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Resumo
MELO, R. O. (2015). “Proposta de Filtro de Wiener Paramétrico e Adaptativo para

Reducdo de Ruido Quantico em Imagens Mamograficas Adquiridas com Dose de
Radiagdo Reduzida”. Trabalho de Conclusdo de Curso — Escola de Engenharia de Séao

Carlos. Universidade de Sao Paulo, 2015.

A mamografia digital, exame mais indicado para detecgédo precoce do cancer de mama,
tem como grande desafio a definicdo da dose de radiagdo necessaria para otimizar a
relagdo qualidade da imagem vs. dose de radiagdo. O ruido quéntico presente em uma
imagem mamografica & inversamente proporcional a dose utilizada para gera-la. Ou seja, a
utiizagdo de imagens com dose reduzida sem um poés-processamento adequado
comprometeria sua qualidade. Neste contexto, este trabalho propde um Filtro de Wiener
Paramétrico e Adaptativo, utilizado no dominio de Anscombe, para filtragem de imagens
mamograficas adquiridas com dose de radiacéo reduzida. Os parémetros foram otimizados
de forma a reduzir ao maximo a diferenga do nivel de ruido, medida pela métrica NNPS,
entre as imagens com dose de radiagdo dos exames mamograficos atuais e as imagens
com doses reduzidas. Os resultados mostraram que ao fazer-se essa otimizacao, o nivel de
borramento das imagens de dose reduzida filtrada, medido pela métrica Sharpness(dB), se
aproximou de forma que a diferenga maxima foi de 0,11 dB do Sharpness(dB) das imagens
com dose normal. Dessa forma, o método pode ser utilizado para fazer-se uma analise de

precisao de diagndstico.

Palavras-chave: Mamografia Digital, Filtro de Wiener, Ruido na Mamografia, Redugéo

de Dose, Transformada de Anscombe, Estatistica Local.






Abstract
MELO, R. O. (2015). “Proposal of Adaptive Parametric Wiener Filter to Quantic Noise

Reduction in Digital Mammographic Images Acquired with Reduced Radiation Dose”.

Bachelor Thesis — Sdo Carlos School of Engineering. University of Sdo Paulo, 2015.

Digital Mammography is the most indicated exam for detection of breast cancer and has
as a challenge finding the optimal relation between image quality and radiation dose. The
quantic noise in a mammographic image is inversely proportional to the dose needed to
generate it. So, the use of images acquired with reduced dose without an appropriate
processing method would compromise image quality. On this context, this work proposes an
Adaptive Parametric Wiener Filter on Anscombe Domain for denoising of mammographic
images acquired with reduced dose radiation. The parameters were optimized in order to
minimize the differences between noise level (measured by NNPS) of images acquired with
radiation of current mammographic exams and images acquired with reduced dose. The
results showed that performing this optimization, the blur level (measured by Sharpness(dB))
of filtered images acquired with reduced dose approached to the normal dose images so that
the maximum difference was 0,11 dB. Thus, this method can be used to perform a diagnostic

precision analysis.

Keywords: Digital Mammography, Wiener Filter, Noise in Mammography, Dose

Reduction, Anscombe Transform, Local Statistics.
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1 Introdugao

O céancer de mama é a causa mais comum de morte por cancer para mulheres (INCA).
Estima-se que a cada 8 mulheres, 1 desenvolvera cancer de mama e a cada 36 mulheres
que vivem mais de 70 anos, 1 morrera de cancer de mama (American Cancer Society 2015).
Em 2014, surgiram 57.120 novos casos e 13.145 mortes foram causadas por este tipo de
cancer no Brasil (INCA).

A causa do cancer de mama ainda ndo é conhecida, de forma que a melhor forma de
combate-lo é a detecgido precoce. A chance de cura deste cancer ao ser descoberto em
seus estagios iniciais aumenta cerca de 30%. (American Cancer Society 2015) . Por esse

motivo, existem alguns exames especializados neste tipo de detecgao.

A mamografia digital por raios X ainda é o exame mais indicado para mulheres acima de
40 anos no rastreamento cancer de mama (American Cancer Society 2015). Porém, como o
paciente fica exposto a uma consideravel quantidade de radiagdo durante o exame, existe a
possibilidade de indugao de cancer nos pacientes radiografados, ao longo dos anos com
exposicoes regulares (Mattson 2000). Por exemplo, estudos recentes mostram que, se a
quantidade de radiagdo usada atualmente for mantida, a cada 100.000 mulheres que
realizam a mamografia digital anualmente, 86 novos casos de cancer de mama seréo
induzidos por essa exposi¢gao durante o exame (Yaffe 2011). Como o cancer de mama é
uma das principais causas de morte em mulheres de todo o mundo, faz-se necessario o
estudo da viabilidade de reduzir a dose de radiagdo dos exames mamograficos. Em
contrapartida, o ruido quantico presente na imagem do exame é inversamente proporcional
a dose de radiagdo utilizada. Ou seja, uma diminuicdo da dose poderia acarretar uma

interpretacéo incorreta do exame por parte dos radiologistas.

Para se resolver este problema, varias técnicas de processamento de imagens séo
desenvolvidas e aperfeicoadas constantemente na tentativa de filtrar o ruido quantico e
tornar imagens com doses reduzidas o mais préoximo possivel daquelas em que
radiologistas ja estdo acostumados a trabalhar. Algumas dessas técnicas sdo consideradas
o “estado da arte” pela literatura atual na filtragem do ruido. Um exemplo & a técnica de
filtragem proposta em (Romualdo 2013) que utiliza Filtro de Wiener e Transformada de
Anscombe para eliminar ruido de imagens mamograficas analdgicas. Porém, o ruido
quantico da mamografia analdgica possui caracteristicas diferentes do ruido na mamografia
digital.

O presente trabalho se insere neste contexto. A proposta & parametrizar o filiro de

Wiener Adaptativo no dominio de Anscombe de forma que o ruido de imagens de



mamografia digital adquiridas com dose de radiagdo reduzida seja semelhante ao ruido
presente nas imagens de dose de radiagdo normal. O filtro também é utilizado em imagens
corrompidas com ruido quantico semelhante ao da mamografia analégica como forma de

comparagao.

Porém, pelos motivos ja citados, é inviavel expor pacientes a diferentes doses de
radiagdo para conseguir o banco de imagens necessario para validagdo do método. Desta
maneira, utiliza-se um banco de imagens simuladas com caracteristicas diversas geradas
com um phantom antropomoérfico (de maneira que ndo se necessita a exposigao do paciente
a diferentes doses de radiagédo para gerar imagens). Os niveis de radiagéo utilizados foram
de 85%, 70% e 50% da dose de radiagao atual e, depois de filtradas, fez-se uma analise

objetiva dos resultados, a partir de métodos quantitativos de validagao.

1.1 Objetivos

Assim, o presente Trabalho de Conclusdao de Curso propde um filtro de Wiener
Paramétrico Adaptativo baseado na transformada de Anscombe com o intuito de filtrar
imagens com dose de radiagédo reduzida de forma que seu ruido caracteristico se torne o

mesmo das imagens adquiridas com a dose de radiacao utilizada hoje em dia.

Este texto tem como objetivo mostrar a teoria, o desenvolvimento, resultados finais e
conclusao do Trabalho de Conclusdo de Curso que foi iniciado no segundo semestre de
2014.

1.2 Formato do Trabalho

Este trabalho esta organizado em 6 capitulos. Segue abaixo a lista de conteudo de cada

um deles:

* Capitulo 1 — Introducéo: apresenta a motivagao deste trabalho, justificativa e
objetivos;

e Capitulo 2 — Mamografia digital: apresenta nogdes basicas de funcionamento
de um mamégrafo e da formagdo de imagens mamograficas, além de explicar a
forma de ruido na mamografia;

* Capitulo 3 — Restauragdo de imagens: apresenta conceitos basicos de
restauragado de uma imagem, caracteristicas de ruidos e apresenta os algoritmos que
sdo utilizados neste trabalho;

e Capitulo 4 — Materiais e Métodos: descreve os materiais utilizados para
obtencao dos resultados, os métodos de validagcdo, os métodos de processamento e
o funcionamento do filtro. E neste capitulo também que é feita a parametrizacdo do

filtro.



* Capitulo 5 — Resultados: apresenta os resultados para o método proposto em
(Romualdo 2013) e a nova adaptagéo proposta;
* Capitulo 6 — Discusséo e Conclusdes: apresenta uma analise dos resultados

obtidos no capitulo anterior, além de uma perspectiva para trabalhos futuros.






2 Mamografia Digital

A mamografia € um tipo de radiografia que utiliza radiagdo eletromagnética (raios X) para
analisar a estrutura interna das mamas. A radiografia é efetuada pela emissao de raios X,
que é uma radiagdo eletromagnética com frequéncia entre 107 e 102! Hz composta por
fotons de energia alta. O tubo de raios-X responsavel pela produgdo dessas ondas é
formado por um anodo e um catodo com uma diferenga de potencial entre eles na ordem de
dezenas de kV. A radiagdo é produzida quando o feixe de elétrons que atravessa o tubo é
colimado em um pequeno ponto focal metdlico no catodo. A desaceleragao desses elétrons
ao atingir atomos do alvo produz calor e uma pequena quantidade de energia se transforma
em um espectro continuo de raios X. Por causa desse aquecimento, o &nodo geralmente &
circular e permanece girando enquanto ocorre a emissédo do feixe de elétrons. A Figura 1
abaixo representa um exemplo de tubo de raios X utilizado para a formagdo de uma imagem

radiografica.

Vidro

Catodo

Figura 1 - Exemplo de tubo de raios X utilizado na mamografia (UTFPR 2008).

21 Formacgao da imagem mamografica

Para a imagem ser criada, o feixe heterogéneo de raios X atravessa o tubo e atinge o
paciente. Dependendo das caracteristicas fisicas e quimicas do 6rgdo, certa quantidade de
raios X & absorvida por ele. A quantidade de raios X que passa através do corpo é entédo

capturada por um detector.



Duas maneiras de aquisi¢do dos raios X sdo comumente usadas: aquisi¢cao por filme e
por sensores digitais. Na aquisi¢cdo por filme, reagdes quimicas foto-sensitivas sdo utilizadas
para contagem dos fétons. No caso de sensores digitais, o efeito fotoelétrico converte fétons
em elétrons, durante um intervalo de tempo estipulado, que serdo posteriormente contados
e formar&o os niveis de intensidade. Desta forma, o contraste da imagem adquirida por filme
ndo pode ser alterado, ja que os filmes ja contem a imagem formada, enquanto que os
sinais elétricos, captados pelos receptores digitais, podem ser mais facilmente lidos e
manipulados em computador, como mostrado na Figura 2. Ou seja, € mais vantajoso o uso
de receptores digitais para aquisicdo das imagens, ja que assim pode-se fazer o uso de
processamento digital para melhorar a visibilidade da imagem, além de possibilitar a semi-

automagéo do diagnostico (Sprawls 2008).

Mamografia

Receptor/Display: Caracteristicas de Contraste

.
-
Receptor Display

Processamento
Digital

Figura 2 - Comparagdao entre a mamografia digital e a mamografia analégica (Sprawls
2008).

2.2 Ruido na mamografia

Nesta secéo serao apresentadas as caracteristicas do ruido na mamografia digital.

2.21 Ruido de Poisson

O ruido de Poisson, também conhecido como ruido quantico, € uma forma de incerteza
basica associada com a medida de luz, inerente a sua natureza quantica e aos detectores
de féton (Hasinoff e Samuel 2012).

A quantidade de fétons incididas em cada detector pode ser tratada como eventos
independentes entre si que seguem uma distribuicdo randémica temporal, ou seja, uma

distribuicdo de Poisson. Assim, o numero de fétons adquiridos por um dado sensor em um



dado intervalo de tempo t é descrito como a seguinte distribuicdo de probabilidades (Frank
1967):

e M)k (2.1)

Pr(N =k) = o

onde 1 é o numero esperado de fotons por intervalo de tempo, que é proporcional a

quantidade de raios X incidida.
A variancia de uma variavel aleatéria discreta é dada por:
V(X)) = E(X?) — (E(X))? (2.2)
onde X é uma variavel aleatéria discreta, e E(X)

seu valor esperado. Em uma distribuicdo de Poisson, o valor esperado € igual a 1. Sabe-

se também que o valor de E(X?) é:

EX) = ) x?PriX=2). (2.3)
X €0y
Assim, combinando as equagdes (2.1) e (2.3), temos:
E(X?) = 22+ 2. (2.4)
E substituindo a equacéo (2.4) em (2.3):
VX)= 22+ 21— 2%2= A, (2.5)
ou seja, um sinal com média 1 provavelmente se encontrara no intervalo de 1 + VA (Roy

1999)

Pode-se concluir entdo que o ruido de Poisson é dependente do sinal. Assim sendo, fica
evidente a dificuldade em processar um ruido que seja variante com o sinal. Na Figura 3 a
seguir € mostrada a diferenga entre uma imagem degradada por ruido quantico e por ruido

Gaussiano.



(a)

Figura 3 - Imagens comparando ruido Gaussiano e ruido de Poisson: (a) Imagem
escolhida; (b) Imagem com ruido Gaussiano; (c) Mascara do ruido Gaussiano; (d) Imagem

com ruido de Poisson; (e) Mascara do ruido de Poisson.
Por isso, faz-se necessario uma transformada que execute a estabilizagao da variancia.

Outra concluséo desta propriedade é que o ruido relativo sera maior quanto menor for o
valor do sinal. Isso pode ser comprovado fazendo uma analise da métrica SNR (Signal to

Noise Ratio):



_S_A_./5 2.6
SNR= 3= = V. (2.6)

Quanto maior € o SNR, maior a predominancia do sinal com relagdo ao ruido. Por isso,
para valores altos de 1, tem-se um menor ruido relativo. E justamente por este motivo que,
em imagens mamograficas, maior nitidez € obtida quando se expde o paciente a maiores

doses de radiacao ionizante (Borges 2014).

2.2.2 Ruido na mamografia

Nas imagens adquiridas utilizando sensores digitais, o sinal € corrompido por um ruido
nao aditivo que é modelado por uma distribuicdo semelhante a Poisson. Porém, suas
diferengas impactam bastante o processo de redugéo de ruido, sendo importante cita-las. A
primeira delas é com relagdo a variancia do ruido. A variancia do ruido em uma imagem

mamografica ndo é igual sua média, e sim proporcional a média (Yaffe 2005). Ou seja:

A (2.7)
VX)) ==
B
e um sinal s(x,y) é compreendido no intervalo:
2 (2.8)
At =
B

Isso acontece porque o sinal ao passar pelo detector, passa por amplificadores com um
ganho multiplicativo de forma que a matriz amostrada por este painel de detectores seja
proporcional a quantidade de fétons que os atingiu. Este ganho faz com que a proporgéo de

ruido presente na imagem se altere (Yaffe 2005).

Outra consideragéo importante a respeito do ruido em uma imagem mamografica é que
seu SNR nao é uniforme por toda sua extensdo. Dessa forma, o parametro g descrito na
equacao (2.7) sera diferente para diferentes pontos da imagem. Isso se deve a duas
caracteristicas do equipamento de mamografia digital. Primeiramente porque uma parte da
mama do paciente ira receber incidéncia vertical de radiacdo, enquanto outra parte ira
receber uma dose maior de incidéncia obliqua (Figura 4(a)). Na tentativa de proibir que as
radiacdes obliquas atinjam o paciente, uma grade de chumbo geralmente é colocada apods a
mama do paciente (Figura 4(b)). Dessa forma, quanto mais longe o tecido estiver da

incidéncia vertical da radiagdo, maior sera a varidncia em relagédo ao sinal.

Outro efeito que ocasiona esta ndo uniformidade é descrito na Figura 4(c). O efeito Heel
acontece quando um elétron se adentra ao material antes de se chocar com um proton e

formar raios X. Assim, os raios X ndo se formardo na superficie do anodo, precisando
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percorrer um caminho maior por dentro do anodo até sairem do tubo de raios X. Esse efeito
faz com que a quantidade de fétons liberados seja menor para os raios X formados nessas
regibes, que sao responsaveis pela formagdo da imagem longe do eixo central (Boone
2000).

Para que estes efeitos nao interfiram na quantidade de sinal que atinge os detectores,
ocorre uma corregdo chamada de Flat-field correction. Essa corregdo multiplica as regides
da imagem que recebem menor quantidade de foton. Assim, as regiées mais afastadas do
eixo central terdo, para a radiografia de uma regido homogénea, média semelhante a regido
do eixo central. Porém, esta corregdo multiplicara também o ruido na imagem, contribuindo

para a ndo uniformidade do ruido Poisson ao longo da imagem (Boone 2000).

(@) (b)

X-ray
Source

Useful
Imaging

Film Screen or Digital Detector
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(c)

catodo

Colimagég

auto-atenuagdo

Perda de intensidade
de raios X _

i10° o* 104 15‘3"«.,
‘angulo de emissdo’

Figura 4 - (a) llustragdo da incidéncia de raios X em uma mamografia. A mama ocupa
apenas o espago representado por D. (b) llustragdo da grade e da incidéncia obliqua na

mamografia (c) llustragdo do Efeito Heel.

A consequéncia desses efeito é facil de ser vista ao tomar-se uma regido homogénea (ou
seja, com coeficiente de atenuagao constante) e calcular a média local (Figura 5(a)) e a
razdo entre a variancia e a média local na imagem dessa regido (Figura 5(b)). Nota-se,
principalmente analisando o eixo horizontal, que quanto maior a distdncia da incidéncia
vertical (ponto zero na imagem), maior a variancia em relagdo ao sinal, ou seja, menor o
SNR. Enquanto que a média se mantém a mesma. Esse efeito é faciimente notado ao
tracar-se o perfil radiométrico das duas imagens, na regiao representada pela linha amarela
(Figura 5 (c) e (d)).
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Figura 5 — Imagem demonstrativa da ndo uniformidade do ruido em imagens

mamograficas homogéneas. (a) Demonstragao da média local da imagem. (b)

Demonstragéo da razao entre varidncia e média local.(c) Perfil radiométrico do trago

amarelo da figura (a). (d) Perfil radiométrico da figura (b).
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2.2.3 Ruido na imagem mamografica x Dose de radiagédo

Como dito na segéo 2.2.2, o ruido quantico presente em uma imagem € inversamente
proporcional a dose utilizada para gera-la. Entdo, na implementagao clinica, € fundamental
usar o nivel apropriado de radiagdo para a aplicagdo em questdo. De um lado, uma dose
alta ira diminuir o ruido da imagem, mas podera incidir uma radiagdo desnecessaria no
paciente. De outro, uma radiagéo baixa ira diminuir o SNR da imagem e consequentemente

podera apresentar informagdes imprecisas (Samei 2007).

Para retratar este problema, E. Samei propés uma analise direta: reduziu-se a
quantidade de dose para 50% e 25% e analisou o impacto que isso teria na detecgéo e
discriminagéo correta de microcalcificagdes e massas (Samei 2007). A conclusao foi que a
porcentagem de acertos de detecg¢ado e discriminagao foi de 83% com a dose normal, 78%
com metade da dose e 62% com um quarto da dose. Dessa forma, torna-se viavel uma
reducdo na dose de radiacdo, se acompanhada com um processamento posterior a

aquisicdo que mantenha a precisao préxima a precisdo da dose normal.



14



15

3 Restauragao de imagens

Este capitulo tem como objetivo apresentar conceitos basicos de degradagao da imagem

e alguns métodos de restauragéo.

3.1 Ruido em uma imagem

Uma imagem ¢é definida como uma funcdo bidimensional, f(x,y), onde x e y séo
coordenadas espaciais, e a amplitude de f em qualquer par de coordenadas (x,y) é
chamada de intensidade. Em uma imagem digital, tanto os valores de x e y quanto os de f

sao discretos e finitos (Gonzales 2009).

Ao se fazer a aquisigdo da imagem, assim como é feito na mamografia digital, utiliza-se,
sensores e sistemas que ndo sao ideais, comprometendo a veracidade dos dados e

causando uma degradacgdo na imagem resultante e adi¢cdo de ruido (Gonzales 2009).

O seguinte modelo descreve o processo de degradagao sofrido por uma imagem durante

0 processo de aquisicao:

g, y) = f(x,y) xh(x,y) + n(x,y), (3.1)

onde g(x,y) é a imagem degradada, f(x,y) € a imagem inicial, h(x,y) é a funcdo de
degradacéo, n(x,y) € o ruido aditivo e o operador ‘*’ indica convolugdo. Assim, o objetivo de
uma restauragdo é obter uma f(x,y) o mais préximo possivel da imagem original f(x,y).
Entéo, precisam-se obter informacdes a respeito de hen para se chegar cada vez mais
proximo do sinal original. Na figura abaixo, € mostrado o modelo dos dois processos citados

(degradacéo e restauragéo) (Gonzales 2009).

. —~ R(x, V) .
fix.y) | FUNGE0 de ~ 1) .. Filtrode R /)
-l degradagao H “\ \J—\-"‘restauragao S T
WJA Ruido
nlx,y)
Degradagéo Restauragéo

Figura 6 — Modelo classico que representa o processo de aquisi¢édo e restauragéo de

uma imagem.
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3.2 Restauragao na presenca de ruido

Nesta segao, serdo apresentados os filtros de média e de Wiener, além da Transformada

de Anscombe e o método de Rabbani, que s&o utilizados neste trabalho.

3.2.1 Filtro de média

O filtro de média € uma maneira simples de remoc&o de ruido. E um filtro passa-baixas
que retira as componentes de frequéncia mais alta da imagem, que sdo em grande parte
responsaveis pelo ruido. Porém, as frequéncias altas também s&o responsaveis pelas
regides de maior detalhamento das imagens, ocorrendo o blurring (borramento) da imagem,
principalmente quando a janela escolhida € grande em relacdo as formagdes da imagem.
Dessa forma, apesar de o filtro de média suavizar a imagem, ele ndo é indicado para
imagens mamograficas onde se necessita atentar aos menores detalhes da imagem para
detectar a presenca de microcalcificagbes. Esse efeito pode ser visto na imagem 512x512 a
seguir, corrompida por ruido gaussiano (Figura 7(a)). Nota-se que depois de processada por
um filtro de média com janela 7x7 (Figura 7(b)) a janela fica sem ruido aparente, porém

borrada.

(a) (b)

Figura 7 - (a) Imagem da Lenna corrompida por ruido Gaussiano com ¢ = 1. (b) Imagem

do item (a) filtrada com filtro de média.

3.2.2 Filtro de Wiener
Considere a filtragem de imagens corrompidas por ruido branco Gaussiano,

independente do sinal. Pode-se modelar este problema pela seguinte equagéao:
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s(,y) =z(xy) + n(xy) (3.2)

onde s(x,y) € o sinal ruidoso, z(x,y) é aimagem sem ruido e n(x,y) é o ruido aditivo. O
objetivo de um filtro de Wiener é recuperar o sinal de s(x,y) e obter uma estimativa Z(x,y)
de z(x,y) que minimiza o mean squared error (MSE),

1 < (3.3)
MSE() = = ) @Gy) = 2(xy))

ij=1
onde N é o niumero de elementos em z(x, y).

O filiro de Wiener incorpora tanto a fungdo de degradagdo quanto caracteristicas

estatisticas do ruido no processo de restauracdo. Sua forma é a seguinte (Gonzales 2009):

a,%(x,y) (3.4)
0.2, y) + 0,2(x,y) [sCo,y) = w(, )] + 1z (x, )

2(x,y) =

onde:
s(x,y): sinal a ser processado;
1, (x,y): média da estimativa do sinal;
o,(X,y): variancia da estimativa do sinal;
o, (X,y): estimativa da variancia do ruido.

Para o filiro de Wiener ser o filtro linear 6timo com relagdo ao MSE, a variancia do ruido
o, deve ser o mais estavel possivel. Por isso, faz-se necessario uma transformagao do sinal

que faga essa estabilizagéo.

3.2.3 Transformada de Anscombe

A transformada de Ascombe é uma transformagdo que converte uma variavel randémica
com uma distribuicdo de Poisson em uma variavel com distribuicdo Gaussiana. Esta
transformada é amplamente utilizada em imagens criadas por absor¢do de fotons, por
serem atingidas por ruido de Poisson no processo de aquisigdo. O objetivo é estabilizar a
variancia transformando um ruido ndo aditivo em um ruido aditivo. Desta forma, podem-se
aplicar algoritmos de filtragem criados para ruido gaussiano em cima do sinal com ruido
Poisson, que foi transformado. Para obter a imagem filtrada, aplica-se a transformada

inversa de Anscombe (Foi 2011).

A definicdo da transformada direta € (Anscombe 1948):
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35
fly) = 2]y +32) . (3.5)

Que também pode ser representado pelo seguinte modelo aditivo:

3.6
feoy) = (z rGey) + g) +v(x,y), 49

onde r(x,y) € o valor esperado e v(x,y) € o termo aditivo, que é independente do sinal
s(x,y) e tem uma distribuicdo que pode ser aproximada a Gaussiana. Apos realizar esse
processo, o termo v(x, y) contera toda a informagao aditiva: o ruido quantico convertido para
ruido Gaussiano, e o ruido branco eletronico, presente pelo processo de digitalizacao.
Entdo, pode-se agir sobre a f(x,y) com alguma técnica conhecida de filtragem (Romualdo
2013).

A transformada inversa algébrica de Anscombe é descrita por (Anscombe 1948) :

g(x,y) = M_é_ (3.7)

4

Porém, a transformada inversa algébrica possui um viés para valores baixos de média
(Anscombe 1948). Varias aplicagdes da transformada de Anscombe possuem valores de
limite de contagem baixos e necessitam que a transformada inversa seja exata. Em
(Makitalo 2011) é proposta uma nova versdo ndo-linear da transformada inversa de
Anscombe, que foi utilizada neste trabalho. Essa nova versédo é inviesada também para

baixos valores de média.

A Figura 8 abaixo demonstra o desvio padrao da transformada de Anscombe em fungao
da média m. Pode-se notar que para altos valores de m, seu desvio padréo, e

consequentemente sua variancia permanecem constantes.
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Figura 8 - Desvio Padrao da transformada de Anscombe em fungdo da média m

(Tampere Univ. Tecnology 2011).

Para mostrar o efeito que a transformada de Anscombe provoca em uma imagem,
considera-se a imagem do cameraman(Figura 9 (a)). Usando o MATLAB, insere-se ruido
sintético de Poisson sobre ela (Figura 9(b)) e calcula-se a imagem residual (diferenga entre
a imagem ruidosa e a imagem sem ruido), que esta representada na Figura 9(c).
Finalmente, a imagem ruidosa é passada para o dominio de Anscombe e também se calcula
a imagem residual (Figura 9(d)).

(a) (b)
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(d)

Figura 9 - Demonstragao do funcionamento da transformada de Anscombe. (a) Imagem
do cameraman. (b) Imagem do cameraman com ruido de Poisson. (c) Imagem residual do

cameraman no espaco. (d) Imagem residual no dominio de Anscombe.

A diferenga entre as imagens residuais fora e dentro do dominio de Anscombe é bem
clara. O ruido da imagem no dominio de Anscombe pode ser considerado aditivo e

independente do sinal, diferentemente da imagem no espaco.

Como explicado anteriormente, as imagens mamograficas possuem ruido ligeiramente
diferente do ruido Poisson analisado na imagem anterior. Dessa maneira, a transformada de
Anscombe se comporta de uma maneira diferente. Ela ndo estabiliza a varidncia em 1, ela
ira estabilizar em um valor menor que um, dependente das caracteristicas dos detectores.
Esse efeito € amostrado na Figura 10, seguindo os mesmos passos da imagem do

cameraman.
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(a) (b)

(c) (d)

Figura 10 - Demonstragao do funcionamento da transformada de Anscombe. (a) Imagem
mamogréafica (sem ruido). (b) Imagem mamografica com 50% da dose. (c) Imagem residual

no espaco. (d) Imagem residual no dominio de Anscombe.

3.2.4 Método de Rabanni

O filtro de Wiener necessita de uma estimativa inicial do sinal. A suposigdo de que um
pixel possui interdependéncia com seus vizinhos viabiliza a utilizagdo de estatistica local
para essa estimativa. Em geral, dois requisitos devem ser satisfeitos para se obter a melhor
escolha: a vizinhanga 4;; deve ser relativamente homogénea, ou seja, caracteriza fielmente
o pixel em questdo, e ela também deve ser grande o bastante para resultar em uma
estimativa estavel. O problema é que a obediéncia de um requisito pode resultar na
desobediéncia do outro (Rabbani 1998). Numa tentativa de obedecer a ambos os requisitos,
o0 método descrito na segdo a seguir foi proposto por Rabbani, para encontrar a melhor

escolha para estimativa da média do sinal p,(x,y) e variancia do sinal o, (x,y)
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Primeiramente A;; é escolhida como uma janela 5x5 em volta do pixel a ser processado

(Rabbani 1998). Um parametro a é entao definido por:

(3:8)

A2
or %Y)

alx,y) = o02(%y)

=~ 2
= . T L - . - . 2
onde G, (x,y) € a variancia da estimativa preliminar do sinal no dominio espacial e o,“(x,y)

€ a variancia da imagem degradada no dominio espacial, para a janela 5x5 estipulada
(Romualdo 2013).

O parametro a(x,y) esta no intervalo (0,1) e € uma medida relativa de atividade de sinal
(variancia) versus variancia do ruido. Valores perto de 0 correspondem a regides de valores
de pixel mais constantes, enquanto que valores proximos de 1 correspondem a regides com
bordas ou com bastante detalhe. A adaptagdo da janela é baseada no valor de a(x,y): i) se
t; < a < t,, a atividade de sinal € moderada e as estatisticas locais sdo extraidas usando a
janela 5x5; ii) se a < t;, possivelmente o pixel estd numa area de intensidade relativamente
constante, entdo a janela é aumentada para 7x7; iii) se a > t,, uma possivel borda foi
encontrada, entdo um conjunto de operagbes (explicadas a seguir) para definir se temos

uma borda e sua dire¢cdo de maior gradiente da regido s&o executadas.

Primeiramente, calculam-se as médias das subareas M; e M, definidas na Figura 11(a),
pois a relacdo |M; — M,|é um bom indicador de gradiente. Faz-se esses calculos nas
quatro principais diregbes (norte — sul, leste - oeste, nordeste - sudoeste e noroeste —
sudeste). Dessa forma, a orientagcdo da borda é determinada pela diregcdo de maior
gradiente. Ou seja, se a direcéo norte — sul, por exemplo, for escolhida, a borda escolhida &
ortogonal a essa diregdo. Para confirmar que realmente existe uma borda nessa direcdo, e
ndo €& apenas uma regido de sinal muito ativo, a seguinte operagdo é realizada,
representada na Figura 11(b), supondo a regido norte-sul sendo de maior gradiente:

M, — M| — |My] (3.9)
|My — M|

r =

Se |r| < T, os resultados sdo duvidosos e possivelmente essa janela representa apenas
uma regido de alta variancia do sinal. Dessa forma, a janela é reduzida para 3x3 com o
intuito de borrar menos a imagem. Se |r| > T, muito provavelmente trata-se de uma borda.
Assim, escolhe-se entre M,, e Mg qual tem o valor mais proximo de M, sendo usado, junto

com sua variancia, como parametros para o filtro de Wiener (Rabbani 1998).
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/ﬂm — 1My

|M; — M|

Figura 11: Janela demonstrativa para o calculo da janela do método de Rabbani:
(a)Quatro diregbes aonde o gradiente é calculado. (b) Calculo de confirmagé&o de borda para

regido onde a dire¢do norte-sul é a de maior gradiente.
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4 Materiais e Métodos

Este capitulo tem como objetivo apresentar materiais, métodos de validacdo e métodos

de processamento utilizados na realizagao deste trabalho.

4.1 Materiais

O banco de imagens utilizado neste trabalho ¢é dividido em dois grupos: imagens

sintéticas e imagens de phantom real.

4.1.1 Imagens sintéticas
Com o objetivo de visualizar melhor o efeito que os algoritmos usados neste trabalho
propdem, alguns testes foram realizados utilizando a imagem do cameraman(Figura 12(a))
com ruido sintético de inserido pelo MATLAB. Para simular o efeito decorrente da redugéo
de dose nas imagens mamograficas, foram realizadas as seguintes transformagbes na

imagem do cameraman:

1. Insere-se ruido de Poisson na imagem sem ruido do cameraman. Essa imagem sera
a referéncia (Figura 12(b));

2. Também na imagem sem ruido, multiplica-se a intensidade dos pixels pelo fator de
dose (0.5 para a de 50%, 0.7 para a de 70% e 0.85 para a de 85%). Assim, insere-se o
ruido de Poisson na imagem escalada. A imagem sera processada ap0s realizagdo desta
etapa;

3. Depois de filtrar as imagens, com o intuito de comparar imagens de doses diferentes,

divide-se a imagem obtida no passo 2 pelo fator de dose novamente.

Figura 12 - Processo de insergao de ruido para simular redugéo de "dose" nas imagens

do cameraman. (a) Imagem sem ruido. (b) Imagem escalada com ruido.
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4.1.1 Imagens de phantom real

Visto a impossibilidade de expor pacientes varias vezes a diferentes doses de radiagéo
ionizante, pelos motivos citados na introdugdo deste texto, fica clara a necessidade de algo
que possa simular fielmente a imagem de uma mamografia digital. Para isso, utilizam-se
imagens de um phantom antropomoérfico desenvolvido na University of Pennsylvania (Bakit
2011). Esse phantom simula uma mama real com excepcional realismo, incluindo tecidos
adiposos e fibroglandulares e microcalcificagdes. Imagens desse phantom foram adquiridas
usando um mamaografo digital com dose de radiagdo normal (160mAs) e também com doses
correspondentes a 85%, 70% e 50% da dose normal. Para simular uma imagem sem ruido,
11 mamografias do phantom com 100% da dose também foram tiradas. Uma imagem
representada pela média dessas 11 imagens foi escolhida para ser usada com imagem de
referéncia. A Figura 4 abaixo mostra um exemplo do phantom antropomorfico e sua imagem
tirada por um mamaografo digital. Para coleta dos resultados, utilizou-se uma janela 400x400
proveniente da imagem representada na Figura 13(b), que é uma regido com grande

numero de detalhes.

(a) (b)

Figura 13: (a) Exemplo de um phantom antropomérfico desenvolvido na University of

Pennsylvania ; (b) Imagem do phantom do item (a) tirada de um mamografo digital
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4.2 Métodos de validacao

Este capitulo tem como objetivo apresentar os dois métodos utilizados para validar os
resultados deste trabalho: NNPS e Sharpness.

4.2.1 NNPS

NPS (Noise Power Spectrum) é a variancia do sinal no dominio de Fourier, ou seja,
descrita em fungdo das componentes frequenciais do sinal. No caso da analise de uma
imagem, o NPS é a quantizagédo da variancia local de uma imagem digital no dominio de

Fourier. E o espectro de poténcia do ruido de uma imagem (Dobbins 1l 2000).

Assim, considerando uma imagem, o NPS ¢é descrito pela seguinte equacao:

(NxNyAxAy 4.1)

M 2
NPS(uv) = lim ) D Pl Cey) = SmGu )}

x,Ny,M— oo

Onde N, e N, s&o as dimensgoes da janela em quest&o, 4x e Ay representam o tamanho
do pixel da imagem, S(x,y) é uma estrutura padrao do sinal sem componentes estocasticos
e M pe o numero de janelas N,xN, utilizadas para o calculo. Para imagens, podemos

calcular o parametro S(x,y) como o valor médio dos pixels na janela.

Segundo Dobbins, pode-se obter o NPS de uma imagem através de procedimentos

experimentais. Esses procedimentos serdo descritos a seguir, passo a passo:

1° passo: Aquisicdo de varias exposicdes, em varias doses, de imagens
homogéneas (ou seja, de intensidade homogénea), utilizando o equipamento a ser

estudado.;

2° passo: Com essas aquisigbes em diferentes doses, é possivel aplicar uma
transformacdo em que os niveis de intensidade da imagem seja linearmente proporcional a

dose na qual a imagem foi adquirida;

3° passo: Divide-se a regido de interesse em janelas para aplicar a equacao descrita

acima.

Como o valor médio do espectro calculado é proporcional ao valor médio dos pixels da
imagem, que varia com a dose de radiacéo, faz-se necessario uma normalizagdo do NPS.
Por isso, usa-se 0 o NNPS (Normalized Noise-Power Spectrum) representado no plano
bidimensional. A equagéao abaixo, apresenta essa normalizagéo (Borges 2014):

NPS(u,v) (4.2)

NNPS(u,v) = Iz

onde L é o valor médio da imagem, que varia para cada exposigao.
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4.2.2 Sharpness

Sharpness é um fator de qualidade de imagem que determina a quantidade de detalhe
que uma imagem reproduz. No caso de imagens mamograficas € muito importante medir-se
essa métrica, porque o NNPS avalia apenas a quantidade de ruido de uma imagem. Ou
seja, se uma imagem for excessivamente borrada apos ser processada por um filtro, o
NNPS ira mostrar que o ruido foi eliminado, mas nao indicara a quantidade de detalhes que
também foi removida. Sharpness é definida como a regido de transicdo entre duas cores

diferentes, em que elas ainda ndo estejam bem definidas (He 2009).

Ha varias maneiras de se medir Sharpness de uma imagem. Nesse trabalho, foi usado o
método de Tenengrad, descrito em (He 2009). Sendo I(x,y) a intensidade de um pixel
(x,y). Depois, define-se pesos horizontais e verticais por wy(x,y) =[I(x+1,y) —I(x —

1Ly? ewy(x,y) = [I(x,y + 1) — I(x,y — 1)]*. Assim, Sharpness é definida por:
shar = 2 2 (4.3)
pness(dB) = 10 xlog ( (WxGx + wy,Gy)
I ¢

Onde G, e G, s&o os gradientes horizontal e vertical calculados usando filtro de Sobel, e
l e c representam o numero total de linhas e colunas. A equacgao proposta em (He 2009) foi
normalizada para ser apresentada em dB, ja que a equagao original resulta em numeros

muito altos.

Para provar a validade dessas métricas analisadas conjuntamente, pode-se usar a
imagem filtrada pelo filtro de média da Figura 7. A Figura 14 representa o grafico do NNPS
para a imagem corrompida e a filtrada, enquanto que a Tabela 1 mostra o Sharpness para

as duas imagens.
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Figura 14 - Grafico comparativo do NNPS para o filtro de média da imagem da Lenna. A
curva azul mostra o NNPS para a imagem ruidosa e a curva verde mostra o NNPS para a

imagem filtrada.

Tabela 1 - Tabela de Sharpness para a imagem da Lenna corrompida e filtrada com filtro de

média.
Sharpness(dB)
Imagem Corrompida 118,82
Imagem Filtrada 113,72

Dessa forma, apesar de a imagem filtrada possuir quantidade bem menor de ruido, pode-

se notar pela métrica Sharpness que muita informac&o sobre a imagem é perdida.

4.3 Métodos de Processamento

O método de filtragem principal utilizado neste trabalho € o filtro de Wiener. Porém, para
adequa-lo ao tipo de ruido presente nas imagens mamograficas, alguns métodos de pods- e
pré-processamento sdo adicionados. O esquematico da Figura 15 mostra as etapas do
processo como um todo. O objetivo do método é sempre deixar a imagem processada o

mais proximo possivel da imagem com 100% da dose.



30

4.3.1 Passo a passo do novo método
Segue o passo a passo do novo método, desde a aquisicdo de imagens da mamografia

até o fim do processamento:

1. Primeiramente, adquire-se imagens mamograficas digitais com dose reduzida

(85%,70% e 50% da dose) utilizando o phantom antropomorfico;

2. Antes de as imagens serem processadas, ha duas corregées que devem ser feitas
para que possam ser comparadas posteriormente. Essas corregdes séo:

e Corregcdo de fator de dose: como a incidéncia de pixels sobre o paciente é
proporcional a dose de radiagdo que ele ird receber, & preciso que se corrijam os
valores de pixel da imagem de dose reduzida de forma que sua média seja igual a
média da imagem de 100%. Por exemplo, se a imagem em questao tiver 50% da
dose normal, o fator de dose sera aproximadamente 2;

* Correcao de offset: os detectores que acusam o recebimento de fétons e formam a
imagem radiografica irdo possuir um valor inicial mesmo se nenhum féton incidir

sobre ele.
As duas corre¢des juntas resultam na seguinte equacao:

mean(im100) (4.4)

mean(im)

im,(x,y) = (im(x,y) — of fset) * < ) + of fset

sendo que:

im(x,y): intensidade do pixel da imagem com dose reduzida a ser processada;
offset: valor inicial lido inerente ao detector utilizado;

mean(im100): média dos pixels da imagem com 100% da dose;

mean(im): média dos pixels da imagem com dose reduzida.

3. Depois de corrigida, a imagem sera utilizada para o calculo do parédmetro a do
método de Rabanni. A mesma imagem também sofre a transformagdo de Anscombe para
estabilizar a variagao do ruido, ja que o filtro de Wiener é projetado para trabalhar com ruido
independente do sinal.

4. Ja no dominio de Anscombe, utiliza-se o método de Rabanni (com o a calculado no
passo anterior) para definir as melhores escolhas de janela de cada pixel, calculando a
variancia e média do sinal nessas janelas. Os parametros para o método de Rabanni foram
escolhidos empiricamente e sdo: t; =0,2,t, =04e T =0,6. Como a transformada de

Anscombe nao estabiliza a imagem como um todo, a nova proposta €, utilizando a média e
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a janela calculada pelo método de Rabbani, calcular também uma estimativa da variancia do

ruido. Entdo, temos que:
o (x,y) = Var(IMwindow(x,y) = Mpean(x,y)) (4.5)
onde:

IMyingow(x,y) — € Um vetor com a intensidade de todos os pixels da janela escolhida;

IMmean(x,y) — € a média dos valores de pixel da janela escolhida, para o pixel em questéo.

Dessa forma, a nova proposta € utilizar uma estimativa para a variancia do ruido que seja
local, ja que para as imagens da mamografia ndo tém ruido uniforme. Utilizando uma regido
que represente melhor o pixel em questdo, temos uma melhor estimativa da varidncia do

ruido.

5. Depois de estimada todas as variancias e média, pode-se utilizar a férmula do filtro
de Wiener. Um parametro y é introduzido para controlar a forga do filtro, ja que para nosso
caso, o objetivo ndo é que todo o sinal seja filtrado, e sim que a imagem com dose reduzida

seja 0 mais préximo possivel da imagem com 100% da dose. Entdo, a féormula do filtro de

Wiener sera:
2
. 0~ (%, y) (4.6)
Z2(x,y) = s(x,y) — X, + X,
@ = o)+ g 5 Z) [sCe,y) = (o] + 1z(x,y)
O objetivo é fazer com que o processo escale a variancia que o filtro de Wiener ira

utilizar. Para achar o valor étimo de v, utiliza-se o método de ajuste de NNPS.
Primeiramente, calcula-se o valor de NNPS p’ara a imagem com 100% da dose. Depois
disso, calcula-se o NNPS da imagem processada com o valor de y dentro de intervalo
definido. Finalmente, calcula-se a distancia euclidiana entre os vetores representando o
NNPS para cada componente de frequéncia entre a imagem com 100% da dose e a imagem
reduzida filtrada. O y que resulta na menor distancia euclidiana é escolhido como parametro
6timo. Essa distancia sera chamada de EDNN.

6. Enfim, compara-se a imagem de dose reduzida processada com a imagem de 100%

da dose, utilizando também a métrica Sharpness.
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Figura 15 - Esquematico do método proposto.

4.3.2 Filtro de Wiener Adaptativo para imagens mamograficas analégicas

Com o objetivo de comparar a diferenga entre ruido Poisson na mamografia analdgica e
o ruido das imagens de mamografia digital, utilizou-se o Filtro de Wiener Adaptativo
proposto em (Romualdo 2013) para o mesmo banco de imagens e comparou-se 0s
resultados. Neste filtro, ndo ha o controle de filiragem e a varidncia do ruido no dominio de
Anscombe é escolhida igual a 1, ja que na mamografia analdgica néo existe a atenuagéo do
sinal pelos detectores. Este filtro sera chamado de Filtro de Wiener SF neste trabalho, por
ter sido modelado para mamografia analdgica (screen-film).
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5 Resultados

Nesta secdo, serdo apresentados os resultados obtidos em dois tipos de imagens,
comparando-se a adaptacdo proposta a primeira proposta do filtro de Wiener para essa
aplicagdo, descrita em (Romualdo 2013). Para a segdo 5.1, onde os métodos serdo
comparados utilizando imagens sintéticas, a variancia do ruido ¢,, no dominio de Anscombe,
também foi considerada igual a 1, ja que o ruido inserido pelo MATLAB é ruido Poisson. A
nova estimativa da variagdo de ruido s6 sera mostrada na se¢édo 5.2, onde as imagens

processadas serdo imagens mamograficas do phantom real.
5.1 Imagens sintéticas

Nesta secao, serdo mostrados os resultados para as imagens sintéticas.

5.1.1 Filtro de Wiener SF
Os resultados para as imagens sintéticas utilizando o método descrito em (Romualdo

2013) serao apresentados nesta secao.
5.1.1.1 Imagem sintética com 85% da dose

A filtragem utilizando o filtro de Wiener SF (Romualdo 2013) para a simulagdo de 85% da

dose da imagem do cameraman sao apresentadas na Figura 16.

(a) (b) (c)

Figura 16 - Filtragem da imagem do cameraman com 85% da dose utilizando a proposta
do filtro de Wiener SF. (a) Imagem com 85% da dose (b) Imagem com 100% da dose (c)

Imagem com 85% da dose filtrada.

A Figura 17 abaixo apresenta o grafico comparativo do NNPS para a imagem com

85% de dose do cameraman, filtrada com o filtro de Wiener SF.
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Figura 17 - Gréfico comparativo do NNPS para a imagem do cameraman com 85% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com

85% da dose e a curva azul é da imagem de 85% da dose filtrada com o filtro de Wiener SF.

A Tabela 2 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.

Tabela 2 - Tabela comparativa do Sharpness para a imagem do cameraman com 85% de dose filtrada com
filtro de Wiener SF.

Sharpness(dB)

Imagem 85% 116.93

Imagem 100% 116.92

Imagem 85% filtrada 116.49

5.1.1.2 Imagem sintética com 70% da dose

A filtragem utilizando o filtro de Wiener SF (Romualdo 2013) para a simulagéo de 70% da

dose da imagem do cameraman s&o apresentadas na Figura 18.
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(b)

Figura 18 - Filtragem da imagem do cameraman com 70% da dose utilizando a proposta
do filtro de Wiener SF. (a) Imagem com 70% da dose (b) Imagem com 100% da dose (c)
Imagem com 70% da dose filtrada.

A Figura 19 abaixo apresenta o grafico comparativo do NNPS para a imagem com 70%

de dose do cameraman, filtrada com o filtro de Wiener SF.
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Figura 19 - Grafico comparativo do NNPS para a imagem do cameraman com 70% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com
70% da dose e a curva azul é da imagem de 70% da dose filtrada com o filtro de Wiener SF.

A Tabela 3 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.
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Tabela 3 - Tabela comparativa do Sharpness para a imagem do cameraman com 85% de dose filtrada com
filtro de Wiener SF.

Sharpness(dB)
Imagem 70% 117.12
Imagem 100% 116.96

Imagem 70% filtrada 116.67

5.1.1.3 Imagem sintética com 50% da dose

A filtragem utilizando o filtro de Wiener SF (Romualdo 2013) para a simulagéo de 50% da

dose da imagem do cameraman s&o apresentadas na Figura 20.

(a) (b) (c)

Figura 20 - Filtragem da imagem do cameraman com 50% da dose utilizando a proposta
do filtro de Wiener SF. (a) Imagem com 50% da dose (b) Imagem com 100% da dose (c)

Imagem com 50% da dose filtrada.

A Figura 21 abaixo apresenta o grafico comparativo do NNPS para a imagem com 50%

de dose do cameraman, filtrada com o filtro de Wiener SF.
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Figura 21 - Gréfico comparativo do NNPS para a imagem do cameraman com 50% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com

50% da dose e a curva azul é da imagem de 50% da dose filtrada com o filtro de Wiener SF.

A Tabela 4 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.

Tabela 4 - Tabela comparativa do Sharpness para a imagem do cameraman com 50% de dose filtrada com
filtro de Wiener SF.

Sharpness(dB)
Imagem 50% 117.41
Imagem 100% 116.92

Imagem 50% filtrada 116.89

5.1.2 Nova proposta do Filtro de Wiener
Os resultados para as imagens sintéticas e imagens mamograficas utilizando o método

descrito neste trabalho serdo apresentados nesta segao.
5.1.2.1 Imagem sintética com 85% da dose

A figura 22 abaixo representa o grafico do EDNN em fung&o do parametro y, variando de

(0,1), para a imagem do cameraman com 85% de dose, filtrando a imagem com a nova
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proposta do filtro de Wiener. Com base nesse grafico, o parametro y otimizado é 0,38.

Entéo, toda a filtragem para esta segéo foi utilizado y=0,38.

= Distancia Euclidiana(NNPS) 85%

0.18
0.16
0.14
0.12
0.1 //
0.08

0.06 4 “

0.04 AW/
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Parametroy

Distancia Euclidiana entre NNPS(10-

Figura 22 - Gréafico do EEDN em fungédo do parametro y para a filtragem da imagem do

cameraman com 85% da dose utilizando a nova proposta do filtro de Wiener.

A filtragem utilizando a nova proposta do filtro de Wiener para a simulagao de 85%

da dose da imagem do cameraman sao apresentadas na Figura 23.

(a) (b) (c)

Figura 23 - Filtragem da imagem do cameraman com 85% da dose utilizando a nova
proposta do filtro de Wiener. (a) Imagem com 85% da dose (b) Imagem com 100% da dose

(c) Imagem com 85% da dose filtrada.

A Figura 24 abaixo apresenta o grafico comparativo do NNPS para a imagem com 85% de

dose do cameraman, filtrada com a nova proposta do filtro de Wiener.
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Figura 24 - Grafico comparativo do NNPS para a imagem do cameraman com 85% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com
85% da dose e a curva azul é da imagem de 85% da dose filtrada com a nova proposta do

filtro de Wiener.

A Tabela 5 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.
Tabela 5 - Tabela comparativa do Sharpness para a imagem do cameraman com 85% de dose filtrada com a

nova proposta para o filtro de Wiener.

Sharpness(dB)
Imagem 85% 116.99
Imagem 100% 116.94
116.90

Imagem 85% filtrada

5.1.2.2 Imagem sintética com 70% da dose

A figura 25 abaixo representa o grafico do EDNN em fungao do parametro y, variando de
(0,1), para a imagem do cameraman com 70% de dose, filtrando a imagem com a nova

proposta do filtro de Wiener. Com base nesse grafico, o parametro y otimizado é 0,5. Entao,

toda a filtragem para esta segéo foi utilizado y=0,5.
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Figura 25 - Grafico do EEDN em fungédo do parédmetro y para a filtragem da imagem do

cameraman com 70% da dose utilizando a nova proposta do filtro de Wiener.

A filtragem utilizando a nova proposta do filtro de Wiener para a simulagéo de 70% da

dose da imagem do cameraman s&o apresentadas na Figura 26.

(a) (b) (c)

Figura 26 - Filtragem da imagem do cameraman com 70% da dose utilizando a nova
proposta do filtro de Wiener. (a) Imagem com 70% da dose (b) Imagem com 100% da dose

(c) Imagem com 70% da dose filtrada.

A Figura 27 abaixo apresenta o grafico comparativo do NNPS para a imagem com 70%

de dose do cameraman, filtrada com a nova proposta do filtro de Wiener.
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Figura 27 - Gréfico comparativo do NNPS para a imagem do cameraman com 70% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com

70% da dose e a curva azul é da imagem de 70% da dose filtrada com a nova proposta do

filtro de Wiener.

A Tabela 6 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.

Tabela 6 - Tabela comparativa do Sharpness para a imagem do cameraman com 70% de dose filtrada com a

5.1.23

nova proposta para o filtro de Wiener.

Sharpness(dB)
Imagem 70% 117.10
Imagem 100% 117.00

116.94

Imagem 70% filtrada

Imagem sintética com 50% da dose

A figura 28 abaixo representa o grafico do EDNN em fungao do parametro y, variando de
(0,1), para a imagem do cameraman com 85% de dose, filtrando a imagem com a nova

proposta do filtro de Wiener. Com base nesse grafico, o pardmetro y otimizado é 0,83.

Entéo, toda a filtragem para esta segéo foi utilizado y=0,83.
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Figura 28 - Grafico do EEDN em fungdo do pardmetro y para a filtragem da imagem do

cameraman com 50% da dose utilizando a nova proposta do filtro de Wiener.

A filtragem utilizando a nova proposta do filtro de Wiener para a simulagdo de 50% da

dose da imagem do cameraman séo apresentadas na Figura 29.

(a) (b) (c)

Figura 29 - Filtragem da imagem do cameraman com 50% da dose utilizando a nova
proposta do filtro de Wiener. (a) Imagem com 50% da dose (b) Imagem com 100% da dose

(c) Imagem com 50% da dose filtrada.

A Figura 30 abaixo apresenta o grafico comparativo do NNPS para a imagem com 50%

de dose do cameraman, filtrada com a nova proposta do filiro de Wiener.
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Figura 30 - Grafico comparativo do NNPS para a imagem do cameraman com 50% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com
50% da dose e a curva azul é da imagem de 50% da dose filtrada com a nova proposta do

filtro de Wiener.

A Tabela 7 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.

Tabela 7 - Tabela comparativa do Sharpness para a imagem do cameraman com 50% de dose filtrada com a

nova proposta para o filtro de Wiener.

Sharpness(dB)
Imagem 50% 117.35
Imagem 100% 116.91
116.97

Imagem 50% filtrada

5.2 Imagens de phantom real
Nesta secao, serdo mostrados os resultados para as imagens de phantom real.

5.2.1 Filtro de Wiener SF
Os resultados para as imagens de phantom real utilizando o método descrito em

(Romualdo 2013) seréo apresentados nesta secéo.

5.2.1.1 Imagem de phantom com 85% da dose
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A filtragem utilizando o filtro de Wiener SF (Romualdo 2013) para a imagem mamografica

com 85% da dose sdo apresentadas na Figura 31.

(a) (b)

Figura 31 - Filtragem da imagem mamografica com 85% da dose utilizando a proposta do
filtro de Wiener SF. (a) Imagem com 85% da dose (b) Imagem com 100% da dose (c)
Imagem com 85% da dose filtrada.

A Figura 32 abaixo apresenta o grafico comparativo do NNPS para a imagem com 85%

de dose da imagem mamografica, filtrada com a o filiro de Wiener SF.
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Figura 32 - Grafico comparativo do NNPS para a imagem mamogréfica com 85% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com

85% da dose e a curva azul é da imagem de 85% da dose filtrada com o filtro de Wiener SF.
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A Tabela 8 a seguir mostra o Sharpness para as trés imagens representadas no grafico
de EDNN acima.

Tabela 8 - Tabela comparativa do Sharpness para a imagem mamografica com 85% de dose filtrada com o

filtro de Wiener SF.
Sharpness(dB)
Imagem 85% 99.44
Imagem 100% 98.81

Imagem 85% filtrada 91.53

5.2.1.2 Imagem de phantom com 70% da dose

A filtragem utilizando o filtro de Wiener SF (Romualdo 2013) para a imagem mamografica

com 70% da dose sdo apresentadas na Figura 33.

(a) (b)

Figura 33 - Filtragem da imagem mamografica com 70% da dose utilizando a proposta do
filtro de Wiener SF. (a) Imagem com 70% da dose (b) Imagem com 100% da dose (c)

Imagem com 70% da dose filtrada.

A Figura 34 abaixo apresenta o grafico comparativo do NNPS para a imagem com 70%

de dose da imagem mamografica, filtrada com a o filtro de Wiener SF.
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Figura 34 - Grafico comparativo do NNPS para a imagem mamografica com 70% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com
70% da dose e a curva azul é da imagem de 70% da dose filtrada com o filtro de Wiener SF.

A Tabela 9 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.
Tabela 9 - Tabela comparativa do Sharpness para a imagem mamografica com 70% de dose filtrada com o

filtro de Wiener SF.

Sharpness(dB)
Imagem 70% 100.48
Imagem 100% 98.81
91.74

Imagem 70% filtrada

5.2.1.3 Imagem de phantom com 50% da dose

A filtragem utilizando o filtro de Wiener SF (Romualdo 2013) para a imagem mamografica

com 50% da dose sao apresentadas na Figura 35.
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Figura 35 - Filtragem da imagem mamografica com 50% da dose utilizando a proposta do
filtro de Wiener SF. (a) Imagem com 50% da dose (b) Imagem com 100% da dose (c)
Imagem com 50% da dose filtrada.

A Figura 36 abaixo apresenta o grafico comparativo do NNPS para a imagem com 50%

de dose da imagem mamografica, filtrada com a o filtro de Wiener SF.
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Figura 36 - Grafico comparativo do NNPS para a imagem mamografica com 50% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com
50% da dose e a curva azul é da imagem de 50% da dose filtrada com o filtro de Wiener SF.

A Tabela 10 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.
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Tabela 10 - Tabela comparativa do Sharpness para a imagem mamografica com 70% de dose filtrada com o
filtro de Wiener SF.

Sharpness(dB)

Imagem 50% 103.27
Imagem 100% 98.81

Imagem 50% filtrada 92.18

5.2.2 Nova proposta do Filtro de Wiener
Os resultados para as imagens de phantom real utilizando o método descrito neste

trabalho serdo apresentados nesta segéo.
5.2.2.1 Imagem de phantom com 85% da dose

A filtragem utilizando a nova proposta para o filtro de Wiener para a imagem mamografica

com 85% da dose sdo apresentadas na Figura 37.

(@) (b)

Figura 37 - Filtragem da imagem mamografica com 85% da dose utilizando a nova
proposta do filtro de Wiener. (a) Imagem com 85% da dose (b) Imagem com 100% da dose

(c) Imagem com 85% da dose filtrada.

A Figura 38 abaixo representa o grafico do EDNN em funcdo do parametro y, variando de
(0,1), para a imagem mamogréafica com 85% de dose, filtrando a imagem com a nova
proposta do filtro de Wiener. Com base nesse grafico, o parametro y otimizado é 0,53.

Entéo, toda a filtragem para esta segéo foi utilizado y=0,53.
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Figura 38 - Gréafico do EEDN em fungéo do pardmetro y para a filtragem da imagem

mamografica com 85% da dose utilizando a nova proposta do filtro de Wiener.

A Figura 39 abaixo apresenta o grafico comparativo do NNPS para a imagem com 85%

de dose da imagem mamografica, filirada com a nova proposta do filiro de Wiener.
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Figura 39 - Grafico comparativo do NNPS para a imagem mamogréfica com 85% de
dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com
85% da dose e a curva azul é da imagem de 85% da dose filtrada com a nova proposta do

filtro de Wiener.
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A Tabela 11 a seguir mostra o Sharpness para as trés imagens representadas no grafico
de EDNN acima.

Tabela 11 - Tabela comparativa do Sharpness para a imagem mamogréafica com 85% de dose filtrada com a

nova proposta do filtro de Wiener.

Sharpness(dB)
Imagem 85% 99.44
Imagem 100% 98.81
Imagem 85% filtrada 98.70

5.2.2.2 Imagem de phantom com 70% da dose

A filtragem utilizando a nova proposta para o filtro de Wiener para a imagem mamografica

com 70% da dose sdo apresentadas na Figura 40.

(a) (b)

Figura 40 - Filtragem da imagem mamografica com 70% da dose utilizando a nova
proposta do filtro de Wiener. (a) Imagem com 70% da dose (b) Imagem com 100% da dose

(c) Imagem com 70% da dose filtrada.

A Figura 41 abaixo representa o grafico do EDNN em fungdo do parametro y, variando de
(0,1), para a imagem mamografica com 70% de dose, filtrando a imagem com a nova
proposta do filiro de Wiener. Com base nesse grafico, o parametro y otimizado é 0,8. Entéo,

toda a filtragem para esta secgéo foi utilizado y=0,8.
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Figura 41 - Grafico do EEDN em fungédo do parametro y para a filtragem da imagem

mamografica com 7-% da dose utilizando a nova proposta do filtro de Wiener.

A Figura 42 abaixo apresenta o grafico comparativo do NNPS para a imagem com 70%

de dose da imagem mamografica, filtrada com a nova proposta do filtro de Wiener.
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dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com

70% da dose e a curva azul é da imagem de 70% da dose filtrada com a nova proposta do

filtro de Wiener.

A Tabela 12 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.
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Tabela 12 - Tabela comparativa do Sharpness para a imagem mamografica com 70% de dose filtrada com a

nova proposta do filtro de Wiener.

Sharpness(dB)
Imagem 70% 100.48
Imagem 100% 98.81
Imagem 70% filtrada 98.70

5.2.2.3 Imagem de phantom com 50% da dose

A filtragem utilizando a nova proposta para o filtro de Wiener para a imagem mamografica

com 50% da dose sao apresentadas na Figura 43.

(a) (b) (c)

Figura 43 - Filtragem da imagem mamografica com 50% da dose utilizando a nova
proposta do filtro de Wiener. (a) Imagem com 50% da dose (b) Imagem com 100% da dose

(c) Imagem com 50% da dose filtrada.

A Figura 44 abaixo representa o grafico do EDNN em funcg&o do parametro y, variando de
(0,1.2), para a imagem mamografica com 50% de dose, filtrando a imagem com a nova
proposta do filiro de Wiener. Com base nesse grafico, o parametro y otimizado é 1,1. Entéo,

toda a filtragem para esta segéo foi utilizado y=1,1.



Figura 44 - Grafico do EEDN em fungdo do pardametro y para a filtragem da imagem

mamografica com 50% da dose utilizando a nova proposta do filtro de Wiener.

Distancia Euclidiana entre NNPS

(10-5)

Distancia Euclidiana(NNPS)

0.5
0.4
0.3
0.2
0.1

50%

0.2 03 04 05 06 07 0.8 09 1 11 1.2
Parametroy

53

A Figura 45 abaixo apresenta o grafico comparativo do NNPS para a imagem com 50%

de dose da imagem mamografica, filirada com a nova proposta do filtro de Wiener.
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dose. A curva verde é a imagem com 100% da dose, a curva vermelha é da imagem com

50% da dose e a curva azul é da imagem de 50% da dose filtrada com a nova proposta do

filtro de Wiener.

A Tabela 13 a seguir mostra o Sharpness para as trés imagens representadas no grafico

de EDNN acima.
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Tabela 13 - Tabela comparativa do Sharpness para a imagem mamografica com 85% de dose filtrada com a

nova proposta do filtro de Wiener.

Sharpness(dB)
Imagem 50% 103.27
Imagem 100% 98.81
Imagem 50% filtrada 98.91

5.2.3 Wiener SF vs. Nova proposta

Essa secdo apresenta a comparagdo de desempenho entre o filtro de Wiener SF para
essa aplicagdo (Romualdo 2013) e a nova adaptagao proposta neste trabalho. A Tabela 14
apresenta as métricas EDNN e a diferenga entre o Sharpness(dB) da imagem filtrada com o
Sharpness(dB) da imagem de referéncia da imagem filtrada, para cada valor de redugéo de

dose das imagens mamograficas e das imagens sintéticas.

Tabela 14 - Tabela comparativa do Sharpness e do EDNN entre o filtro original e a nova proposta para: (a)as

imagens mamograficas; (b) as imagens sintéticas.

(@)

Dose EDNN Diferencga entre
(x10-5) Sharpness(dB)

Imagem referéncia 100% -- --
Wiener SF 85% 0.504 7.28
70% 0.496 7.07
50% 0.472 6.63
Nova adaptagao para o 85% 0.014 0.11
Wiener 70% 0.017 0.11
50% 0.046 0.10




(b)
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Dose EDNN Diferenga entre
(x10-3) Sharpness(dB)
Imagem referéncia 100% -- --
Wiener SF 85% 0.214 0.44
70% 0.135 0.29
50% 0.089 0.03
Nova adaptagédo para o 85% 0.036 0.04
Wiener 70% 0.041 0.06
50% 0.048 0.06
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6 Discussoes e Conclusao

O trabalho aqui apresentado teve como objetivo propor um novo filtro de Wiener
adaptativo e paramétrico para reduzir o ruido de imagens mamograficas digitais com doses
de radiagao reduzidas (85%, 70% e 50% da dose de radiagdo normal) de forma que o ruido
dessas imagens, depois de filtradas, se aproxime do ruido presente nas mamografias
digitais obtidas com a dose atual de radiagao ionizante. Os resultados foram coletados para
este filtro e também para o filtro proposto em (Romualdo 2013), que foi o inicio de estudo do
presente trabalho. Para demonstrar as diferengas, foram utilizadas imagens sintéticas (que
possuem caracteristica ruidosa semelhante as imagens de mamografia analdgica) e

imagens de phantom real, obtidas com um mamagrafo digital.

O remodelamento feito e validado neste trabalho traz duas alteragdes ao comparar com
o método proposto em (Romualdo 2013). A primeira é a inser¢do do paradmetro y que faz o
controle da quantidade de ruido filtrada. Em (Romualdo 2013), o objetivo era filtrar todo o
ruido presente na imagem, enquanto que neste trabalho o objetivo & aproximar com o ruido
da imagem com dose normal. A segunda é no calculo da variancia do ruido. Em (Romualdo
2013), a variancia do ruido era estimada como constante e igual a 1 por toda a imagem,

enquanto que na nova proposta, calcula-se a variancia do ruido localmente.

Analisando os indices de qualidade NNPS, EDNN e Sharpness, é possivel concluir que
o filtro de Wiener SF usava uma estimativa que é correta apenas para a imagem corrompida
com ruido Poisson uniforme, ou seja, imagens mamograficas analégicas. Para este tipo de
imagem, teve-se apenas que ajustar a forga do filtro pelo parametro y para o objetivo em
questao, que é filtrar apenas parte do ruido até que a imagem reduzida se torne o mais
proximo possivel da imagem com dose normal. Percebe-se neste caso que ajustando a
forca do filtro, também se ajusta a métrica Sharpness, tornando-a mais préxima da imagem

com dose normal.

Apos analisados os filtros e doses separadamente, apresenta-se na Tabela 14(a) o
quadro comparativo para as imagens mamograficas. A nova proposta baseada no
comportamento da imagem mamografica digital no dominio de Anscombe faz com que as
imagens com dose reduzidas se aproximem mais das imagens 100%. Isso mostra que a
proposta de controlar a quantidade de ruido juntamente com a nova estimativa para a
variancia do ruido apresentam resultados melhores para a mamografia digital do que a
proposta anterior. Analisando a Tabela 14(b), que é o quadro comparativo para as imagens
sintéticas, percebe-se que o filtro de Wiener SF se comporta melhor do que no caso

anterior, demonstrando as diferencas entre mamografia digital e analdgica.
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Uma limitacdo desse método € o fato de ele ndo ser automatico. Uma alternativa para
ser estudada em trabalhos futuros é “fechar a malha” do esquematico representado na
Figura 15. Porém, para isso ndo se pode utilizar a distancia euclidiana entre os NNPS, ja
que nela é usado o NNPS da imagem com dose normal, impossibilitando o uso clinico. A

métrica Sharpness surge como uma opgao a ser estudada.

A analise quantitativa mostra que é possivel considerar a ideia de usar doses
reduzidas de radiagdo na mamografia digital se acompanhada a um processo de eliminagéo
do ruido, sendo que o filtro de Wiener € uma boa alternativa. Entretanto, para que essa
opc¢éao seja implementada, deve-se fazer uma analise de precisdo de diagnéstico, como foi

realizada em (Samei 2007). Essa € uma outra sugestéo de trabalho futuro.
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