéncias sdo [10] e [8], que também abordam

a teoria de conexdes em fibrados.

Defini¢do 2.18. Um fibrado vetorial (real) de dimensao r é uma tripla (E, 71, M) em que E e M sdo
uma variedades suave e 77 : E — M é um mapa sobrejetor tal que, para cada € M, 71 (x) = Ey
tem uma estrutura de espago vetorial (real) de dimensdo r com a seguinte condigdo de triviali-

dade local: para cada x, € M, existe um aberto U > x, e um difeomorfismo

h:Ely=nt(U) — UxR
tal que i manda cada fibra Ey para {x} x R" por meio de um isomorfismo de espagos vetoriais,
identificando {x} x R" com R".

Observacao 2.19. Fibrados vetoriais complexos sdo definidos de maneira similar, trocando R por
C, mas tem um comportamento bem diferente dos primos reais. Esse tipo de objeto concerne a

Geometria Algébrica.

Definicdo 2.20. Seja E > M um fibrado vetorial. Uma se¢do de E é um mapa suave o : M — E
tal que 77 o ¢ = idp. Denotamos o espago das se¢des suaves por I'(E). Dado um aberto U C M,

0 espago de sec¢des locais I'(E|y;) consiste nas se¢des cujo dominio é U.

Outras operagdes importantes com fibrados vetoriais podem ser encontradas em [8], com

destaque para a soma direta, que aparecerd em uma demonstracgdo a frente.
Lema 2.21. Todo fibrado vetorial E = M™" admite uma métrica Riemanianna compativel
Demonstragdo. Tome uma cobertura localmente finita {U;}; de M de modo a trivializar o fi-
brado, i.e., E|y, = U; x R’. Assim, existe um produto interno g; em E|y;, dado por

8i(vp,wp) = (v, w), Vpel,
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em que (-,-) é o produto interno usual de R". Seja {p;}; parti¢do da unidade subordinada a
{U;};. Logo, como os produtos internos g; sdo induzidos do produto interno euclideano, entdo

uma conta simples mostra que

8(p) = Lpi(p)si(p)

define uma métrica Riemanianna em E. [ |

Para o préximo resultado, indicamos a referéncia [5] para o entendimento de sequéncias
curtas exatas de fibrados vetoriais e também para uma demonstragdo diferente da que serd apre-

sentada aqui.

Teorema 2.22. Toda uma sequéncia curta exata de fibrados vetoriais 0 — K L EDL F— 0cinde,

ou seja, para toda sequéncia dessa forma, existe uma cisdo.

Demonstragdo. Seja ¢ uma métrica Riemanianna em E como no Lema acima. Assim, a cada
x € M, g dd um produto interno em E,. Agora, note que, como a sequéncia é curta exata, o mapa
i: K — M éinjetor, p : E — F é sobrejetor e Im(i) = Ker(p). Logo, considerando Im(7) C E,
defina H = (Im(i))l o fibrado vetorial tal que H, = (Im(i ))j, em que a ortogonalidade é dada

pelo produto interno na fibra. Dessa forma, vemos que

Mais ainda, identificando K = Im(i) e notando que, como Im(i) = Ker(p) ep : E — F é

sobrejetor, podemos identificar F = H, obtemos a seguinte cisdo:

E=Ka&F.

Agora, daremos uma breve introdugdo aos fibrados principais:

Defini¢do 2.23. Seja M uma variedade suave e G um grupo de Lie. Um G-fibrado principal sobre

M consiste em uma variedade P munida de uma ac¢éo a direita de G
PxG—DP, (pg) r— prg

e um mapa sobrejetor

m:P— M
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G-equivariante, isto é, t(pg) = 7(p),Vp € P, g € G, que satisfaz a seguinte condi¢do: para cada
X, € M, existe um aberto U 3 x, e um difeomorfismo ¥ : Py = 7~} (U) — U x G que mapeia
cada fibra 7771 (x) para a fibra {x} x G e que é G-equivariante. Nesse caso, a agio a direita de G

em U x G é no segundo fator: (x,a)g = (x,4g).
O Teorema 2.12 garante a seguinte equivaléncia para fibrados principais.

Proposicao 2.24. Uma agio de um grupo de Lie G em uma variedade P é parte da estrutura de um fibrado
principal se, e somente se, a agdo é livre e prépria. Assim sendo, a variedade base é difeomorfaa M = P/G
munida da tinica estrutura que faz o mapa quociente 7oy © P — M ser uma submersdo, e a projegio do

fibrado principal é a propria Ttey.

Com isso, estamos prontos para voltar os olhos para os grupoides com estrutura diferenciavel.
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Capitulo 3

Grupoides de Lie

“The greatest illusion of this world is the
illusion of separation. Things you think
are separate and different are actually one

and the same.”

Guru Pathik, Avatar: The Last Airbender[27]

Neste capitulo, coragdo dessa monografia, é apresentada a base da teoria geral de grupoides
de Lie, isto é, grupoides com uma estrutura diferencidvel. Diversos resultados apresentados no
Capitulo 1 serdo retomados, aprofundados e utilizados para o desenvolvimento dessa teoria. Ao
longo das préximas segdes, teremos uma pitada de grupoides topolégicos, muito presentes nos
trabalhos de Ronald Brown, como [12], entenderemos a nogdo de bisse¢do para o caso Lie, assim
como as bisse¢des locais, e serdo apresentadas a estrutura de grupoides de Lie, exemplos novos
e importantissimos para o prosseguimento dos estudos na 4rea, um resultado sobre grupoides
transitivos e sua ligagdo com os fibrados principais, e a construgdo do algebroide de Lie de um

grupoide de Lie.

3.1 Uma breve mencao aos grupoides topolégicos

Definig¢ao 3.1. Um Grupoide topolégico é um grupoide G = M cujos conjuntos de flechas G (espago
total) e de objetos M (espago base) sdo espagos topolégicos, cujos mapas estruturais s, t, u, m, i sao

todos continuos e tais que s e t sdo mapas abertos.

Observagao 3.2. Observe que em um grupoide topolégico todas as s-fibras e as t-fibras sdo
espagos topoldgicos, os grupos de isotropia Gy = s~ (x) Nt~1(x) sdo grupos topolégicos (com a

restricdo da multiplicacdo do grupoide), as érbitas O, = t(s~!(x)) sdo subespacos topoldgicos
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de M e o conjunto de 6rbitas M /G tem topologia quociente induzida.

A combinagdo de condic¢des exigidas nessa defini¢do torna a estrutura do grupoide ainda

mais rigida, como é apresentado na seguinte

Proposicdo 3.3. Seja G um grupoide topologico sobre M. Entdo, o mapa unidade u : M — G é um
mergulho topoldgico, i.e., é um homeomorfismo sobre sua imagem (munido da topologia relativa) e o mapa

inversdo i : G — G é um homeomorfismo.

Demonstragdo. Ja sabemos que u : M — G é continuo e sobrejetor sobre sua imagem. A

injetividade pode ser verificada rapidamente: se x,y € M sdo tais que u(x) = u(y), entdo
Iy =1, = 5(1y) =s(1y) = x =y.

Assim, vendo o mapa unidade como u : M — u(M), existe uma inversa u~! : u(M) — M
para ele. Seja V. C M um aberto e considere s (V) = {g € G : s(g) € V} C G. Como

s: G — M é continuo, entdo s~ (V) é aberto em G. Logo,
(u H V) =u(V)={u(x) €G:x €V} =s1V)NnuM).

Entdo, (u~!)~1(V) é aberto na topologia relativa do subspaco u(M) e, portanto, u~! : u(M) —
M é continua. Segue que u : M — G é mergulho topoldgico.

Parai: G — G, basta notar que este mapa é inversa de si mesmo:

(ioi)(g) =i(g™") = g =idg(g).

Logo, como é continuo e tem inversa continua, i : G — G é homeomorfismo. n

Viérios dos exemplos de grupoides apresentados na se¢do 1.2 podem ser trazidos para o caso
topolégico, em geral exigindo que a base do grupoide seja um espaco topolégico e que os gru-
pos, presentes em algumas construgdes, sejam grupos topoldgicos. Faremos uma retomada mais
detalhada dos exemplos ja apresentados para o caso diferencidavel. Por ora, vamos nos ater a
um exemplo significativo para a teoria topoldgica de grupoides ou, mais amplamente, para a

topologia algébrica: o Grupoide Fundamental.

Exemplo 3.4. Seja M um espago topoldgico. Defina G = C([0,1], M)/ Hom(|[0,1]), isto é, G é
o espaco dos caminhos continuos em M a menos de reparametrizacdo. Mais explicitamente, G
é o quociente do conjuntos de todas as curvas continuas da forma 7 : [0,1] — M pela agédo

do grupo de homeomorfismos do intervalo [0,1] que fixam as extremidades (levam 0 em 0 e
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1 em 1), com s([y]) = 7(0), t([y]) = (1) e multiplicagdo dada pela concatenacdo de curvas

[72] % [11] = [72% 1], em que
m(t) 0SS
(2xm)(t) = ,
722t —1) ,1<t<1
de modo que a unidade ¢é dada pelos caminhos constantes, i.e., 1, = [cx(t)], com ¢x(t) = x, e
a inversdo é dada por [y]™! = [y71], em que 7 "1(t) = (1 —t). Este grupoide é nitidamente

topoldgico e é chamado de grupoide de caminhos de M.

Exemplo 3.5. Seja M um espaco topolédgico. Defina G como o espago das classes de homotopia
continua de caminhos continuos em M, relativa as extremidades, com as mesmas operagdes do
exemplo anterior. Note que as isotropias desse grupoide correspondem ao grupo fundamental
do respectivo ponto, i.e.,

Gy =m(M,x), Vxe M.

Assim, esse grupoide topoldgico é chamado de grupoide fundamental de M e denotado por I'ly (M).

3.2 Passagem para o caso diferenciavel

Defini¢ao 3.6. Um Grupoide de Lie é um grupoide G = M cujos conjuntos de flechas G (espaco
total) e de objetos M (espago base) sdo variedades suaves, cujos mapas estruturais s, ¢, u, m, i sdo

todos suaves e tais que s e t sdo submersdes sobrejetoras.

Observagao 3.7. A tltima condicdo da definigdo acima garante que s~!(x) e t!(x) sdo varieda-
des e que G é subvariedade de G x G, pelo Teorema do Valor Reqular. A suavidade de m é para

ser entendida com respeito a estrutura suave de G(2.

Observacgdo 3.8. A partir de agora, todas as variedades apresentadas serao Hausdorff e segundo
contdveis. Uma possivel excessdo é o espacgo total de um grupoide de Lie G, que pode ser nao-
Hausdorff, mas mantendo as fibras de suas proje¢des e o espago base M como variedades Haus-
dorff e segundo contdveis. Grupoides de Lie ndo-Hausdorff sio muito comuns na teoria de

folheagdes, que ndo serd muito abordada neste texto. Uma referéncia para esse tépico é [16].

Com o novo ambiente em mente, é interessante trazer algumas das propriedades e construgdes

feitas no Capitulo 1 para ca.

Defini¢do 3.9. Sejam ¢ = M e H = N grupoides de Lie. Um morfismo entre esses grupoides

de Lie é um morfismo (F, f) (no sentido abstrato) cujas componentes sdo suaves. Em outras
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palavras, um morfismo entre grupoides de Lie é um funtor suave nas flechas e objetos/unidades.

Defini¢do 3.10. Seja G == M um grupoide de Lie. Um grupoide de Lie H = N é dito um

subgrupoide de Lie de G se é um subgrupoide (no sentido abstrato) tal que

I:H—G e 1:N—M

sdo imersdes suaves. Um subgrupoide de Lie é dito amplo se for amplo no sentido abstrato.

3.2.1 Exemplos

Neste momento, estamos prontos para retomar os exemplos apresentados na se¢do 1.2 e ir além
para dar novos exemplos relevantes para a teoria diferencidvel. Nos exemplos que generalizam
o que foi feito no Capitulo 1, evitaremos a repeticao de explicitar detalhadamente todos os mapas
estruturais. As asser¢des sobre as isotropias, Orbitas e transitividade dos grupoides apresentados

até aqui continuam vélidas.

Exemplo 3.11. Se M é reduzido a uma variedade unitéria {*}, entdo a definicdo de grupoide de
Lie se reduz a de grupo de Lie. Assim, todo grupo de Lie G é um grupoide de Lie com base

trivial G = {*}. Temos que Gy = G e Oy = {x*}.

Exemplo 3.12. No extremo oposto do exemplo anterior, toda variedade M pode ser vista como
um grupoide de Lie sobre si mesma M — M. Neste caso, as proje¢des sdo ambas iguais a
identidade, todos os elementos sdo unidades e a multiplicagdo é trivial, como em 1.12. Note que

M, = {x} e Oy = {x}.

Exemplo 3.13. Seja M uma variedade e defina

Pair(M) =M x M = M,

com s = pr,,t = pr; e (z,y)(y,x) = (z,x). Note que Pair(M), = {(x,x)} e Oxr = M. Este
grupoide de Lie é chamado de grupoide do par.

Exemplo 3.14. Seja G x M — M uma agdo suave (a esquerda) de um grupo de Lie G em
uma variedade M e considere o grupoide de Lie G = G x M =% M, com os mapas idénticos aos
definidos no exemplo 1.18. Este grupoide de Lie é chamado de grupoide de agio e, como observado
anteriormente, tem as nog¢des de isotropia e 6rbitas compativeis com essas mesmas nogdes para
acgdes de grupos de Lie. Note que um jeito equivalente de defini-lo é como subgrupoide do

produto direto dos grupoides G = {*} e Pair(M) = M.
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Exemplo 3.15. Seja E = M um fibrado vetorial. Tomando s = t = 77, podemos ver E = M como
um grupoide de Lie, em que a multiplicagdo se d4 pela soma nas fibras. Em x € M, a isotropia é

E, = 7w !(x) e a 6rbita é O, = {x}.
Vejamos agora alguns novos exemplos, particulares do ambiente suave.

Exemplo 3.16. Seja E > M um fibrado vetorial. Considere o conjunto
GL(E) = {(y,T,x) € M x L(Ex, E;) x M : T é isomorfismo }

munido dos mapas s = pr,, t = pr; e multiplicagdo definida da mesma forma que para o gru-
poide trivial do exemplo 1.16. Assim, G = GL(E) é o grupoide linear geral associado ao fibrado
E 5 M. Note que GL(E)y = GL(E,) (como grupo linear geral associado ao espaco vetorial Ey)
e O, = M.

Exemplo 3.17. Seja m : M — N uma submersdo sobrejetora entre duas variedades. Assim,
defina

G=MxyM={(x,y) e MxM:n(x)=n(y)}

Enxerguemos tal conjunto como um grupoide de Lie com proje¢des s = t = 71, de modo que o
resto da estrutura de grupoide vem para tornar G = M x y M um subgrupoide de Lie de Pair(M)
ou, equivalentemente, para tornar o mapa natural M Xy M — Pair(M) um morfismo de gru-
poides de Lie. Note que os grupos de isotropia sdo triviais Gy = {(x, x) }, como no grupoide dos

pares, e as 6rbitas também:

Oy =t(s71(x)) = m(m ! (x)) = {x}.

3.2.2 Bissecoes globais e locais

Para um grupoide abstrato G = M, vimos que uma bissecio de G é uma secio b : M — G
tal que tob : M — M é uma bijegdo. Para grupoides de Lie, a defini¢do s6 pede a mais uma

regularidade compativel com a estrutura suave.

Defini¢ao 3.18. Seja G um grupoide de Lie sobre M. Uma bissegio (global) de G é uma secao
suuvaveb: M — G destalquetob: M — M é um difeomorfismo. Denotemos por I'(G) ou

Bis(G) o conjunto de todas as bisse¢des do grupoide de Lie G.

Refazendo exatamente as mesmas dedugdes e demonstracoes feitas no secdo 1.6.1 (trocando

“bijecdo” por “difeomorfismo”), pode-se munir I'(G) com a estrutura de grupo dada pela multiplicacdo

(b1 @by)(x) = b1 ((toby)(x))ba(x), Vbi,bp €T(G),Vx €M,
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em que a identidade do grupo é a secdo unidade do grupoide u : M — G e a inversa de uma

bissecdo b € T'(G), com respeito a essa estrutura, é dada por
bl (x) = b((tob) '(x)) !, VxeM.

Note que dessa forma, o produto de duas bisse¢des suaves € uma bissec¢do suave.

Observacao 3.19. O modelo apresentado na se¢do 1.6.2 passa para o caso Lie com a hipétese das
bisse¢des, como subconjuntos, serem também subvariedades de G, com a propriedade de s e t
serem difeomorfismos quando restritos a essa subvariedade. Assim, vale também o resultado

1.46, que estabelece a correspondéncia entre os modelos, e a multiplicagdo dada por
By e B, = mg((B1 x B)NG?), VBy, B, € T(G)

estd bem-definida, uma vez que, pela correspondéncia, existe uma bissecao b : M — G (que
é, em particular, uma secdo) tal que b(M) = By ® By, de modo que B; ® B, é subvariedade. A

identidade do grupo é novamente M e a inversa de B € T'(G) é dada por B! = ig(B).

Observacao 3.20. De modo andloga ao que foi feito nas obsevagdes 1.45 e 1.51, mostra-se que,

independentemente do modelo, I'(G) vem com um homomorfismo natural

@ : T(G) —> Diff(M)
b——tob

B+— t|B o (S|B)_1.

Mais que isso, o grupo de bisse¢des tem trés agdes naturais em G (adotaremos, de agora em

diante, o modelo de bissecoes como secoes):
 Multiplicagdo a esquerda:  L,(g) = b(t(g))g, Vb € T(G), Vg € G;
e Multiplicagdo a direita: R,(g) = g(b(s(g)))il, Vb eTl(G),VgeG;
e Acdoadjunta: Ady(g) = (LyoRyp)(g) = (RyoLy)g, Vb € T(G), Vg € G.

A ultima igualdade do terceiro item segue do seguinte:

(ol
—
%))
Y
oQ
S~—
SN—
N
R
S
~—
—
—
)
~—
SN—
oQ
/~/~
(ol
—
%))
Y
oQ
S~—
S—
N
R
~

(Ly o Ry)(8) = Ly (g(b(5<g)))_1) = b°t<g(b(5(g))>_l)g(

(Reo L)(5) = R (b(t(9)g) = b(e(@)s (bos(v(t(e))s) ) = blt(e)s(bls(s))

42



CAPITULO 3. GRUPOIDES DE LIE

Note, por fim, que
sol,=s, tolL,=tobot, soR,=tobos, toR,=1".
Exemplo 3.21. Seja um grupo de Lie G = {x} visto como um grupoide. Uma bisse¢do nada

mais é do que um elemento de G, de modo que I'(G) = G como grupos.

Exemplo 3.22. Seja M uma variedade vista como um grupoide de Lie sobre si mesma. Neste

caso, a tnica bissegdo existente é a identidade, o faz com que I'(M) seja unitario.

Exemplo 3.23. Seja Pair(M) = M o grupoide do par. Aqui, uma bisse¢do de Pair(M) é um
difeomorfismo de M: I' (Pair(M)) = Diff(M).

Exemplo 3.24. Seja G um grupo de Lie que age em uma variedade M. Uma bisse¢do do grupoide

de agdo G x M = M éum mapa x — (g(x), x) suave tal que x — g(x) - x é um difeomorfismo.

Exemplo 3.25. Seja E > M um fibrado vetorial visto como um grupoide E = M. Assim, uma
bisse¢do desse grupoide é o mesmo que uma se¢do. De modo mais geral, isso é verdade para

qualquer fibrado de grupos de Lie, que veremos adiante no exemplo 3.40.

Em geral, ndo existe uma bissec¢do (global) passando por uma flecha ¢ € G, mas veremos

adiante que podemos garantir a existéncia local de uma bissecao que passa pela flecha escolhida.

Defini¢ao 3.26. Seja G = M um grupoide de Lie. Uma bissecdo local de G é uma secdo local
b:U— Gdes,emquel C M é aberto, tal que tob : U — M é um mergulho aberto, isto é,

tob:U — V C M é um difeomorfismo entre abertos de M.

Observacgao 3.27. Uma bissecdo local b : U — M age localmente em G pelas mesmas agdes

descritas para bissecdes globais:
 Multiplicagdo a esquerda: L, : t~1(U) — t 1 ((tob)(U));
* Multiplicagdo a direita: R, :s~1(U) — s~ ((tob)(U));
e Acdoadjunta: Ad,:s 1 (U)Nt 1 (U) — G.

Proposi¢ao 3.28. Seja G um grupoide de Lie sobre M. Entdo, para todo § € G, existe uma bissecdo local
b:V — Gtalque g € b(V).

Demonstragdo. Escrevendo m = dim(M) < dim(G) = n, dado g € G, existem cartas (¢, U) de
CVe

Ge (¢, V)deM,com ¢(g) =0€R",s(U) P(s(g)) =0 € R™ e tais que

(110 o S)(glr ---/gm/gm—H/ “-/gﬂ) = (gll ---/gm)/
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n
=

pela Forma local das submersoes. Tome {dg;|g}._, e {Bx]-|s(g)};l:1 bases de T;G e T,(,)M, res-
pectivamente. Assim, temos que Ker(ds), = span{dgil, : m+1 < i < n}. Logo, como

dimKer(ds), = dimKer(dt),, existe W C T,G de modo que
W @ Ker(ds), = T,G = W @ Ker(dt)s.

Dessa forma, podemos escrever W = {v+ Av : v € Ker(ds), }, de modo que a transformacéo A :
Ker(ds), — (Ker(ds) g)L é linear. Assim, ao identificarmos R" com T,G através de e; <+ 9gi|g,
existe ¢ > 0 tal que, para |x| < ¢, x + Ax € ¢(U), o que permite considerarmos (V) + Ayp(V) =
¢(U). Logo, o mapa

by : p(V) — o(U)

X — x+ Ax

nos permite definir b = ¢ tob,op : V — G tal que sob = idy, dbyy)(TyM) = W e
bo(0) = 0 = ¢(g), de modo que (bos)(g) = g. Disso, segue que d(t o b)) € isomorfismo e,
pelo Teorema da Fungio Inversa, existe vizinhanga V, de s(g) tal que (to b)|y, : Vo — (t o b)(V,)

é difeomorfismo. [}

3.3 Estruturas dos grupoides de Lie

Antes de apresentar e explorar mais exemplos de grupoides de Lie, faremos uma pausa para
compreender o que uma estrutura diferencidvel em um grupoide impde nos demais objetos que

o rodeiam. Comecemos traduzindo o resultado da Proposigdo 3.3 para o caso Lie:

Teorema 3.29. Seja G um grupoide de Lie sobre M. Entdo, o mapa unidade u : M — G é um mergulho

suave e o mapa inversio i : G — G é um difeomorfismo.

Demonstragdo. De 3.3, sabemos que u : M — G é um mergulho topolégico. Ainda, como

s ou = idy, pela Regra da Cadeia,
ds1, o duy = ds,(y) o duy = d(sou)y =d(idp)y = idr,m

Como idr, v € bijetora e ds;, é sobrejetora (s é submersdo), segue que du, é injetora, Vx € M, o
que implica que u : M — G é imersdo injetora. Portanto, é um mergulho suave.
Analogamente ao caso continuo, o mapa inversdo i : G — G é inversa de si préprio e é

suave, entdo é um difeomorfismo. Qutra maneira de ver isso seria utilizando o Teorema da Fungio
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Implicita. |

Observagio 3.30. A Proposi¢do acima respalda a identificagdo M = u(M), que podera aparecer

ao longo do texto. Isso significa identificar x € M com 1, € u(M).

Os préximos Teoremas a serem apresentados garantem que os grupos de isotropia sdo grupos

de Lie e dependem do seguinte

Lema 3.31. Seja G = M um grupoide de Lie. Entdo, o mapa t, = t|;-1(y) : s~ ' (x) — M tem posto

constante.

1

Demonstragdo. Dados ¢1,9> € s~ '(x), defina h = ¢ g, € G. Assim, pela Proposicao 3.28,

3b : U — G bissecdo local tal que (b o s)(h) = h. Isso implica que

h=0b(s(h)) =b(s(g;")) = (bot)(g2).

Assim, tomando V = (tob)(U), o difeomorfismo Ly|s-1( : tHU)Ns~Hx) — 1 (V) Ns (%)

mapeia g» em g;. De fato,

Ly(g2) = b(t(g2))82 = (bot)(82)82 = hg2 = 1.

Além disso, Vg € t~1(U) Ns~!(x), temos a comutatividade do seguinte diagrama:

FUU) N () Y ) s ()

| Js

1%

tob

(troLy)(g) = tx((bot)(g)g) =t((bot)(g)) = (tobot)(g) = (toboty)(g)
= d(tyo Lb)’gz = d((t ob)o tx)) |gz = d(tX)gl o d(Lb)gz =d(to b)t(gz) Od(tx)gz

isomorfismo isomorfismo

= rank(d(t:)g,) = rank(d(tx)g,)

Portanto, t, : s71(x) — M tem posto constante. |

Teorema 3.32. Seja G um grupoide de Lie sobre M. Entdo, t~*(y) Ns~1(x) C G é uma subvariedade

mergulhada e fechada, se x e y estdo na mesma 6rbita.
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Demonstragdo. Sabemos que s,t sdo submersdes, entdo, em particular, s‘l(x) é subvariedade

mergulhada e fechada de G. Pelo Lema 3.31, ¢, : s 1 (x) — M tem posto constante, entdo

EHy) NsTH ) = (H) 7 () = (8) ()

é subvariedade mergulhada e fechada de s~!(x). A assercdo inicial desta demonstracdo agora

implica que t~1(y) Ns~!(x) é subvariedade mergulhada e fechada de G. [ ]

Coroldrio 3.33. Seja G um grupoide de Lie sobre M. Entdo, as isotropias G, sdo grupos de Lie, para todo

x € M.

Demonstragdo. Tomando x = y no Teorema 3.32, temos diretamente que G, = s~ !(x) Nt 1(x)
é subvariedade mergulhada e fechada de G. Como a multiplicagdo e a inversdo em Gy sdo
restri¢des das operagdes do grupoide (que sdo suaves em G), segue que G, também herda a

suavidade das operagdes de G, tornando-se entdo um grupo de Lie. n

Proposicdo 3.34. Sejam G = M, H = N grupoides de Lie F : G — H um morfismo de grupoides de

Lie sobre f : M — N. Entido, as restricoes
-7:|x 1 Gy — Hf(x)

sdo morfismos de grupos de Lie.

Demonstragdo. A suavidade da restri¢do descende da suavidade de F, uma vez que Gy e Hy(y)
sdo grupos de Lie mergulhados e fechados. Basta verificar que F |, é morfismo de grupos, mas

isso segue pois F é morfismo dos grupoides G e H:

Flx(8281) = F(g281) = F(82)F (1) = Flx(82) Flx(g1), V81,82 € Gx.
|

Lema 3.35. Seja G = M um grupoide de Lie. Entdo, para cada x € M, o grupo de isotropia G, age em

s~1(x) (a esquerda) propriamente.
Demonstra¢do. Mostremos que o mapa
@51 (x) x Gy —> s H(x) x s H(x)
(8/1) — (g,8M)
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é proprio. Seja K C s7!(x) x s~ (x) compacto e ((gn, 1)), € @' (K) sequéncia tal que

@ ((gn 1n)) = (8n guhn) — (8,k).

Note que a continuidade dos mapasi : G — Gem : G@ — G do grupoide permite as

seguintes passagens:

(gn §nhn) — (8k) = gn — & guhn — k= g,' — g7, guhn — k

Portanto, (gu, 1) — (3,8 k) = (g,h), 0 que termina a demonstracéo. |
Corolario 3.36. Seja G = M um grupoide de Lie. Entdo, tx = t|s1y) : s 1(x) — Oy éum Gyfibrado
principal.

Demonstragio. Segue da agdo de G, sobre s~!(x) ser livre e propria (Lemas 1.19 e 3.35). [

Agora que sabemos um pouco mais sobre as isotropias, nada mais justo que entendermos a

estrutura das 6rbitas.

Teorema 3.37. Seja G = M um grupoide de Lie. Entdo, as 6rbitas O, C M sdo subvariedades imersas.

571 (x)
Ga

variedade mergulhada de G e Gy age em s‘l(x) de maneira livre e prépria (Lemas 1.19 e 3.35),

Demonstragdo. Do Lema 1.20, temos que Oy = . Como Gy é grupo de Lie, s~!(x) é sub-

segue de [ref Cap2] que O, é subvariedade de M. Agora, analisemos os seguintes diagramas

nitidamente comutativos, em que : denota o mapa de inclusdo dos devidos espacos:

o1y At —1(y)
s71(x) g Ts~1(x) =g
N
Oy — M TOy —— TM
t|oy d(tloy)

Note que a comutatividade se traduz nas expressoes
l|(f)x ot=to ls—l(x), d(l’@x) odt=dto d(l’sfl(x)).

Dado y € Oy, seja v € Ker(di, : T,Ox — TyM), ie., v € T,Oy tal que di|p, (v) = 0. Assim,

existe w € Ts~!(x) tal que v = dt(w). Logo,

0=d(to,)(0) = (d(do,) o dt)(w) = (dt o d(t|s1(y))) (w) = dt(w) = v.

Portanto, di, : T,Oy — T,M é injetora, para todo y € Oy, tornando t|o, uma imerséo. [ |
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Observacgdo 3.38. Na verdade, as 6rbitas sdo também subvariedades iniciais, isto é,se f : N —>
M ésuave e f(N) C Oy, entdo a correstricdo f : N — Oy pode ser escrita da forma o u o f,

que é claramente suave.
Resumindo os resultados que obtivemos até o momento, temos o seguinte

Teorema 3.39. (Teorema Estrutural dos Grupoides de Lie)

Seja G um grupoide de Lie sobre M. Entdo, para qualquer x € M, tem-se que:
i) A segio unidade u : M — G é um mergulho;
ii) O mapa de inversio i : G — G é um difeomorfismo;
iii ) Os grupos de isotropia G, sdo Grupos de Lie;
iv) Acorrestrigiio ty = t|1y) 25 (x) — Ox © M éum Gyfibrado principal;

v ) As orbitas O, sdo subvariedades imersas iniciais de M.

3.4 Mais exemplos

Exemplo 3.40. Um fibrado de grupos de Lie (Lie group bundle) rt : Q — M é tal que
Vx e M, 3U, C M tal que Qly, = Uy x G,

em que G é um grupo de Lie. Em particular, todo fibrado vetorial é um Lie group bundle ao
considerarmos a estrutura aditiva nas fibras. Desse modo, Q = M é um grupoide, coms =t = 7T

e multiplicagdo dada por

m(g1,82) =g < n(g1) = n(g) =7(g), 8182 =8

Observacao 3.41. Na direcdo contraria do apresentado acima, todo grupoide de Lie cujas projecdes
sdo iguais (s = t) define uma familia de grupos de Lie: uma submersédo sobrejetora com estru-
tura de grupo nas fibras de modo que a multiplicagdo na fibra depende suavemente do ponto
base. Em geral, isso ndo é um Lie group bundle uma vez que ndo precisam ser trivializagdes locais.
Na verdade, os grupos para fibras diferentes ndo precisam nem ser isomorfos como grupos de

Lie, ou mesmo como variedades. Denominamos esse caso de bundle of Lie groups.'

1 Aqui, demos preferéncia a manter a terminologia em inglés para ndo haver confusdes numa possivel tradugao.
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Exemplo 3.42. Dada uma variedade M, consideremos o grupoide fundamental de M, visto como

grupoide topolégico no exemplo 3.5, mas agora no contexto suave:
II(M) = {[y] : 7:[0,1] — M ésuave},

em que [] é a classe de homotopia da curva v, relativa as extremidades. Provemos que IT(M) é

um grupoide de Lie sobre M com projecdes

e multiplicagdo dada por [y] * [y] = [y * 1], definida para curvas tais que y(0) = 7(1).

Em primeiro lugar, vejamos que I1(M) é uma variedade suave. Seja 7 : M — M o recobri-

mento universal de M. considere a aplicacdo

F:Mx M — II(M)

em que 7y : [0,1] — M é curva ligando f a §. -y é Gnica a menos de homotopia de caminhos e,
logo, estd bem-definida. Note que, se f € Aut(m), mo f = 7T e entdo F é equivariante pela agdo

diagonal de Aut(7r) em M x M. De fato,

Mais do que isso,

F(p1,q1) = F(p2,§2) = 7t(p1) = 7t(P2) e m(q1) = 7(42)
= Jf, ¢ € Aut(r) tais que f(p1) = p2 e g(1) = 72,

de modo que

F(pr,q1) = F(P2,§2) <= (P2,32) = (f(P1), f(41))-

Assim,

F(p1,q1) = F(p2, 32) = F(f(p1),8()) = F(pr, f~'g(1))

e portanto [71(y)] = [7(y7)], onde v : p1 — d1, 1 : P1 — f '¢(42). Agora, v é um levantamento
de 77(y) por 7 comecando em pi, e # um levantamento de 77(1) por 71 comegando em fy, e

portanto [y] = [7]. Em particular, f~1¢(4;) = §; e portanto f = g. Mais ainda, F induz uma
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bijegdo: o
~;x&%—%nwn
Como a acdo de Aut(7r) em M é livre e prépria, a agdo diagonal também o é. Portanto, o quo-
ciente herda uma estrutura de variedade suave de dimensao 2 dim M, e F é um difeomorfismo.
Assim, TTI(M) torna-se uma variedade.
Para verificar que s e t sdo submersdes suaves, fixe um ponto [(x,y)] € II(M). Escolha
secdes locaisc : U — M e : V — M de 7t em torno de 7(x) e 7(y), respectivamente, com

x € o(U),y € B(V). Podemos supor que U e V sdo dominios de trivializagdo do recobrimento.

As aplicagdes
Uz [(o(z), )] € TIM), V 3z [(xB(2)] € TI(M)

sdo segdes locais suaves para s e t, respectivamente. Logo, s e  sdo submersdes.

Agora, resta ver que os mapas estruturais sao suaves.

* Proje¢des de saida e término: comoso F = rropr,, to F = 7o pry, e 7T é suave, segue que

s e t sdo suaves.

e Multiplicagdo: é dada por [(x,y)] - [(v,z)] = [(x,2)] = [pr;(x,y),pr,(yv,z)], que é clara-

mente suave.
* Secdo unidade: é dada por u(p) = [(c(p),o(p))], com o secdo local de 7. Logo, u é suave.

* Mapa de inversdo: é dado por (([(x,¥)]) = [(y,x)] = [pr,(x,y),pr;(x,y)], que também é

suave.
Portanto, IT(M) = M é um grupoide de Lie.

Exemplo 3.43. 2 Tomando M = S!, o recobrimento universal é 7t : R —» S!. Neste caso:

H(Sl) = —7— ~ Gl x R, um cilindro (!),

em que a acdo de Z é por translagdo diagonal: n - (x,y) = (x + n,y + n). Geometricamente, um

q

onto (p,g) € S! x R corresponde a classe do caminho que inicia em p, d4 a parte inteira de ——
P p.q P q P p 7

voltas completas e percorre um arco adicional de comprimento 4 mod 27r. O grupo de isotropia

2Esse exemplo foi-me apresentado pela minha amiga e colega de estudo de grupoides Nicole Lavinia, a quem
devo agradecer por enriquecer minha compreenséo acerca dos grupoides por meio de um exemplo que é passivel de
ser desenhado. Além disso, ela também me apresentou esse jeito de introduzir o grupoide de Gauge como sequéncia
natural da construgdo do grupoide Fundamental.
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em um ponto z € S! é isomorfo a 711(S!,z) = Z. Além disso, a restricio ¢, : {z} x R — S é

um Z-fibrado principal, isomorfo ao recobrimento universal R — sl

Inspirado no exemplo 3.42, podemos definir o Grupoide de Gauge:
Exemplo 3.44. Seja G um grupo de Lie e 77 : P — M um G-fibrado principal. Assim, note que
o diagrama

Pair(P) — Palé(P )

I I

p—" =M
representa um morfismo de grupoides de Lie,em que o quociente é pela a¢do diagonal de G (o

quociente sera variedade pois a agdo é livre e prépria). De fato, isso segue do seguinte

Lema 3.45. Nuas condicdes acima, a agdo diagonal do grupo de Lie G em Pair(P) é compativel com a

estrutura do grupoide, isto é, os mapas s, t, u, i, m sdo todos G-equivariantes.

Demonstracdo. Sejaz,y,x € Pe g € G. Assim,

( 8)=s((y-gx-g)=xg=s(v,x) g

Hy-gx-8) =y-g=t((y,x) g

=i((y-gx-8)=(x-gy-g =y -g=iyx)-g

)
8)
u(x- g)zlxg—(x §x-8g)=(xx)-g=u(x)-g
i((y, g)
) =

m((zy)-& W,x)-8) =m((z-8y-8),(y-8&x-g) =(z-8x-8) = (z,x)-g =m((z,y),(v,x) -8

|
Pair(P Pair(P
Logo, alé( ) tem estrutura de grupoide de Lie tal que Pair(P) — alé( ) ¢ um morfismo.
Definimos, entao,
Pair(P
Gg(P)= alé( ) =M

Os mapas estruturais sdo dados por:
s([p.q)) = n(q), t(lp,q)) =7=(p), [p.4'] [p.9] =[p 9] quando 7(q') = 7(p).
Alternativamente, podemos descrevé-lo como:

G(P) ={(y,¢,x) | x,y € M, ¢ : P, = P, G-equivariante},
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Neste modelo, 0os mapas ficam sendo andlogos aos de um grupoide trivial (exemplo 1.16):

s(y,o,x) =x, ty,o,x)=y, (zy) (¢ x)=(zPoepx).

Este é o Grupoide de Gauge, e a sua importancia para a teoria ficara clara na préxima segao. Ve-
jamos quem é o seu grupo de bisse¢des. Considerando o segundo modelo, notamos que uma

bisse¢do de G(P) é uma se¢do da forma
b:M— G(P), b(x)=(y(x),¢x,x), @x:Px— P, éG-equivariante e x — y(x) difeo.

Note que podemos omitir x na tripla que define a bisse¢do. Assim, na verdade podemos identi-

~

ficar b(x) = (y(x), ¢x, x) = (y(x), ¢x). Dessa forma, construimos um mapa
b:P— P,

dado por @(p) = @) (p) que & por construgdo, G-equivariante e que levanta o mapa x —
y(x). Na verdade, a G-equivaridncia de ® o torna um automorfismo de fibrados principais, o
que termina a andlise com a conclusdo de que o grupo de bisse¢des do grupoide de Gauge é
o0 espago de automorfismos do fibrado principal P. Reciprocamente, se tivermos ® : P — P

automorfismo de fibrados principais que levanta um mapa f, entdo
b:x— (f(x), @ r-10x), %)

é a bissecéo.

3.5 Transitividade

No Capitulo 1, definimos em 1.7 o que significa um grupoide ser transitivo ou totalmente intran-
sitivo. Nesta secdo, vamos estudar a noc¢do de transitividade em grupoides de Lie e enxergé-la
em nossos exemplos.

A Proposigdo 1.9 nos oferece uma caracterizacdo para transitividade. A partir dela, temos o

seguinte

Exemplo 3.46. Todo Lie group bundle é um grupoide totalmente intransitivo. Mais ainda, bundles
of Lie groups também o sdo e, na verdade, hd uma correspondéncia 1 para 1 entre bundle of Lie

groups e grupoides de Lie totalmente intransitivos.
Alguns exemplos de grupoides transitivos estdo listados abaixo:
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Exemplo 3.47. O grupoide do par Pair = M é transitivo.

Exemplo 3.48. Dado um grupoide de Lie G = M e uma 6rbita qualquer ¢ : O — M, a restrigdo

Go = {(g,y,x) € G x Pair(0) : t(g) = y,5(g) = x}

é claramente transitiva. Aqui, a restri¢do tem estrutura de grupoide dada como subgrupoide de
G x Pair(O). Note também que G é naturalmente imerso em G e G é a unido disjunta dessas

imersoes.

Exemplo 3.49. Dada uma agdo de um grupo de Lie G em M, o grupoide deacdo G x M =% M é

transitivo se, e somente se, a agdo do grupo de Lie em M for transitiva.
Exemplo 3.50. O grupoide fundamental IT(M) = M é transitivo se, e somente se, M for conexa.
Exemplo 3.51. Dado um G-fibrado principal P & M, o seu grupoide de Gauge G (P) é transitivo.

Veremos agora que o tltimo exemplo é universal, i.e., caracteriza os demais grupoides tran-

sitivos. Para isso, precisaremos do seguinte

Lema 3.52. Seja G = M um grupoide de Lie transitivo. Entdo, (t,s) : G — M é uma submersio

sobrejetora.

Demonstragdo. Ja vimos na Proposigdo 1.9 que (t,s) : G — M é sobrejetora. Agora, note que
as restricdes

beisH(x) — M, syt H(y) — M

sdo submersdes sobrejetoras uma vez que O, = Oy, = M. Sejag € t 1 (y)Ns !(x) e (v,w) €

TyM @ Ty M. Assim,

d(ty)g : Tgs ' (x) — T, M sobrejetora = 30" € Tys™!(x) = Ker dsg t.q. d(t)q0' = dtgv) = v,

d(sy)g : Tot *(y) — T,M sobrejetora = Juw' € Tyt~ '(y) = Ker dt, t.q. d(sy),w’ = ds;w’ = w.
Logo, v/ + w' €4 G é tal que
d(t,s)e(v' +w') = (dtg(v' +w'),dsg(v" +w')) = (v, w).

Portanto, d(t,s)q é sobrejetora, paratodo g € t~(y) Ns~!(x), entdo (t,s) : G — M é submersao.
|
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Teorema 3.53. Seja G um grupoide de Lie transitivo sobre uma variedade M. Entdo, G é isomorfo ao
grupoide de Gauge de algum G-fibrado principal P — M. Essa identificacdo depende da escolha de

ponto base.

Demonstragdo. Seja x, € M e considere G = G,,. Sabemos pelo Teorema 3.39 que O,, C M é
subvariedade inicial e imersa de M, mas Oy, = M, pois G é transitivo. Logo, a estrutura suave

da o6rbita coincide com a estrutura suave de M. Ainda por 3.39,
=ty :P=51x) — Oy =M
é um G-fibrado principal. Agora, identifiquemos G com G(P). Definimos

FiG—G(P) = Pai(r;(P)

g — [gh, h]
comh et 1(s(g))NPe

F1:G(P)—g
[h, k] — hk™!

Note que F ndo dependede i € t71(s(g)) N P e que ambos os mapas sdo morfismos de grupoides
abstratos e inversos um do outro. Ainda, como (h, k) — hk~! restrita a s!(x,)? é suave, entdo
F~! é suave. Mais do que isso, pelo Lema 3.52, (t,s) é submersdo sobrejetora, de modo que,

fixadog, € G, 30 : U C M x M — G secdo local de (t,s) com (s(go), x,) € U. Assim,

9(3) = [0 (s(8), %), 0 (5(2), %)

ao redor de g,, o que implica a suavidade.

O que esse resultado estd dizendo é que hd uma correspondéncia 1 para 1 entre fibrados

principais e grupoides transitivos.

Fibrados Grupoides

Principais Transitivos

Como a teoria de fibrados principais é muito rica e abre portas para outras areas de interesse em

Geometria Diferencial, como a teoria de G-estruturas, essa correspondéncia incita o questiona-
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mente de se é possivel abordar tépicos de estudo que utilizam fibrados principais por meio de
grupoides transitivos, e quais generalizagdes seriam possiveis a partir disso. Isso é assunto atual

de pesquisa em Geometria Abstrata e uma referéncia para tal assunto é o recente artigo [26].

3.6 Algebroide de Lie do Grupoide de Lie

Agora, construiremos o algebroide de Lie de um grupoide. Note, primeiramente, que diferente-
mente do caso de grupos e dlgebras de Lie, agora temos uma unidade para cada ponto do espago
base. Assim, esperamos que o algebroide de Lie do grupoide seja um fibrado vetorial sobre M.
Além disso, a multiplicagdo 4 direita esta definida apenas nas s-fibras, de modo que, para falar-
mos sobre campos invariantes a direita em G, devemos nos restringir aos campos tangentes as
s-fibras, isto é, a se¢des de

T°G = Ker ds C TG.

Inspirado no que foi feito na se¢do 2.3, definimos o algebroide de Lie de um grupoide G = M como
o fibrado vetorial A = Lie(G) = T°G|ym = u*T*G cujas fibras em x € M coincidem com o espago
tangente a unidade 1, de s~!(x) (porque escolhemos fazer a construcdo para campos invariantes
a direita). O colchete de A serd na verdade um colchete nas se¢oes I'(A). Identifiquemos I'(.A)
com o espago de campos invariantes a direita em G. Para isso, note que a fibra de T°G em uma
flecha h € s71(y) é dada por T;G = Tj,s~!(y), de modo que, para todo ¢ € t~1(y), a diferencial

da multiplicagdo a direita por ¢ induz um mapa
dRg : TG — Tj;,G.
Logo, podemos descrever o espago dos campos invariantes a direita em G:

%fnv(g) = {X € F(TSG) : th = ng(Xh)/ V(h,g) S g(Z)

mo

Demonstragdo. Precisamos primeiro checar que [I'(T°G), T'(T°G)| permanece s-vertical (ds(X) =

0), ie., [[(T°G),T(T°G)] C T(T°G). Note que

X € T(T°G) =T(Ker ds) = X, € T;G,Vg € G = ds(X,) = 0.

55



3.6. ALGEBROIDE DE LIE DO GRUPOIDE DE LIE

Se X,Y € I(T°G), entao ds(X;) = 0 = ds(Y;), Vg € G. Logo, pelo Lema 2.14,

ds[X, Y]g = [ds(X), ds(Y)]y(q) = 0 = [X, Y] € T°G.

g)

Agora, se X, Y € X! _(G), entdo, para todo (I, g) € G2, Xng = ARg Xy, Yy = dRg Y e

mv

dRy ([X,Y]4) = dRg[X, Y] = [dRgX, dRY g () = [dReX, dRgY]g = [X, Y]y

Agora, dado o € I'(A), entdo 0y = dRg(0y(,)) define um campo invariante a direita. De fato,

dRg(0%) = dRg (dRy(0())) = dRug(0r(ng)) = g

Reciprocamente, dado um campo X € X3, (G), notamos que a invariancia dada pela equacio

Xo = ng(XL@)

nos permite determinar X pelos seus valores nas unidades u(M) = M, de modo que definindo

o= X|m € T(A), temos que X = 7. Portanto, estabelecemos a identificagdo

[(A) «— X (9)

o—0

Ainda, X§ (G) é subalgebra de Lie de da algebra X(G) dos campos de vetores em G com o col-
chete usual de campos. Isso segue pelo Lema anterior, ou seja, o colchete de campos se restringe

a campos invariantes a direita. Assim,

Definigdo 3.55. O colchete de Lie no algebroide A = Lie(G) é o colchete de Lie em I'(G) advindo
do colchete em X; (G) pelo isomorfismo descrito acima. O colchete em I'(A) é unicamente

determinado pela expressao

—_—~—

0,04 = [0,07]
A dltima pega para a estrutura do algebroide A é a seguinte:

Definicdo 3.56. A dncora de A é o mapa de fibrado

pa=dt|lg: A— TM.
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A préxima defini¢do resume o que foi discutido até aqui.

Defini¢do 3.57. O Algebroide de Lie do Grupoide de Lie G é o fibrado vetorial A = Lie(G) = T°G|m

munido do colchete [, -] 4 em T'(A) e da dncorapy : A — TM.

Veremos agora que o colchete e a d&ncora do algebroide se relacionam por uma identidade do

tipo Leibniz.

Proposigdo 3.58. Seja A o algebroide de Lie do grupoide G. Entdo, para todos 0,0’ € T(A)e f €
(M),
o, fo'] = flo, o'l + L) (f)o'-

Demonstracdo. Note que

fo'y = dRg(foi) = (f o dRg(0y ) = (f o).

Logo,

[0, fo') 4 = [T, fo'] = [, (fo )] = (fo 1) [T, 0] + Ls(f o 1)

Se g € G, entao

Lo(fo)(g) = d(f o 1) (8) = dfug o dtr, (7((2))) = dfig) 0 dtg (F(2)) = Lyio) (f) (H(3))
= [O',fU'/] = f[U/ UJ] + Ep(a) (f)OJ'

Observacgdo 3.59. A escolha por desenvolver a estrutura do algebroide a partir de campos inva-
riantes a direita ndo tem nenhuma grande vantagem. O Teorema a seguir apresenta a relagao
entre outros possiveis modelos de fibrados para o algebroide (ndo discutiremos a estrutura do

algebroide).

Teorema 3.60. Seja u : G — M a se¢do unidade do grupoide G. Entio, adotado a notacio TG |y =
u*Tg,
~ TG|m

T'Glu = TG w = 2 = vg(M).

Demonstragdo. O primeiro isomorfismo sai pelo seguinte diagrama:
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di'u*Ttg
T Ty
T'Glm —— T'Glu —% T°¢G > T°G|m
M " G—1 g . M

u

Agora, considere a seguinte sequéncia curta exata de fibrados vetoriais:

du T TQ\M
0—>TM<—>TQ|M—>W—>O

Pela exatiddo da sequéncia, sabemos que Im(u*) = Ker(1). Assim, pelo Teorema 2.22, existe

uma cisdo da sequéncia, que pelo Teorema ??, pode ser entendido como a identificagdo

N TG|m

Por outro lado, temos outra sequéncia curta exata que cinde canonicamente por du : TM —
Tg | M-

0 — TGy < TG|m & TM — 0

A cisdo dessa sequéncia nos garante que

TG m = du(TM) & T°G|m

Logo, concluimos que T°G |y = % = vg(M) e esta identificagdo pode ser feita pelo mapa

Tl 5 [v] —s pr,(v) € T*G|m. [

Agora, daremos exemplos do célculo de algebroides de alguns dos grupoides que estudamos.

Um procedimento ingénuo, mas natural, para realizar esse cdlculo, é seguir os seguintes passos:

1) Entender o fibrado Ker ds — TG e restringi-lo a M;

2) Entender o mapa dt : TG — TM e depois restringi-lo & ancora dt|ger 45,5

3) Ja com o algebroide A = Ker ds|y;, entender I'(A), entender como passar de um elemento
desse conjunto a um campo invariante de G e, por fim, definir o colchete pela regra [«, B]|x =

[a®, BR]]

Exemplo 3.61. Para o grupoide do par Pair(M) = M, sabemos que s 1(x) & M. Para entender

o fibrado envolvido, note que

ds : TPair(M) = {(vx,vy) : vx € TxM, v, € TyM} — TM,  (vy,vy) — vy
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Logo, Ker ds = {(vy,0y) : vy € TxM}, e entdo

Lie(Pair(M)) = Ker ds|p{ (vx,0x) : vy € TtM} = TM.
Ja a ancora é dada por p : dt[ger 45|, : Ker ds|yy = TM — TM. Mas

dt : (vy,vy) — vy e, em particular, dt : (vy,0y) — v;.

Assim, p = idrp. Por fim, Note que I'(A) = I'(TM) = X(M), de modo que &« € X(M) implica
®: M > p+— a(p) € TyM suave. Entdo, dado & € T(A), temos que, para g = (g1,82) €
Pair(M),

Re:Ts H(g1) > (x,y) — (x,y)(81,82) = (x,82), dRg:Kerds=Ts"'(g1) 3 (vx,0y) — (vx,0g,),
de modo que aR(g) = dRg o a(t(g)) = dRg 0 Ui(g) = Uy(g) apOs identificagdo, e, portanto,

o, Blalx = [‘XR/,BRHX = [“rﬁ]x(M)’x-

Exemplo 3.62. Para o caso de Lie group bundles m : Q — M, temos que s = t = 7, entdo

ds = dt = dm. Logo Ker ds = Ker d7t, de modo que o fibrado é dado por
Ker ds|p = Ker drt|yy — M.

Note que dt = dr: TQ — TM, e entdo p = dt|er gs|,, = 47|Ker |y, = 0 € 0 mapa nulo. Agora,

I'(A) =T (Kerdr|y) Assim, se « € T(.A), entdo

a(p) € T, ' (p) = Lie(w(p)),

em que 77 !(p) é um grupo de Lie, ou seja, a(p) estd na respectiva dlgebra de Lie. Logo,

R :s71(t(g)) = mt(m(g)) —> s (s(g)) = ' (7(g))

é apenas a translagdo do grupo de Lie. Portanto,

., Bllie)(8) = 2%, B1le) (8) = [dRg 0 (t(s)), dRg o B(t(g)) | = dRgle, Bly(g)-

Exemplo 3.63. Vejamos agora o grupoide de agdo G = G x M = M. Lembre ques = pr, : G —
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M, entdo ds = d(pr,) : TG — TM é tal que ds(vg, vx) = vx. Logo,
Kerds = {(vg,0x) € TG : vg € T,G,0+ € Txp} = prsTG = TG x M,

e entdo

Ker dS|M = {(vu(x)/OX) = Ue/0x> X e M} = g X M.

Como t: (g,x) — g - x, entdo dt(vg, vy) € TM e a ancora
p= dt|Kerds|M : Ker ds|yy — TM, p(ve, 0x) = dt(v,,0x) € TM

é a acado infinitesimal associada & agdo do grupo de Lie. Assim, como A = g x M, se¢des sdo da
forma

c:M— gx M, x+—> (v(x),x),

e entdo I'(A) = Diff(M, g) e o colchete é dado pela expressdo

[, B]|x = [a(x), B(x)]g + Lo(a(x)Blx — Lo(p(x)) &

Note que para se¢des da forma a : x — (a,x) e p: x —> (b,x), com a,b € g independentes
de x € M, o colchete se torna o colchete da algebra de Lie g, de modo que a expressdo acima é a

tnica extensdo do colchete a todas as se¢Oes que satisfazem Leibniz.

Pair(P
Exemplo 3.64. Por fim, calculemos o algebroide do grupoide de Gauge G(P) = L(). Nesse
caso, seguir os passos listados ndo ajudard muito. Ja& sabemos, pela observacdo feita ao o in-

troduzirmos no exemplo 3.44, que este grupoide tem uma estrutura herdada do grupoide do

par.

Pair(P) —— Palé(m

I I

pP—/—— M

Logo, podemos passar do fibrado do grupoide do par para o do de Gauge, de modo que

Pa(r)) , T lor?) P L 90))

— TP — — =Li
G 1e

T, (pyPair(P) — TZ(M)( c c

e o fibrado que serd o algebroide do grupoide de Gauge é % Devido a isso, podemos identificar

se¢des com campos invariantes. Note também que
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TP 4, TP

~

de modo que p([v]) = d7t(v), que estd bem definido. Ja o colchete para elementos « € T(TP/G)
XG_inv(P) é da forma

[, B] = [Xa, Xp] € XG—inv(P).

Com isso, encerra-se a apresentagdo dos topicos estudados. Nao poderia finalizar este texto
sem antes citar um conhecimento profundo que me acompanhou por toda esta jornada e que de
certo modo a justifica:

"It is important to draw wisdom from many different places. If we take it from only one place, it
becomes rigid and stale. Understanding others, the other elements, and the other nations, will help you

to become whole.”
- Iroh, Avatar: The Last Airbender [27]
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