UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

DEPARTAMENTO DE ENGENHARIA ELETRICA

Mapeamento do preco locacional marginal por

metodologias de otimizacao

Aluno: José Luiz Montandon Neto

Orientador: Prof. Dr. Luis Fernando Costa Alberto

SAO CARLOS

2016



José Luiz Montandon Neto

Mapeamento do prec¢o locacional marginal por

metodologias de otimizacao

Trabalho de Concluséo de
Curso apresentado & Escola
de Engenharia de Sdo Carlos,

Universidade de S&o Paulo

Curso de Engenharia Elétrica
com Enfase em Sistemas de

Energia e Automacao

Area de concentragio:
Operacao de Sistemas

Elétricos de Poténcia

Orientador: Prof. Dr. Luis

Fernando Costa Alberto
Sao Carlos

2016




AUTORIZO A REPRODUCA OTAL OU PARCIAL QESTE TRABALHO,
POR QUALQUER MEID COMVEWCIONAL OU ELETROMICO, PARA FIMS
DE ESTUDC E PESQUISA, DESDE QUE CITADA A FONTE.

H734m

Hontandon Heto, Jos& Lois

Hapeamento do prego locacional marginal por
metodologias de n-t:i.min:.-;lu 4 Jo=& Luiz Montandon Neto:
pri=ntador Luis Fernando Costa Alberto. S3o Cazlos=,
Z016.

Monografia (Graduagdo em Engenharia Elétrica com
fnfase em Jistemas de Energia = Auto 3p) == Escola d=
Engenharia de S53o Carlos da Universidade de S3o Paulo,
2016,

1. Otimizacio. 2. Preco de Energia. 2. Universidade
de 3o Paulo. I. Titulo.




Nome: José Luiz Montandon Neto

Titulo:” Mapeamento do preco locacional marginal por
metodolodias de otimizagao”

Trabalho de Concluséo de Curso defendido e aprovado em 13/06/2016,
com NOTA (8,0), pela comisséo julgadora :

Prof. Associado Luis Fernando Costa Alberto — (Orientador —
SEL/EESC/USP)

Prof. Associado Jodo Bosco Augusto London Junior — (SEL/EESC/USP)

Dra. Ana Paula Mazzini — (SEL/EESC/USP)

Coordenador da CoC — Engenharia Elétrica — EESC/USP:

Prof. Dr. José Carlos de Melo Veira Junior



AGRADECIMENTOS

Agradeco a minha mae pelo apoio psicoldgico (em seu sentido técnico) e maternal.
Agradeco a minha familia por se manter unida.

Agradeco ao professor Dr. Luis Fernando Costa Alberto pela sugestdo do tema e pelas
orientacOes objetivas e Uteis em relagdo a conducdo do trabalho.

Agradeco a Universidade de Sdo Paulo pelos recursos oferecidos.



RESUMO

MONTANDON NETO, J. L. Mapeamento do preco locacional marginal por
metodologias de otimizacdo . Dissertacdo de trabalho de conclusdo de curso, Escola de

engenharia de Sao Carlos, Universidade de Sao Paulo, 2016.

O preco locacional marginal de energia € o menor custo para suprir a proxima unidade de
energia em um determinado ponto do sistema elétrico de poténcia (SEP), que inclui a geracé&o,
transmissdo e distribuicdo de energia elétrica. Neste trabalho é realizado uma exposicédo
tedrica e modelamento matematico do preco locacional marginal de energia na sua forma néo
linear e linear, além de uma breve exposicdo dos mecanismos de atuacdo dos mercados de
energia. Os principais termos que compde o preco locacional de energia (PLM) séo estudados
separadamente para que uma compreensao mais abrangente seja alcancada. Primeiramente
sdo utilizadoz os multiplicadores de Lagrange para caracterizar a ideia basica de um. A partir
da formulacdo primaria ndo linear do PLM é obtido seu equivalente linear derivado das
equac0es do fluxo de poténcia dc, permitindo uma comparagéo entre as suas duas formas.

Quatro metodologias sdo escolhidas para o estudo de casos do PLM, para que as suas

particularidades sejam expostas de maneira clara e eficiente:

1. Formulacédo ndo linear do PLM onde a otimizacdo é obtida através da aplicacdo direta
dos multiplicadores de Lagrange combinado com processos iterativos.

2. Redes neurais de Hopfield que modela o problema de otimizacéo utilizando técnicas
adaptativas e energéticas

3. Método simplex que faz uso da programacdo linear no ambiente da otimizacdo, ou
seja, esta metodologia requer uma linearizagcdo do PLM

4. Otimizacdo robusta que trabalha com a inser¢cdo de incertezas no problema de

otimizacdo em um ambiente de programacao linear

Palavras-chave: preco locacional marginal, otimizacdo, multiplicadores de Lagrange,

linearizacdo do fluxo de poténcia, otimizacdo com incertezas.



ABSTRACT

MONTANDON NETO, J. L. Mapping of the locational marginal pricing by optimization
methodologies. Final work, Escola de engenharia de S&o Carlos, Universidade de Sao Paulo,
2016.

The locational marginal pricing is the least cost to provide the next energy unit in a given
point of the electric power system (EPS), which includes generation, transmission and
distribution of electric energy. In this work, a theoretical exposition and a mathematical
modeling of the locational marginal pricing of energy in it’s nonlinear and linear form are
discussed. Indeed, brief exposition of the power market operation mechanism is made. The
key terms that compose the locational marginal pricing (LMP) are studied separately to
provide great insight into the comprehension of this concept. First, the Lagrange multipliers
are used to illustrate the main basic idea of a LMP, and after this development it’s
accomplished a combination between mathematical equations and the philosophy of the
locational marginal pricing is discussed. From the primary nonlinear formulation of the LMP
it’s linear equivalent is derived from the dc power flow equations allowing a comparison

between the two forms.

Four methodologies are chosen for studying the LMP of some small systems with the aim of

providing a clearer and efficient exposition of their particularities:

1. Nonlinear formulation of the LMP where the optimization is obtained from the direct
application of the Lagrange multipliers combined with iterative processes.

2. Hopfield neural networks modelling the optimization problem using adaptive and
energetic techniques.

3. Simplex method that uses the linear programming in the optimization environment, in
other words, this methodology requires a linearization of the LMP.

4. Robust Optimization that works with the insertion of uncertainties in the optimization

problem in a linear programming environment.

Keywords: Locational marginal pricing, optimization, Lagrange multipliers, power flow

linearization, optimization with uncertainties.
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1 Introducéo

Otimiza¢do é uma importante area da matematica e peca integral dos processos da engenharia e
economia pois objetiva em descobrir solucdes otimas para problemas variados através da
consideracao de multiplas escolhas enquanto satisfaz restricdes e recursos limitados. A teoria de
otimizacdo e seus métodos vém recebendo atengdo nos ultimos 15 anos [1] devido ao avancgo
computacional, processamento paralelo, softwares mais eficientes, inteligéncia artificial e sistemas
heuristicos. O software Matlab é um exemplo do qudo avancado e imediato as ferramentas de
otimizacao, acessiveis ao publico, se tornaram.

Matematicamente, o problema bdasico de otimizacdo consiste na consideracdo de uma funcdo
objetivo, ou funcdo alvo, composta de elementos (varidveis), e na procura por combinag¢des destas
varidveis que resultardo na minimizacdo ou maximizacdo dessa funcdo custo. Quando esse tipo de
problema possui restricdes, o que ocorre na maioria das vezes, as restricGes sdo traduzidas em
relacdes matematicas e inseridas na funcdo custo através de diversas técnicas analiticas. Uma vez
completada a formulacdo geral de um problema de otimizacdo, a metodologia aplicada para sua
solucdo dependerd da natureza do sistema, podendo ser linear ou nao linear, com caracteristicas
diferentes para ambos os casos. O desafio da otimizagdo é encontrar pontos que minimizam ou
maximizam a funcdo objetivo de forma global, quando esta funcdo possui elevada complexidade e
restricdoes. Dessa forma, a area de otimizagao carece de ferramentas e estudos mais aprofundados.

Como exposto acima, a fungdo custo é uma estrutura matematica que combina diversas varidveis em
torno de um valor real, fazendo com que uma vasta familia de problemas fisicos possam ser
enquadrados nessa formulagdo. A operacdo de sistemas elétricos de poténcia (SEP) e o seu
planejamento econdmico sdo geralmente baseados em problemas de otimizacdo cujos resultados
delineiam caminhos para uma operagdo segura, confidvel e econdbmica num contexto mundial que
exige cada vez mais do uso consciente da energia elétrica. A figura 1.1 ilustra os aspectos
eletromecanicos dos sistemas de geragao, transmissdo e distribuicao de energia elétrica.

CARGA TRAFISCA  CARGA

2 MONOFAZICA
0V g
230V é

Figura 1.1: Sistema de transmissao trifasico. Adaptado de [6]

Neste capitulo introdutério, pretende-se expor as caracteristicas do mercado de energia, as
metodologias basicas de otimizacdo aplicadas aos estudos de mercado e as propostas de
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metodologias de otimizacdo para a solucdo do problema do prego locacional marginal, de forma a
contextualizar o leitor as diferentes vertentes desse trabalho.

1.1 Operag0es econdmicas do SEP

Uma operagao econdmica de um sistema elétrico de poténcia requer um fornecimento ininterrupto
de energia para todas as cargas conectadas ao sistema de modo a minimizar o custo do fornecimento
da energia para cada gerador envolvido no balanco de poténcia do sistema. O planejamento étimo
de geracdo de energia elétrica, considerando as condicdes dindmicas do SEP, é a célula mater de
todo esse processo. As andlises relativas a selecdo das unidades geradoras, ou programacado de
geracao, tém como principal objetivo, atender a demanda em um dado momento e para isso realiza
simulagdes e previsdes em diferentes horizontes de tempo:

* Plurianuais (5 a 10 anos);

* Anuais;

» Mensais;

* Diérias;

* Horarias (despacho na proxima hora);
* Instantdneo (despacho econdémico).

Os fatores considerados na analise do planejamento energético séo:

Econbmico (custo da geracéo);
Capacidade do sistema de transmissé&o;
Seguranca (confiabilidade do suprimento, minimo risco de falta de energia elétrica).

O sistema de geracdo de energia elétrica mais usado no mundo € o hidrotérmico, com destaque para as
hidrelétricas no Brasil. Embora o custo de operacdo das usinas hidrelétricas seja praticamente nulo,
devido ao combustivel ser gratuito apds a instalacdo da usina, esse modelo possui gastos relativamente
altos de manutengdo e ainda lida com um problema extra na programagdo da geracdo devido as
caracteristicas ndo lineares, no tempo, do fluxo da dgua O combustivel das usinas térmicas pode ser
estocado, fazendo com que a programacgéo da geracdo desse modelo seja mais simples, além do custo
de implantacdo ser inferior ao de uma usina hidrelétrica. O modelo das termoelétricas perde em
relacdo ao hidrelétrico devido a quantidade limitada de combustivel e a menor quantidade de poténcia
produzida. Conclusivamente, os dois sistemas apresentados possuem qualidades e defeitos que
dependem muito do local de aplicacédo e da situacdo econémica do pais e que se complementam.

1.1.2 Despacho econdmico e pré-despacho

Despacho Econdmico (DE): Essa operagdo tem como objetivo entregar a energia ao consumidor
visando minimizar o custo de producdo pelas unidades geradoras. Para realizar um bom despacho sdo
necessarias a utilizacdo de dados e estimativas que estdo relacionadas com as operacOes de pré-
despacho (PD)

Pré-Despacho (PD): O pré-despacho tem como objetivo fornecer uma programacdo de geracdo e
intercambio de energia elétrica em intervalos horério para o préximo dia, levando em consideracdo os
horizontes de planejamento anteriores e aspectos relativos a economia e seguranca operacional do
sistema elétrico.
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Com isso, € necessario 0 uso de técnicas matematicas e programas computacionais de simulagGes que
processem os dados medidos do SEP, que envolvem grandezas fisicas e econdmicas, e produzam
resultados capazes de orientar o operador do sistema elétrico de poténcia quanto ao conjunto de acdes
eficientes, necessarias para uma boa gestdo. No Brasil, a entidade responsavel por esse monitoramento
e controle e chamada de Operador Nacional do Sistema Elétrico (ONS) que faz uso de um software
supervisorio para a aquisicdo de dados (SCADA) e softwares de planejamento hidrotérmico
NEWAVE e DECOMP [2]. A figura 1.2 mostra o fluxograma de processos do despacho e pré-
despacho econémico.

Planejamento
Médio Prazo
(periodo de 5 anos)

custos marginais
A
Planejamento
de Curto Prazo
(periodo de alguns
meses até 1 ano)

metas energéticas

Planejamento de Curtissimo
Prazo /| Pré-Despacho
(periodo de 1 dia até uma semana)

solucéo do pré-despacho
(referéncia)

h 4
{Opera;éo em Tempo Real]

Figura 1.2: Cadeia de planejamento (CEPEL,2003)

1.1.3 Mercados de energia

Até meados dos anos 70, os neg6cios de energia elétrica eram organizados de maneira vertical, ou
seja, as companhias que forneciam energia elétrica eram pagas de acordo com o custo do servico e dos
componentes relacionados com a geragdo, transmissdo e distribui¢do. Entretanto, a partir dos anos 80
comegou a ocorrer uma reestruturacdo do mercado de energia elétrica mundial. Um exemplo disso foi
0 ato PURPA realizado nos E.U.A que promovia a conservacdo da energia elétrica, incentivando o uso
de energias renovaveis e outras praticas de economia energética, devido a crise que o pais enfrentava
no inicio da década de 70 [3]. Esse ato promoveu o inicio da transi¢do da estrutura vertical de mercado
para uma reestruturacdo horizontal definida pela separacdo dos agentes de geracdo, transmisséo e
distribuicdo. Dessa forma, ha hoje uma competicdo muito maior dos mercados de energia elétrica
fazendo com que 0s mesmos se organizem em diferentes estruturas.

e Mercados centralizados: Recebem propostas de compra e venda de energia elétrica para cada meia
hora ou uma hora do dia seguinte (day-ahead). Essas propostas incluem valores disponiveis de
poténcia e pre¢co minimo a receber. Esses mercados procedem ao encontro dessas propostas
realizando um despacho econémico para cada intervalo de tempo do dia posterior, intervalo esse
que depende dos dados discretizados no tempo recebidos pela proposta inicial.
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e Contratos bilaterais: Estabelecimento de contratos fisicos ou de natureza financeira. Esses
contratos supde o relacionamento direto entre fornecedores e clientes estabelecendo acordos que
englobam o prego e a modulacdo da energia a produzir/absorver ao longo de um tempo, em geral
longo.

e Ambiente de contratacdo regulada: Realizado por meio de contratos de fornecimento entre o
consumidor e a concessionaria em que se encontra conectado.

e Ambiente de contratacdo livre: Realizado por meio de contratos de compra de energia entre 0
consumidor livre e um fornecedor, podendo ser um gerador e/ou comercializador de energia. A
contratacdo em tal ambiente permite uma maior flexibilidade e reducdo na demanda de energia
elétrica.

e Modelo Pool: Super-entidade que estabelece relagBes entre os produtores, distribuidores,
comercializadores, consumidores e o operador nacional do sistema elétrico

e Mercado spot: Admite apenas transagdes imediatas entre fornecedor e consumidor de energia
contrastando com os mercados usais que utilizam programacdo de geracdo em um horizonte de
evento de 5 dias a 2 anos. Esse tipo de mercado ndo foi adotado no Brasil, porém existem
referéncias de que uma transi¢do em certos pontos do sistema [3], esta ocorrendo.

A figura 1.3 mostra os aspectos j& descentralizados da estrutura de geragéo, transmissdo e distribuicéo
de energia elétrica.

OPERACAO S \)
DO SISTEMA o

Coordenagéo
Controle
Supervisao

v v v
OPERACAO DAS OPERACAO DAS Agentes 68 ) ~Demais ™
iy i Agentes de i epteis “ S OPERACAO DAS
INSTALACOES [ Garacan INSTALACOES I'ransmissdo e INSTALACOES Agentes de
DE GERAGAO A v DE TRANSMISSAO tribuica i A 7 Qperagéo ~
Comando Comando Comando
Execucdo Execugdo Execugdo
Supervisdo Supervisao Supervisao

Figura 1.3: Hierarquia dos agentes de operacdo do SEP. Adaptado de [7]
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1.2 Otimizacgdo

Muitas sdo as formas de se obter pontos 6timos em um problema de otimizacdo, assumindo que o
problema em questdo possua uma solucdo. A forma mais trivial de se iniciar um processo de
otimizacdo € estabelecendo pontos de partida (chute inicial) para as variaveis da funcdo custo e
observar o comportamento dos valores correspondentes assumidos por essa funcdo. Considerando uma
fungdo custo de uma variavel, ‘f(x)’, a variavel x sera uma solug¢éo 6tima x*, local, que minimiza essa
funcgéo, se e somente se, f(x*) < f(x*+Ax) em um disco fechado de raio ‘Ax’ com x€ R (grupo dos
nameros reais). A variavel x serd uma solugdo Otima x* global que minimiza f(x), se e somente se,
f(x*) < f(x*+Ax) para todo x¢ R A maximizacdo local ou global implica na logica inversa do
procedimento exposto anteriormente. A tarefa de otimizacdo quando realizada de forma manual se
torna dificil, e, em muitos casos, até impossivel, com o0 aumento do nimero de varidveis e das relaces
de dependéncia matematica da funcgéo custo e das proprias restricoes.

Devido a dificuldade da procura por pontos 6timos que minimizem ou maximizem a fungéo custo,
surgem técnicas e teoremas especializados em obter solucées de forma metddica, eficiente e em tempo
habil, embora cada estratégia possua sua respectiva deficiéncia. Uma das técnicas mais usadas em
problemas de optimizacdo é o método do gradiente, proveniente de uma parte da matemaética
denominada calculo vetorial, devido a sua capacidade de orientar a busca em direcdo a valores
maximos e minimos, além da obtencéo direta de pontos estacionrios (derivada nula). Somado a isso,
existem métodos destinados a explorar o espago de solu¢bes de maneira mais pragmatica (algoritmos).
Um deles é denominado de método simplex baseando-se no uso de fungdes custo e restri¢des lineares,
linearizando o problema quando este apresenta caracteristicas ndo-lineares, e a programag&o ndo-linear
que obtém uma solu¢do 6tima dos problemas gerais de otimizacdo de maneira exata.

Uma vantagem da programagdo ndo-linear sobre a linear € a possibilidade de aplicacdo mais geral do
primeiro nos problemas de otimizacdo, sendo que em muitos casos um algoritmo de programacédo nao-
linear pode ser utilizado em problemas lineares. Para que ocorra o inverso, uma linearizagdo deve ser
aplicada ao problema provocando perda de informacgdes que muitas vezes prejudica a solucdo final, no
entanto, o que a programacdo linear perde em termos de informacdo, ela ganha em termos de
velocidade de resolucdo e convergéncia matematica. Ou seja, uma combinacdo de ambos os tipos de
programacdo € de extrema importancia para o desenvolvimento de uma metodologia coerente.

Os métodos de programacao utilizados nesse trabalho sdo expostos abaixo

Programacéo linear:
e Meétodo Simplex
Programacéo nao linear:

e Redes de Hopfield

O método dos multiplicadores de Lagrange pode ser incorporado as técnicas de programagdo nao
linear e linear. Finalmente serd apresentado no final do capitulo 5 um modelo de otimizagdo mais
recente denominado de otimizacdo robusta[10] que esta dentro do escopo da programacdo linear e se
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destaca quanto a metodologia da escolha das melhores alternativas para atingir o0 maximo ou minimo
valor da funcéo custo.

1.3 O problema do Preco Locacional Marginal

A partir da mescla dos aspectos fisicos e econdmicas provenientes do SEP sdo criados indices
destinados a mensurar estados do sistema, um exemplo disso é o0 kW.h que mede a quantidade de
fluxo de energia elétrica no tempo, e, quando associado a um preco, faz o controle desse commodity
num ambiente amplo de trocas. Precos locacionais marginais (PLMs), desenvolvidos nos novos
mercados reestruturados[4], também chamados de precos nodais, constituem a base da nova geracao
dos mercados de energia. O PLM mede 0 menor custo para suprir uma unidade adicional de energia
em um determinado local do sistema associado a uma demanda. Dessa forma, o problema do PLM é
um problema de despacho econdmico e de fluxo de energia 6timo, com horizonte de tempo de curto
prazo em termos de programacdo de geracdo (despacho 6timo das unidades geradoras), ou seja, é
necessario um calculo em pequenos intervalos de tempo. De maneira mais especifica, 0 preco
locacional marginal pode ser visto como uma ferramenta destinada a otimizar a distribuigdo do fluxo
de energia num sistema elétrico de poténcia minimizando, ao mesmo tempo, 0 custo da energia
elétrica de cada unidade geradora levando-se em consideracdo as restricdes do SEP. O termo
locacional é o que torna 0 PLM uma pega relativamente nova no mercado energético, pois ela propde
calcular o melhor preco da energia em cada ponto do sistema, baseando-se nas caracteristicas de
seguranca da rede, fazendo com que o seu valor mude de ponto a ponto. Existem fatores de penalidade
que modificam o pre¢o nodal, associados as perdas energéticas ao longo da transmisséo,
congestionamento e as proprias caracteristicas das unidades geradoras. Os fatores de penalidade
diferenciam o PLM do custo marginal de operacdo (CMO) que é um indice brasileiro [6] destinado ao
calculo do melhor preco de fornecimento de energia em uma determinada regido brasileira. No
entanto, 0 CMO nao possui um alto grau de volatilidade ao longo do SEP, com excecédo das areas que
apresentam outras fontes de geracdo, desse modo seu valor ndo reflete as caracteristicas da rede
relativas ao congestionamento, além do erro econémico inerente da aplicacdo de um Unico preco de
energia para um grande sistema dindmico desconsiderando-se as perdas ao longo da transmisséo. Por
ser um resultado direto de processos de otimizagdo [5], a deducéo e derivagdo do PLM ndo € Unica,
fazendo com que, muitas vezes, os mercados que o utilizam ndo apresentem sua formulacdo analitica,
e tal falta de transparéncia bloqueia os esforcos de pesquisadores na avaliacdo do desempenho do
PLM nos mercados de energia [5]. Além disso, as maiores dificuldades enfrentadas por essa técnica
sdo as provenientes das caracteristicas extremamente ndo lineares do sistema que podem gerar
instabilidade e solugdes que ndo condizem com a realidade (infactiveis), além de tocar em certas
questdes politicas, pois sua aplicacdo por ser extremamente matematica pode prejudicar transagdes
como os contratos bilaterais de energia [6]. A figura 1.4 ilustra de uma maneira didatica a relagdo de
interdependéncia entra a energia elétrica e os sistemas econdmicos como um todo.

Figura 1.4: Mercado de eletricidade ilustrativo. Adaptado de [6]
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Aplicagdes do PLM

O PLM gera importantes resultados que refletem simultaneamente certos estados da rede elétrica e dos
mercados de energia em um tempo especifico como o congestionamento elétrico na linha de
transmissdo e 0 preco da energia respectivamente. Por incorporar os efeitos das perdas de energia e
dos limites da linha de transmissdo, o PLM pode ser usado como um segmento orientador para uma
operacdo segura do SEP, tanto em questdes elétricas quanto econdmicas, e, devido a sua caracteristica
de indicacdo do fornecimento étimo da proxima unidade de energia, o preco locacional marginal é de
extrema importancia no ambito de planejamentos energéticos. Um exemplo tedrico de aplicagdo seria
a construcdo de industrias em locais cujo PLM possui um valor relativamente baixo pois isto indicaria
menor congestionamento e menores perdas no sistema. Finalmente, o PLM pode ser usado como um
sinal de controle fazendo com que as unidades geradoras ajustem as suas poténcias de saida de modo a
sempre permanecer no espago de solucgdes 6timas. Atualmente o prego locacional marginal possui um
uso restrito no mundo limitando-se aos mercados de energia da Nova Zelandia, Estados Unidos e
Nova Inglaterra denominados, PJIM, CAISO e ISO, respectivamente. O preco locacional marginal, nos
mercados de energia apresentados anteriormente, é usado para analises de risco relativas a
possibilidade de congestionamento em determinadas areas do sistema elétrico de poténcia,
desconsiderando-se os efeitos das perdas energéticas na linha.

O mapa da figura 1.5 mostra precos nodais calculados em 5.727 pontos do sistema através da
simulagdo de um fluxo de poténcia 6timo, que ndo é nada mais do que um despacho econdémico que
leva em consideracdo mais variaveis de estado do SEP.

M Marginal Costs
—40.000 bk

—35.000 §/Mwwh

—30.000 $/bduih

Figura 1.5: Mapa do LMP em Nova lorque segundo a referéncia [4]
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A figura 1.6 mostra o analogo do PLM no Brasil em seu formato de custo marginal de operagéo.

SE/CO s NE N
344,83 344,83 344,83 344,83
305,58 305,58 289,33 289,33
303,99 303,99 303,99 303,99
295,51 295,51 295,51 295,51
275,29 275,29 275,30 275,29
317,26 317,25 317,26 317,26

96,19 45,49 99,83 98,19
149,27 148,06 149,27 149,27
248,44 238,25 248,44 248,44
261,50 176,18 261,50 261,50
303,52 303,48 303,52 303,52
296,31 296,31 296,31 296,31
246,33 246,33 246,33 246,33

1.063,81  1.063,81 743,26 722,93

1.365,94  1.365,94 684,40 429,05
922,82 922,82 792,45 776,56
916,07 916,07 764,23 554,70
592,19 592,19 592,09 592,09
436,15 201,86 436,15 436,15
602,75 602,45 602,75 602,75
722,73 722,73 722,73 722,73
662,36 657,01 662,36 662,36

1.005,32  1.005,32 1.005,32 1.005,32
536,04 536,04 536,04 536,04

Figura 1.6:Custo Marginal de Operacdo (R$/MW.h) brasileiro de 2014.
Adaptado de [7]

1.4 Organizagéo do trabalho

e Capitulo 2: Neste capitulo sera feito uma revisdo matematica relativa aos conceitos essenciais de
otimizacédo, dando destaque as metodologias que serdo mais utilizadas nesse trabalho, e as analises
topologicas dos sistemas elétricos de poténcia, incluindo uma formulagdo do fluxo de poténcia e
sua linearizagao.

e Capitulo 3: Neste capitulo, serdo realizados dois tipos de derivagGes matematicas do PLM a partir
do estudo do despacho econémico e fluxo de poténcia 6timo, um correspondente a sua formulagédo
ndo-linear, englobando uma quantidade maior de varidveis, e uma formulacéo linearizada cuja
aplicacdo é mais difundida nos mercados energéticos que fazem uso dessa ferramenta. Apés as
respectivas derivacdes serd feito uma analise de cada termo do PLM de modo a expor o papel
individual de cada elemento na descrigdo e modelagem do SEP.

e Capitulo 4: Um dos principais problemas em se obter PLMs que retratem o sistema elétrico de
modo realistico é devido ao calculo impreciso dos pontos de operacdo 6timos do SEP, e uma
dessas razbes é a falta de técnicas adequadas ou aplicacdo indevida de métodos j& existentes.
Dessa forma este capitulo vai expor os métodos escolhidos para resolver o problema de
otimizacdo em especifico, analisado cada um de modo a frisar as caracteristicas positivas e
negativas. Sera feito um mapeamento matematico do despacho econdmico e fluxo de poténcia
6timo dentro dos métodos propostos sendo eles, 0 método simplex e as redes de Hopfield. Uma
nova técnica sera proposta, denominada otimizagdo robusta, capaz de tornar a solu¢do do PLM
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imune &s incertezas do SEP, que sdo muitas, com um determinado grau de liberdade em torno dos
pontos de solucdes factiveis.

e Capitulo 5: Neste capitulo, todas as metodologias expostas no capitulo 4 serdo aplicadas para o
calculo do preco nodal e do despacho econdmico em alguns casos especificos de sistemas elétricos
escolhidos de forma conveniente, no intuito de refletir problemas importantes da rede como
congestionamento, perdas e variacdo na carga. Finalmente com os resultados obtidos em
simulacdes , serdo desenvolvidas analises comparativas para destacar as vantagens e desvantagens
de cada método, focando na otimizacao robusta devido a crescente complexidade e expansdo dos
sistemas de geracao, transmissdo e distribuicdo que gera inimeros graus de incertezas.

e Capitulo 6: Principais conclusdes do trabalho.

2 Revisdo matematica de otimizacdo e analise estatica do SEP

Serdo apresentados neste capitulo conceitos de extrema importancia para a compreensdo dos aspectos
estruturais da PLM. Em sua esséncia, 0 PLM é um resultado especifico de um problema geral de
otimizacdo envolvendo, grandezas elétricas e econdmicas que podem ser formuladas da seguinte
maneira:

Min(Méax) F(X) (2.1)
s.a. restricGes de igualdade

restri¢des de desigualdade

Onde F(X) é a funcdo objetivo que devera ser minimizada ou maximizada e X é o vetor de estados do
sistema. A nomenclatura em negrito e o indice transposto se referirdo a grandezas vetoriais enquanto
que a auséncia do negrito e do indice transposto simbolizara grandezas escalares.

2.1 Gradiente e multiplicadores de Lagrange

As propriedades matematicas do gradiente e dos multiplicadores de Lagrange constituem uma das
bases dos processos gerais de otimizacdo devido a intima relagdo com a minimizagdo/maximizacéao de
fungdes objetivos e com a construcdo de zonas de solucGes factiveis sujeitas a restricdes dos mais
variados tipos. Basicamente a combinacdo desses dois conceitos permitem a andlise e
desenvolvimento de uma vasta gama de problemas contendo muitas variaveis. Embora a principio o
método dos multiplicadores de Lagrange permita o uso restricoes de igualdade apenas, no decorrer
desse capitulo serdo apresentadas estratégias criadas para contornar esse problema.
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A caracteristica mais importante do gradiente é a sua capacidade de mostrar a dire¢cdo de maior ou
menor crescimento de uma funcdo. Dada a funcdo F(X) continua em R™, com X={x,, x5, ..., X, }, SeuU
gradiente é definido como:

———oo_ OF — , OF — oF —,

VF(X)—a—XI.Xl +ax2 +...+axn (2.1.1)
Onde, VF(X) é a taxa de variacdo de F(X) nas direcOes de cada uma das variaveis de estado do
espaco X. Dado uma curva Cc F(X) que passa por um ponto P(x;,xs,...,xy), pode-se realizar a
parametrizacao dessa curva no tempo:

r(O=(x(£)1,X ()2, -, X(£)n) (2.1.2)

Como Cc F e X= (x1(t), x2(t),...,x3(t)) satisfaz a equagdo F(X) = 0, aplicando a regra da cadeia
temos:
dF dx1 , OF dx2+ JF dxn _

Da equacg&o acima extrai-se um produto escalar:

JF oF oF dx1 dx2 dxn
<—+ —+ -+ —><—+4 W+'..+F

Ty ar _
ox1 = 0x2 oxn dt >=VF(X) ar 0 (2.1.4)

Logo o vetor gradiente € perpendicular ao vetor tangente da curva parametrizada em r(t).

Figura 2.1: Exemplo de vetor gradiente perpendicular a curva C em trés dimensoes

A curva C, apresentada na figura 2.1, pode ser vista também como uma curva de nivel pertencente a
superficie de F(X) = w(constante). Conclusivamente, o gradiente sendo perpendicular as curvas de
nivel, que sdo paralelas entre si, aponta em uma direcdo na qual um deslocamento dX nessa mesma
dire¢do implica em um aumento mais “’rapido’’ do valor da funcdo F(X) pois este deslocamento
percorre 0 menor caminho possivel de uma curva para outra, isso é observado na (figura 2.2).

Baseado na propriedade do gradiente descrita acima, a deducdo dos multiplicadores de Lagrange se
torna mais clara. Dado a funcdo objetivo F(X) = w agora restrita a uma fungéo restricdo g(X) = ¢, com
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W e c pertencentes ao grupo dos ndmeros reais, 0s pontos criticos de maximo ou minimo de F que
satisfazem g s&o encontrados a partir da equagao:

VF=AVg (2.1.5)
O termo A € R, denomina-se multiplicador de Lagrange.

A equacéo (2.1.5) s6 acontece quando a curva de nivel da fungdo objetivo tangencia a curva descrita
pela funcdo restricdo. O fato de ambos os vetores gradientes estarem alinhados em um determinado
ponto mostra que um movimento, dX’, em qualquer outra direcdo que nao seja a do gradiente de
ambas as fungdes implica em um maior crescimento para a funcéo F enquanto essa satisfaz g .

Dessa forma dado um ponto P de tangéncia entre a curva de nivel e a restricao:

F(X). dX<F(X).dX’ para PEX eV dX’#dX (2.1.6)

Figura 2.2: Argumento geométrico em duas dimensdes para os multiplicadores de Lagrange

Na condicdo acima F foi maximizado, no entanto é trivial mostrar que se VF aponta para a direcdo de
maior crescimento, - VF aponta para a direcdo de menor crescimento e substituindo este ultimo em
(2.1.1), F é minimizado.

Com a equacgéo (2.1.5) pode-se reescrever a funcdo objetivo incluindo a parte dos multiplicadores de
Lagrange respeitando a fronteira de g(X) para que a solucdo final do problema néo se altere:

L(X,\) = F(X) - Ag(X) (2.1.7)
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De modo que:

L _9F . dg
5—5—7\5 (2.1.8)

VF=AVg (2.1.9)
% =-g(X)=0 (2.1.10)
g(X)=0 (2.1.12)

Ou seja, a construcdo de L, também chamado de Lagrangeano, é um artificio matematico para que a
formulacdo de um problema de otimizagdo restrito possa ser escrito como um problema equivalente
irrestrito.

E trivial mostrar que para n restricdes existirdo n multiplicadores de Lagrange. E importante frisar,
também, que a existéncia de um multiplicador de Lagrange garante a existéncia de um ponto 6timo
(méximo/minimo) na solucéo, no entanto, ndo € uma condicdo suficiente fazendo com que sejam
necessarios outros métodos para mapear 0s demais pontos 6timos do espaco topoldgico criado a partir
da delimitag&o das restrigdes e da funcéo objetivo.

2.2 Condigdes de Karush-Kuhn-Tucker

As condicdes de Karush-Kuhn-Tucker ou KKT sdo necessérias para garantir solu¢bes Gtimas em
problemas de otimizacéo, porém ndo suficientes. A sua importancia recai no fato de que tais condigdes
generalizam o conceito de multiplicadores de Lagrange pois consideram restri¢coes de desigualdade,
além das restricbes de igualdade. Esse fator é de extrema importancia para uma abordagem mais
imediata do modelo da LMP, problema este cercado de restricbes de desigualdade, dessa forma, as
condigdes de KKT facilitam a sua formulagéo.

A partir do problema geral de otimizacéo:

Min(Méx) F(X) (2.2.1)
s.a. giX)=0,i=1.2,..,n (2.2.2)
h;” <h;(X)<h;*,i=1,2,...n (2.2.3)

Existem quatro principais condi¢des de KKT que devem ser satisfeitas nesse processo. As trés
primeiras sdo triviais, no entanto, a quarta demonstra a maneira de como trabalhar com as restri¢es de
desigualdade em um problema de otimizacdo.

Supondo que F satisfaz as restrigdes g;, h;, serdo produzidos multiplicadores de Lagrange referentes a
cada restricdo. Dessa forma o Lagrangeano € mostrado abaixo:

LXAW=FOX)- 21 2ig:(X) - I w* (h(X) — hy™) -ZF w? (—hi(X) —hy™) (2.2.4)
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As condicOes de KKT para os pontos 6timos, caracterizados pela presenca do asterisco, X*, 4;*, y; *
séo:

LI A%, 1t % 7)=0 (2.2.5)
2. g;(X*)=0 (2.2.6)
3.h;” <R (X*)<h* (2.2.7)
4.1t (hy(X*) - h;)=0e it (h;(X*) -h;7)=0 (2.2.8)

A condicdo (2.2.5) é consequéncia de (2.1.5), a condicdo (2.2.6) e (2.2.7) obedecem as restri¢des do
problema geral de otimizacdo expostas inicialmente em (2.2.2) e (2.2.3). A condicdo (2.2.8) é
denominada condi¢do de complementariedade da variavel de folga. Observa-se que sua imposi¢éo
possibilita a utilizagdo dos multiplicadores de Lagrange da seguinte forma:

;" (hi(X*)-h;")=0 (2.2.9)
Implica em:
;1 *=0 ou h;(X*)=h;* (2.2.10)

w;t* nulo e h;(X*) igual ao seu limiar implica na n&o existéncia de uma solugdo 6tima. Com
u;1* nulo significa que o ponto 6timo de tangéncia entre a funcdo objetivo e a restricdo nédo foi
atingido, portanto, a restricio é descartada e se h;(X*) assumir o valor limite h;*,existe um
multiplicador de Lagrange p;!*que atingiu o objetivo de minimizacdo ou maximizacdo da funcéo
sujeito a restricdo de desigualdade em sua fronteira. Conclusivamente, a analise do valor, positivo ou
nulo, que o multiplicador p;!* pode assumir permite uma inferéncia sobre o atual estado da restrigéo,
podendo ela estar vinculada ou ndo ao ponto de solucdo 6tima. Logo, no primeiro caso ela restringe a
zona de solugdo e no segundo caso ela ndo restringe essa zona. Finalmente para a restricdo de
desigualdade as variaveis de folga usadas para transforma-la em igualdade séo:

wE =t (2.2.11)
Onde:

el =0 (2.2.12)

2.3 Linearizagéo e programacéo linear

Uma linearizacdo sera aplicada tanto ao fluxo de poténcia quanto a funcdo objetivo e restri¢des. Essa
linearizacdo combinada com o método da programacao linear cria um espago de solugdes do PLM
mais factivel devido a simplicidade inerente de um equacionamento linear, utilizando um menor
esforco computacional e possuindo maior confiabilidade quanto a capacidade de lidar com a grande
quantidade de dados inseridos no SEP. O PLM néo-linear em regime alternado (ac), apresenta, muitas
vezes, problemas de convergéncia e um tempo de solugdo muito lento se comparado com o seu
equivalente linear (dc) e por essas razdes este Ultimo é o modelo padrdo usado nos softwares de



24

mercados de energia europeu e americano. Embora no processo de linearizagdo sejam perdidas
informacBes do sistema, serd mostrado no capitulo de estudos de casos que as aproximacdes feitas

geram resultados satisfatérios e muitas vezes coincidem exatamente com as solu¢bes em regime
alternado.

Serd aplicado uma linearizacdo por partes da funcdo objetivo e nas demais restricdes serd aplicado
uma expansdo em série de Taylor quando necessario. A linearizacdo por partes € utilizada na funcéo
objetivo pois esta possui natureza quadréatica, no problema do PLM em questdo, fazendo com que seja
possivel a aplicacdo de algoritmos de aproximagdo mais simples e, portanto, mais rapidos. A
linearizacdo por partes consegue, através da programacdo linear obter um equivalente linear da fungéo
objetivo de modo satisfatorio. As demais restri¢des que possuem termos em Seno e C0SSeno, ou seja,
funcBes menos comportadas, necessitam de expansao em série de Taylor.

A linearizacdo por partes consiste em dividir uma funcéo de segundo grau em N segmentos de reta que
possuirdo N coeficientes angulares, e reescrevé-la como um somatoério dos segmentos de reta em

fungdo dos respectivos coeficientes. Quanto mais segmentos de reta, e, portanto, coeficientes
angulares, melhor é a aproximacao.

A figura 2.3 ilustra a divisdo de uma funcdo em diversos segmentos de reta.

#F(x1)

=
=

Xmin x1 X2  xmax x1

Figura 2.3: Linearizacao por partes da funcéo objetivo

Dessa forma a fungéo objetivo se torna:
FOX)=X2_, >NP bkAx;, (2.3.1)
Onde NP é o nimero de divisdes da funcéo objetivo no eixo das abcissas

As restrigdes ndo lineares podem ser expressas através da série de Taylor em torno de um vetor X,
inicial. Tomando a restri¢do de desigualdade h;(X) como exemplo:
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— anh(X) — A —
h;(X) = h;(X,) +( X [ X, )A(X) = ciX , c= constante (2.3.2)

A programacdo linear vem sendo desenvolvida nos Gltimos 50 anos [1] de modo que problemas dos
mais diferentes graus de complexidade e tamanho podem ser resolvidos por algoritmos extremamente
eficientes de forma réapida, préatica e relativamente confidvel. Sua aplicacdo ou modelamento abrange
uma vasta gama de disciplinas como distribui¢do, recursos humanos, marketing, administracdo da
producdo, transporte, etc. A programacdo linear juntamente com os multiplicadores de Lagrange
geraré derivacGes do PLM dentro do modelo convencional, capacitando, posteriormente, a aplicacéo
de métodos inteligentes e da otimizagdo robusta no seu desenvolvimento. Portanto, a programagéo
linear (PL) abre porta para métodos mais sofisticados de solugdo de problemas.

Da linearizacdo aplicada a fungdo objetivo e restrigdes, quebrando termo pdr termo do espago de
estados X, pode-se reescrever (2.2.1) na forma padréo da PL.:

Min by x; + by x5 + ..+ by xp, (2.3.3)

s.a. a1 X1 tagx, . tag,x, =0 (2.3.4)

Ay X1 YAy X+ .+ az, x, =0

Am1 X1 Y A Xo + ot A X, =0

X +x,+ .4+ x, 20 (2.3.5)

Ou
Min bTX (2.3.6)
s.a AX=0 (2.3.7)
X=0 (2.3.8)

Lembrando-se que as restri¢des de desigualdades sdo lidadas da mesma for que as restrigdes de
igualdade segundo a quarta KKT de otimalidade. A vantagem de se escrever o problema de otimizagéo
na forma (2.3.6), além da possibilidade de usar um algoritmo de PL, é a facilidade de manuseio com as
variaveis de estado do sistema, que sdo muitas, pois sua forma matricial de representacdo € muito mais
enxuta.

Serdo utilizados dois algoritmos para a resolu¢do dos problemas envolvendo programacéo linear, o
método simplex e o método dos pontos interiores. A razdo pela qual foram escolhidos esses dois
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métodos € devido a qualidades especificas que ambos apresentam dependendo da classe de problemas
trabalhado.

2.4 Fluxo de poténcia dc

O fluxo de poténcia € um modelo matematico descritivo da rede elétrica que relaciona os valores de
tensdo, corrente, poténcia ativa e reativa em cada ponto (n6) do sistema. Como o objetivo principal do
PLM é mensurar o melhor ponto de operacéo elétrico-econémico em cada nodo do sistema, o fluxo de
poténcia é de extrema importancia para orientar a sua construgdo pois carrega em sua esséncia,
restrigdes que limitardo e conduzirdo a funcéo objetivo a solugdes factiveis.

O modelo genérico do fluxo de poténcia também denominado fluxo de poténcia ac incorpora
caracteristicas mais abrangentes dos circuitos representantes das redes do SEP, de modo que sua
formulacéo sera desenvolvida no intuito de se obter sua forma mais simplificada (dc). Em uma rede
elétrica com n nds independentes, usando-se a primeira lei de Kirchhoff, as seguintes equac¢bes podem
ser escritas:

N=ncn=nc N=nc
Z Z Yon Vy = Z Iy ,nc = ntimero de conexdes (2.4.1)
N=1 n=1 N=1

Extraindo sua forma matricial:

[YIIVI=1 (2.4.2)

Onde | é o vetor de injecdo das correntes, V é o vetor de tensbes nodais e Y é a chamada matriz
admitancia. Adicionalmente, o vetor de correntes | pode ser representado por tensdes nodais e
poténcias:

Iy ==
N"yy Vn

Y — (PGN_PDN)T]'(QGN_QDN) (2.4.3)

Onde:
Sy Poténcia complexa do gerador conectado ao né n
PGy : Poténcia ativa do gerador conectado ao n6 n
QGy : Poténcia reativa do gerador conectado ao n6 n
PDy: Poténcia ativa da carga conectada ao né n

QDy: Poténcia reativa da carga conectada ao n6 n

E, definindo as injecbes de poténcia como:
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Py = PGy - jPDy (2.4.4)

Qn =QGy - jQDy (2.4.5)

Substituindo (2.4.3), (2.4.4) e (2.4.5) em (2.4.1):

N=ncn=nc N=ncP Q

Z Z Yoo V, = Z NV—]” (2.4.6)
N

N=1 n=1 N=1

Por sua vez, Vy e Yy, podem ser decompostos em:
Vy = Vy(cos Oy + jsin Oy) (2.4.7)
1 1

YNn = GNn +jBNn ) GNn =—— ¢ BNn = o (2-4-8)

Rnn XNn

Substituindo (2.4.7) e (2.4.8) em (2.4.6):

N=ncn=nc N=nc

Z Z Vy Vi (Gyp €OS Oy + BynSin Oyy) = Z Py (2.4.9)
N=1 n=1 N=1
N=ncn=nc N=nc

Z Z Vi Vi (Gyn Sin By — Byn€OS Oyy) = Z Qy (2.4.10)
N=1 n=1 N=1

Onde 6y, é a diferenca angular entre os pontos N e n do sistema. As equacdes (2.4.9) e (2.4.10) sdo as
equacdes gerais do fluxo de poténcia em fungdo de quatro grandezas elétrica, V,0, P e Q. Para que o
sistema de equagdes descrito acima seja resolvido, duas das grandezas elétricas devem ser conhecidas,
e, somado a essa imposicdo, o sistema deve possuir um ponto de referéncia (slack). O ponto de
referéncia equilibra o balango de poténcias, e a partir dessa linha de raciocinio, métodos iterativos de
solugdo como Newton Raphson e Gauss sao utilizados. Baseando-se nas informacdes necessarias para
gerar uma solucdo factivel do fluxo de poténcia, os nodos ou barras do sistema podem ser classificadas
da seguinte maneira:

Barra PQ: As poténcias ativa e reativa sdo especificadas nesse ponto do sistema. Essa barra geralmente
possui cargas conectadas

Barra PV: A poténcia ativa e a magnitude da tensdo sdo especificadas. Essa barra geralmente possui
geradores conectados
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Barra V 6: Responsavel por ser o ponto de referéncia do sistema, a tenséo e angulo séo especificados
nesse ponto do sistema

A figura 2.4 exemplifica a organizacao dos tipos de barra no SEP

referéncia o

e | I."‘-".' Fan —— D 2

.'\z il

zik = impedéancia
da linha i-k

carga

Figura 2.4: Exemplo de um diagrama unifilar do SEP

Devido a necessidade de um célculo rapido das grandezas V,0, P e Q nas analises de mercado de
eletricidade, a linearizacdo de (2.4.9) e (2.4.10) gera resultados mais satisfatorio principalmente em
grandes redes do SEP.

Para a obtencéo do fluxo dc algumas imposicoes séo feitas:

1. As magnitudes das tensdes sdo iguaisa 1 p.u

2. Todas as resisténcias sdo desconsideradas de modo que

1
Gnp=0€ By, = “Tne

3. Addiferenca de angulos entre os pontos N e n do sistema é muito pequena:
cosOyp,=lesinfy, =0y — 0,

4. As impedancias capacitivas sdo desconsideradas

De modo que (2.4.9) se torna:
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N =ncn=nc N=nc

DD Buabu=6= D P (241D)
N=1

N=1 n=1

Podendo ser reescrita da forma:

[P] = [B][6] (2.4.12)

O fluxo de poténcia dc é puramente linear, podendo ser calculado com apenas uma iteracdo. A
equacao (2.4.12) compde a Unica restricdo de igualdade do problema de otimizagdo (2.2.1) quando
utilizado no célculo do PLM.

3 Modelo do PLM

Muitas sdo as maneiras de se obter PLMs que caracterizem o fornecimento de energia em condicoes
6timas de operagdo do SEP. Uma das razdes para isso, sao os diferentes graus de complexidade
inerentes do proprio sistema, fazendo com que uma Unica formulagdo do preco locacional marginal
ndo seja suficiente para construir solugdes factiveis em torno do problema de otimizacao referente ao
despacho econémico propriamente dito. O PLM faz parte de um estudo de sensibilidade do sistema,
junto com os fatores de mudanca de geracéo, fatores de mudanca de carga, entre outros, de modo que
apos a obtengdo dos pontos de equilibrios provenientes da minimizacdo da funcdo objetivo sujeita as
restrigdes, ocorre uma espécie de perturbagdo ou deslocamento desses mesmos pontos ao se oferecer
um infinitésimo adicional de energia em um dado né do SEP provocando um rearranjo dos fluxos de
poténcia, fato este que implica em um confronto com os limites da linha e da geracdo além das perdas
na transmissao de energia.

3.1 Estrutura primaria

Serd apresentado, a seguir, uma interpretacdo geomeétrica do PLM, uma abordagem matemaética
convencional dessa ferramenta baseada no fluxo de poténcia ac combinado com os multiplicadores de
Lagrange e sua derivagdo linearizada a partir do fluxo de poténcia dc.

Inicialmente, considera-se um conjunto de geradores conectados a um conjunto de cargas. Existe uma
funcdo custo relacionando a poténcia de cada gerador a um respectivo prego, e para geradores
hidrotérmicos as experiéncias mostraram que essa funcgdo € quadratica:

i=NG
C(PGL) = z al-PGl-Z + biPGi + ¢ (311)

i=1
As condicdes de contorno do problema acima séo:

Yizh PGy = X2 BKZY Fie + Pox (3.12)

Fikmin <F< Fikméx (3-1-3)

PGimin < PG; < PGimyyx (3.1.4)
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PG;: Poténcia geradanondéi
Ppy: Demanda de poténcianono k
Fi: Fluxo de poténcia, considerando as perdas,na linha ik

a;, b;, c;: Coeficientes da fungao C(PG;)
N: Quantidade de n6s do sistema — {1,2,3 ..., N}

NG: Quantidade de geradores do sistema — {1,2,3 ..., N}

A figura 3.1 mostra o diagrama unifilar elétrico de um sistema com i-geradores alimentando uma
Unica carga diretamente desconsiderando as perdas na linha.

PG1

PG2

6 59

PGi

Figura 3.1: Diagrama unifilar elétrico

Dessa forma as principais dindmicas do sistema foram descritas, no entanto, para buscar uma nocao
mais essencial do PLM desconsidera-se, primeiramente, os limites e perdas da linha, analisando-se
apenas a estrutura da funcdo custo (3.1.1) sujeita as restri¢cbes de poténcias dos geradores e do balango
de poténcia (3.1.4) e (3.1.2) obtendo-se:

Min C(PG;) (3.1.5)

s.a YiZ0 PGy = TiZY PDy (3.1.6)
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Utilizando o principio dos multiplicadores de Lagrange e assumindo que as condi¢fes de KKT foram
satisfeitas, existe um ponto étimo local de modo que

VC(PG;) = AV(XiZH PGy — Xk=8 Por ) (3.1.7)

Os pontos PG; que minimizam a fungdo C(PG;) sdo encontrados através da aplicagdo do gradiente
com respeito a PG; na funcdo custo. Isolando-se o vetor A ap6s a aplicacdo do gradiente é obtido o
seguinte resultado:

Al = AZ = "'An (318)

Os multiplicadores de Lagrange obtidos no processo de otimizacdo de (3.1.7) séo definidos como
precos locacionais marginais. O resultado (3.1.8), também chamado de principio da taxa de igualdade
incremental, nos diz que se a restricdo dos fluxos de poténcia e os limites de geracdo forem
respeitados, o preco locacional marginal sera 0 mesmo ao longo de todo o sistema, valor este
correspondente a unidade geradora com a melhor oferta ou menor preco por unidade de energia. Esse
fato € verificado a partir da relagdo intima que o PLM possui com os coeficientes dos componentes da
funcgdo custo (figura 3.2) de modo que quanto menor € o valor desses coeficientes, menor é o valor do
PLM associado, e, conclusivamente, menor é o valor da funcdo custo. Ou seja, 0 processo de
otimizacdo de (3.1.5) seleciona a curva do gerador com menor inclinagdo simbolizando que para um
APG; relativamente alto, o AC(PG;) é baixo. A equacao (3.1.8) fornece uma espécie de valor base ou
de referéncia do PLM pois reflete uma andlise ideal do problema em questéo, portanto o multiplicador
de Lagrange correspondente sera referido como A,..

A equagéo (3.1.7) apresenta um resultado que incorpora taxas de variacdes de fungdes em i dimensdes
devido a estrutura matematica do gradiente, no entanto, cada um dos resultados pode ser decomposto
em um referencial cartesiano para uma melhor visualizacdo do significado geométrico do PLM. Para
se obter um outro resultado importante do PLM é necessario a consideracao dos limites de geragdo de
cada unidade geradora (3.1.4) no problema de otimizagdo (3.1.5). A figura 3.2 mostra o
comportamento do custo de geracao de geradores hidrotérmicos em funcdo da poténcia gerada.

C(PGi) A

Figura 3.2: Curva de custo dos geradores com limites de geracéo
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Onde PG;*é um ponto de operacdo 6timo energético, de uma unidade geradora i, que minimiza a
funcdo custo. O PLM ¢ o custo incremental marginal de fornecimento de energia, ou seja, a derivada
da funcdo custo respeitando as restricdes de limites de geracao dos geradores:

PLM;= dC(PGi=PG;") (3.1.9)
PG;
se dc(PG;=PG;") < dC(PGi=PGimsx) (3.1.10)
PG; PGy
Do contrario
PLM; = oo (3.1.11)

Logo, da equacdo (3.1.9) & (3.1.11) ¢ inferido uma importante propriedade do PLM, o seu valor é
infinito para os geradores que trabalham na sua capacidade maxima (marginal) devido a estrutura
dimensional do preco locacional marginal observado abaixo:

R$

PLM; - MW.h

(3.1.12)
Quando a unidade geradora i estd operando em sua capacidade maxima, ela ndo pode fornecer o
préximo megawatt de energia. I1sso implica em:

PLM; > 2 - 0 (3.1.13)

Pode ser realizado também uma interpretacdo geométrica do PLM quando os limites de geragdo séo
alcangados. De acordo com a figura 3.2 observa-se que a derivada em PG4, € inexistente pois essa
taxa de variacdo implica em acréscimos de poténcia , PGjpa, + APG; ,fazendo com que os limites de
geracgdo sejam infringidos, portanto, 0 PLM ¢é originado apenas da por¢éo dos geradores ndo marginais
do sistema

Voltando ao caso exemplificado pela equagdo (3.1.7) o valor da PLM néo varia de local para local,
fazendo com que seu valor se reduza a um CMO, onde o despacho econémico seleciona apenas um
preco de energia, ou média de precos baseado na solugdo do fluxo de poténcia 6timo, para atender
todas as cargas do sistema [7]. A propriedade de variabilidade do prego locacional marginal ao longo
do sistema €é inerente do confronto da funcdo custo com as restricdes do SEP gerando outros
multiplicadores de Lagrange que vao influenciar no valor da PLM base, como sera verificado nos
préximos topicos. No entanto, a ideia essencial de taxa de variacdo de uma funcdo em um ponto que
minimiza a fungdo custo, permanece a mesma.

Considerando-se as perdas, o problema de otimizagéo se torna:
Min C(PG;) (3.1.10)

st iz PG = TIZV TR0 e + Poge (3.1.11)
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com:
Fik = Fik(PGi) (3112)

E importante frisar que as perdas, na equacio acima, representam uma funcio implicita do angulo da
tenséo e da corrente.

Construindo seu Lagrangeano e aplicando as condicGes de otimalidade de KKT:

L=C(PG;) — A, (XiZ0 " PGy — B2V 2KZ0 ™" Fu' + Poy) (3.1.13)
VL=20 (3.1.14)
oL _ 0C(PG;) OALFi (PGy) _
aPG;  dPG; A+ aPG; =0 (3.1.15)
0ALFik (PGy)  _ OC(PGy)
AL (-1+ 24 alfc(i )y = Sh (3.1.16)
ac(PG;)
dPG;
aPGi
A= A () (3118)

0PG;

Fi (PG
1/(1 lk ( l)
do PLM sofra uma mudanca em relacéo ao seu valor de referéncia, ou seja, as caracteristicas da linha
somadas a quantidade de energia que a atravessa influenciam no preco do fornecimento de energia em
uma dada localidade. Como o fluxo de poténcia é naturalmente ndo-linear, o PLM comeca a sofrer
modificagoes.

———=) é um fator de penalidade relacionado as perdas do sistema fazendo com que o valor

O célculo do PLM considerando-se os limites energéticos da linha de transmissdo, também
denominado de congestionamento, carrega informagdes a respeito dos ** melhores caminhos’’ que o
fluxo de poténcia devera tomar ao longo do sistema no intuito de obter a otimizacdo da fungdo custo
sujeita a restricdo (3.1.14). A ideia bésica do processo de otimiza¢do nesse caso € obter uma relagéo

entre a geracdo de energia e o respectivo fluxo na linha,

6I;LG , no limiar da restri¢do aplicando-se o0s
multiplicadores de Lagrange combinado com a quarta condicdo de KKT.

Fik = Fikmax (3-1-19)

VC(PG;) = AV PG; — Ppr | + uv Fi' = Fijmax (3.1.20)

O vetor u representa as componentes de congestionamento da PLM. Tais componentes possuem um
significado intrinseco relativo a identificagdo de areas que estdo no limite de absor¢do de poténcia
através do aumento do preco da energia nesses locais. Essa logica funciona analogamente como um
custo de oportunidade para o SEP devido a identificagdo de zonas com congestionamento que
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possuirdo um valor elevado de PLM, dessa forma, planejamentos e estratégias podem ser
desenvolvidas tanto no plano econémico guanto no plano de operacdo segura dos sistemas elétricos de
poténcia.

Conclusivamente a PLM é munida de trés elementos, um de referéncia, um de perdas e um de
congestionamento de modo que a PLM no n6 i é definida como:

/L':Ar +AiL + Hic (3121)

Observa-se que ndo houve uma andlise da modificacdo no valor do PLM quando infringidos os limites
de geracdo, esse assunto devera ser tratado separadamente no capitulo 3.2.

Embora a definicdo matematica (3.1.21) seja suficiente para caracterizar um preco locacional
marginal, sdo muitos os problemas que surgem a partir dessa formulacdo e o mais importante deles é a
sua aplicacdo em sistemas elétricos de elevada complexidade ocasionando solu¢es ndo convergentes
e que necessitam de um enorme esforco computacional. A expansdo do SEP implica em uma
proliferagdo de seus elementos e interligacbes dificultando em muitos aspectos a obtencdo de
resultados factiveis de precos nodais impulsionando assim, o surgimento de algoritmos mesclados com
teoremas matematicos capazes de lidar com a natureza ndo-linear e dindmica desse problema.

3.2 Modelo nao-linear

Uma abordagem néo linear para um sistema genérico envolvendo varios geradores, conexdes e cargas,
além das suas respectivas restricdes é descrito abaixo a partir do desenvolvimento do fluxo de poténcia
cujas variaveis de estado (tensdes, angulos, poténcia, corrente) operam em valores que otimizam a
funcdo custo. Essa formulagdo é denominada de fluxo de poténcia 6timo, e devido as caracteristicas
naturais do SEP sera considerado, nesse problema, apenas os limites maximo de geracdo e do fluxo de
poténcia na linha de transmisséo.

Min C(PG,) (3.2.1)

S.a. Fik < Fikméx

i=N-1 i=N-1k=N-1
PGl' = Fik + PDk

Fi=Fi(0) =ViVi[GysSin(0; — 6y ) - By.cos(0; — 6y ) (3.2.2)

O Lagrangeano do problema geral (3.2.1) obtido de maneira imediata:
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L=C(PG;) — M(ZZ) 1 PG, — Y=g P Tk F (i) + Ppy) —m(ZEN k=4t Fy' —
Fumax) - (EENTIPGC — PGimax ) (3.2.3)

Onde A,puen sdo os vetores contendo os multiplicadores de Lagrange relativos a cada restricdo de
(3.2.1). Para que os multiplicadores estejam associados a pontos de solugdes referentes aos estados
otimos PG;* e 0;,*, as condicdes de otimalidade de Karush-Kuhn-Tucker devem ser obedecidas:

VLp=0 (3.2.4)
VLpg,=0 (3.2.5)
VLg, =0 (3.2.6)
VL, =0 (3.2.7)
Vi, =0 (328)

E para as desigualdades as seguintes expressdes sdo analisadas em seus valores limites:
Wi " (Fire'(0%) - Figmax) =0 (3.2.9)
n;"(PG;" - PGimax)=0 (3.2.10)

Para facilidade de calculo e melhor compreensdo do papel de cada gerador na definicdo de um preco
locacional marginal, o problema de otimizacao (3.2.1) ser& particionado em dois grupos relativos ao
atual estado de alimentacdo energeética do sistema. O primeiro grupo referente aos geradores que estdo
operando em sua capacidade maxima, também denominados de geradores marginais, possuird um
indice descritivo M e o segundo grupo dos geradores que nao estdo em sua capacidade maxima, ndo
marginais, sera definido com indice NM.

Com a imposicdo dos grupos M e NM sobe o gradiente do problema geral de otimizagdo (3.2.3)
obtém-se:

Vipguu=0 -1 =202 (3.2.11)
Vipgn=0 - 1y + 4"y =202 (3.2.12)

vA,n € {NMUM} (Grupo dos geradores ndo
marginais unido com o grupo dos geradores
marginais)

Rearranjando (3.2.11) e (3.2.12)

[VLpgwm] = [A* (3.2.13)

T
NM]
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[VLpgu] = ", + X' ypl" (3.2.14)

Observa-se por (3.2.13) e (3.2.14) que os geradores ndo marginais conseguem estabelecer a sua
oferta base ao longo do sistema simbolizado pelo multiplicador A (ﬁ) referente aos

coeficientes da funcao custo, enquanto que os geradores marginais além de sua oferta base ainda
possuem um acréscimo no seu pre¢o marginal (n + A) devido ao fato de terem atingido o limite
de geracdo elétrica, dessa forma, esses geradores ndo conseguem gerar uma oferta de energia
estritamente proveniente das suas caracteristicas de operacdo(curva hidrotérmica). Portanto,
numericamente, existirdA um preco nodal relativo aos geradores marginais, porém nao sera
caracterizado como um PLM propriamente dito e sim como resultados necessarios para alcangar
0 processo de otimizacdo, em vista de que a condi¢cdo necessaria de existéncia de um PLM ¢ a
capacidade de gerar a préxima unidade de energia.

Para o desenvolvimento dos termos do PLM relativos a variavel de estado 6 utiliza-se a condicdo de
KKT (3.2.6), sabendo-se que as restricbes do limite na linha V(F(0) - F(0),,s,) nd0 precisam ser
divididas entre os grupos NM e M pois independem do limite da geragdo, eles dependem apenas da
restricdo de fluxo maximo de poténcia na linha, sendo que o multiplicador p é nulo para valores de
fluxo de poténcia na linha abaixo do limite superior :

Vi =0 = Xy VF(8) m + WV(F(8) - F()mi) =0 (3:2.15)
Vig=0 — A"y VF(0%) ;=0 (3.2.16)
[IF @ ITF@ 1) [3] + W ©0)-F (@) pin) =0 (32.17)

Isolando 0 PLM A%y, :
X yuVF(O)yy= —WV(F'(0)-F'(0")sx)-A"y VF(8) (3.2.18)

VF(0)yy € tipicamente uma matriz ndo singular, assim como VF(0), , devido a particdo do
problema em dois grupos de geracdo, essa matriz possuira uma quantidade de linhas inferior a
quantidade de colunas. A sua estrutura da matriz F(0) para um sistema com n nés utilizando a notagdo
dos grupos NM e M € mostrada em (3.2.19) e (3.2.20):

OF(8"152)
2(0)
VF(0" )y = : (3.2.19)

aF(e*n.NM—A) aF(e*)nNM—)TL—l
2(0) 9(8) (MNM)x(n—1)
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OF(8"1/521)
a(6) \
VF(0")y = : (3.2.20)
\"’F O"nmo1)  OF(®)nmon /
() () (nM)x(n-1)
nNNM: Numero de nds ndo marginais
nM: Numero de n6s marginais
O subscrito 1" — 2'simboliza os nés 1 e 2 marginais do sistema.
Com{nNM UnM} =n
E:
AMym =41 - duwm) (3.2.21)
l*M = (All AnM) (3221)

Voltando a equacdo (3.2.18), para isolar o prego locacional marginal, A" ,,, deve-se aplicar a matriz
pseudo-inversa em VF(0*) yy devido a sua caracteristica ndo singular (ndo possui inversa):

VF(8") ypy PSCU407ImveTsa = YE(0°) yy b = (VF(8) ya * VF(0") ya)™" *VF(8) yw  (32.22)

Portanto:

Myu= VFO) ' *¢ W (F'(0)FOImix) - A" uVF(O") ) (3.2.23)

A equacdo final (3.2.23) descreve o preco locacional marginal para um SEP incorporando as variaveis
ndo lineares. Aplicando a definicdo genérica (3.2.23) na definicdo geral (3.1.18) observamos que o
PLM é uma func¢do dos multiplicadores de Lagrange:

PLM(A s Ay 09)=A° + 4, + 207 (3.2.24)
Com:
XM= ak, (3.2.25)
A, ° = AVF(8 ") (3.2.26)
A= WWF(8 ") (3.2.27)
A= (A;LNI) (3.2.28)
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o = (VF(® yy
VF(8*) = ( vF ) (3.2.30)
Onde a e A, sdo vetores de constantes definidas a partir dos resultados provenientes do despacho
econdmico e da analise da curva hidrotérmica de cada gerador. O multiplicador de Lagrange A4,
escolhido sera referente a unidade geradora com o menor custo de geracdo ou o menor coeficiente
angular da curva hidrotérmica e o é o vetor das parcelas da contribui¢do de poténcia de cada gerador
para alcancar o estado 6timo do sistema.

E observado pela equacdo (3.2.23) que para o calculo do PLM propriamente dita, € necessario o
conhecimento prévio do vetor das variaveis angulares, 8, em seu estado 6timo @ * assim como as
tensbes nodais. Para isso, utiliza-se um fluxo de poténcia 6timo, no entanto, neste trabalho ndo sera
explorado técnicas para o céalculo das variaveis angulares e de tensdo em sua forma ndo linear. Devido
ao foco no desenvolvimento de um PLM linear, o despacho econémico sera o procedimento munido
de maior atencéo.

3.3 Modelo linear

O desenvolvimento (3.2.3) pode ser usado para gerar a forma linear, e mais usada, do PLM derivado
do fluxo de poténcia dc.

PG — Py, — F(0)=0setorna PG — Pp = B 0 e 0 problema de otimizag&o (3.2.1) se torna:
MinC (PG;) (3.3.1)
s.a. PG—P,=B9
F(8) < F(0)msx

Onde B 0 representa o fluxo de poténcia na linha desconsiderando-se as perdas. Por essa razdo é

necessario a construgcdo de um algoritmo para computar a variacdo do fluxo de energia na linha em
OF i
oPG;’
da informacéo do fluxo de poténcia referente as perdas, influenciando diretamente no componente de
congestionamento do PLM.

relacdo a injecdo de poténcia dos geradores, devido ao fato da linearizacdo perder uma parcela

Para se obter a componente de congestionamento do PLM na sua forma linearizada, € necessario
realizar uma andlise de sensibilidade no SEP, de modo a obter respostas em relagdo ao seu
comportamento quando os limites de fluxo de poténcia da linha sdo infringidos. Sdo cinco passos
necessarios para calcular o chamado fator de mudanga de geragdo (FMG):

1. Escolher uma unidade de geracéo i e uma linha k com a sua respectiva restrigéo
2. Rodar o fluxo de poténcia para obter a poténcia inicial, Py, que atravessa a linha k

3. Aumentar o valor de PG; em APG; unidades observando que esse valor deverd ser absorvido pela
unidade de geracéo de referéncia (slack)
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4. Rodar o fluxo de poténcia novamente e obter a nova poténcia, P, que atravessa a linha k

5. Calcular o fator de mudanca de geracdo através da equacgdo abaixo

FMGy, = % (3.3.2)

APGiePk—PkO = AGik; no I|m|te

_ 0Gik

FMGye= oPG;

(3.3.3)

Através da restri¢do (3.1.6), da quarta condicdo de KKT (2.2.8) e da analise da parcela do gradiente do
Lagrangeano relativo a variavel de estado PG; (3.1.15).

OFk
0PG;

oL

PG, HY( X260 20" Fi' = Fiemax) = 1(

A.= WFMGy, (3.3.5)

A adig¢do de um fator externo ( é necessaria para equilibrar o balanco de poténcia, no entanto tal fato
ndo influencia nos valores dos étimos dos multiplicadores de Lagrange, segundo o teorema do
envelope exposto no apéndice desse trabalho. O Lagrangeano para um LMP em condigdo linearizado
se torna:

L =C(PG)— A'(PG—Pp— B 0 +0) - W(B'O -Gpay) - X=n *nY(PG/ - PGinsy) -
I=NG n2, (—PG;’- PGinin) (3.3.6)

Pelo teorema do envelope [1], ho ponto 6timo:

VL;\ = V(;\ =A" (337)

Ou seja, o valor do vetor de precos locacionais marginais, A, ndo depende do fator externo ¢

Cujas condicdes de KKT para a variavel angular, considerando os grupos NM e M, sdo:
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Vig=0 - A*yB =0 (3.3.9)
O que implica em:
Myy=(CAyB - B )*B' (3.3.10)
Finalmente:
A= (”NM)z(”NM) (3.3.12)
Ay 0

O termo A*), em (3.3.11) é nulo devido a necessidade matematica de eliminacdo dos nés de geracdo
marginais da solucao final calculada, para uma obtencao factivel dos precos locacionais marginais. As
equacdes (3.3.6) até (3.3.10) quando derivadas do fluxo de poténcia dc, apresentam algumas
caracteristicas importantes. Além da eliminacdo dos termos em senos e cossenos que adicionavam nao
linearidades ao sistema, requisitando do uso de técnicas iterativas para a localizacdo de pontos
factiveis provenientes do balanco energético do SEP, a solugdo de (3.3.1) e (3.3.6) se torna imediata
em vista do fluxo de poténcia a ser resolvido se reduzir a um sistema de equacgfes lineares,
necessitando de apenas uma iteragdo para encontrar os pontos de opera¢do. Quando combinado (3.3.1)
com a linearizagdo por partes no termo da fungéo custo, o problema (3.2.1) se torna um problema de
programacao linear.

O Lagrangeano final para a solugdo genérica do PLM em sua forma linear se torna:

L =.C(Z’,¥;§ L pgrAxy) — A*'(Z’;\Y;ol 3 pgrAxy — Ppi — B' 0 +0)) - WFMG(B' 0 - Gppyy)
- YIZ0 T nY (PG - PGimay) - X420~ n%; (PG - PGynin) (3.3.12)

Onde pg; correspode aos valores de poténcia pg, que por sua vez sdo divididos em segmentos,
representado pelos segmetons x;;, de modo a reconstruir as poténcias geradas PG.

O comportamento linearizado do prego locacional marginal de duas unidades geradoras é observado
na figura 3.3:

LA ey
dR dp,

70 8.0

Figura 3.3: PLM de duas unidades geradoras. Adaptado de [8]
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Dessa forma, observa-se que em um certo intervalo de poténcia, valido apenas dentro do espaco
factivel da linearizacdo por partes, o valor do PLM ¢é constante. Deve-se frisar que a linearizacdo por
partes da curva do gerador, deve ser feita em tempo real (online), de modo a criar diferentes fungdes
custos ja linearizadas para uma mesma curva, na medida em que o valor de poténcia 6timo se afasta
muito da zona factivel onde a linearizacdo da curva ainda é uma boa aproximacao. Atraveés desse
principio garantindo a preservacao da eficiéncia do PLM linear dentro de uma margem de erros.

3.4 Analise geral do PLM

E concluido de ambos os modelos do PLM, linear e ndo-linear, que seu valor é definido por uma
composicdo dos multiplicadores de Lagrange e da funcdo custo combinada com as restrigdes. Dessa
forma, observa-se que o seu valor pode sofrer modificacfes através da inclusdo de outras restricGes,
um exemplo disso seria a restricdo de operagdo mecénica de um gerador elétrico ou inclusdo do
balango de poténcia reativa no sistema, cabendo ao projetista a consideracdo ou desconsideracdo
desses tipos de pardmetros na formulagdo do PLM, como é verificado na férmula (3.2.3). Em vista da
guantidade de termos envolvidos no processo de otimizacdo, o0 PLM se torna uma ferramenta
matematica extremamente volatil, sendo necessario recalcula-la em intervalos de tempo relativamente
curtos (horizonte de evento de curto e curtissimo prazo) em vista das incertezas provenientes de sua
estrutura. Cabe a cada mercado de energia, adequar essas caracteristicas as condi¢cGes dindmicas dos
SEPs, no intuito de gerar soluces factiveis.

A sequéncia de passos para o calculo do PLM ¢ apresentado abaixo:

1: Obter dados medidos do SEP como impedancia de linha, capacidade de geracéo, carga, etc.

2: Rodar um fluxo de poténcia 6timo ou despacho econémico

3: Checar se os limites de geragdo e/ou transmisséo foram infringidos

4: Em caso afirmativo va para o passo 5, em caso negativo va para o passo 6

5: Utilizar a férmula do PLM com os limites de geracdo e transmissao

6: Computar um preco locacional marginal

7: Se os valores do PLM estéo dentro da tolerancia, va para o passo 9, do contrério va para o passo 8

8: Se ocorreu alguma alteracdo nas cargas do sistema ou alguma variavel de estado (tensdo, corrente,
angulo), va para o passo 2 do contrério va para 0 passo 9

9: Obter um resultado final



42

4 Metodologias de otimizagéo

Considerando-se que a PLM é um resultado especifico de um processo de otimizacdo, as maneiras
como sdo encontrados pontos 6timos de operacdo para a funcdo objetivo sdo cruciais para uma
formulacdo factivel de um preco nodal e, devido as caracteristicas dindmicas do SEP, é mister a
aplicacdo de métodos que se adaptem a esse tipo de sistema. Os métodos que serdo mostrados a seguir
tentam corrigir algumas deficiéncias dos métodos convencionais de otimizacdo como a iteracdo
Lambda, método do gradiente, entre outros [1], que apresentam problemas de convergéncia, e 0 mais
importante, apresentam tempos relativamente grandes de processamento computacional, o que é
extremamente indesejado nos problemas de despacho econdmico e fluxo de poténcia étimo, que
necessitam de atualizagbes nos dados de entradas e portanto nos sistemas de equacOes,
constantemente.

4.1 Redes neurais de Hopfield

O despacho econdmico é uma peca extremamente valiosa ndo s6 para a determinacdo de LMPs mas
também como uma maneira de orientar 0 método do fluxo de poténcia ndo linear a encontrar s
variaveis de estados V, | e 0. Ou seja, o processo de despacho econdmico combinado com o problema
do fluxo de poténcia elimina a necessidade de se utilizar um fluxo de poténcia étimo, artificio este que
pode ser de extrema importancia para problemas do SEP que possuem uma quantidade grande de
elementos[]. A abordagem das redes de Hopfield para solu¢éo de problemas de despacho econdémico é
recente, no entanto, j& demonstra resultados promissores relativos a esforco computacional e
capacidade adaptativa, caracteristica tipica das redes neurais em geral. Nesse tipo de formulacdo a
fungdo objetivo junto as restri¢des € transformada em uma fungdo de energia, denominada funcéo de
energia de Hopfield, andloga a estrutura de uma funcdo de Lyapunov. Essa funcdo de energia é
minimizada através de processos iterativos provenientes da dindmica das redes neurais, tal dindmica é
mostrada no apéndice relativo as redes neurais artificiais. Uma nova abordagem das redes de Hopfield
sera utilizada para solucdo do DE nesse trabalho, caracterizada pelo uso de uma funcéo de ativagdo
linear, em detrimento das fung¢bes sigmoides utilizadas no modelo de Hopfield convencional, proposta
por C.T Su et al em 1997 [9], e por um processo deterministico de determinacdo de pesos sinapticos,
A, B e C em oposi¢do ao método de tentativa e erro.

A dindmica das redes neurais € apresentada a seguir:
=% TacVie + (4.1.1)
U; : Entrada do neurdnio i
T;x : Interconexdo entre a saida do neurdnio j com a entrada do neurdnio i
T;; : Conexdo propria do neurbnio i
V} : Saida do neurdnio j
I; :Entrada externa do neurdnio i

A fungéo energia definida em [9]:
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© = (-1/2)*%; X T ViVi - 25 Vil (4.1.2)

O sinal negativo na fung&o energia (4.1.2) indica que durante o processo iterativo das redes neurais tal
funcdo sempre se move em direcdo ao valor minimo de seus argumentos.

Utilizando o problema geral de despacho econémico (3.2.1) para uma carga, desconsiderando-se 0
congestionamento do sistema, obtém-se a seguinte funcdo energia modificada:

D= A2[( Ppi+Fy) - XEENG PG2 +BI2Y(C(PG;) = a; + b;PG; + ¢;PG2) +CI2(Fy)  (4.1.3)

l=a

Na equagéo (4.1.2) V; = PG;.

Comparando-se (4.1.2) com (4.1.3) obtém-se a estrutura dos pesos sinapticos:

Tii =—A-— BCL' (414)
Tij = —A (415)
Bb;
I; = A( Ppi+Firo) — = — C/2(I1i0)
(4.1.6)
Onde:
O0F;

A equacéo (4.1.7) simboliza as perdas incrementais

O modelo linear de entrada/saida é:

PG; = hy(U;) (4.1.8)
Os limites de U; sS40 Upy,iy € Unnayx- Utilizando a equacédo de reta obtém-se a seguinte funcao:
PG; = [(U; = Unin)/ (Unmax-Umin)l( PGimax — PGimin) + PGimin (4.1.9)
A dindmica de entrada e saida é construida da seguinte forma:
PG; = hij(U;) = PGimax YU; > Uppax (4.1.10)
PG; = hij(U;) = PGy YU; < Upin (4.1.11)

Segundo o desenvolvimento em [referencia hnn] a convergéncia para valores 6timos das poténcias de
saida, PG;, dependem dos valores limites da entrada dos neurénios e do balango de poténcias segundo
as equacoes:

Pp=YK=N=1 p, + Fy - =M1 pG, (4.1.12)
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PGimin

PG;(t) = [PG;(0) — PGy(w)]e i Cme Tt + PG, (00) (4.1.13)

B
APy~ ()bi—Clyi0/2

PG;(c0) = o (4.1.14)

Onde:
A> (APGr)/( Pp)? (4.1.15)
C=2AP,, (4.1.16)

B Pode ser escolhido arbitrariamente e APG € o custo total incremental.

O algoritmo de solugdo do problema do despacho econémico usando as redes de Hopfield é mostrado
abaixo:

Passol: Obter os dados da demanda Pp.; nimero de unidades NG; limites de geragcdo de cada
unidade, coeficientes de perdas na transmissdo, pesos sinapticos A, B e C, os coeficientes das funcdes
custos de cada gerador, os parametros maximos e minimos das entradas dos neur6nios, a tolerancia
g,desejada no célculo do balanco de poténcia e a toleréncia &, para os valores de saida de cada
neuronio.

Passo2: Inicializar a geracdo de cada unidade com o contador k=0 e C =0.
Passo3: Determinar as perdas na transmissao pela seguinte equagao:
Fye = X150 Xk PGiPBy PGy +X7-; BigPGi+ Bog (4.1.17)
Com:
Bix, B;o € By S&0 0s coeficientes de perdas na transmisséo.

Calcular as perdas incrementais utilizando (4.1.7)

Passo4: Determinar B,,, PG;* e PG;* (c0) usando as equacdes (4.1.12),(4.1.13) e (4.1.14)
Passo5: Fazer C=2AP,,

Passo6: Checar se os limites de geracdo foram infringidos. Se os limites forem infringidos va para o
passo 1 sendo va para 0 passo 8

Passo7:

(a) Para cada unidade de geracdo violada aplicar a equagdo (4.1.13) para calcular o pardmetro de
convergéncia t

(b) Com base no valor t calculado, identifica-se a unidade geradora que leva o menor tempo para
alcancar o limite de geracdo

(c) Exclui a unidade encontrada em (b) do problema de otimizacéo

(d) A nova demanda seré a diferenca entre a demanda inicial e a poténcia da unidade excluida em

(©)
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(e) Va parao passo 4

Passo8: Checar se | Ppy+Fy, - Yi=N¢ PG;¥| < €,. Em caso positivo, va para 0 passo 9 sendo V4 para o
passo 3

Passo9: Checar se |PG;*~! — PG,*|<e, para todas as unidades. Em caso afirmativo, va para o passo 10
sendo, faca k=k+1 e va para o passo 3

Passo10: Obtém o resultado final

4.2 Método simplex

O Método Simplex é uma técnica utilizada para se determinar, numericamente, a solugdo 6tima de
um modelo de Programacdo Linear numericamente. A solucéo 6tima de um modelo de
Programacéo Linear sera desenvolvido inicialmente para problemas de Programacéao Linear, na
forma padrdo com as seguintes caracteristicas para o sistema linear de equacoes:

i) Todas as variaveis sdo ndo-negativas:

ii) Todos os bi’ sdo ndo-negativos;

iii) Todas as equag0es iniciais do sistema que sio do tipo “ < “ serdo transformadas em igualdades
através da insercéo de variéveis de folga

A formulacdo acima foi exposta no capitulo 2.3 no topico de programacdo linear. Dessa forma, o
método simplex sera utilizado para resolver essa classe de problemas.

Em geral, o algoritmo simplex permite que se encontre valores ideais em situagdes em que diversos
aspectos precisam ser respeitados. Diante de um problema, sdo estabelecidas inequacdes que
representam restricdes para as variaveis. A partir dai, testa-se possibilidades de maneira a otimizar o
resultado da forma mais rapida possivel por métodos iterativos. Neste trabalho, o algoritmo simplex
sera utilizado via programa Matlab devido a praticidade deste software na solu¢do de uma certa classe
de problemas.

5 Resultados e discussdes

Serdo estudados algumas topologias de sistemas elétricos de poténcia retirados do IEEE. Cada
problema apresentara uma particularidade que sera solucionada com uma das quatro metodologias
propostas no capitulo 1. Todas as metodologias utilizadas foram implementadas no software Matlab.



46

5.1 Sistema com trés geradores e duas cargas

Como primeiro caso, serd verificado os resultados desenvolvidos a partir do modelo do PLM néo
linear considerando-se as perdas e o congestionamento do sistema (3.2.20). Esse caso foi retirado da
referéncia [5] com os pontos 6timos de geracdo do sistema ja calculados, através do meétodo dos
multiplicadores de Lagrange, sobrando apenas a parte de analise das componentes marginais e ndo
marginais do PLM definidas no capitulo 3.

A figura 5.1 mostra o sistema elétrico de poténcia em questdo com seus pontos nodais de energia
6timos, ou seja, que minimizam a funcdo custo de cada gerador. O sistema possui congestionamento
nas linhas (1-4) e (2-5) e no6 de referéncia 0.

~caond, LA @ 2 g7z MW
-65.33 MW >

5
3.13 MW 212 MW
s -
4500 MW -44.35 MW
26.46 MW -26.01 MW

|

18.00 MW
>

-19.39 kMW

0.26 MW

-17.89 MW

19.64 MW SESYES b

31.28 MW

36.42 MW -i7.46 MW

Figura 5.1 : Casol llustrativo. Adaptado de [5]

As matrizes F'(0" ), F(0",,), Fl(e*NM), F(0*) sdo mostradas abaixo:
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0.4642  0.0000 04685 0.3135 0.0000
F(8",,)=|-25216 03679 09278 03106 0.4658

| 03660 —L.6535 0.0000 0.3577 09297

[0.9056  0.0000 15819  0.2306  0.0000
F(H* M): 0.2999  (.3471 0.2281 —1.475Y 0.3057
0.4501 00020 00000 0.3050 16580
[0.2760  0.0130 04743 0.0063  0.06G9
0. 186K 01871 00220 —0.582Y 0.0451
0.1069 02600 00616 00030 —0.4317

—_— "0.3106 0.0000 0.0000 —0.3106  0.0000
vad (00000 0.9207 0.0000  0.0000 —0.9297

Fl(ex

NM):

Utilizando as equagdes de 3.2.20 a 3.2.26 obtém-se os seguintes multiplicadores de Lagrange:

A=1[12.621 11494 11.716 12.829 16.301 15.537]

n=[14.901 4.88]

12.012 -0.203 0.812
12.012 0.104 -0.621

12012 0166 —0.462\

4 A4 Ad=1715012 0400 0417
12.012 0537  3.753

12.012 0528  2.998

Ay = [12.621 11.494 11.716]
Ay = [12.829 16.301 15.537]

Observa-se que o vetor do PLM de referéncia, 4,., ¢ 0 mesmo para todo sistema, valor este
retirado da curva de geracdo da unidade geradora mais barata [12]. Esse valor mostra que para
o tipo de derivagdo do PLM contemplado no capitulo 3.2 dos modelos ndo lineares, o calculo
sO é possivel devido a imposicdo de uma barra de referéncia (slack) associada a um preco de
referéncia

As componentes de perdas e de congestionamento do PLM representam uma parcela de 5%,
em média, do valor do preco nodal, ou seja, em uma analogia a grosso modo, as economias
com energia elétrica, baseando-se apenas em um célculo mais conciso de um PLM seriam de
5%, uma economia razoavelmente alta de energia elétrica.

Embora o congestionamento inicial esteja concentrado nas linhas (1-4) e (2-5), o aparecimento
de componentes de congestionamento do PLM nos demais nos significa que o excesso de
fluxo de poténcia em uma linha afeta o resto do sistema elétrico de poténcia, ndo s6 em
condigdes fisicas, mas também no prego da energia.
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o Nesse primeiro caso, nenhum gerador ultrapassou os limites de geracdo, portanto, o vetor 4,
ndo sofrerd nenhuma modificacdo devido a necessidade do seu resultado como recurso do
processo de otimizacdo, entretanto, na hipdtese de uma unidade geradora ultrapassar seu limite
de geracdo, a componente do vetor Ay, relativo a essa unidade, se anularia.

e Verifica-se que o ponto de operacdo do sistema, ignorando-se 0s nds de geracao, que possui 0
menor preco marginal é o nd 3, que coincide com o ponto que esta absorvendo a menor
guantidade de energia elétrica, alem de ndo estar na zona de congestionamento primario. A
partir dessa inferéncia, € concluido a importancia estratégica de uma analise de precos
locacionais marginais a nivel de planejamento energético e opera¢do do SEP, pois 0 n6 3
delimitara a area mais estavel do sistema elétrico analisado em questéo.

5.2 Sistema com trés geradores e uma carga

Nesse caso sera estudo a aplicacdo direta das redes de Hopfield em um problema de despacho
econdmico [9] onde uma rotina no Matlab foi implementada obedecendo aos critérios matematicos
expostos a baixo:

As funcges custos e os limites de cada gerador séo dados da seguinte forma:
C(PG,) =561 + 7.96PG, +0.001562PG,*

PG, <600 MW

C(PG,) = 310 + 7.85PG, +0.000194PG,>

PG, <400MW

C(PG3) = 78 + 7.97PG5 +0.00482PG5>

PG5 <200MW

As perdas séo:

F(6)= 0.00003PG,2+0.00009 PG,2+0.00012 PG?

A demanda total é de 850 MW e o erro relativo ao balango de poténcia, B,,, deve ser menor do que
0.0001 MW. Para determinar os fatores A e B escolhe-se a unidade com maior custo marginal PGs.

APGp=7.97(P,,)+ 0.00482P,,2

APG,=7.97(0.0001)+ 0.004820.00012 = 7.97*10~* $/h
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Substituindo APGy segundo a equacao (4.1.15) e (4.1.16) obtém-se:
A>79,7eB=1
C=0,016

Utilizando a curva input-output é escolhido os seguintes parametros:

Unin = —0.5
Uméx = 0.5
& = 0.0001

& = 0.0001

Inicialmente as geracdes sdo setadas nos seguintes valores:

PGy = 400MW
PG, = 300MW
PGz = 200MW

Os resultados sdo observados na tabela 5.2, aonde a simulagéo das redes de Hopfield sdo comparadas
com o método da iteracdo lambda segundo a referéncia [9] :

Unidade Iteracdo LAmbda (MW) Redes de Hopfield (MW)
PG1 435.198 435.198

PG2 299.969 299.969

PG3 130.660 130.660

Perdas 15.829 15.828

P, (MW) 0.0001 0.0001

Custo($/h) 8344.59 8344.59

Tempo de processamento 0.3 0.1

Tabela 5.2: Resultados computacionais




5.3 Sistema com dois geradores e uma carga

Os casos a seguir do capitulo 5.3 demonstrardo o calculo do PLM em sua derivacdo do fluxo de
poténcia dc, através do uso dos multiplicadores de Lagrange e do método simplex que se encontra em

uma toolbox do software Matlab.

A figura 5.3.1 abaixo ilustra o sistema com dois geradores e trés cargas que devera ser otimizado em

termos de fluxo de poténcia e custos de geracéo.

Carga de 90 MW

Bus 3
[(bus de referéncia)

A

Gerador 2 capacidade
100 RW

Gerador 3 capacidade
100 MWW

Figura 5.3.1: Diagrama do sistema 5.3

A carga no n6 1 sera chamada de PD, enquanto que as poténcias geradas nos nos 2 e 3 serdo chamadas
de PG, e PG5 respectivamente. Cada linha de transmiss@o possuira um limite superior denominado de
F'ij max COM i# j e i,j variando de 1 até 3. Devido a linearizag&o proveniente do fluxo de poténcia dc,
as poténcias em cada ramo do circuito sdo aproximadas pelos valores de angulo de fase, 6, e 65, de
cada né correspondentes aos geradores 2 e 3 e pelos valores em p.u das linhas propriamente ditas. A

base utilizada para esse problema sera de 100MW.

O problema de otimizagdo é apresentado a seguir:

min 5002, +10007,,

8.0y, F51.Fes

2 -1 -1]g] [-09
-1 2 —1fo|=| P

G2

b
—
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Utilizando a funcdo do Matlab ‘piecewise’, aplica-se uma linearizacdo por partes na funcdo custo
guadratica de cada gerador. Esse processo aproxima-se de casos reais pois em problemas de despacho
econdémico, 0s geradores possuem uma oferta ou custo marginal fixo devido ao planejamento
energético em diferentes horizontes de tempo, ou seja, os coeficientes das curvas hidrotérmicas devem
ser constantes para um determinado intervalo.

Através da funcdo do Matlab ‘linprog’ é calculado as variaveis de estado PG*,, PG*3,0%,,0%5 e por
conseguinte, 0s respectivos precos locacionais marginais, para diferentes situacdes de
congestionamento e carga. Para a obtencdo de FMG, devido a contingencia no sistema € utilizado o
procedimento exposto em (3.3). Segundo o gradiente da equacdo (3.3.12), os precos locacionais
marginais em cada ponto do sistema podem ser calculados e, em especifico, o pre¢o locacional
marginal no ponto 1 serd uma combina¢do dos pregos locacionais marginais de cada unidade geradora
sujeita as restricBes de congestionamento representadas por fatores de penalidade, FMG e L.

1) Sistema sem congestionamento, e com carga nominal de 90MW

PG*,(p.u) 0.9
PG*5(p.u) 0

0",(p.u) -0.3
0" ;(p.u) 0.3

PLM,($IMW.h) | 5
PLM,($IMW.h) | 5
PLM($IMW.h) | 5

Tabela 5.3.1: Valores 6timos das variaveis de estado e dos PLMs

DESPACHOECONOMICO
25 T T T

———PG2, UNIDADE GERADORA MAIS BARATA
Emm——PG3, UNIDADE GERADORA MAIS CARA
RETA DE FACTIBILIDADE

i
T
1

GERAGAD (p.u)

05— =

PD (pu)

Figura 5.3.1: Despacho 6timo de geracdo para carga variavel caso 1
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PREGO LOCACIONAL MARGINAL DE ENERGIA
T T

PLIT (B0 R)

PD (pu)

Figura 5.3.2: Variagdo do prego locacional marginal para o nd de carga caso 1

A tabela 5.3.1 mostra que sem a presenga do congestionamento no sistema, o valor do prego
locacional marginal sera constante ao longo de todo o sistema enquanto o limite de geragdo da
unidade geradora mais barata ndo for infringido.

A unidade geradora, PG,, com a oferta de energia mais barata, possui predominancia no
processo de despacho econdmico (figura 5.3.1), até alcancar o seu respectivo limite de geracdo
de lp.u.

A reta de factibilidade com cor amarela na figura 5.3.1 e 5.3.2 divide o grafico em duas areas,
a area a sua esquerda representa as solucdes factiveis para o problema, enquanto que a area a
sua direita representa as solugdes infactiveis; nesse caso a zona infactivel é representada por 2
p.u que representa a soma dos limites de geracdo de cada gerador.

Na figura 5.3.2 o prego locacional marginal no n6 de carga assume o valor da oferta da
unidade geradora mais barata PG, até que o seu limite de geracédo seja alcangado, assumindo o
valor mais caro da préxima unidade geradora PG5. E importante frisar que embora no gréfico
0 PLM se torne nulo em 2 p.u.(limite de geragdo dos geradores), pela definicdo do preco
locacional marginal como sendo o preco do préximo megawatt de energia ofertado em um
determinado no, teoricamente seu valor se torna nulo um pouco antes de atingir a poténcia de
2 p.u. caracterizando assim a possibilidade de fornecimento da proxima unidade de energia
sem que o sistema se torne infactivel pois este ndo pode infringir o valor de 2 p.u. em termos
de fluxo de poténcia que emana dos geradores, devido as restricdes dos limites de geracao
impostas pelo problema; a figura 5.3.2 é apenas um esboco do comportamento do preco
locacional marginal.
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e A vantagem de se aplicar o método simplex via Matlab é a facilidade da formulacdo do
problema de programacéo linear e a velocidade com o que se obtém respostas quanto a
factibilidade do sistema a ser otimizado dentro do espaco de solugbes proposto. A
desvantagem é o problema de convergéncia deste algoritmo devido ao aumento da quantidade
de variaveis do problema.

2) Sistema com congestionamento de 50MW na linha (1-2) e com carga nominal de 90MW

PG",(p.u) 0.6
PG"3(p.u) 0.3
0", (p.u) -0.4
0";3(p.u) 0.1

LMP,($/MW.h) | 15
LMP,($IMW.h) | 5
LMP5($IMW.h) | 10

Tabela 5.3.2: Valores 6timos das variaveis de estado e dos PLMs

DESPACHOECONOMICO
T

12— P G2, UNIDADE GERADORA MAIS BARATA 4
=P G3, UNIDADADE GERADORA MAIS CARA
RETA DE FACTIBILIDADE

02—

0 02 04 06 08 1 12
PD (p.u.)

Figura 5.3.3: Despacho 6timo de geracdo para carga variavel caso 2
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PREGO LOCACIONAL MARGINAL DE ENERGIA
T T

PLM 1{B/MWY )
T
1

! ! 1 ! 1
0 0.2 0.4 06 08 1 12
PD{p.u.)

Figura 5.3.4: Variacdo do prego locacional marginal para o né de carga caso 2

e Observa-se pela tabela 5.3.2 que o valor do prego locacional marginal ndo é constante para
todo o sistema, fator este caracteristico de um sistema com congestionamento. E
importante notar, na figura 5.3.3, que a partir do trecho de PD aonde o gerador PG3
comeca a ser despachado, cujo valor correspondente inicial é de 0,74 p.u.,(mostrando que
a restricdo de 50MW na linha 1-2 esta ativa). Apds a restricdo se tornar ativa o preco
locacional marginal no né 1 sofre uma modificacdo , ou seja, seu valor agora é uma
combinagéo das ofertas da unidades geradoras 2 e 3, sendo que o pico no valor do PLM
caracteriza o formato desse problema de otimizacdo linear que gera valores constantes em
termos de multiplicadores de Lagrange (PLM), pois a derivada da fungdo custo linear
sempre sera uma constante.

e A figura 5.3.3 mostra que o sistema se torna infactivel, (observar a reta amarela) para
valores de PD mais baixos do que no caso do sistema sem congestionamento (figura
5.3.1), lembrando-se que o PD representa a carga no nd 1, ou seja, a tolerancia a aumentos
de carga no sistema com congestionamento é menor do que no sistema sem
congestionamento.

e A figura5.3.4 apresenta 0 comportamento do PLM para diversos valores de carga no no 1.
E importante frisar que devido a mudanca na carga e ao congestionamento na linha 1-2,
surgem varios fatores de mudanca de geracdo, aumentando o grau de variabilidade do
PLM pois o FMG influi diretamente no multiplicador de Lagrange que compde a parcela
do PLM referente ao congestionamento do sistema, logo, o produto FMGXu muda,
segundo a equacéo 3.3.12.

3) Sistema com congestionamento de 50MW na linha (1-2) , (1-3) e (2-3) e com carga nominal
de 9OMW



PG™,(p.u) 0.6
PG™3(p.u) 0.3
0”,(p.u) -0.4
0*3(p.u) 0.1

LMP,($/MW.h) | 15
LMP,($IMW.h) | 5
LMP5($/MW.h) | 10

Tabela 5.3.3: Valores 6timos das variaveis de estado e dos PLMs

PRECO LOCACIONAL DE ENERGIA
T

PLMT (B h)

04

0.2

Figura 5.3.5: Despacho 6timo de geragdo para carga variavel caso 3

PRECO LOCACIONAL DE ENERGIA
T T

06
PD(p.u)

Figura 5.3.6: Variagdo do prego locacional marginal para o né de carga caso 3

05
PD(p.u)

06

07
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o A figura 5.3.5 mostra que para um sistema possuindo congestionamento em todas as linhas de
transmissdo, a area de factibilidade se torna mais limitada. No caso 3 o conjunto de solugdes se
torna infactivel, além de ndo 6timo, a partir de 1 p.u para o valor de PD e, no caso 2 do sistema
com congestionamento em apenas uma das linhas (figura 5.3.3), o conjunto de solucBes se torna
infactivel a partir de 1,2 p.u para valor de carga no n6 1.

o O comportamento do preco locacional marginal de energia é 0 mesmo tanto para 0 caso com
congestionamento em um ramo do circuito (caso 2) como no caso com congestionamento em
todos os ramos. Isso € verificado através da analise da figura 5.3.6 e a sua comparagdo com a
figura 5.3.4, pois 0 PLM, ou seja, s6 0 que muda sdo os limites da zona de factibilidade das
solugdes em ambos 0s casos.

5.4 Otimizacgao robusta

No desenvolvimento do preco locacional marginal e no estudo de casos nos tdpicos anteriores foi
considerado apenas parametros deterministicos na analise, no entanto, os sistemas elétricos de
poténcia atuais exibem inlmeros parametros ndo deterministicos ou parametros dependentes de uma
vasta gama de outros processos complexos que os tornam, de certa forma, imprevisiveis. Além disso,
com o crescimento da matriz energética em torno de fontes alternativas de energia que possuem um
alto grau de variabilidade ou instabilidade como a energia fotovoltaica e a energia edlica, é de extrema
necessidade a consideracdo da distribuicdo de incertezas ao longo do equacionamento sistémico que
caracteriza o SEP.

A otimizacdo robusta € uma das propostas relativamente novas [10] de se trabalhar em um espaco de
incertezas. No entanto, primeiramente é necessario a definicdo dessas incertezas nos sistemas elétricos
de poténcia para depois obter uma definicdo mais concreta do que a otimizacao robusta propde.

Existem dois tipos de incertezas nos sistemas elétricos de poténcia:

(1) Incertezas no sentido matematico, como a diferenca entre o estado medido e o estimado.

(2) Fontes de incertezas, incluindo a capacidade de transmissdo de energia elétrica,
disponibilidade de geracdo,surtos ndo planejados, regras de mercados, pre¢co do combustivel,
interrupcdes de energia, etc.

Este trabalho se focara apenas no segundo tipo de incertezas, visto que o objetivo principal é a
caracterizacdo de um preco locacional marginal no escopo de metodologias de otimizacao.

54.1 PLM e a otimizag&o robusta

O objetivo principal da otimizacdo robusta é encontrar pontos de maximos e minimos de varidveis de
estados que possuem um certo grau de incertezas, e o critério que tal metodologia de otimizacdo
utiliza é o critério da minimizacdo do maximo risco, baseado na teoria dos jogos [10]. Em outras
palavras, assume-se 0 maximo risco possivel, ou pior caso em termos de factibilidade de solucdes,
proveniente da variabilidade dos valores das varidveis de estados devido a acdo das incertezas, e é
realizado uma minimizacdo dentro deste espaco de solucdes. Dessa forma, é necessario um certo
conhecimento do comportamento das incertezas em termos estocasticos fazendo com que tal modelo
encontre suas melhores aplicagdes em atividades on-line. A robustez vem do fato de que otimizando o
pior dos casos, o sistema se torna imune a solugdes ndo factiveis quando submetidos as incertezas,
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pois estas j& foram consideradas no processo de otimizagdo, no entanto, um ponto negativo desta
metodologia € a geracdo de solugbes conservadoras de forma a ndo explorar os melhores valores
possiveis de otimizacdo do sistema.

Em termos de uma formulacdo do prego locacional marginal, as incertezas podem ser inseridas nas
principais variaveis de estados do problema do despacho econdmico na forma linear ou néo linear. Um
exemplo é mostrado abaixo, onde as incertezas estdo em torno do preco do combustivel relativo a
curva de geracéo:

R(PG;(1),U(1) = Fx — Fymin (5.4.1)
Onde
F5: O custo real de geracdo defindo como:

Fs = X5 Fi(PG(1),U(t) (5.4.2)

Fymin : O custo minimo de geragdo se as informacgdes a respeito das incertezas pudessem ser obtidas
de maneira deterministica.

Frmin = min Y15 F;(PGy(2), U (1)) (5.4.3)
U(t): Par@metros de incertezas
PG;(t): Poténcia de cada gerador esperada durante um certo intervalo de tempo

O operador min max R significa a minimizagdo do maximo risco causado pelos parametros de
incertezas:

. T
Mminpg,yMaxy e J, R(PGy(1), U(H))dt (5.4.4)

Os valores de poténcias de geracdo provenientes da funcdo (5.4.4) serdo usados para a caracterizacéo
de um preco locacional marginal sujeito as incertezas. Da mesma forma que os parametros de
incertezas foram inseridos na curva de custo de geracdo, elas podem ser inseridas nos limites de
transmissdo de energia elétrica para caracterizar o congestionamento, e podem ser inseridas nas perdas
ou variabilidade de cargas.

As equacdes de (5.4.1) até (5.4.4) foram aplicadas em um despacho econémico néo linear, no entanto,
este trabalho se limitara a aplicacéo da otimizag&o robusta no ambiente de programacdo linear.

O problema do despacho econdmico segundo a programacdo linear (2.3.3) e considerando as
incertezas, fica da forma:

Min bTX
s.t. AX = constante

X=0
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min, {max, 1 po +pp)cy@’ PG : PG = BO +Pp V(b, A, constante) € U} (5.4.5)

Neste caso sera considerado o efeito das incertezas no pre¢co da energia somente, desconsiderando as
incertezas no congestionamento, ou seja, a variabilidade de valores serd apenas na funcdo do custo de
geracéo.

Segundo a equagéo (3.3.12) do problema de otimizacéo linear

L= COR1 2N PGibxi) — M (o1 XN PGy — Pp — B 0 +0) - WFMG(B'0' - Fppyy) -
iV nY(PGi - PGipay) - XiZV¢ n%; (=PG; - PGimin)

A parcela da funcéo custo passara a possuir um vetor de incertezas U, associado:

n NP

€Y. ) pgibu, ) (5.4.6)
k=1i=1

Como o preco locacional marginal de referéncia é uma fungdo direta do gradiente da funcdo custo
relativo a poténcia gerada:

VC(ERoy X pGrbxyy, U) = A (U) =L, + AR, (5.4.7)

O A A, é o componente de incertezas associado ao preco locacional marginal de referéncia. Por
melhoria de nomenclatura:

Al‘f":)‘M

De modo que agora o preco locacional marginal serd composto de uma componente de referéncia, uma
componente de congestionamento, e uma componente de incertezas que dependerd da estratégia
adotada na caracterizacao das incertezas propriamente ditas.

PLM = A, + Ag + Ay (5.4.8)

Para a solucdo dos casos a seguir, foi utilizado método do gradiente junto ao software Matlab que
proporcionou a toolbox referente ao método Simplex. A andlise robusta foi implementada juntamente
com a declaracédo das varidveis do problema de otimizacéo na plataforma do Matlab.

5.4.2 Sistema com trés geradores e uma carga:
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Carga fixa 950 MW

Bus3
{bus de referéncia)

Bus 2

Gerador 2 capacidade Gerador 3 capacidade
100 MW 100 MW

Figura 5.3.1: Diagrama do sistema 5.3

Seré analisado o caso 2 do capitulo 5.3 descrito pelo diagrama unifilar da figura 5.3.1 onde a funcéo
custo sera submetida as incertezas, cuja topologia (estratégia de risco) escolhida foi a de uma
circunferéncia que possui caracteristicas de robustez eficazes em uma vasta classe de problemas [11].
Como a funcdo custo possui dois elementos de poténcia de geracdo, a incerteza proposta pode ser
inserida de maneira direta sem modificagdes. A rotina de solugdo do problema de otimizagdo com
incertezas foi implementado no Matlab seguindo os critérios de (5.4.1) & (5.4.4).

APG,? + APG4? < 1000 (5.4.2)

De modo que as solugdes encontradas do problema de otimizacdo serdo factiveis dentro de uma
circunferéncia de raio 10410, simbolizando uma incerteza de 10v/10 MW.

Caso sem incertezas

Sistema com congestionamento de 50MW na linha (1-2) e com carga hominal de 90MW

PG*,(p.u) 0.6
PG 5(p.u) 0.3
0*,(p.u) -0.4
0" 3(p.u) 0.1

PLM,($/MW.h) | 15
PLM,($/MW.h) | 5
PLM5($/MW.h) | 10

Tabela 5.3.2: Valores 6timos das variaveis de estado e dos PLMs
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Figura 5.3.4: Variacao do prego locacional marginal para o né de carga caso 2

Caso com incertezas (APG,=0 e APG3 = 32)

PG”,(p.u) 0.6
PG™3(p.u) 0.3
0",(p.u) -0.4
0" 3(p.u) 0.1

PLM1($/MW.h) | 10,32
PLM,($IMW.h) | 5
PLM5($/MW.h) | 10,32

Tabela 5.4.2: Valores 6timos das variaveis de estado e dos PLMs

PRECO LOCACIONAL DEENERGIA COMINCERTEZA S
T T T T

14— N

12— 1

PLM 1{B/MWY )
T
1

0 | | 1 | 1
0 02 04 0.6 08 1 12

PD{p.u.)

Figura 5.4.2: Variacdo do prego locacional marginal para o né de carga caso 2 com incertezas



Caso com incertezas (APG,=32 e APG3 =0)

PG*,(p.u) 0.6
PG”3(p.u) 0.3
0",(p.u) -0.4
0"3(p.u) 0.1

PLM,($/MW.h) | 15,32
PLM,($/MW.h) | 5,32
PLM,($/MW.h) | 10

Tabela 5.4.3: Valores 6timos das variaveis de estado e dos PLMs

PRECO LOCACIONAL DE ENERGIA COMINCERTEZA §
T

0.2 04 06 0.8 1
FD(p.)

Figura 5.4.3: Variacéo do prego locacional marginal para o nd de carga caso 2 com incertezas
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Observa-se que nos dois casos em que foi aplicado a otimizagdo robusta, os valores 6timos de
poténcia gerada ndo mudaram em comparagdo com os valores obtidos pela otimizacdo sem
incertezas demonstrando um certo grau de robustez nas soluc@es, em vista de que foi aplicado
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uma variacdo nos pardmetros das poténcias de geracdo em um raio de circunferéncia
consideravel.

o A presenca das incertezas influenciou diretamente na variacdo dos precos locacionais marginais
tanto dos nés de geracdo quanto dos nds de carga, demonstrando que a desconsideracdo das
incertezas no problema do despacho econémico pode gerar resultados ndo factiveis em termos
matematicos e resultados errbneos em termos econdémicos. Através da comparagdo da figura
5.4.2 e figura 5.4.3 (casos com incertezas) com a figura5.3.3 (casos sem incertezas) nota-se que
a variacdo nos precos locacionais marginais ndao é tdo perceptivel, entretanto, a diferenca nos
valores entre os precos locacionais marginais foi de 0,32 $/MW.h simbolizando 2% do prego
mais alto de energia e 6,4% do preco mais baixo de energia. E importante frisar que foi
considerado as incertezas apenas nos valores de poténcia gerada, no entanto sabe-se que um
sistema possui diversas fontes de incerteza. Esse fato mostra um potencial de economia além
do ajuste das solucdes factiveis.

e Devido a preservacao dos valores das varidveis de estados, a otimizagdo robusta se mostrou eficaz
em uma certa classe de problemas de programacéo linear

6 Conclusao

Neste trabalho de concluséo de curso, foram utilizados dois desenvolvimentos matematicos, um néo
linear e outro linear, no intuito de caracterizar o prego locacional marginal. Uma expansdo da ideia
bésica do PLM e também a construcdo de uma filosofia mais profunda do seu significado, expondo os
principais problemas que se desdobram nas esferas fisicas, em torno da geragdo, transmissdo e
distribuicdo de energia elétrica, nas esferas mateméticas em torno das técnicas de otimizagdo, e nas
esferas econbmicas que incorporam os sistemas de trocas atraves das estruturas desverticalizadas dos
mercados de energia foram discutidas

As quatro metodologias aplicadas no estudo de casos que sdo, os multiplicadores de Lagrange, redes
neurais de Hopfield, método simplex e otimizagdo robusta, cumpriram seus objetivos; cada
metodologia foi escolhida para abordar um diferente aspecto do PLM de modo a produzir um
somatorio final em termos de resultados qualitativos e quantitativos coerentes com o objetivo deste
trabalho que é o estudo de certas propriedades do PLM e andlise de seus principais termos
matematicos como os multiplicadores de Lagrange e o fator de mudanca de geracdo para obter uma
visdo geral desta ferramenta e de seu propdsito. A abordagem do PLM ndo linear mostrou de forma
direta a importancia da divisdo dos nés de geracdo em marginais e ndo marginais para melhorar a
formulacdo matematica desta ferramenta e caracterizar seu principal comportamento que é o de
fornecer um prego de energia para 0s nos de geracdo ndo marginais e assumir um valor nulo para o0s
n6s marginais do sistema demonstrando a inexisténcia de um preco para estes pontos, facilitando
assim alguns calculos posteriores. A abordagem do PLM linear permitiu uma melhor compreensao do
proposito do preco locacional marginal para uma avaliagdo do sistema quanto ao seu
congestionamento, e isso foi possivel através da exemplificacdo dos fatores de mudanca de geragdo
(FMG). O método simplex utilizado no programa Matlab permitiu o célculo de precos nodais de
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maneira rapida e eficiente, em vista também da estrutura de programac&o linear com a qual o PLM foi
caracterizado, permitindo a visualizagdo do comportamento do PLM em cada n6 do SEP para
diferentes casos de demanda. As redes neurais de Hopfield se mostraram uma técnica adaptativa,
rapida em termos de processamento computacional e com um grande potencial devido a sua
combinacdo de funcdo energia de Lyapunov e redes neurais artificiais que fazem uso da realimentacéo
para obter a estabilidade de um sistema. Finalmente, a otimizacdo robusta realizou o seu objetivo de
mostrar o efeito das incertezas em processos de otimizacdo e a importancia de sua filosofia de
minimizagdo do maximo risco para gerar solugBes factiveis e imunes as incertezas em uma
determinada topologia de solugdes. Finalmente, foram observadas contribui¢fes na area de operagdes
de sistemas elétricos de poténcia, visto que o preco locacional marginal de energia foi implementado
com técnicas relativamente novas e equacionamentos mistos provenientes de pesquisa bibliogréfica e
traquejo algébrico pessoal, mostrando assim um aspecto dindmico e passivel de mudancas do PLM
que abre espaco para outras formas de desenvolvimento matematico e pesquisas no futuro.
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