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RESUMO

Torezan, J. Condicoes de estabilidade do vacuo para o Modelo do
Dubleto Inerte. 2024. 20 p. Monografia (Trabalho de Conclusao de

Curso) - Instituto de Fisica de Sdo Carlos, Universidade de Sao Paulo, Sao Carlos,
2024.

Embora tenha apresentado inimeros sucessos, o Modelo Padrao da fisica de parti-
culas mostrou-se incapaz de fornecer uma solugao apropriada para o problema da
matéria escura, especificamente no contexto das particulas massivas fracamente
interagentes (WIMPs). Dessa forma, teorias além do Modelo Padrao tornam-se
alvos promissores para se buscar por essas particulas. O Modelo do Dubleto Inerte
¢ um modelo que, mesmo sendo simples, apresenta uma rica fenomenologia e que,
em comparagao com o Modelo Padrao, inclui um segundo dubleto escalar, uma
simetria conservada de permutacao Z, e quatro novas particulas escalares, das
quais uma é candidata a matéria escura. Neste trabalho, foram-se analisadas as
condigoes de estabilidade do vacuo para o Modelo do Dubleto Inerte. A andlise
feita se baseia na reparametrizacao do potencial escalar do modelo em uma forma
quadratica de matriz, a qual, ao se aplicar uma condicao de nao-negatividade em
grandes campos, esta sujeita a copositividade matematica e, por consequéncia, a
condicoes especificas. As condic¢oes de estabilidades do vacuo sdao derivadas em
termos dos parametros de ordem quartica do potencial, delimitando um soélido
aberto no espaco de parametros e recuperando resultados prévios na literatura. Por
fim, essas vinculos decorrentes da existéncia do vacuo sdo componentes que devem
ser considerada em estudos fenomenologicos e simulagoes referentes ao modelo, o
que, por sua vez, aperfeicoam os limites existentes das secdo de choque da matéria
escura e sua densidade de reliquia, além de restringir as massas das novas particulas.
Adicionalmente, o método utilizado, baseado na copositividade, mostrou-se valido
ao recuperar resultados ja presentes na literatura, podendo ser expandido para

calcular as condigoes de estabilidade do vacuo em outros modelos.

Palavras-chave: Fisica de particulas. Astrofisica. Matéria Escura. Estabilidade
do Véacuo. Inert Doublet Model. Modelo do Dubleto Inerte.



1 INTRODUCAO

Uma das diretrizes primordiais da fisica é a busca pela explicagdo do universo
e de seus elementos constituintes, principalmente em termos de primeiros principios.
A nivel mais fundamental e microscépico, o Modelo Padrao da fisica de particulas
(MP) é a teoria mais bem sucedida, categorizando toda a existéncia em particulas,
como os férmions, que representa a matéria em si, e os bésons, que representam
as interagoes fundamentais (forga forte, forga eletromagnética, forga fraca), sendo,
para tal, munido de simetrias mateméticas SU(3). @ SU(2)p ® U(1)y, mecanismos
como mecanismo de Higgs e regras de Feynmann, e complementados por diversos
experimentos. Todavia, mesmo assim o Modelo Padrao apresenta suas limitagoes,

como, por exemplo, o problema da matéria escura.

Segundo dados astrofisicos e cosmolégicos (1), cerca de 84% do contetdo de
matéria total do universo nao é observada, podendo ser inferida através da dinamica
galactica e efeitos gravitacionais. Essa parcela é denominada de matéria escura,
em contraste com 16% restante de matéria visivel e usual (bariénica). Ha diversos
candidatos para esse problema, sendo um deles, particularmente promissor, as
particulas massivas fracamente interagentes (Weakly Interacting Massive Particles
- WIMPs) (2). Para que uma particula pertenga a essa classe é preciso que seja:
massiva; eletricamente neutra, de forma a nao interagir eletromagneticamente e
assim produzir luz; nao-baridnica, uma vez que barions nao produzem a abundancia
de reliquia necessaria; estavel em escala cosmolégica; e nao-relativistica (reliquias

frias), de forma a produzir a formacao de estruturas observadas no universo.

Dentre as particulas presentes no Modelo Padrao, nenhuma se adequa como
uma candidata a WIMP, uma vez que as particulas nao-barionicas neutras sao
somente neutrinos e estes sao reliquias quentes. Para que se encontre um candidato
para matéria escura, além de possiveis solugoes para outros problemas, deve-se
estudar a fisica além do Modelo Padrao, como, por exemplo, o Modelo do Dubleto
Inerte (Inert Doublet Model - IDM), que embora seja relativamente simples e
considerado ad hoc (3), apresenta uma rica fenomenologia, com candidatos para a

matéria escura. Entretanto, um modelo fisico deve seguir certas condig¢oes para que



seja uma descricao valida da realidade, sendo uma dessas, especialmente importante
para a quebra espontanea de simetria e consequente geracao de massa, é a condi¢ao
de existéncia de um vacuo verdadeiro e estavel, isto é, um minimo global da funcao
do potencial do modelo, sendo o calculo dessa condi¢ao para o Modelo do Dubleto

Inerte o objetivo deste trabalho.

Este trabalho tem como referéncia Introduction to elementary particles
do Griffths (4) e Modern particle physics do Thomson (5) para todo o contetido
relacionado ao Modelo Padrao, em especifico para a quebra espontanea de simetria,
com Lie algebras in particle physics: from isospin to unified theories de Georgi (6)
e A modern introduction to quantum field theory do Maggiori (7) suplementando as
nocoes dos grupos de simetria presentes. Para estudar matéria escura de forma geral
e sob forma da abundancia de reliquia de particulas, foi-se utilizado, respectivamente,
History of dark matter de Bertone (2) e An introduction to particle dark matter do
Profumo (8). Para definir e fundamentar o modelo do Dubleto Inerte, Anatomy of
the inert two-higgs-doublet model in the light of the lhc and non-lhc dark matter
searches do Belyaev (9), Matéria escura e o modelo do dubleto inerte de Luiz (10) e
Exploring the inert doublet model of dark matter with very high-energy gamma-rays
observatories de Justino (11). Por fim, o procedimento empregado é analogo ao
utilizado em Vacuum Stability Conditions from Copositivy Criteria de Kannike

(12). Outras referéncias também foram utilizadas, mas de forma minoritéria.

1.1 Matéria Escura e abundancia de reliquia

Dentro das varias possibilidades de origem de matéria escura, em particular
para o caso de WIMPs, considera-se a origem como reliquias térmicas (8): essas
particulas interagiam em equilibrio com as particulas do Modelo Padrao no universo
primordial, com a taxa desse processo diminuindo conforme o universo se esfriava
(expandia), até o momento em que a reagao efetivamente para de ocorrer, com
as particulas de matéria escura se desacoplando do banho térmico (freeze-out),
mantendo seu numero constante a partir deste instante. A razao entre a densidade
de matéria escura e a densidade critica do universo Qy g = pye/po é denominada

de abundancia de reliquia.

Para um processo de aniquilacao de matéria escura (M E + ME <> M P +



M P), a taxa de ocorréncia é dado por I' = (n o v), sendo n a densidade de particulas
pelo volume, o a se¢ao de choque e v a velocidade relativa entre as particulas, e
o freeze-out ocorre quando a taxa da reacao se torna da ordem ou menor que a
taxa de expansao do universo, a constante de Hubble H, ou, alternativamente,
quando o tempo para que ocorra uma reacao (1/I') seja da ordem ou maior que
a idade do universo (tempo de Hubble 1/H). Note que o principal responsével
por tal evento é a densidade n, que decresce conforme o universo se expande e se
esfria. Embora seja possivel obter a ordem de grandeza dos termos considerando o
freeze-out aproximado I' ~ H, o calculo verdadeiro deve envolver a evolucao da
densidade segundo a equagao de Boltzmann (1.1). Ao considerar o fato de que a
densidade de equilibrio (nao-relativistica) n., seja derivada da mecénica estatistica
e decresca assintoticamente até zero, apdos tempo suficiente ter-se passado a variacao

da densidade de matéria escura se da exclusivamente pela expansao do universo.

i—? +3Hn = (ov)(n2, — n*) (1.1)

Ao considerar dados experimentais tanto na forma aproximada quanto na
forma verdadeira do calculo da abundéncia de reliquia, conclui-se que a se¢ao de
choque de aniquilagao seja (ov) ~ 3 X 107%cm3s™!, que é na escala da ordem
esperada por uma particula interagindo através da forga fraca, contribuindo com
a hipétese de WIMPs de tal forma que tal fato é denominado de milagre das
WIMPs. Nota-se que ha um vinculo da presenca de matéria escura no universo com
a fisica de particulas através da secao de choque, uma vez os calculos dessa sao
dados de acordo com as regras de Feynmann e, portanto, dependem da densidade

lagrangeana e, logo, do potencial do modelo utilizado.

1.2 Quebra Espontanea de Simetria

A quebra espontanea de simetria sob a forma de mecanismo de Higgs é
uma componente essencial do Modelo Padrao, sendo responsavel pela quebra da
simetria eletrofraca, geracao das massas fermionicas e dos bésons W= e Z,. Ela
esta intimamente relacionada com o potencial escalar e com o estado de vacuo do

mesmo, o que ressalta a importancia de seus estudos.



Segundo a teoria quantica de campos, as particulas e seus campos associa-
dos sao descritos pelas solugoes das equagoes de Euler-Lagrange das densidades
lagrangeanas associadas a cada spin (Klein-Gordon, Dirac, Proca). Ao se considerar
a existéncia de uma invariancia local de fase, analogo a invariancia de gauge do
eletromagnetismo e generalizando a invariancia global de fase da mecénica quéantica,
é necessario incluir no lagrangeano de Dirac (férmions) termos do lagrangeano de
Proca (bésons vetoriais) sem massa e termos de interacao entre ambos tipos de
particulas. O problema presente nesse processo se da por tanto as massas fermioni-
cas quanto as dos bosons da interacao fraca serem incompativeis com a invariancia
local de fase. A solucao dessa questao deriva da introducao de um potencial escalar
e da quebra da simetria eletrofraca SU(2), ® U(1)y na simetria eletromagnética

U(1)gwm pelo mecanismo de Higgs.

Todo o processo do mecanismo de Higgs decorre da implementacao de
um potencial referente a dubleto escalar de campos complexos. Por questoes de
claridade e simplicidade da explicacao e ilustragao do processo, utiliza-se do sistema
de unidades naturais (A = ¢ = 1) e considera-se somente um campo complexo
¢(x) (com dois graus de liberdade, referente a parte escalar e a parte imaginaria)
associado ao potencial dado por (1.2) e a densidade lagrangeana (1.3), invariante
por U(1) (invariante segundo ¢ — ¢ = ¢’@¢ A — A = A, — 9,0(x)), em
que D, = 0, + iqA, é a derivada covariante, A, é o campo vetorial sem massa
(também com dois graus de liberdade) necessario para a simetria e F),, F* seu

termo cinético, com F),, = 0,4, — 0, A,.

V(g) = 1*(¢'0) + A(6'¢) (1.2)
, 1 y
L= (Dud)"(D'¢) = V(9) — D" (1.3)
Primeiro, encontra-se os estados de vacuo através de % = 0, o que implica

a solugdo |¢o| = 0, V(|¢o|) = 0 para u* > 0 e [¢o| = v/v/2, V(|do|) = —v*A/4 para
p? < 0, com v = /—pu?/\ sendo o valor esperado do vacuo. Somente o segundo

caso leva a quebra de simetria e, assim, é de interesse para o estudo.



Em seguida, no caso nao-trivial, deve-se expandir ¢ em torno desse vacuo,
podendo escolher ¢ = (1/v/2)(v+n(z)+i((z)), obtendo £ = (8,n)(0"n) — A\v*n* +
%(@()(8"{) — iFWFW + %qzyzAHA“ + qu A, 0"C — Vinteracao- Embora agora o béson
vetorial apresente massa (termo quadratico em seu campo), hé tanto o problema
do grau de liberdade extra introduzido pelo novo modo massivo do campo vetorial
e quanto o problema da aparente transformacao de ¢ em A, (acoplamento A,0"().
A correcao para tal é aplicar, antes da quebra de simetria, a transformacao de
gauge A, — A}, = A, + q—lyauc, o— P = eV A (1/v/2)(v +n) (aproximacio em
primeira ordem nos campos). Assim, apds a quebra espontanea de simetria, nesse
gauge denominado de gauge unitario (1.4), obtém-se a densidade lagrangeana (1.5)

que descreve o comportamento do campo escalar e do campo vetorial.

o= %(Wrn(x)) (1.4)

£ = L@m) @) — aip?

2
1 1
— ZLF‘“’FW + §q2u2AHA“ (1.5)

1 1
+ PvA A + QQQWZAMA“ — vy’ — W“

O processo demonstrado é ilustrativo para o caso real, em que se é consi-
derado um dubleto de campos complexos escalares cujo andlogo a n(z) é o bdson
de Higgs h(z). Destaca-se a geragdo de massa de bdsons através desse mecanismo,
através da comparacao dos termos quadraticos nos campos com os termos de massa
nos lagrangeanos especificos para cada particula (Klein-Gordon, Dirac, Proca).
Embora ndo demonstrado nessa se¢ao, o processo de geragdo de massas fermionicas
é semelhante, ocorrendo apds a quebra da simetria no acoplamento entre férmions e
campos escalares, necessario para que se tenha inicialmente a simetria de gauge. Por
fim, tal procedimento evidéncia a importancia determinante do potencial escalar

dentro de determinado modelo fisico.



1.3 Modelo do Dubleto Inerte (IDM)

O Modelo do Dubleto Inerte (IDM) é uma extensao do Modelo Padrao,
sendo um subtipo do modelo de dois higgs. Seu principal diferencial é a presenca
de dois dubletos de campos escalares complexos que estao sujeitos a uma simetria
de permutacao Z,, isto é, sendo ®; o dubleto original de Higgs presente no Modelo
Padrao e ®; o novo dubleto, o modelo é invariante pela transformacao ®; —
®q, &y — —P,. Ainda, ele é do tipo que o acoplamento entre férmions e dubletos se
da unicamente pelo dubleto original ®;, de forma tal que, em termos da densidade
lagrangeana, a Unica distingao em relacao ao Modelo Padrao se d& pela presenca
dos termos referentes ao segundo dubleto na secao escalar da densidade lagrangeana
(1.6) e no seu potencial escalar (1.7). No caso, D, = 9, + 5igwo' W + 3ig'B, é a
derivada covariante considerando a simetria SU(2); ® U(1)y, em que W) e B, sao
campos vetoriais que dao origem aos bdsons eletrofracos através de combinacoes

lineares, o as matrizes de Pauli e g;y e ¢’ constantes de acoplamento.

EEscalar—IDM - (DN@I)T(DM(I)I) + (DH(I)Q)T(DM(I)Q) - ‘/IDM((I)lv (I)Q) (16)

Viou (@1, Bo) =p @11 + 5030,
A (01@1)" 4+ 0 (B50,)°
+Ag (0]@1) (@50y) + Ay (0] y) (D))

+% [(@1%)2 + (@5@1)2]

(1.7)

Nota-se que o potencial do modelo é basicamente um polinémio com termos
quadraticos e quarticos em fungao dos campos, sendo nulo na origem e crescendo
ou decrescendo infinitamente no limite de grandes campos. Além disso, como
imposto pela simetria Z5 definidora do modelo, é invariante segundo a troca de
sinal &3 — —®,. Em relacao aos parametros, somente p; e A; sao herdados do
Modelo Padrao, com os demais introduzidos junto do segundo dubleto. Todos
os parametros do potencial sdo necessariamente reais, de forma tal a evitar a
quebra de simetria CP (9,10). Para o IDM, considera-se um estado de vacuo inerte,
< @ >= (1/v/2)(9), < &, >= 0, sendo o tinico estado que permita a quebra



espontanea da simetria eletrofraca, a conservacao da simetria CP e da simetria
de permutagao (10), tal que os campos sejam expressos como expansoes (1.8) em

torno desse minimo no gauge apropriado.

1 0 1 [ V2H*
Y= (y+ h) - =5 (Ho +¢A0) (1.8)

No caso, as variaveis dos campos passaram a ser h, que representa o boson
de Higgs convencional, com a sua massa (1.9a) seguindo a mesma equagao presente
no Modelo Padrao; H*, que representa duas particulas carregadas; e Hy e Ay, as
particulas escalares neutras. Aplicando essas expansoes (1.8) no potencial (1.7)
e reconhecendo os termos quadraticos como sendo os termos de massa, pode-se
deduzir as massas das particulas escalares do modelo (1.9). Como deseja-se uma
candidata a WIMP, H* nao é possivel, restando H, e Ay, da qual escolhe-se, por
convencao, Hy como a verdadeira candidata, impondo A5 < 0 e Ay + A5 < 0 para

que seja a particula mais leve.

my =2\ = =243 (1.9a)
A
m2. =k + 1/2?5 (1.9b)

9 oAzt A+ A5

my, = ps + v 5 (1.9¢)
A3+ A — A
m?, = p3 + V2¥ (1.9d)

Como o Modelo do Dubleto Inerte ¢ um modelo de dois Higgs do tipo em
que nao se é permitido o acoplamento do segundo dubleto com os férmions, os
termos de interagao entre particulas escalares se resumem aos termos mistos de
dubletos contidos no potencial (1.7), que geram a interacao das novas particulas
com o Higgs, e o termo cinético da densidade lagrangeana (1.6), que dao origem,
através da derivada covariante, & interagdo com os bésons eletrofracos (v, W e
Zp). Dessa forma, ao se expandir as expressoes (10), nota-se que o candidato a
matéria escura Hy de fato estd sujeito somente as forcas fracas, nao se acoplando

com os fétons e, assim, nao produzindo luz.
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2 METODOS

2.1 Manipulando o potencial

O vacuo estavel é o estado de menor energia potencial de um sistema fisico,
isto é, ¢ o minimo global da fun¢ao potencial que descreve o sistema. O potencial do
Modelo do Dubleto Inerte, dado por (1.7), é do tipo polinomial, o que implica nao
possuir singularidades matematicas, estar bem definido em todos os pontos e crescer
ou decrescer indefinidamente conforme os campos tendem ao infinito positivo ou
negativo. A existéncia do minimo global ocorrera somente quando a divergéncia
do polindémio no limite de grandes campos for nao-negativa. Portanto, para que
o minimo do potencial seja global e, assim, o vacuo seja estavel, é necessario
que o potencial seja positivo no limite de grandes campos, limg, |, o0 V' = 0.
Neste limite os termos quadraticos sao desprezados em compara¢do com os termos
quarticos, o que indica que, para a estabilidade do vacuo, podem assumir valores
quaisquer, embora seja necessério p? < 0 por consisténcia com o Modelo Padrao

para que exista o mecanismo de Higgs.

Uma das formas de se observar os efeitos que tal imposicao acarreta ao
potencial é através do critério de copositividade, em que, primeiro, o potencial deve
ser posto em forma matricial (procedimento que também é utilizado em testes de
derivada segunda, com a matriz hessiana). Para tal, reparametriza-se o potencial
em termos de ®[®; = h?, did, = h3 e dIdy = hyhope®®, e toma-se o limite de

grandes campos (2.1).

VAT N B ok Ash2R2
|P2|—o0 (21)

+Asp>h2h3 4+ Asp* cos (20)hTh3 > 0

Deseja-se eliminar a dependéncia do potencial de p e de 6, uma vez que
estes sao relacionados ao produto interno entre dubletos, sendo, de certa forma, a
dependéncia do caminho no espago de campos tomado para o limite (6 representa

a diferenca de fase e p representa a projecao de um dubleto no outro). Para tal,
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serd minimizado o potencial em termo destes. Além disso, a estabilidade do vacuo
nesse potencial minimizado implica a estabilidade do vacuo de forma geral. A
minimiza¢ao ocorre para cos (20) = —1 e para p? = 0, se Ay — |A5] > 0, ou p? =1,
caso Ay — |As| < 0.

Por fim, observa-se que o potencial é uma forma biquadratica, isto é, pode
ser posto de forma tal que seja um produto de vetores da norma quadrada dos
campos por uma matriz dos pardmetros do modelo (2.2). Matematicamente, por
conta da imposicao de V' > 0, essa matriz é, por defini¢do, copositiva, o que acarreta

em estar sujeita a certas condigoes especificas.

L Og 4 02 (0 — Ns)) A2 h3) —

Note que a matriz da expressao (2.2) corresponde também a metade da
matriz das derivadas segundas do potencial em fun¢ao das normas quadradas dos
campos, que ¢é o termo de ordem dois da expansao da func¢ao, sendo positivo em
um dado ponto para que este seja um minimo local ou global. Embora semelhante
nesse sentido, o teste de copositividade é distinto do teste da derivada segunda,
uma vez que o primeiro adota somente vetores estritamente positivos, enquanto o
segundo considera também vetores negativos e a matriz ¢ calculada no ponto de
vacuo. Uma forma de recuperar os mesmos resultados através desse outro método é
calcular os termos quadrados da expansao no estado de vacuo e aplicando o limite
de grandes campos, de forma tal que a norma quadrada dos campos domine sobre

seu valor esperado no vacuo, obtendo, assim, a mesma expressao (2.2).

2.2 Copositividade

Defini¢ao: uma matriz A simétrica de ordem n é copositiva se sua forma
quadrética 7 Az > 0 para todos vetores x > 0 (isto é, vetores z = (1, Ta, ..., Tp)
tais que x; > 0 para i € N) (12). A é copositiva se cada uma de suas submatrizes

principais de ordem m tal que 1 < m < n é copositiva. Uma submatriz principal
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de uma matriz A é obtida ao eliminar linhas e coluna de A de forma simétrica, isto

¢, linhas e colunas com o mesmo indice.

Foi-se provado um conjunto de afirmagoes referentes a uma matriz que
equivalem com ela nao ser copositiva (13). Invertendo-as de forma a indicar a
copositividade, obtém-se as seguintes afirmacoes referentes a uma matriz A simétrica

e copositiva:

1. As submatrizes principais de A sao copositivas.
2. Para qualquer b > 0 ha um x > 0 tal que Az = \b, com A > 0.

3. O determinante de A é nao negativo ou ao menos um elemento da matriz

adjunta ¢ negativo;

Aplicando essas afirmacoes em matrizes de ordem especificadas, pode-
se deduzir condigoes de copositividade em termos do elemento de matriz (13).
Considerando a matriz A = (gll a12) de ordem 2 e copositiva, sendo seu deter-
minante det(A) = airas — aiy, = (y/anazs — a2)(y/aiiaz + a12) e sua adjunta
adj(A) = ( e :f;f). Da afirmagao 1, com as submatrizes principais sendo so-
mente os elementos diagonais, e da afirmacdo 2, utilizando de x = b = (1,0) e
x =0b=(0,1), deduz-se (2.3a) e (2.3b). Para utilizar a afirmacdo 3, primeiro
nota-se que ajs > 0 cumpre a condicao de algum elemento da adjunta ser negativo.
Caso contrério (a2 < 0), é preciso que det(A) > 0, e assim, ao considerar que por
si 80 \/G11a22 — 12 ja € positivo, resta-se somente (2.3c), que é a condicao suficiente

para a terceira afirmagao, ja que também é automaticamente cumprida por ajs > 0.

a1 Z 0 (23&)
a9 Z 0 (23b)

a1 + v/ 11022 > 0 (23(3)
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3 RESULTADOS

Ao aplicar as condigbes de copositividade de uma matriz simétrica de ordem
2 (2.3) no limite do potencial do IDM (2.2), considerando os possiveis valores de p
que minimizem o potencial, obtém-se as condigoes de estabilidade do vacuo (3.1).
Note que na literatura (3,9-11) considera-se que ambas condigoes (3.1¢) e (3.1d)
precisam ser cumpridas ao mesmo tempo que Ay — |A5| < 0, uma vez que essa
tltima escolha é suficiente para garantir um vicuo eletricamente neutro (9). E
possivel existir um vacuo neutro com Ay — [A5| > 0, porém seria necessério o ajuste
de outros parametros, o que também implicaria na particula escalar mais leve
ser eletricamente carregada, nao estando de acordo com a percepcao de ser uma
candidata a WIMP.

A >0 (3.1a)
Ao >0 (3.1b)
A3+ 24/ A A >0, se Ay — [A5] >0 (3.1c)
As A — [As] + 20/ M A >0, se Ay — |As| < 0 (3.1d)

Tais equagoes delimitam um poligono no espaco cinco-dimensional dos
parametros de ordem quartica. Nas figuras 1 estao expostos secgdes arbitrarias
desse poligono, em que somente dois parametros variam enquanto os demais sao
constantes, fixando-se \; = 0.13, Ay = A\3 = 0.5, \y = 0.25 e |\5] = 0.75 (para o caso
de Ay —|A5| < 0) caso ndo sejam as varidveis escolhidas. A drea azulada corresponde
a0 espaco acessivel permitido para o modelo para que exista a estabilidade do vacuo
segundo as convengoes adotadas, enquanto a drea marrom representa o espaco
de parametros permitidos pela estabilidade do vacuo porém que é contrario a
condigdo de vacuo neutro, Ay — |A5] < 0. Ainda, por conta da convengao de Hy ser
o candidato a matéria escura, considera-se somente A5 < 0 nessas seccoes. Note que
nao ha graficos referentes a \; como variavel, uma vez que eles seriam efetivamente

iguais aos graficos em termos de Ay exceto pela escala, e também pois \; poder
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ser considerado como necessariamente constante em decorréncia da equagao (1.9a),

com os valores definidos da massa do bdson de Higgs e do valor esperado do vacuo
2
my, = 125.7 4+ 0.5GeV /c” e v = 246.22GeV /c*(5) implicando Ay = §(™2)" ~ 0.13.

)\] = 013 )\4 — |)\5‘ >0

1.00

0.50

—0.25 1

—0.75 1

—1.00 1
0.0 0.2 0.4 0.6 0.8 1.0
A2

A= 0.3, 0 = 0.25, [ As| = 0.75

) > 2000 — A+ A

1.00

0.75

0.25 1

—0.25 4

—0.50 -

—0.75 1

—1.00

0.0 0.2 0.4 0.6 0.8 1.0
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M = 013,00 = 0.5, A3 = 0.5

2000 A+ ] <A < s
- < N

1.00

0.50

—0.25 1

—0.75 1

—1.00
—-1.0 —0.8 —0.6 —0.4 —0.2 0.0
As

A =013, A3 =05,y =0.2
0.00 1= 0.13, A3 = 0.5, \g = 0.25
ol )\ < ‘)\5| <2V A+ Az + Ay
] <y
—0.25
—0.50
—0.75
< —1.00 A

—1.25 1

—1.75 A

—2.00

0.0 0.2 0.4 0.6 0.8 1.0
A2

Figura 1 — Espaco de parametros permitidos para a estabilidade do vacuo do IDM.
Fonte: elaborado pelo autor.

Para que o Modelo do Dubleto Inerte apresente um significado fisico e seja
uma alternativa valida para o Modelo Padrao, é necessario que ele possua un

estado de vacuo estavel, um minimo global de energia, sendo preciso obedecer as
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condigbes (3.1) para tal. Note que essas condigoes sao necessarias e suficientes
para um estado de vacuo estavel, porém nao sao completas para a existéncia do
modelo como um todo, uma vez que seria preciso, além delas, condigoes referentes

a perturbatividade e unitariedade e a concordancia com os dados experimentais.

Por fim, outra importancia da andlise do espaco de pardmetros do potencial
e sua consequente restricao se da pelo calculo da secao de choque depender de
tais parametros através das regras de Feynmann, sendo que essa se¢ao de choque
apresenta carater central na evolucao da abundéancia de reliquia (1.1) no contexto
do problema de matéria escura, sendo esse problema e sua possivel solu¢ao contida

no IDM uma das motivagoes do estudo deste modelo.
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4 CONCLUSAO

Dentro as varias teorias além do Modelo Padrao, o Modelo do Dubleto Inerte
é um exemplo simples que consegue fornecer um candidato propicio a matéria
escura sob a forma de WIMPs, decorrente da adi¢cao de um segundo dubleto escalar
junto da simetria de permutacao, o que concede ao modelo uma fenomenologia rica.
Neste trabalho, as condicoes de existéncia de um vacuo estavel foram derivadas
para o modelo, fornecendo desigualdades que delimitam um soélido aberto no
espaco cinco-dimensional de parametros quarticos do potencial escalar, que se reduz
a quatro dimensoes ao considerar os valores numéricos da massa de Higgs e o
valor esperado do vacuo. O vacuo estavel, como condi¢ao necessaria para que o
modelo proposto seja minimamente viavel e fisicamente significativo, acaba por
restringir o espacgo de parametros, o que, por sua, acaba alterando e restringindo a
fenomenologia do modelo, em especial as massas das novas particulas introduzidas,
e, por consequéncia, a massa da possivel particula de matéria escura, assim como a
densidade de matéria escura no universo. Tais vinculos sdo componentes essenciais
a serem considerados em analises e simulag¢oes posteriores acerca da fenomenologia
do Modelo do Dubleto Inerte.

O método utilizado para deduzir as condi¢oes de estabilidade do vacuo
é, fundamentalmente, a copositividade de matrizes. Tal método foi brevemente
explicado de forma genérica e explorado de forma especifica para uma matriz
simétrica de ordem 2, que representa os parametros quarticos do potencial apds
uma conveniente interpretagao deste como o produto de vetores nao-negativos
quaisquer por uma matriz, sendo tal forma biquadratica necessariamente nao-

negativa como a condicao suficiente de existéncia do vacuo.

Adicionalmente, neste trabalho foi-se revisado nogoes relacionadas a matéria
escura e a evolucao de sua densidade segundo a equagao de Boltzmann e também a
quebra espontanea de simetria, como forma de evidenciar a necessidade de estudar
tanto teorias além do Modelo Padrao quanto o estado de vacuo das mesmas e seu

papel exercido dentro do modelo proposto.
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