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RESUMO 

MONTANDON NETO, J. L. Mapeamento do preço locacional marginal por 

metodologias de otimização . Dissertação de trabalho de conclusão de curso, Escola de 

engenharia de São Carlos, Universidade de São Paulo, 2016. 

O preço locacional marginal de energia é o menor custo para suprir a próxima unidade de 

energia em um determinado ponto do sistema elétrico de potência (SEP), que inclui a geração, 

transmissão e distribuição de energia elétrica. Neste trabalho é realizado uma exposição 

teórica e modelamento matemático do preço locacional marginal de energia na sua forma não 

linear e linear, além de uma breve exposição dos mecanismos de atuação dos mercados de 

energia. Os principais termos que compõe o preço locacional de energia (PLM) são estudados 

separadamente para que uma compreensão mais abrangente seja alcançada. Primeiramente 

são utilizadoz os multiplicadores de Lagrange para caracterizar a ideia básica de um. A partir 

da formulação primária não linear do PLM é obtido seu equivalente linear derivado das 

equações do fluxo de potência dc, permitindo uma comparação entre as suas duas formas.  

Quatro metodologias são escolhidas para o estudo de casos do PLM, para que as suas 

particularidades sejam expostas de maneira clara e eficiente: 

1. Formulação não linear do PLM onde a otimização é obtida através da aplicação direta 

dos multiplicadores de Lagrange combinado com processos iterativos. 

2. Redes neurais de Hopfield que modela o problema de otimização utilizando técnicas 

adaptativas e energéticas 

3. Método simplex que faz uso da programação linear no ambiente da otimização, ou 

seja, esta metodologia requer uma linearização do PLM  

4. Otimização robusta que trabalha com a inserção de incertezas no problema de 

otimização em um ambiente de programação linear 

Palavras-chave: preço locacional marginal, otimização, multiplicadores de Lagrange, 

linearização do fluxo de potência, otimização com incertezas.



ABSTRACT 

MONTANDON NETO, J. L. Mapping of the locational marginal pricing by optimization 

methodologies. Final work, Escola de engenharia de São Carlos, Universidade de São Paulo, 

2016. 

The locational marginal pricing is the least cost to provide the next energy unit in a given 

point of the electric power system (EPS), which includes generation, transmission and 

distribution of electric energy. In this work, a theoretical exposition and a mathematical 

modeling of the locational marginal pricing of energy in it’s nonlinear and linear form are 

discussed. Indeed, brief exposition of the power market operation mechanism is made. The 

key terms that compose the locational marginal pricing (LMP) are studied separately to 

provide great insight into the comprehension of this concept. First, the Lagrange multipliers 

are used to illustrate the main basic idea of a LMP, and after this development it’s 

accomplished a combination between mathematical equations and the philosophy of the 

locational marginal pricing is discussed. From the primary nonlinear formulation of the LMP 

it’s linear equivalent is derived from the dc power flow equations allowing a comparison 

between the two forms.  

Four methodologies are chosen for studying the LMP of some small systems with the aim of 

providing a clearer and efficient exposition of their particularities: 

1. Nonlinear formulation of the LMP where the optimization is obtained from the direct 

application of the Lagrange multipliers combined with iterative processes. 

2. Hopfield neural networks modelling the optimization problem using adaptive and 

energetic techniques. 

3. Simplex method that uses the linear programming in the optimization environment, in 

other words, this methodology requires a linearization of the LMP.  

4. Robust Optimization that works with the insertion of uncertainties in the optimization 

problem in a linear programming environment. 

Keywords: Locational marginal pricing, optimization, Lagrange multipliers, power flow 

linearization, optimization with uncertainties.
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1 Introdução 

Otimização é uma importante área da matemática e peça integral dos processos da engenharia e 

economia pois objetiva em descobrir soluções ótimas para problemas variados através da 

consideração de múltiplas escolhas enquanto satisfaz restrições e recursos limitados. A teoria de 

otimização e seus métodos vêm recebendo atenção nos últimos 15 anos [1] devido ao avanço 

computacional, processamento paralelo, softwares mais eficientes, inteligência artificial e sistemas 

heurísticos. O software Matlab é um exemplo do quão avançado e imediato as ferramentas de 

otimização, acessíveis ao público, se tornaram. 

Matematicamente, o problema básico de otimização consiste na consideração de uma função 

objetivo, ou função alvo, composta de elementos (variáveis), e na procura por combinações destas 

variáveis que resultarão na minimização ou maximização dessa função custo. Quando esse tipo de 

problema possui restrições, o que ocorre na maioria das vezes, as restrições são traduzidas em 

relações matemáticas e inseridas na função custo através de diversas técnicas analíticas. Uma vez 

completada a formulação geral de um problema de otimização, a metodologia aplicada para sua 

solução dependerá da natureza do sistema, podendo ser linear ou não linear, com características 

diferentes para ambos os casos. O desafio da otimização é encontrar pontos que minimizam ou 

maximizam a função objetivo de forma global, quando esta função possui elevada complexidade e 

restrições. Dessa forma, a área de otimização carece de ferramentas e estudos mais aprofundados. 

Como exposto acima, a função custo é uma estrutura matemática que combina diversas variáveis em 

torno de um valor real, fazendo com que uma vasta família de problemas físicos possam ser 

enquadrados nessa formulação.  A operação de sistemas elétricos de potência (SEP) e o seu 

planejamento econômico são geralmente baseados em problemas de otimização cujos resultados 

delineiam caminhos para uma operação segura, confiável e econômica num contexto mundial que 

exige cada vez mais do uso consciente da energia elétrica. A figura 1.1 ilustra os aspectos 

eletromecânicos dos sistemas de geração, transmissão e distribuição de energia elétrica. 

 

 

 

              Figura 1.1:  Sistema de transmissão trifásico. Adaptado de [6] 

 

Neste capítulo introdutório, pretende-se expor as características do mercado de energia, as 

metodologias básicas de otimização aplicadas aos estudos de mercado e as propostas de 
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metodologias de otimização para a solução do problema do preço locacional marginal, de forma a 

contextualizar o leitor às diferentes vertentes desse trabalho.  

 

1.1 Operações econômicas do SEP 

Uma operação econômica de um sistema elétrico de potência requer um fornecimento ininterrupto 

de energia para todas as cargas conectadas ao sistema de modo a minimizar o custo do fornecimento 

da energia para cada gerador envolvido no balanço de potência do sistema. O planejamento ótimo 

de geração de energia elétrica, considerando as condições dinâmicas do SEP, é a célula mater de 

todo esse processo. As análises relativas à seleção das unidades geradoras, ou programação de 

geração, têm como principal objetivo, atender à demanda em um dado momento e para isso realiza 

simulações e previsões em diferentes horizontes de tempo: 

• Plurianuais (5 a 10 anos); 

• Anuais; 

• Mensais; 

• Diárias; 

• Horárias (despacho na próxima hora); 

• Instantâneo (despacho econômico). 

Os fatores considerados na análise do planejamento energético são: 

• Econômico (custo da geração); 

• Capacidade do sistema de transmissão; 

• Segurança (confiabilidade do suprimento, mínimo risco de falta de energia elétrica). 

O sistema de geração de energia elétrica mais usado no mundo é o hidrotérmico, com destaque para as 

hidrelétricas no Brasil. Embora o custo de operação das usinas hidrelétricas seja praticamente nulo, 

devido ao combustível ser gratuito após a instalação da usina, esse modelo possui gastos relativamente 

altos de manutenção e ainda lida com um problema extra na programação da geração devido às 

características não lineares, no tempo, do fluxo da água O combustível das usinas térmicas pode ser 

estocado, fazendo com que a programação da geração desse modelo seja mais simples, além do custo 

de implantação ser inferior ao de uma usina hidrelétrica. O modelo das termoelétricas perde em 

relação ao hidrelétrico devido à quantidade limitada de combustível e a menor quantidade de potência 

produzida. Conclusivamente, os dois sistemas apresentados possuem qualidades e defeitos que 

dependem muito do local de aplicação e da situação econômica do país e que se complementam. 

1.1.2 Despacho econômico e pré-despacho 

Despacho Econômico (DE): Essa operação tem como objetivo entregar a energia ao consumidor 

visando minimizar o custo de produção pelas unidades geradoras. Para realizar um bom despacho são 

necessárias a utilização de dados e estimativas que estão relacionadas com as operações de pré-

despacho (PD) 

Pré-Despacho (PD): O pré-despacho tem como objetivo fornecer uma programação de geração e 

intercâmbio de energia elétrica em intervalos horário para o próximo dia, levando em consideração os 

horizontes de planejamento anteriores e aspectos relativos à economia e segurança operacional do 

sistema elétrico. 
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Com isso, é necessário o uso de técnicas matemáticas e programas computacionais de simulações que 

processem os dados medidos do SEP, que envolvem grandezas físicas e econômicas, e produzam 

resultados capazes de orientar o operador do sistema elétrico de potência quanto ao conjunto de ações 

eficientes, necessárias para uma boa gestão. No Brasil, a entidade responsável por esse monitoramento 

e controle e chamada de Operador Nacional do Sistema Elétrico (ONS) que faz uso de um software 

supervisório para a aquisição de dados (SCADA) e softwares de planejamento hidrotérmico 

NEWAVE e DECOMP [2]. A figura 1.2 mostra o fluxograma de processos do despacho e pré-

despacho econômico. 

 

               Figura 1.2: Cadeia de planejamento (CEPEL,2003) 

   

1.1.3 Mercados de energia 

Até meados dos anos 70, os negócios de energia elétrica eram organizados de maneira vertical, ou 

seja, as companhias que forneciam energia elétrica eram pagas de acordo com o custo do serviço e dos 

componentes relacionados com a geração, transmissão e distribuição. Entretanto, a partir dos anos 80 

começou a ocorrer uma reestruturação do mercado de energia elétrica mundial. Um exemplo disso foi 

o ato PURPA realizado nos E.U.A que promovia a conservação da energia elétrica, incentivando o uso 

de energias renováveis e outras práticas de economia energética, devido à crise que o país enfrentava 

no início da década de 70 [3]. Esse ato promoveu o início da transição da estrutura vertical de mercado 

para uma reestruturação horizontal definida pela separação dos agentes de geração, transmissão e 

distribuição. Dessa forma, há hoje uma competição muito maior dos mercados de energia elétrica 

fazendo com que os mesmos se organizem em diferentes estruturas. 

 Mercados centralizados: Recebem propostas de compra e venda de energia elétrica para cada meia 

hora ou uma hora do dia seguinte (day-ahead). Essas propostas incluem valores disponíveis de 

potência e preço mínimo a receber. Esses mercados procedem ao encontro dessas propostas 

realizando um despacho econômico para cada intervalo de tempo do dia posterior, intervalo esse 

que depende dos dados discretizados no tempo recebidos pela proposta inicial. 



14 
 

 
 

 

 Contratos bilaterais: Estabelecimento de contratos físicos ou de natureza financeira. Esses 

contratos supõe o relacionamento direto entre fornecedores e clientes estabelecendo acordos que 

englobam o preço e a modulação da energia a produzir/absorver ao longo de um tempo, em geral 

longo. 

 

 Ambiente de contratação regulada: Realizado por meio de contratos de fornecimento entre o 

consumidor e a concessionária em que se encontra conectado. 

 

 Ambiente de contratação livre: Realizado por meio de contratos de compra de energia entre o 

consumidor livre e um fornecedor, podendo ser um gerador e/ou comercializador de energia. A 

contratação em tal ambiente permite uma maior flexibilidade e redução na demanda de energia 

elétrica. 

 

 Modelo Pool: Super-entidade que estabelece relações entre os produtores, distribuidores, 

comercializadores, consumidores e o operador nacional do sistema elétrico 

 

 Mercado spot: Admite apenas transações imediatas entre fornecedor e consumidor de energia 

contrastando com os mercados usais que utilizam programação de geração em um horizonte de 

evento de 5 dias a 2 anos. Esse tipo de mercado não foi adotado no Brasil, porém existem 

referências de que uma transição em certos pontos do sistema [3], está ocorrendo. 

 

A figura 1.3 mostra os aspectos já descentralizados da estrutura de geração, transmissão e distribuição 

de energia elétrica. 

 

 

 
 

           Figura 1.3: Hierarquia dos agentes de operação do SEP. Adaptado de [7] 
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1.2 Otimização 

 

Muitas são as formas de se obter pontos ótimos em um problema de otimização, assumindo que o 

problema em questão possua uma solução. A forma mais trivial de se iniciar um processo de 

otimização é estabelecendo pontos de partida (chute inicial) para as variáveis da função custo e 

observar o comportamento dos valores correspondentes assumidos por essa função. Considerando uma 

função custo de uma variável, ‘f(x)’, a variável x será uma solução ótima x*, local, que minimiza essa 

função, se e somente se, f(x*) < f(x*+  ) em um disco fechado de raio ‘  ’ com x  R (grupo dos 

números reais). A variável x será uma solução ótima x* global que minimiza f(x), se e somente se, 

f(x*) < f(x*+  ) para todo x  R A maximização local ou global implica na lógica inversa do 

procedimento exposto anteriormente. A tarefa de otimização quando realizada de forma manual se 

torna difícil, e, em muitos casos, até impossível, com o aumento do número de variáveis e das relações 

de dependência matemática da função custo e das próprias restrições. 

 Devido à dificuldade da procura por pontos ótimos que minimizem ou maximizem a função custo, 

surgem técnicas e teoremas especializados em obter soluções de forma metódica, eficiente e em tempo 

hábil, embora cada estratégia possua sua respectiva deficiência. Uma das técnicas mais usadas em 

problemas de optimização é o método do gradiente, proveniente de uma parte da matemática 

denominada cálculo vetorial, devido a sua capacidade de orientar a busca em direção a valores 

máximos e mínimos, além da obtenção direta de pontos estacionários (derivada nula). Somado a isso, 

existem métodos destinados a explorar o espaço de soluções de maneira mais pragmática (algoritmos). 

Um deles é denominado de método simplex baseando-se no uso de funções custo e restrições lineares, 

linearizando o problema quando este apresenta características não-lineares, e a programação não-linear 

que obtém uma solução ótima dos problemas gerais de otimização de maneira exata.  

Uma vantagem da programação não-linear sobre a linear é a possibilidade de aplicação mais geral do 

primeiro nos problemas de otimização, sendo que em muitos casos um algoritmo de programação não-

linear pode ser utilizado em problemas lineares. Para que ocorra o inverso, uma linearização deve ser 

aplicada ao problema provocando perda de informações que muitas vezes prejudica a solução final, no 

entanto, o que a programação linear perde em termos de informação, ela ganha em termos de 

velocidade de resolução e convergência matemática. Ou seja, uma combinação de ambos os tipos de 

programação é de extrema importância para o desenvolvimento de uma metodologia coerente.  

Os métodos de programação utilizados nesse trabalho são expostos abaixo 

 

Programação linear: 

 Método Simplex 

Programação não linear: 

 Redes de Hopfield 

 

O método dos multiplicadores de Lagrange pode ser incorporado às técnicas de programação não 

linear e linear. Finalmente será apresentado no final do capítulo 5 um modelo de otimização mais 

recente denominado de otimização robusta[10] que está dentro do escopo da programação linear e se 
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destaca quanto a metodologia da escolha das melhores alternativas para atingir o máximo ou mínimo 

valor da função custo. 

1.3 O problema do Preço Locacional Marginal 

 

A partir da mescla dos aspectos físicos e econômicas provenientes do SEP são criados índices 

destinados a mensurar estados do sistema, um exemplo disso é o kW.h que mede a quantidade de 

fluxo de energia elétrica no tempo, e, quando associado a um preço, faz o controle desse commodity 

num ambiente amplo de trocas. Preços locacionais marginais (PLMs), desenvolvidos nos novos 

mercados reestruturados[4], também chamados de preços nodais, constituem a base da nova geração 

dos mercados de energia. O PLM mede o menor custo para suprir uma unidade adicional de energia 

em um determinado local do sistema associado a uma demanda. Dessa forma, o problema do PLM é 

um problema de despacho econômico e de fluxo de energia ótimo, com horizonte de tempo de curto 

prazo em termos de programação de geração (despacho ótimo das unidades geradoras), ou seja, é 

necessário um cálculo em pequenos intervalos de tempo. De maneira mais específica, o preço 

locacional marginal pode ser visto como uma ferramenta destinada a otimizar a distribuição do fluxo 

de energia num sistema elétrico de potência minimizando, ao mesmo tempo, o custo da energia 

elétrica de cada unidade geradora  levando-se em consideração as restrições do SEP. O termo 

locacional é o que torna o PLM uma peça relativamente nova no mercado energético, pois ela propõe 

calcular o melhor preço da energia em cada ponto do sistema, baseando-se nas características de 

segurança da rede, fazendo com que o seu valor mude de ponto a ponto. Existem fatores de penalidade 

que modificam o preço nodal, associados às perdas energéticas ao longo da transmissão, 

congestionamento e às próprias características das unidades geradoras. Os fatores de penalidade 

diferenciam o PLM do custo marginal de operação (CMO) que é um índice brasileiro [6] destinado ao 

cálculo do melhor preço de fornecimento de energia em uma determinada região brasileira. No 

entanto, o CMO não possui um alto grau de volatilidade ao longo do SEP, com exceção das áreas que 

apresentam outras fontes de geração, desse modo seu valor não reflete as características da rede 

relativas ao congestionamento, além do erro econômico inerente da aplicação de um único preço de 

energia para um grande sistema dinâmico desconsiderando-se as perdas ao longo da transmissão. Por 

ser um resultado direto de processos de otimização [5], a dedução e derivação do PLM não é única, 

fazendo com que, muitas vezes, os mercados que o utilizam não apresentem sua formulação analítica, 

e tal falta de transparência bloqueia os esforços de pesquisadores na avaliação do desempenho do 

PLM nos mercados de energia [5]. Além disso, as maiores dificuldades enfrentadas por essa técnica 

são as provenientes das características extremamente não lineares do sistema que podem gerar 

instabilidade e soluções que não condizem com a realidade (infactíveis), além de tocar em certas 

questões políticas, pois sua aplicação por ser extremamente matemática pode prejudicar transações 

como os contratos bilaterais de energia [6]. A figura 1.4 ilustra de uma maneira didática a relação de 

interdependência entra a energia elétrica e os sistemas econômicos como um todo. 

 

                              
        Figura 1.4: Mercado de eletricidade ilustrativo. Adaptado de [6] 
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Aplicações do PLM 

 

O PLM gera importantes resultados que refletem simultaneamente certos estados da rede elétrica e dos 

mercados de energia em um tempo específico como o congestionamento elétrico na linha de 

transmissão e o preço da energia respectivamente. Por incorporar os efeitos das perdas de energia e 

dos limites da linha de transmissão, o PLM pode ser usado como um segmento orientador para uma 

operação segura do SEP, tanto em questões elétricas quanto econômicas, e, devido a sua característica 

de indicação do fornecimento ótimo da próxima unidade de energia, o preço locacional marginal é de 

extrema importância no âmbito de planejamentos energéticos. Um exemplo teórico de aplicação seria 

a construção de indústrias em locais cujo PLM possuí um valor relativamente baixo pois isto indicaria 

menor congestionamento e menores perdas no sistema. Finalmente, o PLM pode ser usado como um 

sinal de controle fazendo com que as unidades geradoras ajustem as suas potências de saída de modo a 

sempre permanecer no espaço de soluções ótimas. Atualmente o preço locacional marginal possui um 

uso restrito no mundo limitando-se aos mercados de energia da Nova Zelândia, Estados Unidos e 

Nova Inglaterra denominados, PJM, CAISO e ISO, respectivamente. O preço locacional marginal, nos 

mercados de energia apresentados anteriormente, é usado para análises de risco relativas a 

possibilidade de congestionamento em determinadas áreas do sistema elétrico de potência, 

desconsiderando-se os efeitos das perdas energéticas na linha.  

O mapa da figura 1.5 mostra preços nodais calculados em 5.727 pontos do sistema através da 

simulação de um fluxo de potência ótimo, que não é nada mais do que um despacho econômico que 

leva em consideração mais variáveis de estado do SEP. 

  

 Figura 1.5: Mapa do LMP em Nova Iorque segundo a referência [4]  
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A figura 1.6 mostra o análogo do PLM no Brasil em seu formato de custo marginal de operação. 

 

                     
Figura 1.6:Custo Marginal de Operação (R$/MW.h) brasileiro de 2014.   

Adaptado de [7] 

 

1.4 Organização do trabalho 

 

 

 Capítulo 2: Neste capítulo será feito uma revisão matemática relativa aos conceitos essenciais de 

otimização, dando destaque às metodologias que serão mais utilizadas nesse trabalho, e às análises 

topológicas dos sistemas elétricos de potência, incluindo uma formulação do fluxo de potência e 

sua linearização. 

 

 Capítulo 3: Neste capítulo, serão realizados dois tipos de derivações matemáticas do PLM a partir 

do estudo do despacho econômico e fluxo de potência ótimo, um correspondente a sua formulação 

não-linear, englobando uma quantidade maior de variáveis, e uma formulação linearizada cuja 

aplicação é mais difundida nos mercados energéticos que fazem uso dessa ferramenta. Após as 

respectivas derivações será feito uma análise de cada termo do PLM de modo a expor o papel 

individual de cada elemento na descrição e modelagem do SEP.  

 

 Capítulo 4: Um dos principais problemas em se obter PLMs que retratem o sistema elétrico de 

modo realístico é devido ao cálculo impreciso dos pontos de operação ótimos do SEP, e uma 

dessas razões é à falta de técnicas adequadas ou aplicação indevida de métodos já existentes. 

Dessa forma este capítulo vai expor os métodos escolhidos para resolver o problema de 

otimização em específico, analisado cada um de modo a frisar as características positivas e 

negativas. Será feito um mapeamento matemático do despacho econômico e fluxo de potência 

ótimo dentro dos métodos propostos sendo eles, o método simplex e as redes de Hopfield. Uma 

nova técnica será proposta, denominada otimização robusta, capaz de tornar a solução do PLM 
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imune às incertezas do SEP, que são muitas, com um determinado grau de liberdade em torno dos 

pontos de soluções factíveis. 

 

 Capítulo 5: Neste capítulo, todas as metodologias expostas no capitulo 4 serão aplicadas para o 

cálculo do preço nodal e do despacho econômico em alguns casos específicos de sistemas elétricos 

escolhidos de forma conveniente, no intuito de refletir problemas importantes da rede como 

congestionamento, perdas e variação na carga. Finalmente com os resultados obtidos em 

simulações , serão desenvolvidas análises comparativas para destacar as vantagens e desvantagens 

de cada método, focando na otimização robusta devido a crescente complexidade e expansão dos 

sistemas de geração, transmissão e distribuição que gera inúmeros graus de incertezas. 

 

 

 Capítulo 6: Principais conclusões do trabalho. 

 

 

2 Revisão matemática de otimização e análise estática do SEP 

Serão apresentados neste capítulo conceitos de extrema importância para a compreensão dos aspectos 

estruturais da PLM. Em sua essência, o PLM é um resultado específico de um problema geral de 

otimização envolvendo, grandezas elétricas e econômicas que podem ser formuladas da seguinte 

maneira: 

      

                     Min(Máx) F(X)                                                                         (2.1) 

   s.a.             restrições de igualdade 

                         restrições de desigualdade  

 

Onde F(X) é a função objetivo que deverá ser minimizada ou maximizada e X é o vetor de estados do 

sistema. A nomenclatura em negrito e o índice transposto se referirão a grandezas vetoriais enquanto 

que a ausência do negrito e do índice transposto simbolizará grandezas escalares. 

 

2.1 Gradiente e multiplicadores de Lagrange 

As propriedades matemáticas do gradiente e dos multiplicadores de Lagrange constituem uma das 

bases dos processos gerais de otimização devido a íntima relação com a minimização/maximização de 

funções objetivos e com a construção de zonas de soluções factíveis sujeitas a restrições dos mais 

variados tipos. Basicamente a combinação desses dois conceitos permitem a análise e 

desenvolvimento de uma vasta gama de problemas contendo muitas variáveis. Embora a princípio o 

método dos multiplicadores de Lagrange permita o uso restrições de igualdade apenas, no decorrer 

desse capítulo serão apresentadas estratégias criadas para contornar esse problema. 
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A característica mais importante do gradiente é a sua capacidade de mostrar a direção de maior ou 

menor crescimento de uma função. Dada a função F(X) contínua em   , com X={  ,   , ...,   }, seu 

gradiente é definido como: 

                              = 
  

   
          + 

  

   
        + ...+ 

  

   
                                                         (2.1.1) 

Onde,       é a taxa de variação de      nas direções de cada uma das variáveis de estado do 

espaço X. Dado uma curva C      que passa por um ponto P(  ,       ), pode-se realizar a 

parametrização dessa curva no tempo:  

                           =(     ,             )                (2.1.2) 

 

Como C   e X= (x1(t), x2(t),...,x3(t)) satisfaz a equação F(X) = 0, aplicando a regra da cadeia 

temos: 

                                                  
  

   
 
   

  
 + 

  

   
 
   

  
 + ... + 

  

   
 
   

  
 = 0                           (2.1.3) 

Da equação acima extrai-se um produto escalar: 

                   < 
  

   
  

  

   
   

  

   
>.< 

   

  
  

   

  
   

   

  
 > =                       

        

  
 = 0                          (2.1.4) 

Logo o vetor gradiente é perpendicular ao vetor tangente da curva parametrizada em r(t). 

 

        

  Figura 2.1: Exemplo de vetor gradiente perpendicular a curva C em três dimensões     

   

A curva C, apresentada na figura 2.1, pode ser vista também como uma curva de nível pertencente a 

superfície de F(X) = w(constante). Conclusivamente, o gradiente sendo perpendicular as curvas de 

nível, que são paralelas entre si, aponta em uma direção na qual um deslocamento dX nessa mesma 

direção implica em um aumento mais ‘’rápido’’ do valor da função F(X) pois este deslocamento 

percorre o menor caminho possível de uma curva para outra, isso é observado na (figura 2.2).  

Baseado na propriedade do gradiente descrita acima, a dedução dos multiplicadores de Lagrange se 

torna mais clara. Dado a função objetivo F(X) = w agora restrita a uma função restrição  (X) = c, com 
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w e c pertencentes ao grupo dos números reais   os pontos críticos de máximo ou mínimo de F que  

satisfazem    são encontrados a partir da equação: 

                                                                                                                    (2.1.5) 

O termo    , denomina-se multiplicador de Lagrange. 

A equação (2.1.5) só acontece quando a curva de nível da função objetivo tangencia a curva descrita 

pela função restrição. O fato de ambos os vetores gradientes estarem alinhados em um determinado 

ponto mostra que um movimento, dX’, em qualquer outra direção que não seja a do gradiente de 

ambas as funções implica em um maior crescimento para a função F enquanto essa satisfaz   . 

Dessa forma dado um ponto P de tangência entre a curva de nível e a restrição: 

                         F(X). dX<F(X).dX’        para P X  e   dX’ dX                                       (2.1.6) 

 

               

Figura 2.2: Argumento geométrico em duas dimensões para os multiplicadores de Lagrange 

Na condição acima F foi maximizado, no entanto é trivial mostrar que se    aponta para a direção de 

maior crescimento, -    aponta para a direção de menor crescimento e substituindo este último em 

(2.1.1), F é minimizado. 

Com a equação (2.1.5) pode-se reescrever a função objetivo incluindo a parte dos multiplicadores de 

Lagrange respeitando a fronteira de  (X) para que a solução final do problema não se altere: 

 

                L(X,λ) = F(X) –   (X)                                                                 (2.1.7)                
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De modo que: 

                     
  

  
 = 

  

  
 -   

  

  
                                                                           (2.1.8) 

                                                            (2.1.9) 

                      
  

  
 = -  (X) = 0                                                                      (2.1.10) 

                                (X) = 0                                                                       (2.1.11) 

Ou seja, a construção de L, também chamado de Lagrangeano, é um artifício matemático para que a 

formulação de um problema de otimização restrito possa ser escrito como um problema equivalente 

irrestrito. 

É trivial mostrar que para n restrições existirão n multiplicadores de Lagrange. É importante frisar, 

também, que a existência de um multiplicador de Lagrange garante a existência de um ponto ótimo 

(máximo/mínimo) na solução, no entanto, não é uma condição suficiente fazendo com que sejam 

necessários outros métodos para mapear os demais pontos ótimos do espaço topológico criado a partir 

da delimitação das restrições e da função objetivo. 

 

2.2 Condições de Karush-Kuhn-Tucker 

As condições de Karush-Kuhn-Tucker ou KKT são necessárias para garantir soluções ótimas em 

problemas de otimização, porém não suficientes. A sua importância recai no fato de que tais condições 

generalizam o conceito de multiplicadores de Lagrange pois consideram restrições de desigualdade, 

além das restrições de igualdade. Esse fator é de extrema importância para uma abordagem mais 

imediata do modelo da LMP, problema este cercado de restrições de desigualdade, dessa forma, as 

condições de KKT facilitam a sua formulação. 

A partir do problema geral de otimização: 

                   Min(Máx) F(X)                                                                          (2.2.1)                                                                                                             

s.a.                 (X) = 0, i = 1,2,....,n                                                                   (2.2.2) 

      
     (X)    

 
, i= 1,2,......,n                                                 (2.2.3) 

Existem quatro principais condições de KKT que devem ser satisfeitas nesse processo. As três 

primeiras são triviais, no entanto, a quarta demonstra a maneira de como trabalhar com as restrições de 

desigualdade em um problema de otimização. 

Supondo que F satisfaz as restrições   ,   , serão produzidos multiplicadores de Lagrange referentes a 

cada restrição. Dessa forma o Lagrangeano é mostrado abaixo: 

         L(X,λ,µ)=F(X)–          
 
   -    

           
    

 -   
            

    
                  (2..2.4) 
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As condições de KKT para os pontos ótimos, caracterizados pela presença do asterisco, X*,   *,    * 

são: 

1.
  

  
(X*,  *,   

   ,  
   )=0                                                                                                               (2.2.5) 

2.   (X*) = 0                       (2.2.6) 

3.   
     (X*)    

 
                     (2.2.7) 

4.   
     X*) -   

  = 0 e   
      X*) -   

  = 0                 (2.2.8) 

A condição (2.2.5) é consequência de (2.1.5), a condição (2.2.6) e (2.2.7) obedecem às restrições do 

problema geral de otimização expostas inicialmente em (2.2.2) e (2.2.3). A condição (2.2.8) é 

denominada condição de complementariedade da variável de folga. Observa-se que sua imposição 

possibilita a utilização dos multiplicadores de Lagrange da seguinte forma: 

                               
     X*)-  

  =0                                                                       (2.2.9) 

Implica em: 

                     
   =0 ou   (X*)=  

 
                                                              (2.2.10) 

  
    nulo e   (X*) igual ao seu limiar implica na  não existência de uma solução ótima. Com 

  
    nulo significa que o ponto ótimo de tangência entre a função objetivo e a restrição não foi 

atingido, portanto, a restrição é descartada e se   (X*) assumir o valor limite   
   existe um 

multiplicador de Lagrange   
   que atingiu o objetivo de minimização ou maximização da função 

sujeito a restrição de desigualdade em sua fronteira. Conclusivamente, a análise do valor, positivo ou 

nulo, que o multiplicador   
    pode assumir permite uma inferência sobre o atual estado da restrição, 

podendo ela estar vinculada ou não ao ponto de solução ótima. Logo, no primeiro caso ela restringe a 

zona de solução e no segundo caso ela não restringe essa zona. Finalmente para a restrição de 

desigualdade as variáveis de folga usadas para transforma-la em igualdade são: 

               =  
     

                                                                    (2.2.11) 

Onde: 

       
      

    0                                                               (2.2.12) 

                       

                                                                                                                  

2.3 Linearização e programação linear 

Uma linearização será aplicada tanto ao fluxo de potência quanto a função objetivo e restrições. Essa 

linearização combinada com o método da programação linear cria um espaço de soluções do PLM 

mais factível devido a simplicidade inerente de um equacionamento linear, utilizando um menor 

esforço computacional e possuindo maior confiabilidade quanto a capacidade de lidar com a grande 

quantidade de dados inseridos no SEP. O PLM não-linear em regime alternado (ac), apresenta, muitas 

vezes, problemas de convergência e um tempo de solução muito lento se comparado com o seu 

equivalente linear (dc) e por essas razões este último é o modelo padrão usado nos softwares de 
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mercados de energia europeu e americano. Embora no processo de linearização sejam perdidas 

informações do sistema, será mostrado no capítulo de estudos de casos que as aproximações feitas 

geram resultados satisfatórios e muitas vezes coincidem exatamente com as soluções em regime 

alternado. 

Será aplicado uma linearização por partes da função objetivo e nas demais restrições será aplicado 

uma expansão em série de Taylor quando necessário. A linearização por partes é utilizada na função 

objetivo pois esta possui natureza quadrática, no problema do PLM em questão, fazendo com que seja 

possível a aplicação de algoritmos de aproximação mais simples e, portanto, mais rápidos. A 

linearização por partes consegue, através da programação linear obter um equivalente linear da função 

objetivo de modo satisfatório. As demais restrições que possuem termos em seno e cosseno, ou seja, 

funções menos comportadas, necessitam de expansão em série de Taylor. 

A linearização por partes consiste em dividir uma função de segundo grau em N segmentos de reta que 

possuirão N coeficientes angulares, e reescrevê-la como um somatório dos segmentos de reta em 

função dos respectivos coeficientes. Quanto mais segmentos de reta, e, portanto, coeficientes 

angulares, melhor é a aproximação. 

A figura 2.3 ilustra a divisão de uma função em diversos segmentos de reta. 

    

 

   Figura 2.3: Linearização por partes da função objetivo 

 

Dessa forma a função objetivo se torna: 

                        F(X)=        
  
   

 
                                                                     (2.3.1) 

Onde NP é o número de divisões da função objetivo no eixo das abcissas 

As restrições não lineares podem ser expressas através da série de Taylor em torno de um vetor     

inicial. Tomando a restrição de desigualdade   (X) como exemplo: 
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                              (X) =   (   ) +( 
      

  
     )∆(X) = ciX , c= constante                                       (2.3.2) 

    

A programação linear vem sendo desenvolvida nos últimos 50 anos [1] de modo que problemas dos 

mais diferentes graus de complexidade e tamanho podem ser resolvidos por algoritmos extremamente 

eficientes de forma rápida, prática e relativamente confiável. Sua aplicação ou modelamento abrange 

uma vasta gama de disciplinas como distribuição, recursos humanos, marketing, administração da 

produção, transporte, etc. A programação linear juntamente com os multiplicadores de Lagrange 

gerará derivações do PLM dentro do modelo convencional, capacitando, posteriormente, a aplicação 

de métodos inteligentes e da otimização robusta no seu desenvolvimento. Portanto, a programação 

linear (PL) abre porta para métodos mais sofisticados de solução de problemas. 

 

Da linearização aplicada a função objetivo e restrições, quebrando termo pôr termo do espaço de 

estados X, pode-se reescrever (2.2.1) na forma padrão da PL: 

   Min        +       + ...+                        (2.3.3)

  

s.a.                                       +        + ...+        = 0                 (2.3.4) 

           +        + ...+        = 0 

.                                                                                                                                                                                               

. 

           +        + ...+        = 0                 

         +     + ...+       0                 (2.3.5) 

Ou 

                 Min   X                                                      (2.3.6)

                      

s.a                 AX = 0                              (2.3.7) 

                    X 0                                           (2.3.8) 

 

Lembrando-se que as restrições de desigualdades são lidadas da mesma for que as restrições de 

igualdade segundo a quarta KKT de otimalidade. A vantagem de se escrever o problema de otimização 

na forma (2.3.6), além da possibilidade de usar um algoritmo de PL, é a facilidade de manuseio com as 

variáveis de estado do sistema, que são muitas, pois sua forma matricial de representação é muito mais 

enxuta. 

Serão utilizados dois algoritmos para a resolução dos problemas envolvendo programação linear, o 

método simplex e o método dos pontos interiores. A razão pela qual foram escolhidos esses dois 
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métodos é devido a qualidades específicas que ambos apresentam dependendo da classe de problemas 

trabalhado. 

 

2.4 Fluxo de potência dc 

O fluxo de potência é um modelo matemático descritivo da rede elétrica que relaciona os valores de 

tensão, corrente, potência ativa e reativa em cada ponto (nó) do sistema. Como o objetivo principal do 

PLM é mensurar o melhor ponto de operação elétrico-econômico em cada nodo do sistema, o fluxo de 

potência é de extrema importância para orientar a sua construção pois carrega em sua essência, 

restrições que limitarão e conduzirão a função objetivo a soluções factíveis. 

O modelo genérico do fluxo de potência também denominado fluxo de potência ac incorpora 

características mais abrangentes dos circuitos representantes das redes do SEP, de modo que sua 

formulação será desenvolvida no intuito de se obter sua forma mais simplificada (dc). Em uma rede 

elétrica com n nós independentes, usando-se a primeira lei de Kirchhoff, as seguintes equações podem 

ser escritas: 

                                      

    

   

    

   

      

    

   

                                                                    

 

Extraindo sua forma matricial: 

 

     [Y][V] = I                                                               (2.4.2) 

Onde I é o vetor de injeção das correntes, V é o vetor de tensões nodais e Y é a chamada matriz 

admitância. Adicionalmente, o vetor de correntes I pode ser representado por tensões nodais e 

potências: 

       = 
   

   
 = 

                    

   
                                                             (2.4.3) 

Onde: 

   : Potência complexa do gerador conectado ao nó n 

    : Potência ativa do gerador conectado ao nó n 

     : Potência reativa do gerador conectado ao nó n 

    : Potência ativa da carga conectada ao nó n 

    : Potência reativa da carga conectada ao nó n 

 

E, definindo as injeções de potência como: 
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       =     -                      (2.4.4) 

       =     -                      (2.4.5) 

 

Substituindo (2.4.3), (2.4.4) e (2.4.5) em (2.4.1): 

 

                               

    

   

    

   

   
       

   

    

   

                                                                                            

 

Por sua vez,     e     podem ser decompostos em: 

       =   (      + j     )                                                                      (2.4.7) 

    =     +      ,                = 
 

   
   e      =  - 

 

   
                                  (2.4.8) 

     

Substituindo (2.4.7) e (2.4.8) em (2.4.6): 

  

                                                 

    

   

    

   

                                                                         

    

   

 

   

                                                

    

   

    

   

                                                                    

    

   

 

 

Onde     é a diferença angular entre os pontos N e n do sistema. As equações (2.4.9) e (2.4.10) são as 

equações gerais do fluxo de potência em função de quatro grandezas elétrica, V,θ, P e Q. Para que o 

sistema de equações descrito acima seja resolvido, duas das grandezas elétricas devem ser conhecidas, 

e, somado a essa imposição, o sistema deve possuir um ponto de referência (slack). O ponto de 

referência equilibra o balanço de potências, e a partir dessa linha de raciocínio, métodos iterativos de 

solução como Newton Raphson e Gauss são utilizados. Baseando-se nas informações necessárias para 

gerar uma solução factível do fluxo de potência, os nodos ou barras do sistema podem ser classificadas 

da seguinte maneira: 

Barra PQ: As potências ativa e reativa são especificadas nesse ponto do sistema. Essa barra geralmente 

possui cargas conectadas 

Barra PV: A potência ativa e a magnitude da tensão são especificadas. Essa barra geralmente possui 

geradores conectados 
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Barra V  : Responsável por ser o ponto de referência do sistema, a tensão e ângulo são especificados 

nesse ponto do sistema 

A figura 2.4 exemplifica a organização dos tipos de barra no SEP 

 

                             Figura 2.4: Exemplo de um diagrama unifilar do SEP 

 Devido a necessidade de um cálculo rápido das grandezas V,θ, P e Q nas análises de mercado de 

eletricidade, a linearização de (2.4.9) e (2.4.10) gera resultados mais satisfatório principalmente em 

grandes redes do SEP.  

 

Para a obtenção do fluxo dc algumas imposições são feitas: 

1. As magnitudes das tensões são iguais a 1 p.u 

 

2. Todas as resistências são desconsideradas de modo que      

 

                                                = 0 e     =  - 
 

   
       

    

3. A diferença de ângulos entre os pontos N e n do sistema é muito pequena:  

 

      =1 e        =       

 

4. As impedâncias capacitivas são desconsideradas 

 

 

 

De modo que (2.4.9) se torna: 
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Podendo ser reescrita da forma: 

                                  [P] = [B][θ]                                                                           (2.4.12) 

 

O fluxo de potência dc é puramente linear, podendo ser calculado com apenas uma iteração. A 

equação (2.4.12) compõe a única restrição de igualdade do problema de otimização (2.2.1) quando 

utilizado no cálculo do PLM. 

3 Modelo do PLM 

Muitas são as maneiras de se obter PLMs que caracterizem o fornecimento de energia em condições 

ótimas de operação do SEP. Uma das razões para isso, são os diferentes graus de complexidade 

inerentes do próprio sistema, fazendo com que uma única formulação do preço locacional marginal 

não seja suficiente para construir soluções factíveis em torno do problema de otimização referente ao 

despacho econômico propriamente dito. O PLM faz parte de um estudo de sensibilidade do sistema, 

junto com os fatores de mudança de geração, fatores de mudança de carga, entre outros, de modo que 

após a obtenção dos pontos de equilíbrios provenientes da minimização da função objetivo sujeita as 

restrições, ocorre uma espécie de perturbação ou deslocamento desses mesmos pontos ao se oferecer 

um infinitésimo adicional de energia em um dado nó do SEP provocando um rearranjo dos fluxos de 

potência, fato este que implica em um confronto com os limites da linha e da geração além das perdas 

na transmissão de energia. 

 

3.1 Estrutura primária 

Será apresentado, a seguir, uma interpretação geométrica do PLM, uma abordagem matemática 

convencional dessa ferramenta baseada no fluxo de potência ac combinado com os multiplicadores de 

Lagrange e sua derivação linearizada a partir do fluxo de potência dc. 

Inicialmente, considera-se um conjunto de geradores conectados a um conjunto de cargas. Existe uma 

função custo relacionando a potência de cada gerador a um respectivo preço, e para geradores 

hidrotérmicos as experiências mostraram que essa função é quadrática: 

                                                            
                                                                             

    

   

 

As condições de contorno do problema acima são: 

                                          
   
          

   
   

   
                                                                   (3.1.2) 

                                                                                                  (3.1.3)    

                                                       (3.1.4) 
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N:             Quantidade de nós do sistema             

NG:          Quantidade de geradores do sistema             

 

A figura 3.1 mostra o diagrama unifilar elétrico de um sistema com i-geradores alimentando uma 

única carga diretamente desconsiderando as perdas na linha. 

 

            

            Figura 3.1: Diagrama unifilar elétrico 

 

Dessa forma as principais dinâmicas do sistema foram descritas, no entanto, para buscar uma noção 

mais essencial do PLM desconsidera-se, primeiramente, os limites e perdas da linha, analisando-se 

apenas a estrutura da função custo (3.1.1) sujeita as restrições de potências dos geradores e do balanço 

de potência (3.1.4) e (3.1.2) obtendo-se: 

 

                        Min                        (3.1.5) 

s.a                                             
   
         

   
                                                                              (3.1.6)                                                                                                                                
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Utilizando o princípio dos multiplicadores de Lagrange e assumindo que as condições de KKT foram 

satisfeitas, existe um ponto ótimo local de modo que 

                                    

                                                      
   
          

   
                                                                        

Os pontos     que minimizam a função        são encontrados através da aplicação do gradiente 

com respeito à      na função custo. Isolando-se o vetor   após a aplicação do gradiente é obtido o 

seguinte resultado: 

                                                                                                     (3.1.8)

                                            

Os multiplicadores de Lagrange obtidos no processo de otimização de (3.1.7)  são definidos como 

preços locacionais marginais. O resultado (3.1.8), também chamado de princípio da taxa de igualdade 

incremental, nos diz que se a restrição dos fluxos de potência e os limites de geração forem 

respeitados, o preço locacional marginal será o mesmo ao longo de todo o sistema, valor este 

correspondente a unidade geradora com a melhor oferta ou menor preço por unidade de energia. Esse 

fato é verificado a partir da relação íntima que o PLM possui com os coeficientes dos componentes da 

função custo (figura 3.2) de modo que quanto menor é o valor desses coeficientes, menor é o valor do 

PLM associado, e, conclusivamente, menor é o valor da função custo. Ou seja, o processo de 

otimização de (3.1.5) seleciona a curva do gerador com menor inclinação simbolizando que para um 

∆    relativamente alto, o ∆       é baixo. A equação (3.1.8) fornece uma espécie de valor base ou 

de referência do PLM pois reflete uma análise ideal do problema em questão, portanto o multiplicador 

de Lagrange correspondente será referido como    .  

A equação (3.1.7) apresenta um resultado que incorpora taxas de variações de funções em i dimensões 

devido a estrutura matemática do gradiente, no entanto, cada um dos resultados pode ser decomposto 

em um referencial cartesiano para uma melhor visualização do significado geométrico do PLM. Para 

se obter um outro resultado importante do PLM é necessário a consideração dos limites de geração de 

cada unidade geradora (3.1.4) no problema de otimização (3.1.5). A figura 3.2 mostra o 

comportamento do custo de geração de geradores hidrotérmicos em função da potência gerada. 

  

       Figura 3.2: Curva de custo dos geradores com limites de geração 
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Onde    
 é um ponto de operação ótimo energético, de uma unidade geradora i, que minimiza a 

função custo. O PLM é o custo incremental marginal de fornecimento de energia, ou seja, a derivada 

da função custo respeitando as restrições de limites de geração dos geradores: 

  

            =
               

     

   
                                                                               (3.1.9)    

Se   
               

     

   
  

              

   
                                                             (3.1.10)         

Do contrário 

                                                                                                         (3.1.11) 

Logo, da equação (3.1.9) á (3.1.11) é inferido uma importante propriedade do PLM, o seu valor é 

infinito para os geradores que trabalham na sua capacidade máxima (marginal) devido a estrutura 

dimensional do preço locacional marginal observado abaixo: 

         
  

    
                                                                                (3.1.12) 

Quando a unidade geradora i está operando em sua capacidade máxima, ela não pode fornecer o 

próximo megawatt de energia. Isso implica em: 

         
  

 
                   (3.1.13) 

 Pode ser realizado também uma interpretação geométrica do PLM quando os limites de geração são 

alcançados. De acordo com a figura 3.2 observa-se que a derivada em        é inexistente pois essa 

taxa de variação implica em acréscimos de potência ,             ,fazendo com que os limites de 

geração sejam infringidos, portanto, o PLM é originado apenas da porção dos geradores não marginais 

do sistema 

Voltando ao caso exemplificado pela equação (3.1.7) o valor da PLM não varia de local para local, 

fazendo com que seu valor se reduza a um CMO, onde o despacho econômico seleciona apenas um 

preço de energia, ou média de preços baseado na solução do fluxo de potência ótimo, para atender 

todas as cargas do sistema [7]. A propriedade de variabilidade do preço locacional marginal ao longo 

do sistema é inerente do confronto da função custo com as restrições do SEP gerando outros 

multiplicadores de Lagrange que vão influenciar no valor da PLM base, como será verificado nos 

próximos tópicos. No entanto, a ideia essencial de taxa de variação de uma função em um ponto que 

minimiza a função custo, permanece a mesma.  

 

Considerando-se as perdas, o problema de otimização se torna: 

                                         Min                                                                      (3.1.10) 

s.t                          
     
          

     
   

     
                                                 (3.1.11)                             
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com:                  

                                           (3.1.12) 

É importante frisar que as perdas, na equação acima, representam uma função implícita do ângulo da 

tensão e da corrente. 

Construindo seu Lagrangeano e aplicando as condições de otimalidade de KKT: 

                       L=              
     
            

     
   

    
                              (3.1.13) 

                                                                                                           (3.1.14) 

                   
  

    
= 
       

    
 -     + 

            

    
 =0                                                         (3.1.15) 

         (-1 + 
            

    
   = - 

       

    
              (3.1.16) 

               = 

       

    

   
            

    
 
                            (3.1.17)

           

                                   =     
 

   
         

    
 
                                                 (3.1.18) 

      
         

    
   é um fator de penalidade relacionado as perdas do sistema fazendo com que o valor 

do PLM sofra uma mudança em relação ao seu valor de referência, ou seja, as características da linha 

somadas a quantidade de energia que a atravessa influenciam no preço do fornecimento de energia em 

uma dada localidade. Como o fluxo de potência é naturalmente não-linear, o PLM começa a sofrer 

modificações. 

O cálculo do PLM considerando-se os limites energéticos da linha de transmissão, também 

denominado de congestionamento, carrega informações a respeito dos ‘’ melhores caminhos’’ que o 

fluxo de potência deverá tomar ao longo do sistema no intuito de obter a otimização da função custo 

sujeita a restrição (3.1.14). A ideia básica do processo de otimização nesse caso é obter uma relação 

entre a geração de energia e o respectivo fluxo na linha,  
     

    
 , no limiar da restrição aplicando-se os 

multiplicadores de Lagrange combinado com a quarta condição de KKT. 

                                                                                            (3.1.19)  

                       

     

   

       

     

   

               

     

   

     

   

                             

 

O vetor   representa as componentes de congestionamento da PLM. Tais componentes possuem um 

significado intrínseco relativo a identificação de áreas que estão no limite de absorção de potência 

através do aumento do preço da energia nesses locais. Essa lógica funciona analogamente como um 

custo de oportunidade para o SEP devido a identificação de zonas com congestionamento que 
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possuirão um valor elevado de PLM, dessa forma, planejamentos e estratégias podem ser 

desenvolvidas tanto no plano econômico quanto no plano de operação segura dos sistemas elétricos de 

potência.   

Conclusivamente a PLM é munida de três elementos, um de referência, um de perdas e um de 

congestionamento de modo que a PLM no nó i é definida como: 

     

                                   =                                                                             (3.1.21) 

 

Observa-se que não houve uma análise da modificação no valor do PLM quando infringidos os limites 

de geração, esse assunto deverá ser tratado separadamente no capítulo 3.2. 

Embora a definição matemática (3.1.21) seja suficiente para caracterizar um preço locacional 

marginal, são muitos os problemas que surgem a partir dessa formulação e o mais importante deles é a 

sua aplicação em sistemas elétricos de elevada complexidade ocasionando soluções não convergentes 

e que necessitam de um enorme esforço computacional. A expansão do SEP implica em uma 

proliferação de seus elementos e interligações dificultando em muitos aspectos a obtenção de 

resultados factíveis de preços nodais impulsionando assim, o surgimento de algoritmos mesclados com 

teoremas matemáticos capazes de lidar com a natureza não-linear e dinâmica desse problema.  

3.2 Modelo não-linear 

Uma abordagem não linear para um sistema genérico envolvendo vários geradores, conexões e cargas, 

além das suas respectivas restrições é descrito abaixo a partir do desenvolvimento do fluxo de potência 

cujas variáveis de estado (tensões, ângulos, potência, corrente) operam em valores que otimizam a 

função custo. Essa formulação é denominada de fluxo de potência ótimo, e devido as características 

naturais do SEP será considerado, nesse problema, apenas os limites máximo de geração e do fluxo de 

potência na linha de transmissão. 

 

                                 Min                                                                                    (3.2.1) 

s.a.                               

                           

     

   

       

     

   

     

   

                                                     

                                  

          

                              θ)  =         sin(      ) -    cos(      )                                            (3.2.2) 

 

O Lagrangeano do problema geral (3.2.1) obtido de maneira imediata: 
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L=             
     
               

     
   

     
             –          

     
   

     
    

              -          
     
               )                                                                                     (3.2.3)      

                                                               

         

Onde           são os vetores contendo os multiplicadores de Lagrange relativos a cada restrição de 

(3.2.1). Para que os multiplicadores estejam associados a pontos de soluções referentes aos estados 

ótimos    * e    *, as condições de otimalidade de Karush-Kuhn-Tucker devem ser obedecidas: 

          = 0                                                                                     (3.2.4)                                             

     = 0                  (3.2.5) 

                     = 0                                                                                  (3.2.6) 

    = 0                                                                                     (3.2.7) 

    = 0                                                                                     (3.2.8) 

 

E para as desigualdades as seguintes expressões são analisadas em seus valores limites: 

    
 (     θ*) -         = 0                     (3.2.9) 

   
 (   

   -           =0                                                            (3.2.10) 

 Para facilidade de cálculo e melhor compreensão do papel de cada gerador na definição de um preço 

locacional marginal, o problema de otimização (3.2.1) será particionado em dois grupos relativos ao 

atual estado de alimentação energética do sistema. O primeiro grupo referente aos geradores que estão 

operando em sua capacidade máxima, também denominados de geradores marginais, possuirá um 

índice descritivo M e o segundo grupo dos geradores que não estão em sua capacidade máxima, não 

marginais, será definido com índice NM.   

Com a imposição dos grupos M e NM sobe o gradiente do problema geral de otimização (3.2.3) 

obtêm-se: 

                                                             =           = 
       

  
                                                            (3.2.11) 

                                                     =               +     = 
       

  
                                        (3.2.12) 

             (Grupo dos geradores não 

marginais união com o grupo dos geradores 

marginais) 

Rearranjando (3.2.11) e (3.2.12)  

                                                                         
 
  
                                                           (3.2.13)
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                                                                   (3.2.14) 

 

Observa-se por (3.2.13) e (3.2.14) que os geradores não marginais conseguem estabelecer a sua 

oferta base ao longo do sistema simbolizado pelo multiplicador    
 

    
  referente aos 

coeficientes da função custo, enquanto que os geradores marginais além de sua oferta base ainda 

possuem um acréscimo no seu preço marginal (    ) devido ao fato de terem atingido o limite 

de geração elétrica, dessa forma, esses geradores não conseguem gerar uma oferta de energia 

estritamente proveniente das suas características de operação(curva hidrotérmica). Portanto, 

numericamente, existirá um preço nodal relativo aos geradores marginais, porém não será 

caracterizado como um PLM propriamente dito e sim como resultados necessários para alcançar 

o processo de otimização, em vista de que a condição necessária de existência de um PLM é a 

capacidade de gerar a próxima unidade de energia. 

Para o desenvolvimento dos termos do PLM relativos a variável de estado θ utiliza-se a condição de 

KKT (3.2.6), sabendo-se que as restrições do limite na linha     θ) -          não precisam ser 

divididas entre os grupos NM e M pois independem do limite da geração, eles dependem apenas da 

restrição de fluxo máximo de potência na linha, sendo que o multiplicador   é nulo para valores de 

fluxo de potência na linha abaixo do limite superior :  

                          =  0             
      +   

       )’ -           = 0                                 (3.2.15) 

                                                     = 0            
     = 0                                                  (3.2.16)

                                                                                            

            

                           
         

    
   

              )-          =0                                     (3.2.17) 

 

 

Isolando o PLM       :  

                                        =            )-          - 
 
                                       (3.2.18) 

         é tipicamente  uma matriz não singular, assim como        , devido a partição do 

problema em dois grupos de geração, essa matriz possuirá uma quantidade de linhas  inferior a 

quantidade de colunas. A sua estrutura da matriz F(θ) para um sistema com n nós utilizando a notação 

dos grupos NM e M  é mostrada em (3.2.19) e (3.2.20): 

                    

 

 

         

    

 
          

           

    
 

             

     

 

           

                  (3.2.19) 
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                  (3.2.20)

                                                  

nNM: Número de nós não marginais 

nM: Número de nós marginais 

O subscrito      simboliza os nós 1 e 2 marginais do sistema. 

Com {nNM U nM} = n 

E: 

                            =                                                              (3.2.21) 

                   =                                                              (3.2.21) 

 

Voltando a equação (3.2.18), para isolar o preço locacional marginal,     , deve-se aplicar a matriz 

pseudo-inversa em           devido a sua característica não singular (não possui inversa): 

          
               =            

  =                 
      

     *                 (3.2.22) 

Portanto: 

 

                                 =              
   *(-          )-           -   

  
     

     )          (3.2.23)

                                                               

 

A equação final (3.2.23) descreve o preço locacional marginal para um SEP incorporando as variáveis 

não lineares. Aplicando a definição genérica (3.2.23) na definição geral (3.1.18) observamos que o 

PLM é uma função dos multiplicadores de Lagrange: 

 

        ,      
  =       

      
 
                                     (3.2.24) 

Com: 

                     
                                                                  (3.2.25) 

              
         )                                                    (3.2.26) 

             
           )                                                   (3.2.27) 

                          
    
   

                                                             (3.2.28) 
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                   =  
          
        

                                                     (3.2.30) 

Onde α e    são vetores de constantes definidas a partir dos resultados provenientes do despacho 

econômico e da análise da curva hidrotérmica de cada gerador. O multiplicador de Lagrange     

escolhido será referente a unidade geradora com o menor custo de geração ou o menor coeficiente 

angular da curva hidrotérmica e α é o vetor das parcelas da contribuição de potência de cada gerador  

para alcançar o estado ótimo do sistema. 

 

É observado pela equação (3.2.23) que para o cálculo do PLM propriamente dita, é necessário o 

conhecimento prévio do vetor das variáveis angulares,  , em seu estado ótimo      assim como as 

tensões nodais. Para isso, utiliza-se um fluxo de potência ótimo, no entanto, neste trabalho não será 

explorado técnicas para o cálculo das variáveis angulares e de tensão em sua forma não linear. Devido 

ao foco no desenvolvimento de um PLM linear, o despacho econômico será o procedimento munido 

de maior atenção. 

 

3.3 Modelo linear  

O desenvolvimento (3.2.3) pode ser usado para gerar a forma linear, e mais usada, do PLM derivado 

do fluxo de potência dc. 

         θ) = 0 se torna         θ e o problema de otimização (3.2.1) se torna: 

     Min                                                                             (3.3.1) 

      s.a.                                                             θ                  

       θ)           

Onde   θ representa o fluxo de potência na linha desconsiderando-se as perdas. Por essa razão é 

necessário a construção de um algoritmo para computar a variação do fluxo de energia na linha em 

relação a injeção de potência dos geradores, 
     

    
, devido ao fato da linearização perder uma parcela  

da informação do fluxo de potência referente as perdas, influenciando diretamente no componente de 

congestionamento do PLM. 

 

Para se obter a componente de congestionamento do PLM na sua forma linearizada, é necessário 

realizar uma análise de sensibilidade no SEP, de modo a obter respostas em relação ao seu 

comportamento quando os limites de fluxo de potência da linha são infringidos. São cinco passos 

necessários para calcular o chamado fator de mudança de geração (FMG): 

1. Escolher uma unidade de geração i e uma linha k com a sua respectiva restrição 

2. Rodar o fluxo de potência para obter a potência inicial,     que atravessa a linha k 

3. Aumentar o valor de     em      unidades observando que esse valor deverá ser absorvido pela 

unidade de geração de referência (slack) 
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4. Rodar o fluxo de potência novamente e obter a nova potência,    que atravessa a linha k 

5. Calcular o fator de mudança de geração através da equação abaixo 

                           = 
      

    
                                                     (3.3.2) 

 

      e             ,  no  limite: 

                           = 
    

    
                                                                 (3.3.3)

  

Através da restrição (3.1.6), da quarta condição de KKT (2.2.8) e da análise da parcela do gradiente do 

Lagrangeano relativo a variável de estado     (3.1.15). 

  

  
  

    
           

     
        

             =   
    

    
)=                                 (3.3.4) 

      =                                                 (3.3.5) 

 

 

 

 A adição de um fator externo ζ é necessária para equilibrar o balanço de potência, no entanto tal fato 

não influencia nos valores dos ótimos dos multiplicadores de Lagrange, segundo o teorema do 

envelope exposto no apêndice desse trabalho. O Lagrangeano para um LMP em condição linearizado 

se torna: 

 

L =                     θ +ζ)) -     (     -       -       
     
   (     -                 - 

     
    
    (    ’-                                         (3.3.6) 

                                                         

Pelo teorema do envelope [1], no ponto ótimo: 

                                                                                =                                                             (3.3.7)

        

 

Ou seja, o valor do vetor de preços locacionais marginais,  ,  não depende do fator externo   

 

Cujas condições de KKT para a variável angular, considerando os grupos NM e M, são: 
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                                                          = 0               +         = 0                                        (3.3.8)

     

                                                                 = 0              = 0                                        (3.3.9)

      

O que implica em: 

                                                                      -   
        *                                           (3.3.10) 

Finalmente: 

       
    
   

 = 
    
 

                (3.3.11) 

      

O termo     em (3.3.11) é nulo devido a necessidade matemática de eliminação dos nós de geração 

marginais da solução final calculada, para uma obtenção factível dos preços locacionais marginais. As 

equações (3.3.6) até (3.3.10) quando derivadas do fluxo de potência dc, apresentam algumas 

características importantes. Além da eliminação dos termos em senos e cossenos que adicionavam não 

linearidades ao sistema, requisitando do uso de técnicas iterativas para a localização de pontos 

factíveis provenientes do balanço energético do SEP, a solução de (3.3.1) e (3.3.6) se torna imediata 

em vista do fluxo de potência a ser resolvido se reduzir a um sistema de equações lineares, 

necessitando de apenas uma iteração para encontrar os pontos de operação. Quando combinado (3.3.1) 

com a linearização por partes no termo da função custo, o problema (3.2.1) se torna um problema de 

programação linear.  

O Lagrangeano final para a solução genérica do PLM em sua forma linear se torna: 

L = C(         
   
   

   
                    

   
   

   
               +ζ)) -        (     -       

-       
     
   (     -           -      

     
    (      -                                                          (3.3.12) 

Onde      correspode aos valores de potência pg, que por sua vez são divididos em segmentos, 

representado pelos segmetons         modo a reconstruir as potências geradas PG. 

 

O comportamento linearizado do preço locacional marginal de duas unidades geradoras é observado 

na figura 3.3: 

 

                         Figura 3.3: PLM de duas unidades geradoras. Adaptado de [8] 



41 
 

 
 

 

Dessa forma, observa-se que em um certo intervalo de potência, válido apenas dentro do espaço 

factível da linearização por partes, o valor do PLM é constante. Deve-se frisar que a linearização por 

partes da curva do gerador, deve ser feita em tempo real (online), de modo a criar diferentes funções 

custos já linearizadas para uma mesma curva, na medida em que o valor de potência ótimo se afasta 

muito da zona factível onde a linearização da curva ainda é uma boa aproximação. Através desse 

princípio garantindo a preservação da eficiência do PLM linear dentro de uma margem de erros. 

 

 

 

3.4 Análise geral do PLM 

É concluído de ambos os modelos do PLM, linear e não-linear, que seu valor é definido por uma 

composição dos multiplicadores de Lagrange e da função custo combinada com as restrições. Dessa 

forma, observa-se que o seu valor pode sofrer modificações através da inclusão de outras restrições, 

um exemplo disso seria a restrição de operação mecânica de um gerador elétrico ou inclusão do 

balanço de potência reativa no sistema, cabendo ao projetista a consideração ou desconsideração 

desses tipos de parâmetros na formulação do PLM, como é verificado na fórmula (3.2.3). Em vista da 

quantidade de termos envolvidos no processo de otimização, o PLM se torna uma ferramenta 

matemática extremamente volátil, sendo necessário recalculá-la em intervalos de tempo relativamente 

curtos (horizonte de evento de curto e curtíssimo prazo) em vista das incertezas provenientes de sua 

estrutura. Cabe a cada mercado de energia, adequar essas características as condições dinâmicas dos 

SEPs, no intuito de gerar soluções factíveis. 

 

A sequência de passos para o cálculo do PLM é apresentado abaixo:  

 

1: Obter dados medidos do SEP como impedância de linha, capacidade de geração, carga, etc. 

2: Rodar um fluxo de potência ótimo ou despacho econômico 

3: Checar se os limites de geração e/ou transmissão foram infringidos 

4: Em caso afirmativo vá para o passo 5, em caso negativo vá para o passo 6 

5: Utilizar a fórmula do PLM com os limites de geração e transmissão 

6: Computar um preço locacional marginal 

7: Se os valores do PLM estão dentro da tolerância, vá para o passo 9, do contrário vá para o passo 8 

8: Se ocorreu alguma alteração nas cargas do sistema ou alguma variável de estado (tensão, corrente, 

ângulo), vá para o passo 2 do contrário vá para o passo 9 

9: Obter um resultado final 
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4 Metodologias de otimização 

 

Considerando-se que a PLM é um resultado específico de um processo de otimização, as maneiras 

como são encontrados pontos ótimos de operação para a função objetivo são cruciais para uma 

formulação factível de um preço nodal e, devido as características dinâmicas do SEP, é mister a 

aplicação de métodos que se adaptem a esse tipo de sistema. Os  métodos que serão mostrados a seguir 

tentam corrigir algumas deficiências dos métodos convencionais de otimização como a iteração 

Lambda, método do gradiente, entre outros [1], que apresentam problemas de convergência, e o mais 

importante, apresentam tempos relativamente grandes de processamento computacional, o que é 

extremamente indesejado nos problemas de despacho econômico e fluxo de potência ótimo, que 

necessitam de atualizações nos dados de entradas e portanto nos sistemas de equações, 

constantemente.  

4.1 Redes neurais de Hopfield 

 

O despacho econômico é uma peça extremamente valiosa não só para a determinação de LMPs mas 

também como uma maneira de orientar o método do fluxo de potência não linear a encontrar s 

variáveis de estados V, I e θ. Ou seja, o processo de despacho econômico combinado com o problema 

do fluxo de potência elimina a necessidade de se utilizar um fluxo de potência ótimo, artifício este que 

pode ser de extrema importância para problemas do SEP que possuem uma quantidade grande de 

elementos[]. A abordagem das redes de Hopfield para solução de problemas de despacho econômico é 

recente, no entanto, já demonstra resultados promissores relativos a esforço computacional e 

capacidade adaptativa, característica típica das redes neurais em geral. Nesse tipo de formulação a 

função objetivo junto as restrições é transformada em uma função de energia, denominada função de 

energia de Hopfield, análoga a estrutura de uma função de Lyapunov. Essa função de energia é 

minimizada através de processos iterativos provenientes da dinâmica das redes neurais, tal dinâmica é 

mostrada no apêndice relativo as redes neurais artificiais. Uma nova abordagem das redes de Hopfield 

será utilizada para solução do DE nesse trabalho, caracterizada pelo uso de uma função de ativação 

linear, em detrimento das funções sigmoides utilizadas no modelo de Hopfield convencional, proposta 

por C.T Su et al em 1997 [9], e por um processo determinístico de determinação de pesos sinápticos, 

A, B e C em oposição ao método de tentativa e erro. 

A dinâmica das redes neurais é apresentada a seguir: 

   

  
 =                          (4.1.1) 

   : Entrada do neurônio i 

    : Interconexão entre a saída do neurônio j com a entrada do neurônio i 

    : Conexão própria do neurônio i 

   : Saída do neurônio j 

   :Entrada externa do neurônio i 

A função energia definida em [9]: 
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Φ = (-1/2)*            -                      (4.1.2) 

O sinal negativo na função energia (4.1.2) indica que durante o processo iterativo das redes neurais tal 

função sempre se move em direção ao valor mínimo de seus argumentos.  

Utilizando o problema geral de despacho econômico (3.2.1) para uma carga, desconsiderando-se o 

congestionamento do sistema, obtêm-se a seguinte função  energia modificada: 

         Φ= A/2[(    +   ) -     
    
   ]² +B/2                         ²) +C/2(       (4.1.3)

          

Na equação (4.1.2 )        . 

Comparando-se  (4.1.2) com (4.1.3) obtêm-se a estrutura dos pesos sinápticos: 

                                       (4.1.4) 

                                (4.1.5) 

                 +      
   

 
                                                 

(4.1.6) 

Onde:  

               
     

    
                              (4.1.7) 

A equação ( 4.1.7) simboliza as perdas incrementais  

 

O modelo linear de entrada/saída é: 

 

       (                (4.1.8) 

Os limites de    são      e     . Utilizando a equação de reta obtêm-se a seguinte função: 

                      -    )](                                  (4.1.9) 

A dinâmica de entrada e saída é construída da seguinte forma: 

       (    =                                      (4.1.10) 

                                                        (    =                                                         (4.1.11) 

Segundo o desenvolvimento em [referencia hnn] a convergência para valores ótimos das potências de 

saída,    , dependem dos valores limites da entrada dos neurônios e do  balanço de potências segundo 

as equações: 

  =          
     
    -     

     
                 (4.1.12) 
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                          = [                
             

      
         

  
+                                    (4.1.13) 

 

        
     

 

 
           

   
                                       (4.1.14) 

Onde: 

A        (                    (4.1.15) 

C=2A                (4.1.16) 

B Pode ser escolhido arbitrariamente e      é o custo total incremental. 

O algoritmo de solução do problema do despacho econômico usando as redes de Hopfield é mostrado 

abaixo: 

Passo1: Obter os dados da demanda     ; número de unidades NG; limites de geração de cada 

unidade, coeficientes de perdas na transmissão, pesos sinápticos A, B e C, os coeficientes das funções 

custos de cada gerador, os parâmetros máximos e mínimos das entradas dos neurônios, a tolerância 

  desejada no cálculo do balanço de potência e a tolerância    para os valores de saída de cada 

neurônio. 

Passo2: Inicializar a geração de cada unidade com o contador k=0 e C =0. 

Passo3: Determinar as perdas na transmissão pela seguinte equação: 

                 
 
 

   
    +       

 
   +                (4.1.17) 

Com : 

              são os coeficientes de perdas na transmissão. 

Calcular as perdas incrementais utilizando (4.1.7) 

Passo4: Determinar   ,    
  e    

     usando as equações (4.1.12),(4.1.13) e (4.1.14) 

Passo5: Fazer C=2A   

Passo6: Checar se os limites de geração foram infringidos. Se os limites forem infringidos vá para o 

passo 1 senão vá para o passo 8  

Passo7:  

(a) Para cada unidade de geração violada aplicar a equação (4.1.13) para calcular o parâmetro de 

convergência t 

(b) Com base no valor t calculado, identifica-se a unidade geradora que leva o menor tempo para 

alcançar o limite de geração 

(c) Exclui a unidade encontrada em (b) do problema de otimização 

(d) A nova demanda será a diferença entre a demanda inicial e a potência da unidade excluída em 

(c) 
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(e) Vá para o passo 4 

Passo8: Checar se |    +    -     
     

   | <   . Em caso positivo, vá para o passo 9 senão vá para o 

passo 3 

Passo9: Checar se |   
       

 |<   para todas as unidades. Em caso afirmativo, vá para o passo 10 

senão, faça k=k+1 e vá para o passo 3 

Passo10: Obtêm o resultado final 

 

 

 

4.2 Método simplex 

 

O Método Simplex é uma técnica utilizada para se determinar, numericamente, a solução ótima de 

um modelo de Programação Linear numericamente. A solução ótima de um modelo de 

Programação Linear será desenvolvido inicialmente para problemas de Programação Linear, na 

forma padrão com as seguintes características para o sistema linear de equações: 

 

i) Todas as variáveis são não-negativas: 

ii) Todos os bi’ são não-negativos; 

iii) Todas as equações iniciais do sistema que são do tipo “   “ serão transformadas em igualdades 

através da inserção de variáveis de folga 

 

 

 

A formulação acima foi exposta no capítulo 2.3 no tópico de programação linear. Dessa forma, o 

método simplex será utilizado para resolver essa classe de problemas. 

Em geral, o algoritmo simplex permite que se encontre valores ideais em situações em que diversos 

aspectos precisam ser respeitados. Diante de um problema, são estabelecidas inequações que 

representam restrições para as variáveis. A partir daí, testa-se possibilidades de maneira a otimizar o 

resultado da forma mais rápida possível por métodos iterativos. Neste trabalho, o algoritmo simplex 

será utilizado via programa Matlab devido a praticidade deste software na solução de uma certa classe 

de problemas. 

 

 

5 Resultados e discussões 

Serão estudados algumas topologias de sistemas elétricos de potência retirados do IEEE. Cada 

problema apresentará uma particularidade que será solucionada com uma das quatro metodologias 

propostas no capítulo 1. Todas as metodologias utilizadas foram implementadas no software Matlab. 
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5.1 Sistema com três geradores e duas cargas 

Como primeiro caso, será verificado os resultados desenvolvidos a partir do modelo do PLM não 

linear considerando-se as perdas e o congestionamento do sistema (3.2.20). Esse caso foi retirado da 

referência [5] com os pontos ótimos de geração do sistema já calculados, através do método dos 

multiplicadores de Lagrange, sobrando apenas a parte de análise das componentes marginais e não 

marginais do PLM definidas no capítulo 3. 

A figura 5.1 mostra o sistema elétrico de potência em questão com seus pontos nodais de energia 

ótimos, ou seja, que minimizam a função custo de cada gerador. O sistema  possui congestionamento 

nas linhas (1-4) e (2-5) e nó de referência 0.  

 

 

   Figura 5.1 : Caso1 Ilustrativo. Adaptado de [5] 

 

 

As matrizes      
  
 ,     

 
 ,      

  
 ,       são mostradas abaixo: 
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Utilizando as equações de 3.2.20 a 3.2.26 obtêm-se os seguintes multiplicadores de Lagrange: 

                                         

     µ=             

            = 

 

 
 

      
      
      
      
      
      

      
     
     
     
     
     

     
      
      
     
     
      

 
 

 

                        = [12.621 11.494 11.716] 

                      = [12.829 16.301 15.537] 

 Observa-se que o vetor do PLM de referência,   , é o mesmo para todo sistema, valor este 

retirado da curva de geração da unidade geradora mais barata [12]. Esse valor mostra que para 

o tipo de derivação do PLM contemplado no capítulo 3.2 dos modelos não lineares, o cálculo 

só é possível devido a imposição de uma barra de referência (slack) associada a um preço de 

referência  

 

 As componentes de perdas e de congestionamento do PLM representam uma parcela de 5%, 

em média, do valor do preço nodal, ou seja, em uma analogia a grosso modo, as economias 

com energia elétrica, baseando-se apenas em um cálculo mais conciso de um PLM seriam de 

5%, uma economia razoavelmente alta de energia elétrica.  

 Embora o congestionamento inicial esteja concentrado nas linhas (1-4) e (2-5), o aparecimento 

de componentes de congestionamento do PLM nos demais nós significa que o excesso de 

fluxo de potência em uma linha afeta o resto do sistema elétrico de potência, não só em 

condições físicas, mas também no preço da energia. 
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 Nesse primeiro caso, nenhum gerador ultrapassou os limites de geração, portanto, o vetor   , 

não sofrerá nenhuma modificação devido a necessidade do seu resultado como recurso do 

processo de otimização, entretanto, na hipótese de uma unidade geradora ultrapassar seu limite 

de geração, a componente do vetor   , relativo a essa unidade, se anularia. 

 

 Verifica-se que o ponto de operação do sistema, ignorando-se os nós de geração, que possui o 

menor preço marginal é o nó 3, que coincide com o ponto que está absorvendo a menor 

quantidade de energia elétrica, além de não estar na zona de congestionamento primário. A 

partir dessa inferência, é concluído a importância estratégica de uma análise de preços 

locacionais marginais a nível de planejamento energético e operação do SEP, pois o nó 3 

delimitará a área mais estável do sistema elétrico analisado em questão. 

 

5.2 Sistema com três geradores e uma carga 

Nesse caso será estudo a aplicação direta das redes de Hopfield em um problema de despacho 

econômico [9] onde uma rotina no Matlab foi implementada obedecendo aos critérios matemáticos 

expostos a baixo: 

 As funções custos e os limites de cada gerador são dados da seguinte forma: 

C(   ) = 561 + 7.96    +0.001562     

     600 MW 

 

C(   ) = 310 + 7.85    +0.000194     

    400MW 

 

 

C(   ) = 78 + 7.97    +0.00482     

    200MW 

As perdas são: 

F(θ)=            +0.00009     +0.00012    ² 

A demanda total é de 850 MW e o erro relativo ao balanço de potência,   , deve ser menor do que 

0.0001 MW. Para determinar os fatores A e B escolhe-se a unidade com maior custo marginal    . 

    = 7.97(   + 0.00482    

     = 7.97(       + 0.00482        = 7.97*     $/h 
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Substituindo      segundo a equação (4.1.15) e (4.1.16) obtêm-se: 

A      e B=1 

C = 0,016 

Utilizando a curva input-output é escolhido os seguintes parâmetros: 

           

          

                         

          

Inicialmente as gerações são setadas nos seguintes valores: 

          

          

          

Os resultados são observados na tabela 5.2, aonde a simulação das redes de Hopfield são comparadas 

com o método da iteração lâmbda segundo a referência [9] : 

Unidade Iteração Lâmbda (MW) Redes de Hopfield (MW) 

PG1 435.198 435.198 

PG2 299.969 299.969 

PG3 130.660 130.660 

Perdas 15.829 15.828 

                                                        0.0001 0.0001 

Custo($/h) 8344.59 8344.59 

Tempo de processamento 0.3 0.1 

 

    Tabela 5.2: Resultados computacionais 
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5.3 Sistema com dois geradores e uma carga 

 

Os casos a seguir do capítulo 5.3 demonstrarão o cálculo do PLM em sua derivação do fluxo de 

potência dc, através do uso dos multiplicadores de Lagrange e do método simplex que se encontra em 

uma toolbox do software Matlab. 

A figura 5.3.1 abaixo ilustra o sistema com dois geradores e três cargas que deverá ser otimizado em 

termos de fluxo de potência e custos de geração. 

 

                 Figura 5.3.1: Diagrama do sistema 5.3 

A carga no nó 1 será chamada de PD, enquanto que as potências geradas nos nós 2 e 3 serão chamadas 

de     e     respectivamente. Cada linha de transmissão possuirá um limite superior denominado de 

         com i   e i,j variando de 1 até 3. Devido a linearização proveniente do fluxo de potência dc, 

as potências em cada ramo do circuito são aproximadas pelos valores de ângulo de fase,    e   , de 

cada nó correspondentes aos geradores 2 e 3 e pelos valores em p.u  das linhas propriamente ditas. A 

base utilizada para esse problema será de 100MW. 

O problema de otimização é apresentado a seguir: 
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Utilizando a função do Matlab ‘piecewise’, aplica-se uma linearização por partes na função custo 

quadrática de cada gerador. Esse processo aproxima-se de casos reais pois em problemas de despacho 

econômico, os geradores possuem uma oferta ou custo marginal fixo devido ao planejamento 

energético em diferentes horizontes de tempo, ou seja, os coeficientes das curvas hidrotérmicas devem 

ser constantes para um determinado intervalo. 

Através da função do Matlab ‘linprog’ é calculado as variáveis de estado     ,     ,    ,      e por 

conseguinte, os respectivos preços locacionais marginais, para diferentes situações de 

congestionamento e carga. Para a obtenção de FMG, devido a contingencia no sistema é utilizado o 

procedimento exposto em (3.3). Segundo o gradiente da equação (3.3.12), os preços locacionais 

marginais em cada ponto do sistema podem ser calculados e, em específico, o preço locacional 

marginal no ponto 1 será uma combinação dos preços locacionais marginais de cada unidade geradora 

sujeita as restrições de congestionamento representadas por fatores de penalidade, FMG e µ. 

1) Sistema sem congestionamento, e com carga nominal de 90MW 

 

FMG=0 PD=90MW 

    (p.u) 0.9 

    (p.u) 0 

   (p.u) -0.3 

   (p.u) 0.3 

    ($/MW.h) 5 

    ($/MW.h) 5 

    ($/MW.h) 5 

 

   Tabela 5.3.1: Valores ótimos das variáveis de estado e dos PLMs 

 

 

 

   Figura 5.3.1: Despacho ótimo de geração para carga variável caso 1 
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      Figura 5.3.2: Variação do preço locacional marginal para o nó de carga caso 1 

 

 A tabela 5.3.1 mostra que sem a presença do congestionamento no sistema, o valor do preço 

locacional marginal será constante ao longo de todo o sistema enquanto o limite de geração da 

unidade geradora mais barata não for infringido.  

 

 A unidade geradora,    , com a oferta de energia mais barata, possui predominância no 

processo de despacho econômico (figura 5.3.1), até alcançar o seu respectivo limite de geração 

de 1 p.u. 

 

 A reta de factibilidade com cor amarela na figura 5.3.1 e 5.3.2 divide o gráfico em duas áreas, 

a área a sua esquerda representa as soluções factíveis para o problema, enquanto que a área a 

sua direita representa as soluções infactíveis; nesse caso a zona infactível é representada por 2 

p.u que representa a soma dos limites de geração de cada gerador. 

 

 Na figura 5.3.2 o preço locacional marginal no nó de carga assume o valor da oferta da 

unidade geradora mais barata     até que o seu limite de geração seja alcançado, assumindo o 

valor mais caro da próxima unidade geradora    . É importante frisar que embora no gráfico 

o PLM se torne nulo em 2 p.u.(limite de geração dos geradores), pela definição do preço 

locacional marginal como sendo o preço do próximo megawatt de energia ofertado em um 

determinado nó, teoricamente seu valor se torna nulo um pouco antes de atingir a potência de 

2 p.u. caracterizando assim a possibilidade de fornecimento da próxima unidade de energia 

sem que o sistema se torne infactível pois este não pode infringir o valor de 2 p.u. em termos 

de fluxo de potência que emana dos geradores, devido as restrições dos limites de geração 

impostas pelo problema; a figura 5.3.2 é apenas um esboço do comportamento do preço 

locacional marginal. 
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 A vantagem de se aplicar o método simplex via Matlab é a facilidade da formulação do 

problema de programação linear e a velocidade com o que se obtêm respostas quanto a 

factibilidade do sistema a ser otimizado dentro do espaço de soluções proposto. A 

desvantagem é o problema de convergência deste algoritmo devido ao aumento da quantidade 

de variáveis do problema. 

 

2) Sistema com congestionamento de 50MW na linha (1-2) e com carga nominal de 90MW 

FMG=1/3 PD=90MW 

    (p.u) 0.6 

    (p.u) 0.3 

   (p.u) -0.4 

   (p.u) 0.1 

    ($/MW.h) 15 

    ($/MW.h) 5 

    ($/MW.h) 10 

 

 

         Tabela 5.3.2: Valores ótimos das variáveis de estado e dos PLMs 

 

 

 

 
 

 Figura 5.3.3: Despacho ótimo de geração para carga variável caso 2 
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Figura 5.3.4: Variação do preço locacional marginal para o nó de carga caso 2 

 

 

 

 

 Observa-se pela tabela 5.3.2 que o valor do preço locacional marginal não é constante para 

todo o sistema, fator este característico de um sistema com congestionamento. É 

importante notar, na figura 5.3.3, que a partir do trecho de PD aonde o gerador PG3 

começa a ser despachado, cujo valor correspondente inicial é de 0,74 p.u.,(mostrando que 

a restrição de 50MW na linha 1-2 está ativa). Após a restrição se tornar ativa o preço 

locacional marginal no nó 1 sofre uma modificação , ou seja, seu valor agora é uma 

combinação das ofertas da unidades geradoras 2 e 3, sendo que o pico no valor do PLM 

caracteriza o formato desse problema de otimização linear que gera valores constantes em 

termos de multiplicadores de Lagrange (PLM), pois a derivada da função custo linear 

sempre será uma constante. 

 

 A figura 5.3.3 mostra que o sistema se torna infactível, (observar a reta amarela) para 

valores de PD mais baixos do que no caso do sistema sem congestionamento (figura 

5.3.1), lembrando-se que o PD representa a carga no nó 1, ou seja, a tolerância a aumentos 

de carga no sistema com congestionamento é menor do que no sistema sem 

congestionamento. 

 

 A figura 5.3.4 apresenta o comportamento do PLM para diversos valores de carga no nó 1. 

É importante frisar que devido a mudança na carga e ao congestionamento na linha 1-2, 

surgem vários fatores de mudança de geração, aumentando o grau de variabilidade do 

PLM  pois o FMG influi diretamente no multiplicador de Lagrange que compõe a parcela 

do PLM referente ao congestionamento do sistema, logo, o produto FMGX  muda, 

segundo a equação 3.3.12.  

 

3) Sistema com congestionamento de 50MW na linha (1-2) , (1-3) e (2-3) e com carga nominal 

de 90MW 
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FMG=1/3 PD=90MW 

    (p.u) 0.6 

    (p.u) 0.3 

   (p.u) -0.4 

   (p.u) 0.1 

    ($/MW.h) 15 

    ($/MW.h) 5 

    ($/MW.h) 10 

 

     Tabela 5.3.3: Valores ótimos das variáveis de estado e dos PLMs 

 

 

 
            Figura 5.3.5: Despacho ótimo de geração para carga variável caso 3 

 

 
          Figura 5.3.6: Variação do preço locacional marginal para o nó de carga caso 3 
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 A figura 5.3.5 mostra que para um sistema possuindo congestionamento em todas as linhas de 

transmissão, a área de factibilidade se torna mais limitada. No caso 3 o conjunto de soluções se 

torna infactível, além de não ótimo, a partir de 1 p.u para o valor de PD e, no caso 2 do sistema 

com congestionamento em apenas uma das linhas (figura 5.3.3), o conjunto de soluções se torna 

infactível a partir de 1,2 p.u para valor de carga no nó 1. 

 

 O comportamento do preço locacional marginal de energia é o mesmo tanto para o caso com 

congestionamento em um ramo do circuito (caso 2) como no caso com congestionamento em 

todos os ramos. Isso é verificado através da análise da figura 5.3.6 e a sua comparação com a 

figura 5.3.4, pois o PLM, ou seja, só o que muda são os limites da zona de factibilidade das 

soluções em ambos os casos. 

 

 

5.4   Otimização robusta 

No desenvolvimento do preço locacional marginal e no estudo de casos nos tópicos anteriores foi 

considerado apenas parâmetros determinísticos na análise, no entanto, os sistemas elétricos de 

potência atuais exibem inúmeros parâmetros não determinísticos ou parâmetros dependentes de uma 

vasta gama de outros processos complexos que os tornam, de certa forma, imprevisíveis. Além disso, 

com o crescimento da matriz energética em torno de fontes alternativas de energia que possuem um 

alto grau de variabilidade ou instabilidade como a energia fotovoltaica e a energia eólica, é de extrema 

necessidade a consideração da distribuição de incertezas ao longo do equacionamento sistêmico que 

caracteriza o SEP. 

A otimização robusta é uma das propostas relativamente novas [10] de se trabalhar em um espaço de 

incertezas. No entanto, primeiramente é necessário a definição dessas incertezas nos sistemas elétricos 

de potência para depois obter uma definição mais concreta do que a otimização robusta propõe. 

Existem dois tipos de incertezas nos sistemas elétricos de potência: 

(1) Incertezas no sentido matemático, como a diferença entre o estado medido e o estimado. 

(2) Fontes de incertezas, incluindo a capacidade de transmissão de energia elétrica, 

disponibilidade de geração,surtos não planejados, regras de mercados, preço do combustível, 

interrupções de energia, etc. 

Este trabalho se focará apenas no segundo tipo de incertezas, visto que o objetivo principal é a 

caracterização de um preço locacional marginal no escopo de metodologias de otimização. 

5.4.1 PLM e a otimização robusta 

O objetivo principal da otimização robusta é encontrar pontos de máximos e mínimos de variáveis de 

estados que possuem um certo grau de incertezas, e o critério que tal metodologia de otimização 

utiliza é o critério da minimização do máximo risco, baseado na teoria dos jogos [10]. Em outras 

palavras, assume-se o máximo risco possível, ou pior caso em termos de factibilidade de soluções, 

proveniente da variabilidade dos valores das variáveis de estados devido a ação das incertezas, e é 

realizado uma minimização dentro deste espaço de soluções. Dessa forma, é necessário um certo 

conhecimento do comportamento das incertezas em termos estocásticos fazendo com que tal modelo 

encontre suas melhores aplicações em atividades on-line. A robustez vem do fato de que otimizando o 

pior dos casos, o sistema se torna imune a soluções não factíveis quando submetidos as incertezas, 



57 
 

 
 

pois estas já foram consideradas no processo de otimização, no entanto, um ponto negativo desta 

metodologia é a geração de soluções conservadoras de forma a não explorar os melhores valores 

possíveis de otimização do sistema. 

Em termos de uma formulação do preço locacional marginal, as incertezas podem ser inseridas nas 

principais variáveis de estados do problema do despacho econômico na forma linear ou não linear. Um 

exemplo é mostrado abaixo, onde as incertezas estão em torno do preço do combustível relativo a 

curva de geração: 

    R(   (t),U(t)) =                         (5.4.1) 

Onde 

    O custo real de geração defindo como: 

                                                   
  
                              (5.4.2) 

      : O custo mínimo de geração se as informações a respeito das incertezas pudessem ser obtidas 

de maneira determinística. 

                             
  
                  (5.4.3) 

U(t): Parâmetros de incertezas 

      : Potência de cada gerador esperada durante um certo intervalo de tempo 

O operador min max R significa a minimização do máximo risco causado pelos parâmetros de 

incertezas: 

                                     
 

 
               (5.4.4) 

Os valores de potências de geração provenientes da função (5.4.4)  serão usados para a caracterização 

de um preço locacional marginal sujeito as incertezas. Da mesma forma que os parâmetros de 

incertezas foram inseridos na curva de custo de geração, elas podem ser inseridas nos limites de 

transmissão de energia elétrica para caracterizar o congestionamento, e podem ser inseridas nas perdas 

ou variabilidade de cargas. 

As equações de (5.4.1) até (5.4.4)  foram aplicadas em um despacho econômico não linear, no entanto, 

este trabalho se limitará a aplicação da otimização robusta no ambiente de programação linear. 

 

O problema do despacho econômico segundo a programação linear (2.3.3) e considerando as 

incertezas, fica da forma: 

    

     Min   X                                

s.t.          AX = constante 

              X 0 
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    :     θ +                     }         (5.4.5) 

 

Neste caso será considerado o efeito das incertezas no preço da energia somente, desconsiderando as 

incertezas no congestionamento, ou seja, a variabilidade de valores será apenas na função do custo de 

geração. 

Segundo a equação (3.3.12) do problema de otimização linear 

L =            
  
   

 
                    

  
   

 
          θ +ζ) -        (      -       -  

     
    
   (    -                 -      

    
    (     -                                                          

A parcela da função custo passará a possuir um vetor de incertezas U, associado: 

                                                                                        

  

   

  

 

   

                                                                                                

Como o preço locacional marginal de referência é uma função direta do gradiente da função custo 

relativo à potência gerada: 

                
  
      

      =   (U) =   +                                    (5.4.7) 

 

O      é o componente de incertezas associado ao preço locacional marginal de referência. Por 

melhoria de nomenclatura: 

               

De modo que agora o preço locacional marginal será composto de uma componente de referência, uma 

componente de congestionamento, e uma componente de incertezas que dependerá da estratégia 

adotada na caracterização das incertezas propriamente ditas. 

 

     PLM =     +     +                   (5.4.8) 

 

Para a solução dos casos a seguir, foi utilizado método do gradiente junto ao software Matlab que 

proporcionou a toolbox referente ao método Simplex. A análise robusta foi implementada juntamente 

com a declaração das variáveis do problema de otimização na plataforma do Matlab. 

     

 

 

5.4.2 Sistema com três geradores e uma carga: 
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            Figura 5.3.1: Diagrama do sistema 5.3 

Será analisado o caso 2 do capítulo 5.3 descrito pelo diagrama unifilar da figura 5.3.1 onde a função 

custo será submetida às incertezas, cuja topologia (estratégia de risco) escolhida foi a de uma 

circunferência que possui características de robustez eficazes em uma vasta classe de problemas [11]. 

Como a função custo possui dois elementos de potência de geração, a incerteza proposta pode ser 

inserida de maneira direta sem modificações.  A rotina de solução do problema de otimização com 

incertezas foi implementado no Matlab seguindo os critérios de (5.4.1) á (5.4.4). 

     

         ² +     ²   1000                (5.4.2) 

De modo que as soluções encontradas do problema de otimização serão factíveis dentro de uma 

circunferência de raio 10   , simbolizando uma incerteza de 10    MW. 

 

Caso sem incertezas 

Sistema com congestionamento de 50MW na linha (1-2) e com carga nominal de 90MW 

FMG=1/3 PD=90MW 

    (p.u) 0.6 

    (p.u) 0.3 

   (p.u) -0.4 

   (p.u) 0.1 

    ($/MW.h) 15 

    ($/MW.h) 5 

    ($/MW.h) 10 

 

 

     Tabela 5.3.2: Valores ótimos das variáveis de estado e dos PLMs 
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   Figura 5.3.4: Variação do preço locacional marginal para o nó de carga caso 2 

 

Caso com incertezas (    =0 e      = 32) 

 

FMG=1/3 PD=90MW 

    (p.u) 0.6 

    (p.u) 0.3 

   (p.u) -0.4 

   (p.u) 0.1 

PLM1($/MW.h) 10,32 

    ($/MW.h) 5 

    ($/MW.h) 10,32 

 

 

     Tabela 5.4.2: Valores ótimos das variáveis de estado e dos PLMs 

 

 

 
 

Figura 5.4.2: Variação do preço locacional marginal para o nó de carga caso 2 com incertezas 



61 
 

 
 

 

 

 

 

 

 

 

 

 

Caso com incertezas (    =32 e      = 0) 

 

FMG=1/3 PD=90MW 

    (p.u) 0.6 

    (p.u) 0.3 

   (p.u) -0.4 

   (p.u) 0.1 

    ($/MW.h) 15,32 

    ($/MW.h) 5,32 

    ($/MW.h) 10 

 

 

     Tabela 5.4.3: Valores ótimos das variáveis de estado e dos PLMs 

 

 

 

Figura 5.4.3: Variação do preço locacional marginal para o nó de carga caso 2 com incertezas 

 

 

 

  

 Observa-se que nos dois casos em que foi aplicado a otimização robusta, os valores ótimos de 

potência gerada não mudaram em comparação com os valores obtidos pela otimização sem 

incertezas demonstrando um certo grau de robustez nas soluções, em vista de que foi aplicado 
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uma variação nos parâmetros das potências de geração em um raio de circunferência 

considerável. 

 

 A presença das incertezas influenciou diretamente na variação dos preços locacionais marginais 

tanto dos nós de geração quanto dos nós de carga, demonstrando que a desconsideração das 

incertezas no problema do despacho econômico pode gerar resultados não factíveis em termos 

matemáticos e resultados errôneos em termos econômicos. Através da comparação da figura 

5.4.2 e figura 5.4.3 (casos com incertezas) com a figura5.3.3 (casos sem incertezas) nota-se que   

a variação nos preços locacionais marginais não é tão perceptível, entretanto, a diferença nos 

valores entre os preços locacionais marginais foi de 0,32 $/MW.h  simbolizando 2% do preço 

mais alto de energia e 6,4% do preço mais baixo de energia. É importante frisar que foi 

considerado as incertezas apenas nos valores de potência gerada, no entanto sabe-se que um 

sistema possui diversas fontes de incerteza. Esse fato mostra um potencial de economia  além 

do ajuste das soluções factíveis.  

 

 Devido a preservação dos valores das variáveis de estados, a otimização robusta se mostrou eficaz 

em uma certa classe de problemas de programação linear 

 

 

 

6 Conclusão 

Neste trabalho de conclusão de curso, foram utilizados dois desenvolvimentos matemáticos, um não 

linear e outro linear, no intuito de caracterizar o preço locacional marginal. Uma expansão da ideia 

básica do PLM e também a construção de uma filosofia mais profunda do seu significado, expondo os 

principais problemas que se desdobram nas esferas físicas, em torno da geração, transmissão e 

distribuição de energia elétrica, nas esferas matemáticas em torno das técnicas de otimização, e nas 

esferas econômicas que incorporam os sistemas de trocas através das estruturas desverticalizadas dos 

mercados de energia foram discutidas  

As quatro metodologias aplicadas no estudo de casos que são, os multiplicadores de Lagrange, redes 

neurais de Hopfield, método simplex e otimização robusta, cumpriram seus objetivos; cada 

metodologia foi escolhida para abordar um diferente aspecto do PLM de modo a produzir um 

somatório final em termos de resultados qualitativos e quantitativos coerentes com o objetivo deste 

trabalho que é o estudo de certas propriedades do PLM e análise de seus principais termos 

matemáticos como os multiplicadores de Lagrange e o fator de mudança de geração para obter uma 

visão geral desta ferramenta e de seu propósito. A abordagem do PLM não linear mostrou de forma 

direta a importância da divisão dos nós de geração em marginais e não marginais para melhorar a 

formulação matemática desta ferramenta e caracterizar seu principal comportamento que é o de 

fornecer um preço de energia para os nós de geração não marginais e assumir um valor nulo para os 

nós marginais do sistema demonstrando a inexistência de um preço para estes pontos, facilitando 

assim alguns cálculos posteriores. A abordagem do PLM linear permitiu uma melhor compreensão do 

propósito do preço locacional marginal para uma avaliação do sistema quanto ao seu 

congestionamento, e isso foi possível através da exemplificação dos fatores de mudança de geração 

(FMG). O método simplex utilizado no programa Matlab permitiu o cálculo de preços nodais de 
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maneira rápida e eficiente, em vista também da estrutura de programação linear com a qual o PLM foi 

caracterizado, permitindo a visualização do comportamento do PLM em cada nó do SEP para 

diferentes casos de demanda. As redes neurais de Hopfield se mostraram uma técnica adaptativa, 

rápida em termos de processamento computacional e com um grande potencial devido a sua 

combinação de função energia de Lyapunov e redes neurais artificiais que fazem uso da realimentação 

para obter a estabilidade de um sistema. Finalmente, a otimização robusta realizou o seu objetivo de 

mostrar o efeito das incertezas em processos de otimização e a importância de sua filosofia de 

minimização do máximo risco para gerar soluções factíveis e imunes às incertezas em uma 

determinada topologia de soluções. Finalmente, foram observadas contribuições na área de operações 

de sistemas elétricos de potência, visto que o preço locacional marginal de energia foi implementado 

com técnicas relativamente novas e equacionamentos mistos provenientes de pesquisa bibliográfica e 

traquejo algébrico pessoal, mostrando assim um aspecto dinâmico e passível de mudanças do PLM  

que abre espaço para outras formas de desenvolvimento matemático e pesquisas no futuro. 
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